WO1999016080A1 - Stage driving method, stage device and exposure device - Google Patents
Stage driving method, stage device and exposure device Download PDFInfo
- Publication number
- WO1999016080A1 WO1999016080A1 PCT/JP1998/004264 JP9804264W WO9916080A1 WO 1999016080 A1 WO1999016080 A1 WO 1999016080A1 JP 9804264 W JP9804264 W JP 9804264W WO 9916080 A1 WO9916080 A1 WO 9916080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- stator
- braking
- movable table
- surface plate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 description 35
- 230000001133 acceleration Effects 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 238000013016 damping Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/709—Vibration, e.g. vibration detection, compensation, suppression or isolation
-
- G—PHYSICS
- G12—INSTRUMENT DETAILS
- G12B—CONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
- G12B5/00—Adjusting position or attitude, e.g. level, of instruments or other apparatus, or of parts thereof; Compensating for the effects of tilting or acceleration, e.g. for optical apparatus
Definitions
- Stage driving method stage apparatus, and exposure apparatus
- the present invention relates to a stage device with a vibration isolation function for precisely positioning a workpiece and a method of driving the same, and for example, a lithographic apparatus for manufacturing a semiconductor device, a liquid crystal display device, a thin film magnetic head, or the like. It is suitable for use in an exposure apparatus used for transferring a mask pattern onto a substrate such as a wafer, or a precision machine tool or a precision measuring instrument. Background technology
- a reticle pattern as a mask is transferred onto a wafer (or a glass plate or the like) coated with a resist as a photosensitive substrate.
- a reduced projection type exposure apparatus was used.
- a wafer stage capable of stepping in two directions orthogonal to each other is used as an apparatus for moving each shot area of a plane 8 to a predetermined exposure position.
- a wafer stage that performs stepping in two directions orthogonal to each other and continuously moves at a constant speed in the scanning direction is capable of continuously moving at a constant speed in the scanning direction and is capable of moving in the non-scanning direction.
- a reticle stage is used, which can move a very small amount and can rotate a small angle around an axis perpendicular to the moving surface.
- the exposure apparatus main body including these stages is provided with a highly elastic air spring or coil spring and an attenuator as an attenuator in order to block vibration from the floor. It is generally supported via a vibration isolator that is made up of a steel plate.
- FIG. 12 shows a schematic configuration of a conventional wafer stage for an exposure apparatus.
- a base plate 72 is provided on a base 70 via a plurality of anti-vibration tables 71 A and 7 IB.
- An X stage 73 is mounted on a surface plate 72 so as to be movable in a direction parallel to the plane of FIG. 12 (this direction is defined as an X direction).
- the X stage 73 is driven in the X direction via a feed screw 75 by a driving motor 74 fixed on the surface plate 72, and is fed on the X stage 73 in the Y direction orthogonal to the X direction.
- a Y stage 76 driven by a screw system is mounted.
- a thrust F indicated by, for example, a solid arrow acts on the X stage 73, and the platen 72 is driven via the drive motor 74.
- a reaction force F shown by a dotted arrow acts as a reaction. Therefore, the surface plate 72 is displaced in the direction of the reaction as it is, causing vibration.
- a braking force D in the X direction to the surface plate 72 on the base 70, as disclosed in, for example, Japanese Patent Laid-Open Publication No.
- a large amplitude component of these moments and deformation forces causes a vibration mode in which the air springs (or coil springs) of the anti-vibration tables 71A and 71B are deformed. It is reduced to a considerable extent by 1A, 71B itself. However, the remaining small-amplitude vibration is becoming a non-negligible amount in applications requiring stability of several nm, such as semiconductor exposure equipment.
- the drive mode 74 of the X-stage 73 and the external It is desirable that the drive characteristics of the actuator for applying a braking force from the vehicle almost completely match the drive characteristics.
- the driving characteristics are mainly the linearity of the magnitude of the generated thrust with respect to the thrust command value, and the time delay from when the thrust command is issued until the thrust is generated.
- the mechanism of the drive mode 74 is greatly different from that of the actuator mode 77, it is difficult to match the drive characteristics almost completely. It was difficult to reduce.
- the method of fixing the linear actuator stator on the base side does not excite the vibration mode of deforming the surface plate and the exposure apparatus main body as in the former method, but requires a large braking mechanism.
- the size of the stage device becomes large as a whole, and the arrangement of the length measuring system and sensors provided in the stage device is greatly restricted.
- the position of the X stage 73 (drive module 74) is constant in the direction perpendicular to the plane of FIG. 12 (Y direction). Even if the position (X coordinate) of 73 changes, the vibration during acceleration / deceleration can be suppressed to some extent by the actuator.
- the position in the X direction changes following the change in the position of the X stage 73, so that the Y stage does not depend on the position of the X stage 73.
- providing the vibration damping mechanism on the X stage 73 in this way has disadvantages such as the large size of the X stage 73 and the deterioration of the drive characteristics of the X stage 73. Disclosure of the invention
- the present invention provides a stage driving method that does not easily generate a momentary deformation force or the like when suppressing vibration accompanying driving of a movable unit, and a stage apparatus and an exposure apparatus that use this driving method. This is the primary purpose.
- the present invention provides a stage driving method capable of greatly reducing the vibration accompanying the driving of the movable portion without using a large vibration damping mechanism, and a stage apparatus and an exposure apparatus using this driving method.
- the purpose of 2 the present invention provides a stage apparatus and an exposure apparatus which can suppress vibration generated in one of the moving directions without significantly affecting the other moving direction when driving the movable portion in two intersecting directions. Is the third purpose.
- the stage driving method is a stage driving method for driving a movable table, which is movably mounted on a surface plate in a predetermined direction, with respect to the surface plate in a predetermined direction using a non-contact type driving means.
- the non-contact type driving means When a thrust is applied to the movable table in a predetermined direction in a state where the stator is movably supported with respect to the surface plate, a braking force is applied to the stator.
- non-contact type driving means there are various types of non-contact braking force by electromagnetic force, such as a linear motor including a mover and a stator, or a driving device generating a thrust including Lorentz force.
- the device can be used.
- An object to be processed such as a wafer is placed on the movable table.
- a braking force is applied from the control member to the stator so as to cancel a reaction (reaction force) generated in the stator.
- the reaction and the damping force act on almost the same straight line, so that moment and deformation force are not easily generated, and even if the timing of the reaction and the braking force is slightly deviated, the stator is fixed. Since it is movable with respect to the board, there is no force acting on the surface plate or the like to cause rotation or the like.
- the above-described braking force can be applied in a non-contact manner by electromagnetic force by using, for example, a linear motor, a driving device using a mouth-to-lent force, or the like.
- a feed force system may apply a braking force to the stator based on the command values of the position of the movable table and the moving speed. This increases the response speed.
- the relative displacement of the stator with respect to the surface plate can be corrected when the non-contact driving means is not operating.
- the above-described stage driving method includes the steps of: moving a second movable table movably installed in a second direction intersecting the movable table in a predetermined direction with respect to the movable table;
- the movable member moves in the predetermined direction together with the movable table over the moving range of the movable member in the predetermined direction.
- a braking force in the second direction can be applied.
- first movable table a movable table
- first direction a predetermined direction
- the stage device comprises: a surface plate; a movable table installed movably in a predetermined direction with respect to the surface plate; and the movable table driven in the predetermined direction with respect to the surface plate.
- Non-contact type driving means ; supporting means for movably supporting the stator of the non-contact type driving means in the predetermined direction with respect to the surface plate; provided on a predetermined base; And a braking member for applying power.
- a braking force is applied from the braking member to the stator so as to cancel the reaction (reaction force) generated in the stator.
- the stage driving method of the present invention can be used. At this time, since the reaction and the braking force act on substantially the same straight line, a moment and a deformation force are hardly generated, and the timing of the reaction and the braking force is not affected even if the magnitude is slightly shifted. Since it is movable with respect to the surface plate, no force that causes rotation or the like acts on the surface plate or the like. Therefore, the driving characteristics of the braking member may be different from the driving characteristics of the non-contact type driving means. In this sense, as the braking member, besides the electromagnetic active braking member, a passive braking member such as a pole joint or a viscoelastic joint may be used.
- the active braking member when used as in the former case, The stator of the non-contact type driving means is supported so as not to move in a direction perpendicular to the predetermined direction with respect to the surface plate, and the braking member provided on the base is provided on the base. And a thrust generator attached to the frame and applying a force of electromagnetic force to the stator of the non-contact type driving means, the thrust generator comprising: When the movable table is driven via the means, a thrust that substantially cancels a reaction force acting on the stator is generated as the braking force. In this case, there is an advantage that the vibration accompanying the driving of the movable portion can be significantly reduced without using a large-scale vibration damping mechanism.
- the stator of the non-contact type driving means should not move in a direction perpendicular to the predetermined direction with respect to the surface plate.
- the braking member provided on the base is provided with a mechanical braking force on a frame provided on the base and on a stator of the non-contact type driving means mounted on the frame.
- a passive brake In this case, there is an advantage that the vibration accompanying the driving of the movable part can be greatly reduced by a passive and inexpensive braking mechanism without using a large-sized vibration damping mechanism.
- the stage device includes a second movable table movably installed in a second direction intersecting the predetermined direction with respect to the movable table, and a second movable table with respect to the movable table.
- Second non-contact type driving means for driving the table in the second direction, a movable member attached to the movable table and moving in the predetermined direction together with the movable table, and a movable member fixed on a predetermined base and And a braking member that applies a thrust to the movable member in the second direction over the movable range of the movable member in the first direction.
- a wafer or the like is placed on the second movable table.
- the workpiece to be processed is placed, and the position of the second movable table changes two-dimensionally. That is, as the position of the movable table (hereinafter, “first movable table”) in a predetermined direction (hereinafter, “first direction”) changes, the second movable table moves in the first direction. The position also changes.
- first movable table position of the movable table
- first direction a predetermined direction
- a movable member is attached to the first movable table, and a braking force is applied to the movable member from the outside in the second direction, so that the movement of the first movable table can be substantially prevented. Vibration of the second movable table in the second direction can be suppressed without affecting the second movable table.
- one example of the braking member has a fixed member arranged to face the first movable member over the entire movement range of the first movable member in the first direction.
- the vibration in the second direction is actively suppressed. That is, when the movable portion is driven in two intersecting directions, there is an advantage that vibration generated in one moving direction can be suppressed without much affecting the other moving direction.
- a moment, a deforming force, and the like are hardly generated when suppressing vibration caused by driving the second movable table (movable part).
- the braking member has a fixed member disposed so as to face the movable member over the entire movement range of the movable member in the first direction, and a braking member is provided between the movable member and the fixed member.
- stage driving method and the stage apparatus described above are Can be applied to For example, in the case of an exposure apparatus using the above stage device as a reticle stage, a pattern formed on an illuminated mask is projected through a projection lens onto a substrate mounted on the stage device. In the case of an exposure apparatus using the above stage device as a mask stage, a mask mounted on the stage device is illuminated, and a pattern formed on the mask is projected on a substrate stage through a projection lens. Project onto the board.
- FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus used in an example of an embodiment of the present invention.
- FIG. 2 is a partially cutaway perspective view showing a wafer stage of the projection exposure apparatus of FIG.
- FIG. 3A is a partially cutaway plan view showing the Y braking mode of FIG. 1.
- FIG. 3B is a side view of the Y braking mode in FIG. 3A.
- FIG. 4A is a plan view showing a modification of the Y braking mode.
- FIG. 4B is a side view of the Y braking mode in FIG. 4A.
- FIG. 5 is a block diagram showing a stage system and a control system of a braking mechanism in an example of the embodiment.
- FIG. 6 is a simplified side view of the wafer stage of FIG. 2 as viewed in the ⁇ Y direction.
- Figure 7 is a c Fig. 8 is a side view showing a main part of a second embodiment of the brake mechanism of the X-axis is a side view showing a main part of a third embodiment of the brake mechanism of the X-axis ( FIG. 9 is a side view showing a main part of a fourth embodiment of the X-axis braking mechanism, and FIG. 10 is a side view showing a main part of a fifth embodiment of the X-axis braking mechanism.
- FIG. 11 is a view for explaining the structure of an exposure apparatus incorporating a stage device of another embodiment.
- FIG. 12 is a simplified configuration diagram showing a conventional stage device. Embodiment
- the present invention is applied to a wafer stage of a projection exposure apparatus for manufacturing a semiconductor device.
- FIG. 1 shows a schematic configuration of a projection exposure apparatus of the present example
- FIG. 2 shows a configuration of a wafer stage of the projection exposure apparatus.
- a rectangular flat platen 3 is placed on a flat base 1 via four vibration isolating tables 2A to 2D (2C and 2D are not shown in the drawing). Is supported.
- Each of the anti-vibration tables 2 A and 2 B is composed of a highly elastic air spring (or coil spring) and an oil damper as a vibration damper. Is not transmitted to the platen 3 side.
- the resonance frequency of the platen 3 and the mechanical part of the projection exposure apparatus thereon is about several Hz.
- the surface of the platen 3 is a plane with extremely good flatness, and the surface is kept almost parallel to the horizontal plane in a stationary state.Hereafter, the surface of the platen 3 is perpendicular to the plane of FIG.
- the X axis is taken in the direction
- the Y axis is taken in a direction parallel to the plane of FIG. 1
- the Z axis is taken in a direction perpendicular to the surface of the surface plate 3.
- an X guide bar 4 provided with a guide surface for the X stage is fixed on the surface of the surface plate 3 along the X direction.
- a first Y guide bar carrier 5 is arranged movably in the X direction along the surface of the X guide bar 4 and the surface plate 3, and the Y guide bar carrier 5 is arranged along the surface of the surface plate 3 with the Y guide bar carrier 5.
- a second Y guide bar carrier 8 is arranged so as to be movable in the X direction, and a guide surface for the stage is provided along the direction to connect the guide bars 5 and 8.
- a guide bar (6) is installed, and (4) an X stage, which is a movable table, is composed of the guide bar carriers (5, 8) and (6) the guide bar.
- an air ejection portion constituting an air bearing is provided on the bottom surface and the outer surface of the first guide bar transporter 5, respectively.
- a preload mechanism such as a magnet or a vacuum pocket is built in the vicinity of these air ejection parts, and the first ⁇ ⁇ guide bar carrier 5 is provided on the surface of the surface plate 3 and the side of the X guide bar 4. It can be moved in the X direction while being restrained in the ⁇ and ⁇ directions while keeping a certain interval between the two.
- a prestressing mechanism such as an air ejection portion constituting an air bearing and a magnet or a vacuum pocket is incorporated into the bottom surface of the second guide bar carrier 8. The table is also restrained on the upper surface of the platen 5 while keeping a constant interval, and can move in the X direction.
- an X-axis linear motor 10 which is a non-contact drive means, is arranged on the surface plate 3 along the X direction so as to sandwich the X guide bar 4 together with the guide bar carrier 5.
- the evening 10 A and the Y guide bar-transport body 5 are connected via a connecting member 9 erected so as to straddle the X guide bar 4.
- the X-axis linear motor 10A is a stator composed of a mover 11A with a coil on the connecting member 9 side and a plurality of permanent magnets with alternately reversed polarities on the surface plate 3 side.
- the linear motion guide 13 A is interposed between the stator 12 A and the surface of the surface plate 3. As shown in Fig.
- the linear motion guide 13A is composed of a rail 13Ab fixed on the surface plate 3 and a large number of small It consists of a plurality of sliding members 13 A a that can slide in the X direction via a pole bearing,
- the member 13Aa is fixed to the bottom surface of the stator 12A by bonding or the like.
- a guide of a static pressure gas bearing system or the like may be used as the linear motion guide 13A.
- 10 B which is an X-axis linear motor non-contact driving means arranged in the X direction, is connected to the left end of the Y guide bar 6 via a connecting member 18, and the X-axis linear motor 10 B Is composed of a stator 11 B having a coil on the connecting member 18 side and a stator 12 B on the surface plate 3 on which a plurality of permanent magnets are arranged.
- the stator 12 B and the surface plate A linear motion guide 13B which can slide the stator 12B back and forth in the X direction, is interposed between the linear motion guide 13B and the surface 3B.
- the stators 12A and 12B of the two-axis X-axis linear motors 10A and 10B of this example are restrained by the linear motion guides 13A and 13B as support means so that they cannot be displaced in the Y direction. It is supported so that it can slide in the X direction.
- a braking force is applied to the stators 12A and 128 by a braking member in a direction described later so as to cancel a reaction force (reaction) at the time of driving.
- the X-axis linear motors 10A and 1OB drive the X-stage in the X-direction using a moving coil system in parallel.
- a pair of X-direction restraining bearing members 7 are arranged on the side surface of the Y guide bar 6 with a gap of several im so as to sandwich the Y guide bar 6 in the X direction.
- the Z floating bearing plate 14 (see Fig. 1) is fixed to the bottom surface of the constraining bearing member 7, and the sample stage 15 is fixed to the upper surface of the X-direction constraining bearing member 7, not shown on the sample stage 15.
- the wafer W to be exposed to which the resist is applied is held via the wafer holder.
- a Y stage is composed of a pair of X-direction constrained bearing members 7, a Z floating bearing plate 14, and a sample stage 15.
- the weight of the Y stage is supported in a non-contact manner by an air-bearing system.
- a pair of X-direction restraint bearings 7 blast air toward the Y guide bar 6, respectively, and the Y stage is fixed to the Y guide bar 6 by balancing the air pressure generated by both. Constrain in the X direction without contact while maintaining.
- the Y stage can move in the Y direction along the Y guide bar 6 while being restrained in a non-contact manner in the X direction and the Z direction.
- a pair of X guide restraint bearing members 7 are connected in parallel to the Y direction so that Y guide bar carriers 5 and 8 (see Fig. 1) are connected to both sides.
- the stators 16 A and 16 B with coils are installed. + A plurality of U-shaped permanent magnets sandwich the stator 16 A on the outer surface of the X-direction restraining bearing member 7 on the X-direction side.
- the mover 17 A with the permanent magnet is fixed, and the mover (not shown) with a plurality of permanent magnets is fixed on the outer surface of the X-direction constrained bearing member 7 on the X direction side so as to sandwich the stator 16 B. It has been.
- the stators 16A and 16B and the corresponding movers 17A and the like constitute the two-axis moving magnet type Y-axis linear motors 26A and 26B, respectively.
- the Y stage is driven in the Y direction by axis linear motors 26A and 26B.
- the sample stage 15 above the X-direction constraining bearing member 7 in the Y stage is capable of correcting the position in the Z direction (focus position) and the tilt angle around the X axis and the Y axis.
- the X-axis movable mirror 19 X and the Y-axis movable mirror 19 Y are fixed to the end in the ⁇ X direction and the end in the + Y direction on the sample table 15, respectively.
- the two-axis X-axis laser interferometers 21 XA and 21 XB attached to the support member 25 fixed to the X-direction side surface of the platen 3 are parallel to the X-axis to the moving mirror 19 X Is irradiated with a laser beam, and a laser mirror 19 X (sample stage 15) is moved by a laser interferometer 2 IXA and 21 XB.
- the X coordinates XW1 and XW2 of are measured.
- one X coordinate XW1 is the X coordinate of the sample stage 15, and the rotation angle of the sample stage 15 is calculated from the difference between the two X coordinates XW1 and XW2.
- the laser beam from the Y-axis laser interferometer 21 Y attached to the support member 25 is reflected by a mirror 20 attached to an optical system support frame (not shown) attached to the support member 25, and
- the moving mirror 19Y is irradiated parallel to the axis, and the Y coordinate YW of the moving mirror 19Y (sample stage 15) is measured by the laser interferometer 21Y.
- a projection optical system PL and a reticle R are sequentially arranged above the wafer W, and the projection optical system PL is supported by a column (not shown) fixed to the surface plate 3, and the reticle R is It is held on a reticle stage 22 movably mounted on a reticle base 23 fixed to a column.
- a fly-eye lens at the top of the column for example, for uniformizing the illuminance distribution of exposure light from an exposure light source installed outside the chamber in which the projection exposure apparatus is housed, a variable field stop (reticle blind),
- An illumination optical system 24 including a condenser lens and the like is arranged, and at the time of exposure, the exposure light IL from the illumination optical system 24 illuminates the pattern area of the reticle R with, for example, a rectangular illumination area elongated in the X direction.
- excimer laser light such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm)
- soft X-rays are used in addition to bright lines such as i-line of a mercury lamp. it can.
- a laser interferometer (not shown) for measuring the two-dimensional position of the reticle stage 22 is also provided.
- the laser interferometer measures the measured values of the laser interferometer and commands from the main control system 51 for controlling the overall operation of the apparatus. Accordingly, stage control system 52 controls the operation of reticle stage 22 in a linear mode.
- the measured values of the laser interferometers 21XA, 21XB, and 21Y in FIG. 2 are also supplied to the stage control system 52 in FIG.
- the stage control system 52 controls the operations of the two-axis X-axis linear motors 10A and 10B on the wafer stage side and the two-axis Y-axis linear motors 26A and 26B in response to the command from the CPU. That is, at the time of exposure, when exposure to one shot area on the wafer W is completed, the X-axis linear motors 1OA and 10B and the Y-axis linear motors 26A and 26B are stepped and driven to the next step. After moving the shot area to the scanning start position, the reticle R and the wafer W are projected by driving the Y-axis linear motors 26A and 26B at a constant speed and driving the reticle stage 22 in synchronization.
- the operation of synchronously scanning the optical system PL in the Y direction with the projection magnification as a speed ratio is repeated in a step-and-scan manner, and each shot area of the wafer W is exposed.
- the present invention is also applied to a case where a batch exposure system such as a stepper is used as the projection exposure apparatus instead of the step-and-scan system as in this embodiment.
- the sample stage 15 (wafer W) of the wafer stage of this example is driven by two X-axis linear motors 10 A and 10 B in the X direction, and in the Y direction. Are also driven by two Y-axis linear motors 26A and 26B.
- the accelerations (including deceleration) targeted by the movers 118 and 11B of the corresponding X-axis linear motors 10A and 108 are included.
- the thrust is proportional to the thrust force.
- a force of the same magnitude hereinafter referred to as "reaction force" is applied to the corresponding stators 12A and 12B by the reaction in the opposite direction.
- the wafer stage of the projection exposure apparatus of the present example is provided with X-axis and Y-axis braking mechanisms.
- a part of the X-axis braking mechanism is movable in the direction in which the reaction force is generated by the stators 128, 12B of the X-axis linear motors 10A, 108A.
- a braking frame 35 is fixed to the side of the base 1 in the —X direction.
- the braking frame 35 has almost the stator 12 A, at the ends of the stators 12 A and 12 B in the —X direction. Convex portions 35a and 35b facing the upper surface of 12B are provided, and convex portions 35a and 3b are provided.
- the X-brake members 36 A and 36 B which have coils on the bottom surface of the X-axis linear motors 10 A and 10 B, respectively, with almost the same configuration as the movers 11 A and 11 B, respectively Are fixed, and the tip portions of the X braking members 36A and 36B are inserted into the U-shaped stators 12A and 12B in a non-contact manner, respectively.
- the X-braking members 36A and 36B constitute an X-axis braking mechanism.
- the X-braking members 36A and 36B are provided with desired linear control over the stators 12A and 12B in a linear motor system. Generate power.
- FIG. 5 shows the detailed configuration of the stage control system 52 shown in FIG. 1.
- the stage control system 52 includes a wafer stage drive system 53 and a reticle stage drive system 54. And various drivers. Then, the measured values of the three-axis laser interferometers 21 XA, 21 XB and 21 Y on the wafer stage side are supplied to the wafer stage drive system 53, and the wafer stage drive system 53 further has a main control system. Command values such as target position and moving speed of the wafer stage (sample stage 15) are supplied from 51. In response to this information, the wafer stage drive system 53 is driven by the X-axis linear motor 10 A, shown in FIG.
- the wafer stage drive system 53 supplies synchronization information to a reticle stage drive system 54, and the reticle stage drive system 54 drives the reticle stage in synchronization with the wafer stage.
- Drivers 55 ⁇ ⁇ ⁇ ⁇ , 55 ⁇ and 56A, 56 ⁇ on the wafer stage are equipped with coils for the movers 11A, 11 1 and the stators 16 ⁇ , 16 ⁇ that correspond to generate the set thrust. Supply drive current to the coil.
- the information of the X-axis thrust to the X-axis drivers 55 ⁇ and 55 ⁇ is also supplied to the X-axis control drivers 57 ⁇ and 57 ⁇ , and the drivers 57 ⁇ and 57 ⁇ are driven by the corresponding X-brake member 36 ⁇ ⁇ .
- 36 mm coil is supplied with a current to generate a thrust in the opposite direction with the same magnitude as its X-axis thrust.
- FIG. 6 is a simplified side view of the wafer stage in FIG. 2 as viewed in one direction.
- the corresponding stator 12 A is subjected to anti-car FXA (reaction force FXA in the X direction).
- the braking force DXA acting on the stator 12A from the X-braking member 36A becomes a thrust FXA in the X-direction, which has the same magnitude in the opposite direction to the reaction force. No force acts on the stator 12A, and the stator 12A remains stationary.
- reaction force FXA and the braking force DXA are substantially on the same straight line, no moment or force for deforming the stator 12 A is generated, and the movable element 11 A There is no generation of minute vibration during acceleration / deceleration.
- the timing when the braking force is applied to the stator 12A by the X braking member 36A is compared with the timing when the thrust is applied to the mover 11A. Is slightly deviated, or even if the magnitude of the braking force applied to the stator 12A by the X braking member 36A is slightly different from the magnitude of the reaction force generated in the stator 12A, Since the stator 1 2 A is displaced in the X direction by the moving guide 13 A, the surface plate 3 does not vibrate. Therefore, the surface plate 3 is stationary regardless of the acceleration / deceleration of the X stage (movable elements 11A and 11B), and the position control and speed control of the X stage are performed with high accuracy.
- the stators 11A and 11B are usually kept stationary by the X-braking members 36A and 36B, for example. Keep it.
- an encoder of an optical type or a capacitance type for roughly detecting the relative position of the stators 12A and 12B and the surface plate 3 in the X direction is arranged. The measured value of this encoder is also supplied to the wafer stage drive system 53 in FIG.
- the wafer stage control system 53 drives the X braking members 36A and 36B via a control line (not shown) so that the relative position is within the target range.
- the positions of the stators 12A and 12B do not gradually shift.
- a mover 32 having a coil is fixed to a connecting member 9 that moves in the X direction together with the Y guide bar transporter 5 so as to cover the tip of the mover 32 in a non-contact manner.
- a stator 33 having a U-shaped cross section is arranged along the X direction, and the stator 33 is fixed to two braking frames 34 A, 34 B fixed to the side of the base 1 in the + Y direction.
- the mover 32 and the stator 33 constitute a Y braking mode 31 as a Y-axis braking mechanism.
- Mover 3 in It is arranged to cover the mover 32 in the entire movement range of 2.
- FIG. 3A is a partially cutaway plan view showing a Y braking motor 31 composed of the mover 32 and the stator 33 shown in FIG. 1, and FIG. 3B is a side view of FIG. 3A.
- the stator 33 is fixed on one inner surface of the three yokes 37, 38A and 38B fixed in a U-shape so that the polarity is reversed in the Y direction.
- the magnets 39A and 39B are fixed, and the permanent magnets 39C and 39D are fixed to the other inner surface with the polarity attracting the permanent magnets 39A and 39B.
- the direction of the magnetic flux generated between one pair of permanent magnets 39A and 39C is opposite to the direction of the magnetic flux generated between the other pair of permanent magnets 39B and 39D.
- the mover 32 is inserted in a non-contact manner between the pair of permanent magnets.
- a coil 32a is wound a plurality of times in a rectangular shape.
- the current IY flowing through the coil 32a is opposite between the pair of permanent magnets 39A and 39C and the other pair of permanent magnets 39B and 390 in the + direction or the -X direction.
- a braking force DY / 2 which is a Lorentz force
- the mover 32 in the Y direction between the permanent magnets 39A and 39C, the movable element 32 will move between the permanent magnets 39B and 39D.
- a braking force DYZ 2 composed of a mouth-to-Lenz force acts. Since the Lorentz force is proportional to the current I Y, the direction and magnitude of the DY braking force can be arbitrarily controlled in total by controlling the current I Y.
- the information on the thrust supplied from the wafer stage drive system 53 to the Y-axis drivers 56 A and 56 B is also supplied to the driver 58.
- the driver 58 acts on the mover 32 according to the total value FY of the thrusts applied to the movers 168 and 16B of the two-axis Y-axis linear motors 26A and 268 by the braking force DY composed of the mouth-to-Lenz force.
- the power supplied to the coil 32a of the mover 32 is such that the direction is opposite to the reaction force and the size is the same. Set the flow IY.
- the permanent magnet and the coil may be reversed as shown in FIGS. 4A and 4B.
- FIG. 4A is a plan view showing another example of the configuration of the Y braking motor 31, and FIG. 4B is a side view thereof.
- FIG. 2A is provided with permanent magnets 42A, 42B on one inner surface of three yokes 40, 41A, 41B fixed in a U-shape so that the polarity is reversed in the Y direction.
- the permanent magnets 42C and 42D are fixed on the other inner surface with the polarity that attracts them so as to face the permanent magnets 42A and 42B.
- a stator 33A long in the X direction is inserted in a non-contact manner so as to cover the entire moving range of the mover 32A.
- a coil 33Aa is wound a plurality of times in a rectangular shape inside the stator 33A. Therefore, even in this modification, when the coil 33 Aa is energized, the mouth force generated in the stator 33 A between the permanent magnets 42 A and 42 C and the stator 33 A between the permanent magnets 42 B and 42 D The force is the same as the mouth-to-lentz force generated in the armature, and the reaction force of the total Lorentz force acts as a braking force on the mover 32A. By canceling the reaction force FY acting on the mover 32 A with the braking force, vibration in the Y direction can be suppressed.
- the X braking members 36A and 36B equivalent to the movers 118 and 11B of the X axis linear motors 10A and 108 are used as the X axis braking mechanism. Since the stators 12 A and 12 B to which the bearings are attached are movably connected in the X-direction to the platen 3 via the linear motion guides 13 A and 13 B, the X-axis linear motors 10 A and 10 B Even if the difference between the thrust applied from B to the X stage and the braking force applied from the X braking members 36A and 36B to the stators 12A and 12B and the amount of timing deviation increase, the surface plate 3 Does not act in the X direction. Therefore, a more flexible or inexpensive configuration can be adopted.
- the X-axis brake mechanism will be described. For convenience of description, only a mechanism that brakes the stator 12A of one X-axis linear motor 10A will be described.
- FIG. 7 shows a second embodiment of the X-axis braking mechanism.
- one X-axis linear motor 1 OA The stator 12A (see FIG. 2) is mounted on the surface plate 3 so as to be movable in the X direction via the linear motion guide 13A. Then, a cylindrical insulator 62 extending in the X direction is fixed to one end of the stator 12A in the X direction, A coil 63 is wound around the insulator 62, and a cylindrical permanent magnet 61 is inserted into the insulator 62 in a non-contact manner. The permanent magnet 61 is fixed to the base 1 on a braking frame. Fixed at 35 A.
- the permanent magnet 61 and the coil 63 constitute a voice coil motor as a braking mechanism.
- the voice coil motor applies a braking force FXA that cancels the anti-car FXA acting on the stator 12A.
- FXA braking force
- the embodiment using the voice coil motor as the X-axis braking mechanism is particularly effective when a moving magnet type linear motor is used as the X-axis driving mechanism.
- FIG. 8 shows a third embodiment of the X-axis braking mechanism.
- parts corresponding to FIG. 6 are denoted by the same reference numerals, and in FIG. 8, the stator 12 A of the X-axis linear motor is shown.
- a rod 64 B made of, for example, a metal, which is elastically deformable and extends in the X direction, is fixed to one end in the X direction.
- the braking frame 35 A fixed to the base 1 also has the rod 6 4
- An elastically deformable rod 64 A made of, for example, a metal extending in the X direction is fixed to face B, and a viscoelastic body 65 is interposed between the rods 64 A and 64 B. .
- the rods 64 A and 64 B can rotate to some extent within the range of elastic deformation and extend and contract in the X direction, and the viscoelastic body 65 It plays a role in improving the gaps between the disc-shaped tips of 4A and 64B, the position in the direction perpendicular to the X-axis, and the parallelism of those tips.
- the braking frame 35 A is applied to the braking frame 35 A via the braking mechanism including the rods 64 A and 64 B and the viscoelastic body 65.
- the reaction force is transmitted, and as the reaction, a braking force having substantially the same magnitude acts on the stator 12A in the + X direction, and the stator 12A hardly moves in the X direction, and No vibration or the like occurs in the panel 3.
- the stator 1 2 when the stator 12 A and the braking frame 35 A are connected only with the rods 64 A and 64 B made of elastic material, the stator 1 2 during floor vibration and acceleration / deceleration of the X stage 1 2 The reaction force to A is transmitted to the braking frame 35 A, and the vibration of the braking frame 35 A is transmitted to the stator 12 A in reverse. Also, the stator 1 2 A can freely move with respect to the surface plate 3. The vibration in the X direction is not transmitted to the surface plate 3, but the vibration in the Y direction and the Z direction is transmitted to the surface plate 3. On the other hand, in the present example, the vibration components in the Y direction and the Z direction can be reduced through the viscoelastic body 65.
- FIG. 9 shows a fourth embodiment of the X-axis braking mechanism.
- An elastically deformable, e.g., metal rod 67 extending in the X direction is connected to the end of A in the X direction via a rotatable ball joint 66 B, and the other end of the rod 67 is rotatable.
- the braking frame 35 A is fixed to the base 1 via a simple ball joint 66 A.
- the reaction force generated in the stator 12 A is transmitted to the brake frame 35 A via the rod 67 and is canceled out by the reaction of the brake frame 35 A. Maintain almost stationary. Moreover, since the mouth 67 is connected via rotatable pole joints 66A and 66B, the vibration components in the Y and Z directions can be reduced.
- FIG. 10 shows a fifth embodiment of the X-axis braking mechanism.
- FIG. 10 in which parts corresponding to FIG. 6 are denoted by the same reference numerals, FIG.
- One end of the bellows 69 that can be extended and retracted in the X direction is fixed to the end of the 12 A in the X direction, and the other end of the bellows 69 is fixed on the base 1 Fix to frame 35 A. Further, a liquid such as oil is sealed in the bellows 69, and an intermediate portion of the bellows 69 is supported by a bellows holder 68 fixed to the surface plate 3.
- the stage device of the above embodiment can be applied to a reticle stage of a projection exposure apparatus.
- FIG. 11 is a modification of the projection exposure apparatus of FIG. 1, in which not only the wafer stage but also the reticle stage is provided with a non-contact X-drive linear motor.
- a braking mechanism that provides a braking force that offsets the reaction force applied to the stator during driving is provided to prevent vibration.
- three columns 88 are fixed at appropriate positions on the base 1, and at the upper end of these columns 88, three vibration isolation tables 2 each consisting of an air damper, elastic panel or oil damper are provided.
- the lens barrel base 83 is installed on the column 88 via these vibration isolating tables 2.
- the projection optical system PL is supported by a barrel base 83, and the reticle base 103 on which the reticle stage 122 is mounted is mounted on a frame 84 provided on the barrel base 83. Supported.
- the wafer surface plate 3 on which the wafer stage 15 is mounted is suspended and fixed to the lens barrel surface plate 83 via a frame 86.
- the structure of the drive mechanism of the wafer stage 15 is the same as that shown in FIGS. 1 and 2. Therefore, the same portions are denoted by the same reference numerals, and redundant description will be omitted.
- the illumination optical system 24 is supported by a frame 82 provided on a lens barrel base 83.
- X-axis linear motors 10 A and 10 B consisting of stators 1 12 A and 1 12 B and movers 11 A and 11 B are arranged on reticle surface plate 103. .
- the movers 11 A and 11 B are connected to a reticle stage 122 via a connecting member 9.
- the reticle stage 122 is guided by a linear motion guide (not shown) in the X-axis direction, and is driven by the X-axis linear motors 10A and 10B to smoothly move back and forth in the X direction.
- the position of the reticle stage 122 in the X direction is determined by moving the laser beam 1 19 fixed on the reticle stage 122 and the laser beam parallel to the X axis supported by the reticle surface plate 103. It is detected by the laser interferometer 1 21 irradiating the movable mirror 1 19.
- the stators 11 A and 11 B are guided by the linear motion guides 13 A and 13 B, and are slidable back and forth in the X direction.
- the braking frames 35 fixed to the base 1 are provided with X braking members 36A and 36B for applying a braking force to the stators 111A and 112B in a non-contact manner.
- the reticle stage control system 54 uses the reticle stage movers 11A and 11B and the X braking member 3 Controls the supply of drive current to 6 A and 36 B.
- the device configuration for controlling the movers 11A and 11B and the X braking members 36A and 36B on the reticle stage side is the same as that of the wafer stage shown in FIG. At this time, since drive control in the Y direction is not performed, the driver for the movers 11 A and 1 IB of the reticle stage corresponding to the drivers 56 A and 56 B and the drivers 57 A and 5 in FIG.
- a reticle stage X-braking member for 7BX and a driver for 36A and 36B will be added, and these will be connected to the reticle stage control system 54.
- the corresponding stators 1 12 A and A reaction force acts on 1 1 2 B.
- the braking force acting on the stators 1 12 A and 1 12 B from the X braking members 36 A and 36 A is a thrust in the X direction that is the opposite direction to the reaction force and has the same magnitude.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
A stage device, which is hard to generate moments and deformation when suppressing vibration accompanying the driving of a movable section. A surface plate is supported through a vibrationproof plate on a base, and an X stage composed of a Y guide bar conveying body, a Y guide bar or the like is arranged on the surface plate so as to be movable along an X guide bar and driven through an X-axis linear motor in an X direction. A stator of the X-axis linear motor is supported on the surface plate to be movable through a translation guide in the X direction so that an X braking member mounted to a braking frame fixed to the base imparts to the stator a braking force which cancels a reaction force when the X stage is driven.
Description
明 細 書 Specification
ステージ駆動方法、 ステージ装置、 及び露光装置 技術分野 Stage driving method, stage apparatus, and exposure apparatus
本発明は、 加工対象物を精密位置決めするための防振機能付きのステ ージ装置及びその駆動方法に関し、 例えば半導体素子、 液晶表示素子、 若しくは薄膜磁気へッド等を製造するためのリソグラフイエ程でマスク パターンをウェハ等の基板上に転写するために使用される露光装置、 又 は精密工作機械や精密測定器等に使用して好適なものである。 背景の技術 The present invention relates to a stage device with a vibration isolation function for precisely positioning a workpiece and a method of driving the same, and for example, a lithographic apparatus for manufacturing a semiconductor device, a liquid crystal display device, a thin film magnetic head, or the like. It is suitable for use in an exposure apparatus used for transferring a mask pattern onto a substrate such as a wafer, or a precision machine tool or a precision measuring instrument. Background technology
例えば半導体素子等を製造する際に、 マスクとしてのレチクルのパ夕 ーンを感光基板としてのレジス卜が塗布されたウェハ (又はガラスプレ —ト等) 上に転写するために、 従来は主にステッパー方式の縮小投影型 の露光装置が使用されていた。 斯かる一括露光型の露光装置には、 ゥェ 八の各ショッ卜領域を所定の露光位置に移動させる装置として、 直交す る 2方向にステツビング可能なウェハステージが用いられている。 For example, in the manufacture of semiconductor devices and the like, a reticle pattern as a mask is transferred onto a wafer (or a glass plate or the like) coated with a resist as a photosensitive substrate. A reduced projection type exposure apparatus was used. In such a batch exposure type exposure apparatus, a wafer stage capable of stepping in two directions orthogonal to each other is used as an apparatus for moving each shot area of a plane 8 to a predetermined exposure position.
最近は、 レチクルとウェハとを投影光学系に対して同期走査して露光 を行うステップ · アンド ·スキャン方式の縮小投影型の露光装置も注目 されている。 このような走査露光型の露光装置では、 直交する 2方向に それぞれステツビングを行い、 且つ走査方向に一定速度で連続移動を行 うウェハステージと共に、 走査方向に一定速度で連続移動可能で非走査 方向に微少量移動可能で、 且つ移動面に垂直な軸の周りに微少角度回転 可能なレチクルステージが使用されている。 Recently, attention has been focused on a step-and-scan type reduction projection type exposure apparatus that performs exposure by synchronously scanning a reticle and a wafer with respect to a projection optical system. In such a scanning exposure type exposure apparatus, a wafer stage that performs stepping in two directions orthogonal to each other and continuously moves at a constant speed in the scanning direction is capable of continuously moving at a constant speed in the scanning direction and is capable of moving in the non-scanning direction. A reticle stage is used, which can move a very small amount and can rotate a small angle around an axis perpendicular to the moving surface.
そして、 これらのステージを含む露光装置本体は床からの振動を遮断 するために、 弾性の大きい空気ばねやコイルばねと、 減衰器としてのォ
ィルダンバとより構成される防振台を介して支持されるのが一般的であ る。 The exposure apparatus main body including these stages is provided with a highly elastic air spring or coil spring and an attenuator as an attenuator in order to block vibration from the floor. It is generally supported via a vibration isolator that is made up of a steel plate.
第 1 2図は、 従来の露光装置用のウェハステージの概略構成を示し、 この第 1 2図において、 ベース 7 0上に複数の防振台 7 1 A, 7 I Bを 介して定盤 7 2が支持されており、 定盤 7 2上に第 1 2図の紙面に平行 な方向 (これを X方向とする) に沿って移動自在に Xステージ 7 3が載 置されている。 Xステージ 7 3は、 定盤 7 2上に固定された駆動モ一夕 7 4によって送りねじ 7 5を介して X方向に駆動され、 Xステージ 7 3 上に X方向に直交する Y方向に送りねじ方式で駆動される Yステージ 7 6が載置されている。 FIG. 12 shows a schematic configuration of a conventional wafer stage for an exposure apparatus. In FIG. 12, a base plate 72 is provided on a base 70 via a plurality of anti-vibration tables 71 A and 7 IB. An X stage 73 is mounted on a surface plate 72 so as to be movable in a direction parallel to the plane of FIG. 12 (this direction is defined as an X direction). The X stage 73 is driven in the X direction via a feed screw 75 by a driving motor 74 fixed on the surface plate 72, and is fed on the X stage 73 in the Y direction orthogonal to the X direction. A Y stage 76 driven by a screw system is mounted.
この場合、 Xステージ 7 3の X方向への駆動を開始する際には、 Xス テージ 7 3に例えば実線の矢印で示す推力 Fが作用し、 駆動モー夕 7 4 を介して定盤 7 2側には反作用として点線の矢印で示す反力— Fが作用 する。 従って、 そのままでは定盤 7 2はその反作用の方向に変位して振 動が生じてしまう。 そこで、 従来は例えば特開昭 5 8— 6 8 1 1 8号公 報に開示されているように、 ベース 7 0上に定盤 7 2に対して X方向へ の制動力 Dを付与するためのァクチユエ一夕 7 7を設置し、 Xステージ 7 3の加減速時に定盤 7 2に働く反作用と同じ大きさで方向が反対の力 をァクチユエ一夕 7 7から定盤 7 2に与える (即ち、 制動力 Dを推力 F と等しくする) ことによって、 定盤 7 2の振動を防止する方法が提案さ れている。 In this case, when the X stage 73 starts to be driven in the X direction, a thrust F indicated by, for example, a solid arrow acts on the X stage 73, and the platen 72 is driven via the drive motor 74. On the side, a reaction force F shown by a dotted arrow acts as a reaction. Therefore, the surface plate 72 is displaced in the direction of the reaction as it is, causing vibration. In order to apply a braking force D in the X direction to the surface plate 72 on the base 70, as disclosed in, for example, Japanese Patent Laid-Open Publication No. 58-68118, Is installed, and a force of the same magnitude and opposite direction to the reaction acting on the surface plate 72 during acceleration and deceleration of the X stage 73 is applied to the surface plate 72 from the actuator 77 (ie, A method of preventing the vibration of the surface plate 72 by making the braking force D equal to the thrust F) has been proposed.
また、 駆動モー夕としてリニアモータが使用されている場合に、 リニ ァモ一夕を駆動する際にその固定子を介して定盤側に反作用が働くのを 防止するために、 そのリニアモー夕の固定子をべ一ス 7 0 (床) 側で固 定する方法が米国特許 (U S P ) 第 5 , 5 2 8 , 1 1 8号明細書に開示 されている。
上記の如き従来の技術において、 第 1 2図に示すように、 定盤 7 2に ァクチユエ一夕 7 7を介して制動力を付与する方法では、 定盤 7 2 (駆 動モ一夕 7 4 ) に働く反力— Fの位置と、 ァクチユエ一夕 7 7から定盤 7 2に付与される制動力 Dの位置とが大きく異なるために、 この定盤 7 2を回転、 又は変形させるようなモーメントや変形力が発生する。 これ らのモーメントや変形力の内の大きい振幅成分は、 防振台 7 1 A, 7 1 Bの空気ばね (又はコイルばね) 等が変形する振動モードを引き起こす が、 この振動は防振台 7 1 A, 7 1 B自体によってかなりの程度まで低 減される。 しかしながら、 残存する小さい振幅の振動が、 半導体露光装 置のように数 n m程度の安定性を要求される用途においては無視できな い量となりつつある。 In addition, when a linear motor is used as the drive motor, when the linear motor is driven, a reaction is prevented from acting on the surface plate via the stator to prevent the linear motor from being operated. A method of securing the stator at the base (floor) side is disclosed in US Pat. No. 5,528,118. In the conventional technique as described above, as shown in FIG. 12, in the method of applying a braking force to the surface plate 72 via the actuator 77, the surface plate 72 (the drive motor 74 )), Because the position of F and the position of the braking force D applied to the platen 72 from Actuyue 77 are very different, such that the platen 72 is rotated or deformed. Moment and deformation force are generated. A large amplitude component of these moments and deformation forces causes a vibration mode in which the air springs (or coil springs) of the anti-vibration tables 71A and 71B are deformed. It is reduced to a considerable extent by 1A, 71B itself. However, the remaining small-amplitude vibration is becoming a non-negligible amount in applications requiring stability of several nm, such as semiconductor exposure equipment.
また、 そのように反力— Fの位置と制動力 Dの位置とが大きく異なる 構造で、 残存する小さい振幅の振動をできるだけ少なくするためには、 Xステージ 7 3の駆動モー夕 7 4と外部から制動力を付与するためのァ クチユエ一夕 7 7との駆動特性がほぼ完全に一致していることが望まし レ 。 その駆動特性とは、 主に推力指令値に対する発生推力の大きさの直 線性や、 推力指令が発せられてからその推力が発生するまでの時間遅れ である。 しかしながら、 第 1 2図の方式では駆動モー夕 7 4とァクチュ エー夕 7 7とは機構が大きく異なるために、 その駆動特性をほぼ完全に 一致させることは困難であり、 その小さい振幅の振動を低減させること は困難であった。 Also, in such a structure where the position of the reaction force-F and the position of the braking force D are greatly different, in order to minimize the remaining small-amplitude vibration, the drive mode 74 of the X-stage 73 and the external It is desirable that the drive characteristics of the actuator for applying a braking force from the vehicle almost completely match the drive characteristics. The driving characteristics are mainly the linearity of the magnitude of the generated thrust with respect to the thrust command value, and the time delay from when the thrust command is issued until the thrust is generated. However, in the method shown in Fig. 12, since the mechanism of the drive mode 74 is greatly different from that of the actuator mode 77, it is difficult to match the drive characteristics almost completely. It was difficult to reduce.
また、 従来の技術の内でリニァモー夕の固定子をベース側で固定する 方法は、 前者のように定盤ゃ露光装置本体部を変形させる振動モードを 励起することはないが、 制動機構が大掛かりになりステージ装置が全体 として大型化すると共に、 ステージ装置に備えられる測長系やセンサ等 の配置に大きな制約を与えるという不都合がある。
また、 第 1 2図の従来のステージ装置では、 Xステージ 7 3 (駆動モ 一夕 7 4 ) の位置は第 1 2図の紙面に垂直な方向 (Y方向) では一定で あるため、 Xステージ 7 3の位置 (X座標) が変化してもァクチユエ一 夕 7 7によりその加減速時の振動を或る程度は抑制できる。 一方、 Yス テージ 7 6については、 Xステージ 7 3の位置が変化するのに追従して その X方向の位置が変化してしまうために、 Xステージ 7 3の位置に依 らずに Yステージ 7 6の加減速時の振動を抑制するためには、 Xステ一 ジ 7 3上に制振機構を設ける必要がある。 しかしながら、 このように X ステージ 7 3上に制振機構を設けると、 Xステージ 7 3が大型化すると 共に、 Xステージ 7 3の駆動特性が悪化する等の不都合がある。 発明の開示 In the conventional technique, the method of fixing the linear actuator stator on the base side does not excite the vibration mode of deforming the surface plate and the exposure apparatus main body as in the former method, but requires a large braking mechanism. As a result, the size of the stage device becomes large as a whole, and the arrangement of the length measuring system and sensors provided in the stage device is greatly restricted. In the conventional stage apparatus shown in FIG. 12, the position of the X stage 73 (drive module 74) is constant in the direction perpendicular to the plane of FIG. 12 (Y direction). Even if the position (X coordinate) of 73 changes, the vibration during acceleration / deceleration can be suppressed to some extent by the actuator. On the other hand, as for the Y stage 76, the position in the X direction changes following the change in the position of the X stage 73, so that the Y stage does not depend on the position of the X stage 73. In order to suppress the vibration during acceleration / deceleration of 76, it is necessary to provide a vibration damping mechanism on X stage 73. However, providing the vibration damping mechanism on the X stage 73 in this way has disadvantages such as the large size of the X stage 73 and the deterioration of the drive characteristics of the X stage 73. Disclosure of the invention
本発明は斯かる点に鑑み、 可動部の駆動に伴う振動を抑制する際にモ ーメントゃ変形力等を発生しにくいステージ駆動方法、 並びにこの駆動 方法を使用するステージ装置及び露光装置を提供することを第 1の目的 とする。 In view of the above, the present invention provides a stage driving method that does not easily generate a momentary deformation force or the like when suppressing vibration accompanying driving of a movable unit, and a stage apparatus and an exposure apparatus that use this driving method. This is the primary purpose.
更に本発明は、 大型の制振機構を使用することなく可動部の駆動に伴 う振動を大きく低減できるステージ駆動方法、 並びにこの駆動方法を使 用するステージ装置及び露光装置を提供することを第 2の目的とする。 更に本発明は、 交差する 2方向に可動部を駆動する場合に、 一方の移 動方向で生じる振動を他方の移動方向にはあまり影響を与えることなく 抑制できるステージ装置及び露光装置を提供することを第 3の目的とす る。 Further, the present invention provides a stage driving method capable of greatly reducing the vibration accompanying the driving of the movable portion without using a large vibration damping mechanism, and a stage apparatus and an exposure apparatus using this driving method. The purpose of 2. Further, the present invention provides a stage apparatus and an exposure apparatus which can suppress vibration generated in one of the moving directions without significantly affecting the other moving direction when driving the movable portion in two intersecting directions. Is the third purpose.
本発明によるステージ駆動方法は、 定盤上に所定方向に移動自在に設 置された可動テーブルを、 定盤に対してその所定方向に非接触型駆動手 段を用いて駆動するステージ駆動方法であって、 その非接触型駆動手段
の固定子が定盤に対して移動自在に支持された状態で、 その可動テープ ルにその所定方向に推力を与えるときにその固定子に対して制動力を与 えるものである。 The stage driving method according to the present invention is a stage driving method for driving a movable table, which is movably mounted on a surface plate in a predetermined direction, with respect to the surface plate in a predetermined direction using a non-contact type driving means. And the non-contact type driving means When a thrust is applied to the movable table in a predetermined direction in a state where the stator is movably supported with respect to the surface plate, a braking force is applied to the stator.
斯かる本発明において、 その非接触型駆動手段としては、 可動子及び固 定子よりなるリニアモー夕、 又はローレンツ力よりなる推力を発生する 駆動装置等の、 電磁力によって非接触で制動力を与える各種装置が使用 できる。 そして、 その可動テーブル上にウェハ等の加工対象物が載置さ れる。 そして、 その非接触型駆動手段によってその可動テーブルを駆動 する際には、 固定子に発生する反作用 (反力) を相殺するようにその制 動部材からその固定子に対して制動力を与える。 この際に、 反作用と制 動力とはほぼ同一直線上に作用するため、 モーメントや変形力等が発生 しにくいと共に、 反作用と制動力とのタイミングゃ大きさが多少ずれて も、 固定子は定盤に対して移動自在であるため、 定盤等に回転等を引き 起こすような力が作用することがない。 なお、 上記のような制動力は、 例えばリニアモータ、 口一レンツ力を利用した駆動装置等を利用するこ とで、 電磁力によって非接触で与えることができる。 In the present invention, as the non-contact type driving means, there are various types of non-contact braking force by electromagnetic force, such as a linear motor including a mover and a stator, or a driving device generating a thrust including Lorentz force. The device can be used. An object to be processed such as a wafer is placed on the movable table. When the movable table is driven by the non-contact type driving means, a braking force is applied from the control member to the stator so as to cancel a reaction (reaction force) generated in the stator. At this time, the reaction and the damping force act on almost the same straight line, so that moment and deformation force are not easily generated, and even if the timing of the reaction and the braking force is slightly deviated, the stator is fixed. Since it is movable with respect to the board, there is no force acting on the surface plate or the like to cause rotation or the like. Note that the above-described braking force can be applied in a non-contact manner by electromagnetic force by using, for example, a linear motor, a driving device using a mouth-to-lent force, or the like.
この場合、 その可動テーブルの位置及び移動速度の指令値に基づいて、 フィードフォヮ一ド系で、 その固定子に対して制動力を与えるようにし てもよい。 これによつて応答速度が速くなる。 In this case, a feed force system may apply a braking force to the stator based on the command values of the position of the movable table and the moving speed. This increases the response speed.
この場合、 その固定子のその定盤に対する相対的な位置ずれを、 その 非接触型駆動手段が動作していないときに補正することができる。 In this case, the relative displacement of the stator with respect to the surface plate can be corrected when the non-contact driving means is not operating.
また、 上記のステージ駆動方法は、 その可動テーブルに対してその所 定方向に交差する第 2の方向に移動自在に設置された第 2の可動テープ ルをその可動テーブルに対して第 2の方向に第 2の非接触型駆動手段を 用いて駆動する際に、 その可動テーブルとともにその所定方向に移動す る可動部材に対してこの可動部材の所定方向での移動範囲に亘つてその
第 2の方向への制動力を与えるものとすることができる。 In addition, the above-described stage driving method includes the steps of: moving a second movable table movably installed in a second direction intersecting the movable table in a predetermined direction with respect to the movable table; When driving using the second non-contact type driving means, the movable member moves in the predetermined direction together with the movable table over the moving range of the movable member in the predetermined direction. A braking force in the second direction can be applied.
斯かるステージ駆動方法によれば、 可動テーブル (以下 「第 1の可動 テーブル」 ) の所定方向 (以下 「第 1の方向」 ) の位置を変化させるこ とにより、 その第 2の可動テーブルの第 1の方向の位置も変化する。 本 発明では、 その第 1の可動テーブルに可動部材が取り付けられ、 この可 動部材に外部からその第 2の方向への制動力を与えることによって、 そ の第 1の可動テーブルの動きに殆ど影響を与えることなく、 その第 2の 可動テーブルのその第 2の方向への振動を抑制できる。 According to such a stage driving method, by changing the position of a movable table (hereinafter, “first movable table”) in a predetermined direction (hereinafter, “first direction”), the second movable table can be moved in the second direction. The position in direction 1 also changes. According to the present invention, a movable member is attached to the first movable table, and by applying a braking force to the movable member from the outside in the second direction, the movement of the first movable table is hardly affected. The vibration of the second movable table in the second direction can be suppressed without providing the second movable table.
次に、 本発明によるステージ装置は、 定盤と、 この定盤に対して所定 方向に移動自在に設置された可動テーブルと、 その定盤に対してその可 動テーブルをその所定方向に駆動する非接触型駆動手段と、 その非接触 型駆動手段の固定子をその定盤に対してその所定方向に移動自在に支持 する支持手段と、 所定のベースに設けられ、 その固定子に対して制動力 を与える制動部材とを備える。 Next, the stage device according to the present invention comprises: a surface plate; a movable table installed movably in a predetermined direction with respect to the surface plate; and the movable table driven in the predetermined direction with respect to the surface plate. Non-contact type driving means; supporting means for movably supporting the stator of the non-contact type driving means in the predetermined direction with respect to the surface plate; provided on a predetermined base; And a braking member for applying power.
斯かる本発明によれば、 その可動テーブルを駆動する際には、 固定子 に発生する反作用 (反力) を相殺するようにその制動部材からその固定 子に対して制動力を与えることで、 本発明のステージ駆動方法が使用で きる。 この際に、 反作用と制動力とはほぼ同一直線上に作用するため、 モーメントや変形力等が発生しにくいと共に、 反作用と制動力とのタイ ミングゃ大きさが多少ずれても、 固定子は定盤に対して移動自在である ため、 定盤等に回転等を引き起こすような力が作用することがない。 従 つて、 その制動部材の駆動特性がその非接触型駆動手段の駆動特性と異 なっても差し支えない。 この意味で、 その制動部材としては、 電磁式の 能動的な制動部材の他に、 ポールジョイントや粘弾性体方式の継ぎ手等 の受動的な制動部材を使用してもよい。 According to the present invention, when the movable table is driven, a braking force is applied from the braking member to the stator so as to cancel the reaction (reaction force) generated in the stator. The stage driving method of the present invention can be used. At this time, since the reaction and the braking force act on substantially the same straight line, a moment and a deformation force are hardly generated, and the timing of the reaction and the braking force is not affected even if the magnitude is slightly shifted. Since it is movable with respect to the surface plate, no force that causes rotation or the like acts on the surface plate or the like. Therefore, the driving characteristics of the braking member may be different from the driving characteristics of the non-contact type driving means. In this sense, as the braking member, besides the electromagnetic active braking member, a passive braking member such as a pole joint or a viscoelastic joint may be used.
即ち、 前者のように能動的な制動部材を使用する場合には、 一例とし
てその非接触型駆動手段の固定子は、 定盤に対してその所定方向に直交 する方向には移動しないように支持されており、 そのベースに設けられ た制動部材は、 そのベース上に設けられたフレームと、 このフレームに 取り付けられその非接触型駆動手段の固定子に対して電磁力よりなる制 動力を与える推力発生器と、 を有し、 その推力発生器は、 その非接触型 駆動手段を介してその可動テーブルを駆動する際に固定子に作用する反 力を実質的に相殺する推力をその制動力として発生するものである。 こ の場合、 大型の制振機構を使用することなく能動的に、 その可動部の駆 動に伴う振動を大きく低減できる利点がある。 In other words, when the active braking member is used as in the former case, The stator of the non-contact type driving means is supported so as not to move in a direction perpendicular to the predetermined direction with respect to the surface plate, and the braking member provided on the base is provided on the base. And a thrust generator attached to the frame and applying a force of electromagnetic force to the stator of the non-contact type driving means, the thrust generator comprising: When the movable table is driven via the means, a thrust that substantially cancels a reaction force acting on the stator is generated as the braking force. In this case, there is an advantage that the vibration accompanying the driving of the movable portion can be significantly reduced without using a large-scale vibration damping mechanism.
一方、 後者のように受動的な制動部材を使用する場合には、 一例とし てその非接触型駆動手段の固定子は、 定盤に対してその所定方向に直交 する方向には移動しないように支持されており、 そのベースに設けられ た制動部材は、 そのベースに設けられたフレームと、 このフレームに取 り付けられその非接触型駆動手段の固定子に対して機械的な制動力を与 える受動的制動器と、 を有するものである。 この場合、 大型の制振機構 を使用することなく受動的な安価な制動機構によって、 その可動部の駆 動に伴う振動を大きく低減できる利点がある。 On the other hand, when a passive braking member is used as in the latter case, as an example, the stator of the non-contact type driving means should not move in a direction perpendicular to the predetermined direction with respect to the surface plate. The braking member provided on the base is provided with a mechanical braking force on a frame provided on the base and on a stator of the non-contact type driving means mounted on the frame. And a passive brake. In this case, there is an advantage that the vibration accompanying the driving of the movable part can be greatly reduced by a passive and inexpensive braking mechanism without using a large-sized vibration damping mechanism.
また、 上記ステージ装置は、 その可動テーブルに対してその所定方向 に交差する第 2の方向に移動自在に設置された第 2の可動テーブルと、 その可動テーブルに対してこの第 2の可動テ一ブルをその第 2の方向に 駆動する第 2の非接触型駆動手段と、 その可動テーブルに取り付けられ てこの可動テーブルと共にその所定方向に移動する可動部材と、 所定の ベース上に固定されてその可動部材のその第 1の方向での移動範囲に亘 つてその可動部材に対してその第 2の方向への推力を与える制動部材と をさらに備えたものとすることができる。 Further, the stage device includes a second movable table movably installed in a second direction intersecting the predetermined direction with respect to the movable table, and a second movable table with respect to the movable table. Second non-contact type driving means for driving the table in the second direction, a movable member attached to the movable table and moving in the predetermined direction together with the movable table, and a movable member fixed on a predetermined base and And a braking member that applies a thrust to the movable member in the second direction over the movable range of the movable member in the first direction.
斯かるステージ装置によれば、 その第 2の可動テーブル上にウェハ等
の加工対象物が載置され、 その第 2の可動テーブルの位置は 2次元的に 変化する。 即ち、 その可動テーブル (以下 「第 1の可動テーブル」 ) の 所定方向 (以下 「第 1の方向」 ) の位置が変化するのに追従して、 その 第 2の可動テーブルの第 1の方向の位置も変化する。 本発明では、 その 第 1の可動テーブルに可動部材が取り付けられ、 この可動部材に外部か らその第 2の方向への制動力を与えることによって、 その第 1の可動テ —ブルの動きに殆ど影響を与えることなく、 その第 2の可動テーブルの その第 2の方向への振動を抑制できる。 According to such a stage device, a wafer or the like is placed on the second movable table. The workpiece to be processed is placed, and the position of the second movable table changes two-dimensionally. That is, as the position of the movable table (hereinafter, “first movable table”) in a predetermined direction (hereinafter, “first direction”) changes, the second movable table moves in the first direction. The position also changes. In the present invention, a movable member is attached to the first movable table, and a braking force is applied to the movable member from the outside in the second direction, so that the movement of the first movable table can be substantially prevented. Vibration of the second movable table in the second direction can be suppressed without affecting the second movable table.
この場合、 その制動部材の一例は、 第 1の可動部材のその第 1の方向 での全移動範囲に亘つて第 1の可動部材に対向するように配置された固 定部材を有し、 第 1の可動部材と固定部材との間に、 その非接触型駆動 手段を介してその第 2の可動テーブルを駆動する際に第 1の可動部材に 作用する反力を実質的に相殺する推力を発生するものである。 これによ つて、 能動的にその第 2の方向への振動が抑制される。 すなわち、 交差 する 2方向に可動部を駆動する場合に、 一方の移動方向で生じる振動を 他方の移動方向にはあまり影響を与えることなく抑制できる利点がある。 また、 第 2の可動テーブル (可動部) の駆動に伴う振動を抑制する際に モーメントや変形力等を発生しにくい利点もある。 In this case, one example of the braking member has a fixed member arranged to face the first movable member over the entire movement range of the first movable member in the first direction. A thrust that substantially cancels a reaction force acting on the first movable member when the second movable table is driven through the non-contact type driving means between the first movable member and the fixed member. What happens. Thereby, the vibration in the second direction is actively suppressed. That is, when the movable portion is driven in two intersecting directions, there is an advantage that vibration generated in one moving direction can be suppressed without much affecting the other moving direction. In addition, there is an advantage that a moment, a deforming force, and the like are hardly generated when suppressing vibration caused by driving the second movable table (movable part).
この場合、 制動部材は、 可動部材の第 1の方向での全移動範囲に亘っ てその可動部材に対向するように配置された固定部材を有し、 その可動 部材とその固定部材との間に、 非接触型駆動手段を介して第 2の可動テ 一ブルを駆動する際にその可動部材に作用する反力を実質的に相殺する 推力を発生する場合には、 その可動部材のその第 1の方向での位置が変 化しても、 常に同じ状態でその可動部材をその第 2の方向へ駆動する際 の振動を低減できる利点がある。 In this case, the braking member has a fixed member disposed so as to face the movable member over the entire movement range of the movable member in the first direction, and a braking member is provided between the movable member and the fixed member. When driving the second movable table via the non-contact type driving means, a thrust which substantially cancels a reaction force acting on the movable member is generated. There is an advantage that even when the position in the direction changes, the vibration when the movable member is driven in the second direction in the same state is always reduced.
以上のようなステージ駆動方法やステージ装置は、 露光装置のステー
ジに適用することができる。 例えば、 上記のようなステージ装置をレチ クルステージとする露光装置の場合、 このステージ装置上に載置された 基板に、 照明されたマスクに形成されたパターンを投影レンズを介して 投影する。 また、 上記のようなステージ装置をマスクステージとする露 光装置の場合、 このステージ装置上に載置されたマスクを照明し、 この マスクに形成されたパターンを投影レンズを介して基板ステージ上の基 板に投影する。 図面の簡単な説明 The stage driving method and the stage apparatus described above are Can be applied to For example, in the case of an exposure apparatus using the above stage device as a reticle stage, a pattern formed on an illuminated mask is projected through a projection lens onto a substrate mounted on the stage device. In the case of an exposure apparatus using the above stage device as a mask stage, a mask mounted on the stage device is illuminated, and a pattern formed on the mask is projected on a substrate stage through a projection lens. Project onto the board. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態の一例で使用される投影露光装置を示す 概略構成図である。 FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus used in an example of an embodiment of the present invention.
第 2図は、 第 1図の投影露光装置のウェハステージを示す一部を切り 欠いた斜視図である。 FIG. 2 is a partially cutaway perspective view showing a wafer stage of the projection exposure apparatus of FIG.
第 3 A図は、 第 1図の Y制動モ一夕を示す一部を切り欠いた平面図で ある。 FIG. 3A is a partially cutaway plan view showing the Y braking mode of FIG. 1.
第 3 B図は、 第 3 A図の Y制動モー夕の側面図である。 FIG. 3B is a side view of the Y braking mode in FIG. 3A.
第 4 A図は、 その Y制動モー夕の変形例を示す平面図である。 FIG. 4A is a plan view showing a modification of the Y braking mode.
第 4 B図は、 第 4 A図の Y制動モー夕の側面図である。 FIG. 4B is a side view of the Y braking mode in FIG. 4A.
第 5図は、 その実施形態の一例におけるステージ系、 及び制動機構の 制御系を示すブロック図である。 FIG. 5 is a block diagram showing a stage system and a control system of a braking mechanism in an example of the embodiment.
第 6図は、 第 2図のウェハステージを— Y方向に見た簡略化した側面 図である。 FIG. 6 is a simplified side view of the wafer stage of FIG. 2 as viewed in the −Y direction.
第 7図は、 X軸の制動機構の第 2実施形態の要部を示す側面図である c 第 8図は、 X軸の制動機構の第 3実施形態の要部を示す側面図である ( 第 9図は、 X軸の制動機構の第 4実施形態の要部を示す側面図である, 第 1 0図は、 X軸の制動機構の第 5実施形態の要部を示す側面図であ
る。 Figure 7 is a c Fig. 8 is a side view showing a main part of a second embodiment of the brake mechanism of the X-axis is a side view showing a main part of a third embodiment of the brake mechanism of the X-axis ( FIG. 9 is a side view showing a main part of a fourth embodiment of the X-axis braking mechanism, and FIG. 10 is a side view showing a main part of a fifth embodiment of the X-axis braking mechanism. You.
第 1 1図は、 別の実施形態のステージ装置を組み込んだ露光装置の構 造を説明する図である。 FIG. 11 is a view for explaining the structure of an exposure apparatus incorporating a stage device of another embodiment.
第 1 2図は、 従来のステージ装置を簡略化して示す構成図である。 実施形態 FIG. 12 is a simplified configuration diagram showing a conventional stage device. Embodiment
以下、 本発明の第 1の実施形態につき第 1図〜第 6図を参照して説明 する。 本例は、 半導体素子製造用の投影露光装置のウェハステージに本 発明を適用したものである。 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the present invention is applied to a wafer stage of a projection exposure apparatus for manufacturing a semiconductor device.
第 1図は、 本例の投影露光装置の概略構成を示し、 第 2図はその投影 露光装置のウェハステージの構成を示している。 先ず、 第 1図において、 平板状のベース 1上に 4箇所の防振台 2 A〜2 D ( 2 C, 2 Dは図面上 では現れていない) を介して矩形の平板状の定盤 3が支持されている。 防振台 2 A , 2 B等は、 それぞれ弾性の大きい空気ばね (又はコイルば ね) と、 振動減衰器としてのオイルダンバとより構成され、 防振台 2 A, 2 B等によって床からの振動が定盤 3側に伝わらないようになっている。 また、 定盤 3、 及びこの上の投影露光装置の機構部の全体としての共振 周波数は数 H z程度である。 定盤 3の表面は極めて平面度の良好な平面 であり、 その表面は静止状態でほぼ水平面に平行に保持されており、 以 下、 定盤 3の表面上で第 1図の紙面に垂直な方向に X軸、 第 1図の紙面 に平行な方向に Y軸を取り、 定盤 3の表面に垂直な方向に Z軸を取って 説明する。 FIG. 1 shows a schematic configuration of a projection exposure apparatus of the present example, and FIG. 2 shows a configuration of a wafer stage of the projection exposure apparatus. First, in FIG. 1, a rectangular flat platen 3 is placed on a flat base 1 via four vibration isolating tables 2A to 2D (2C and 2D are not shown in the drawing). Is supported. Each of the anti-vibration tables 2 A and 2 B is composed of a highly elastic air spring (or coil spring) and an oil damper as a vibration damper. Is not transmitted to the platen 3 side. The resonance frequency of the platen 3 and the mechanical part of the projection exposure apparatus thereon is about several Hz. The surface of the platen 3 is a plane with extremely good flatness, and the surface is kept almost parallel to the horizontal plane in a stationary state.Hereafter, the surface of the platen 3 is perpendicular to the plane of FIG. The X axis is taken in the direction, the Y axis is taken in a direction parallel to the plane of FIG. 1, and the Z axis is taken in a direction perpendicular to the surface of the surface plate 3.
この場合、 定盤 3の表面に X方向に沿って、 Xステージのための案内 面が設けられた Xガイ ドバー 4が固定されている。 また、 Xガイドバ一 4及び定盤 3の表面に沿つて X方向に移動自在に第 1の Yガイ ドバー搬 送体 5が配置され、 定盤 3の表面に沿って Yガイ ドバー搬送体 5と平行
に X方向に移動自在に第 2の Yガイドバ一搬送体 8が配置され、 Υガイ ドバ一搬送体 5及び 8を連結するように Υ方向に沿って Υステージのた めの案内面が設けられた Υガイ ドバ一 6が架設され、 Υガイドバー搬送 体 5, 8、 及び Υガイ ドバー 6より可動テーブルである Xステージが構 成されている。 In this case, an X guide bar 4 provided with a guide surface for the X stage is fixed on the surface of the surface plate 3 along the X direction. Also, a first Y guide bar carrier 5 is arranged movably in the X direction along the surface of the X guide bar 4 and the surface plate 3, and the Y guide bar carrier 5 is arranged along the surface of the surface plate 3 with the Y guide bar carrier 5. parallel A second Y guide bar carrier 8 is arranged so as to be movable in the X direction, and a guide surface for the stage is provided along the direction to connect the guide bars 5 and 8. In addition, (1) a guide bar (6) is installed, and (4) an X stage, which is a movable table, is composed of the guide bar carriers (5, 8) and (6) the guide bar.
この場合、 第 1の Υガイドバ一搬送体 5の底面、 及び外側面にはそれ ぞれエアベアリングを構成する空気噴出部が設けられている。 更に、 こ れらの空気噴出部の近傍には磁石あるいは真空ポケット等の予圧機構が 組み込まれており、 第 1の Υガイ ドバー搬送体 5は、 定盤 3の表面及び Xガイドバー 4の側面にそれぞれ一定の間隔を保ちつつ Ζ方向及び Υ方 向に拘束されて、 X方向に移動できる。 同様に、 第 2の Υガイドバ一搬 送体 8の底面にもエアべァリングを構成する空気噴出部、 及び磁石ある いは真空ポケット等の予圧機構が組み込まれており、 Υガイドバ一搬送 体 8も定盤 5の上面に一定の間隔を保ちつつ拘束されて、 X方向に移動 できる。 In this case, an air ejection portion constituting an air bearing is provided on the bottom surface and the outer surface of the first guide bar transporter 5, respectively. Furthermore, a preload mechanism such as a magnet or a vacuum pocket is built in the vicinity of these air ejection parts, and the first 搬 送 guide bar carrier 5 is provided on the surface of the surface plate 3 and the side of the X guide bar 4. It can be moved in the X direction while being restrained in the Ζ and Υ directions while keeping a certain interval between the two. Similarly, a prestressing mechanism such as an air ejection portion constituting an air bearing and a magnet or a vacuum pocket is incorporated into the bottom surface of the second guide bar carrier 8. The table is also restrained on the upper surface of the platen 5 while keeping a constant interval, and can move in the X direction.
また、 Υガイ ドバー搬送体 5と共に Xガイドバー 4を挟むように、 定 盤 3の上に X方向に沿って非接触駆動手段である X軸リニアモ一夕 1 0 Αが配置され、 X軸リニアモー夕 1 0 Aと Yガイドバ一搬送体 5とは X ガイ ドバー 4を跨ぐように架設された連結部材 9を介して連結されてい る。 更に、 X軸リニアモー夕 1 0 Aは、 連結部材 9側のコイルを備えた 可動子 1 1 Aと、 定盤 3側の極性が交互に反転する複数の永久磁石を配 列してなる固定子 1 2 Aとから構成され、 固定子 1 2 Aと定盤 3の表面 との間に直動ガイ ド 1 3 Aが介装されている。 第 2図に、 固定子 1 2 A の一部を切り欠いて示すように、 直動ガイド 1 3 Aは、 定盤 3上に固定 されたレール 1 3 A bと、 この上を小さい多数のポールベアリングを介 して X方向に摺動できる複数の摺動部材 1 3 A aとから構成され、 摺動
部材 13Aaは固定子 12 Aの底面に接着等によって固定されている。 なお、 直動ガイド 13 Aとしては、 静圧気体軸受け方式のガイ ド等を使 用してもよい。 Also, an X-axis linear motor 10, which is a non-contact drive means, is arranged on the surface plate 3 along the X direction so as to sandwich the X guide bar 4 together with the guide bar carrier 5. The evening 10 A and the Y guide bar-transport body 5 are connected via a connecting member 9 erected so as to straddle the X guide bar 4. Furthermore, the X-axis linear motor 10A is a stator composed of a mover 11A with a coil on the connecting member 9 side and a plurality of permanent magnets with alternately reversed polarities on the surface plate 3 side. The linear motion guide 13 A is interposed between the stator 12 A and the surface of the surface plate 3. As shown in Fig. 2 with a part of the stator 12A cut away, the linear motion guide 13A is composed of a rail 13Ab fixed on the surface plate 3 and a large number of small It consists of a plurality of sliding members 13 A a that can slide in the X direction via a pole bearing, The member 13Aa is fixed to the bottom surface of the stator 12A by bonding or the like. As the linear motion guide 13A, a guide of a static pressure gas bearing system or the like may be used.
第 1図に戻り、 Yガイドバー 6の左端部に連結部材 18を介して、 X 方向に配列された X軸リニアモー夕非接触駆動手段である 10 Bが連結 され、 X軸リニアモー夕 1 0 Bは、 連結部材 18側のコイルを備えた可 動子 1 1 Bと、 定盤 3側の複数の永久磁石を配列してなる固定子 12 B とから構成され、 固定子 1 2 Bと定盤 3の表面との間に、 固定子 12B を X方向に前後に摺動できる直動ガイド 1 3 Bが介装されている。 即ち、 本例の 2軸の X軸リニアモ一夕 10 A, 10Bの固定子 12A, 12 B はそれぞれ支持手段である直動ガイド 13 A, 1 3Bによって、 Y方向 には変位できないように拘束されると共に、 X方向には摺動できるよう に支持されている。 この場合、 固定子 12 A, 128には後述の 方向 の制動部材より駆動の際の反力 (反作用) を相殺するような制動力が付 与される。 また、 X軸リニアモー夕 10 A, 1 O Bは並列にムービング コイル方式で X方向に Xステージを駆動する。 Returning to FIG. 1, 10 B, which is an X-axis linear motor non-contact driving means arranged in the X direction, is connected to the left end of the Y guide bar 6 via a connecting member 18, and the X-axis linear motor 10 B Is composed of a stator 11 B having a coil on the connecting member 18 side and a stator 12 B on the surface plate 3 on which a plurality of permanent magnets are arranged.The stator 12 B and the surface plate A linear motion guide 13B, which can slide the stator 12B back and forth in the X direction, is interposed between the linear motion guide 13B and the surface 3B. That is, the stators 12A and 12B of the two-axis X-axis linear motors 10A and 10B of this example are restrained by the linear motion guides 13A and 13B as support means so that they cannot be displaced in the Y direction. It is supported so that it can slide in the X direction. In this case, a braking force is applied to the stators 12A and 128 by a braking member in a direction described later so as to cancel a reaction force (reaction) at the time of driving. The X-axis linear motors 10A and 1OB drive the X-stage in the X-direction using a moving coil system in parallel.
第 2図において、 Yガイ ドバ一6を X方向に挟むように、 この Yガイ ドバー 6の側面に数 imの隙間をあけて 1対の X方向拘束べァリング部 材 7が配置され、 X方向拘束べァリング部材 7の底面に Z浮上ベアリン グ板 14 (第 1図参照) が固定され、 X方向拘束ベアリング部材 7の上 面に試料台 1 5が固定され、 試料台 1 5上に不図示のウェハホルダを介 してレジス卜が塗布された露光対象のウェハ Wが保持されている。 本例 では、 1対の X方向拘束ベアリング部材 7、 Z浮上ベアリング板 14、 及び試料台 1 5より Yステージが構成されている。 In FIG. 2, a pair of X-direction restraining bearing members 7 are arranged on the side surface of the Y guide bar 6 with a gap of several im so as to sandwich the Y guide bar 6 in the X direction. The Z floating bearing plate 14 (see Fig. 1) is fixed to the bottom surface of the constraining bearing member 7, and the sample stage 15 is fixed to the upper surface of the X-direction constraining bearing member 7, not shown on the sample stage 15. The wafer W to be exposed to which the resist is applied is held via the wafer holder. In this example, a Y stage is composed of a pair of X-direction constrained bearing members 7, a Z floating bearing plate 14, and a sample stage 15.
この場合、 Z浮上ベアリング板 14の底面 (定盤 3との対向面) には エアーべァリングを構成する空気噴出部と、 真空ポケットゃ磁石等の予
圧装置とが 3組以上組み込まれており、 エア一ベアリング方式で非接触 に Yステージの重量が支えられている。 また、 1対の X方向拘束べァリ ング 7はそれぞれ Yガイドバー 6に向かって空気を噴出し、 両方が発生 する空気圧の釣り合いでその Yステージを Yガイドバー 6に一定のギヤ ップを保ちつつ非接触で X方向に関し拘束する。 これによつて、 その Y ステージは、 X方向、 及び Z方向に非接触に拘束された状態で、 Yガイ ドバー 6に沿って Y方向に移動できる。 In this case, on the bottom surface of the Z-floating bearing plate 14 (the surface facing the surface plate 3), there is an air ejection part that constitutes an air bearing, and a vacuum pocket ゃ More than three sets of pressure devices are incorporated, and the weight of the Y stage is supported in a non-contact manner by an air-bearing system. In addition, a pair of X-direction restraint bearings 7 blast air toward the Y guide bar 6, respectively, and the Y stage is fixed to the Y guide bar 6 by balancing the air pressure generated by both. Constrain in the X direction without contact while maintaining. Thus, the Y stage can move in the Y direction along the Y guide bar 6 while being restrained in a non-contact manner in the X direction and the Z direction.
その Yステージの駆動用として、 1対の X方向拘束べァリング部材 7 の両側に Yガイドバー搬送体 5及び 8 (第 1図参照) を連結するように、 Y方向に平行に 1対のそれぞれコイルを備えた固定子 1 6 A及び 1 6 B が設置され、 + X方向側の X方向拘束べァリング部材 7の外面に固定子 1 6 Aを挟むようにコの字型の複数の永久磁石を備えた可動子 1 7 Aが 固定され、 一 X方向側の X方向拘束ベアリング部材 7の外面に固定子 1 6 Bを挟むように複数の永久磁石を備えた可動子 (不図示) が固定され ている。 そして、 固定子 1 6 A, 1 6 Bと対応する可動子 1 7 A等とよ り 2軸のム一ビングマグネット方式の Y軸リニアモー夕 2 6 A及び 2 6 Bが構成され、 これらの Y軸リニアモー夕 2 6 A及び 2 6 Bによってそ の Yステージは Y方向に駆動される。 In order to drive the Y stage, a pair of X guide restraint bearing members 7 are connected in parallel to the Y direction so that Y guide bar carriers 5 and 8 (see Fig. 1) are connected to both sides. The stators 16 A and 16 B with coils are installed. + A plurality of U-shaped permanent magnets sandwich the stator 16 A on the outer surface of the X-direction restraining bearing member 7 on the X-direction side. The mover 17 A with the permanent magnet is fixed, and the mover (not shown) with a plurality of permanent magnets is fixed on the outer surface of the X-direction constrained bearing member 7 on the X direction side so as to sandwich the stator 16 B. It has been. The stators 16A and 16B and the corresponding movers 17A and the like constitute the two-axis moving magnet type Y-axis linear motors 26A and 26B, respectively. The Y stage is driven in the Y direction by axis linear motors 26A and 26B.
第 2図において、 Yステージ中の X方向拘束べァリング部材 7の上部 の試料台 1 5は、 Z方向の位置 (フォーカス位置) 、 並びに X軸及び Y 軸の周りの傾斜角の補正が可能であり、 試料台 1 5上の— X方向の端部、 及び + Y方向の端部にそれぞれ X軸の移動鏡 1 9 X、 及び Y軸の移動鏡 1 9 Yが固定されている。 また、 定盤 3の— X方向の側面に固定された 支持部材 2 5に取り付けられた 2軸の X軸のレーザ干渉計 2 1 X A及び 2 1 X Bから移動鏡 1 9 Xに X軸に平行にレーザビームが照射され、 レ 一ザ干渉計 2 I X A及び 2 1 X Bによって移動鏡 1 9 X (試料台 1 5 )
の X座標 XW1, XW2が計測されている。 例えば一方の X座標 XW1 が試料台 1 5の X座標となり、 2つの X座標 XW1, XW2の差分から 試料台 1 5の回転角が算出される。 In FIG. 2, the sample stage 15 above the X-direction constraining bearing member 7 in the Y stage is capable of correcting the position in the Z direction (focus position) and the tilt angle around the X axis and the Y axis. The X-axis movable mirror 19 X and the Y-axis movable mirror 19 Y are fixed to the end in the −X direction and the end in the + Y direction on the sample table 15, respectively. In addition, the two-axis X-axis laser interferometers 21 XA and 21 XB attached to the support member 25 fixed to the X-direction side surface of the platen 3 are parallel to the X-axis to the moving mirror 19 X Is irradiated with a laser beam, and a laser mirror 19 X (sample stage 15) is moved by a laser interferometer 2 IXA and 21 XB. The X coordinates XW1 and XW2 of are measured. For example, one X coordinate XW1 is the X coordinate of the sample stage 15, and the rotation angle of the sample stage 15 is calculated from the difference between the two X coordinates XW1 and XW2.
また、 支持部材 25に取り付けられた Y軸のレーザ干渉計 2 1 Yから のレーザビームが、 支持部材 25に取り付けられた不図示の光学系支持 フレームに取り付けられたミラー 20で反射されて、 Y軸に平行に移動 鏡 19Yに照射され、 レーザ干渉計 21 Yによって移動鏡 19 Y (試料 台 1 5) の Y座標 YWが計測されている。 The laser beam from the Y-axis laser interferometer 21 Y attached to the support member 25 is reflected by a mirror 20 attached to an optical system support frame (not shown) attached to the support member 25, and The moving mirror 19Y is irradiated parallel to the axis, and the Y coordinate YW of the moving mirror 19Y (sample stage 15) is measured by the laser interferometer 21Y.
第 1図に戻り、 ウェハ Wの上方に順次投影光学系 P L、 及びレチクル Rが配置され、 投影光学系 PLは、 定盤 3に固定された不図示のコラム に支持され、 レチクル Rは、 そのコラムに固定されたレチクルベース 2 3上に移動自在に載置されたレチクルステージ 22上に保持されている。 また、 そのコラムの上部に例えばその投影露光装置が収納されたチャン バの外部に設置された露光光源からの露光光の照度分布を均一化するフ ライアイレンズ、 可変視野絞り (レチクルブラインド) 、 及びコンデン サレンズ等からなる照明光学系 24が配置され、 露光時には照明光学系 24からの露光光 I Lがレチクル Rのパターン領域を、 例えば X方向に 細長い矩形の照明領域で照明する。 露光光 I Lとしては、 水銀ランプの i線等の輝線の他に、 Kr F (波長 248 nm) 、 若しくは Ar F (波 長 1 93 nm) 等のエキシマレーザ光、 更には軟 X線等が使用できる。 Referring back to FIG. 1, a projection optical system PL and a reticle R are sequentially arranged above the wafer W, and the projection optical system PL is supported by a column (not shown) fixed to the surface plate 3, and the reticle R is It is held on a reticle stage 22 movably mounted on a reticle base 23 fixed to a column. In addition, a fly-eye lens at the top of the column, for example, for uniformizing the illuminance distribution of exposure light from an exposure light source installed outside the chamber in which the projection exposure apparatus is housed, a variable field stop (reticle blind), An illumination optical system 24 including a condenser lens and the like is arranged, and at the time of exposure, the exposure light IL from the illumination optical system 24 illuminates the pattern area of the reticle R with, for example, a rectangular illumination area elongated in the X direction. As the exposure light IL, excimer laser light such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm), and soft X-rays are used in addition to bright lines such as i-line of a mercury lamp. it can.
また、 レチクルステージ 22の 2次元的な位置を計測するレーザ干渉 計 (不図示) も設けられ、 このレーザ干渉計の計測値、 及び装置全体の 動作を統轄制御する主制御系 51からの指令に応じてステージ制御系 5 2が、 リニアモー夕方式でレチクルステージ 22の動作を制御する。 同 様に、 第 2図のレーザ干渉計 2 1XA, 2 1 XB, 21 Yの計測値も第 1図のステージ制御系 52に供給され、 その計測値、 及び主制御系 51
からの指令に応じてステージ制御系 52は、 ウェハステージ側の 2軸の X軸リニアモ一夕 10A, 10 B、 及び 2軸の Y軸リニアモー夕 26 A, 26 Bの動作を制御する。 即ち、 露光時には、 ウェハ W上の一つのショ ット頜域への露光が終了すると、 X軸リニアモータ 1 OA, 10 B、 及 び Y軸リニアモー夕 26 A, 26 Bをステッピング駆動して次のショッ ト頜域を走査開始位置に移動した後、 Y軸リニアモー夕 26 A, 26 B を定速駆動すると共にレチクルステージ 22を同期して駆動することに よって、 レチクル Rとウェハ Wとを投影光学系 P Lに対して Y方向に投 影倍率を速度比として同期走査するという動作がステップ ·アンド ·ス キャン方式で繰り返されて、 ウェハ Wの各ショット領域への露光が行わ れる。 なお、 投影露光装置としては、 本例のようなステップ · アンド · スキャン方式の代わりに、 ステッパーのような一括露光方式が使用され る場合にも本発明は適用される。 In addition, a laser interferometer (not shown) for measuring the two-dimensional position of the reticle stage 22 is also provided. The laser interferometer measures the measured values of the laser interferometer and commands from the main control system 51 for controlling the overall operation of the apparatus. Accordingly, stage control system 52 controls the operation of reticle stage 22 in a linear mode. Similarly, the measured values of the laser interferometers 21XA, 21XB, and 21Y in FIG. 2 are also supplied to the stage control system 52 in FIG. 1, and the measured values and the main control system 51 The stage control system 52 controls the operations of the two-axis X-axis linear motors 10A and 10B on the wafer stage side and the two-axis Y-axis linear motors 26A and 26B in response to the command from the CPU. That is, at the time of exposure, when exposure to one shot area on the wafer W is completed, the X-axis linear motors 1OA and 10B and the Y-axis linear motors 26A and 26B are stepped and driven to the next step. After moving the shot area to the scanning start position, the reticle R and the wafer W are projected by driving the Y-axis linear motors 26A and 26B at a constant speed and driving the reticle stage 22 in synchronization. The operation of synchronously scanning the optical system PL in the Y direction with the projection magnification as a speed ratio is repeated in a step-and-scan manner, and each shot area of the wafer W is exposed. The present invention is also applied to a case where a batch exposure system such as a stepper is used as the projection exposure apparatus instead of the step-and-scan system as in this embodiment.
さて、 第 2図に示すように本例のウェハステージの試料台 15 (ゥェ ハ W) は、 X方向には 2軸の X軸リニアモ一夕 10 A, 10 Bによって 駆動され、 Y方向にも 2軸の Y軸リニアモー夕 26 A, 26Bによって 駆動されている。 そして、 試料台 1 5を例えば X方向に駆動する際には、 対応する X軸リニアモー夕 10 A, 108の可動子1 1八, 1 1 Bに目 標とする加速度 (減速する場合も含む) に比例する推力が付与されるが、 その際に反作用によってその推力と方向が逆で同じ大きさの力 (以下、 「反力」 と呼ぶ) が対応する固定子 12 A, 12 Bに働く。 同様に、 試 料台 15を Y方向に駆動する際には、 対応する Y軸リニアモー夕 26 A, 26 Bの可動子 1 7 A等に目標とする加速度に比例する推力が付与され、 その推力と方向が逆で同じ大きさの反力が対応する固定子 16A, 16 Bに働く。 従って、 仮に制動機構が無い場合には、 それらの反力が固定 子 12A, 12 B、 又は 16A, 16 Bから定盤 3に作用して振動が発
生し、 試料台 1 5の加減速終了後もその振動が残留して、 試料台 1 5の 位置決め精度、 又は走査露光時の定速制御性が悪化してしまう。 As shown in FIG. 2, the sample stage 15 (wafer W) of the wafer stage of this example is driven by two X-axis linear motors 10 A and 10 B in the X direction, and in the Y direction. Are also driven by two Y-axis linear motors 26A and 26B. When the sample stage 15 is driven in the X direction, for example, the accelerations (including deceleration) targeted by the movers 118 and 11B of the corresponding X-axis linear motors 10A and 108 are included. The thrust is proportional to the thrust force. At that time, a force of the same magnitude (hereinafter referred to as "reaction force") is applied to the corresponding stators 12A and 12B by the reaction in the opposite direction. Similarly, when the test stand 15 is driven in the Y direction, a thrust proportional to the target acceleration is applied to the mover 17 A of the corresponding Y-axis linear motors 26 A and 26 B, and the thrust is applied. And the same magnitude of reaction force acts on the corresponding stators 16A and 16B. Therefore, if there is no braking mechanism, those reaction forces act on the platen 3 from the stators 12A, 12B, or 16A, 16B to generate vibration. The vibration remains after the acceleration / deceleration of the sample stage 15 is completed, and the positioning accuracy of the sample stage 15 or the constant speed controllability during scanning exposure is deteriorated.
このような位置決め精度、 及び定速制御性の悪化を防止するために、 本例の投影露光装置のウェハステージには X軸、 及び Y軸の制動機構が 備えられている。 先ず、 X軸の制動機構の一部は、 第 2図に示すように、 X軸リニアモー夕 1 0 A, 1 0 8の固定子1 2八, 1 2 Bの反力の発生 方向に移動自在な直動ガイド 1 3 A , 1 3 Bである。 また、 ベース 1の —X方向の側面に制動フレーム 3 5が固定され、 制動フレーム 3 5には、 固定子 1 2 A, 1 2 Bの— X方向の端部でほぼ固定子 1 2 A, 1 2 Bの 上面に対向している凸部 3 5 a, 3 5 bが設けられ、 凸部 3 5 a及び 3 In order to prevent such deterioration in positioning accuracy and constant speed controllability, the wafer stage of the projection exposure apparatus of the present example is provided with X-axis and Y-axis braking mechanisms. First, as shown in Fig. 2, a part of the X-axis braking mechanism is movable in the direction in which the reaction force is generated by the stators 128, 12B of the X-axis linear motors 10A, 108A. Are the linear motion guides 13A and 13B. A braking frame 35 is fixed to the side of the base 1 in the —X direction. The braking frame 35 has almost the stator 12 A, at the ends of the stators 12 A and 12 B in the —X direction. Convex portions 35a and 35b facing the upper surface of 12B are provided, and convex portions 35a and 3b are provided.
5 の底面にそれぞれ、 X軸リ二ァモ一夕 1 0 A及び 1 0 Bの可動子 1 1 A及び 1 1 Bとほぼ同一構成でコイルを備えた X制動部材 3 6 A及び 3 6 Bが固定され、 X制動部材 3 6 A及び 3 6 Bの先端部はそれぞれコ の字型の固定子 1 2 A及び 1 2 Bの内部に非接触に挿入されている。 以 上の直動ガイド 1 3 A, 1 3 B、 制動フレーム 3 5、 及び X制動部材 3The X-brake members 36 A and 36 B, which have coils on the bottom surface of the X-axis linear motors 10 A and 10 B, respectively, with almost the same configuration as the movers 11 A and 11 B, respectively Are fixed, and the tip portions of the X braking members 36A and 36B are inserted into the U-shaped stators 12A and 12B in a non-contact manner, respectively. The above linear motion guides 13 A, 13 B, brake frame 35, and X brake member 3
6 A , 3 6 Bより X軸の制動機構が構成されており、 X制動部材 3 6 A 及び 3 6 Bは、 リニアモ一夕方式で固定子 1 2 A, 1 2 Bに対して所望 の制動力を発生する。 6A and 36B constitute an X-axis braking mechanism. The X-braking members 36A and 36B are provided with desired linear control over the stators 12A and 12B in a linear motor system. Generate power.
第 5図は、 第 1図に示すステージ制御系 5 2の詳細な構成を示し、 こ の第 5図において、 ステージ制御系 5 2は、 ウェハステージ駆動系 5 3 と、 レチクルステージ駆動系 5 4と、 各種のドライバとを備えている。 そして、 ウェハステージ側の 3軸のレーザ干渉計 2 1 X A, 2 1 X B , 2 1 Yの計測値がウェハステージ駆動系 5 3に供給され、 ウェハステ一 ジ駆動系 5 3には更に主制御系 5 1からウェハステージ (試料台 1 5 ) の目標位置や移動速度等の指令値が供給されている。 これらの情報に応 じてウェハステージ駆動系 5 3は、 第 2図の X軸リニアモー夕 1 0 A,
10 B及び Y軸リニアモー夕 26 Α, 26 Βで発生する推力を設定し、 これらの推力の情報をフィードフォワード系でドライバ 55 Α, 55 Β 及び 56Α, 56 Βに供給する。 また、 ウェハステージ駆動系 53は、 同期情報をレチクルステージ駆動系 54に供給し、 レチクルステージ駆 動系 54はウェハステージに同期してレチクルステージを駆動する。 ウェハステージ側のドライバ 55 Α, 55 Β及び 56 A, 56Βは、 設定された推力を発生するように対応する可動子 1 1 A, 1 1 Βのコィ ル、 及び固定子 16 Α, 16 Βのコイルへの駆動電流を供給する。 この 際に、 X軸のドライバ 55Α, 55 Βへの X軸の推力の情報は X軸の制 動用のドライバ 57Α, 57 Βにも供給され、 ドライバ 57Α, 57 Β は対応する X制動部材 36 Α, 36 Βのコイルに対してその X軸の推力 と同じ大きさで逆向きの推力を発生するための電流を供給する。 FIG. 5 shows the detailed configuration of the stage control system 52 shown in FIG. 1. In FIG. 5, the stage control system 52 includes a wafer stage drive system 53 and a reticle stage drive system 54. And various drivers. Then, the measured values of the three-axis laser interferometers 21 XA, 21 XB and 21 Y on the wafer stage side are supplied to the wafer stage drive system 53, and the wafer stage drive system 53 further has a main control system. Command values such as target position and moving speed of the wafer stage (sample stage 15) are supplied from 51. In response to this information, the wafer stage drive system 53 is driven by the X-axis linear motor 10 A, shown in FIG. 10 Set the thrust generated in the B and Y axis linear motors 26 mm and 26 mm, and supply the information of these thrusts to the drivers 55 mm, 55 mm and 56 mm, 56 mm in the feedforward system. The wafer stage drive system 53 supplies synchronization information to a reticle stage drive system 54, and the reticle stage drive system 54 drives the reticle stage in synchronization with the wafer stage. Drivers 55 ド ラ イ バ, 55Β and 56A, 56Β on the wafer stage are equipped with coils for the movers 11A, 11 1 and the stators 16Α, 16Β that correspond to generate the set thrust. Supply drive current to the coil. At this time, the information of the X-axis thrust to the X-axis drivers 55Α and 55Β is also supplied to the X-axis control drivers 57Α and 57Β, and the drivers 57Α and 57Β are driven by the corresponding X-brake member 36 部 材. , 36 mm coil is supplied with a current to generate a thrust in the opposite direction with the same magnitude as its X-axis thrust.
第 6図は、 第 2図のウェハステージを一 Υ方向に見た簡略化した側面 図であり、 この第 6図において、 仮に第 2図の試料台 15を +Χ方向に 駆動するために、 X軸リニアモー夕 10 Αの可動子 1 1 Αに X方向への 推力 FXAが付与される場合、 対応する固定子 1 2Aには反カー FXA (一 X方向に向かう反力 FXA) が作用する。 同時に、 X制動部材 36 Aから固定子 12 Aに対して作用する制動力 DXAは、 その反力と逆向 きで大きさの同じ X方向への推力 FXAとなるため、 固定子 12Aには X方向への力が作用することがなく、 固定子 12 Aは静止した状態を維 持する。 特に、 本例では反力一 FXAと制動力 DXAとがほぼ同一直線 上にあるため、 モーメントや固定子 12 Aを変形させようとする力等が 発生することがなく、 可動子 1 1 Aの加減速時に微少な振動等が生じる こともない。 FIG. 6 is a simplified side view of the wafer stage in FIG. 2 as viewed in one direction. In FIG. 6, in order to temporarily drive the sample stage 15 in FIG. When thrust FXA in the X direction is applied to the mover 1 1 Α of the X axis linear motor 10 10 in the X direction, the corresponding stator 12 A is subjected to anti-car FXA (reaction force FXA in the X direction). At the same time, the braking force DXA acting on the stator 12A from the X-braking member 36A becomes a thrust FXA in the X-direction, which has the same magnitude in the opposite direction to the reaction force. No force acts on the stator 12A, and the stator 12A remains stationary. In particular, in this example, since the reaction force FXA and the braking force DXA are substantially on the same straight line, no moment or force for deforming the stator 12 A is generated, and the movable element 11 A There is no generation of minute vibration during acceleration / deceleration.
また、 仮に可動子 1 1 Aに推力が付与されるタイミングに対して、 X 制動部材 36 Aによって固定子 12 Aに制動力が付与されるタイミング
が僅かにずれたとしても、 又は、 固定子 12 Aに発生する反力の大きさ に対して X制動部材 36Aによって固定子 12Aに与えられる制動力の 大きさが僅かに異なったとしても、 直動ガイド 1 3 Aによって固定子 1 2 Aが X方向にずれるため、 定盤 3に振動が生じることはない。 従って、 Xステージ (可動子 1 1 A, 1 1 B) の加減速に拘らず定盤 3は静止し ており、 Xステージの位置制御や速度制御が高精度に行われる。 Also, the timing when the braking force is applied to the stator 12A by the X braking member 36A is compared with the timing when the thrust is applied to the mover 11A. Is slightly deviated, or even if the magnitude of the braking force applied to the stator 12A by the X braking member 36A is slightly different from the magnitude of the reaction force generated in the stator 12A, Since the stator 1 2 A is displaced in the X direction by the moving guide 13 A, the surface plate 3 does not vibrate. Therefore, the surface plate 3 is stationary regardless of the acceleration / deceleration of the X stage (movable elements 11A and 11B), and the position control and speed control of the X stage are performed with high accuracy.
第 2図に戻り、 X軸リニアモー夕 10 A, 10 Bが駆動されていない 期間では、 一例として通常は X制動部材 36 A, 36 Bによって固定子 1 1 A, 1 1 Bが静止状態を維持するようにしておく。 また、 不図示で あるが、 固定子 12A, 12 Bと、 定盤 3との X方向の相対位置を大ま かに検出する光学式、 又は静電容量式等のエンコーダが配置されており、 このエンコーダの計測値も第 5図のウェハステージ駆動系 53に供給さ れている。 そして、 例えば X軸リニアモ一夕 10 A, 10 Bが駆動され ない期間内で、 固定子 12 A, 12 Bと、 定盤 3との X方向の相対位置 が予め定めてある目標範囲から外れているときには、 ウェハステージ制 御系 53は、 その相対位置がその目標範囲内になるように不図示の制御 ラインを介して X制動部材 36 A, 36Bを駆動しておく。 これによつ て、 固定子 1 2 A, 12 Bの位置が次第にずれることがなくなる。 Returning to Fig. 2, during the period when the X-axis linear motors 10A and 10B are not driven, as an example, the stators 11A and 11B are usually kept stationary by the X-braking members 36A and 36B, for example. Keep it. Although not shown, an encoder of an optical type or a capacitance type for roughly detecting the relative position of the stators 12A and 12B and the surface plate 3 in the X direction is arranged. The measured value of this encoder is also supplied to the wafer stage drive system 53 in FIG. Then, for example, during a period in which the X-axis linear motors 10A and 10B are not driven, the relative positions of the stators 12A and 12B and the platen 3 in the X direction deviate from a predetermined target range. During this operation, the wafer stage control system 53 drives the X braking members 36A and 36B via a control line (not shown) so that the relative position is within the target range. As a result, the positions of the stators 12A and 12B do not gradually shift.
次に、 Y軸の制動機構について説明する。 先ず第 1図に示すように、 Yガイドバー搬送体 5と共に X方向に移動する連結部材 9に、 コイルを 備えた可動子 32が固定され、 可動子 32の先端部を非接触に覆うよう に断面形状がコの字型の固定子 33が X方向に沿って配置され、 固定子 33はベース 1の + Y方向の側面に固定された 2つの制動フレーム 34 A, 34Bに固定されている。 可動子 32、 及び固定子 33より Y軸の 制動機構としての Y制動モー夕 31が構成され、 第 2図に固定子 33の 一部を切り欠いて示すように、 固定子 33は、 X方向における可動子 3
2の全移動範囲で可動子 32を覆うように配置されている。 Next, the Y-axis braking mechanism will be described. First, as shown in FIG. 1, a mover 32 having a coil is fixed to a connecting member 9 that moves in the X direction together with the Y guide bar transporter 5 so as to cover the tip of the mover 32 in a non-contact manner. A stator 33 having a U-shaped cross section is arranged along the X direction, and the stator 33 is fixed to two braking frames 34 A, 34 B fixed to the side of the base 1 in the + Y direction. The mover 32 and the stator 33 constitute a Y braking mode 31 as a Y-axis braking mechanism. As shown in FIG. 2, a part of the stator 33 is cut away, and the stator 33 is moved in the X direction. Mover 3 in It is arranged to cover the mover 32 in the entire movement range of 2.
第 3 A図は、 第 1図の可動子 32及び固定子 33よりなる Y制動モー 夕 3 1を示す一部を切り欠いた平面図、 第 3 B図は第 3 A図の側面図で あり、 第 3 B図に示すように、 固定子 33は、 コの字型に固定された 3 個のヨーク 37, 38 A, 38 Bの一方の内面に Y方向に極性が反転す るように永久磁石 39 A, 39 Bを固定し、 他方の内面に永久磁石 39 A, 39 Bに対向するように引き合う極性で永久磁石 39 C, 39Dを 固定して形成されている。 従って、 一方の 1対の永久磁石 39 A, 39 Cの間に生じる磁束の方向は、 他方の 1対の永久磁石 39 B, 39Dの 間に生じる磁束の方向と逆になつており、 これら 2対の永久磁石の間に 可動子 32が非接触に挿入されている。 FIG. 3A is a partially cutaway plan view showing a Y braking motor 31 composed of the mover 32 and the stator 33 shown in FIG. 1, and FIG. 3B is a side view of FIG. 3A. As shown in FIG. 3B, the stator 33 is fixed on one inner surface of the three yokes 37, 38A and 38B fixed in a U-shape so that the polarity is reversed in the Y direction. The magnets 39A and 39B are fixed, and the permanent magnets 39C and 39D are fixed to the other inner surface with the polarity attracting the permanent magnets 39A and 39B. Therefore, the direction of the magnetic flux generated between one pair of permanent magnets 39A and 39C is opposite to the direction of the magnetic flux generated between the other pair of permanent magnets 39B and 39D. The mover 32 is inserted in a non-contact manner between the pair of permanent magnets.
第 3A図に示すように、 可動子 32の内部には、 コイル 32 aが矩形 状に複数回巻回されている。 この場合、 コイル 32 aに流れる電流 I Y は、 1対の永久磁石 39A, 39 Cの間と、 別の 1対の永久磁石 39 B, 390の間とで+ 方向、 又は—X方向に互いに逆になつており、 仮に 永久磁石 39 A, 39 Cの間で可動子 32に Y方向にローレンツ力より なる制動力 D Y/2が作用すると、 永久磁石 39 B, 39 Dの間でも可 動子 32に Y方向に口一レンツ力よりなる制動力 DYZ 2が作用する。 そのローレンツ力は電流 I Yに比例するため、 電流 I Yの制御によって 合計で DYの制動力の方向、 及び大きさを任意に制御できる。 As shown in FIG. 3A, inside the mover 32, a coil 32a is wound a plurality of times in a rectangular shape. In this case, the current IY flowing through the coil 32a is opposite between the pair of permanent magnets 39A and 39C and the other pair of permanent magnets 39B and 390 in the + direction or the -X direction. If a braking force DY / 2, which is a Lorentz force, is applied to the mover 32 in the Y direction between the permanent magnets 39A and 39C, the movable element 32 will move between the permanent magnets 39B and 39D. In the Y direction, a braking force DYZ 2 composed of a mouth-to-Lenz force acts. Since the Lorentz force is proportional to the current I Y, the direction and magnitude of the DY braking force can be arbitrarily controlled in total by controlling the current I Y.
そのため、 第 5図において、 ウェハステージ駆動系 53から Y軸のド ライバ 56 A, 56 Bに供給される推力の情報はドライバ 58にも供給 されている。 ドライバ 58は、 その口一レンツ力よりなる制動力 DYが、 2軸の Y軸リニアモー夕 26 A, 268の可動子16八, 16 Bに与え られる推力の合計値 FYによって、 可動子 32に働く反力と方向が逆で 大きさが同じになるように、 可動子 32のコイル 32 aに供給される電
流 I Yを設定する。 Therefore, in FIG. 5, the information on the thrust supplied from the wafer stage drive system 53 to the Y-axis drivers 56 A and 56 B is also supplied to the driver 58. The driver 58 acts on the mover 32 according to the total value FY of the thrusts applied to the movers 168 and 16B of the two-axis Y-axis linear motors 26A and 268 by the braking force DY composed of the mouth-to-Lenz force. The power supplied to the coil 32a of the mover 32 is such that the direction is opposite to the reaction force and the size is the same. Set the flow IY.
この結果、 第 1図において、 Υ軸リニアモータ 2 6 Α , 2 6 Β (第 2 図参照) によって可動子 1 7 Α等 (試料台 1 5 ) に Υ方向に推力 F Yが 働くものとすると、 固定子 1 6 A, 1 6 B (第 2図参照) 、 及び連結部 材 9を介して Y制動モー夕 3 1の可動子 3 2には反カー F Y (— Y方向 への大きさが F Yの反力) が働く。 これに対応して、 Y制動モ一夕 3 1 によって可動子 3 2にはその反力と逆向きで大きさが同じ Y方向への制 動力 D Yが作用するため、 可動子 3 2、 ひいては定盤 3には Y方向への 振動は生じない。 Y軸の制動機構においても、 Y軸リニアモー夕 2 6 A, 2 6 Bによって生ずる反力と、 Y制動モー夕 3 1によって付与される制 動力とはほぼ同一平面上にあるため、 大きなモーメントや変形力等が生 ずることはない。 As a result, in Fig. 1, assuming that thrust FY acts on the mover 17 7 etc. (sample stage 15) in the に よ っ て direction by the Υ-axis linear motors 26, and 26 Β (see Fig. 2), The stator 16 A, 16 B (see Fig. 2) and the movable member 3 2 of the Y braking motor 31 via the connecting member 9 have the anti-car FY (the size in the Y direction is FY). Work). Correspondingly, the braking force DY in the Y direction, which is opposite in direction to the reaction force, acts on the mover 3 2 by the Y braking mode 3 1, so that the mover 3 2 Panel 3 does not vibrate in the Y direction. Also in the Y-axis braking mechanism, the reaction force generated by the Y-axis linear motors 26A and 26B and the braking force applied by the Y-braking motor 31 are substantially on the same plane. There is no deformation force.
この際に、 第 2図において、 試料台 1 5の X方向の位置が変化しても、 可動子 3 2は固定子 3 3の中に収まっており、 可動子 3 2には常に Y方 向への反力を相殺するような制動力を付与できる。 従って、 Xステージ の X方向の位置に拘らず、 Yステージを Y方向に加減速する際にも定盤 3は静止しており、 その Yステージ、 ひいては試料台 1 5の位置制御や 速度制御が高精度に行われる。 In this case, in FIG. 2, even if the position of the sample table 15 in the X direction changes, the mover 32 is still in the stator 33, and the mover 32 always has the Y direction. Braking force that offsets the reaction force to the vehicle. Therefore, irrespective of the position of the X stage in the X direction, the surface plate 3 is stationary even when the Y stage is accelerated or decelerated in the Y direction, and the position control and the speed control of the Y stage and, consequently, the sample stage 15 are performed. Performed with high precision.
なお、 第 3 A図及び第 3 B図の Y制動モー夕 3 1は、 第 4 A図及び第 4 B図に示すように、 永久磁石とコイルとを逆にしてもよい。 In the Y braking motor 31 of FIGS. 3A and 3B, the permanent magnet and the coil may be reversed as shown in FIGS. 4A and 4B.
即ち、 第 4 A図は Y制動モー夕 3 1の別の構成例を示す平面図、 第 4 B図はその側面図であり、 第 4 B図に示すように、 この変形例の可動子 3 2 Aは、 コの字型に固定された 3個のヨーク 4 0, 4 1 A, 4 1 Bの 一方の内面に Y方向に極性が反転するように永久磁石 4 2 A, 4 2 Bを 固定し、 他方の内面に永久磁石 4 2 A, 4 2 Bに対向するように引き合 う極性で永久磁石 4 2 C, 4 2 Dを固定して構成されている。 そして、
これら 2対の永久磁石の間に、 可動子 32 Aの全移動範囲を覆うように X方向に長い固定子 33 Aが非接触で挿入されている。 That is, FIG. 4A is a plan view showing another example of the configuration of the Y braking motor 31, and FIG. 4B is a side view thereof. As shown in FIG. 2A is provided with permanent magnets 42A, 42B on one inner surface of three yokes 40, 41A, 41B fixed in a U-shape so that the polarity is reversed in the Y direction. The permanent magnets 42C and 42D are fixed on the other inner surface with the polarity that attracts them so as to face the permanent magnets 42A and 42B. And Between these two pairs of permanent magnets, a stator 33A long in the X direction is inserted in a non-contact manner so as to cover the entire moving range of the mover 32A.
第 4A図に示すように、 固定子 33Aの内部には、 コイル 33Aaが 矩形状に複数回巻回されている。 従って、 この変形例でも、 そのコイル 33 Aaに通電すると、 永久磁石 42 A, 42 Cの間で固定子 33 Aに 発生する口一レンツ力と、 永久磁石 42 B, 42Dの間で固定子 33A に発生する口一レンツ力とは同じ方向になり、 それらの合計のローレン ッ力の反力が可動子 32 Aに制動力として作用する。 その制動力で可動 子 32 Aに働く反力 FYを相殺することで、 Y方向の振動を抑制できる。 なお、 上記の実施形態では、 X軸の制動機構として、 X軸リニアモー 夕 10A, 108の可動子1 1八, 1 1 Bと同等の X制動部材 36 A, 36 Bを用いたが、 制動力の付与対象となる固定子 12 A, 12 Bは、 直動ガイド 1 3A, 13 Bを介して定盤 3に X方向に移動自在に連結さ れているため、 X軸リニアモ一夕 10A, 10 Bから Xステージに与え る推力と、 X制動部材 36A, 36 Bから固定子 12 A, 12 Bに与え る制動力との大きさの相違やタイミングのずれ量が大きくなつても、 定 盤 3には X方向への力が作用しない。 従って、 より自由度の高い、 ある いは安価な構成が採用可能である。 以下では、 このような X軸の制動機 構の他の実施形態につき説明するが、 説明の便宜上、 一方の X軸リニア モー夕 1 0 Aの固定子 12 Aを制動する機構についてのみ説明する。 As shown in FIG. 4A, a coil 33Aa is wound a plurality of times in a rectangular shape inside the stator 33A. Therefore, even in this modification, when the coil 33 Aa is energized, the mouth force generated in the stator 33 A between the permanent magnets 42 A and 42 C and the stator 33 A between the permanent magnets 42 B and 42 D The force is the same as the mouth-to-lentz force generated in the armature, and the reaction force of the total Lorentz force acts as a braking force on the mover 32A. By canceling the reaction force FY acting on the mover 32 A with the braking force, vibration in the Y direction can be suppressed. In the above-described embodiment, the X braking members 36A and 36B equivalent to the movers 118 and 11B of the X axis linear motors 10A and 108 are used as the X axis braking mechanism. Since the stators 12 A and 12 B to which the bearings are attached are movably connected in the X-direction to the platen 3 via the linear motion guides 13 A and 13 B, the X-axis linear motors 10 A and 10 B Even if the difference between the thrust applied from B to the X stage and the braking force applied from the X braking members 36A and 36B to the stators 12A and 12B and the amount of timing deviation increase, the surface plate 3 Does not act in the X direction. Therefore, a more flexible or inexpensive configuration can be adopted. Hereinafter, other embodiments of the X-axis brake mechanism will be described. For convenience of description, only a mechanism that brakes the stator 12A of one X-axis linear motor 10A will be described.
[第 2の実施形態] [Second embodiment]
第 7図は、 X軸の制動機構の第 2の実施形態を示し、 第 6図に対応す る部分に同一符号を付して示すこの第 7図において、 一方の X軸リニァ モー夕 1 OA (第 2図参照) の固定子 12 Aが直動ガイド 13 Aを介し て X方向に移動自在に定盤 3上に載置されている。 そして、 固定子 12 Aの一 X方向の端部に X方向に伸びた円筒状の絶縁体 62が固定され、
この絶縁体 6 2にコイル 6 3が巻回され、 この絶縁体 6 2の中に円柱状 の永久磁石 6 1が非接触で挿入され、 永久磁石 6 1はベース 1上に固定 された制動フレーム 3 5 Aに固定されている。 本例では、 永久磁石 6 1 及びコイル 6 3より制動機構としてのボイスコイルモ一夕が構成され、 このボイスコイルモータによって、 固定子 1 2 Aに働く反カー F X Aを 打ち消すような制動力 F X Aが付与される。 このように X軸の制動機構 としてボイスコイルモ一夕を用いる実施形態は、 X軸の駆動機構として ムービングマグネット型のリニアモー夕を使用する場合に特に有効であ る。 FIG. 7 shows a second embodiment of the X-axis braking mechanism. In FIG. 7, in which parts corresponding to FIG. 6 are denoted by the same reference numerals, one X-axis linear motor 1 OA The stator 12A (see FIG. 2) is mounted on the surface plate 3 so as to be movable in the X direction via the linear motion guide 13A. Then, a cylindrical insulator 62 extending in the X direction is fixed to one end of the stator 12A in the X direction, A coil 63 is wound around the insulator 62, and a cylindrical permanent magnet 61 is inserted into the insulator 62 in a non-contact manner. The permanent magnet 61 is fixed to the base 1 on a braking frame. Fixed at 35 A. In this example, the permanent magnet 61 and the coil 63 constitute a voice coil motor as a braking mechanism. The voice coil motor applies a braking force FXA that cancels the anti-car FXA acting on the stator 12A. You. Thus, the embodiment using the voice coil motor as the X-axis braking mechanism is particularly effective when a moving magnet type linear motor is used as the X-axis driving mechanism.
[第 3の実施形態] [Third embodiment]
第 8図は、 X軸の制動機構の第 3の実施形態を示し、 第 6図に対応す る部分に同一符号を付して示すこの第 8図において、 X軸リニァモータ の固定子 1 2 Aの一 X方向の端部に X方向に伸びた弾性変形可能な例え ば金属よりなるロッド 6 4 Bが固定され、 ベース 1に固定された制動フ レ一ム 3 5 Aにも、 ロッド 6 4 Bに対向するように X方向に伸びた弾性 変形可能な例えば金属よりなるロッド 6 4 Aが固定され、 ロッド 6 4 A と 6 4 Bとの間に粘弾性体 6 5が介装されている。 本例では、 ロッド 6 4 A , 6 4 Bは弾性変形の範囲内で或る程度の回転、 及び X方向への伸 縮を行うことができ、 粘弾性体 6 5は、 それを挟むロッド 6 4 A, 6 4 Bの円板状の先端部のギャップ、 X軸に垂直な方向の位置、 及びそれら の先端部の平行度等に対する余裕度を高める役割を果たしている。 FIG. 8 shows a third embodiment of the X-axis braking mechanism. In FIG. 8, parts corresponding to FIG. 6 are denoted by the same reference numerals, and in FIG. 8, the stator 12 A of the X-axis linear motor is shown. A rod 64 B made of, for example, a metal, which is elastically deformable and extends in the X direction, is fixed to one end in the X direction. The braking frame 35 A fixed to the base 1 also has the rod 6 4 An elastically deformable rod 64 A made of, for example, a metal extending in the X direction is fixed to face B, and a viscoelastic body 65 is interposed between the rods 64 A and 64 B. . In this example, the rods 64 A and 64 B can rotate to some extent within the range of elastic deformation and extend and contract in the X direction, and the viscoelastic body 65 It plays a role in improving the gaps between the disc-shaped tips of 4A and 64B, the position in the direction perpendicular to the X-axis, and the parallelism of those tips.
従って、 固定子 1 2 Aに例えば— X方向への反力が作用すると、 ロッ ド 6 4 A , 6 4 B、 及び粘弾性体 6 5よりなる制動機構を介して制動フ レーム 3 5 Aにその反力が伝わり、 その反作用として固定子 1 2 Aに + X方向に実質的に同じ大きさの制動力が作用して、 固定子 1 2 Aは殆ど X方向に移動することがなく、 定盤 3にも振動等が生じない。
本例において、 弾性体よりなるロッド 6 4 A, 6 4 Bのみで固定子 1 2 Aと制動フレーム 3 5 Aとを接続した場合は、 床振動や Xステージの 加減速時の固定子 1 2 Aに対する反力が制動フレーム 3 5 Aに伝わり、 この制動フレーム 3 5 Aの振動が逆に固定子 1 2 Aに伝わってきてしま う。 また、 固定子 1 2 Aが定盤 3に対して自由に動ける X方向の振動は 定盤 3には伝わらないが、 Y方向、 Z方向の振動は定盤 3に伝わってし まう。 これに対して、 本例では粘弾性体 6 5を介することで、 Y方向、 Z方向への振動成分も低減できる。 Therefore, for example, when a reaction force in the X direction acts on the stator 12 A, the braking frame 35 A is applied to the braking frame 35 A via the braking mechanism including the rods 64 A and 64 B and the viscoelastic body 65. The reaction force is transmitted, and as the reaction, a braking force having substantially the same magnitude acts on the stator 12A in the + X direction, and the stator 12A hardly moves in the X direction, and No vibration or the like occurs in the panel 3. In this example, when the stator 12 A and the braking frame 35 A are connected only with the rods 64 A and 64 B made of elastic material, the stator 1 2 during floor vibration and acceleration / deceleration of the X stage 1 2 The reaction force to A is transmitted to the braking frame 35 A, and the vibration of the braking frame 35 A is transmitted to the stator 12 A in reverse. Also, the stator 1 2 A can freely move with respect to the surface plate 3. The vibration in the X direction is not transmitted to the surface plate 3, but the vibration in the Y direction and the Z direction is transmitted to the surface plate 3. On the other hand, in the present example, the vibration components in the Y direction and the Z direction can be reduced through the viscoelastic body 65.
[第 4の実施形態] [Fourth embodiment]
第 9図は、 X軸の制動機構の第 4の実施形態を示し、 第 6図に対応す る部分に同一符号を付して示すこの第 9図において、 X軸リニアモー夕 の固定子 1 2 Aの一 X方向の端部に回転自在なボールジョイント 6 6 B を介して、 X方向に伸びた弾性変形可能な例えば金属製のロッド 6 7が 接続され、 ロッド 6 7の他端は回転自在なボールジョイント 6 6 Aを介 して制動フレーム 3 5 Aに固定され、 制動フレーム 3 5 Aはベース 1上 に固定されている。 FIG. 9 shows a fourth embodiment of the X-axis braking mechanism. In FIG. 9, parts corresponding to FIG. 6 are denoted by the same reference numerals. An elastically deformable, e.g., metal rod 67 extending in the X direction is connected to the end of A in the X direction via a rotatable ball joint 66 B, and the other end of the rod 67 is rotatable. The braking frame 35 A is fixed to the base 1 via a simple ball joint 66 A.
本例においても、 固定子 1 2 Aに生じる反力は、 ロッド 6 7を介して 制動フレーム 3 5 Aに伝わり、 制動フレーム 3 5 Aの反作用によって打 ち消されるため、 固定子 1 2 Aはほぼ静止状態を維持する。 しかも、 口 ッド 6 7は回転自在なポールジョイント 6 6 A , 6 6 Bを介して接続さ れているため、 Y方向、 Z方向への振動成分も低減できる。 Also in this example, the reaction force generated in the stator 12 A is transmitted to the brake frame 35 A via the rod 67 and is canceled out by the reaction of the brake frame 35 A. Maintain almost stationary. Moreover, since the mouth 67 is connected via rotatable pole joints 66A and 66B, the vibration components in the Y and Z directions can be reduced.
[第 5の実施形態] [Fifth Embodiment]
第 1 0図は、 X軸の制動機構の第 5の実施形態を示し、 第 6図に対応 する部分に同一符号を付して示すこの第 1 0図において、 X軸リニアモ 一夕の固定子 1 2 Aの _ X方向の端部に X方向に伸縮自在のべローズ 6 9の一端を固定し、 ベローズ 6 9の他端をベース 1上に固定された制動
フレーム 3 5 Aに固定する。 更に、 ベローズ 6 9内に油等の液体を封入 し、 定盤 3に固定されたベロ一ズ保持体 6 8によってそのべローズ 6 9 の中間部分を支持する。 FIG. 10 shows a fifth embodiment of the X-axis braking mechanism. In FIG. 10, in which parts corresponding to FIG. 6 are denoted by the same reference numerals, FIG. One end of the bellows 69 that can be extended and retracted in the X direction is fixed to the end of the 12 A in the X direction, and the other end of the bellows 69 is fixed on the base 1 Fix to frame 35 A. Further, a liquid such as oil is sealed in the bellows 69, and an intermediate portion of the bellows 69 is supported by a bellows holder 68 fixed to the surface plate 3.
本例では、 固定子 1 2 Aに X方向の反力が加わったときべローズ 6 9 の内部の液体の圧力が変化するが、 ベロ一ズ 6 9に作用する液体の圧力 は Y方向及び Z方向については釣り合つており、 X方向の力のみが制動 フレーム 3 5 Aに伝わる。 従って、 固定子 1 2 Aの X方向への反力が定 盤 3に伝わることがなく、 固定子 1 2 Aが X方向に大きく移動すること もない。 In this example, when a reaction force in the X direction is applied to the stator 12 A, the pressure of the liquid inside the bellows 69 changes, but the pressure of the liquid acting on the bellows 69 changes in the Y direction and the Z direction. The directions are balanced, and only the force in the X direction is transmitted to the braking frame 35A. Therefore, the reaction force of the stator 12 A in the X direction is not transmitted to the platen 3, and the stator 12 A does not largely move in the X direction.
なお、 本発明は上述の実施形態に限定されず、 本発明の要旨を逸脱し ない範囲で種々の構成を取り得ることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the spirit of the present invention.
例えば、 上記実施形態のステージ装置は、 投影露光装置のレチクルス テ一ジに適用することができる。 第 1 1図は、 第 1図の投影露光装置の 変形例であり、 ウェハステージのみならずレチクルステージにも非接触 の X駆動装置であるリニアモー夕を設けてあり、 さらに、 このリニアモ 一夕を駆動する際に固定子に加わる反力を相殺する制動力を与える制動 機構を設けて振動の発生を防止する。 For example, the stage device of the above embodiment can be applied to a reticle stage of a projection exposure apparatus. FIG. 11 is a modification of the projection exposure apparatus of FIG. 1, in which not only the wafer stage but also the reticle stage is provided with a non-contact X-drive linear motor. A braking mechanism that provides a braking force that offsets the reaction force applied to the stator during driving is provided to prevent vibration.
この場合、 ベース 1上の適当な位置に 3つの支柱 8 8が固定され、 こ れらの支柱 8 8の上端には、 エアダンパ、 弾性パネ又はオイルダンパか らなる 3つの防振台 2がそれぞれ固定される。 これらの防振台 2を介し て、 鏡筒定盤 8 3が支柱 8 8上に設置されている。 投影光学系 P Lは鏡 筒定盤 8 3に支持されており、 レチクルステージ 1 2 2が載置されるレ チクル定盤 1 0 3は、 鏡筒定盤 8 3に設けられたフレーム 8 4に支持さ れている。 ウェハステージ 1 5が載置されるウェハ定盤 3は、 フレーム 8 6を介して鏡筒定盤 8 3に吊下げされて固定されている。 ウェハステ —ジ 1 5の駆動機構の構造は、 第 1図及び第 2図に示すものと同様であ
るので、 同一部分には同一の符号を付して重複説明を省略する。 照明光 学系 2 4は鏡筒定盤 8 3に設けられたフレーム 8 2に支持されている。 In this case, three columns 88 are fixed at appropriate positions on the base 1, and at the upper end of these columns 88, three vibration isolation tables 2 each consisting of an air damper, elastic panel or oil damper are provided. Fixed. The lens barrel base 83 is installed on the column 88 via these vibration isolating tables 2. The projection optical system PL is supported by a barrel base 83, and the reticle base 103 on which the reticle stage 122 is mounted is mounted on a frame 84 provided on the barrel base 83. Supported. The wafer surface plate 3 on which the wafer stage 15 is mounted is suspended and fixed to the lens barrel surface plate 83 via a frame 86. The structure of the drive mechanism of the wafer stage 15 is the same as that shown in FIGS. 1 and 2. Therefore, the same portions are denoted by the same reference numerals, and redundant description will be omitted. The illumination optical system 24 is supported by a frame 82 provided on a lens barrel base 83.
レチクル定盤 1 0 3上には、 固定子 1 1 2 A、 1 1 2 Bと可動子 1 1 A、 1 1 Bとからなる X軸リニアモー夕 1 0 A、 1 0 Bが配置されてい る。 可動子 1 1 A、 1 1 Bは、 連結部材 9を介してレチクルステージ 1 2 2に連結されている。 レチクルステージ 1 2 2は、 図示を省略する X 軸方向の直動ガイ ドに案内されており、 X軸リニアモー夕 1 0 A、 1 0 Bに駆動されて X方向の前後に滑らかに移動する。 なお、 レチクルステ —ジ 1 2 2の X方向の位置は、 レチクルステージ 1 2 2上に固定された 移動鏡 1 1 9と、 レチクル定盤 1 0 3に支持されて X軸に平行なレーザ ビームを移動鏡 1 1 9に照射するレーザ干渉計 1 2 1とによって検出さ れる。 X-axis linear motors 10 A and 10 B consisting of stators 1 12 A and 1 12 B and movers 11 A and 11 B are arranged on reticle surface plate 103. . The movers 11 A and 11 B are connected to a reticle stage 122 via a connecting member 9. The reticle stage 122 is guided by a linear motion guide (not shown) in the X-axis direction, and is driven by the X-axis linear motors 10A and 10B to smoothly move back and forth in the X direction. The position of the reticle stage 122 in the X direction is determined by moving the laser beam 1 19 fixed on the reticle stage 122 and the laser beam parallel to the X axis supported by the reticle surface plate 103. It is detected by the laser interferometer 1 21 irradiating the movable mirror 1 19.
固定子 1 1 2 A、 1 1 2 Bは、 直動ガイド 1 3 A、 1 3 Bに案内され て X方向の前後に摺動可能となっている。 ベース 1に固定された制動フ レーム 3 5には、 固定子 1 1 2 A、 1 1 2 Bに非接触で制動力を与える X制動部材 3 6 A、 3 6 Bが取り付けられている。 The stators 11 A and 11 B are guided by the linear motion guides 13 A and 13 B, and are slidable back and forth in the X direction. The braking frames 35 fixed to the base 1 are provided with X braking members 36A and 36B for applying a braking force to the stators 111A and 112B in a non-contact manner.
なお、 レチクルステージ制御系 5 4は、 レーザ干渉計 1 2 1の出力と、 主制御系 5 1からの指令とに基づいて、 レチクルステージの可動子 1 1 A、 1 1 Bと X制動部材 3 6 A、 3 6 Bとへの駆動電流の供給を制御す る。 レチクルステージ側の可動子 1 1 A、 1 1 Bと X制動部材 3 6 A、 3 6 Bとを制御するための装置構成は、 第 5図に示すウェハステージの 場合と同様のものになる。 この際、 Y方向の駆動制御は行わないので、 第 5図においてドライバ 5 6 A、 5 6 Bに対応するレチクルステージの 可動子 1 1 A、 1 I B用のドライバと、 ドライバ 5 7 A、 5 7 B Xに対 応するレチクルステージの X制動部材 3 6 A、 3 6 B用のドライバとを 追加し、 これらをレチクルステージ制御系 5 4に接続することになる。
以上の装置において、 レチクルステージ 1 2 2を + X方向に駆動する ために、 可動子 1 1 A、 1 1 Bに X方向への推力が付与されると、 対応 する固定子 1 1 2 A、 1 1 2 Bには反力が作用する。 同時に、 X制動部 材 36A、 36 Aから固定子 1 1 2 A、 1 1 2 Bに対して作用する制動 力は、 その反力と逆向きで大きさの同じ X方向への推力となるため、 固 定子 1 1 2 A、 1 1 2 Bには X方向への力が作用することがなく、 固定 子 1 1 2 A、 1 1 2 Bは静止した状態を維持する。 この際、 反力と制動 力とがほぼ同一直線上にあるため、 モーメントや固定子 1 1 2 A、 1 1 2 Bを変形させようとする力等が発生することがなく、 可動子 1 1 A、 1 2 Bの加減速時に微少な振動等が生じることもないので、 レチクルを 精密に X方向の所望の位置に駆動することができる。
The reticle stage control system 54, based on the output of the laser interferometer 121 and the command from the main control system 51, uses the reticle stage movers 11A and 11B and the X braking member 3 Controls the supply of drive current to 6 A and 36 B. The device configuration for controlling the movers 11A and 11B and the X braking members 36A and 36B on the reticle stage side is the same as that of the wafer stage shown in FIG. At this time, since drive control in the Y direction is not performed, the driver for the movers 11 A and 1 IB of the reticle stage corresponding to the drivers 56 A and 56 B and the drivers 57 A and 5 in FIG. A reticle stage X-braking member for 7BX and a driver for 36A and 36B will be added, and these will be connected to the reticle stage control system 54. In the above apparatus, when thrust in the X direction is applied to the movers 11 A and 11 B to drive the reticle stage 122 in the + X direction, the corresponding stators 1 12 A and A reaction force acts on 1 1 2 B. At the same time, the braking force acting on the stators 1 12 A and 1 12 B from the X braking members 36 A and 36 A is a thrust in the X direction that is the opposite direction to the reaction force and has the same magnitude. However, no force in the X direction acts on the stators 1 1 2 A and 1 1 2 B, and the stators 1 1 2 A and 1 1 2 B remain stationary. At this time, since the reaction force and the braking force are substantially on the same straight line, no moment or force for deforming the stators 112A and 112B is generated. Since no minute vibration or the like occurs during acceleration and deceleration of A and 12B, the reticle can be precisely driven to a desired position in the X direction.
Claims
1 . 定盤上に所定方向に移動自在に設置された可動テ一ブルを、 前記定 盤に対して前記所定方向に非接触型駆動手段を用いて駆動するステージ 駆動方法であって、 1. A stage driving method for driving a movable table movably mounted on a surface plate in a predetermined direction with respect to the surface plate using a non-contact type driving means in the predetermined direction,
前記非接触型駆動手段の固定子が前記定盤に対して移動自在に支持さ れた状態で、 前記可動テーブルに前記所定方向に推力を与えるときに前 記固定子に対して制動力を与えることを特徴とするステージ駆動方法。 When a thrust is applied to the movable table in the predetermined direction in a state where the stator of the non-contact type driving means is movably supported on the surface plate, a braking force is applied to the stator. A stage driving method, comprising:
2 . 請求の範囲第 1項記載のステージ駆動方法であって、 2. The stage driving method according to claim 1, wherein
前記固定子に対して与えられる制動力は、 電磁力によって非接触で与 えられることを特徴とするステージ駆動方法。 A stage driving method, wherein the braking force applied to the stator is provided in a non-contact manner by an electromagnetic force.
3 . 請求の範囲第 1項記載のステージ駆動方法であって、 3. The stage driving method according to claim 1, wherein
前記可動テーブルの位置及び移動速度の指令値に基づいて、 フィード フォヮ一ド系で、 前記固定子に対して制動力を与えることを特徴とする ステージ駆動方法。 A stage driving method, wherein a braking force is applied to the stator by a feed-forward system based on a command value of a position and a moving speed of the movable table.
4 . 請求の範囲第 1項記載のステージ駆動方法であって、 4. The stage driving method according to claim 1, wherein
前記固定子の前記定盤に対する相対的な位置ずれを、 前記非接触型駆 動手段が動作していないときに補正することを特徴とするステージ駆動 方法。 A stage driving method, wherein a relative displacement of the stator with respect to the surface plate is corrected when the non-contact type driving means is not operating.
5 . 請求の範囲第 1項記載のステージ駆動方法であって、 5. The stage driving method according to claim 1, wherein
前記可動テーブルに対して前記所定方向に交差する第 2の方向に移動 自在に設置された第 2の可動テーブルを前記可動テーブルに対して前記 第 2の方向に第 2の非接触型駆動手段を用いて駆動する際に、 前記可動 テーブルとともに前記所定方向に移動する可動部材に対して当該可動部 材の前記所定方向での移動範囲に亘つて前記第 2の方向への制動力を与 えることを特徴とするステージ駆動方法。 A second non-contact type driving means is provided in the second direction with respect to the movable table, the second non-contact type driving means being movably installed in the second direction crossing the predetermined direction with respect to the movable table. When driving using the movable table, a braking force in the second direction is applied to the movable member that moves in the predetermined direction together with the movable table over the moving range of the movable member in the predetermined direction. A stage driving method.
6 . 定盤と、
該定盤に対して所定方向に移動自在に設置された可動テーブルと、 前記定盤に対して前記可動テーブルを前記所定方向に駆動する非接触 型駆動手段と、 6. The surface plate and A movable table installed movably in a predetermined direction with respect to the surface plate; non-contact type driving means for driving the movable table in the predetermined direction with respect to the surface plate;
前記非接触型駆動手段の固定子を前記定盤に対して前記所定方向に移 動自在に支持する支持手段と、 Supporting means for movably supporting the stator of the non-contact type driving means in the predetermined direction with respect to the surface plate;
所定のベースに設けられ、 前記固定子に対して制動力を与える制動部 材と A braking member that is provided on a predetermined base and applies a braking force to the stator;
を備えることを特徴とするステージ装置。 A stage device comprising:
7 . 請求の範囲第 6項記載のステージ装置であって、 7. The stage device according to claim 6, wherein
前記非接触型駆動手段の固定子は、 前記定盤に対して前記所定方向に 直交する方向には移動しないように支持されており、 前記ベースに設け られた前記制動部材は、 前記ベース上に設けられたフレームと、 該フレ ームに取り付けられ前記非接触型駆動手段の固定子に対して電磁力より なる制動力を与える推力発生器と、 を有し、 前記推力発生器は、 前記非 接触型駆動手段を介して前記可動テーブルを駆動する際に前記固定子に 作用する反力を実質的に相殺する推力を前記制動力として発生すること を特徴とするステージ装置。 The stator of the non-contact type driving means is supported so as not to move in a direction perpendicular to the predetermined direction with respect to the surface plate, and the braking member provided on the base is provided on the base. And a thrust generator attached to the frame for applying a braking force consisting of an electromagnetic force to a stator of the non-contact type driving means. A stage device, wherein a thrust that substantially cancels a reaction force acting on the stator when the movable table is driven via a contact-type driving unit is generated as the braking force.
8 . 請求の範囲第 6項記載のステージ装置であって、 8. The stage device according to claim 6, wherein
前記制動部材を制御して、 前記可動テーブルの位置及び移動速度の指 令値に基づいて、 フィードフォワード系で前記固定子に対して制動力を 与える制御手段をさらに備えることを特徴とするステージ装置。 A stage device, further comprising control means for controlling the braking member to apply a braking force to the stator in a feedforward system based on command values of the position and the moving speed of the movable table. .
9 . 請求の範囲第 8項記載のステージ装置であって、 9. The stage device according to claim 8, wherein
前記制御手段は、 前記制動部材を制御して、 前記固定子の前記定盤に 対する相対的な位置ずれを前記非接触型駆動手段が動作していないとき に補正することを特徴とするステージ装置。 A stage device for controlling the braking member to correct a relative displacement of the stator with respect to the surface plate when the non-contact type driving unit is not operating; .
1 0 . 請求の範囲第 6記載のステージ装置であって、
前記非接触型駆動手段の固定子は、 前記定盤に対して前記所定方向に 直交する方向には移動しないように支持されており、 前記べ一スに設け られた前記制動部材は、 前記ベース上に設けられたフレームと、 該フレ —ムに取り付けられ前記非接触型駆動手段の固定子に対して機械的な制 動力を与える受動的制動器とを有することを特徴とするステージ装置。 10. The stage device according to claim 6, wherein The stator of the non-contact type driving unit is supported so as not to move in a direction orthogonal to the predetermined direction with respect to the surface plate, and the braking member provided on the base is configured to include the base A stage device comprising: a frame provided thereon; and a passive brake attached to the frame and providing mechanical control to a stator of the non-contact driving means.
1 1 . 請求の範囲第 1 0記載のステージ装置であって、 11. The stage device according to claim 10, wherein:
前記受動的制動器は、 前記所定方向の同一直線上に延びる一対の金属 ロッドと、 当該一対の金属ロッドの先端間に挟まれた粘弾性体とを有す ることを特徴とするステージ装置。 The stage device, wherein the passive damper has a pair of metal rods extending on the same straight line in the predetermined direction, and a viscoelastic body sandwiched between tips of the pair of metal rods.
1 2 . 請求の範囲第 1 0記載のステージ装置であって、 1 2. The stage device according to claim 10, wherein:
前記受動的制動器は、 前記所定方向に延びる弾性変形可能な金属ロッ ドと、 当該金属ロッドの両端に設けたボールジョイントとを有すること を特徴とするステージ装置。 The stage device, wherein the passive damper includes an elastically deformable metal rod extending in the predetermined direction, and ball joints provided at both ends of the metal rod.
1 3 . 請求の範囲第 1 0記載のステージ装置であって、 13. The stage device according to claim 10, wherein
前記受動的制動器は、 伸縮自在のべローズに液体を封入したものであ ることを特徴とするステージ装置。 A stage device, wherein the passive brake is a device in which a liquid is sealed in a telescopic bellows.
1 4 . 請求の範囲第 6項記載のステージ装置であって、 14. The stage device according to claim 6, wherein
前記可動テーブルに対して前記所定方向に交差する第 2の方向に移動 自在に設置された第 2の可動テーブルと、 前記可動テーブルに対して前 記第 2の可動テーブルを前記第 2の方向に駆動する第 2の非接触型駆動 手段と、 前記可動テーブルに取り付けられて該可動テーブルと共に前記 所定方向に移動する可動部材と、 所定のベース上に固定されて前記可動 部材の前記第 1の方向での移動範囲に亘つて前記可動部材に対して前記 第 2の方向への推力を与える制動部材とをさらに備えたことを特徴とす るステージ装置。 A second movable table movably installed in a second direction intersecting the predetermined direction with respect to the movable table; and a second movable table in the second direction with respect to the movable table. A second non-contact type driving means for driving; a movable member attached to the movable table and moving in the predetermined direction together with the movable table; a first direction of the movable member fixed on a predetermined base. And a braking member that applies a thrust to the movable member in the second direction over the range of movement of the stage device.
1 5 . 請求の範囲第 1 4項記載のステージ装置であって、
前記制動部材は、 前記可動部材の前記所定方向での全移動範囲に亘っ て前記可動部材に対向するように配置された固定部材を有し、 前記可動 部材と前記固定部材との間に、 前記非接触型駆動手段を介して前記第 2 の可動テーブルを駆動する際に前記可動部材に作用する反力を実質的に 相殺する推力を発生することを特徴とするステージ装置。 15. The stage device according to claim 14, wherein The braking member has a fixed member disposed so as to face the movable member over the entire moving range of the movable member in the predetermined direction, and between the movable member and the fixed member, A stage apparatus for generating a thrust that substantially cancels a reaction force acting on the movable member when the second movable table is driven via a non-contact type driving means.
1 6 . 請求項 6記載のステージ装置上に載置された基板に、 照明された マスクに形成されたパターンを投影レンズを介して投影する露光装置。 16. An exposure apparatus for projecting, via a projection lens, a pattern formed on an illuminated mask onto a substrate mounted on the stage apparatus according to claim 6.
1 7 . 請求項 6記載のステージ装置上に載置されたマスクを照明し、 当 該マスクに形成されたパターンを投影レンズを介して基板ステージ上の 基板に投影する露光装置。
17. An exposure apparatus that illuminates a mask mounted on the stage device according to claim 6, and projects a pattern formed on the mask onto a substrate on a substrate stage via a projection lens.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9/256681 | 1997-09-22 | ||
JP25668197 | 1997-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999016080A1 true WO1999016080A1 (en) | 1999-04-01 |
Family
ID=17295999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/004264 WO1999016080A1 (en) | 1997-09-22 | 1998-09-22 | Stage driving method, stage device and exposure device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999016080A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6486941B1 (en) | 2000-04-24 | 2002-11-26 | Nikon Corporation | Guideless stage |
US6844694B2 (en) | 2001-08-10 | 2005-01-18 | Nikon Corporation | Stage assembly and exposure apparatus including the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07325176A (en) * | 1994-06-01 | 1995-12-12 | Nikon Corp | Stage device |
-
1998
- 1998-09-22 WO PCT/JP1998/004264 patent/WO1999016080A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07325176A (en) * | 1994-06-01 | 1995-12-12 | Nikon Corp | Stage device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6486941B1 (en) | 2000-04-24 | 2002-11-26 | Nikon Corporation | Guideless stage |
US6844694B2 (en) | 2001-08-10 | 2005-01-18 | Nikon Corporation | Stage assembly and exposure apparatus including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6885430B2 (en) | System and method for resetting a reaction mass assembly of a stage assembly | |
US20010006762A1 (en) | Balanced positioning system for use in lithographic apparatus | |
JPH11168064A (en) | Stage driving method, stage equipment, and aligner | |
JP5505871B2 (en) | Mobile device and exposure apparatus | |
KR20010067452A (en) | Balanced positioning system for use in lithographic apparatus | |
JP5130714B2 (en) | Driving method for moving body, stage apparatus, exposure apparatus, exposure method, and device manufacturing method | |
US6958808B2 (en) | System and method for resetting a reaction mass assembly of a stage assembly | |
US6597435B2 (en) | Reticle stage with reaction force cancellation | |
US20130258307A1 (en) | Magnet Array Configuration for Higher Efficiency Planar Motor | |
JP2011081367A (en) | Device for guiding power transmitting member, and substrate processing apparatus | |
JPWO2003063212A1 (en) | Stage apparatus and exposure apparatus | |
US7385678B2 (en) | Positioning device and lithographic apparatus | |
EP1111469A2 (en) | Lithographic apparatus with a balanced positioning system | |
JP2000077503A (en) | Stage device and aligner | |
WO2004105105A1 (en) | Stage apparatus, exposure apparatus, and method of producing device | |
US20130033122A1 (en) | Method and apparatus for driving a stage using angled actuators for pushpoint matching | |
JP2006040927A (en) | Supporting apparatus, stage device, exposure device and method of manufacturing device | |
JP2013051289A (en) | Mobile device, exposure device, manufacturing method of flat panel display, and device manufacturing method | |
JP4122815B2 (en) | Linear motor, stage apparatus, and linear motor control method | |
JPH11142556A (en) | Controlling method for stage, stage device and exposing device thereof | |
US20040145751A1 (en) | Square wafer chuck with mirror | |
WO1999016080A1 (en) | Stage driving method, stage device and exposure device | |
KR20070027704A (en) | Positioning device, positioning method, exposure device, exposure method and device manufacturing method | |
JP2002175963A (en) | Stage system and method of controlling position thereof, and aligner and method of exposure | |
JP2006173238A (en) | Stage apparatus, exposure apparatus, and method for manufacturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |