+

WO1999015534A1 - Activateur modifie de catalyseur d'alumoxane - Google Patents

Activateur modifie de catalyseur d'alumoxane Download PDF

Info

Publication number
WO1999015534A1
WO1999015534A1 PCT/US1998/019314 US9819314W WO9915534A1 WO 1999015534 A1 WO1999015534 A1 WO 1999015534A1 US 9819314 W US9819314 W US 9819314W WO 9915534 A1 WO9915534 A1 WO 9915534A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
group
moiety
catalyst
occurrence
Prior art date
Application number
PCT/US1998/019314
Other languages
English (en)
Inventor
Edmund M. Carnahan
Eugene Y. Chen
Grant B. Jacobsen
James C. Stevens
Original Assignee
The Dow Chemical Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Dow Chemical Company filed Critical The Dow Chemical Company
Priority to EP98947065A priority Critical patent/EP1019415A1/fr
Priority to AU93934/98A priority patent/AU9393498A/en
Priority to BR9812485-4A priority patent/BR9812485A/pt
Priority to KR1020007002877A priority patent/KR20010024121A/ko
Priority to JP2000512839A priority patent/JP2001517714A/ja
Priority to HU0004655A priority patent/HUP0004655A3/hu
Priority to PL98339339A priority patent/PL339339A1/xx
Priority to CA002302173A priority patent/CA2302173A1/fr
Publication of WO1999015534A1 publication Critical patent/WO1999015534A1/fr
Priority to US09/502,502 priority patent/US6696379B1/en
Priority to NO20001405A priority patent/NO20001405D0/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/066Aluminium compounds with C-aluminium linkage compounds with Al linked to an element other than Al, C, H or halogen (this includes Al-cyanide linkage)
    • C07F5/068Aluminium compounds with C-aluminium linkage compounds with Al linked to an element other than Al, C, H or halogen (this includes Al-cyanide linkage) preparation of alum(in)oxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to compounds that are useful as catalyst activator components. More particularly the present invention relates to such compounds that are particularly adapted for use in the polymerization of unsaturated compounds having improved activation efficiency and performance. Such compounds are particularly advantageous for use in a polymerization process wherein catalyst, catalyst activator, and at least one polymerizable monomer are combined under polymerization conditions to form a polymeric product. It is previously known in the art to activate Ziegler-Natta polymerization catalysts, particularly such catalysts comprising Group 3-10 metal complexes containing delocalized ⁇ -bonded ligand groups, by the use of an activator. Generally in the absence of such an activator compound, also referred to as a cocatalyst, little or no polymerization activity is observed.
  • a class of suitable activators are aluminoxanes, or alkylaluminoxanes, which are generally believed to be oligomeric or polymeric alkylaluminoxy compounds, including cyclic oligomers.
  • aluminoxanes or alkylaluminoxanes
  • alkylaluminoxanes which are generally believed to be oligomeric or polymeric alkylaluminoxy compounds, including cyclic oligomers.
  • the skilled artisan will appreciate that the precise chemical structure of individual alumoxane molecules including methyl alumoxane has eluded full characterization.
  • the structure of methylalumoxane is postulated to consist of linear chains, cyclic rings, or poiyhedra, which forms may interconvert in solution.
  • such compounds contain, on average about 1.5 alkyl groups per aluminum atom, and are prepared by reaction of trialkylaluminum compounds or mixtures of compounds with water (Reddy et al, Prog. Poly.
  • the resulting product is in fact a mixture of various substituted aluminum compounds including especially, trialklyaluminum compounds.
  • the amount of such free trialkylaluminum compound in the mixture generally varies from 1 to 50 percent by weight of the total product.
  • alumoxanes include methylalumoxane (MAO) made by hydrolysis of trimethylaluminum as well as modified methylalumoxane (MMAO), made by hydrolysis of a mixture of trimethylaluminum and triisobutyialuminum.
  • MAO methylalumoxane
  • MMAO modified methylalumoxane
  • MMAO advantageously is more soluble in aliphatic solvents than is MAO.
  • a different type of activator compound is a Bronsted acid salt capable of transferring a proton to form a cationic derivative or other catalytically active derivative of such Group 3-10 metal complex.
  • Preferred Bronsted acid salts are such compounds containing a cation/ anion pair that is capable of rendering the Group 3- 10 metal complex catalytically active.
  • Suitable activators comprise fluorinated arylborate anions, most preferably, the tetrakis(pentafluorophenyl)borate anion. Additional suitable anions include sterically shielded diboron anions of the formula: X 1
  • S is hydrogen, alkyl, fluoroalkyl, aryl, or fluoroaryl
  • Ar F is fluoroaryl
  • X 1 is either hydrogen or halide, disclosed in US-A-5,447,895.
  • Examples of preferred charge separated (cation/ anion pair) activators are protonated ammonium, sulfonium, or phosphonium salts capable of transferring a hydrogen ion, disclosed in US-A-5,198,401 , US-A-5,132,380, US-A-5,470,927, and US-A-5, 153, 157, as well as oxidizing salts such as carbonium, ferrocenium and silyilium salts, disclosed in USP's 5,350,723, 5,189,192 and 5,626,087.
  • activators for the above metal complexes include strong Lewis acids including (trisperfluorophenyl)borane and tris(perfluorobiphenyl)borane.
  • the former composition has been previously disclosed for the above stated end use in EP-A-520,732, and elsewhere, whereas the latter composition is disclosed in Marks, et al., J. Am. Chem. Soc. 118, 12451-12452 (1996). Additional teachings of the foregoing activators may be found in Chen, et al, J. Am. Chem. Soc. 1997, 119, 2582-2583, Jia et al, Orqanometallics, 1997, 16, 842-857. and Coles et al, J. Am. Chem. Soc.
  • boron containing contaminating compounds result primarily from ligand exchange with the alumoxane, and comprise trialkylboron compounds having from 1 to 4 carbons in each alkyl group, for example, trimethylboron, triisobutylboron, or mixed trialkylboron products. It would be desirable if there were provided compounds that could be employed in solution, slurry, gas phase or high pressure polymerizations and under homogeneous or heterogeneous process conditions having improved activation properties, that lack such trialkylboron species.
  • composition of matter comprising: a fluorohydrocarbyl- substituted alumoxane compound corresponding to the formula:
  • Rl (AIR3 ⁇ ) m -R2, wherein: R 1 independently each occurrence is a C1.40 aliphatic or aromatic group;
  • R 2 independently each occurrence is a C1.40 aliphatic or aromatic group or in the case of a cyclic oligomer, R 1 and R 2 together form a covalent bond;
  • R 3 independently each occurrence is a monovalent, fluorinated organic group containing from 1 to 100 carbon atoms or R 1 , with the proviso that in at least one occurrence per molecule, R 3 is a monovalent, fluorinated organic group containing from 1 to 100 carbon atoms, and m is a number from 1 to 1000.
  • composition may exist in the form of mixtures of compounds of the foregoing formula, and further mixtures with a trihydrocarbylaluminum compound, and may exist in the form of linear chains, cyclic rings, or polyhedra, which forms may interconvert in solution.
  • a catalyst composition for polymerization of an ethylenically unsaturated, polymerizable monomer comprising, in combination, the above described combination and a Group 3-10 metal complex, or the reaction product resulting from such combination.
  • composition comprising the reaction product of an alkylalumoxane and BAr f 3 ; wherein:
  • Ar f is a fluorinated aromatic moiety of from 6 to 30 carbon atoms; the reaction steps comprising contacting the alkylalumoxane and BAr f 3 under ligand exchange conditions and removing at least a portion of the volatile byproducts.
  • the foregoing combination is uniquely adapted for use in activation of a variety of metal complexes, especially Group 4 metal complexes, under standard and atypical olefin polymerization conditions.
  • the catalyst activators of the invention are readily prepared by combining an alkylalumoxane, which may also contain residual quantities of trialkylaluminum compound, with a fluoroaryl ligand source, preferably a strong Lewis acid containing fluoroaryl Iigands, optionally followed by removing byproducts formed by the ligand exchange.
  • a fluoroaryl ligand source preferably a strong Lewis acid containing fluoroaryl Iigands
  • the reaction may be performed in a solvent or diluent, or neat, and preferably is performed neat, or in as concentrated solution as possible, for as long reaction time as possible.
  • Intimate contacting of the neat reactants can be effectively achieved by removing volatile components under reduced pressure from a solution of the separate reactants, to form a solid mixture of reactants and, optionally, intermediate exchange products and desired final exchange products, and thereafter, continuing such contacting optionally at an elevated temperature.
  • Preferred fluoroaryl ligand sources are trifluoroarylboron compounds, most preferably tris(pentafluorophenyl)boron, which result in trialkylboron ligand exchange products, that are relatively volatile and easily removable from the reaction mixture, or more preferably, trifluoroarylaluminum compounds.
  • CQ.Q aliphatic and alicyclic hydrocarbons and mixtures thereof including hexane, heptane, cyclohexane, and mixed fractions such as IsoparTM E, available from Exxon Chemicals Inc.
  • the reactants are combined in the absence of a diluent, that is, the neat reactants are merely combined and heated.
  • Preferred contacting times are at least one hour, preferably at least 90 minutes, at a temperature of at least 25 °C, preferably at least 30 °C, most preferably at least 35°C.
  • the contacting is also done prior to addition of a metal complex catalyst, such as a metallocene, in order to avoid formation of further derivatives and multiple metal exchange products having reduced catalytic effectiveness.
  • a metal complex catalyst such as a metallocene
  • the reaction mixture may be purified to remove ligand exchange products, especially any trialkylboron compounds by any suitable technique.
  • a Group 3-10 metal complex catalyst may first be combined with the reaction mixture prior to removing the residual ligand exchange products. It will be appreciated by the skilled artisan that the degree of fluoroaryl-substitution of the alumoxane can be controlled over a wide range by manipulating the reaction conditions.
  • a low degree of fluoroaryl substitution can be achieved by the use of lower temperatures, solvents, and shorter contact times.
  • a higher degree of substitution can be achieved by the use of neat reactants, long reaction times, higher temperatures and dynamic removal of volatile byproducts under vacuum.
  • Suitable techniques for removing alkyl exchange byproducts from the reaction mixture include degassing optionally at reduced pressures, distillation, solvent exchange, solvent extraction, extraction with a volatile agent, contacting with a zeolite or molecular sieve, and combinations of the foregoing techniques, all of which are conducted according to conventional procedures.
  • the quantity and nature of the residual boron-containing exchange byproducts remaining in of the resulting product may be determined by 11 B NMR analysis.
  • the quantity of residual trialkylboron exchange product is less than 10 weight percent, more preferably less than 1.0 weight percent, most preferably less than 0.1 weight percent, based on fluorohydrocarbyl- substituted alumoxane compound.
  • the resulting product contains a quantity of fluorinated organic substituted aiuminoxy compound. More particularly, the product may be defined as a composition comprising a mixture of aluminum containing Lewis acids said mixture corresponding to the formula:
  • Q 1 independently each occurrence is selected from C ⁇ - 20 alkyl;
  • Ar f is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms;
  • z is a number from 1 to 50, preferably from 1.5 to 40, more preferably from 2 to 30, and the moiety (-AIQ 1 -O-) is a cyclic or linear oligomer with a repeat unit of 2- 30;
  • z' is a number from 1 to 50, preferably from 1.5 to 40, more preferably from 2 to 30, and the moiety (-AIAr f -O-) is a cyclic or linear oligomer with a repeat unit of 2- 30;
  • z" is a number from 0 to 6, and the moiety (Ar f z » AI 2 Q 1 6 -z”) is either tri(fluoroarylaluminum), trialkylaluminum, or an adduct of tri(fluoroarylaluminum) with a sub-stoich
  • the moieties may exist as discrete entities or dynamic exchange products. That is, such moieties may be in the form of dimeric or other multiple centered products in combination with metal complexes resulting from partial or complete ligand exchange, especially when combined with other compounds such as metallocenes. Such exchange products may be fluxional in nature, the concentration thereof being dependant on time, temperature, solution concentration and the presence of other species able to stabilize the compounds, thereby preventing or slowing further ligand exchange.
  • z" is from 1 -5, more preferably from 1-3.
  • Preferred compositions according to the present invention are those wherein Ar f is pentafluorophenyl, and Q 1 is C ⁇ . 4 alkyl. Most preferred compositions according to the present invention are those wherein Ar is pentafluorophenyl, and Q 1 each occurrence is methyl, isopropyl or isobutyl.
  • the present composition is a highly active co-catalyst for use in activation of metal complexes, especially Group 4 metallocenes for the polymerization of olefins.
  • metal complexes especially Group 4 metallocenes for the polymerization of olefins.
  • it is desirably employed as a dilute concentration in a hydrocarbon liquid, especially an aliphatic hydrocarbon liquid for use as a homogeneous catalyst activator, especially for solution polymerizations.
  • the composition may be deposited on an inert support, especially a particulated metal oxide or polymer, in combination with the metal complex to be activated according to known techniques for producing supported olefin polymerization catalysts, and thereafter used for gas phase or slurry polymerizations.
  • the molar ratio of metal complex to activator composition is preferably from 0.1 :1 to 3:1 , more preferably from 0.2:1 to 2:1 , most preferably from 0.25:1 to 1 :1 , based on the metal contents of each component.
  • the molar ratio of metal complex: polymerizable compound employed is from 10 "12 :1 to 10 "1 :1 , more preferably from 10 "12 :1 to 10 "5 :1.
  • the reagents employed in the preparation and use of the present compositions should be thoroughly dried prior to use, preferably by heating at 200-500 °C, optionally under reduced pressure, for a time from 10 minutes to 100 hours. By this procedure the quantity of residual aluminum trialkyl present in the alumoxane is reduced as far as possible.
  • the support for the activator component may be any inert, particulate material, but most suitably is a metal oxide or mixture of metal oxides, preferably alumina, silica, an aluminosilicate or clay material. Suitable volume average particle sizes of the support are from 1 to 1000 ⁇ M, preferably from 10 to 100 ⁇ M. Most desired supports are calcined silica, which may be treated prior to use to reduce surface hydroxyl groups thereon, by reaction with a silane, a trialkylaluminum, or similar reactive compound.
  • Any suitable means for incorporating the present composition onto the surface of a support may be used, including dispersing the cocatalyst in a liquid and contacting the same with the support by slurrying, impregnation, spraying, or coating and thereafter removing the liquid, or by combining the cocatalyst and a support material in dry or paste form and intimately contacting the mixture, thereafter forming a dried, particulated product.
  • silica is preferably reacted with a tri(C M0 alkyl)aluminum, most preferably, trimethylaluminum, triethylaluminum, triisopropylaluminum or triisobutylaiuminum, in an amount from 0.1 to 100, more preferably 0.2 to 10 mmole aluminum/ g silica, and thereafter contacted with the above activator composition, or a solution thereof, in a quantity sufficient to provide a supported cocatalyst containing from 0.1 to 1000, preferably from 1 to 500 ⁇ mole activator/ g silica.
  • the active catalyst composition is prepared by thereafter adding the metal complex or a mixture of metal complexes to be activated to the surface of the support.
  • Suitable metal complexes for use in combination with the foregoing cocatalysts include any complex of a metal of Groups 3-10 of the Periodic Table of the Elements capable of being activated to polymerize monomers, especially olefins by the present activators. Examples include Group 10 diimine derivatives corresponding to the formula:
  • N N is Ar" -N N-Ar *
  • X' is halo, hydrocarbyl, or hydrocarbyloxy
  • Ar * is an aryl group, especially 2,6-diisopropylphenyl or aniline group;
  • CT-CT is 1 ,2-ethanediyl, 2,3-butanediyl, or form a fused ring system wherein the two T groups together are a 1 ,8-naphthanediyl group; and
  • a " is the anionic component of the foregoing charge separated activators.
  • Additional complexes include derivatives of Group 3, 4, or Lanthanide metals containing from 1 to 3 ⁇ -bonded anionic or neutral ligand groups, which may be cyclic or non-cyclic delocalized ⁇ -bonded anionic ligand groups.
  • ⁇ -bonded anionic ligand groups are conjugated or nonconjugated, cyclic or non-cyclic dienyl groups, allyl groups, boratabenzene groups, and arene groups.
  • ⁇ -bonded is meant that the ligand group is bonded to the transition metal by a sharing of electrons from a partially delocalized ⁇ -bond.
  • Each atom in the delocalized ⁇ -bonded group may independently be substituted with a radical selected from the group consisting of hydrogen, halogen, hydrocarbyl, halohydrocarbyl, hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from Group 14 of the Periodic Table of the Elements, and such hydrocarbyl- or hydrocarbyl-substituted metalloid radicals further substituted with a Group 15 or 16 hetero atom containing moiety.
  • hydrocarbyl C-
  • two or more such radicals may together form a fused ring system, including partially or fully hydrogenated fused ring systems, or they may form a metallocycle with the metal.
  • Suitable hydrocarbyl-substituted organometalloid radicals include mono-, di- and tri-substituted organometalloid radicals of Group 14 elements wherein each of the hydrocarbyl groups contains from 1 to 20 carbon atoms.
  • hydrocarbyl-substituted organometalloid radicals include trimethylsilyl, triethylsilyl, ethyldimethylsilyl, methyldiethylsilyl, triphenylgermyl, and trimethylgermyl groups.
  • Group 15 or 16 hetero atom containing moieties include amine, phosphine, ether or thioether moieties or divalent derivatives thereof, e. g. amide, phosphide, ether or thioether groups bonded to the transition metal or Lanthanide metal, and bonded to the hydrocarbyl group or to the hydrocarbyl- substituted metalloid containing group.
  • Suitable anionic, delocalized ⁇ -bonded groups include cyclopentadienyl, indenyl, fluorenyl, tetrahydroindenyl, tetrahydrofluorenyl, octahydrofluorenyl, pentadienyl, cyclohexadienyl, dihydroanthracenyl, hexahydroanthracenyl, decahydroanthracenyl groups, and boratabenzene groups, as well as C MO hydrocarbyl-substituted or C M0 hydrocarbyl-substituted silyl substituted derivatives thereof.
  • Preferred anionic delocalized ⁇ -bonded groups are cyclopentadienyl, pentamethylcyclopentadienyl, tetramethylcyclopentadienyl, tetramethylsilylcyclo-pentadienyl, indenyl, 2,3-dimethylindenyl, fluorenyl, 2- methylindenyl, 2-methyl-4-phenylindenyl, tetrahydrofluorenyl, octahydrofluorenyl, and tetrahydroindenyl.
  • boratabenzenes are anionic Iigands which are boron containing analogues to benzene. They are previously known in the art having been described by G. Herberich, et al., in Or ⁇ anometallics. 1995, 14, 1 , 471-480. Preferred boratabenzenes correspond to the formula:
  • R" is selected from the group consisting of hydrocarbyl, silyl, or germyl, said R" having up to 20 non-hydrogen atoms.
  • R" is selected from the group consisting of hydrocarbyl, silyl, or germyl, said R" having up to 20 non-hydrogen atoms.
  • Suitable metal complexes for use in the catalysts of the present invention may be derivatives of any transition metal including Lanthanides, but preferably of Group 3, 4, or Lanthanide metals which are in the +2, +3, or +4 formal oxidation state meeting the previously mentioned requirements.
  • Preferred compounds include metal complexes (metallocenes) containing from 1 to 3 ⁇ -bonded anionic ligand groups, which may be cyclic or noncyclic delocalized ⁇ -bonded anionic ligand groups. Exemplary of such ⁇ -bonded anionic ligand groups are conjugated or nonconjugated, cyclic or non-cyclic dienyl groups, allyl groups, and arene groups.
  • ⁇ - bonded is meant that the ligand group is bonded to the transition metal by means of delocalized electrons present in a ⁇ bond.
  • Each atom in the delocalized ⁇ -bonded group may independently be substituted with a radical selected from the group consisting of halogen, hydrocarbyl, halohydrocarbyl, and hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from Group 14 of the Periodic Table of the Elements.
  • hydrocarbyl include C-
  • two or more such radicals may together form a fused ring system or a hydrogenated fused ring system.
  • Suitable hydrocarbyl- substituted organometalloid radicals include mono-, di- and trisubstituted organometalloid radicals of Group 14 elements wherein each of the hydrocarbyl groups contains from 1 to 20 carbon atoms.
  • suitable hydrocarbyl- substituted organometalloid radicals include trimethylsilyl, triethylsilyl, ethyldimethylsilyl, methyldiethylsilyl, triphenylgermyl, and trimethylgermyl groups.
  • Suitable anionic, delocalized ⁇ -bonded groups include cyclopentadienyl, indenyl, fluorenyl, tetrahydroindenyl, tetrahydrofluorenyl, octahydrofluorenyl, pentadienyl, cyclohexadienyl, dihydroanthracenyl, hexahydroanthracenyl, and decahydroanthracenyl groups, as well as C ⁇ _ 10 hydrocarbyl-substituted derivatives thereof.
  • Preferred anionic delocalized ⁇ -bonded groups are cyclopentadienyl, pentamethylcyclopentadienyl, tetramethylcyclo- pentadienyl, indenyl, 2,3-dimethylindenyl, fluorenyl, 2-methylindenyl and 2-methyl-4- phenylindenyl. More preferred are metal complexes corresponding to the formula:
  • L is an anionic, delocalized, ⁇ -bonded group that is bound to M, containing up to 50 nonhydrogen atoms, optionally two L groups may be joined together through one or more substituents thereby forming a bridged structure, and further optionally one L may be bound to X through one or more substituents of L;
  • M is a metal of Group 4 of the Periodic Table of the Elements in the +2, +3 or +4 formal oxidation state;
  • X is an optional, divalent substituent of up to 50 non-hydrogen atoms that together with L forms a metallocycle with M;
  • X' is an optional neutral Lewis base having up to 20 non-hydrogen atoms;
  • X" each occurrence is a monovalent, anionic moiety having up to 40 non- hydrogen atoms, optionally, two X" groups may be covalently bound together forming a divalent dianionic moiety having both valences bound to M, or form a neutral, conjugated or nonconjugated diene that is ⁇ -bonded to M (whereupon M is in the +2 oxidation state), or further optionally one or more X" and one or more X' groups may be bonded together thereby forming a moiety that is both covalently bound to M and coordinated thereto by means of Lewis base functionality;
  • I is 1 or 2; m is 0 or 1 ; n is a number from 0 to 3; p is an integer from 0 to 3; and the sum, l+m+p, is equal to the formal oxidation state of M.
  • Such preferred complexes include those containing either one or two L groups.
  • the latter complexes include those containing a bridging group linking the two L groups.
  • Preferred bridging groups are those corresponding to the formula (ER * 2) X wherein E is silicon or carbon, R * independently each occurrence is hydrogen or a group selected from silyl, hydrocarbyl, hydrocarbyloxy and combinations thereof, said R * having up to 30 carbon or silicon atoms, and x is 1 to 8.
  • R* independently each occurrence is methyl, benzyl, tert-butyl or phenyl.
  • Examples of the foregoing bis(L) containing complexes are compounds corresponding to the formula:
  • M is titanium, zirconium or hafnium, preferably zirconium or hafnium, in the +2 or +4 formal oxidation state;
  • R 3 in each occurrence independently is selected from the group consisting of hydrogen, hydrocarbyl, silyl, germyl, cyano, halo and combinations thereof, said R 3 having up to 20 non-hydrogen atoms, or adjacent R 3 groups together form a divalent derivative (that is, a hydrocarbadiyl, siladiyl or germadiyl group) thereby forming a fused ring system, and
  • X" independently each occurrence is an anionic ligand group of up to 40 nonhydrogen atoms, or two X" groups together form a divalent anionic ligand group of up to 40 nonhydrogen atoms or together are a conjugated diene having from 4 to 30 non-hydrogen atoms forming a ⁇ -complex with M, whereupon M is in the +2 formal oxidation state, and
  • R * , E and x are as previously defined.
  • the foregoing metal complexes are especially suited for the preparation of polymers having stereoregular molecular structure. In such capacity it is preferred that the complex possess C2 symmetry or possess a chiral, stereorigid structure.
  • the first type are compounds possessing different delocalized ⁇ -bonded systems, such as one cyclopentadienyl group and one fluorenyl group. Similar systems based on Ti(IV) or Zr(IV) were disclosed for preparation of syndiotactic olefin polymers in Ewen, et al., J. Am. Chem. Soc. 110, 6255-6256 (1980). Examples of chiral structures include bis-indenyl complexes. Similar systems based on Ti(IV) or Zr(IV) were disclosed for preparation of isotactic olefin polymers in Wild et al., j Or ⁇ anomet. Chem. 232, 233-47, (1982).
  • Exemplary bridged Iigands containing two ⁇ -bonded groups are: (dimethylsilyl- bis-cyclopentadienyl), (dimethylsilyl-bis-methylcyclopentadienyl), (dimethylsilyl-bis- ethylcyclopentadienyl, (dimethylsilyl-bis-t-butylcyclopentadienyl), (dimethylsilyl-bis- tetramethylcyclopentadienyl), (dimethylsilyl-bis-indenyl), (dimethylsilyl-bis- tetrahydroindenyl), (dimethylsilyl-bis-fluorenyl), (dimethylsilyl-bis-tetrahydrofluorenyl), (dimethylsilyl-bis-2-methyl-4-phenylindenyl), (dimethylsilyl-bis-2-methylindenyl), (dimethylsilyl-cyclopentadien
  • Preferred X" groups are selected from hydride, hydrocarbyl, silyl, germyl, halohydrocarbyl, halosilyl, silylhydrocarbyl and aminohydrocarbyl groups, or two X" groups together form a divalent derivative of a conjugated diene or else together they form a neutral, ⁇ -bonded, conjugated diene. Most preferred X" groups are C ⁇ _2fj hydrocarbyl groups.
  • a further class of metal complexes utilized in the present invention correspond to the formula:
  • L is an anionic, delocalized, ⁇ -bonded group that is bound to M, containing up to 50 nonhydrogen atoms;
  • M is a metal of Group 4 of the Periodic Table of the Elements in the +2, +3 or +4 formal oxidation state;
  • X is a divalent substituent of up to 50 non-hydrogen atoms that together with L forms a metallocycle with M;
  • X' is an optional neutral Lewis base ligand having up to 20 non-hydrogen atoms;
  • X" each occurrence is a monovalent, anionic moiety having up to 20 nonhydrogen atoms, optionally two X" groups together may form a divalent anionic moiety having both valences bound to M or a neutral C5.30 conjugated diene, and further optionally X' and X" may be bonded together thereby forming a moiety that is both covalently bound to M and coordinated thereto by means of Lewis base functionality;
  • Preferred divalent X substituents preferably include groups containing up to 30 nonhydrogen atoms comprising at least one atom that is oxygen, sulfur, boron or a member of Group 14 of the Periodic Table of the Elements directly attached to the delocalized ⁇ -bonded group, and a different atom, selected from the group consisting of nitrogen, phosphorus, oxygen or sulfur that is covalently bonded to M.
  • a preferred class of such Group 4 metal coordination complexes used according to the present invention correspond to the formula:
  • M is titanium or zirconium in the +2 or +4 formal oxidation state
  • R 3 in each occurrence independently is selected from the group consisting of hydrogen, hydrocarbyl, silyl, germyl, cyano, halo and combinations thereof, said R 3 having up to 20 non-hydrogen atoms, or adjacent R 3 groups together form a divalent derivative (that is, a hydrocarbadiyl, siladiyl or germadiyl group) thereby forming a fused ring system
  • each X" is a halo, hydrocarbyl, hydrocarbyloxy or silyl group, said group having up to 20 nonhydrogen atoms, or two X" groups together form a C5.30 conjugated diene;
  • Y is -O-, -S-, -NR * -, -PR * -;
  • Illustrative Group 4 metal complexes that may be employed in the practice of the present invention include: cyclopentadienyltitaniumtrimethyl, cyclopentadienyltitaniumtriethyl, cyclopentadienyltitaniumtriisopropyl, cyclopentadienyltitaniumtriphenyl, cyclopentadienyltitaniumtribenzyl, cyclopentadienyltitanium-2,4-pentadienyl, cyclopentadienyltitaniumdimethylmethoxide, cyclopentadienyltitaniumdimethylchloride, pentamethylcyclopentadienyltitaniumtrimethyl, indenyltitaniumtrimethyl, indenyltitaniumtriethyl, indenyltitaniumtripropyl, indenyltitaniumtriphenyl, tetra
  • Bis(L) containing complexes including bridged complexes suitable for use in the present invention include: biscyclopentadienylzirconiumdimethyl, biscyclopentadienyltitaniumdiethyl, biscyclopentadienyltitaniumdiisopropyl, biscyclopentadienyltitaniumdiphenyl, biscyclopentadienylzirconium dibenzyl, biscyclopentadienyltitanium-2,4-pentadienyl, biscyclopentadienyltitaniummethylmethoxide, biscyclopentadienyltitaniummethylchloride, bispentamethylcyclopentadienyltitaniumdimethyl, bisindenyltitaniumdimethyl, indenylfluorenyltitaniumdiethyl, bisindenyltitaniummethyl(2-(dimethylamino)benzyl),
  • Suitable polymerizable monomers include ethylenically unsaturated monomers, acetylenic compounds, conjugated or non-conjugated dienes, and polyenes.
  • Preferred monomers include olefins, for examples alpha-olefins having from 2 to 20,000, preferably from 2 to 20, more preferably from 2 to 8 carbon atoms and combinations of two or more of such alpha-olefins.
  • alpha- olefins include, for example, ethylene, propylene, 1 -butene, 1 -pentene, 4- methylpentene-1 , 1 -hexene, 1-heptene, 1-octene, 1 -nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, or combinations thereof, as well as long chain vinyl terminated oligomeric or polymeric reaction products formed during the polymerization, and C10-30 ⁇ -olefins specifically added to the reaction mixture in order to produce relatively long chain branches in the resulting polymers.
  • the alpha-olefins are ethylene, propene, 1-butene, 4-methyl-pentene-1 , 1- hexene, 1-octene, and combinations of ethylene and/or propene with one or more of such other alpha-olefins.
  • Other preferred monomers include styrene, halo- or alkyl substituted styrenes, tetrafluoroethylene, vinylcyclobutene, 1 ,4-hexadiene, dicyclopentadiene, ethylidene norbornene, and 1 ,7-octadiene. Mixtures of the above- mentioned monomers may also be employed.
  • the polymerization may be accomplished at conditions well known in the prior art for Ziegler-Natta or Kaminsky-Sinn type polymerization reactions. Examples of such well known polymerization processes are depicted in WO 88/02009, U.S. Patent Nos. 5,084,534, 5,405,922, 4,588,790, 5,032,652, 4,543,399, 4,564,647, 4,522,987, and elsewhere.
  • Preferred polymerization temperatures are from 0-250°C.
  • Preferred polymerization pressures are from atmospheric to 3000 atmospheres.
  • Molecular weight control agents can be used in combination with the present cocatalysts.
  • examples of such molecular weight control agents include hydrogen, silanes or other known chain transfer agents.
  • a particular benefit of the use of the present cocatalysts is the ability (depending on reaction conditions) to produce narrow molecular weight distribution ⁇ -olefin homopoiymers and copolymers in greatly improved cocatalyst efficiencies and purity, especially with respect to residual aluminum containing contaminants.
  • Preferred polymers have Mw/Mn of less than 2.5, more preferably less than 2.3. Such narrow molecular weight distribution polymer products are highly desirable due to improved tensile strength properties. Gas phase processes for the polymerization of C 2 .
  • olefins especially the homopolymerization and copolymerization of ethylene and propylene, and the copolymerization of ethylene with C 3 - 6 ⁇ -olefins such as, for example, 1 -butene, 1- hexene, 4-methyl-1-pentene are well known in the art.
  • Such processes are used commercially on a large scale for the manufacture of high density polyethylene (HDPE), medium density polyethylene (MDPE), linear low density polyethylene (LLDPE) and polypropylene.
  • the gas phase process employed can be, for example, of the type which employs a mechanically stirred bed or a gas fluidized bed as the polymerization reaction zone.
  • Preferred is the process wherein the polymerization reaction is carried out in a vertical cylindrical polymerization reactor containing a fluidized bed of polymer particles supported above a perforated plate, the fluidization grid, by a flow of fluidization gas.
  • the gas employed to fluidize the bed comprises the monomer or monomers to be polymerized, and also serves as a heat exchange medium to remove the heat of reaction from the bed.
  • the hot gases emerge from the top of the reactor, normally via a tranquilization zone, also known as a velocity reduction zone, having a wider diameter than the fluidized bed and wherein fine particles entrained in the gas stream have an opportunity to gravitate back into the bed. It can also be advantageous to use a cyclone to remove ultra-fine particles from the hot gas stream.
  • the gas is then normally recycled to the bed by means of a blower or compressor and a one or more heat exchangers to strip the gas of the heat of polymerization.
  • a preferred method of cooling of the bed is to feed a volatile liquid to the bed to provide an evaporative cooling effect.
  • the volatile liquid employed in this case can be, for example, a volatile inert liquid, for example, a saturated hydrocarbon having 3 to 8, preferably 4 to 6, carbon atoms.
  • the monomer or comonomer itself is a volatile liquid, or can be condensed to provide such a liquid this can be suitably be fed to the bed to provide an evaporative cooling effect.
  • olefin monomers which can be employed in this manner are olefins containing from 3 to eight, preferably from 3 to six carbon atoms.
  • the volatile liquid evaporates in the hot fluidized bed to form gas which mixes with the fluidizing gas. If the volatile liquid is a monomer or comonomer, it will undergo some polymerization in the bed.
  • the evaporated liquid then emerges from the reactor as part of the hot recycle gas, and enters the compression/heat exchange part of the recycle loop.
  • the recycle gas is cooled in the heat exchanger and, if the temperature to which the gas is cooled is below the dew point, liquid will precipitate from the gas. This liquid is desirably recycled continuously to the fluidized bed.
  • the polymerization reaction occurring in the gas fluidized bed is catalyzed by the continuous or semi-continuous addition of catalyst.
  • the catalyst can also be subjected to a prepolymerization step, for example, by polymerizing a small quantity of olefin monomer in a liquid inert diluent, to provide a catalyst composite comprising catalyst particles embedded in olefin polymer particles.
  • the polymer is produced directly in the fluidized bed by catalyzed (co)polymerization of the monomer(s) on the fluidized particles of catalyst, supported catalyst or prepolymer within the bed.
  • Start-up of the polymerization reaction is achieved using a bed of preformed polymer particles, which, preferably, is similar to the target polyolefin, and conditioning the bed by drying with inert gas or nitrogen prior to introducing the catalyst, the monomer(s) and any other gases which it is desired to have in the recycle gas stream, such as a diluent gas, hydrogen chain transfer agent, or an inert condensable gas when operating in gas phase condensing mode.
  • supported catalysts for use in slurry polymerization may be prepared and used according to previously known techniques. Generally such catalysts are prepared by the same techniques as are employed for making supported catalysts used in gas phase polymerizations.
  • Slurry polymerization conditions generally encompass polymerization of a C 2 . 20 olefin, diolefin, cycloolefin, or mixture thereof in an aliphatic solvent at a temperature below that at which the polymer is readily soluble in the presence of a supported catalyst. It is understood that the present invention is operable in the absence of any component which has not been specifically disclosed.
  • room temperature refers to a temperature from 20 to 25 °C
  • overnight refers to a time from 12 to 18 hours
  • mixed alkanes refers to the aliphatic solvent, Isopar ® E, available from Exxon Chemicals Inc.
  • MMAO-3A Modified methalumoxane
  • TMA trimethylaluminum
  • FAL Tris(perfluorophenyl)aluminum
  • All solvents were purified using the technique disclosed by Pangbom et al, Organometallics, 1996, 15, 1518-1520. All compounds and solutions were handled under an inert atmosphere (dry box).
  • Example 1 was repeated, except that the residue remaining after devolatilization and aging was dissolved in mixed alkanes (Isopar ® E).
  • a 1 gallon computer-controlled stirred autoclave was charged with approximately 1450 g of mixed alkanes solvent (Isopar ® E), and about 125 g of 1 - octene. 10 mmoles Of H 2 was added as a molecular weight control agent. The mixture was stirred and heated to 130 degrees C. The solution was saturated with ethylene at 450 psig (3.4 MPa).
  • Catalyst/ co-catalyst solutions were prepared by combining solutions of [(tetramethylcyclopentadienyl) dimethylsilyl-N-tert-butylamido] titanium (II) (1 ,3-pentadiene) (0.005 M in mixed alkanes), and either a combination of tris(pentafluorophenyl) borane (0.015M in mixed alkanes) and MMAO-3A (0.5 M in mixed alkanes) without solvent devolatilization or aging (comparative); MMAO-3A alone (comparative); or pentafluorophenyl-exchanged alumoxane from Examples 1 or 2 (invention).
  • the catalyst solution was added to the reactor via a pump.
  • the reactor temperature was controlled by controlling the temperature of the reactor jacket.
  • the resulting solution was removed from the reactor into a nitrogen-purged collection vessel.
  • the vessel was removed to the air and 10 mL of a solution of a phosphorous containing antioxidant and a hindered phenol stabilizer was added.
  • the stabilizer solution was prepared by combining 6.67 g of IRGAPHOSTM 168 (available from Ciba-Geigy Corp.) and 3.33 g of IRGANOXTM 1010 (available from Ciba-Geigy Corp.) with 500 mL of toluene.
  • the polymer was recovered by removal of the solvent under reduced pressure in a vacuum oven for 2 days.
  • the reaction conditions are shown in Table 1 below.
  • the polymer characterization results are shown in Table 2.
  • Catalyst soln A was prepared by adding 0.5 mL of 0.05M MMAO-3A to 13 mL of mixed alkanes. To this was added 0.5 mL of 0.01 M tris(pentafluorophenyl) borane, followed by 0.5 mL of 0.005 M [(tetramethylcyclopentadienyl) dimethylsilyl-N-tert-butylamido] titanium (II) (1 ,3-pentadiene). Catalyst soln.
  • B was prepared by combining the indicated amounts of pentafluorophenyl- exchanged alumoxane from Example 1 with 13 mL of mixed alkanes, followed by the addition of a 0.005 M solution of [(tetramethylcyclopentadienyl) dimethylsilyl-N-tert- butylamido] titanium (II) (1 ,3-pentadiene).
  • Catalyst soln. C was prepared by combining the indicated amounts of pentafluorophenyl- exchanged alumoxane from Example 2 with 13 mL of mixed alkanes, followed by the addition of a 0.005 M solution of [(tetramethylcyclopentadienyl) dimethylsilyl-N-tert- butylamido] titanium (II) (1 ,3-pentadiene).
  • Catalyst soln. D was prepared by combining 1.07 mL of 0.05M MMAO-3A to 13 mL of mixed alkanes. To this was added 0.5 mL of 0.005 M [(tetramethylcyclopentadienyl) dimethylsilyl- N-tert-butylamido] titanium (II) (1 ,3-pentadiene).
  • Catalyst soln. E was prepared by combining 2.14 mL of 0.05M MMAO-3A to 13 mL of mixed alkanes. To this was added 0.5 mL of 0.005 M [(tetramethylcyclopentadienyl) dimethylsilyl- N-tert-butylamido] titanium (II) (1 ,3-pentadiene). Table 2
  • silica supported methylalumoxane (Witco 02794/HLJ04) was slurried in 25 mL toluene. To this slurry was added 0.511 g [B(C 6 F 5 ) 3 ] as a dry solid. The mixture was agitated for 3 days. At this time, the solids were collected on a fritted funnel, washed three times with 15 mL portions of toluene and once with 20 mL pentane, and dried in vacuo.
  • Example 2 The polymerization conditions of Example 2 were substantially repeated using a 0.1 g sample of the above supported catalyst to prepare approximately 200 g of ethylene/octene copolymer at a catalyst efficiency of 3.1 Kg polymer/gTi).
  • Continuous gas phase polymerization is carried out in a 6 liter gas phase reactor having a two inch diameter 12 inch long fluidization zone and an eight inch diameter eight inch long velocity reduction zone connected by a transition section having tapered walls.
  • Typical operating conditions ranged from 40 to 100°C, 100 to 350 psig (0.7 to 2.4 MPa) total pressure and up to 8 hours reaction time.
  • Monomer, comonomer, and other gases enter the bottom of the reactor where they pass through a gas distributor plate.
  • the flow of the gas is 2 to 8 times the minimum particle fluidization velocity [Fluidization Engineering. 2nd Ed., D. Kunii and O. Levenspiel, 1991 , Butterworth-Heinemann]. Most of the suspended solids disengag in the velocity reduction zone.
  • the polymer is allowed to accumulate in the reactor over the course of the reaction.
  • the total system pressure is kept constant during the reaction by regulating the flow of monomer into the reactor.
  • Polymer is removed from the reactor to a recovery vessel by opening a series of valves located at the bottom of the fluidization zone thereby discharging the polymer to a recovery vessel kept at a lower pressure than the reactor.
  • the pressures of monomer, comonomer and other gases reported refer to partial pressures.
  • the catalyst prepared above, 0.05 g, is loaded into a catalyst injector in an inert atmosphere glove box.
  • the injector is removed from the glove box and inserted into the top of the reactor.
  • the catalyst is added to the semi-batch gas phase reactor which is under an ethylene (monomer) pressure of 6.5 bar (0.65 MPa), a 1 -butene (comonomer) pressure of 0.14 bar (14 kPa), a hydrogen pressure of 0.04 bar (4 kPa) and a nitrogen pressure of 2.8 bar (0.28 MPa).
  • the temperature of polymerization throughout the run is 70°C. Polymer is conducted for 90 minutes.
  • the total system pressure is kept constant during the reaction by regulating the flow of monomer into the reactor.
  • the yield of ethylene/ 1-butene copolymer powder is 43 g, corresponding to an activity of 37 g/gHrBar (0.22 Kg/gHrMPa).
  • a comparative polymerization using the same metal complex and Witco 02794/HL/04 supported MAO (without treatment with [B(C 6 F 5 ) 3 ]) (0.2 g) produces 16 g ethylene/hexene copolymer, corresponding to an activity of 6 g/gHrBar (0.06 Kg/gHrMPa).
  • Tris(pentafluorophenyl)boron (5.775 gram, 11.3 mmol) was dissolved in toluene (100 ml).
  • a solution of MMAO-3A in heptane (11.6 ml of a 7.1 wt. percent Al solution) was added and the mixture agitated for 15 minutes. The volatile components were removed under reduced pressure to give a pale yellow glass.
  • 200 ml of toluene was added to dissolve the material and the resulting solution was added to 2 g of silica (DavisonTM 948, available from Grace Davison Company) that had been heated at 250°C for 3 hours in air.
  • the mixture was agitated for 3 days.
  • Example 3 The gas phase polymerization conditions of Example 3 are substantially repeated using as a catalyst the supported composition prepared above. After 90 minutes of operation the yield of dry, free flowing powder is 64.7 gram which corresponds to an activity of 96.7 g/gHrBar (0.97 Kg.gHrMPa).
  • the comparative catalyst gives an activity of 3.4 g/gHrBar (0.03 Kg/gHrMPa) under identical polymerization conditions.
  • the toluene adduct of trispentafluorophenylaluminum (FAAL) (0.25 g, 0.403 mmol, prepared by the exchange reaction of tris(pentafluoropnenyl)boron with trimethylaluminum (TMA) according to the technique of US-A-5,602,269) was dissolved in 50 mL of dry toluene in a flask and solid MAO was added (0.47 g, heated to 80 °C under reduced pressure for 8 h to remove TMA and volatile components, 8.06 mmol Al). The reaction mixture was stirred for 4 h at room temperature and the solvent was removed under reduced pressure.
  • FAL trispentafluorophenylaluminum
  • the exchange reaction was essentially complete in 20 min at room temperature (FAAL undetectable in the reaction mixture) and the products were found to be a mixture of two new species: the adduct of FAAL with a stoichiometric to sub- stoichiometric amount of TMA, emperical formula: ((C 6 F 5 ) Z » AI 2 (CH3)6- Z »), where z" is about 1 , and a mixture of pentafluorophenyl-substituted aluminoxy oligomers and methyl-substituted aluminoxy oligomers: [(MeAIO) z ((C 6 F 5 )AIO) z ].
  • the ratio, z/z' was about 6/1.
  • the ratio of two products (aluminum compound/ aluminoxy compound) was approximately 1.2/1. There were no noticeable spectral changes with longer reaction times.
  • Example 6 In a glove box, FAB (0.005 g, 0.01 mmol) and solid MAO (0.017 g, after removal of toluene and free TMA under vacuum drying for 8 h, 0.20 mmol Al) were dissolved in 0.7 mL of toluene-d 8 at room temperature and loaded into a J-Young NMR tube. NMR spectra were recorded after mixing these reagents in the NMR tube for 20 min. No FAB was detected in the reaction mixture and four new species were found to form from the alkyl/aryl B/AI exchange reaction:
  • FAB (0.15 g, 0.293 mmol) was dissolved in 50 mL of dry toluene in a flask and solid MAO was added (1.70 g after removal of toluene and free TMA under vacuum drying for 8 h, 29.3 mmol Al). The reaction mixture was stirred for 2 h at room temperature and the solvent was removed under reduced pressure. The residue was dried in vacuum for a few hours to afford a white solid (85 percent yield).
  • [(M ⁇ AIO) z ((C 6 F 5 )AIO) z ' exhibits very broad peaks (W 1/2 > 600Hz) for AIC 6 F 5 group resonated at a typical AIC 6 F 5 region in the 19 F NMR spectrum.
  • MMAO-3A (11.48 mL, 0.56 M in heptane, 6.42 mmol) was loaded in a flask and the solvent was removed under reduced pressure, the residue was dried in vacuo overnight to afford a white solid.
  • a mixture of solvents (20 mL of hexane and 5 mL of toluene) and FAB (0.077 g, 0.15 mmol). The reaction mixture was stirred for 4 h at room temperature and the solvent was removed under reduced pressure. The residue was dried under reduced pressure for a few hours to afford a white solid (85 percent yield).
  • Catalyst ((t-butylamido)(tetramethylcyclopentadienyl)dimethylsilanetitanium 1 ,3-pentadiene) and cocatalyst, as dilute solutions in toluene, were mixed and transferred to a catalyst addition tank and injected into the reactor. The polymerization conditions were maintained for 15 minutes with ethylene added on demand.
  • Run Activator catalyst/ Exotherm Yield Efficiency Density MMI activator* (°C) (g) (Kg poly. /mgTi) g/ml
  • CE comparative example, not an example of the invention * ⁇ mole metal complex / ⁇ mole activator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Activateur de catalyseur conçu en particulier pour activer des complexes métalliques de métaux du groupe 3-10 afin d'effectuer la polymérisation de monomères polymérisables éthylèniquement insaturés, en particulier, des oléfines, cet activateur comprenant: une composition contenant un mélange d'aluminium contenant des acides de Lewis, ledit mélange étant représenté par la formule: [(-AlQ1-O-)z (-AlArf-O-)z'](Arfz''Al2Q16-z'') dans laquelle: Q1 est indépendamment sélectionné dans alkyle C¿1?-C20; Ar?f¿ représente une fraction hydrocarbyle aromatique fluorée de 6 à 30 atomes de carbone; z est un nombre de 1 à 50, de préférence de 1,5 à 40, plus particulièrement de 2 à 30, et la fraction (-AlQ1-O-) représente un oligomère cyclique ou linéaire présentant une unité répétitive de 2-30; z' est un nombre de 1 à 50, de préférence de 1,5 à 40, plus particulièrement de 2 à 30, et la fraction (-AlArf-O-) représente un oligomère cyclique ou linéaire présentant une unité répétitive de 2-30; z'' est un nombre de 0 à 6, et la fraction (Arfz''Al2Q16-z'') représente soit trifluoroarylaluminium, trialkylaluminium, soit un produit d'apport de trifluoroarylaluminium avec une quantité de sous-stoechiométrique à super-stoechiométrique d'un trialkylaluminium.
PCT/US1998/019314 1997-09-19 1998-09-16 Activateur modifie de catalyseur d'alumoxane WO1999015534A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP98947065A EP1019415A1 (fr) 1997-09-19 1998-09-16 Activateur modifie de catalyseur d'alumoxane
AU93934/98A AU9393498A (en) 1997-09-19 1998-09-16 Modified alumoxane catalyst activator
BR9812485-4A BR9812485A (pt) 1997-09-19 1998-09-16 Ativador catalisador de aluminoxano modificado
KR1020007002877A KR20010024121A (ko) 1997-09-19 1998-09-16 개질된 알룸옥산 촉매 활성화제
JP2000512839A JP2001517714A (ja) 1997-09-19 1998-09-16 変性アルミノキサン触媒活性化剤
HU0004655A HUP0004655A3 (en) 1997-09-19 1998-09-16 Modified alumoxane catalyst activator
PL98339339A PL339339A1 (en) 1997-09-19 1998-09-16 Modified alumoxanate-type catalyst activator
CA002302173A CA2302173A1 (fr) 1997-09-19 1998-09-16 Activateur modifie de catalyseur d'alumoxane
US09/502,502 US6696379B1 (en) 1997-09-19 2000-02-11 Supported modified alumoxane catalyst activator
NO20001405A NO20001405D0 (no) 1997-09-19 2000-03-17 Modifisert alumoksan-katalysatoraktivator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US5957497P 1997-09-19 1997-09-19
US5957297P 1997-09-19 1997-09-19
US5957397P 1997-09-19 1997-09-19
US60/059,572 1997-09-19
US60/059,573 1997-09-19
US60/059,574 1997-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/502,502 Division US6696379B1 (en) 1997-09-19 2000-02-11 Supported modified alumoxane catalyst activator

Publications (1)

Publication Number Publication Date
WO1999015534A1 true WO1999015534A1 (fr) 1999-04-01

Family

ID=27369678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/019314 WO1999015534A1 (fr) 1997-09-19 1998-09-16 Activateur modifie de catalyseur d'alumoxane

Country Status (13)

Country Link
EP (1) EP1019415A1 (fr)
JP (1) JP2001517714A (fr)
KR (1) KR20010024121A (fr)
CN (1) CN1270595A (fr)
AU (1) AU9393498A (fr)
BR (1) BR9812485A (fr)
CA (1) CA2302173A1 (fr)
HU (1) HUP0004655A3 (fr)
ID (1) ID24920A (fr)
NO (1) NO20001405D0 (fr)
PL (1) PL339339A1 (fr)
TR (1) TR200000688T2 (fr)
WO (1) WO1999015534A1 (fr)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018452A2 (fr) * 2000-08-28 2002-03-07 Univation Technologies, Llc Systeme de catalyse et utilisation de ce systeme dans un processus de polymerisation
EP1196453A1 (fr) * 1999-05-25 2002-04-17 Equistar Chemicals L.P. Catalyseurs supportes pour la polymerisation d'olefines
JP2002524621A (ja) * 1998-09-16 2002-08-06 ザ ダウ ケミカル カンパニー 機能化した触媒担体及び担持触媒系
EP1248676A1 (fr) * 1999-11-15 2002-10-16 Equistar Chemicals L.P. Catalyseurs de polymerisation d'olefines contenant des ligands boraaryle modifies
WO2003046025A1 (fr) * 2001-11-20 2003-06-05 Bp Chemicals Limited Procede de polymerisation
US6627573B2 (en) 2000-07-20 2003-09-30 The Dow Chemical Company Expanded anionic compounds comprising hydroxyl or quiescent reactive functionality and catalyst activators therefrom
EP1352913A1 (fr) * 2002-04-08 2003-10-15 Tosoh Finechem Corporation Procédé pour la préparation de methylaluminoxane modifié comme composant catalytique pour la polymérisation d'olefins
WO2004046214A2 (fr) 2002-10-15 2004-06-03 Exxonmobil Chemical Patents Inc. Systeme catalyseur multiple pour la polymerisation d'olefines et polymeres ainsi produits
US6943133B2 (en) 2000-10-20 2005-09-13 Univation Technologies, Llc Diene functionalized catalyst supports and supported catalyst compositions
WO2005113622A1 (fr) 2004-04-15 2005-12-01 Exxonmobil Chemical Patents Inc. Systeme a catalyseurs et reacteurs multiples pour la polymerisation d'olefines et polymeres produits au moyen de ce systeme
WO2006049699A1 (fr) 2004-10-29 2006-05-11 Exxonmobil Chemical Patents Inc Compose catalytique contenant un ligand tridente divalent
US7193024B2 (en) 2001-06-15 2007-03-20 Dow Global Technology Inc. Alpha-Olefin based branched polymer
WO2007136497A2 (fr) 2006-05-17 2007-11-29 Dow Global Technologies Inc. Procédé de polymérisation en solution à haute température
US7442669B2 (en) * 2002-03-05 2008-10-28 Tda Research, Inc. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn
WO2008137520A1 (fr) 2007-05-02 2008-11-13 The Dow Chemical Company Procédé de préparation de copolymères multiblocs au moyen de solvants polaires
WO2008137524A1 (fr) 2007-05-02 2008-11-13 Dow Global Technologies Inc. Processus de polymérisation de polymères tactiques au moyen de catalyseurs chiraux
US7705094B2 (en) 2001-11-19 2010-04-27 Ineos Europe Limited Polymerisation control process
WO2010074815A1 (fr) 2008-12-15 2010-07-01 Exxonmobil Chemical Patents Inc. Compositions oléfiniques thermoplastiques
EP2221328A2 (fr) 2004-03-17 2010-08-25 Dow Global Technologies Inc. Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère à plusieurs blocs d'éthylène
WO2010102163A2 (fr) 2009-03-06 2010-09-10 Dow Global Technologies Inc. Catalyseurs, procédés de fabrication de catalyseurs, procédés de fabrication de compositions de polyoléfines et compositions de polyoléfines
WO2011016992A2 (fr) 2009-07-29 2011-02-10 Dow Global Technologies Inc. Agents de transfert (réversible) de chaînes polymères
WO2011016991A2 (fr) 2009-07-29 2011-02-10 Dow Global Technologies Inc. Agents de transfert réversible de chaînes à têtes doubles ou multiples, et leur utilisation pour la préparation de copolymères séquencés
WO2011048527A1 (fr) 2009-10-19 2011-04-28 Sasol Technology (Pty) Limited Oligomérisation de composés oléfiniques avec formation réduite de polymère
US7947787B2 (en) 2005-09-15 2011-05-24 Dow Global Technologies Llc Control of polymer architecture and molecular weight distribution via multi-centered shuttling agent
EP2327727A1 (fr) 2004-03-17 2011-06-01 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère d'éthylène
WO2011078923A1 (fr) 2009-12-23 2011-06-30 Univation Technologies, Llc Procédés pour produire des systèmes de catalyseur
EP2345677A2 (fr) 2004-06-16 2011-07-20 Dow Global Technologies LLC Technique de sélection de modificateurs de polymérisation
EP2357206A2 (fr) 2005-03-17 2011-08-17 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère d'éthylène
EP2357203A2 (fr) 2004-03-17 2011-08-17 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère multibloc d'éthylène
WO2011103280A1 (fr) 2010-02-18 2011-08-25 Univation Technologies, Llc Procédés d'exploitation d'un réacteur de polymérisation
WO2011103402A1 (fr) 2010-02-22 2011-08-25 Univation Technologies, Llc Systèmes catalyseurs et procédés d'utilisation de ces derniers pour produire des produits de polyoléfine
WO2012074709A1 (fr) 2010-11-30 2012-06-07 Univation Technologies, Llc Procédés pour la polymérisation d'oléfines avec des sels carboxylate de métal extraits
WO2012074710A1 (fr) 2010-11-30 2012-06-07 Univation Technologies, Llc. Composition de catalyseur ayant des caractéristiques d'écoulement améliorées, et ses procédés de fabrication et d'utilisation
WO2012158260A1 (fr) 2011-05-13 2012-11-22 Univation Technologies, Llc Compositions de catalyseur séchées par pulvérisation et procédés de polymérisation utilisant celles-ci
EP2543683A1 (fr) 2007-06-13 2013-01-09 Dow Global Technologies LLC Interpolymères appropriés pour des films multicouches
WO2013028283A1 (fr) 2011-08-19 2013-02-28 Univation Technologies, Llc Systèmes de catalyseur et leurs procédés d'utilisation pour la production de produits de polyoléfine
WO2013070602A1 (fr) 2011-11-08 2013-05-16 Univation Technologies, Llc Procédés pour la production de polyoléfines avec des systèmes de catalyseur
WO2013070601A2 (fr) 2011-11-08 2013-05-16 Univation Technologies, Llc Procédés de préparation d'un système catalyseur
WO2014106143A1 (fr) 2012-12-28 2014-07-03 Univation Technologies, Llc Catalyseur supporté doté d'une aptitude à l'écoulement améliorée
WO2014120494A1 (fr) 2013-01-30 2014-08-07 Univation Technologies, Llc Procédés de fabrication de compositions catalytiques ayant un écoulement amélioré
WO2014123598A1 (fr) 2013-02-07 2014-08-14 Univation Technologies, Llc Préparation de polyoléfine
WO2014143421A1 (fr) 2013-03-15 2014-09-18 Univation Technologies, Llc Ligands tridentate à base d'azote pour catalyseurs de polymérisation d'oléfines
WO2014149361A1 (fr) 2013-03-15 2014-09-25 Univation Technologies, Llc Ligands pour catalyseurs
WO2014197169A1 (fr) 2013-06-05 2014-12-11 Univation Technologies, Llc Protection de groupes phénol
EP2894176A1 (fr) 2005-03-17 2015-07-15 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère à plusieurs blocs régio-irréguliers
EP2915826A1 (fr) 2010-10-21 2015-09-09 Univation Technologies, LLC Polyéthylène et son procédé de fabrication
WO2015153082A1 (fr) 2014-04-02 2015-10-08 Univation Technologies, Llc Compositions de continuité et leurs procédés de fabrication et d'utilisation
WO2016028277A1 (fr) 2014-08-19 2016-02-25 Univation Technologies, Llc Supports de catalyseur fluoré et systèmes de catalyseur
WO2016028278A1 (fr) 2014-08-19 2016-02-25 Univation Technologies, Llc Supports de catalyseurs fluorés et systèmes de catalyseurs
WO2016028276A1 (fr) 2014-08-19 2016-02-25 Univation Technologies, Llc Supports catalytiques fluorés et systèmes catalytiques
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
WO2016145179A1 (fr) 2015-03-10 2016-09-15 Univation Technologies, Llc Compositions de catalyseur séchées par pulvérisation, procédés de préparation et d'utilisation dans des procédés de polymérisation d'oléfines
WO2016172110A1 (fr) 2015-04-20 2016-10-27 Univation Technologies, Llc Ligands bi-aromatiques pontés et composés à base de métaux de transition préparés à partir de ceux-ci
WO2016172097A1 (fr) 2015-04-20 2016-10-27 Univation Technologies, Llc Ligands bi-aromatiques pontés et catalyseurs de polymérisation d'oléfines préparés à partir de ceux-ci
WO2016176135A1 (fr) 2015-04-27 2016-11-03 Univation Technologies, Llc Compositions de catalyseur supporté aux propriétés de coulabilité améliorées et leur préparation
WO2016196334A1 (fr) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Production en réacteur unique de polymères en phase gazeuse ou en suspension
WO2016195824A1 (fr) 2015-05-29 2016-12-08 Exxonmobil Chemical Patents Inc. Procédé de polymérisation à l'aide de composés métallocènes pontés supportés sur des supports de silicate stratifiés traités par un organoaluminium
WO2016197037A1 (fr) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Système catalyteur comprenant des particules d'alumosane supportées et non supportées
WO2016196339A2 (fr) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Production de polymères hétérophasiques en phase gazeuse ou en suspension
WO2017052847A1 (fr) 2015-09-24 2017-03-30 Exxonmobil Chemical Patents Inc. Procédé de polymérisation à l'aide de composés pyridyldiamido supportés sur des supports de silicate stratifié traité par un organoaluminium
WO2018064546A1 (fr) 2016-09-30 2018-04-05 Dow Global Technologies Llc Compositions à plusieurs têtes ou à deux têtes coiffées, utiles pour la polymérisation en chaîne par navette, et leur procédé de préparation
WO2018064540A1 (fr) 2016-09-30 2018-04-05 Dow Global Technologies Llc Procédé de préparation de compositions à têtes multiples ou à deux têtes utiles pour le transfert de chaîne
WO2018064553A1 (fr) 2016-09-30 2018-04-05 Dow Global Technologies Llc Compositions à têtes doubles ou multiples utiles dans le transfert de chaîne et procédé pour leur préparation
EP3309182A2 (fr) 2007-11-15 2018-04-18 Univation Technologies, LLC Catalyseurs de polymérisation, leurs procédés de fabrication, leurs procédés d'utilisation et produits polyoléfiniques fabriqués à partir de ceux-ci
WO2020140058A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Polyoléfines téléchéliques et procédé de préparation de celles-ci
WO2020140067A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Compositions durcissables comprenant des polyoléfines insaturées
WO2020140061A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Compositions durcissables comprenant des polyoléfines téléchéliques
WO2020140064A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Agents de transfert de chaîne organométallique
US10723816B2 (en) 2015-09-30 2020-07-28 Dow Global Technologies Llc Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
CN111902439A (zh) * 2018-03-30 2020-11-06 陶氏环球技术有限责任公司 双核烯烃聚合活化剂
CN112645973A (zh) * 2019-10-11 2021-04-13 浙江大学 一种改性烷基铝氧烷的可控制备方法
WO2021247244A2 (fr) 2020-06-03 2021-12-09 Exxonmobil Chemical Patents Inc. Procédé de production de vulcanisats thermoplastiques utilisant des systèmes catalyseurs supportés et compositions fabriquées à partir de ceux-ci
WO2022015367A1 (fr) 2020-07-17 2022-01-20 Dow Global Technologies Llc Co-catalyseurs de méthylaluminoxane modifiés par hydrocarbyle pour procatalyseurs à géométrie contrainte
EP4234594A1 (fr) 2018-12-28 2023-08-30 Dow Global Technologies LLC Compositions durcissables comprenant des polyoléfines insaturées

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104426B1 (fr) * 1998-08-11 2002-08-14 The Dow Chemical Company Composition d'activation catalytique
JP4770044B2 (ja) * 2001-03-30 2011-09-07 住友化学株式会社 オレフィン重合用触媒成分、オレフィン重合用触媒、およびオレフィン重合体の製造方法
CN101821004A (zh) * 2007-08-29 2010-09-01 雅宝公司 由二烷基铝阳离子前体试剂得到的铝氧烷催化剂活化剂、用于制备其的方法以及其在催化剂和烯烃聚合中的用途
GB201607989D0 (en) * 2016-05-06 2016-06-22 Scg Chemicals Co Ltd Catalytic support and the uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010180A1 (fr) * 1992-11-02 1994-05-11 Akzo N.V. Aryloxyaluminoxanes
EP0694548A1 (fr) * 1994-07-29 1996-01-31 ENICHEM ELASTOMERI S.r.l. Dérivés organométalliques du groupe III A et procédé pour leur préparation
EP0719797A2 (fr) * 1994-12-30 1996-07-03 Repsol Quimica S.A. Procédé d'obtention de polyoléfines possédant de larges distributions de poids moléculaires bimodales ou multimodales
WO1997014700A1 (fr) * 1995-10-19 1997-04-24 Albemarle Corporation Compositions liquides de clathrate d'aluminoxane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010180A1 (fr) * 1992-11-02 1994-05-11 Akzo N.V. Aryloxyaluminoxanes
EP0694548A1 (fr) * 1994-07-29 1996-01-31 ENICHEM ELASTOMERI S.r.l. Dérivés organométalliques du groupe III A et procédé pour leur préparation
EP0719797A2 (fr) * 1994-12-30 1996-07-03 Repsol Quimica S.A. Procédé d'obtention de polyoléfines possédant de larges distributions de poids moléculaires bimodales ou multimodales
WO1997014700A1 (fr) * 1995-10-19 1997-04-24 Albemarle Corporation Compositions liquides de clathrate d'aluminoxane

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524621A (ja) * 1998-09-16 2002-08-06 ザ ダウ ケミカル カンパニー 機能化した触媒担体及び担持触媒系
EP1196453A4 (fr) * 1999-05-25 2006-06-07 Equistar Chem Lp Catalyseurs supportes pour la polymerisation d'olefines
EP1196453A1 (fr) * 1999-05-25 2002-04-17 Equistar Chemicals L.P. Catalyseurs supportes pour la polymerisation d'olefines
EP1248676A1 (fr) * 1999-11-15 2002-10-16 Equistar Chemicals L.P. Catalyseurs de polymerisation d'olefines contenant des ligands boraaryle modifies
EP1248676A4 (fr) * 1999-11-15 2006-06-07 Equistar Chem Lp Catalyseurs de polymerisation d'olefines contenant des ligands boraaryle modifies
US7094901B2 (en) 2000-07-20 2006-08-22 Dow Global Michigan Technologies Inc. Expanded anionic compounds comprising hydroxyl or quiescent reactive functionality and catalyst activators therefrom
US6627573B2 (en) 2000-07-20 2003-09-30 The Dow Chemical Company Expanded anionic compounds comprising hydroxyl or quiescent reactive functionality and catalyst activators therefrom
US6495484B1 (en) 2000-08-28 2002-12-17 Univation Technologies, Llc Catalyst system and its use in a polymerization process
WO2002018452A3 (fr) * 2000-08-28 2003-03-27 Univation Tech Llc Systeme de catalyse et utilisation de ce systeme dans un processus de polymerisation
US6723808B2 (en) 2000-08-28 2004-04-20 Univation Technologies, Llc Catalyst system and its use in a polymerization process
WO2002018452A2 (fr) * 2000-08-28 2002-03-07 Univation Technologies, Llc Systeme de catalyse et utilisation de ce systeme dans un processus de polymerisation
US6943133B2 (en) 2000-10-20 2005-09-13 Univation Technologies, Llc Diene functionalized catalyst supports and supported catalyst compositions
US7193024B2 (en) 2001-06-15 2007-03-20 Dow Global Technology Inc. Alpha-Olefin based branched polymer
US7705094B2 (en) 2001-11-19 2010-04-27 Ineos Europe Limited Polymerisation control process
US7335710B2 (en) 2001-11-20 2008-02-26 Ineos Europe Limited Polymerization process
WO2003046025A1 (fr) * 2001-11-20 2003-06-05 Bp Chemicals Limited Procede de polymerisation
US7442669B2 (en) * 2002-03-05 2008-10-28 Tda Research, Inc. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn
US6881695B2 (en) 2002-04-08 2005-04-19 Tosoh Finechem Corporation Olefin polymerization catalyst and method for producing modified methylaluminoxane for use as olefin polymerization catalyst
EP1352913A1 (fr) * 2002-04-08 2003-10-15 Tosoh Finechem Corporation Procédé pour la préparation de methylaluminoxane modifié comme composant catalytique pour la polymérisation d'olefins
WO2004046214A2 (fr) 2002-10-15 2004-06-03 Exxonmobil Chemical Patents Inc. Systeme catalyseur multiple pour la polymerisation d'olefines et polymeres ainsi produits
EP2221328A2 (fr) 2004-03-17 2010-08-25 Dow Global Technologies Inc. Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère à plusieurs blocs d'éthylène
EP2357203A2 (fr) 2004-03-17 2011-08-17 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère multibloc d'éthylène
EP2327727A1 (fr) 2004-03-17 2011-06-01 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère d'éthylène
EP2792690A1 (fr) 2004-03-17 2014-10-22 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère à plusieurs blocs d'éthylène
EP2221329A1 (fr) 2004-03-17 2010-08-25 Dow Global Technologies Inc. Composition catalytique contenant un agent navette permettant une formation superieure de copolymère multiblocs d'olefines
WO2005113622A1 (fr) 2004-04-15 2005-12-01 Exxonmobil Chemical Patents Inc. Systeme a catalyseurs et reacteurs multiples pour la polymerisation d'olefines et polymeres produits au moyen de ce systeme
EP2345677A2 (fr) 2004-06-16 2011-07-20 Dow Global Technologies LLC Technique de sélection de modificateurs de polymérisation
EP3009459A1 (fr) 2004-06-16 2016-04-20 Dow Global Technologies LLC Procédé de polymérisation d'oléfine employant un modificateur
WO2006049699A1 (fr) 2004-10-29 2006-05-11 Exxonmobil Chemical Patents Inc Compose catalytique contenant un ligand tridente divalent
EP2894176A1 (fr) 2005-03-17 2015-07-15 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère à plusieurs blocs régio-irréguliers
US8981028B2 (en) 2005-03-17 2015-03-17 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
EP3424966A1 (fr) 2005-03-17 2019-01-09 Dow Global Technologies Llc Composition catalytique comprenant un agent d'échange réversible tactique/atactique pour la formation d'un copolymère à plusieurs blocs
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
EP2357206A2 (fr) 2005-03-17 2011-08-17 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère d'éthylène
US7947787B2 (en) 2005-09-15 2011-05-24 Dow Global Technologies Llc Control of polymer architecture and molecular weight distribution via multi-centered shuttling agent
US8202953B2 (en) 2006-05-17 2012-06-19 Dow Global Technologies Llc High efficiency solution polymerization process
WO2007136497A2 (fr) 2006-05-17 2007-11-29 Dow Global Technologies Inc. Procédé de polymérisation en solution à haute température
WO2008137524A1 (fr) 2007-05-02 2008-11-13 Dow Global Technologies Inc. Processus de polymérisation de polymères tactiques au moyen de catalyseurs chiraux
WO2008137520A1 (fr) 2007-05-02 2008-11-13 The Dow Chemical Company Procédé de préparation de copolymères multiblocs au moyen de solvants polaires
EP2543683A1 (fr) 2007-06-13 2013-01-09 Dow Global Technologies LLC Interpolymères appropriés pour des films multicouches
EP3309182A2 (fr) 2007-11-15 2018-04-18 Univation Technologies, LLC Catalyseurs de polymérisation, leurs procédés de fabrication, leurs procédés d'utilisation et produits polyoléfiniques fabriqués à partir de ceux-ci
WO2010074815A1 (fr) 2008-12-15 2010-07-01 Exxonmobil Chemical Patents Inc. Compositions oléfiniques thermoplastiques
WO2010102163A2 (fr) 2009-03-06 2010-09-10 Dow Global Technologies Inc. Catalyseurs, procédés de fabrication de catalyseurs, procédés de fabrication de compositions de polyoléfines et compositions de polyoléfines
EP2757113A2 (fr) 2009-03-06 2014-07-23 Dow Global Technologies LLC Catalyseurs, procédés de fabrication de catalyseurs, procédés de fabrication de compositions de polyoléfines et de compositions de polyoléfines
EP3489264A1 (fr) 2009-07-29 2019-05-29 Dow Global Technologies Llc Agents de transfert de chaînes et leur utilisation pour la préparation de copolymères séquencés
EP3243846A2 (fr) 2009-07-29 2017-11-15 Dow Global Technologies Llc Agents de transfert réversible de chaînes à têtes multiples et leur utilisation pour la préparation de copolymères séquencés
WO2011016991A2 (fr) 2009-07-29 2011-02-10 Dow Global Technologies Inc. Agents de transfert réversible de chaînes à têtes doubles ou multiples, et leur utilisation pour la préparation de copolymères séquencés
WO2011016992A2 (fr) 2009-07-29 2011-02-10 Dow Global Technologies Inc. Agents de transfert (réversible) de chaînes polymères
WO2011048527A1 (fr) 2009-10-19 2011-04-28 Sasol Technology (Pty) Limited Oligomérisation de composés oléfiniques avec formation réduite de polymère
WO2011078923A1 (fr) 2009-12-23 2011-06-30 Univation Technologies, Llc Procédés pour produire des systèmes de catalyseur
WO2011103280A1 (fr) 2010-02-18 2011-08-25 Univation Technologies, Llc Procédés d'exploitation d'un réacteur de polymérisation
WO2011103402A1 (fr) 2010-02-22 2011-08-25 Univation Technologies, Llc Systèmes catalyseurs et procédés d'utilisation de ces derniers pour produire des produits de polyoléfine
EP2915826A1 (fr) 2010-10-21 2015-09-09 Univation Technologies, LLC Polyéthylène et son procédé de fabrication
WO2012074709A1 (fr) 2010-11-30 2012-06-07 Univation Technologies, Llc Procédés pour la polymérisation d'oléfines avec des sels carboxylate de métal extraits
WO2012074710A1 (fr) 2010-11-30 2012-06-07 Univation Technologies, Llc. Composition de catalyseur ayant des caractéristiques d'écoulement améliorées, et ses procédés de fabrication et d'utilisation
WO2012158260A1 (fr) 2011-05-13 2012-11-22 Univation Technologies, Llc Compositions de catalyseur séchées par pulvérisation et procédés de polymérisation utilisant celles-ci
WO2013028283A1 (fr) 2011-08-19 2013-02-28 Univation Technologies, Llc Systèmes de catalyseur et leurs procédés d'utilisation pour la production de produits de polyoléfine
WO2013070601A2 (fr) 2011-11-08 2013-05-16 Univation Technologies, Llc Procédés de préparation d'un système catalyseur
WO2013070602A1 (fr) 2011-11-08 2013-05-16 Univation Technologies, Llc Procédés pour la production de polyoléfines avec des systèmes de catalyseur
US9234060B2 (en) 2011-11-08 2016-01-12 Univation Technologies, Llc Methods of preparing a catalyst system
WO2014106143A1 (fr) 2012-12-28 2014-07-03 Univation Technologies, Llc Catalyseur supporté doté d'une aptitude à l'écoulement améliorée
EP4039366A1 (fr) 2012-12-28 2022-08-10 Univation Technologies, LLC Catalyseur supporté ayant un écoulement amélioré
WO2014120494A1 (fr) 2013-01-30 2014-08-07 Univation Technologies, Llc Procédés de fabrication de compositions catalytiques ayant un écoulement amélioré
WO2014123598A1 (fr) 2013-02-07 2014-08-14 Univation Technologies, Llc Préparation de polyoléfine
EP4223802A2 (fr) 2013-02-07 2023-08-09 Univation Technologies, LLC Catalyseur de polymérisation
WO2014149361A1 (fr) 2013-03-15 2014-09-25 Univation Technologies, Llc Ligands pour catalyseurs
WO2014143421A1 (fr) 2013-03-15 2014-09-18 Univation Technologies, Llc Ligands tridentate à base d'azote pour catalyseurs de polymérisation d'oléfines
EP3287473A1 (fr) 2013-06-05 2018-02-28 Univation Technologies, LLC Protection de groupes phénol
WO2014197169A1 (fr) 2013-06-05 2014-12-11 Univation Technologies, Llc Protection de groupes phénol
EP3747913A1 (fr) 2014-04-02 2020-12-09 Univation Technologies, LLC Compositions de continuité et procédé de polymérisation d'oléfines l'utilisant
WO2015153082A1 (fr) 2014-04-02 2015-10-08 Univation Technologies, Llc Compositions de continuité et leurs procédés de fabrication et d'utilisation
WO2016028276A1 (fr) 2014-08-19 2016-02-25 Univation Technologies, Llc Supports catalytiques fluorés et systèmes catalytiques
WO2016028277A1 (fr) 2014-08-19 2016-02-25 Univation Technologies, Llc Supports de catalyseur fluoré et systèmes de catalyseur
WO2016028278A1 (fr) 2014-08-19 2016-02-25 Univation Technologies, Llc Supports de catalyseurs fluorés et systèmes de catalyseurs
WO2016145179A1 (fr) 2015-03-10 2016-09-15 Univation Technologies, Llc Compositions de catalyseur séchées par pulvérisation, procédés de préparation et d'utilisation dans des procédés de polymérisation d'oléfines
WO2016172097A1 (fr) 2015-04-20 2016-10-27 Univation Technologies, Llc Ligands bi-aromatiques pontés et catalyseurs de polymérisation d'oléfines préparés à partir de ceux-ci
WO2016172110A1 (fr) 2015-04-20 2016-10-27 Univation Technologies, Llc Ligands bi-aromatiques pontés et composés à base de métaux de transition préparés à partir de ceux-ci
WO2016176135A1 (fr) 2015-04-27 2016-11-03 Univation Technologies, Llc Compositions de catalyseur supporté aux propriétés de coulabilité améliorées et leur préparation
WO2016195824A1 (fr) 2015-05-29 2016-12-08 Exxonmobil Chemical Patents Inc. Procédé de polymérisation à l'aide de composés métallocènes pontés supportés sur des supports de silicate stratifiés traités par un organoaluminium
WO2016197037A1 (fr) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Système catalyteur comprenant des particules d'alumosane supportées et non supportées
WO2016196339A2 (fr) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Production de polymères hétérophasiques en phase gazeuse ou en suspension
EP3885373A1 (fr) 2015-06-05 2021-09-29 ExxonMobil Chemical Patents Inc. Production de polymères hétérophasiques en phase gazeuse ou en suspension
WO2016196334A1 (fr) 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. Production en réacteur unique de polymères en phase gazeuse ou en suspension
WO2017052847A1 (fr) 2015-09-24 2017-03-30 Exxonmobil Chemical Patents Inc. Procédé de polymérisation à l'aide de composés pyridyldiamido supportés sur des supports de silicate stratifié traité par un organoaluminium
US10723816B2 (en) 2015-09-30 2020-07-28 Dow Global Technologies Llc Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
WO2018064540A1 (fr) 2016-09-30 2018-04-05 Dow Global Technologies Llc Procédé de préparation de compositions à têtes multiples ou à deux têtes utiles pour le transfert de chaîne
WO2018064553A1 (fr) 2016-09-30 2018-04-05 Dow Global Technologies Llc Compositions à têtes doubles ou multiples utiles dans le transfert de chaîne et procédé pour leur préparation
EP4435013A2 (fr) 2016-09-30 2024-09-25 Dow Global Technologies LLC Procédé de préparation de compositions à têtes multiples ou doubles utiles pour le transfert de chaîne
WO2018064546A1 (fr) 2016-09-30 2018-04-05 Dow Global Technologies Llc Compositions à plusieurs têtes ou à deux têtes coiffées, utiles pour la polymérisation en chaîne par navette, et leur procédé de préparation
US11174329B2 (en) 2016-09-30 2021-11-16 Dow Global Technologies Llc Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
CN111902439A (zh) * 2018-03-30 2020-11-06 陶氏环球技术有限责任公司 双核烯烃聚合活化剂
WO2020140058A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Polyoléfines téléchéliques et procédé de préparation de celles-ci
WO2020140067A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Compositions durcissables comprenant des polyoléfines insaturées
WO2020140064A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Agents de transfert de chaîne organométallique
EP4234594A1 (fr) 2018-12-28 2023-08-30 Dow Global Technologies LLC Compositions durcissables comprenant des polyoléfines insaturées
WO2020140061A1 (fr) 2018-12-28 2020-07-02 Dow Global Technologies Llc Compositions durcissables comprenant des polyoléfines téléchéliques
CN112645973A (zh) * 2019-10-11 2021-04-13 浙江大学 一种改性烷基铝氧烷的可控制备方法
WO2021247244A2 (fr) 2020-06-03 2021-12-09 Exxonmobil Chemical Patents Inc. Procédé de production de vulcanisats thermoplastiques utilisant des systèmes catalyseurs supportés et compositions fabriquées à partir de ceux-ci
WO2022015367A1 (fr) 2020-07-17 2022-01-20 Dow Global Technologies Llc Co-catalyseurs de méthylaluminoxane modifiés par hydrocarbyle pour procatalyseurs à géométrie contrainte

Also Published As

Publication number Publication date
CA2302173A1 (fr) 1999-04-01
JP2001517714A (ja) 2001-10-09
TR200000688T2 (tr) 2000-08-21
EP1019415A1 (fr) 2000-07-19
PL339339A1 (en) 2000-12-18
HUP0004655A3 (en) 2003-05-28
NO20001405L (no) 2000-03-17
ID24920A (id) 2000-08-31
NO20001405D0 (no) 2000-03-17
CN1270595A (zh) 2000-10-18
AU9393498A (en) 1999-04-12
BR9812485A (pt) 2000-09-19
KR20010024121A (ko) 2001-03-26
HUP0004655A2 (hu) 2001-04-28

Similar Documents

Publication Publication Date Title
US6696379B1 (en) Supported modified alumoxane catalyst activator
US6214760B1 (en) Catalyst activator composition
EP1019415A1 (fr) Activateur modifie de catalyseur d'alumoxane
US6211111B1 (en) Activator composition comprising aluminum compound mixture
EP1115752B1 (fr) Supports catalytiques fonctionnalises et systemes catalyseurs sur supports
US6248914B1 (en) Metalloid salt catalyst/activators
US6528449B1 (en) Three coordinate aluminum catalyst activator composition
US6291614B1 (en) Dinuclear fluoroaryl aluminum alkyl complexes
EP1246854B1 (fr) Preparation de catalyseur de polymerisation et procede de polymerisation
US6673735B1 (en) Preparation of catalyst compositions
MXPA00002740A (en) Modified alumoxane catalyst activator
CZ2000981A3 (cs) Modifikovaný aluminoxanový aktivátor katalyzátoru, katalytický systém a způsob polymerace
MXPA01002794A (es) Soportes de catalizador funcionalizado y sistemas de catalizador soportado
WO2004048388A1 (fr) Sels triphenylcarbenium de complexes fluoroaryles du groupe 13

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98809281.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09485769

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998947065

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 93934/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2302173

Country of ref document: CA

Ref document number: 2302173

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000/00688

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2000 200000297

Country of ref document: RO

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2000 512839

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2000-981

Country of ref document: CZ

Ref document number: 1020007002877

Country of ref document: KR

Ref document number: PA/a/2000/002740

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1998947065

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2000-981

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1020007002877

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: PV2000-981

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 1998947065

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020007002877

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载