WO1999013943A1 - Ensemble a ultrasons destine a etre utilise avec des medicaments actives par la lumiere - Google Patents
Ensemble a ultrasons destine a etre utilise avec des medicaments actives par la lumiere Download PDFInfo
- Publication number
- WO1999013943A1 WO1999013943A1 PCT/US1998/019797 US9819797W WO9913943A1 WO 1999013943 A1 WO1999013943 A1 WO 1999013943A1 US 9819797 W US9819797 W US 9819797W WO 9913943 A1 WO9913943 A1 WO 9913943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light activated
- ultrasound
- tissue site
- catheter
- drag
- Prior art date
Links
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 317
- 239000003814 drug Substances 0.000 title claims abstract description 263
- 229940079593 drug Drugs 0.000 title claims abstract description 248
- 238000012384 transportation and delivery Methods 0.000 claims abstract description 114
- 238000000034 method Methods 0.000 claims abstract description 84
- 230000019432 tissue death Effects 0.000 claims abstract description 14
- 239000002502 liposome Substances 0.000 claims description 88
- 239000000839 emulsion Substances 0.000 claims description 58
- 108091034117 Oligonucleotide Proteins 0.000 claims description 42
- 230000001225 therapeutic effect Effects 0.000 claims description 37
- 206010028980 Neoplasm Diseases 0.000 claims description 27
- 230000002209 hydrophobic effect Effects 0.000 claims description 22
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 20
- 206010003210 Arteriosclerosis Diseases 0.000 claims description 18
- 208000037260 Atherosclerotic Plaque Diseases 0.000 claims description 18
- 230000004913 activation Effects 0.000 claims description 17
- 150000002678 macrocyclic compounds Chemical class 0.000 claims description 14
- 230000003213 activating effect Effects 0.000 claims description 13
- 150000004032 porphyrins Chemical class 0.000 claims description 10
- 150000004036 bacteriochlorins Chemical class 0.000 claims description 5
- 150000004035 chlorins Chemical class 0.000 claims description 5
- 230000035515 penetration Effects 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 210000004204 blood vessel Anatomy 0.000 claims 3
- 210000001519 tissue Anatomy 0.000 description 163
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 115
- 239000000203 mixture Substances 0.000 description 67
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 62
- 239000000243 solution Substances 0.000 description 52
- 230000015572 biosynthetic process Effects 0.000 description 46
- 150000002632 lipids Chemical class 0.000 description 41
- 238000003786 synthesis reaction Methods 0.000 description 40
- 239000003921 oil Substances 0.000 description 32
- 235000019198 oils Nutrition 0.000 description 32
- 230000002829 reductive effect Effects 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 229940067631 phospholipid Drugs 0.000 description 30
- 239000007787 solid Substances 0.000 description 30
- -1 bleomycin Proteins 0.000 description 29
- 239000000725 suspension Substances 0.000 description 28
- 108020004414 DNA Proteins 0.000 description 27
- 125000000217 alkyl group Chemical group 0.000 description 26
- 150000003904 phospholipids Chemical class 0.000 description 26
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 24
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 description 24
- 239000012528 membrane Substances 0.000 description 24
- 235000019441 ethanol Nutrition 0.000 description 22
- 239000002245 particle Substances 0.000 description 20
- 239000002904 solvent Substances 0.000 description 20
- 210000005166 vasculature Anatomy 0.000 description 20
- 229910001868 water Inorganic materials 0.000 description 20
- 239000012071 phase Substances 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 17
- 238000010992 reflux Methods 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 150000001720 carbohydrates Chemical class 0.000 description 16
- 239000010408 film Substances 0.000 description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 230000036571 hydration Effects 0.000 description 15
- 238000006703 hydration reaction Methods 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 14
- 150000002148 esters Chemical class 0.000 description 14
- 239000012530 fluid Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 13
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 150000002016 disaccharides Chemical class 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 12
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 12
- 239000008101 lactose Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 11
- 150000004804 polysaccharides Chemical class 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- GGSGPPFRVNQBCV-UHFFFAOYSA-N 2,5-bis(1h-pyrrol-2-ylmethyl)-1h-pyrrole Chemical compound C=1C=C(CC=2NC=CC=2)NC=1CC1=CC=CN1 GGSGPPFRVNQBCV-UHFFFAOYSA-N 0.000 description 10
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 229920001282 polysaccharide Polymers 0.000 description 10
- 239000005017 polysaccharide Substances 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 229910019142 PO4 Inorganic materials 0.000 description 9
- 229910021536 Zeolite Inorganic materials 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 235000021317 phosphate Nutrition 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- 235000000346 sugar Nutrition 0.000 description 9
- 239000010457 zeolite Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 239000000232 Lipid Bilayer Substances 0.000 description 8
- 150000001408 amides Chemical class 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- 125000003636 chemical group Chemical group 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- 229940088597 hormone Drugs 0.000 description 8
- 239000005556 hormone Substances 0.000 description 8
- 150000004702 methyl esters Chemical class 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 229910052688 Gadolinium Inorganic materials 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 238000002428 photodynamic therapy Methods 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 150000003254 radicals Chemical class 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 238000013019 agitation Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- 235000006708 antioxidants Nutrition 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 150000004696 coordination complex Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000007951 isotonicity adjuster Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 208000037803 restenosis Diseases 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- 238000007910 systemic administration Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 5
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical class CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 5
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 5
- 229960000583 acetic acid Drugs 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 230000000712 assembly Effects 0.000 description 5
- 238000000429 assembly Methods 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 125000004181 carboxyalkyl group Chemical group 0.000 description 5
- 229940099352 cholate Drugs 0.000 description 5
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 5
- 229960004316 cisplatin Drugs 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 5
- 229960005309 estradiol Drugs 0.000 description 5
- 229930182833 estradiol Natural products 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 125000005113 hydroxyalkoxy group Chemical group 0.000 description 5
- 230000004807 localization Effects 0.000 description 5
- 238000003760 magnetic stirring Methods 0.000 description 5
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229940002612 prodrug Drugs 0.000 description 5
- 239000000651 prodrug Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 5
- 238000011146 sterile filtration Methods 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 4
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 4
- 239000004380 Cholic acid Substances 0.000 description 4
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 102000000588 Interleukin-2 Human genes 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 108090000190 Thrombin Proteins 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229960002471 cholic acid Drugs 0.000 description 4
- 235000019416 cholic acid Nutrition 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 4
- PBTPREHATAFBEN-UHFFFAOYSA-N dipyrromethane Chemical compound C=1C=CNC=1CC1=CC=CN1 PBTPREHATAFBEN-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 235000013601 eggs Nutrition 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 4
- 125000005647 linker group Chemical group 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 229960004961 mechlorethamine Drugs 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 229940109328 photofrin Drugs 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000008223 sterile water Substances 0.000 description 4
- 150000003511 tertiary amides Chemical class 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 229960004072 thrombin Drugs 0.000 description 4
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 4
- 229960002555 zidovudine Drugs 0.000 description 4
- HSINOMROUCMIEA-FGVHQWLLSA-N (2s,4r)-4-[(3r,5s,6r,7r,8s,9s,10s,13r,14s,17r)-6-ethyl-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylpentanoic acid Chemical class C([C@@]12C)C[C@@H](O)C[C@H]1[C@@H](CC)[C@@H](O)[C@@H]1[C@@H]2CC[C@]2(C)[C@@H]([C@H](C)C[C@H](C)C(O)=O)CC[C@H]21 HSINOMROUCMIEA-FGVHQWLLSA-N 0.000 description 3
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 3
- 0 *OC(C=CC1N)=CC1[N+]([O-])=O Chemical compound *OC(C=CC1N)=CC1[N+]([O-])=O 0.000 description 3
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2,2'-azo-bis-isobutyronitrile Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 108010024976 Asparaginase Proteins 0.000 description 3
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 3
- 108010006654 Bleomycin Proteins 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 108010092160 Dactinomycin Proteins 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical class NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 3
- 229960001138 acetylsalicylic acid Drugs 0.000 description 3
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 3
- PYMYPHUHKUWMLA-LMVFSUKVSA-N aldehydo-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 229940087168 alpha tocopherol Drugs 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 3
- 238000002399 angioplasty Methods 0.000 description 3
- 239000003957 anion exchange resin Substances 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229920001429 chelating resin Polymers 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229960000640 dactinomycin Drugs 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical group O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 3
- 230000003204 osmotic effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000010951 particle size reduction Methods 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 3
- 150000008298 phosphoramidates Chemical class 0.000 description 3
- 150000008300 phosphoramidites Chemical class 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229960003604 testosterone Drugs 0.000 description 3
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 3
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 3
- 229960000984 tocofersolan Drugs 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 229960003636 vidarabine Drugs 0.000 description 3
- 239000008215 water for injection Substances 0.000 description 3
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 3
- 235000004835 α-tocopherol Nutrition 0.000 description 3
- 239000002076 α-tocopherol Substances 0.000 description 3
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- NNRXCKZMQLFUPL-WBMZRJHASA-N (3r,4s,5s,6r,7r,9r,11r,12r,13s,14r)-6-[(2s,3r,4s,6r)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-14-ethyl-7,12,13-trihydroxy-4-[(2r,4r,5s,6s)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-3,5,7,9,11,13-hexamethyl-oxacyclotetradecane-2,10-dione;(2r,3 Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O.O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 NNRXCKZMQLFUPL-WBMZRJHASA-N 0.000 description 2
- ZIBIRFWJYSIJIK-UHFFFAOYSA-N 1,2-bis[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]benzene Chemical compound COCCOCCOCCOC1=CC=CC=C1OCCOCCOCCOC ZIBIRFWJYSIJIK-UHFFFAOYSA-N 0.000 description 2
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 2
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- WDJUZGPOPHTGOT-OAXVISGBSA-N Digitoxin Natural products O([C@H]1[C@@H](C)O[C@@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@@](C)([C@H](C6=CC(=O)OC6)CC5)CC4)CC3)CC2)C[C@H]1O)[C@H]1O[C@@H](C)[C@H](O[C@H]2O[C@@H](C)[C@@H](O)[C@@H](O)C2)[C@@H](O)C1 WDJUZGPOPHTGOT-OAXVISGBSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 208000031886 HIV Infections Diseases 0.000 description 2
- 208000037357 HIV infectious disease Diseases 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- 229930192392 Mitomycin Natural products 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- VYGQUTWHTHXGQB-FFHKNEKCSA-N Retinol Palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C VYGQUTWHTHXGQB-FFHKNEKCSA-N 0.000 description 2
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- DJTZIDSZSYWGKR-UHFFFAOYSA-N acetic acid tetrahydrate Chemical compound O.O.O.O.CC(O)=O DJTZIDSZSYWGKR-UHFFFAOYSA-N 0.000 description 2
- 229960004150 aciclovir Drugs 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 2
- 229960003805 amantadine Drugs 0.000 description 2
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 2
- VIROVYVQCGLCII-UHFFFAOYSA-N amobarbital Chemical compound CC(C)CCC1(CC)C(=O)NC(=O)NC1=O VIROVYVQCGLCII-UHFFFAOYSA-N 0.000 description 2
- 229960003942 amphotericin b Drugs 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 230000002365 anti-tubercular Effects 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 229940034982 antineoplastic agent Drugs 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 125000000089 arabinosyl group Chemical group C1([C@@H](O)[C@H](O)[C@H](O)CO1)* 0.000 description 2
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 2
- 229960003272 asparaginase Drugs 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 2
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 239000003613 bile acid Substances 0.000 description 2
- 239000003833 bile salt Substances 0.000 description 2
- 229940093761 bile salts Drugs 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229940097217 cardiac glycoside Drugs 0.000 description 2
- 239000002368 cardiac glycoside Substances 0.000 description 2
- 210000000748 cardiovascular system Anatomy 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- JQXXHWHPUNPDRT-BQVAUQFYSA-N chembl1523493 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2C=NN1CCN(C)CC1 JQXXHWHPUNPDRT-BQVAUQFYSA-N 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 229960002227 clindamycin Drugs 0.000 description 2
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000002577 cryoprotective agent Substances 0.000 description 2
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 2
- QMNFFXRFOJIOKZ-UHFFFAOYSA-N cycloguanil Chemical compound CC1(C)N=C(N)N=C(N)N1C1=CC=C(Cl)C=C1 QMNFFXRFOJIOKZ-UHFFFAOYSA-N 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 229960005160 dimyristoylphosphatidylglycerol Drugs 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- BPHQZTVXXXJVHI-AJQTZOPKSA-N ditetradecanoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCCCCCCCC BPHQZTVXXXJVHI-AJQTZOPKSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 229940098008 erythrocin Drugs 0.000 description 2
- 229960003276 erythromycin Drugs 0.000 description 2
- ISVXIZFUEUVXPG-UHFFFAOYSA-N etiopurpurin Chemical compound CC1C2(CC)C(C(=O)OCC)=CC(C3=NC(C(=C3C)CC)=C3)=C2N=C1C=C(N1)C(CC)=C(C)C1=CC1=C(CC)C(C)=C3N1 ISVXIZFUEUVXPG-UHFFFAOYSA-N 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 229960003711 glyceryl trinitrate Drugs 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 2
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 2
- 229960000890 hydrocortisone Drugs 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000013554 lipid monolayer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- KLUYKAPZRJJIKT-UHFFFAOYSA-N lutetium Chemical compound [Lu][Lu] KLUYKAPZRJJIKT-UHFFFAOYSA-N 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 2
- 229960004584 methylprednisolone Drugs 0.000 description 2
- 229960000282 metronidazole Drugs 0.000 description 2
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 229960000350 mitotane Drugs 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 229960005181 morphine Drugs 0.000 description 2
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 2
- 239000007764 o/w emulsion Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 229940038597 peroxide anti-acne preparations for topical use Drugs 0.000 description 2
- DQDAYGNAKTZFIW-UHFFFAOYSA-N phenprocoumon Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC)C1=CC=CC=C1 DQDAYGNAKTZFIW-UHFFFAOYSA-N 0.000 description 2
- 229960004923 phenprocoumon Drugs 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 150000008103 phosphatidic acids Chemical class 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 229940043267 rhodamine b Drugs 0.000 description 2
- 229960000329 ribavirin Drugs 0.000 description 2
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- 150000003334 secondary amides Chemical class 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- RMLUKZWYIKEASN-UHFFFAOYSA-M sodium;2-amino-9-(2-hydroxyethoxymethyl)purin-6-olate Chemical compound [Na+].O=C1[N-]C(N)=NC2=C1N=CN2COCCO RMLUKZWYIKEASN-UHFFFAOYSA-M 0.000 description 2
- 229930002534 steroid glycoside Natural products 0.000 description 2
- 150000008143 steroidal glycosides Chemical class 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229940120904 succinylcholine chloride Drugs 0.000 description 2
- YOEWQQVKRJEPAE-UHFFFAOYSA-L succinylcholine chloride (anhydrous) Chemical compound [Cl-].[Cl-].C[N+](C)(C)CCOC(=O)CCC(=O)OCC[N+](C)(C)C YOEWQQVKRJEPAE-UHFFFAOYSA-L 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- MOBOUQJWGBVNCR-NQYJQULFSA-N sulfazecin Chemical compound OC(=O)[C@H](N)CCC(=O)N[C@H](C)C(=O)N[C@@]1(OC)CN(S(O)(=O)=O)C1=O MOBOUQJWGBVNCR-NQYJQULFSA-N 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 238000012385 systemic delivery Methods 0.000 description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 125000003396 thiol group Chemical class [H]S* 0.000 description 2
- MHMRAFONCSQAIA-UHFFFAOYSA-N thiolutin Chemical compound S1SC=C2N(C)C(=O)C(NC(=O)C)=C21 MHMRAFONCSQAIA-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 150000005691 triesters Chemical class 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- GXFZCDMWGMFGFL-KKXMJGKMSA-N (+)-Tubocurarine chloride hydrochloride Chemical compound [Cl-].[Cl-].C([C@H]1[N+](C)(C)CCC=2C=C(C(=C(OC3=CC=C(C=C3)C[C@H]3C=4C=C(C(=CC=4CC[NH+]3C)OC)O3)C=21)O)OC)C1=CC=C(O)C3=C1 GXFZCDMWGMFGFL-KKXMJGKMSA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- XUOYYDPTDPDINR-UHFFFAOYSA-N (3-ethyl-1h-pyrrol-2-yl) acetate Chemical compound CCC=1C=CNC=1OC(C)=O XUOYYDPTDPDINR-UHFFFAOYSA-N 0.000 description 1
- WRRSFOZOETZUPG-FFHNEAJVSA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;hydrate Chemical compound O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC WRRSFOZOETZUPG-FFHNEAJVSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- MXOAEAUPQDYUQM-QMMMGPOBSA-N (S)-chlorphenesin Chemical compound OC[C@H](O)COC1=CC=C(Cl)C=C1 MXOAEAUPQDYUQM-QMMMGPOBSA-N 0.000 description 1
- ZEHYJZXQEQOSON-AATRIKPKSA-N (e)-1-chloro-3-ethylpent-1-en-4-yn-3-ol Chemical compound CCC(O)(C#C)\C=C\Cl ZEHYJZXQEQOSON-AATRIKPKSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- UAGTWDQQWBGJCI-UHFFFAOYSA-N 1h-pyrrol-2-yl acetate Chemical compound CC(=O)OC1=CC=CN1 UAGTWDQQWBGJCI-UHFFFAOYSA-N 0.000 description 1
- WEEMDRWIKYCTQM-UHFFFAOYSA-N 2,6-dimethoxybenzenecarbothioamide Chemical compound COC1=CC=CC(OC)=C1C(N)=S WEEMDRWIKYCTQM-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-UHFFFAOYSA-N 2-(hydroxymethyl)-6-[4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxane-3,4,5-triol Chemical compound OCC1OC(OC2C(O)C(O)C(O)OC2CO)C(O)C(O)C1O GUBGYTABKSRVRQ-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- IUDNRKGPFWUYIC-UHFFFAOYSA-N 2-[2-(2-methoxyethoxy)ethoxy]ethyl 4-methylbenzenesulfonate Chemical compound COCCOCCOCCOS(=O)(=O)C1=CC=C(C)C=C1 IUDNRKGPFWUYIC-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- DQHSFNAHHRSSRY-UHFFFAOYSA-M 2-ethyl-2-iodobutanoate Chemical compound CCC(I)(CC)C([O-])=O DQHSFNAHHRSSRY-UHFFFAOYSA-M 0.000 description 1
- UXWAJSLYHVAVKJ-UHFFFAOYSA-N 2-hydrazinyl-2-oxoacetic acid Chemical compound NNC(=O)C(O)=O UXWAJSLYHVAVKJ-UHFFFAOYSA-N 0.000 description 1
- YZEUHQHUFTYLPH-UHFFFAOYSA-N 2-nitroimidazole Chemical compound [O-][N+](=O)C1=NC=CN1 YZEUHQHUFTYLPH-UHFFFAOYSA-N 0.000 description 1
- MHIITNFQDPFSES-UHFFFAOYSA-N 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical class N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 MHIITNFQDPFSES-UHFFFAOYSA-N 0.000 description 1
- TUATYNXRYJTQTQ-BVRBKCERSA-N 3,6-diamino-n-[[(2s,5s,8z,11s,15s)-15-amino-11-(2-amino-1,4,5,6-tetrahydropyrimidin-6-yl)-8-[(carbamoylamino)methylidene]-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-1,4,7,10,13-pentazacyclohexadec-5-yl]methyl]hexanamide;3,6-diamino-n-[[(2s,5s,8z,11s,15s)-15-a Chemical compound OS(O)(=O)=O.OS(O)(=O)=O.N1C(=O)\C(=C\NC(N)=O)NC(=O)[C@H](CNC(=O)CC(N)CCCN)NC(=O)[C@H](C)NC(=O)[C@@H](N)CNC(=O)[C@@H]1C1NC(=N)NCC1.N1C(=O)\C(=C\NC(N)=O)NC(=O)[C@H](CNC(=O)CC(N)CCCN)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CNC(=O)[C@@H]1C1NC(=N)NCC1 TUATYNXRYJTQTQ-BVRBKCERSA-N 0.000 description 1
- WUIABRMSWOKTOF-OYALTWQYSA-N 3-[[2-[2-[2-[[(2s,3r)-2-[[(2s,3s,4r)-4-[[(2s,3r)-2-[[6-amino-2-[(1s)-3-amino-1-[[(2s)-2,3-diamino-3-oxopropyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[(2r,3s,4s,5s,6s)-3-[(2r,3s,4s,5r,6r)-4-carbamoyloxy-3,5-dihydroxy-6-(hydroxymethyl)ox Chemical compound OS([O-])(=O)=O.N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C WUIABRMSWOKTOF-OYALTWQYSA-N 0.000 description 1
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- UPXRTVAIJMUAQR-UHFFFAOYSA-N 4-(9h-fluoren-9-ylmethoxycarbonylamino)-1-[(2-methylpropan-2-yl)oxycarbonyl]pyrrolidine-2-carboxylic acid Chemical compound C1C(C(O)=O)N(C(=O)OC(C)(C)C)CC1NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 UPXRTVAIJMUAQR-UHFFFAOYSA-N 0.000 description 1
- IQXUIDYRTHQTET-UHFFFAOYSA-N 4-amino-3-nitrophenol Chemical compound NC1=CC=C(O)C=C1[N+]([O-])=O IQXUIDYRTHQTET-UHFFFAOYSA-N 0.000 description 1
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 1
- QTQGHKVYLQBJLO-UHFFFAOYSA-N 4-methylbenzenesulfonate;(4-methyl-1-oxo-1-phenylmethoxypentan-2-yl)azanium Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1.CC(C)CC(N)C(=O)OCC1=CC=CC=C1 QTQGHKVYLQBJLO-UHFFFAOYSA-N 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- OOOQNKMJLOLMHC-UHFFFAOYSA-N 5-[[3,4-diethyl-5-[[5-formyl-3-(3-hydroxypropyl)-4-methyl-1h-pyrrol-2-yl]methyl]-1h-pyrrol-2-yl]methyl]-4-(3-hydroxypropyl)-3-methyl-1h-pyrrole-2-carbaldehyde Chemical compound N1C(CC2=C(C(C)=C(C=O)N2)CCCO)=C(CC)C(CC)=C1CC=1NC(C=O)=C(C)C=1CCCO OOOQNKMJLOLMHC-UHFFFAOYSA-N 0.000 description 1
- 108091027075 5S-rRNA precursor Proteins 0.000 description 1
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 description 1
- PVXPPJIGRGXGCY-DJHAAKORSA-N 6-O-alpha-D-glucopyranosyl-alpha-D-fructofuranose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@](O)(CO)O1 PVXPPJIGRGXGCY-DJHAAKORSA-N 0.000 description 1
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical class O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical group CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000036832 Adenocarcinoma of ovary Diseases 0.000 description 1
- 102100036664 Adenosine deaminase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 239000004156 Azodicarbonamide Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KUVIULQEHSCUHY-XYWKZLDCSA-N Beclometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O KUVIULQEHSCUHY-XYWKZLDCSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- QORQZMBCPRBCAB-UHFFFAOYSA-M Butabarbital sodium Chemical compound [Na+].CCC(C)C1(CC)C(=O)NC([O-])=NC1=O QORQZMBCPRBCAB-UHFFFAOYSA-M 0.000 description 1
- OUYHCIQVFPMXJB-KROWQJINSA-N CCc1c(Cc2c(CCCO)c(C)c(C=N)[nH]2)[nH]c(Cc2c(CCCO)c(C)c(/C=N/c(cc3)c(C)cc3OC)[nH]2)c1CC Chemical compound CCc1c(Cc2c(CCCO)c(C)c(C=N)[nH]2)[nH]c(Cc2c(CCCO)c(C)c(/C=N/c(cc3)c(C)cc3OC)[nH]2)c1CC OUYHCIQVFPMXJB-KROWQJINSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108010065839 Capreomycin Proteins 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 229940123150 Chelating agent Drugs 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- OPHYOSQDKQYDCM-UHFFFAOYSA-N Convallatoxin Natural products CC1OC(OC2CCC3(C=O)C4CCC5(C)C(CCC5(O)C4CCC3(O)C2)C6=CCC(=O)O6)C(O)C(O)C1O OPHYOSQDKQYDCM-UHFFFAOYSA-N 0.000 description 1
- ITRJWOMZKQRYTA-RFZYENFJSA-N Cortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)CC2=O ITRJWOMZKQRYTA-RFZYENFJSA-N 0.000 description 1
- 108010036941 Cyclosporins Proteins 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-Fructose Natural products OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- QFVAWNPSRQWSDU-UHFFFAOYSA-N Dibenzthion Chemical compound C1N(CC=2C=CC=CC=2)C(=S)SCN1CC1=CC=CC=C1 QFVAWNPSRQWSDU-UHFFFAOYSA-N 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- CKNOLMVLQUPVMU-XOMFLMSUSA-N Digitalin Natural products O(C)[C@H]1[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@@](C)([C@@H]([C@H](O)C5)C5=CC(=O)OC5)CC4)CC3)CC2)[C@@H]1O CKNOLMVLQUPVMU-XOMFLMSUSA-N 0.000 description 1
- 240000001879 Digitalis lutea Species 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- ASXBYYWOLISCLQ-UHFFFAOYSA-N Dihydrostreptomycin Natural products O1C(CO)C(O)C(O)C(NC)C1OC1C(CO)(O)C(C)OC1OC1C(N=C(N)N)C(O)C(N=C(N)N)C(O)C1O ASXBYYWOLISCLQ-UHFFFAOYSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 229940123907 Disease modifying antirheumatic drug Drugs 0.000 description 1
- MWWSFMDVAYGXBV-RUELKSSGSA-N Doxorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-RUELKSSGSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LMWQQUMMGGIGJQ-UHFFFAOYSA-N Etidocaine hydrochloride Chemical compound [Cl-].CCC[NH+](CC)C(CC)C(=O)NC1=C(C)C=CC=C1C LMWQQUMMGGIGJQ-UHFFFAOYSA-N 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- ZIIJJOPLRSCQNX-UHFFFAOYSA-N Flurazepam hydrochloride Chemical compound Cl.Cl.N=1CC(=O)N(CCN(CC)CC)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1F ZIIJJOPLRSCQNX-UHFFFAOYSA-N 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- JMBQKKAJIKAWKF-UHFFFAOYSA-N Glutethimide Chemical compound C=1C=CC=CC=1C1(CC)CCC(=O)NC1=O JMBQKKAJIKAWKF-UHFFFAOYSA-N 0.000 description 1
- 108010007979 Glycocholic Acid Proteins 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 108010091938 HLA-B7 Antigen Proteins 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- DLVOSEUFIRPIRM-KAQKJVHQSA-N Hydrocortisone cypionate Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(CCC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCC1CCCC1 DLVOSEUFIRPIRM-KAQKJVHQSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010079944 Interferon-alpha2b Proteins 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 229910021576 Iron(III) bromide Inorganic materials 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- KJURKGLESSCVCL-UHFFFAOYSA-N Isosulfazecin Natural products COC1(CN(C1=O)S(=O)(=O)O)NC(=O)C(N)CC(=O)CCC(N)C(=O)O KJURKGLESSCVCL-UHFFFAOYSA-N 0.000 description 1
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- SRBFZHDQGSBBOR-OWMBCFKOSA-N L-ribopyranose Chemical compound O[C@H]1COC(O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-OWMBCFKOSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- ODLGFPIWRAEFAN-PFEQFJNWSA-N Levomepromazine hydrochloride Chemical compound Cl.C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1 ODLGFPIWRAEFAN-PFEQFJNWSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 1
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- SIDLZWOQUZRBRU-UHFFFAOYSA-N Methyprylon Chemical compound CCC1(CC)C(=O)NCC(C)C1=O SIDLZWOQUZRBRU-UHFFFAOYSA-N 0.000 description 1
- DIGFQJFCDPKEPF-OIUSMDOTSA-L Metocurine iodide Chemical compound [I-].[I-].C1([C@@H]([N+](CCC1=CC=1OC)(C)C)CC2=CC=C(C=C2)O2)=CC=1OC(=C1)C(OC)=CC=C1C[C@H]1[N+](C)(C)CCC3=C1C2=C(OC)C(OC)=C3 DIGFQJFCDPKEPF-OIUSMDOTSA-L 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 150000008269 N-acetylglucosaminides Chemical class 0.000 description 1
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- FUHWLCARJFJYFM-UHFFFAOYSA-L O.O.O.O.[Gd+2].CC([O-])=O.CC([O-])=O Chemical compound O.O.O.O.[Gd+2].CC([O-])=O.CC([O-])=O FUHWLCARJFJYFM-UHFFFAOYSA-L 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 239000008896 Opium Substances 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- HYRKAAMZBDSJFJ-LFDBJOOHSA-N Paramethasone acetate Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)COC(C)=O)(O)[C@@]2(C)C[C@@H]1O HYRKAAMZBDSJFJ-LFDBJOOHSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 229930195708 Penicillin V Natural products 0.000 description 1
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 1
- 239000000026 Pentaerythritol tetranitrate Substances 0.000 description 1
- QGMRQYFBGABWDR-UHFFFAOYSA-M Pentobarbital sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)[N-]C1=O QGMRQYFBGABWDR-UHFFFAOYSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- LRJOMUJRLNCICJ-JZYPGELDSA-N Prednisolone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O LRJOMUJRLNCICJ-JZYPGELDSA-N 0.000 description 1
- HCBIBCJNVBAKAB-UHFFFAOYSA-N Procaine hydrochloride Chemical compound Cl.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 HCBIBCJNVBAKAB-UHFFFAOYSA-N 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 208000009642 Severe combined immunodeficiency due to adenosine deaminase deficiency Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 244000258044 Solanum gilo Species 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- CPFNIKYEDJFRAT-UHFFFAOYSA-N Strospasid Natural products OC1C(OC)C(O)C(C)OC1OC1CC(CCC2C3(CC(O)C(C3(C)CCC32)C=2COC(=O)C=2)O)C3(C)CC1 CPFNIKYEDJFRAT-UHFFFAOYSA-N 0.000 description 1
- FHNINJWBTRXEBC-UHFFFAOYSA-N Sudan III Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 FHNINJWBTRXEBC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 1
- PPWHTZKZQNXVAE-UHFFFAOYSA-N Tetracaine hydrochloride Chemical compound Cl.CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 PPWHTZKZQNXVAE-UHFFFAOYSA-N 0.000 description 1
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 1
- 239000005843 Thiram Substances 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- XGMPVBXKDAHORN-RBWIMXSLSA-N Triamcinolone diacetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](OC(C)=O)[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O XGMPVBXKDAHORN-RBWIMXSLSA-N 0.000 description 1
- TZIZWYVVGLXXFV-FLRHRWPCSA-N Triamcinolone hexacetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)COC(=O)CC(C)(C)C)[C@@]1(C)C[C@@H]2O TZIZWYVVGLXXFV-FLRHRWPCSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- CKNOLMVLQUPVMU-UHFFFAOYSA-N UNPD183315 Natural products O1C(C)C(OC2C(C(O)C(O)C(CO)O2)O)C(OC)C(O)C1OC(C1)CCC2(C)C1CCC(C1(CC3O)O)C2CCC1(C)C3C1=CC(=O)OC1 CKNOLMVLQUPVMU-UHFFFAOYSA-N 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- PVNFMCBFDPTNQI-UIBOPQHZSA-N [(1S,2R,5S,6S,16E,18E,20R,21S)-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaen-6-yl] acetate [(1S,2R,5S,6S,16E,18E,20R,21S)-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaen-6-yl] 3-methylbutanoate [(1S,2R,5S,6S,16E,18E,20R,21S)-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaen-6-yl] 2-methylpropanoate [(1S,2R,5S,6S,16E,18E,20R,21S)-11-chloro-21-hydroxy-12,20-dimethoxy-2,5,9,16-tetramethyl-8,23-dioxo-4,24-dioxa-9,22-diazatetracyclo[19.3.1.110,14.03,5]hexacosa-10,12,14(26),16,18-pentaen-6-yl] propanoate Chemical compound CO[C@@H]1\C=C\C=C(C)\Cc2cc(OC)c(Cl)c(c2)N(C)C(=O)C[C@H](OC(C)=O)[C@]2(C)OC2[C@H](C)[C@@H]2C[C@@]1(O)NC(=O)O2.CCC(=O)O[C@H]1CC(=O)N(C)c2cc(C\C(C)=C\C=C\[C@@H](OC)[C@@]3(O)C[C@H](OC(=O)N3)[C@@H](C)C3O[C@@]13C)cc(OC)c2Cl.CO[C@@H]1\C=C\C=C(C)\Cc2cc(OC)c(Cl)c(c2)N(C)C(=O)C[C@H](OC(=O)C(C)C)[C@]2(C)OC2[C@H](C)[C@@H]2C[C@@]1(O)NC(=O)O2.CO[C@@H]1\C=C\C=C(C)\Cc2cc(OC)c(Cl)c(c2)N(C)C(=O)C[C@H](OC(=O)CC(C)C)[C@]2(C)OC2[C@H](C)[C@@H]2C[C@@]1(O)NC(=O)O2 PVNFMCBFDPTNQI-UIBOPQHZSA-N 0.000 description 1
- JLPULHDHAOZNQI-JLOPVYAASA-N [(2r)-3-hexadecanoyloxy-2-[(9e,12e)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC JLPULHDHAOZNQI-JLOPVYAASA-N 0.000 description 1
- KMLCRELJHYKIIL-UHFFFAOYSA-N [1-(azanidylmethyl)cyclohexyl]methylazanide;platinum(2+);sulfuric acid Chemical compound [Pt+2].OS(O)(=O)=O.[NH-]CC1(C[NH-])CCCCC1 KMLCRELJHYKIIL-UHFFFAOYSA-N 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- DPHFJXVKASDMBW-RQRKFSSASA-N [2-[(8s,9r,10s,11s,13s,14s,16r,17r)-9-fluoro-11,17-dihydroxy-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl]-2-oxoethyl] acetate;hydrate Chemical compound O.C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COC(C)=O)(O)[C@@]1(C)C[C@@H]2O DPHFJXVKASDMBW-RQRKFSSASA-N 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- NCCSUEHAADMAOX-UHFFFAOYSA-L [Lu+3].CC([O-])=O.CC([O-])=O Chemical compound [Lu+3].CC([O-])=O.CC([O-])=O NCCSUEHAADMAOX-UHFFFAOYSA-L 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- SGUNVWYOVKSWCD-UHFFFAOYSA-N acetic acid pentahydrate Chemical compound O.O.O.O.O.C(C)(=O)O SGUNVWYOVKSWCD-UHFFFAOYSA-N 0.000 description 1
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000005303 alkyl halide derivatives Chemical class 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- PECIYKGSSMCNHN-UHFFFAOYSA-N aminophylline Chemical compound NCCN.O=C1N(C)C(=O)N(C)C2=NC=N[C]21.O=C1N(C)C(=O)N(C)C2=NC=N[C]21 PECIYKGSSMCNHN-UHFFFAOYSA-N 0.000 description 1
- 229960003556 aminophylline Drugs 0.000 description 1
- 229960004909 aminosalicylic acid Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229960001301 amobarbital Drugs 0.000 description 1
- 229960005143 amobarbital sodium Drugs 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 230000000507 anthelmentic effect Effects 0.000 description 1
- 239000000921 anthelmintic agent Substances 0.000 description 1
- 230000003257 anti-anginal effect Effects 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000000884 anti-protozoa Effects 0.000 description 1
- 230000003356 anti-rheumatic effect Effects 0.000 description 1
- 230000001147 anti-toxic effect Effects 0.000 description 1
- 230000002303 anti-venom Effects 0.000 description 1
- 239000000043 antiallergic agent Substances 0.000 description 1
- 229940124345 antianginal agent Drugs 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003435 antirheumatic agent Substances 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 229940027989 antiseptic and disinfectant iodine product Drugs 0.000 description 1
- 239000003200 antithyroid agent Substances 0.000 description 1
- 229940043671 antithyroid preparations Drugs 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- UORJNBVJVRLXMQ-UHFFFAOYSA-N aprobarbital Chemical compound C=CCC1(C(C)C)C(=O)NC(=O)NC1=O UORJNBVJVRLXMQ-UHFFFAOYSA-N 0.000 description 1
- 229960003153 aprobarbital Drugs 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- OIRDTQYFTABQOQ-UHFFFAOYSA-N ara-adenosine Natural products Nc1ncnc2n(cnc12)C1OC(CO)C(O)C1O OIRDTQYFTABQOQ-UHFFFAOYSA-N 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 125000003289 ascorbyl group Chemical group [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 229960002945 atracurium besylate Drugs 0.000 description 1
- XXZSQOVSEBAPGS-UHFFFAOYSA-L atracurium besylate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1.[O-]S(=O)(=O)C1=CC=CC=C1.C1=C(OC)C(OC)=CC=C1CC1[N+](CCC(=O)OCCCCCOC(=O)CC[N+]2(C)C(C3=CC(OC)=C(OC)C=C3CC2)CC=2C=C(OC)C(OC)=CC=2)(C)CCC2=CC(OC)=C(OC)C=C21 XXZSQOVSEBAPGS-UHFFFAOYSA-L 0.000 description 1
- 208000036556 autosomal recessive T cell-negative B cell-negative NK cell-negative due to adenosine deaminase deficiency severe combined immunodeficiency Diseases 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 description 1
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- IIOPLILENRZKRV-UHFFFAOYSA-N azosemide Chemical compound C=1C=CSC=1CNC=1C=C(Cl)C(S(=O)(=O)N)=CC=1C1=NN=N[N]1 IIOPLILENRZKRV-UHFFFAOYSA-N 0.000 description 1
- 229960004988 azosemide Drugs 0.000 description 1
- GAUZCKBSTZFWCT-UHFFFAOYSA-N azoxybenzene Chemical compound C=1C=CC=CC=1[N+]([O-])=NC1=CC=CC=C1 GAUZCKBSTZFWCT-UHFFFAOYSA-N 0.000 description 1
- 229960003644 aztreonam Drugs 0.000 description 1
- PFOLLRNADZZWEX-FFGRCDKISA-N bacampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)[C@H](C(S3)(C)C)C(=O)OC(C)OC(=O)OCC)=CC=CC=C1 PFOLLRNADZZWEX-FFGRCDKISA-N 0.000 description 1
- 229960002699 bacampicillin Drugs 0.000 description 1
- 229960001212 bacterial vaccine Drugs 0.000 description 1
- 229950000210 beclometasone dipropionate Drugs 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960003328 benzoyl peroxide Drugs 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- MMIMIFULGMZVPO-UHFFFAOYSA-N benzyl 3-bromo-2,6-dinitro-5-phenylmethoxybenzoate Chemical compound [O-][N+](=O)C1=C(C(=O)OCC=2C=CC=CC=2)C([N+](=O)[O-])=C(Br)C=C1OCC1=CC=CC=C1 MMIMIFULGMZVPO-UHFFFAOYSA-N 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 239000003012 bilayer membrane Substances 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229960004395 bleomycin sulfate Drugs 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000021324 borage oil Nutrition 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 229960001050 bupivacaine hydrochloride Drugs 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 229940068366 butabarbital sodium Drugs 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229960002968 capreomycin sulfate Drugs 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960002588 cefradine Drugs 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- RDLPVSKMFDYCOR-UEKVPHQBSA-N cephradine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CCC=CC1 RDLPVSKMFDYCOR-UEKVPHQBSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 229960002327 chloral hydrate Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- SZKQYDBPUCZLRX-UHFFFAOYSA-N chloroprocaine hydrochloride Chemical compound Cl.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl SZKQYDBPUCZLRX-UHFFFAOYSA-N 0.000 description 1
- 229960002038 chloroprocaine hydrochloride Drugs 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 229960003993 chlorphenesin Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Natural products C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- HULMNSIAKWANQO-JQKSAQOKSA-N convallatoxin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1C[C@@]2(O)CC[C@H]3[C@@]4(O)CC[C@H](C=5COC(=O)C=5)[C@@]4(C)CC[C@@H]3[C@@]2(C=O)CC1 HULMNSIAKWANQO-JQKSAQOKSA-N 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 1
- RYJIRNNXCHOUTQ-OJJGEMKLSA-L cortisol sodium phosphate Chemical compound [Na+].[Na+].O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COP([O-])([O-])=O)[C@@H]4[C@@H]3CCC2=C1 RYJIRNNXCHOUTQ-OJJGEMKLSA-L 0.000 description 1
- 229960003290 cortisone acetate Drugs 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- DMSZORWOGDLWGN-UHFFFAOYSA-N ctk1a3526 Chemical compound NP(N)(N)=O DMSZORWOGDLWGN-UHFFFAOYSA-N 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- HGBLNBBNRORJKI-WCABBAIRSA-N cyclacillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C1(N)CCCCC1 HGBLNBBNRORJKI-WCABBAIRSA-N 0.000 description 1
- 229960004244 cyclacillin Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229950004734 cycloguanil Drugs 0.000 description 1
- 229960003077 cycloserine Drugs 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- OBATZBGFDSVCJD-UHFFFAOYSA-N de-O-acetyl-lanatoside C Natural products CC1OC(OC2CC3C(C4C(C5(CCC(C5(C)C(O)C4)C=4COC(=O)C=4)O)CC3)(C)CC2)CC(O)C1OC(OC1C)CC(O)C1OC(OC1C)CC(O)C1OC1OC(CO)C(O)C(O)C1O OBATZBGFDSVCJD-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical class CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229960000958 deferoxamine Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 229940009976 deoxycholate Drugs 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- OBATZBGFDSVCJD-LALPQLPRSA-N deslanoside Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@@H]1C)O[C@H]1[C@@H](O)C[C@@H](O[C@@H]1C)O[C@H]1[C@@H](O)C[C@@H](O[C@@H]1C)O[C@@H]1C[C@@H]2[C@]([C@@H]3[C@H]([C@]4(CC[C@@H]([C@@]4(C)[C@H](O)C3)C=3COC(=O)C=3)O)CC2)(C)CC1)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O OBATZBGFDSVCJD-LALPQLPRSA-N 0.000 description 1
- 229960001324 deslanoside Drugs 0.000 description 1
- 229960003657 dexamethasone acetate Drugs 0.000 description 1
- 229960002344 dexamethasone sodium phosphate Drugs 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 229960002069 diamorphine Drugs 0.000 description 1
- 229960001585 dicloxacillin Drugs 0.000 description 1
- YFAGHNZHGGCZAX-JKIFEVAISA-N dicloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(Cl)C=CC=C1Cl YFAGHNZHGGCZAX-JKIFEVAISA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- CKNOLMVLQUPVMU-YMMLYESFSA-N digitalin Chemical compound C1([C@@H]2[C@@]3(C)CC[C@H]4[C@H]([C@]3(C[C@@H]2O)O)CC[C@H]2[C@]4(C)CC[C@@H](C2)O[C@H]2[C@H](O)[C@H]([C@H]([C@@H](C)O2)O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)OC)=CC(=O)OC1 CKNOLMVLQUPVMU-YMMLYESFSA-N 0.000 description 1
- 229950004590 digitalin Drugs 0.000 description 1
- WDJUZGPOPHTGOT-XUDUSOBPSA-N digitoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)CC5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O WDJUZGPOPHTGOT-XUDUSOBPSA-N 0.000 description 1
- 229960000648 digitoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- ASXBYYWOLISCLQ-HZYVHMACSA-N dihydrostreptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](CO)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O ASXBYYWOLISCLQ-HZYVHMACSA-N 0.000 description 1
- 229960002222 dihydrostreptomycin Drugs 0.000 description 1
- MCWXGJITAZMZEV-UHFFFAOYSA-N dimethoate Chemical compound CNC(=O)CSP(=S)(OC)OC MCWXGJITAZMZEV-UHFFFAOYSA-N 0.000 description 1
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- JIWJMBWJUBGXRA-UIHQBSCNSA-L disodium;1-[(8s,9r,10s,11s,13s,14s,16s,17r)-9-fluoro-11,17-dihydroxy-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl]butane-1,3-dione;[2-[(8s,9r,10s,11s,13s,14s,16s,17r)-9-fluoro-11,17-dihydroxy-10,13,16-trimethyl-3-o Chemical compound [Na+].[Na+].C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CC(C)=O)(O)[C@@]1(C)C[C@@H]2O.C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COP([O-])([O-])=O)(O)[C@@]1(C)C[C@@H]2O JIWJMBWJUBGXRA-UIHQBSCNSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229960002918 doxorubicin hydrochloride Drugs 0.000 description 1
- RMEDXOLNCUSCGS-UHFFFAOYSA-N droperidol Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CC=C(N2C(NC3=CC=CC=C32)=O)CC1 RMEDXOLNCUSCGS-UHFFFAOYSA-N 0.000 description 1
- 229960000394 droperidol Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000008344 egg yolk phospholipid Substances 0.000 description 1
- 229940068998 egg yolk phospholipid Drugs 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960001766 estramustine phosphate sodium Drugs 0.000 description 1
- IIUMCNJTGSMNRO-VVSKJQCTSA-L estramustine sodium phosphate Chemical compound [Na+].[Na+].ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)OP([O-])([O-])=O)[C@@H]4[C@@H]3CCC2=C1 IIUMCNJTGSMNRO-VVSKJQCTSA-L 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 1
- 229960001618 ethambutol hydrochloride Drugs 0.000 description 1
- 229960004447 ethchlorvynol Drugs 0.000 description 1
- GXRZIMHKGDIBEW-UHFFFAOYSA-N ethinamate Chemical compound NC(=O)OC1(C#C)CCCCC1 GXRZIMHKGDIBEW-UHFFFAOYSA-N 0.000 description 1
- 229960002209 ethinamate Drugs 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 229960002001 ethionamide Drugs 0.000 description 1
- MFFXVVHUKRKXCI-UHFFFAOYSA-N ethyl iodoacetate Chemical compound CCOC(=O)CI MFFXVVHUKRKXCI-UHFFFAOYSA-N 0.000 description 1
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 1
- 229960001804 etidocaine hydrochloride Drugs 0.000 description 1
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 1
- 229960001690 etomidate Drugs 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- IVLVTNPOHDFFCJ-UHFFFAOYSA-N fentanyl citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 IVLVTNPOHDFFCJ-UHFFFAOYSA-N 0.000 description 1
- 229960004207 fentanyl citrate Drugs 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- SYWHXTATXSMDSB-GSLJADNHSA-N fludrocortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O SYWHXTATXSMDSB-GSLJADNHSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229960003336 fluorocortisol acetate Drugs 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960003628 flurazepam hydrochloride Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 229960005271 gallamine triethiodide Drugs 0.000 description 1
- REEUVFCVXKWOFE-UHFFFAOYSA-K gallamine triethiodide Chemical compound [I-].[I-].[I-].CC[N+](CC)(CC)CCOC1=CC=CC(OCC[N+](CC)(CC)CC)=C1OCC[N+](CC)(CC)CC REEUVFCVXKWOFE-UHFFFAOYSA-K 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010359 gene isolation Methods 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 229940005494 general anesthetics Drugs 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 229960002972 glutethimide Drugs 0.000 description 1
- 150000004676 glycans Polymers 0.000 description 1
- RFDAIACWWDREDC-FRVQLJSFSA-N glycocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 RFDAIACWWDREDC-FRVQLJSFSA-N 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 229940025294 hemin Drugs 0.000 description 1
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 description 1
- 208000009429 hemophilia B Diseases 0.000 description 1
- JEEZOUROIMEPRQ-UHFFFAOYSA-N heptacosa-3,5,7,9,11,13,15,17,19,22,24-undecaene Chemical compound CCC=CC=CCC=CC=CC=CC=CC=CC=CC=CC=CC=CCC JEEZOUROIMEPRQ-UHFFFAOYSA-N 0.000 description 1
- DXVUYOAEDJXBPY-NFFDBFGFSA-N hetacillin Chemical compound C1([C@@H]2C(=O)N(C(N2)(C)C)[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 DXVUYOAEDJXBPY-NFFDBFGFSA-N 0.000 description 1
- 229960003884 hetacillin Drugs 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 229940084108 hexafluorenium bromide Drugs 0.000 description 1
- WDEFPRUEZRUYNW-UHFFFAOYSA-L hexafluronium bromide Chemical compound [Br-].[Br-].C12=CC=CC=C2C2=CC=CC=C2C1[N+](C)(C)CCCCCC[N+](C)(C)C1C2=CC=CC=C2C2=CC=CC=C21 WDEFPRUEZRUYNW-UHFFFAOYSA-L 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 108010064060 high density lipoprotein receptors Proteins 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 102000054823 high-density lipoprotein particle receptor activity proteins Human genes 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 229960001067 hydrocortisone acetate Drugs 0.000 description 1
- 229960003331 hydrocortisone cypionate Drugs 0.000 description 1
- 229960004204 hydrocortisone sodium phosphate Drugs 0.000 description 1
- 229960001401 hydrocortisone sodium succinate Drugs 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 229960004171 hydroxychloroquine Drugs 0.000 description 1
- XXSMGPRMXLTPCZ-UHFFFAOYSA-N hydroxychloroquine Chemical compound ClC1=CC=C2C(NC(C)CCCN(CCO)CC)=CC=NC2=C1 XXSMGPRMXLTPCZ-UHFFFAOYSA-N 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229940028885 interleukin-4 Drugs 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- MOYKHGMNXAOIAT-JGWLITMVSA-N isosorbide dinitrate Chemical compound [O-][N+](=O)O[C@H]1CO[C@@H]2[C@H](O[N+](=O)[O-])CO[C@@H]21 MOYKHGMNXAOIAT-JGWLITMVSA-N 0.000 description 1
- 229960000201 isosorbide dinitrate Drugs 0.000 description 1
- 229960004184 ketamine hydrochloride Drugs 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- JCQLYHFGKNRPGE-FCVZTGTOSA-N lactulose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 JCQLYHFGKNRPGE-FCVZTGTOSA-N 0.000 description 1
- 229960000511 lactulose Drugs 0.000 description 1
- PFCRQPBOOFTZGQ-UHFFFAOYSA-N lactulose keto form Natural products OCC(=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O PFCRQPBOOFTZGQ-UHFFFAOYSA-N 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229960004393 lidocaine hydrochloride Drugs 0.000 description 1
- YECIFGHRMFEPJK-UHFFFAOYSA-N lidocaine hydrochloride monohydrate Chemical compound O.[Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C YECIFGHRMFEPJK-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229940083747 low-ceiling diuretics xanthine derivative Drugs 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- ZMTOUBHBKDQYAB-UHFFFAOYSA-K lutetium(3+);triacetate;hydrate Chemical compound O.[Lu+3].CC([O-])=O.CC([O-])=O.CC([O-])=O ZMTOUBHBKDQYAB-UHFFFAOYSA-K 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- MMIPFLVOWGHZQD-UHFFFAOYSA-N manganese(3+) Chemical compound [Mn+3] MMIPFLVOWGHZQD-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229940013798 meclofenamate Drugs 0.000 description 1
- 229960003464 mefenamic acid Drugs 0.000 description 1
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 229940053382 meglumine antimonate Drugs 0.000 description 1
- XOGYVDXPYVPAAQ-SESJOKTNSA-M meglumine antimoniate Chemical compound O[Sb](=O)=O.CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO XOGYVDXPYVPAAQ-SESJOKTNSA-M 0.000 description 1
- RETIMRUQNCDCQB-UHFFFAOYSA-N mepivacaine hydrochloride Chemical compound Cl.CN1CCCCC1C(=O)NC1=C(C)C=CC=C1C RETIMRUQNCDCQB-UHFFFAOYSA-N 0.000 description 1
- 229960002660 mepivacaine hydrochloride Drugs 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 229940083732 mercurial diuretics Drugs 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229960001797 methadone Drugs 0.000 description 1
- YQCIWBXEVYWRCW-UHFFFAOYSA-N methane;sulfane Chemical compound C.S YQCIWBXEVYWRCW-UHFFFAOYSA-N 0.000 description 1
- KDXZREBVGAGZHS-UHFFFAOYSA-M methohexital sodium Chemical compound [Na+].CCC#CC(C)C1(CC=C)C(=O)N=C([O-])N(C)C1=O KDXZREBVGAGZHS-UHFFFAOYSA-M 0.000 description 1
- 229960001620 methohexital sodium Drugs 0.000 description 1
- 229940069038 methotrimeprazine hydrochloride Drugs 0.000 description 1
- 229960001293 methylprednisolone acetate Drugs 0.000 description 1
- PLBHSZGDDKCEHR-LFYFAGGJSA-N methylprednisolone acetate Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(C)=O)CC[C@H]21 PLBHSZGDDKCEHR-LFYFAGGJSA-N 0.000 description 1
- 229960000334 methylprednisolone sodium succinate Drugs 0.000 description 1
- 229960000316 methyprylon Drugs 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 229940091062 metocurine iodide Drugs 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- PLYSCVSCYOQVRP-UHFFFAOYSA-N midazolam hydrochloride Chemical compound Cl.C12=CC(Cl)=CC=C2N2C(C)=NC=C2CN=C1C1=CC=CC=C1F PLYSCVSCYOQVRP-UHFFFAOYSA-N 0.000 description 1
- 229960002853 midazolam hydrochloride Drugs 0.000 description 1
- OBBCSXFCDPPXOL-UHFFFAOYSA-N misonidazole Chemical compound COCC(O)CN1C=CN=C1[N+]([O-])=O OBBCSXFCDPPXOL-UHFFFAOYSA-N 0.000 description 1
- 229950010514 misonidazole Drugs 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- PJSOCBVWZJGTHW-UHFFFAOYSA-N n-(1h-indazol-5-yl)-5-[3-methoxy-4-[2-(2-methoxyethoxy)ethoxy]phenyl]-1,3-oxazol-2-amine Chemical compound C1=C(OC)C(OCCOCCOC)=CC=C1C(O1)=CN=C1NC1=CC=C(NN=C2)C2=C1 PJSOCBVWZJGTHW-UHFFFAOYSA-N 0.000 description 1
- GFEGEDUIIYDMOX-BMJUYKDLSA-N n-[(4-amino-2-methylpyrimidin-5-yl)methyl]-n-[(z)-3-[[(z)-2-[(4-amino-2-methylpyrimidin-5-yl)methyl-formylamino]-5-hydroxypent-2-en-3-yl]disulfanyl]-5-hydroxypent-2-en-2-yl]formamide Chemical compound C=1N=C(C)N=C(N)C=1CN(C=O)C(\C)=C(CCO)/SSC(/CCO)=C(/C)N(C=O)CC1=CN=C(C)N=C1N GFEGEDUIIYDMOX-BMJUYKDLSA-N 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- GPXLMGHLHQJAGZ-JTDSTZFVSA-N nafcillin Chemical compound C1=CC=CC2=C(C(=O)N[C@@H]3C(N4[C@H](C(C)(C)S[C@@H]43)C(O)=O)=O)C(OCC)=CC=C21 GPXLMGHLHQJAGZ-JTDSTZFVSA-N 0.000 description 1
- 229960000515 nafcillin Drugs 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- 229960004719 nandrolone Drugs 0.000 description 1
- REACBNMPQDINOF-YBBIQVIJSA-N nandrolone cyclotate Chemical compound C1CC(C)(C=C2)CCC12C(=O)O[C@H]1CC[C@H]2[C@H](CCC=3[C@@H]4CCC(=O)C=3)[C@@H]4CC[C@@]21C REACBNMPQDINOF-YBBIQVIJSA-N 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 239000004081 narcotic agent Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000000842 neuromuscular blocking agent Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 229960001027 opium Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 208000013371 ovarian adenocarcinoma Diseases 0.000 description 1
- 201000006588 ovary adenocarcinoma Diseases 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- 229960000649 oxyphenbutazone Drugs 0.000 description 1
- CNDQSXOVEQXJOE-UHFFFAOYSA-N oxyphenbutazone hydrate Chemical compound O.O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 CNDQSXOVEQXJOE-UHFFFAOYSA-N 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 229960003379 pancuronium bromide Drugs 0.000 description 1
- NPIJXCQZLFKBMV-YTGGZNJNSA-L pancuronium bromide Chemical compound [Br-].[Br-].C[N+]1([C@@H]2[C@@H](OC(C)=O)C[C@@H]3CC[C@H]4[C@@H]5C[C@@H]([C@@H]([C@]5(CC[C@@H]4[C@@]3(C)C2)C)OC(=O)C)[N+]2(C)CCCCC2)CCCCC1 NPIJXCQZLFKBMV-YTGGZNJNSA-L 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- SQYNKIJPMDEDEG-UHFFFAOYSA-N paraldehyde Chemical compound CC1OC(C)OC(C)O1 SQYNKIJPMDEDEG-UHFFFAOYSA-N 0.000 description 1
- 229960003868 paraldehyde Drugs 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 229960000865 paramethasone acetate Drugs 0.000 description 1
- 239000008414 paregoric Substances 0.000 description 1
- 229940069533 paregoric Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 229940056367 penicillin v Drugs 0.000 description 1
- 229960004321 pentaerithrityl tetranitrate Drugs 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 229960002275 pentobarbital sodium Drugs 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- WRLGYAWRGXKSKG-UHFFFAOYSA-M phenobarbital sodium Chemical compound [Na+].C=1C=CC=CC=1C1(CC)C(=O)NC([O-])=NC1=O WRLGYAWRGXKSKG-UHFFFAOYSA-M 0.000 description 1
- 229960002511 phenobarbital sodium Drugs 0.000 description 1
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229960002895 phenylbutazone Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 229940067605 phosphatidylethanolamines Drugs 0.000 description 1
- 229940067626 phosphatidylinositols Drugs 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000008106 phosphatidylserines Chemical class 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- RJXQSIKBGKVNRT-UHFFFAOYSA-N phosphoramide mustard Chemical compound ClCCN(P(O)(=O)N)CCCl RJXQSIKBGKVNRT-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001126 phototherapy Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- IZWQYPFXJMTLHZ-UHFFFAOYSA-N piperidin-1-ium;hydroxide Chemical compound O.C1CCNCC1 IZWQYPFXJMTLHZ-UHFFFAOYSA-N 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000012987 post-synthetic modification Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229960002800 prednisolone acetate Drugs 0.000 description 1
- 229960002943 prednisolone sodium phosphate Drugs 0.000 description 1
- VJZLQIPZNBPASX-OJJGEMKLSA-L prednisolone sodium phosphate Chemical compound [Na+].[Na+].O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COP([O-])([O-])=O)[C@@H]4[C@@H]3CCC2=C1 VJZLQIPZNBPASX-OJJGEMKLSA-L 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960001309 procaine hydrochloride Drugs 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960001586 procarbazine hydrochloride Drugs 0.000 description 1
- ABBQGOCHXSPKHJ-WUKNDPDISA-N prontosil Chemical compound NC1=CC(N)=CC=C1\N=N\C1=CC=C(S(N)(=O)=O)C=C1 ABBQGOCHXSPKHJ-WUKNDPDISA-N 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 239000008345 purified egg yolk phospholipid Substances 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000019172 retinyl palmitate Nutrition 0.000 description 1
- 239000011769 retinyl palmitate Substances 0.000 description 1
- 229940108325 retinyl palmitate Drugs 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 150000003902 salicylic acid esters Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 229960005369 scarlet red Drugs 0.000 description 1
- RCTGMCJBQGBLKT-PAMTUDGESA-N scarlet red Chemical compound CC1=CC=CC=C1\N=N\C(C=C1C)=CC=C1\N=N\C1=C(O)C=CC2=CC=CC=C12 RCTGMCJBQGBLKT-PAMTUDGESA-N 0.000 description 1
- 229960003141 secobarbital sodium Drugs 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940083542 sodium Drugs 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229960003339 sodium phosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- BNHGKKNINBGEQL-UHFFFAOYSA-M sodium;5-ethyl-5-(3-methylbutyl)pyrimidin-3-ide-2,4,6-trione Chemical compound [Na+].CC(C)CCC1(CC)C(=O)NC(=O)[N-]C1=O BNHGKKNINBGEQL-UHFFFAOYSA-M 0.000 description 1
- AXXJTNXVUHVOJW-UHFFFAOYSA-M sodium;5-pentan-2-yl-5-prop-2-enylpyrimidin-3-ide-2,4,6-trione Chemical compound [Na+].CCCC(C)C1(CC=C)C(=O)NC(=O)[N-]C1=O AXXJTNXVUHVOJW-UHFFFAOYSA-M 0.000 description 1
- MQRFYYBWKRACSJ-WKSAPEMMSA-L sodium;[2-[(8s,9r,10s,11s,13s,14s,16r,17r)-9-fluoro-11,17-dihydroxy-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl]-2-oxoethyl] phosphate Chemical compound [Na+].C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP([O-])([O-])=O)(O)[C@@]1(C)C[C@@H]2O MQRFYYBWKRACSJ-WKSAPEMMSA-L 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 229950004330 spiroplatin Drugs 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229960002385 streptomycin sulfate Drugs 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229940099373 sudan iii Drugs 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 229960002999 sulbentine Drugs 0.000 description 1
- 229960001343 sulfachrysoidine Drugs 0.000 description 1
- ZELCNSAUMHNSSU-ISLYRVAYSA-N sulfachrysoidine Chemical compound OC(=O)c1cc(N)cc(N)c1\N=N\c1ccc(S(N)(=O)=O)cc1 ZELCNSAUMHNSSU-ISLYRVAYSA-N 0.000 description 1
- 229950008188 sulfamidochrysoidine Drugs 0.000 description 1
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 1
- 229960001940 sulfasalazine Drugs 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960004000 talbutal Drugs 0.000 description 1
- BJVVMKUXKQHWJK-UHFFFAOYSA-N talbutal Chemical compound CCC(C)C1(CC=C)C(=O)NC(=O)NC1=O BJVVMKUXKQHWJK-UHFFFAOYSA-N 0.000 description 1
- FQZYTYWMLGAPFJ-OQKDUQJOSA-N tamoxifen citrate Chemical compound [H+].[H+].[H+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 FQZYTYWMLGAPFJ-OQKDUQJOSA-N 0.000 description 1
- 229960003454 tamoxifen citrate Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 229960003188 temazepam Drugs 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- JCQBWMAWTUBARI-UHFFFAOYSA-N tert-butyl 3-ethenylpiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCC(C=C)C1 JCQBWMAWTUBARI-UHFFFAOYSA-N 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- 229960002494 tetracaine hydrochloride Drugs 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Natural products C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- KGKLLWHEYDUTBF-UHFFFAOYSA-J tetraiodorhenium Chemical compound I[Re](I)(I)I KGKLLWHEYDUTBF-UHFFFAOYSA-J 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 229960001385 thiamine disulfide Drugs 0.000 description 1
- LJRHSDGQWGPCCR-UHFFFAOYSA-N thiolutin Natural products S1SC=C2NC(=O)C(NC(=O)C)C21 LJRHSDGQWGPCCR-UHFFFAOYSA-N 0.000 description 1
- AWLILQARPMWUHA-UHFFFAOYSA-M thiopental sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC([S-])=NC1=O AWLILQARPMWUHA-UHFFFAOYSA-M 0.000 description 1
- 229960000340 thiopental sodium Drugs 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- 229960000103 thrombolytic agent Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- 229960002117 triamcinolone acetonide Drugs 0.000 description 1
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 1
- 229960004320 triamcinolone diacetate Drugs 0.000 description 1
- 229960004221 triamcinolone hexacetonide Drugs 0.000 description 1
- JOFWLTCLBGQGBO-UHFFFAOYSA-N triazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl JOFWLTCLBGQGBO-UHFFFAOYSA-N 0.000 description 1
- 229960003386 triazolam Drugs 0.000 description 1
- FEONEKOZSGPOFN-UHFFFAOYSA-K tribromoiron Chemical compound Br[Fe](Br)Br FEONEKOZSGPOFN-UHFFFAOYSA-K 0.000 description 1
- VQOXUMQBYILCKR-UHFFFAOYSA-N tridecaene Natural products CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 1
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- KVJXBPDAXMEYOA-CXANFOAXSA-N trilostane Chemical compound OC1=C(C#N)C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@@]32O[C@@H]31 KVJXBPDAXMEYOA-CXANFOAXSA-N 0.000 description 1
- 229960001670 trilostane Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical class OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229960002655 tubocurarine chloride Drugs 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 239000002691 unilamellar liposome Substances 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- VEPSYABRBFXYIB-PWXDFCLTSA-M vecuronium bromide Chemical compound [Br-].N1([C@@H]2[C@@H](OC(C)=O)C[C@@H]3CC[C@H]4[C@@H]5C[C@@H]([C@@H]([C@]5(CC[C@@H]4[C@@]3(C)C2)C)OC(=O)C)[N+]2(C)CCCCC2)CCCCC1 VEPSYABRBFXYIB-PWXDFCLTSA-M 0.000 description 1
- 229960004298 vecuronium bromide Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- KDQAABAKXDWYSZ-PNYVAJAMSA-N vinblastine sulfate Chemical compound OS(O)(=O)=O.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 KDQAABAKXDWYSZ-PNYVAJAMSA-N 0.000 description 1
- 229960004982 vinblastine sulfate Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- AQTQHPDCURKLKT-JKDPCDLQSA-N vincristine sulfate Chemical compound OS(O)(=O)=O.C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 AQTQHPDCURKLKT-JKDPCDLQSA-N 0.000 description 1
- 229960002110 vincristine sulfate Drugs 0.000 description 1
- 229960004854 viral vaccine Drugs 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 150000003732 xanthenes Chemical class 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
- 150000008495 β-glucosides Chemical class 0.000 description 1
- 239000002132 β-lactam antibiotic Substances 0.000 description 1
- 229940124586 β-lactam antibiotics Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0092—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0047—Sonopheresis, i.e. ultrasonically-enhanced transdermal delivery, electroporation of a pharmacologically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B17/2202—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22062—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22082—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
- A61B2017/22088—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance ultrasound absorbing, drug activated by ultrasound
Definitions
- the present invention relates to a method and catheter for treating biological tissues with light activated drugs, and more particularly, to a method and catheter for treating biological tissues by delivering a light activated drug to a biological tissue and exposing the light activated drug to ultrasound energy.
- Light activated drugs are inactive until exposed to light of particular wavelengths, however, upon exposure to light of the appropriate wavelength, light activated drugs can exhibit a cytotoxic effect on the tissues where they are localized. It has been postulated that the cytotoxic effect is a result of the formation of singlet oxygen on exposure to light.
- Photodynamic therapy begins with the systemic administration of a selected light activated drug to a patient.
- the drug disperses throughout the body and is taken up by most tissues within the body. After a period of time usually between 3 and 48 hours, the drug clears from most normal tissue and is retained to a greater degree in lipid rich regions such as the liver, kidney, tumor and atheroma.
- a light source such as a fiber optic, is then directed to a targeted tissue site which includes the light activated drug. The tissues of the tissue site are then exposed to light from the light source in order to activate any light activated drugs within the tissue site. The activation of the light activated drug causes tissue death within the tissue site.
- the concentration of the light activated drug within the targeted tissue site is limited by the quantity of light activated drug administered.
- the concentration of the light activated drug within a tissue site can also be limited by the degree of selective uptake of the light activated drug into the tissue site. Specifically, if the targeted tissue site does not selectively uptake the light activated drug, the concentration of light activated drug within the tissue site can be too low for an effective treatment.
- An additional problem associated with photodynamic therapy concerns depth of treatment. Light cannot penetrate deeply into opaque tissues. As a result, the depth that light penetrates most tissue sites is limited. This limited depth can prevent photodynamic therapy from being used to treat tissues which are located deeply in the interior of a tissue site.
- An object for an embodiment of the invention is causing tissue death within a tissue site.
- a further object for an embodiment of the present invention is using a catheter to locally deliver a light activated drug to a tissue site and delivering ultrasound energy from an ultrasound element on the catheter to activate the light activated drug.
- An additional object for an embodiment of the present invention is including the light activated drug in an aqueous solution, locally delivering the aqueous solution to a tissue site and delivering ultrasound energy to the light activated drug within the tissue site to activate the light activated drug.
- Yet a further object for an embodiment of the present invention is including the light activated drug in an emulsion, systemically delivering the emulsion, providing the light activated drug sufficient time to localize within a tissue site and delivering ultrasound energy to the light activated drug within the tissue site to activate the light activated drug.
- a further object for an embodiment of the present invention is including the light activated drug in liposomes, systemically delivering the liposomes, providing the light activated drug sufficient time to localize within a tissue site and delivering ultrasound energy to the light activated drug within the tissue site to activate the light activated drug.
- An additional object for an embodiment of the present invention is including the light activated drug in an aqueous solution, systemically delivering the aqueous solution, providing the light activated drug sufficient time to localize within a tissue site and delivering ultrasound energy to the light activated drug within the tissue site to activate the light activated drug.
- Another object for an embodiment of the present invention is coupling a site directing molecule to a light activated drug, locally delivering the light activated drug to a tissue site and activating the light activated drug within the tissue site.
- Yet another object for an embodiment of the invention is providing a catheter for locally delivering a media including a light activated drug to a tissue site.
- the catheter including an ultrasound assembly configured to activate the light activated drug within the tissue site.
- a further object for an embodiment of the invention is providing a catheter for delivering a media including a light activated drug to a tissue site.
- the catheter including an ultrasound assembly for reducing exposure of the light activated drug to ultrasound energy until the light activated drug has been delivered from within the catheter.
- a kit for causing tissue death within a tissue site includes a media with a light activated drug activatable upon exposure to a particular level of ultrasound energy.
- the kit also includes a catheter with a lumen coupled with a media delivery port through which the light activated drug can be locally delivered to the tissue site.
- the ultrasound transducer is configured to transmit the level of ultr.asound energy which activates the light activated drug with sufficient power that the ultrasound energy can penetrate the tissue site.
- a method for causing tissue death in a subdermal tissue site includes providing a catheter for locally delivering a light activated drug to the subdermal tissue site, the catheter including an ultrasound transducer.
- the method also includes locally delivering the light activated drug to the tissue site; producing ultrasound energy from the ultrasound transducer; and directing the ultrasound energy to the subdermal tissue site following penetration of the light activated drug into the subdermal tissue site to activate at least a portion of the light activated drug within the subdermal tissue site.
- a method for activating a light activated drug includes providing a catheter with an ultrasound transducer.
- the method also includes introducing the light activated drug into a patient's body where a subdermal tissue site absorbs at least a portion of the light activated drug; producing ultrasound energy; directing the ultrasound energy to the light activated containing subdermal tissue site including the light activated drug; and activating at least a portion of the light activated drug in the subdermal selected tissue site.
- a method for releasing a therapeutic from a microbubble is also disclosed.
- the method includes providing a microbubble with a light activated drug activatable upon exposure to ultrasound energy; and delivering ultrasound energy to the microbubble at a frequency and intensity which activates the light activated drug to cause a rupture of the microbubble.
- a microbubble is also disclosed.
- the microbubble includes a substrate defining a shell of the microbubble and having a thickness permitting hydraulic transport of the microbubble.
- the microbubble also includes a light activated drug activatable upon exposure to ultrasound energy. Activation of the light activated drug causes a disruption in the shell sufficient to cause a rupture of the microbubble.
- the microbubble further includes a therapeutic releasable from the microbubble upon rupture of the microbubble and yielding a therapeutic effect upon release from the microbubble.
- Figure 1A is a side view of a catheter for locally delivering a media including a light activated drug to a tissue site.
- Figure IB is an axial cross section of an ultrasound assembly for use with the catheter shown in Figure 1 A.
- Figure 1C is a lateral cross section of an ultrasound assembly for use with the catheter shown in Figure 1 A.
- Figure 2A is a side view of a catheter having an elongated body and an ultrasound assembly which is flush with the elongated body.
- Figure 2B is an axial cross section of the ultrasound assembly illustrated in Figure
- Figure 2C is a lateral cross section of the ultrasound assembly illustrated in Figure
- Figure 3 A illustrates a catheter with a utility lumen and a second utility lumen.
- Figure 3B is .an axial cross section of the ultrasound assembly illustrated in the catheter of Figure 3 A.
- Figure 4A is a side view of a catheter including a plurality of ultrasound assemblies.
- Figure 4B is a cross section of an ultrasound assembly included on a catheter with a plurality of utility lumens.
- Figure 4C is a cross section of an ultrasound assembly included on a catheter with a plurality of utility lumens.
- Figure 5 A is a side view of a catheter including a balloon.
- Figure 5B is a cross section of a catheter with a balloon which include an ultrasound assembly.
- Figure 6A is a side view of a catheter with a balloon positioned distally relative to an ultrasound assembly.
- Figure 6B is a side view of a catheter with an ultrasound assembly positioned distally relative to a balloon.
- Figure 6C is a cross section of a catheter with an ultrasound assembly positioned at the distal end of the catheter.
- Figure 7A is a side view of a catheter with a media delivery port positioned between an ultrasound assembly and a balloon.
- Figure 7B is a side view of a catheter with an ultrasound assembly positioned between a media delivery port and a balloon.
- Figure 7C is a cross section of a catheter with an ultrasound assembly positioned at the distal end of the catheter.
- Figure 8A is a side view of a catheter including a media delivery port and an ultrasound assembly positioned between first and second balloons.
- Figure 8B is a side view of a catheter including a media delivery port and an ultrasound assembly positioned between first and second balloons.
- Figure 8C is a cross section of a balloon included on a catheter having a first and second balloon.
- Figure 9A illustrates an ultrasound assembly positioned adjacent to a tissue site and microbubbles delivered via a utility lumen.
- Figure 9B illustrates an ultrasound assembly positioned adjacent to a tissue site and a media delivered via a media delivery port.
- Figure 9C illustrates an ultrasound assembly positioned adjacent to a tissue site and a media delivered via a media delivery port while a guidewire is positioned in a utility lumen.
- Figure 9D illustrates a catheter including a balloon positioned adjacent to a tissue site.
- Figure 9E illustrates a catheter including a balloon expanded into contact with a tissue site.
- Figure 9F illustrates a catheter with an ultrasound assembly outside a balloon positioned at a tissue site.
- Figure 9G illustrates the balloon of Figure 9F expanded into contact with a vessel so as to occlude the vessel.
- Figure 9H illustrates a catheter with an ultr.asound assembly outside a first and second balloon positioned at a tissue site.
- Figure 91 illustrates the first and second balloon of Figure 9H expanded into contact with a vessel so as to occlude the vessel.
- Figure 10A is a cross section of an ultrasound assembly according to the present invention.
- Figure 1 OB is a cross section of an ultrasound assembly according to the present invention.
- Figure IOC illustrates a support member with integral supports.
- Figure 10D illustrates a support member which is supported by an outer coating.
- Figure 11 A is a cross section of an ultrasound assembly including two concentric ultrasound transducers in contact with one another.
- Figure 1 IB is a cross section of an ulfrasound assembly including two separated and concentric ultrasound transducers.
- Figure 11C is a cross section of an ultrasound assembly including two ultrasound transducers where a chamber is defined between one of the ultrasound transducers and an elongated body.
- Figure 1 ID is a cross section of an ulfrasound assembly including two longitudinally adjacent ultrasound transducers in physical contact with one another.
- Figure 1 IE is a cross section of an ultrasound assembly including two separated and longitudinally adjacent ultrasound transducers.
- Figure 1 IF is a cross section of an ultrasound assembly including two longitudinally adjacent ultrasound transducers with a single chamber positioned between both ultrasound transducers and an elongated body.
- Figure 1 IG is a cross section of an ultrasound assembly including two longitudinally adjacent ultrasound transducers with different chambers positioned between each ultrasound transducers and an elongated body.
- Figure 1 IH is a cross section of an ultrasound assembly including two longitudinally adjacent ultrasound transducers in contact with one another and having a single chamber positioned between each ultrasound transducers and an elongated body.
- Figure 12A is a cross section of a catheter which includes an ultrasound assembly module which is independent of a first catheter component and a second catheter component.
- Figure 12B illustrates the first and second catheter components coupled with the ultrasound assembly module.
- Figure 12C is a cross section of an ultrasound assembly which is integral with a catheter.
- Figure 13A is a cross section of an ultrasound assembly configured to radiate ultrasound energy in a radial direction.
- the lines which drive the ultrasound transducer pass through a utility lumen in the catheter.
- Figure 13B is a cross section of an ultrasound assembly configured to radiate ultrasound energy in a radial direction.
- the lines which drive the ultrasound transducer pass through line lumens in the catheter.
- Figure 13C is a cross section of an ultrasound assembly configured to longitudinally radiate ultrasound energy. The distal portion of one line travels proximally through the outer coating.
- Figure 13D is a cross section of an ultrasound assembly configured to longitudinally transmit ultrasound energy. The distal portion of one line travels proximally through a line lumen in the catheter.
- Figure 14A illustrates ultrasound transducers connected in parallel.
- Figure 14B illustrates ultrasound transducers connected in series.
- Figure 14C illustrates ultrasound transducers connected with a common line.
- Figure 15 illustrates a circuit for electrically coupling temperature sensors.
- Figure 17A illustrates pyrrole-based macrocyclic classes of light emitting drugs.
- Figure 17B illustrates possible texaphyrin derivation sites.
- Figure 18 illustrates the formula of preferred light emitting drugs for use with media including microbubbles.
- Figure 19 illustrates a formula for a porphyrin group.
- Figure 20 illustrates the formula of four preferred forms of the hydro- monobenzoporphyrin derivatives of the green porphyrins illustrated in formulae 3 and 4 of Figure 18.
- Figure 21 illustrates the formulae for specific examples of pyrrole-based macrocycle derivatives and xanthene derivatives which are preferred for inclusion in microbubbles to enhance rupture of the microbubbles upon activation.
- Figure 22 schematically summarizes the synthesis of an oligonucleotide conjugate of a texaphyrin metal complex.
- Figure 23 illustrates the covalent coupling of texaphyrin metal complexes with amine, thiol, or hydroxy linked oligonucleotides.
- Figure 24 illustrates the synthesis of diformyl monoic acid and oligonucleotide conjugate.
- Figure 25 illustrates the synthesis of a texaphyrin based light activated drug.
- Figure 26 illustrates the formula for tin ethyl etiopurpurin (SnEt 2 ).
- the present invention relates to a method and catheter for delivering a light activated drug to a tissue site and delivering ultrasound energy to the light activated drug within the tissue site. Since many light activated drugs are also activated by ultrasound energy, the delivery of ultrasound energy to the light activated drug activates the light activated drug within the tissue site. Similar to activation of a light activated drug by light, activation by ultrasound causes death of tissues within the tissue site. The tissue death is believed to result from the release of a singlet oxygen.
- Suitable tissue sites include, but are not limited to, atheroma, cancerous tumors, thrombi and potential restenosis sites.
- a potential restenosis site is a tissue site where restenosis is likely to occur such as the portion of vessels previously treated by balloon angioplasty.
- ultrasound energy can be transmitted through opaque tissues. As a result, the ultrasound energy can be used to treat tissues which are deeper within a tissue site than could be treated via light activation.
- One explanation for the activation of light activated drugs via the application of ultrasound is a result of cavitation. Cavitation is known to occur when ultrasonic energy above a certain threshold is applied to a liquid.
- Cavitation and Bubble Dynamics results when gas dissolved in a solution forms bubbles under certain types of acoustic vibration. Cavitation can also occur when small bubbles already present in the solution oscillate or repeatedly enlarge and contract to become bubbles. When the size of these cavitation bubbles reaches a size that cannot be maintained, they suddenly collapse and release various types of energy.
- the various types of energy include, but are not limited to, mechanical energy, visible light, ultraviolet light and other types of electromagnetic radiation. Heat, plasma, magnetic fields, shock waves, free radicals, heat and other forms of energy are also thought to be generated locally.
- the light activated drug is believed to be activated by at least one of the various forms of energy generated at the time of cavitation collapse.
- the delivery of light activated drug to the tissue site can be through traditional systemic administration of a media including the light activated drug or can be performed through localized delivery of the media. Localized delivery can be achieved through injection into the tissue site or through other traditional localized delivery techniques.
- a preferred delivery technique is using a catheter which includes a media delivery lumen coupled with a media delivery port. The catheter can be positioned such that the media delivery port is within the tissue site or is adjacent to the tissue site via traditional over- the-guidewire techniques. The media can then be locally delivered to the tissue site through the media delivery port.
- the localized delivery of the light activated drug to the tissue sight serves to localize the light activated drug within the tissue site and can reduce the amount of light activated drug which concentrates in tissues outside the tissue site. Further, localized delivery of the light activated drug can serve to increase the concentration of the light activated drug within the tissue site above levels which would be achieved through systemic delivery of the light activated drug. Alternatively, the same concentration of light activated drug within the tissue site as would occur through systemic administration can be achieved by introducing smaller amounts of light activated drug into a patient's body.
- Localized delivery of the light activated drug also permits treatment of tissue sites which do not have selective uptake of the light activated drug.
- many light activated drugs such as the texaphyrins, are taken up by most tissues within the body and later localize within lipid rich tissues.
- a non-lipid rich tissue site can be treated by delivering the ultrasound energy to the tissue site before the light activated drug has an opportunity to localize in lipid rich tissues.
- Localized delivery is also advantageous when the tissue site is lipid rich such as in an atheroma or a tumor.
- the localized delivery of the light activated drug combined with the inherent affinity of the light activated drug for tissue site can result in a high degree of localization of the light activated drug within lipid rich tissue sites.
- the light activated drug can be coupled with a sight directing molecule to form a light activated drug conjugate.
- the site directing molecule is chosen so the light activated drug conjugate specifically binds with the tissue site when the light activated drug conjugate is contacted with the tissue site under physiological conditions of temperature and pH.
- the specific binding may result from specific electrostatic, hydrophobic, entropic, or other interactions between certain residues on the conjugate and specific residues on the tissue site.
- the light activated drug includes an oligonucleotide acting as a site specific molecule coupled with a texaphyrin.
- the oligonucleotide can have an affinity for a targeted site on a DNA strand.
- the oligonucleotide can be designed to have complementary Watson-Crick base pairing with the targeted DNA site. Activation of the light activated drug after the conjugate has bound the targeted
- the DNA site can cause cleavage of the DNA strand at the targeted DNA site.
- the activated rug conjugate can be used for cleavage of targeted DNA sites.
- the light activated conjugate can be targeted to a site on viral DNA where activation of the light activated conjugate causes the virus to be killed. Similarly, the light activated conjugate can be targeted to oncogenes.
- targeted DNA cleavage include, but are not limited to, antisense applications, specific cleavage and subsequent recombination of DNA; destruction of viral DNA; construction of probes for controlling gene expression at the cellular level and for diagnosis; and cleavage of DNA in footprinting analyses, DNA sequencing, chromosome analysis, gene isolation, recombinant DNA manipulations, mapping of large genomes and chromosomes, in chemotherapy and in site directing mutagenesis.
- the light activated drug includes a hormone.
- the hormone may be targeted to a particular biological receptor which is localized at the tissue site.
- the light activated drug can be included within several media suitable for delivery into the body. Many Ught activated drugs are known to have low water solubilities of less than 100 mg/L. As a result, achieving the desired concentration of light activated drug in an aqueous solution media for systemic delivery can often be difficult. However, localized delivery of the light activated drug requires a lower concentration of light activated drug within the media. As a result, when the light activated drug is delivered locally, the light activated drug can be included in an aqueous solution.
- the media can also be an emulsion which includes a lipoid as a hydrophobic phase dispersed in a hydrophilic phase. These emulsions provide a media which is safe for delivery into the body with an effective concentration of light activated drug.
- the media can also include microbubbles comprised from a substrate which forms a shell.
- Suitable substrates for the microbubble include, but are not limited to, biocom- patible polymers, albumins, lipids, sugars or other substances.
- the light activated drug can be enclosed within the microbubble, coupled with the shell and/or distributed in the media outside the microbubble.
- a preferred microbubble comprises a lipid substrate such as liposome. Systemic admimstration of liposomes with light activated drug has been shown to result in an increased accumulation and more prolonged retention of light activated drugs within cultured malignant cells and within tumors in vivo. Jori et al., Br. J.
- Including a light activated drug with the microbubbles has numerous advantages over microbubbles without light activated drug.
- the microbubbles After administration of microbubbles to a patient, the microbubbles often must be ruptured to achieve their therapeutic effects.
- One technique for rupturing microbubbles has been to expose the microbubbles to ultrasound energy.
- ultrasound energy of undesirably high intensity is frequently required to break the microbubbles.
- the ultrasound energy frequently must be matched to the resonant frequency of the microbubbles.
- rupturing the microbubbles with ultr.asound can present numerous challenges.
- Activating a light activated drug within the microbubble and/or in the substrate of the microbubble can cause the microbubble to rupture.
- Activation of the light activated drug is believed to cause a disturbance which disrupts the shell of the microbubble enough to cause the microbubble to rupture. This disruption occurs when the light activated drug is coupled with the shell of the microbubble or is entirely within the microbubble. This disruption is also believed to occur when light activated drug located the media outside the microbubbles is activated in proximity of the microbubble.
- microbubbles can be ruptured by activating light activated drugs and without matching the ultrasound frequency to the resonant frequency of the microbubble.
- a more efficient ruptureding of microbubbles can be achieved by delivering a level of ultrasound energy which is appropriate to activate the light activated drug and which is matched to the resonant frequency of the microbubble.
- the cavitation threshold can require an ultrasound intensity which is lower than the intensity required to rupture microbubbles without light activated drugs. As a result, including light activated drug with microbubbles can reduce the intensity of ultrasound energy required to rupture the microbubble.
- the threshold value of cavitation is also reduced in the proximity of many light activated drugs.
- the light activated drug encourages cavitation in the proximity of the light activated drug.
- the interior of the microbubbles may include a gas or may be devoid of gas.
- a gas When a gas is present, the gas can occupy any portion of the microbubble's volume but preferably occupies 0.01-50% of the volume of the microbubble interior, more preferably 5-30% and most preferably 10-20%.
- the volume of gas is less than 0.01% of the volume, cavitation can be hindered and when the volume of gas is greater than 50% the structural integrity of the microbubble shell can become too weak for the microbubble to be transported to the tissue site.
- Suitable gasses for the interior of the microbubbles include, but are not limited to, biocompatible gasses such as air, nitrogen, carbon dioxide, oxygen, argon, fluorine, xenon, neon, helium, or combinations thereof.
- biocompatible gasses such as air, nitrogen, carbon dioxide, oxygen, argon, fluorine, xenon, neon, helium, or combinations thereof.
- the presence of tiny bubbles is known to reduce the cavitation threshold.
- the presence of an appropriately sized gas bubble in the microbubble can enhance cavitation in the proximity of the light activated drug.
- the microbubbles are preferably 0.01-100 ⁇ m in diameter. This size microbubble reduces excretion of the microbubble outside the body and also reduces interference of the microbubble with the flow of fluids within the body of the patient. Further, the microbubbles preferably have a shell thickness of 0.001-50 ⁇ m, 0.01-5 ⁇ m and 0.1-0.5 ⁇ m. This thickness provides the shells with sufficient thickness that the microbubble can withstand enough of the forces within the vasculature of a patient to be transported through at least a portion of the patient's vasculature. Similarly, the thickness can permit the microbubbles to be transported through a lumen in an apparatus such as a catheter. However, this thickness is also sufficiently thin that alteration of the ultrasound activated substance upon activation is sufficient to disrupt the shell of the microbubble and cause the microbubble to rupture.
- Activating the light activated drug to rapture microbubbles cm cause the light activated drug to be released from the microbubble so the light activated drag can penetrate the tissue near the site of rapture. Further exposure of the light activated drug to ultrasound can activate the light activated drag within the tissue and cause death of the tissue as described above.
- the microbubble can include a therapeutic in addition to the light activated drag. Activation of the light activated drag can serve to rapture the microbubble and release the therapeutic from the microbubble. As a result, the therapeutic is released in proximity to a tissue site by rapturing the microbubble in proximity to the tissue site. This is advantageous when the therapeutic can be detrimental when administered systemically.
- a therapeutic such as cisplatin is known to kill cancerous tissues but is also known to kill other tissues throughout the body.
- systemic administration of cisplatin can be detrimental.
- microbubbles can serve to protect tissues from the therapeutic agent until the therapeutic agent is released from the carrier. For instance, when the therapeutic is enclosed within the interior of the microbubble, contact between the therapeutic agent and tissues outside the carrier is reduced. As a result, the carrier increases protection of tissues outside the carrier are protected from the therapeutic agent until the microbubble is raptured .and the therapeutic released.
- the therapeutics may be encapsulated in the microbubbles, included in the shell of the microbubbles or in the media outside the microbubbles.
- therapeutic as used herein, it is meant an agent having beneficial effect on the patient.
- therapeutics which can be included with the microbubbles include, but are not limited to, hormone products such as, vasopressin and oxytocin and their derivatives, glucagon and thyroid agents as iodine products and anti-thyroid agents; cardiovascular products as chelating agents and mercurial diuretics and cardiac glycosides; respiratory products as xanthine derivatives (theophylline & aminophylline); anti-infectives as aminoglycosides, antifungals (amphotericin), penicillin and cephalosporin antibiotics, antiviral agents as Zidovudine, Ribavirin, Amantadine, Vidarabine, and Acyclovir, anti-helmintics, antimalarials, and antituberculous drags; biologicals as immune serums, antitoxins and antivenins, rabies prophylaxis products, bacterial vaccines, viral vaccines, toxoids; antineoplastics asnitrosureas, nitrogen mustards, antimetabolites (fluor
- thrombolytic agents such as urokinase
- coagulants such as thrombin
- antineoplastic agents such as platinum compounds (e.g., spirop latin, cisplatin, and carboplatin), methotrexate, adriamycin, taxol, mitomycin, ansamitocin, bleomycin, cytosine arabinoside, arabinosyl adsnine, mercaptopolylysme, vincristine, busulfan, chlorambucil, melphalan (e.g.,PAM, L-PAM or phenylalanine mustard), mercaptopurine, mitotane, procarbazine hydrochloride dactinomycin (actinomycin D), daunorabicinhydrochloride, doxorubicin hydrochloride, mitomycin, plicamycin (mithramycin), aminoglutethimide, estram
- platinum compounds e.g.,
- Zidovudine Ribavirin andvidarabine monohydrate (adenine arabinoside, ara-A); antianginals such asdiltiazem, nifedipine, verapamil, erythrityl tefrariitrate, isosorbidedinitrate, nitroglycerin (glyceryl trinitrate) and pentaerythritoltetranitrate; anticoagulants such as phenprocoumon, heparin; antibiotics such as dapsone, chloramphenicol, neomycin, cefaclor, cefadroxil, cephalexin, cephradine erythromycin, clindamycin, lincomycin, amoxicillin, ampicillin, bacampicillin, carbenicillin, dicloxacillin, cyclacillin, picloxacillin, hetacillin, methicillin, nafcillin, oxacillin, penicillin G, penicillin
- the therapeutic is a monoclonal antibody, such as a monoclonal antibody capable of binding to melanoma antigen.
- RNA nucleic acids
- DNA RNA
- RNA Ribonucleic acid
- DNA DNA
- Types of genetic material that may be used include, for example, genes carried on expression vectors such as plasmids, phagemids, cosmids, yeast artificial chromosomes (YACs), and defective or "helper" viruses, antigene nucleic acids, both single and double stranded RNA and DNA and analogs thereof, such asphosphorothioate and phosphorodithioate oligodeoxynucleotides. Additionally, the genetic material may be combined, for example, with proteins or other polymers.
- Examples of genetic therapeutics that may be included in the microbubbles include DNA encoding at least a portion of an HLAgene, DNA encoding at least a portion of dysfrophin, DNA encoding at least a portion of CFTR, DNA encoding at least a portion of IL-2, DNA encoding at least a portion of TNF, an antisense oligonucleotide capable of binding the DNA encoding at least a portion of Ras.
- DNA encoding certain proteins may be used in the treatment of many different types of diseases.
- adenosine deaminase may be provided to treat ADA deficiency
- tumor necrosis factor and or interleukin-2 may be provided to treat advanced cancers
- HDL receptor may be provided to treat liver disease
- thymidine kinase may be provided to treat ovarian cancer, brain tumors, or HIV infection
- HLA-B7 may be provided to treat malignant melanoma
- interleukin-2 may be provided to treat neuroblastoma, malignant melanoma, or kidney cancer
- interleukin-4 may be provided to treat cancer
- HIV env may be provided to treat HIV infection
- antisense ras/p53 may be provided to treat lung cancer
- Factor VIII may be provided to treat Hemophilia B. See, for example, Science 258, 744-746.
- a single microbubble may contain more than one therapeutic or microbubbles containing different therapeutics may be co-administered.
- a monoclonal antibody capable of binding to melanoma antigen and an oligonucleotide encoding at least a portion of IL-2 may be administered in a single microbubble.
- the phrase "at least a portion of,” as used herein, means that the entire gene need not be represented by the oligonucleotide, so long as the portion of the gene represented provides an effective block to gene expression.
- microbubbles including a therapeutic can be administered before, after, during or intermittently with the administration of microbubbles without a therapeutic.
- microbubbles without a therapeutic and microbubbles including a coagulant such as thrombin can be administered to a patient having liver cancer.
- Activating the light activated drug included with the microbubbles serves to rapture the microbubbles and release the light activated drug and thrombin from the microbubbles. Further activation of the light activated drag can cause tissue death and the thrombin can cause coagulation in and around the damaged tissues.
- Prodrags may be included in the microbubbles, and are included within the ambit of the term therapeutic, as used herein.
- Prodrags are well known in the art and include inactive drug precursors which, when exposed to high temperature, metabolizing enzymes, cavitation and/or pressure, in the presence of oxygen or otherwise, or when released from the microbubbles, will form active drugs.
- Such prodrags can be activated via the application of ultrasound to the prodrag-containing microbubbles with the resultant cavitation, heating, pressure, and/or release from the microbubbles. Suitable prodrags will be apparent to those skilled in the art, and are described, for example, in Sinkula et al., J. Pharm. Sci.
- Prodrags may comprise inactive forms of the active drugs wherein a chemical group is present on the prodrug which renders it inactive and/or confers solubility or some other property to the drug.
- the prodrags are generally inactive, but once the chemical group has been cleaved from the prodrug, by heat, cavitation, pressure, and/or by enzymes in the surrounding environment or otherwise, the active drug is generated.
- prodrags are well described in the .art, .and comprise a wide variety of drags bound to chemical groups through bonds such as esters to short, medium or long chain aliphatic carbonates, hemiesters of organic phosphate, pyrophosphate, sulfate, amides, amino acids, azo bonds, carbamate, phosphamide, glucosiduronate, N-acetylglucosamine and beta-glucoside.
- bonds such as esters to short, medium or long chain aliphatic carbonates, hemiesters of organic phosphate, pyrophosphate, sulfate, amides, amino acids, azo bonds, carbamate, phosphamide, glucosiduronate, N-acetylglucosamine and beta-glucoside.
- drugs with the parent molecule and the reversible modification or linkage are as follows: convallatoxin with ketals, hydantoin with alkyl esters, chlorphenesin with glycine or alanins esters, acetaminophen with caffeine complex, acetylsalicylic acid with THAM salt, acetylsalicylic acid with acetamidophenyl ester, naloxone with sulfateester, 15-methylprostaglandin F sub 2 with methyl ester, procaine with polyethylene glycol, erythromycin with alkyl esters, clindamycin with alkylesters or phosphate esters, tetracycline with betains salts, 7-acylaminocephalosporins with ring-substituted acyloxybenzyl esters, nandrolone with phenylproprionate decanoate esters, estradiol with enol
- Prodrags may also be designed as reversible drag derivatives and utilized as modifiers to enhance drag transport to site-specific tissues.
- parent molecules with reversible modifications or linkages to influence transport to a site specific tissue and for enhanced therapeutic effect include isocyanate with haloalkyl nitrosurea, testosterone with propionateester, methotrexate (S-S'-dichloromethotrexate) with dialkyl esters, cytosine arabinoside with 5'-acylate, nitrogen mustard (2,2'-dichloro-N-methyldiethylamine), nitrogen mustard with aminomethyltetracycline, nitrogen mustard with cholesterol or estradiol ordehydroepiandrosterone esters and nitrogen mustard with azobenzene.
- a particular chemical group to modify a given drug may be selected to influence the partitioning of the drug into either the shell or the interior of the microbubbles.
- the bond selected to link the chemical group to the drag may be selected to have the desired rate of metabolism, e.g., hydrolysis in the case of ester bonds in the presence of serum esterases after release from the microbubbles.
- the particular chemical group may be selected to influence the biodistribution of the drug employed in the microbubbles, e.g., N,N-bis(2-chloroethyl)-phosphorodiamidicacid with cyclic phosphoramide for ovarian adenocarcinoma.
- the prodrags employed within the microbubbles may be designed to contain reversible derivatives which are utilized as modifiers of duration of activity to provide, prolong or depot action effects.
- nicotinic acid may be modified with dextran .and carboxymethlydextran esters, streptomycin with alginic acid salt, dihydrostreptomycin with pamoate salt, cytarabine (ara-C) with 5'-adamantoats ester, ara-adenosine (ara-A) with 5-palmirate and 5'-benzoate esters, amphotericin B with methyl esters, testosterone with 17- beta -alkyl esters, estradiol with formate ester, prostaglandin with 2-(4-imidazolyl) ethylamine salt, dopamine with amino acid amides, chloramphenicol with mono- and bis(trimethylsilyl) ethers, and cycloguanil with pamoate salt
- a depot or reservoir of long-acting drag may be released in vivo from the prodrug bearing microbubbles.
- compounds which are generally thermally labile may be utilized to create toxic free radical compounds.
- Compounds with azolinkages, peroxides and disulfide linkages which decompose with high temperature are preferred.
- azo, peroxide or disulfide bond containing compounds are activated by cavitation and/or increased heating caused by the interaction of ultra with the microbubbles to create cascades of free radicals from these prodrags entrapped therein.
- Exemplary drags or compounds which may be used to create free radical products include azo containing compounds such as azobenzene ⁇ '-azobisisobutyronitrile, azodicarbonamide, azolitmin, azomycin, azosemide, azosulfamide, azoxybenzene, aztreonam, sudan III, sulfachrysoidine, sulfamidochrysoidine and sulfasalazine, compoimds containing* disulfide bonds such as sulbentine, thiamine disulfide, thiolutin, thiram, compounds containing peroxides such as hydrogen peroxide and benzoylperoxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-amidopropane) dihydrochloride, and
- a microbubble having oxygen gas on its interior should create extensive free radicals with cavitation.
- metal ions from the transition series especially manganese, iron and copper can increase the rate of formation of reactive oxygen intermediates from oxygen.
- the formation of free radicals in vivo can be increased.
- These metal ions may be incorporated into the microbubbles as freesalts, as complexes, e.g., with EDTA,
- DTP A, DOTA or desferrioxamine or asoxides of the metal ions.
- derivatized complexes of the metal ions may be bound to lipid head groups, or lipophilic complexes of the ions may be incorporated into a lipid bilayer, for example.
- thermal stimulation e.g., cavitation
- these metal ions then will increase the rate of formation of reactive oxygen intermediates.
- radiosensitizers such as metronidazole .and misonidazole may be incorporated into the gas-filled liposomes to create free radicals on thermal stimulation.
- an acylated chemical group may be bound to a drag via an ester linkage which would readily cleave in vivo by enzymatic action in serum.
- the acylated prodrag can be included in the microbubble. When the microbubble is raptured, the prodrag will then be exposed to the serum. The ester linkage is then cleaved by esterases in the serum, thereby generating the drug.
- ultrasound may be utilized not only to activate the light activated drag so as to burst the gas-filled liposome, but also to cause thermal effects which may increase the rate of the chemical cleavage and the release of the active drug from the prodrug.
- the microbubbles may also be designed so that there is a symmetric or an asymmetric distribution of the therapeutic both inside and outside of the microbubble.
- the particular chemical stracture of the therapeutics may be selected or modified to achieve desired solubility such that the therapeutic may either be encapsulated within the interior of the microbubble or couple with the shell of the microbubble.
- the shell-bound therapeutic may bear one or more acyl chains such that, when the microbubble is popped or heated or ruptured via cavitation, the acylated therapeutic may then leave the surface and or the therapeutic may be cleaved from the acyl chains chemical group.
- other therapeutics may be formulated with a hydrophobic group which is aromatic or sterol in stracture to incorporate into the surface of the microbubble.
- the liposomes can be "fast breaking".
- fast breaking liposomes the light activated drug-liposome combination is stable in vitro but, when admimstered in vivo, the light activated drag is rapidly released into the bloodstream where it can associate with serum lipoproteins.
- the localized delivery of liposomes combined with the fast breaking nature of the liposomes can result in localization of the light activated drag and/or the therapeutic in the tissues near the catheter.
- the fast breaking liposomes can prevent the liposomes from leaving the vicinity of the catheter intact and then concentrating in non-targeted tissues such as the liver. Delivery of ultrasound energy from the catheter can also serve to break apart the liposomes after they have been delivered from the catheter.
- a catheter for locally delivering a media including a light activated drug includes an elongated body with at least one utility lumen extending through the elongated body.
- the utility lumens can be used to deliver the media including the light activated drug locally to a tissue site and or to receive a guidewire so the catheter can be guided to the tissue site.
- the ultrasound assembly can include an ultrasound transducer designed to transmit ultrasound energy which activates the light activated drug.
- a support member can support the ultrasound transducer adjacent to an outer surface of the elongated body so as to define a chamber between the ultrasound transducer and the elongated body.
- the chamber can be filled with a material which creates a low acoustic impedance to reduce the exposure of at least one utility lumen within the elongated body to ultrasound energy delivered from the ulfrasound transducer.
- the chamber can be filled with a material which absorbs, reflects or prevents fransmission of ulfrasound energy through the chamber.
- the chamber can be evacuated to reduce transmission of ulfrasound energy through the chamber. Reducing the exposure of at least one lumen to the ultrasound energy reduces exposure of media delivered through the at least one lumen to the ulfrasound energy. As a result, the effect of the ultrasound energy on the light activated drug is reduced until the light activated drag has been delivered out of the catheter. Further, ultrasound energy is known to rapture microbubbles. As a result, when the media includes microbubbles, the chamber reduces the opportunity for the ultrasound energy to rapture the microbubbles within the catheter.
- the support member can have ends which extend beyond the ultrasound member.
- the chamber can be positioned adjacent to the entire longitudinal length of the ultrasound transducer and can extend beyond the ends of the ultrasound transducer. This configuration maximizes the portion of the ultrasound transducer which is adjacent to the chamber. Increasing the portion of ultr.asound transducer adjacent to the chamber can reduce the amount of ultrasound energy transmitted to the utility lumens.
- the ultrasound assembly can include an outer coating over the ulfrasound transducer. Temperature sensors can be positioned in the outer coating adjacent to ultrasound transducer. This position of the temperature sensors feedback regarding the temperature adjacent to the ulfrasound transducers where the thermal energy has a reduced opportunity to dissipate. As a result, the temperature sensors provide a measure of the temperature on the exterior surface of the transducer.
- FIGS 1 A- IB illustrates a catheter 10 for delivering a media including a light activated drag to a tissue site.
- the catheter 10 includes an ultrasound assembly 12 for delivering ultrasound energy to light activated drag within the tissue site.
- the catheter 10 includes an elongated body 14 with a utility lumen 16 extending through the elongated body 14.
- the utility lumen 16 can receive a guidewire (not shown) so the catheter 10 can be threaded along the guidewire.
- the utility lumen 16 can also be used for the delivering media which include a light activated drug.
- a fiber optic can also be positioned in the utility lumen 16 to provide a view of the tissue site or to provide light to the tissue site. As a result, the catheter can also be used as an endoscope.
- the ultrasound assembly 12 can also include an outer coating 18. Suitable outer coatings 18 include, but are not limited to, polyimide, parylene and polyester. An ultrasound transducer 20 is positioned within the outer coating 18. Suitable ultrasound transducers 20 include, but are not limited to, PZT-4D, PZT-4, PZT-8 and cylindrically shaped piezoceramics. When the ultrasound transducer 20 has a cylindrical shape, the ultrasound transducer 20 can encircle the elongated body 14 as illustrated in Figure lC.
- One or more temperature sensors 22 can be positioned in the outer coating 18.
- the temperature sensors 22 can be positioned adjacent to the ultrasound fransducer 20 to provide feedback regarding the temperature adjacent to the ulfrasound transducer 20.
- the temperature sensors can be in electrical communication with an electrical coupling 24.
- the electrical coupling 24 can be coupled with a feedback control system (not shown) which adjusts the level of the ultrasound energy delivered from the ultrasound transducer 20 in response to the temperature at the temperature sensors 22.
- the catheter 10 can include a perfusion lumen 25.
- Ther perfusion lumen 25 allows fluid to flow foom outside the catheter into the utility lumen 16.
- fluid flow which is obstructed by the ulfr.asound assembly can continue through the perfusion lumen 25 and the utility lumen.
- the ulfrasound assembly 12 can be flush with the elongated body 14.
- the ultrasound transducer 20 and the temperature sensors 22 can be positioned within the elongated body 14. This configuration of elongated body 14 and ulfrasound transducer 20 can eliminate the need for the outer coating 18 illustrated in
- the catheter 10 can also include a media delivery port 26, a media inlet port 28 and a second utility lumen 16A.
- the media inlet port 28 is designed to be coupled with a media source (not shown). Media can be transported from the media source and through the media delivery port 26 via the second utility lumen
- a guidewire can be left within the utility lumen 16 while media is delivered via the second utility lumen 16 A.
- Figure 4A illustrates a catheter 10 including a plurality of ultrasound assemblies 12.
- Figures 4B-4C are cross sections of a catheter 10 with a second utility lumen 16A coupled with the media delivery ports 26.
- the second utility lumen 16 A can also be coupled with the media inlet port 28 illustrated in Figure 4A.
- the media inlet port 28 is designed to be coupled with a media source (not shown). Media can be transported from the media source and through the media delivery ports 26 via the second utility lumen 16 A.
- the catheter 10 can include a balloon 30 as illustrated in Figure 5 A. The balloon
- the membrane 30 can be constructed from an impermeable material or a permeable membrane or a selectively permeable membrane which allows certain media to flow through the membrane while preventing other media from flowing through the membrane.
- Suitable membranous materials for the balloon 30 include, but are not limited to cellulose, cellulose acetate, polyvinylchloride, polyolefin, polyurethane and polysulfone.
- the membrane pore sizes are preferably 5 A-2 ⁇ m, more preferably 50 A-900 A and most preferably 100 A- 300 A in diameter.
- an ultrasound assembly 12 a first media delivery port 26A and a second media delivery port 26B can be positioned within the balloon 30.
- the first and second media delivery ports 26A, 26B are coupled with a second utility lumen
- the second .and third utility lumens 16 A, 16B can be coupled with the same media inlet port 28 or with independent media inlet ports 28.
- different media can be delivered via the second and third media delivery ports 26 A, 26B.
- a medication media can be delivered via the third utility lumen 16B and an expansion media can be delivered via the second utility lumen 16A.
- the medication media can include drugs or other medicaments which can provide a therapeutic effect.
- the expansion media can serve to expand the balloon 30 or wet the membrane comprising the balloon 30. Wetting the membrane comprising the balloon 30 can cause a minimally permeable membrane to become permeable.
- the ultrasound assembly 12 can be positioned outside the balloon 30 as illustrated in Figures 6A-6C.
- the balloon 30 is positioned distally of the ulfrasound assembly 12 and in Figure 6B the ultrasound assembly 12 is positioned distally of the balloon 30.
- Figure 6C is a cross section a catheter 10 with an ultrasound assembly 12 positioned outside the balloon 30.
- the catheter includes a second utility lumen 16A coupled with a first media delivery port 26A.
- the second utility lumen 16A can be used to deliver an expansion media and or a medication media to the balloon 30.
- the balloon 30 is constructed from a permeable membrane, the medication media and/or the expansion media can pass through the balloon 30.
- the balloon 30 when the balloon 30 is constructed from a selectively permeable membrane, particular components of the medication media and or the expansion media can pass through the balloon 30. Pressure can be used to drive the media or components of the media across the balloon 30. Other means such as phoresis can also be used to drive the media or components of the media across the balloon 30.
- the ultrasound assembly 12 may be positioned at the distal end of the catheter 10.
- the second utility lumen 16A can be used to deliver an expansion media and or a medication media to the balloon 30.
- the utility lumen 16 can be used to deliver a medication media as well as to guide the catheter 10 along a guidewire.
- the catheter 10 can include a second media delivery port 26B positioned outside the balloon.
- the ultrasound assembly 12 and the second media delivery port 26B are positioned distally relative to a balloon 30, however, the balloon 30 can be positioned distally relative to the ultrasound assembly 12 and the second media delivery port 26B.
- the ultrasound assembly 12 is positioned distally of the second media delivery port 26B and in Figure 7B the second media delivery port 26B is positioned distally of the ultrasound assembly 12.
- Figure 7C is a cross section of the catheter 10 illustrated in Figure 7 A.
- the catheter 10 includes first and second media delivery ports 26A, 26B coupled with a second utility lumen 16A .and third utility lumen 16B.
- the second and third utility lumens 16A, 16B can be coupled with independent media inlet ports 28 (not shown).
- the second utility lumen 16 A can be used to deliver an expansion media and/or a medication media to the balloon 30 while the third utility lumen 16B can be used to deliver a medication media through the second media delivery port 26B.
- the catheter 10 can include a first balloon 30A and a second balloon 30B.
- the ultrasound assembly 12 can be positioned between the first and second balloons 30A, 30B.
- a second media delivery port 26B can optionally be positioned between the first and second balloons 30A, 30B.
- the second media delivery port 26B is positioned distally relative to the ultrasound assembly and in Figure 8B the ultrasound assembly is positioned distally relative to the second media delivery port 26B.
- Figure 8C is a cross section of the first balloon 30A illustrated in Figure 8B.
- the catheter includes a second, third and fourth utility lumens 16 A, 16B, 16C.
- the second utiUty lumen 16A is coupled with a first media delivery port 26A within the first balloon.
- the third utility lumen 16B is coupled with the second media delivery port 26B and the fourth utility lumen 16C is coupled with a third media delivery port 26C in the second balloon 30B (not shown).
- the second and fourth utility lumens 16A, 16C can be used to deliver expansion media and/or medication media to the first and second balloon 30A, 30B.
- the second and fourth utility lumens 16A, 16C can be coupled with the same media inlet port or with independent media inlet ports (not shown). When the second and fourth utility lumens are coupled with the same media inlet port, the pressure within the first .and second balloons 30A, 30B will be similar.
- the third utility lumen 16B can be coupled with an independent media inlet port and can be used to deliver a medication media via the second media delivery port 26B.
- Figures 9A-9I illustrate operation of various embodiments of catheters 10 for delivering ultrasound energy to a light activated drug within a tissue site.
- Figures 9A-9I illustrate the tissue site 32 as an atheroma in a vessel 34, however, it is contemplated that the catheter 10 can be used with other tissue sites 32 such as a tumor and that the catheter 10 can be positioned within the vasculature of the tumor.
- the catheter 10 is illustrated as being within a vessel 34.
- the catheter 10 can be positioned within the vessel 34 by applying conventional over-the-guidewire techniques and can be verified by including radiopaque markers upon the catheter 10.
- the catheter 10 is positioned so the ultrasound assembly 12 is adjacent to a tissue site 32 within a vessel 34.
- the guidewire is removed from the utility lumen 16 .and media can be delivered via the utility lumen 16 as illustrated by the arrows 36.
- the media includes microbubbles
- the media is delivered to the tissue site 32 via the utility lumen 16 and ultrasound energy 40 is delivered from the ultrasound assembly 12.
- Suitable periods for delivering the ultrasound energy include., but are not limited to, 1 minute to three hours, 2 minutes to one hour and 10 - 30 minutes.
- Suitable intensities for the ultrasound energy include, but are not limited to, 0.1-
- Suitable frequencies for the ultrasound energy include, but are not lmited to, 10 kHz- 100 MHz and 10 kHz- 50 MHz but is preferably 20 kHz- 10 MHz.
- Suitable ultrasound energies also include, but are not limited to 0.02 to 10 w/cm 2 at a frequency of about 20 KHz to about 10 MHz and more preferably about 0.3 W/cm 2 at a frequency of about 1.3 MHz.
- the ultrasound energy can be intermittently switched between a first and second frequency to increase the efficiency of microbubble rapture and to increase activation of the light activated drug.
- the ultrasound energy can be switched between about 100 kHz and about 270 kHz in short pulses of approximately 0.001-10 seconds duration.
- the ultrasound energy can be switched between first and second intensities.
- the first and second frequencies can be provided by different ultrasound transducers.
- the first and second intensities can be provided by different ultrasound transducers.
- each transducer can simultaneously transmit ultrasound energy with different intensity and/or frequency.
- the delivery of ultrasound energy 40 can be before, after, during or intermittently with the delivery of the microbubbles 38.
- the microbubbles 38 can be "fast breaking" so they rapture upon exiting the utility lumen and being exposed to the vessel 34.
- the ultrasound energy from the ultrasound assembly 12 can cause the microbubbles 38 within the delivered media to rapture.
- the ultrasound assembly can be designed to reduce the exposure of media within the catheter 10 to the ultrasound energy from the ultrasound assembly 12.
- the catheter 10 is so designed, the number of microbubbles 38 which rapture within the catheter is reduced and the number of microbubbles 38 which rupture outside the catheter is increased. Delivery of the ulfrasound energy before delivery of the light activated drag can enhance absorption of the light activated drug into the tissue site.
- a pre-determined time after delivery of the light activated drug can provide the light activated drug time to penetrate the tissue site.
- the pre-determined time can be of sufficient duration that at least a portion of the light activated drag penetrates into the tissue site.
- the pre-determined time can also be of sufficient duration that the light activated drug localizes within the lipid rich tissue of the atheroma.
- Sufficient time between delivery of the media and the ultrasound energy include but are not limited to, 1 minute to 48 hours, 1 minute to 3 hours, 1 to 15 minutes .and 1 to 2 minutes.
- the ultr.asound energy from the ultiasound assembly 12 can activate the light activated dug within the tissue site 32 so as to cause tissue death within the tissue site 32.
- ultrasound energy 40 is delivered from the ultrasound transducer 20 and a media is delivered through the media delivery port 26 as illustrated by the arrows 36.
- the delivery of ultrasound energy 40 can be before, after, during or intermittently with the delivery of the media via the media delivery port 26.
- the guidewire 104 can remain in the utility lumen 16 during the delivery of the media via the media delivery ports 26.
- the ultrasound assembly can be designed to reduce the transmission of the ultrasound energy into the utility lumen. Because the fransmission of ultrasound energy 40 into the utility lumen 16 is reduced, the change in the frequency of the ultrasound transducer 20 which is due to the presence of the guidewire in the utility lumen 16 is also reduced.
- a catheter 10 including a balloon 30 is positioned with the balloon adjacent to the tissue site 32.
- the balloon 30 is expanded into contact with the tissue site 32.
- the catheter 10 can include a perfusion lumen which permits a continuous flow of fluid from the vessel through the utility lumen during the partial or full obstruction of the vessel by the balloon.
- a media can be delivered to the tissue site 32 via the balloon 30.
- the media can serve to wet the membrane or can include a drag or other medicament which provides a therapeutic effect.
- Ultrasound energy 40 can be delivered from the ultrasound assembly 12 before, after, during or intermittently with the delivery of the media.
- the ulfrasound energy 40 can serve to drive the media across the membrane via phonophoresis or can enhance the therapeutic effect of the media.
- a catheter 10 with an ultrasound assembly 12 outside a balloon 30 is positioned at the tissue site 32 so the ultrasound .assembly 12 is adjacent to the tissue site 32.
- a fluid within the vessel flows past the balloon as indicated by the arrow 42.
- the balloon 30 is expanded into contact with the vessel 34.
- the balloon 30 can be constructed from an impermeable material so the vessel 34 is occluded. As a result, the fluid flow through the vessel 34 is reduced or stopped.
- a medication media is delivered through the utility lumen 16 and ultrasound energy 40 is delivered from the ultrasound assembly 12.
- the medication media can be delivered via the media delivery port 26.
- a first medication media can be delivered via the media delivery port 26 while a second medication media can be delivered via the utility lumen 16 or while a guidewire is positioned within the utility lumen 16.
- the ultrasound energy 40 can be delivered from the ultrasound assembly 12 before, after, during or intermittently with the delivery of the media.
- the occlusion of the vessel 34 before the delivery of the media can serve to prevent the media from being swept from the tissue site 32 by the fluid flow.
- the balloon 30 illustrated in Figures 9F-9G is positioned proximally relative to the ulfrasound assembly 12, the fluid flow through the vessel 34 can also be reduced by expanding a single balloon 30 which is positioned distally relative to the ultrasound assembly 12.
- a catheter 10 including a first balloon 30A and a second balloon 30B is positioned at a tissue site 32 so the ultrasound assembly 12 is positioned adjacent to the tissue site 32.
- a fluid within the vessel 34 flows past the balloon 30 as indicated by the arrow 42.
- the first .and second balloons 30A, 30B are expanded into contact with the vessel 34.
- the first and second balloons 30A, 30B can be constructed from an impermeable material so the vessel 34 is occluded proximally and distally of the ultrasound assembly 12. As a result, the fluid flow adjacent to the tissue site 32 is reduced or stopped.
- a medication media is delivered through the media delivery port 26 and ulfrasound energy 40 is delivered from the ulfrasound assembly 12.
- the ultrasound energy 40 can be delivered from the ulfrasound assembly 12 before, after, during or intermittently with the delivery of the media.
- the occlusion of the vessel 34 before the delivery of the media can serve to prevent the media from being swept from the tissue site 32 by the fluid flow.
- the media can be systemically delivered.
- the catheter 10 is positioned adjacent to the tissue site before, after or during the systemic administration of the media.
- the ulfrasound energy can be delivered after the microbubbles have had sufficient time to reach the desired tissue site in sufficient concentrations.
- a level of ultrasound which ruptures the microbubbles is then delivered from the ultrasound assembly. After rupture of the microbubbles, the delivery of ultrasound energy can be stopped to provide the light activated drag or other therapeutic time to penetrate the tissue site.
- the delivery of the ultrasound energy can also be continuous to maximize the number of microbubbles which are burst.
- the behavior of the light activated drag within the patient must be taken into consideration.
- many light drags such as the macrocycles, initially disperse throughout the body and where they are taken up by most tissues. After a period of time, usually between 3 and 48 hours, the drag clears from most normal tissue and is retained to a greater degree in lipid rich regions such as the liver, kidney, tumor and atheroma.
- the tissue site is not a lipid rich region, the ultrasound energy should be delivered to the tissue site within 3 to 48 hours of systemically administering the media.
- improved results can be achieved by waiting 3 to 48 hours after systemic administration of the media before delivering the ultrasound energy.
- Figure 10A provides a cross section of an ultrasound assembly which reduces fransmission of ultrasound energy from the ultrasound fransducer into the catheter.
- the ultrasound assembly 12 includes a support member 44.
- Suitable support members 44 include, but are not limited to, polyimide, polyester .and nylon.
- the support member 44 can be attached to the ultrasound transducer 20.
- Suitable means for attaching the ultrasound transducer 20 to the support member 44 include, but are not limited to, adhesive bonding and thermal bonding.
- the support member 44 supports the ultrasound member 44 at an external surface 46 of the elongated body 14 such that a chamber 48 is defined between the ultrasound transducer 20 and the external surface 46 of the elongated body 14.
- the chamber 48 preferably has a height from .25-10 ⁇ m, more preferably from .50-5 ⁇ m and most preferably from .0-1.5 ⁇ m.
- the support member 44 can be supported by supports 50 positioned at the ends 52 of the support member 44 as illustrated in Figure 10B.
- the supports 50 can be integral with the support member 44 as illusfrated in Figure IOC.
- the outer coating 18 can serve as the supports as illustrated in Figure 10D.
- the ends 52 of the support member 44 can extend beyond the ends 54 of the ultrasound transducer 20.
- the supports 50 can be positioned beyond the ends 54 of the ultrasound transducer 20.
- the chamber 48 can extend along the longitudinal length 56 of the ultrasound transducer 20, maximizing the portion of the ultrasound transducer 20 which is adjacent to the chamber 48.
- the chamber 48 can be filled with a medium which absorbs ultrasound energy or which prevents transmission of ultrasound energy.
- Suitable gaseous media for filling the chamber 48 include, but are not limited to, helium, argon, air and nitrogen.
- Suitable solid media for filling the chamber 48 include, but are not limited to, silicon and rabber.
- the chamber 48 can also be evacuated. Suitable pressures for an evacuated chamber 48 include, but are not limited to, negative pressures to -760 mm Hg.
- the ultrasound assembly can include a second ultrasound transducer 20A as illusfrated in Figures 11 A- 11 H.
- a second ultrasound transducer 20A as illusfrated in Figures 11 A- 11 H.
- one ultrasound transducer encircles the other and in Figures 11D-1 IH the ultrasound transducers are longitudinally adjacent to one another.
- the ultrasound transducers 20, 20A can be in contact with one another as illustrated in Figures 11 A, 1 IE and 1 IH or separated from one another as illustrated in Figures 11B-1 ID, 1 IF and 1 IG.
- a single chamber 54 can be defined between the ulfrasound transducers 20, 20A and the external surface 46 of the elongated body 14 as illustrated in Figures 11C, 1 IF and 1 IG or a different chamber can be defined between each of the ulfrasound transducers 20, 20A and the external surface 46.
- the ulfrasound transducers 20, 20A in Figures 11A-11C are illustrated as having the same longitudinal length, the longitudinal length may be different.
- the different temperature sensors can be positioned adjacent to different ulfrasound transducers 20, 20 A.
- the temperature adjacent to different ultrasound transduers 20, 20A can be detected and the level of ultrasound energy produced by each ulfrasound transducer adjusted in repsonse to the detected temerature.
- the transducers 20, 20A may be constructed from the same or different materials. Both transducers 20,
- one transducer 20A may be configured to radiate ultrasound energy in the same direction. Further, one transducer may be configured to transmit ultrasound energy in a radial direction and the other in a longitudinal direction in order to increase the angular spectrum over which ulfrasound energy can be simultaneously transmitted.
- the ultrasound transducers can be configured to fransmit ultrasound energy having the same or different characteristics. The transmission of ultrasound energy with different characteristics allows the same ultrasound assemblies to be used to perform different functions. For instance, one ultrasound transducer can transmit a frequency which is appropriate for activating a light activated drag while the second ultrasound transducer transmits a frequency appropriate for enhancing penetration of a therapeutic agent into the treatment site.
- the transducers can be operated independently or simultaneously.
- the ultrasound assembly When the transducers are operated simultaneously, the ultrasound assembly produces a waveform which is more complex than a single ultrasound transducer. More complex waveforms can provide advantages such as more efficient rapture of microbubbles. It is also contemplated that the ultrasound assembly can include three or more ulfrasound transducers arranged similar to the transducers illustrated in Figures 11 A- 11 H.
- the ultrasound assembly 12 can be a separate module 58 as illusfrated in Figures 12A-12B.
- the catheter 10 includes a first catheter component 60 a second catheter component 62 and an ultrasound assembly module 58.
- the first and second catheter components 60, 62 include component ends 64 which are complementary to the ultrasound assembly module ends 66.
- the component ends 64 can be coupled with the ultrasound assembly module ends 66 as illustrated in Figure 12B. Suitable means for coupling the component ends 64 and the ultrasound assembly module ends 66 include, but are not limited to, adhesive, mechanical and thermal methods.
- the ultrasound assembly 12 can be integral with the catheter 10 as illustrated in Figure 12C.
- the outer coating 18 can have a diameter which is larger than the diameter of the elongated body 14 as illusfrated in Figure 10A or can be flush with the external surface 46 of the elongated body 14 as illusfrated in Figures 12A-12C.
- the ultrasound assembly 12 can be electrically coupled to produce radial vibrations of the ulfrasound fransducer 20 as illusfrated in Figures 13A-13B.
- a first line 68 is coupled with an outer surface 70 of the ultrasound fransducer 20 while a second line
- the first and second lines 68, 72 can pass proximally through the utility lumen 16 as illustrated in Figure 13 A. Alternatively, the first and second lines 68, 72 can pass proximally through line lumens 76 within toe catheter 10 as illustrated in Figure 13B.
- Suitable lines for the ultrasound transducer 20 include, but are not limited to, copper, gold and aluminum.
- Suitable frequencies for the ultrasound energy delivered by the ultrasound transducer 20 include, but are not limited to, 20 KHz to 2 MHz.
- the ultrasound assembly 12 can be electrically coupled to produce longitudinal vibrations of the ultrasound transducer 20 as illustrated in Figures 13C-13D.
- a first line 68 is coupled with a first end 78 of the ultrasound transducer 20 while a second line 72 is coupled with a second end 80 of the ultrasound transducer 20.
- the distal portion 82 of the second line 72 can pass through the outer coating 18 as illustrated in Figure 13C.
- the distal portion 82 of the second line 72 can pass through line lumens 76 in the catheter 10 as illustrated in Figure 13D.
- the first and second lines 68, 72 can pass proximally through the utility lumen 16.
- the catheter 10 can include a plurality of ultrasound .assemblies.
- each ultrasound transducer 20 can each be individually powered.
- the elongated body 14 includes N ultrasound transducers 20, the elongated body 14 must include 2N lines to individually power N ultrasound transducers 20.
- each of the ultrasound transducers 20 can also be electrically coupled in serial or in parallel as illustrated in Figures 14A- 14B. These .arrangements permit maximum flexibility as they require only 2 lines.
- Each of the ultrasound transducers 20 receive power simultaneously whether the ultrasound transducers 20 .are in series or in parallel. When the ultrasound transducers 20 .are in series, less current is required to produce the same power from each ultrasound transducer
- the reduced current allows smaller lines to be used to provide power to the ultrasound transducers 20 and accordingly increases the flexibility of the elongated body 14.
- an ultrasound transducer 20 can break down and the remaining ultrasound transducers 20 will continue to operate.
- a common line 84 can provide power to each ultrasound transducer 20 while each ultrasound transducer 20 has its own return line 86.
- a particular ultrasound transducer 20 can be individually activated by closing a switch 88 to complete a circuit between the common line 84 and the particular ultrasound transducer's 20 return line 86. Once a switch 88 corresponding to a particular ultrasound transducer 20 has been closed, the amount of power supplied to the ultrasound transducer 20 can be adjusted with the corresponding potentiometer 90. Accordingly, an catheter 10 with N ultrasound transducers 20 requires only N+l lines and still permits independent control of the ultrasound transducers 20. This reduced number of lines increases the flexibility of the catheter 10. To improve the flexibility of the catheter 10, the individual return lines 86 can have diameters which are smaller than the common line 84 diameter.
- the diameter of the individual return lines 86 can be the square root of N times smaller than the diameter of the common line 84.
- the ultrasound assembly 12 can include at least one temperature sensor 22.
- Suitable temperature sensors 22 include, but are not limited to, thermistors, thermocouples, resistance temperature detectors (RTD)s, and fiber optic temperature sensors 22 which use thermalchromic liquid crystals.
- Suitable temperature sensor geometries include, but are not limited to, a point, patch, stripe and a band encircling the ultrasound transducer 20.
- the ulfrasound assembly 12 includes a plurality of temperature sensors 22, the temperature sensors 22 can be electrically connected as illustrated in Figure 15.
- Each temperature sensor 22 can be coupled with a common line 84 and then include its own return line 86. Accordingly, N+l lines can be used to independently sense the temperature at the temperature sensors 22 when N temperature sensors 22 are employed.
- a suitable common line 84 can be constructed from Constantine and suitable return lines
- the 86 can be constructed from copper.
- the temperature at a particular temperature sensor 22 can be determined by closing a switch 88 to complete a circuit between the thermocouple's return line 86 and the common line 84.
- the temperature sensors 22 are thermocouples, the temperature can be calculated from the voltage in the circuit.
- the individual return lines 86 can have diameters which are smaller than the common line 84 diameter.
- Each temperature sensor 22 can also be independently electrically coupled. Employing N independently electrically coupled temperature sensors 22 requires 2N lines to pass the length of the catheter 10. The catheter 10 flexibility can also be improved by using fiber optic based temperature sensors 22. The flexibility can be improved because only N fiber optics need to be employed sense the temperature at N temperature sensors 22.
- the catheter 10 can be coupled with a feedback control system as illustrated in Figure 16.
- the temperature at each temperature sensor 22 is monitored and the output power of an energy source adjusted accordingly.
- the physician can, if desired, override the closed or open loop system.
- the feedback control system includes an energy source 92, power circuits 94 and a power calculation device 96 coupled with each ultrasound fransducer 20.
- a temperature measurement device 98 is coupled with the temperature sensors 22 on the catheter 10.
- a processing unit 100 is coupled with the power calculation device 96, the power circuits 94 and a user interface and display 102.
- the temperature at each temperature sensor 22 is determined at the temperature measurement device 98.
- the processing unit 100 receives a signals indicating the determined temperatures from the temperature measurement device 98.
- the determined temperatures can then be displayed to the user at the user interface and display 102.
- the processing unit 100 includes logic for generating a temperature control signal.
- the temperature control signal is proportional to the difference between the measured temperature .and a desired temperature.
- the desired temperature can be determined by the user.
- the user can set the predetermined temperature at the user interface and display 102.
- the temperature control signal is received by the power circuits 94.
- the power circuits 94 adjust the power level of the energy supplied to the ultrasound transducers 20 from the energy source 92. For instance, when the temperature control signal is above a particular level, the power supplied to a particular ulfrasound transducer 20 is reduced in proportion to the magnitude of the temperature control signal. Similarly, when the temperature control signal is below a particular level, the power supplied to a particular ultrasound transducer 20 is increased in proportion to the magnitude of the temperature control signal.
- the processing unit 100 monitors the temperature sensors 22 and produces another temperature control signal which is received by the power circuits 94.
- the processing unit 100 can also include safety control logic.
- the safety control logic detects when the temperature at a temperature sensor 22 has exceeded a safety threshold.
- the processing unit 100 can then provide a temperature control signal which causes the power circuits 94 to stop the delivery of energy from the energy source 92 to the ultrasound transducers 20.
- the processing unit 100 also receives a power signal from the power calculation device 96.
- the power signal can be used to determine the power being received by each ulfrasound fransducer 20. The determined power can then be displayed to the user on the user interface and display 102.
- the feedback control system can maintain the tissue adjacent to the ultrasound transducers 20 within a desired temperature range for a selected period of time.
- the ulfrasound transducers 20 can be electrically connected so each ultrasound transducer 20 can generate an independent output. The output maintains a selected energy at each ultrasound transducer 20 for a selected length of time.
- the processing unit 100 can be a digital or analog controller, or a computer with software. When the processing unit 100 is a computer it can include a CPU coupled through a system bus.
- the user interface and display 102 can be a mouse, keyboard, a disk drive, or other non- volatile memory systems, a display monitor, and other peripherals, as are known in the art. Also coupled to the bus is a program memory and a data memory.
- a profile of the power delivered to each ulfrasound transducer 20 can be incorporated in the processing unit 100 and a preset amount of energy to be delivered may also be profiled. The power delivered to each ultrasound transducer 20 can then be adjusted according to the profiles.
- Suitable light activated drags include, but are not limited to, fluorescein, merocyanin.
- preferred light activated drags include xanthene and its derivatives and the photoreactive pyrrole-derived macrocycles and their derivatives due to a reduced toxicity and an increased biological affinity.
- Suitable photoreactive pyrrole- derived macrocycles include, but are not limited to, naturally occurring or synthetic porphyrins, naturally occurring or synthetic chlorins, naturally occurring or synthetic bacteriochlorins, synthetic isobateriochlorins, phthalocyanines, naphtalocyanines, and expanded pyrrole-based macrocyclic systems such as porphycenes, sapphyrins, and texaphyrins. Examples of suitable pyrrole-based macrocyclic classes are illustrated in
- Figure 17B illusfrates a formula for the derivatives of texaphyrin: where M is H, CH 3 , a divalent metal cation selected from the group consisting of Ca(II), Mn(II), Co(II), Ni( ⁇ ), Zn(II),
- CdiTI Hg(II), Fe(II), Sm(II), and UO(II) or a trivalent metal cation selected from the group consisting of Mn(III), Co(III), Ni(III), Fe(III), Ho(III), Ce( ⁇ i), Y(III), In(HI), Pr(UI), Nd(i ⁇ ), Sm(m), Eu(III), Gd(m), Tb(III), Dy(III), Er(III), Tm(III), Yb(IH), Lu(i ⁇ ), La(i ⁇ ), and U(III).
- Preferred metals include Lu(III), Dy(III), Eu( ⁇ i), or Gd(i ⁇ ).
- Rstrich R 2 , R 3 , R 4 , R 5 and R can independently be hydrogen, hydroxyl, alkyl, hydroxyalkyl, alkoxy, hydroxyalkoxy, saccharide, carboxyalkyl, carboxyamidealkyl, a site-directing molecule, or a linker to a site-directing molecule where at least one of R,, R 2 , R 3 , R 4 , R 5 and R ⁇ is hydroxyl, hydroxyalkoxy, saccharide, alkoxy, carboxyalkyl, carboxyamidealkyl, hydroxyalkyl, a site-directing molecule or a couple to a site-directing molecule; and N is an integer less than or equal to 2.
- a preferred paramagnetic metal complex is the Gd(III) complex of 4,5-diethyl- 10,23 -dimethyl-9,24-bis(3-hydroxypropyl)- 16,17-bis[2-(2- methoxyethoxy)ethoxy]ethoxy-13,20,25,26,27- ⁇ entaazapentacyclo [20.2.1.1 3>6 .1 8 ' 11 .0 14 - 19 ] heptacosa-1,3,5,7,9,11 (27),12,14(19),15,17,20,22(25),23-tridecaene (“GdT2BET”) and a preferred diamagnetic metal complex is the Lu(III) complex of 4,5-diethyl- 10,23- dimethyl-9,24-bis(3-hydroxypropyl)-16,17-bis[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]- 13,20,25,26,27-pentaazapentacyclo[20.2.
- R t , R 2 , R 3 , R 4 , R 5 and R 6 may also independently be amino, carboxy, carboxamide, ester, amide sulfonato, aminoalkyl, sulfonatoalkyl, amidealkyl, aryl, etheramide or equivalent formulae conferring the desired properties.
- at least one of R,, R 2 , R 3 , R 4 , R 5 and P ⁇ is a site-directing molecule or is a couple to a site- directing molecule.
- R groups on the benzene ring portion of the molecule such as oligonucleotides, one skilled in the art would realize that derivatization at one position on the benzene potion is more preferred.
- Hydroxyalkyl means alkyl groups having hydroxyl groups attached.
- Alkoxy means alkyl groups attached to an oxygen.
- Hydroxyalkoxy means alkyl groups having ether or ester linkages, hydroxyl groups, substituted hydroxyl groups, carboxyl groups, substituted carboxyl groups or the like.
- Saccharide includes oxidized, reduced or substituted saccharide; hexoses such as D-glucose, D-mannose or D-galactose; pentoses such as D-ribose or D-arabinose; ketoses such as D-ribulose or D-fructose; disaccharides such as sucrose, lactose, or maltose; derivatives such as acetals, amines, and phosphorylated sugars; oligosacchrides, as well as open chain forms of various sugars, and the like.
- amine-derivatized sugars are galactosamine, glucosamine, and sialic acid.
- Carboxyamidealkyl means alkyl groups with secondary or tertiary amide linkages or the like.
- Carboxyalkyl means alkyl groups having hydroxyl groups, carboxyl or amide substituted ethers, ester linkages, tertiary amide linkages removed from the ether or the like.
- hydroxyalkoxy may be alkyl having independently hydroxy substituents and ether branches or may be C ( ⁇ . ⁇ ) H ((2 ⁇ +1) . 2 - ) O x O J , or
- hydroxyalkoxy or saccharide may be C ⁇ H ((2 ⁇ + ⁇ ) .
- n is a positive integer from 1 to 10
- y is zero or a positive integer less than ((2n + 1) - q)
- q is zero or a positive integer less than or equal to 2n+l
- R ⁇ is independently H, alkyl, hydroxyalkyl, saccharide, C (m . w) H ((2m+1) - 2M , ) O w O-, 0 2 CC (m . VV ⁇ ⁇ D . 2W) 0 W 0 2 or N(R)OCC (m .
- m is a positive integer from 1 to 10
- w is zero or a positive integer less than or equal to m
- z is zero or a positive integer less than or equal to ((2m+l) - 2w)
- R is H, alkyl, hydroxyalkyl, or C m H ((2m+ i).
- m is a positive integer from 1 to 10
- z is zero or a positive integer less than ((2m+l) - r)
- r is zero or a positive integer less than or equal to 2m+l
- R* is independently H, alkyl, hydroxyalkyl, or saccharide.
- Carboxyamidealkyl may be alkyl having secondary or tertiary amide linkages or (CH 2 ) ⁇ CONHR ⁇ , 0(CH 2 )-CONHR a , (CH 2 )-CON(R a )2, or 0(CH 2 ) n CON(R°)2 where n is a positive integer from 1 to 10, and R is independently H, alkyl, hydroxyalkyl, saccharide, O 2 CC (m . W) H ((2m+1) . 2lv) 0 w 0 z , N(R)OCC (m . H , ) H ((2m+1) . 2w) 0 H ,0-, or a site- directing molecule.
- m is a positive integer from 1 to 10
- w is zero or a positive integer less than or equal to ((2M+1) - 2w)
- R is H, alkyl, hydroxyalkyl, or C m H ((2m+1) . r) 0-R''-.
- m is a positive integer from 1 to 10
- w is zero or a positive integer less than or equal to m
- z is zero or a positive integer less than or equal to ((2M+1)
- R ⁇ is an oligonucleotide.
- Carboxyalkyl may be alkyl having a carboxyl substituted ether, an amide substituted ether or a tertiary amide removed from an ether or C-H ((2 _ +1) . ⁇ -) 0R c 1- or OC, ⁇ H ((2 ⁇ +1) . q) fi.
- n is a positive integer from 1 to 10; y is zero or a positive integer less than ((2n+l) - q), q is zero or a positive integer less than or equal to 2n+l, and R c is (CH 2 ) administratC0 2 R'', (CH 2 ) ⁇ COHR d , (CH 2 ) choirCON(R ,) 2 or a site -directing molecule.
- n is a positive integer from 1 to 10
- R d is independently H, alkyl, hydroxyalkyl, saccharide, C (m .
- m is a positive integer from 1 to 10
- z is zero or a positive integer less than ((2m+l) - 2w)
- R is H, alkyl, hydroxyalkyl, or C ⁇ ,, . r) OJH b r .
- m is a positive integer from 1 to 10
- z is zero or a positive integer less than ((2m+l)
- R c is an oligonucleotide.
- Exemplary texaphyrins are listed in Table 1.
- A19 YCOCH,-linker- site-directing molecule Y NH, O
- A22 CH,(CH,),OH CH,CH, CH,CH, ⁇ (CH,),C ⁇ -h ⁇ sta ⁇ une Preferred pyrrole-based macrocycles include, but are not limited to the hydro- monobenzoporphy ⁇ ns (the so-called “ft porphy ⁇ ne” or "Gp" compounds) disclosed in U.S. Patent Numbers 4,920,143 and 4,883,790 which are incorporated herein by reference. Typically, these compounds are poorly water-soluble (less than 1 mg/ml) or water-insoluble. Gp is preferably selected from the group consisting of those compounds having one of the formulae A-
- R 1 and R 2 can be independently selected from the group consisting of carbalkoxy (2-6C), alkyl (1-6C) sulfonyl, aryl (6- IOC), sulfonyl, aryl (6- IOC), cyano, and — CONR 5 CO— wherein R 5 is aryl (6- IOC) or alkyl (1-6C).
- each of R 1 and R 2 is carbalkoxy (2-6C).
- R 3 can be independently carboxyalkyl (2-6C) or a salt, amide, ester or acylhydrazone thereof, or is alkyl (1-6C).
- R 3 is — CH 2 CH 2 COOH or a salt, amide, ester or acylhydrazone thereof.
- R 4 is — CHCH 2 , — CHOR 4 wherein R 4' is H or alkyl (1-6C), optionally substituted with a hydrophilic substituent; —CHO; — COOR 4 , CH(OR ' )CH 3 ; CH(OR 4 ) CH 2 OR 4 ; — CH(SR 4 )CH 3 ; — HNR 4 2 )CH 3 ; — CH(CN) CH 3 ; — CH(COOR 4' )CH 3 ; — CH(OOCR 4' )CH 3 ; — CH(halo)CH 3 ;
- R 4 consists of 1-3 tetrapyrrole-type nuclei of the formula — L — P, wherein — L — is selected from the group consisting of
- P is a second Gp, which is one of the formulae A-F ( Figure 18) but lacks R 4 , or another porphyrin group.
- P is another porphy ⁇ n group
- P preferably has the formula illustrated in Figure 19: wherein each R is independently H or lower alkyl (1-4C); two of the four bonds shown as unoccupied on adjacent rings are joined to R 3 ; one of the remaining bonds shown as unoccupied is joined to R 4 ; and the other is joined to L; with the proviso that, if R 4 is — CHCH 2 , both R 3 groups cannot be carbalkoxyethyl.
- the preparation and use of such compounds is disclosed in U.S. Pat. Nos. 4,920,143 and 4,883,790, which are hereby incorporated by reference.
- BPD's are light activated drags that are designated as benzoporphyrin derivatives ("BPD's").
- BPD's are hydrolyzed forms, or partially hydrolyzed forms, of the rearranged products of formula A-C or formula A-D, where one or both of the protected carboxyl groups of R 3 are hydrolyzed.
- BPD-MA is particularly preferred.
- activating a light activated drug included in a microbubble can enhance rupture of the microbubble.
- Preferred light activated drags for including m a microbubble to enhance rupture of the microbubble include Hematporphyrin, Rose Bengal, Eosm Y, Erythrocin, Rhodamine B, and PHOTOFRIN.
- the formulae for these preferred light activated drugs are illustrated m Figure 21 where Rose Bengal, Eosm Y, Erythrocin and Rhodamine B are xanthene de ⁇ vanves.
- the light activated drag can be coupled with a site directing molecule to form a light activated drug conjugate.
- Suitable site-directing molecules include, but are not limited to: polydeoxyribonucleotides, oligodeoxyribonucleotides, polyribonucleotide analogs, oligoribonucleotide analogs; polyamides including peptides having an affinity for a biological receptor and proteins such as antibodies; steroids and steroid derivatives; hormones such as estradiol or histamine; hormone mimics such as morphine and further macrocycles such as sapphyrins and rubyrins.
- nucleotide refers to both naturally occurring and synthetic nucleotides, poly- and oligonucleotides and to analogs and derivatives thereof such as methylphosphonates, phosphotriesters, phosphorothioates, and phosphoramidates and the like.
- the oligonucleotide may be derivatized at the bases, the sugars, the end of the chains, or at the phosphate groups of the backbone to promote in vivo stability. Modifications of the phosphate groups are preferred in one embodiment since phosphate linkages are sensitive to nuclease activity. Preferred derivatives are the methylphosphonates, phosphotriesters, phosphorothioates, and phosphoramidates. Additionally, the phosphate linkages may be completely substituted with non-phosphate linkages such as amide linkages. Appendages to the ends of the oligonucleotide chains also provide exonuclease resistance.
- Sugar modifications may include alkyl groups attached to an oxygen of a ribose moiety in a ribonucleotide.
- the alkyl group is preferably a methyl group and the methyl group is attached to the 2' oxygen of the ribose.
- Other alkyl groups may be ethyl or propyl.
- a linker may be used to couple the light activated drag with the site directing molecule.
- exemplary linkers include, but are not limited to, amides, amine, thioether, ether, or phosphate covalent bonds as described in the examples for attachment of oligonucleotides.
- an oligonucleotide or other site-directing molecules is covalently bonded to a texaphyrin or other light activated drags via a carbon- nitrogen, carbon-sulfur, or a carbon-oxygen bond.
- the media can be an emulsion which includes a light activated drag.
- the emulsions described below are suitable for delivery into a body since they avoid pharmaceutically undesirable organic solvents, solubilizers, oils or emulsifiers.
- a wide range of light activated drag concentrations can be used in the emulsion. Suitable concentrations of light activated drag within the emulsion include, but are not limited to, approximately 0.01 to 1 gram 100 ml, preferably about 0.05 to about 0.5 gram/100 ml, and approximately 0.1 g/100 ml.
- the emulsion includes a lipoid as a hydrophobic component dispersed in a hydrophilic phase.
- the hydrophobic component of the emulsion comprises a pharmaceutically acceptable triglyceride, such as an oil or fat of a vegetable or animal nature, and preferably is selected from the group consisting of soybean oil, safflower oil, marine oil, black current seed oil, borage oil, palm kernel oil, cotton seed oil, corn oil, sunflower seed oil, olive oil or coconut oil. Physical mixtures of oils .and/or interesterfied mixtures can be employed.
- the preferred oils are medium chain length triglycerides having C 8 — C 10 chain length and more preferably saturated.
- the preferred triglyceride is a distillate obtained from coconut oil.
- the hydrophobic content of the emulsion is preferably approximately 5 to 50 g/100 ml, more preferably about 10 to about 30 g/100 ml and approximately 20 g/100 ml of the emulsion.
- the emulsion can also contains a stabilizer such as phosphatides, soybean phospholipids, nonionic block copolymers of polyoxethylene and polyoxpropylene (e.g. poloxamers), synthetic or semi-synthetic phospholipids, and the like.
- the preferred stabilizer is purified egg yolk phospholipid.
- the stabilizer is usually present in the composition in amounts of about 0.1 to about 10, and preferably about 0.3 to about 3 grams/100 ml, a typical example being about 1.5 grams/100 ml.
- the emulsion can also include one or more bile acids salts as a costablizer.
- the salts are pharmacologically acceptable salts of bile acids selected from the group of cholic acid, deoxycholic acid and gylcocholic acid, and preferably of cholic acid.
- the salts are typically alkaline metal or alkaline earth metal salts and preferably sodium, potassium, calcium or magnesium salts, and most preferably, sodium salts. Mixtures of bile acid salts can be employed if desired.
- the amount of bile acid salt employed is usually about 0.01 to about 1.0 and preferably about 0.05 to about 0.4 grams/100 ml, a typical example being about 0.2 grams/100 ml.
- Suitable pH for the emulsion includes, but is not limited to approximately 7.5 to
- the pH can be adjusted to the desired value, if necessary, by adding a pharmaceutically acceptable base, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and ammonium hydroxide.
- a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and ammonium hydroxide.
- Water can be added to the emulsion to achieve the desired concentration of various components within the emulsion.
- the emulsion can include auxiliary ingredients for regulating the osmotic pressure to make the emulsion isotonic with the blood. Suitable auxiliary ingredients include, but are not limited to, auxiliary surfactants, isotonic agents, antioxidants, nutritive agents, trace elements and vitamins.
- Suitable isotonic agents include, but are not limited to, glycerin, amino acids, such as alanine, histidine, glycine, .and/or sugar alcohols, such as xylitol, sorbitol and/or mannitol.
- Suitable concenfrations for isotonic agents within the emulsion include, but are not limited to, approximately 0.2 to about 8.0 grams/100 ml and preferably about 0.4 to about 4 grams/100 ml and most preferably 1.5 to 2.5 gram/100 ml.
- Antioxidants can be used to enhance the stability of the emulsion, a typical example being ⁇ -tocopherol.
- Suitable concentrations for the antioxidants include, but are not limited to approximately 0.005 to 0.5 grams/100 ml, approximately 0.02 to about 0.2 grams/100 ml and most preferably approximately 0.05 to 0.15 grams/100 ml.
- the emulsions can also contain auxiliary solvents, such as an alcohol, such as ethyl alcohol or benzyl alcohol, with ethyl alcohol being preferred.
- auxiliary solvents such as an alcohol, such as ethyl alcohol or benzyl alcohol, with ethyl alcohol being preferred.
- alcohol such as ethyl alcohol or benzyl alcohol
- ethyl alcohol being preferred.
- ethyl alcohol is typically present in amounts of about 0.1 to about 4.0, and preferably about 0.2 to about
- the ethanol is advantageous since it facilitates dissolution of poorly water-soluble light activated drugs and especially those that form crystals which may be very difficult to dissolve in the hydrophobic phase. Accordingly, the ethanol must be added directly to the hydrophobic phase during preparation to be effective. For maximum effectiveness, the ethanol should constitute about 5% to 15% by weight of the hydrophobic phase. In particular, if ethanol constitutes less than 5% by weight of the hydrophobic phase, dissolution of the light activated drug can become unacceptably slow. When the ethanol concentration exceeds 15%, large (>5 ⁇ m diameter) and poorly emulsified oil droplets can form in the emulsion.
- the particles in the emulsion are preferably less than about 5.0 ⁇ m in diameter, more preferably less than 2.0 ⁇ m in diameter and most preferably less than 0.5 ⁇ m or below.
- a typical emulsion is prepared using the following technique.
- the triglyceride oil is heated to 50°-70° C while sparging with nitrogen gas.
- the required amounts of stabilizer (e.g. egg yolk phospholipids), bile acid salt, alcohol (e.g. ethanol), antioxidant (e.g. ⁇ -to-copherol) and light activated drag are added to the triglyceride while processing for about 5 to about 20 minutes with a high speed blender or overhead mixer to ensure complete dissolution or uniform suspension.
- the required amounts of water and isotonic agent e.g. - glycerin
- the aqueous phase is transferred into the prepared hydrophobic phase and high speed blending is continued for another 5 to 10 minutes to produce a uniform but coarse preemulsion (or premix).
- This premix is then transferred to a conventional high pressure homogenizer (APV Gaulin) for emulsification at about 8,000-10,000 psi.
- AAV Gaulin conventional high pressure homogenizer
- the diameter of the dispersed oil droplets in the finished emulsion will be less than 5 ⁇ m, with a large proportion less than 1 ⁇ m.
- the mean diameter of these oil droplets will be less than 1 ⁇ m, preferably from 0.2 to 0.5 ⁇ m.
- the emulsion product is then filled into borosilicate (Type 1) glass vials which are stoppered, capped and terminally heat sterilized in a rotating steam autoclave at about 121° C.
- the vehicle composition employed is chemically inert with respect to the incorporated pharmacologically active light activated drug.
- the emulsions can exhibit very low toxicity following intravenous admimstration and exhibit no venous irritation and no pain on injection.
- the emulsions exhibit mimmal physical and chemical changes (e.e. formation of non-emulsified surface oil) during controlled shake-testing on a horizontal platform.
- the oil-in-water emulsions promote desirable pharmacoldnetics and tissue distribution of the light activated drug in vivo.
- the light activated drag can also be delivered to the body in a media which includes microbubbles.
- Suitable substrates for the microbubble include, but are not limited to, biocompatible polymers, albumins, lipids, sugars or other substances.
- U.S. patent numbers 5,665,383 and 5,665, 382 teaches a method for synthesizing microbubbles with a polymeric substrate and is inco ⁇ orated herein by reference.
- U.S. patent numbers 5,626,833 and 5,798,091 teach methods for synthesizing microbubbles with a surfactant substrate and are incorporated herein by reference.
- a preferred microbubble has a lipid substrate.
- U.S. patent numbers 5,772,929 teaches methods for synthesizing microbubbles with a lipid substrate.
- U.S. patent numbers 5,776,429, 5,715 ,824 and 5 ,770,222 teach preferred methods for synthesizing microbubbles with a lipid substrate and a gas interior and are incorporated herein by reference.
- Suitable microbubbles with a lipid substrate can be liposomes.
- the liposomes can be unilamellar vesicles having a single membrane bilayer or multilamellar vesicles having multiple membrane bilayers, each bilayer being separated from the next by an aqueous layer.
- a liposome bilayer is composed of two lipid monolayers having a hydrophobic
- the formula of the membrane bilayer is such that the hydrophobic (nonpolar) "tails” of the lipid monolayers orient themselves towards the center of the bilayer, while the hydrophilic "heads” orient themselves toward the aqueous phase.
- Either unilamellar or multilamellar or other types of liposomes may be used.
- a hydrophilic light activated drag can be entrapped in the aqueous phase of the liposome before the drag is delivered into the patient. Alternatively, if the light activated drag is lipophilic, it may associate with the lipid bilayer. Liposomes may be used to help "target" the light activated drag to an active site or to solubilize hydrophobic light activated drugs. Light activated drags are typically hydrophobic and form stable drag- lipid complexes.
- light activated drugs have low solubility in water at physiological pH's, but are also insoluble in (1) pharmaceutically acceptable aqueous- organic co-solvents, (2) aqueous polymeric solutions and (3) surfactant/micellar solutions.
- such light activated drags can still be "solubilized” in a form suitable for delivery into a body by using a liposome composition.
- a light activated drug BPD-MA See Formula A of Figure 20
- BPD-MA can be "solubilized” at a concentration of about 2.0 mg/ml in aqueous solution using an appropriate mixture of phospholipids to form encapsulating liposomes.
- the light activated drag can be included in many different types of liposomes, the following description discloses particular liposome compositions and methods for making the liposomes which are known to be "fast breaking".
- fast breaking liposomes the light activated drug-liposome combination is stable in vitro but, when administered in vivo, the light activated drag is rapidly released into the bloodstream where it can associate with serum lipoproteins.
- the localized delivery of liposomes combined with the fast breaking nature of the liposomes can result in localization of the light activated drag in the tissues near the catheter.
- the fast breaking liposomes can prevent the liposomes from leaving the vicinity of the catheter intact and then concentrating in non-targeted tissues such as the liver.
- Liposomes are typically formed spontaneously by adding water to a dry lipid film.
- Liposomes which include light activated drags can include a mixture of the commonly encountered lipids dimyristoyl phosphatidyl choline (“DMPC”) and egg phosphatidyl glycerol (“EPG").
- DMPC dimyristoyl phosphatidyl choline
- EPG egg phosphatidyl glycerol
- the presence of DMPC is important because DMPC is the major component in the composition to form liposomes which can solubilize and encapsulate insoluble light activated drags into a lipid bilayer.
- EPG egg phosphatidyl glycerol
- phospholipids in addition to DMPC and EPG, may also be present.
- additional phospholipids that may also be incorporated into the liposomes include phosphatidyl cho lines (PCS), including mixtures of dipalmitoyl phosphatidyl choline (DPPC) and distearoyl phosphatidyl choline (DSPC).
- PCS phosphatidyl cho lines
- DPPC dipalmitoyl phosphatidyl choline
- DSPC distearoyl phosphatidyl choline
- suitable phosphatidyl glycerols include dimyristoyl phosphatidyl glycerol (DMPG), DLPG and the like.
- DMPG dimyristoyl phosphatidyl glycerol
- DLPG DLPG
- Other types of suitable lipids that may be included are phosphatidyl ethanolamines
- the molar ratio of the light activated drag to the DMPC/EPG phospho lipid mixture can be as low as 1 :7.0 or may contain a higher proportion of phospholipid, such as 1 : 7.5. Preferably, this molar ratio is 1 : 8 or more phospholipid, such as 1:10, 1:15, or 1 :20. This molar ratio depends upon the exact light activated drug being used, but will assure the presence of a sufficient number of DMPC and EPG lipid molecules to form a stable complex with many light activated drags.
- the lipophilic phase of the lipid bilayer becomes saturated with light activated drag molecules. Then, any slight change in the process conditions can force some of the previously encapsulated light activated drug to leak out of the vesicle, onto the surface of the lipid bilayer, or even out into the aqueous phase.
- the concentration of light activated drug is high enough, it can actually precipitate out from the aqueous layer and promote aggregation of the liposomes.
- the more unencapsulated light activated drug that is present the higher the degree of aggregation.
- the more aggregation the larger the mean particle size will be, and the more difficult aseptic or sterile filtration will be.
- small changes in the molar ratio can be important in achieving proper filterability of the liposome composition.
- lipid content can increase significantly the filterability of the liposome composition by increasing the ability to form and maintain small particles.
- This is particularly advantageous when working with significant volumes of 500 ml, a liter, five liters, 40 liters, or more, as opposed to smaller batches of about 100-500 ml or less.
- This volume effect is thought to occur because larger homogenizing devices tend to provide less efficient agitation than can be accomplished easily on a small scale. For example, a large size MicrofluidizerTM has a less efficient interaction chamber than that one of a smaller size.
- a molar ratio of 1.05:3:5 BPD-MA:EPG:DMPC may provide marginally acceptable filterability in small batches of up to 500 ml.
- a higher molar ratio of phospholipid provides more assurance of reliable aseptic filterability.
- the substantial potency losses that are common in scale-up batches, due at least in part to filterability problems, can thus be avoided.
- cryoprotective agent known to be useful in the art of preparing freeze-dried formulations, such as di- or polysaccharides or other bulking agents such as lysine, may be used.
- isotonic agents typically added to maintain isomolarity with body fluids may be used.
- a di-saccharide or polysaccharide is used and functions both as a cryoprotective agent and as an isotonic agent.
- the particular combination of the phospholipids, DMPC and EPG, and a disaccharide or polysaccharide form a liposomal composition having liposomes of a particularly narrow particle size distribution.
- a disaccharide or polysaccharide provides instantaneous hydration and the large surface area for depositing a thin film of the drag-phospholipid complex. This thin film provides for faster hydration so that, when the liposome is initially formed by adding the aqueous phase, the liposomes formed are of a smaller and more uniform particle size. This provides significant advantages in terms of manufacturing ease.
- a saccharide when present in the composition, it is added after dry lipid film formation, as a part of the aqueous solution used in hydration.
- a saccharide is added to the dry lipid film during hydration.
- Disaccharides or polysaccharides are preferred to monosaccharides for this purpose.
- no more than 4-5% monosaccharides could be added.
- about 9-10% of a disaccharide can be used without generating an unacceptable osmotic pressure.
- the higher amount of disaccharide provides for a larger surface area, which results in smaller particle sizes being formed during hydration of the lipid film.
- the preferred liposomal composition comprises a disaccharide or polysaccharide, in addition to the light activated drug and the mixture of DMPC and EPG phospholipids.
- the disaccharide or polysaccharide is preferably chosen from among the group consisting of lactose, frehalose, maltose, maltotriose, palatinose, lactulose or sucrose, with lactose or frehalose being preferred.
- the liposomes comprise lactose or frehalose.
- the disaccharide or polysaccharide is formulated in a preferred ratio of about 10-20 saccharide to 0.5-6.0 DMPC/EPG phospholipid mixture, respectively, even more preferably at a ratio from about 10 to 1.5-4.0.
- a preferred but not limiting formulation is lactose or frehalose and a mixture of DMPC and EPG in a concentration ratio of about 10 to 0.94-1.88 to about 0.65-1.30, respectively.
- liposomes having extremely small and narrow particle size ranges not only tends to yield liposomes having extremely small and narrow particle size ranges, but also provides a liposome composition in which light activated drugs, in a particular, may be stably incorporated in an efficient manner, i.e., with an encapsulation efficiency approaching 80-100%.
- liposomes made with a saccharide typically exhibit improved physical and chemical stability, such that they can retain an incorporated light activated drag without leakage upon prolonged storage, either as a reconstituted liposomal or as a cryodesiccated powder.
- antioxidants e.g., butylated hydroxytoluene, alphatocopherol and ascorbyl palmitate
- pH buggering agents e.g., phosphates, glycine, and the like.
- Liposomes containing a light activated drug may be prepared by combining the light activated drag and the DMPC and EPG phospholipids (and any other optional phospholipids or excipients, such as antioxidants) in the presence of an organic solvent.
- Suitable organic solvents include any volatile organic solvent, such as diethyl ether, acetone, methylene chloride, chloroform, piperidine, piperidine-water mixtures, methanol, tert-butanol, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and mixtures thereof.
- the organic solvent is water-immiscible, such as methylene chloride, but water immiscibility is not required.
- the solvent chosen should not only be able to dissolve all of the components of the lipid film, but should also not react with, or otherwise deleteriously affect, these components to any significant degree.
- the organic solvent is then removed from the resulting solution to form a dry lipid film by any known laboratory technique that is not deleterious to the dry lipid film and the light activated drug.
- the solvent is removed by placing the solution under a vacuum until the organic solvent is evaporated.
- the solid residue is the dry lipid film.
- the thickness of the lipid film is not critical, but usually varies from about 30 to about 45 mg/cm 2 , depending upon the amount of solid residual and the total area of the glass wall of the flask.
- the film may be stored for an extended period of time, preferably not more than 4 to 21 days, prior to hydration. While the temperature during a lipid film storage period is also not an important factor, it is preferably below room temperature, most preferably in the range from about -20 to about 4° C.
- the dry lipid film is then dispersed in an aqueous solution, preferably containing a disaccharide or polysaccharide, and homogenized to form the desired particle size.
- aqueous solutions used during the hydration step include sterile water; a calcium- and magnesium- free, phosphate-buffered (pH 7.2-7.4) sodium chloride solution; a 9.75% w/v lactose solution; a lactose-saline solution; 5% dextrose solution; or any other physiologically acceptable aqueous solution of one or more electrolytes.
- the aqueous solution is sterile.
- the volume of aqueous solution used during hydration can vary greatly, but should not be so great as about 98% nor so small as about 30-40%. A typical range of useful volumes would be from about 75% to about 95%, preferably about 85% to about 90%.
- the "therapeutically effective amount” can vary widely, depending on the tissue to be treated and whether it is coupled to a target-specific ligand, such as an antibody or an immunologically active fragment. It should be noted that the various parameters used for selective photodynamic therapy are interrelated. Therefore, the therapeutically effective amount should also be adjusted with respect to other parameters, for example, fluence, irradiance, duration of the light used in photodynamic therapy, and the time interval between administration of the light activated drag and the therapeutic irradiation. Generally, all of these parameters are adjusted to produce significant damage to tissue deemed undesirable, such as neovascular or tumor tissue, without significant damage to the surrounding tissue, or to enable the observation of such undesirable tissue without significant damage to the surrounding tissue.
- the therapeutically effective amount is such to produce a dose of light activated drug within a range of from about 0.1 to about 20 mg/kg, preferably from about
- the w/v concentration of the light activated drug in the composition ranges from about 0.1 to about 8.0-10.0 g/L. Most preferably, the concentration is about 2.0 to 2.5 g L.
- the hydration step should take place at a temperature that does not exceed about
- the glass transition temperature of the light activated drag-lipid complex can be measure by using a differential scanning microcalorimeter.
- the lipid membrane tends to undergo phase transition from a "solid" gel state to a pre- transition state and, finally, to a more "fluid” liquid crystal state.
- these higher temperatures however, not only does fluidity increase, but the degree of phase separation and the proportion of membrane defects also increases.
- the usual thickness of a lipid bilayer in the "solid" gel state decreases in the transition to the "liquid" crystalline state to about 37 A, thus shrinking the entrapped volume available for the light activated drags to occupy.
- the smaller "room” is not capable of containing as great a volume of light activated drag, which can then be squeezed out of the saturated lipid bilayer interstices. Any two or more liposomes exuding light activated drug may aggregate together, introducing further difficulties with respect to particle size reduction and ease of sterile filtration.
- the use of higher hydration temperatures such as, for example, about 35 ° to 45 ° C, can also result in losses of light activated drag potency as the light activated drag either precipitates or aggregates during aseptic filtration.
- the particle sizes of the coarse liposomes first formed in hydration are then homogenized to a more uniform size, reduced to a smaller size range, or both, to about 150 to 300 nm, preferably also at a temperature that does not exceed about 30° C, preferably below the glass transition temperature of the light activated drag-phospholipid complex formed in the hydration step, and even more preferably below room temperature of about 25 ° C.
- Various high-speed agitation devices may be used during the homogemzation step, such as a MicrofluidizerTM model 110F; a sonicator; a high-shear mixer; a homogenizer; or a standard laboratory shaker.
- the homogenization temperature should be at room temperature or lower, e.g., 15°-20° C.
- the relative filterability of the liposome composition may improve initially due to increased fluidity as expected, but then, unexpectedly, tends to decrease with continuing agitation due to increasing particle size.
- a high pressure device such as MicrofluidizerTM is used for agitation.
- a high pressure device such as MicrofluidizerTM is used for agitation.
- a great amount of heat is generated during the short-period of time during which the fluid passes through a high pressure interaction chamber.
- two streams of fluid at a high speed collide with each other at a 90° angle.
- the fluidity of the membrane increases, which initially makes particle size reduction easier, as expected.
- filterability can increase by as much as four times with the initial few passes through a MicrofluidizerTM device.
- the increase in the fluidity of the bilayer membrane promotes particle size reduction, which makes filtration of the final composition easier. In the initial several passes, this increased fluidity mechanism advantageously dominates the process.
- the homogenization temperature is cooled down to and maintained at a temperature no greater than room temperature after the composition passes through the zone of maximum agitation, e.g., the interaction chamber of a MicrofluidizerTM device.
- An appropriate cooling system can easily be provided for any standard agitation device in which homogenization is to take place, e.g., a MicrofluidizerTM, such as by circulating cold water into an appropriate cooling jacket around the mixing chamber or other zone of maximum turbulence. While the pressure used in such high pressure devices is not critical, pressures from about 10,000 to about 16,000 psi are not uncommon.
- the compositions are preferably aseptically filtered through a filter having an extremely small pore size, i.e., 0.22 ⁇ m.
- Filter pressures used during sterile filtration can vary widely, depending on the volume of the composition, the density, the temperature, the type of filter, the filter pore size, and the particle size of the liposomes.
- a typical set of filtration conditions would be as follows: filfration pressure of 15-25 psi; filtration load of 0.8 to 1.5 ml/cm 2 ; and filfration temperature of about 25 ° c.
- the liposome composition may be freeze-dried for long-term storage if desired.
- BPD-MA a preferred light activated drag
- the composition may be packed in vials for subsequent reconstitution with a suitable aqueous solution, such as sterile water or sterile water containing a saccharide and/or other suitable excipients, prior to admimstration, for example, by injection.
- liposomes that are to be freeze-dried are formed upon the addition of an aqueous vehicle contain a disaccharide or polysaccharide during hydration.
- the composition is then collected, placed into vials, freeze-dried, and stored, ideally under refrigeration.
- the freeze-dried composition can then be reconstituted by simply adding water for injection just prior to administration.
- the liposomal composition provides liposomes of a sufficiently small and narrow particle size that the aseptic filtration of the composition through a 0.22 ⁇ m hydrophilic filter can be accomplished efficiently and with large volumes of 500 ml to a liter or more without significant clogging of the filter.
- a particularly preferred particle size range is below about 300 nm, more preferably below from about 250 nm. Most preferably, the particle size is below about 220 nm.
- the concentration of the light activated drags in the liposome depends upon the nature of the light activated drag used. When BPD-MA is used for example, the light activated drag is generally incorporated in the liposomes at a concentration of about 0.10% up to 0.5% w/v. If freeze-dried and reconstituted, this would typically yield a reconstituted solution of up to about 5.0 mg/ml light activated drug.
- the light activated drags incorporated into liposomes may be used along with, or may be labeled with, a radioisotope or other detecting means. If this is the case, the detection means depends on the nature of the label. Scintigraphic labels such as technetium or indium can be detected using ex vivo scanners. Specific fluorescent labels can also be used but, like detection based on fluorescence of the light activated drugs themselves, these labels can require prior irradiation. The methods of preparing various light activated drugs, light activated drug conjugates, emulsions and microbubbles are described in greater detail in the examples below.
- Examples 5 and 6 describes a synthesis of an emulsion including a light activated drag.
- Example 7 describes preparation of microbubbles which include a light activated drag.
- Lutetium(HI) acetate hydrate can be purchased from Strem Chemicals, Inc. (Newburyport, Mass.), gadolinium(IH) acetate tetrahydrate can be purchased from Aesar/Johnson Matthey (Ward Hill, Mass.) and LZY-54 zeolite can be purchased from UOP (Des Plaines, III.).
- Acetone, glacial acetic acid, methanol, ethanol, isopropyl alcohol, and n-heptanes can be purchased from J. T. Baker (Phillipsburg, N.J.).
- Triethylamine and Amberlite 904 anion exchange resin can be purchased from Aldrich (Milwaukee, Wise). All chemicals should be ACS grade and used without further purification.
- Figure 22 illusfrates the synthesis of the gadolinium (El) complex of 4,5-diethyl- 10,23-dimethyl-9,24-bis(3-hydroxypropyl)-16,17-bis[2-[2-(2- methoxyethoxy) ethoxy]ethoxy]-pentaazapentacyclo [20.2. l.l 3,6 .1 8 ' " .0 14 ' 19 ]heptacosa- 1,3,5,7,9,1 l(27),12,14,16,18,20,22(25),23-tridecaene which is illusfrated as Formula I of Figure 22.
- the critical intermediate l,2-bis[2-[2-(2-methoxyethoxy)ethoxy)ethoxy]-4,5- dinifrobenzene can be prepared according to a three-step synthetic process outlined in Figure 22.
- Formula E In an oven dried 1 L roundbottom flask Formula D (104 g, 0.26 mol) and glacial acetic acid (120 mL) are combined and cooled to 5° C. To this well stirred solution, concentrated nitric acid (80 mL) is added dropwise over 15-20 min. The temperature of the mixture is held below 40° C. by cooling and proper regulation of the rate of addition of the acid. After addition, the reaction is allowed to stir for an additional
- the aqueous layer is extracted with CH2C12 (2x150 mL) and the combined organic extracts washed with 10% NaOH (2X250 mL) and brine (250 mL), dried (MgS0 4 ), and concentrated under reduced pressure.
- the resulting orange oil is dissolved in acetone (100 mL), and the solution layered with n-hexanes (500 mL), and stored in the freezer.
- Formula I 1 ,3,5,7,9, 11 (27), 12, 14, 16, 18,20,22(25),23-tridecaene, Formula I.
- Formula I is prepared according to the process outlined in Figure 22.
- Formula H 33.0 g, 0.036 mol
- gadolinium(II) acetate tetrahydrate (15.4 g, 0.038 mol) are combined in methanol (825 mL).
- methanol 825 mL
- gadolinium(i ⁇ ) acetate tetrahydrate (15.4 g, 0.038 mol) and triethylamine (50 mL) are added and the reaction is heated to reflux.
- the crade complex (35 g) is dissolved in MeOH (600 mL), stirred vigorously for 15 min, filtered through Celite, and transferred to a 2 L Erlenmeyer flask. An additional 300 mL of MeOH and 90 mL water are added to the flask, along with acetic acid washed LZY-54 zeolite (150 g). The suspension is agitated with an overhead mechanical stirrer for approximately 3-4 h. The zeolite extraction is deemed complete with the absence of free
- the zeolite is removed through a Whatman #3 filter paper and the collected solids rinsed with MeOH (200 mL).
- the dark green filtrate is loaded onto a column of Amberlite IRA-904 anion exchange resin (30 cm length x 2.5 cm diameter) and eluted through the resin (ca. 10 mL/min flow rate) into a 2 L round bottom flask with 300 mL 1-butanol.
- the resin is rinsed with an additional 100 mL of MeOH and the combined eluent evaporated to dryness under reduced pressure.
- the macrocyclic ligand Formula H is oxidatively metalated using lutetium(III) acetate hydrate (9.75 g, 0.0230 mol) and triethylamine (22 mL) in air-saturated methanol (1500 mL) at reflux. After completion of the reaction (as judged by the optical spectrum of the reaction mixture), the deep green solution is cooled to room temperature, filtered through a pad of celite, and the solvent removed under reduced pressure.
- the dark green solid is suspended in acetone (600 mL, stirred for 30 min at room temperature, and then filtered to wash away the red/brown impurities (incomplete oxidation products and excess triethylamine).
- the crade complex is dissolved into MeOH (300 mL, stirred for -30 min, and then filtered through celite into a 1 L Erlenmeyer flask. An additional 50 mL of MeOH and 50 mL of water are added to the flask along with acetic acid washed LZY-54 zeolite (40 g). The resulting mixture is agitated or shaken for 3 h, then filtered to remove the zeolite.
- the zeolite cake is rinsed with MeOH (100 mL and the rinse solution added to the filtrate.
- the filtrate is first concentrated to 150 mL and then loaded onto a column (30 cm length x 2.5 cm diameter) of pretreated Amberlite IRA-904 anion exchange resin (resin in the acetate form).
- the eluent containing the bis-acetate lutetium(III) texaphyrin complex is collected, concentrated to dryness under reduced pressure, and recrystallized from anhydrous methanol/t-butylmethyl ether to afford 11.7 g (63%) of a shiny green solid.
- FIG. 23 illustrates the synthesis of a light activated drag conjugate.
- the light activated drag is a texaphyrin coupled with an oligonucleotide which is complementary to a DNA site.
- the light activated drug conjugate can bind the complementary DNA site and will cleave the site upon activation by ultrasound.
- TLC RfH3.69, 20% methanol/CHCL 3 (streaks, turns green on plate with I 2 ).
- the compounds are dissolved in dimethylformamide (anhydrous, 500 ⁇ L) and dicyclohexylcarbodiimide (10 mg, 48 ⁇ mol) is added.
- the resulting solution is stirred under argon with protection from Ught for 8 h, whereupon a 110 ⁇ L aliquot is added to a solution of oligodeoxynucleotide (Formula G) (87 ⁇ mol) in a volume of 350 ⁇ L of 0.4M sodium bicarbonate buffer in a 1.6 mL Eppendorf tube. After vortexing briefly, the solution is allowed to stand for 23 h with light protection.
- the suspension is filtered through 0.45 ⁇ m nylon microfilterfuge tubes, and the Eppendorf tube is washed with 250 ⁇ L sterile water.
- the combined filtrates are divided into two Eppendorf tubes, and glycogen (20 mg/mL, 2 ⁇ L) and sodium acetate (3M, pH 5.4 30 ⁇ L) are added to each tube.
- glycogen (20 mg/mL, 2 ⁇ L) and sodium acetate (3M, pH 5.4 30 ⁇ L) are added to each tube.
- ethanol absolute, 1 mL
- Ethanol is decanted following centrifugation, and the DNA is washed with an additional 1 mL aliquot of ethanol and allowed to air dry.
- the pellet is dissolved in 50% formamide gel loading buffer (20 ⁇ L), denatured at 90°C. for ca.
- the suspension is filtered through nylon filters (0.45 ⁇ m) and desalted using a Sep-pakTM reverse phase cartridge.
- the conjugate is eluted from the cartridge using 40% acetonitrile, lyophilized overnight, and dissolved in 1 mM HEPES buffer, pH 7.0 (500 ⁇ L). The solution concentration is determined using UV/vis spectroscopy.
- EXAMPLE 3 Synthesis of texaphyrin metal complexes with amine-, thiol- or hydroxy-linked oligonucleotides
- Amides, ethers, and thioethers are representative of linkages which may be used for coupling site-directing molecules such as oligonucleotides to light activated drugs such as texaphyrin metal complexes as illusfrated in Figure 24.
- OUgonucleotides or other site-directing molecules functionalized with amines at the 5'-end, the 3'-end, or internally at sugar or base residues are modified post-synthetically with an activated carboxylic ester derivative of the texaphyrin complex.
- a bromide derivatized texaphyrin (for example, Formula C of Figure 24) will react with an hydroxyl group of an oligonucleotide to form and ether linkage between the texaphyrin linker and the oligonucleotide.
- oligonucleotide analogues containing one or more thiophosphate or thiol groups are selectively alkylated at the sulfur atom(s) with an alkyl halide derivative of the texaphyrin complex.
- Oligodeoxynucleotide-complex conjugates are designed so as to provide optimal catalytic interaction between the targeted DNA phosphodiester backbone and the texaphyrino.
- Oligonucleotides are used to bind selectively compounds which include the complementary nucleotide or oligo- or polynucleotides containing substantially complementary sequences.
- a substantially complementary sequence is one in which the nucleotides generally base pair with the complementary nucleotide and in which there are very few base pair mismatches.
- the oligonucleotide may be large enough to bind probably at least 9 nucleotides of complementary nucleic acid.
- oligomers up to ca. 100 residues in length are prepared on a commercial synthesizer, eg., Applied Biosystems Inc. (ABI) model 392, that uses phosphoramidite chemistry. DNA is synthesized from the 3' to the 5' direction through the sequential addition of highly reactive phosphorous(IH) reagents called phosphoramidites. The initial 3' residue is covalently attached to a controlled porosity silica solid support, which greatly facilitates manipulation of the polymer.
- ABS Applied Biosystems Inc.
- the phosphoras(III) is oxidized to the more stable phosphoras(V) state by a short treatment with iodine solution. Unreacted residues are capped with acetic anhydride, the 5'-protective group is removed with weak acid, and the cycle may be repeated to add a further residue until the desired DNA polymer is synthesized. The full length polymer is released from the solid support, with concomitant removal of remaining protective groups, by exposure to base.
- a common protocol uses saturated ethanolic ammonia.
- the phosphonate based synthesis is conducted by the reaction of a suitably protected nucleotide containing a phosphonate moiety at a position to be coupled with a solid phase-derivatized nucleotide chain having a free hydroxyl phosphonate ester linkage, which is stable to acid.
- the oxidation to the phosphate or thiophosphate can be conducted at any point during synthesis of the oligonucleotide or after synthesis of the oligonucleotide is complete.
- the phosphonates can also be converted to phosphoramidate derivatives by reaction with a primary or secondary amine in the presence of carbon tetrachloride.
- a protected phosphodiester nucleotide is condensed with the free hydroxyl of a growing nucleotide chain derivatized to a solid support in the presence of coupling agent.
- the reaction yields a protected phosphate linkage which may be treated with an oximate solution to form unprotected oligonucleotide.
- oligonucleotides may also be synthesized using solution phase methods such as diester synthesis. The methods are workable, but in general, less efficient for oligonucleotides of any substantial length.
- Preferred oligonucleotides resistant to in vivo hydrolysis may contain a phosphorothioate substitution at each base (J. Org. Chem. 55:4693-469, (1990) and Agrawal, (1990)). Oligodeoxynucleotides or their phosphorothioate analogues may be synthesized using an Applied Biosystem 380B DNA synthesizer (Applied Biosystems, Inc., Foster City, Calif.).
- EXAMPLE 4 Synthesis of Diformyl Monoacid Tripyrrane ( Figure 25, Formula H) and Oligonucleotide Conjugate ( Figure 25, Formula J)
- the present example provides for the synthesis of a light activated drag conjugate.
- the light activated drag conjugate includes a oligonucleotide acting as a site directing molecule coupled with the tripyrrane portion of a texaphyrin as illusfrated in Figure 25.
- a three-neck 2000 mL round-bottom flask set with a magnetic stirring bar, a hydrogen line, and a vacuum line is charged with dimethylester dibenzylester dipyrromethane (Formula B) (33.07 g, 53.80 mmol), anhydrous tetrahydrofuran (1500 mL), and 10% palladium on charcoal (3.15 g.)
- the flask is filled with dry hydrogen gas after each of several purges of the flask atmosphere prior to stirring the reaction suspension under a hydrogen atmosphere for 24 hours.
- the dry solids are suspended in a mixture of saturated aqueous sodium bicarbonate (1500 mL) and ethyl alcohol (200 mL), and stirred at its boiling point for five minutes.
- the hot suspension is filtered over celite.
- the filtrate is cooled down to room temperature and acidified to pH 6 with 12N aqueous hydrochloric acid.
- the resulting mixture is filtered over medium fritted glass.
- the cold mixture is filtered over medium fritted glass.
- the collected solids are washed with hexanes and dried under high vacuum overnight (13.05 g, 19.25 mmol, 39.85 yield).
- Methylester Diacid Tripyrrane, Formula F All the glassware is oven dried. A three-neck 500 mL round-bottom flask set with a magnetic stirring bar, a hydrogen line, and a vacuum line is charged with methylester dibenzylester tripyrrane (Formula E) (12.97 g, 19.13 mmol), anhydrous tetrahydrofuran (365 mL), and 10% palladium on charcoal (1.13 g.) The flask is filled with dry hydrogen gas after each of several purges of the flask atmosphere prior to stirring the reaction suspension for 24 hours under a hydrogen atmosphere at room temperature.
- methylester dibenzylester tripyrrane (Formula E) (12.97 g, 19.13 mmol)
- anhydrous tetrahydrofuran 365 mL
- 10% palladium on charcoal (1.13 g.
- reaction suspension is filtered over celite.
- solvent of the filtrate is removed under reduced pressure to obtain a foam which is dried under high vacuum overnight (10.94 g, 21.99 mmol, 87.0% pure.)
- Triethylorthoformate (32.5 mL) is dripped into the flask from the addition funnel over a 20 minute period keeping the flask contents below -25 °C by means of a dry ice/ethylene glycol bath. The reaction solution is stirred for one hour at -25 °C and then a 0°C bath is set up. Deionized water (32.5 mL) is dripped into the reaction flask from the addition funnel keeping the flask contents below 10°C. The resulting two phase mixture is stirred at room temperature for 75 minutes and then added 1-butanol (200 mL.) The solvents are removed under reduced pressure.
- the monoacid tripyrrane (Formula H) is condensed with a derivatized ortho- phenylene diamine to form a nonaromatic precursor which is then oxidized to an aromatic metal complex, for example, Formula I.
- An oligonucleotide amine may be reacted with the carboxylic acid derivatized texaphyrin Formula I to form the conjugate Formula J having the site-directing molecule on the T (tripyrrane) portion of the molecule rather than the B (benzene) portion.
- MCT oil medium chain length oil
- SnEt 2 medium chain length oil
- Certain emulsions also included additional excipients in the following concenfrations: ethanol at mg/gm oil; egg phospholipids at 75 mg/gm oil; and sodium cholate at 10 mg/gm oil. After incubating for 30 minutes at 55° C, the tubes stand overnight at room temperature (19°- 22° C).
- the tubes are centrifuged to remove bulk precipitates, and supematants are filtered through 0.45 ⁇ m nylon membrane to remove any undissolved drag. Aliquots of filtrate are then diluted in chloroform:isopropyl alcohol (1:1) for spectrophotometric determination of drag concentration (absorbance at 662 nm). Reference standards are prepared with known concentrations of SnEt 2 in the same solvent. The concentration of SnEt 2 in each of the emulsions is illustrated in Table 2. As illusfrated, the concenfration of SnEt 2 in the emulsion can be more than ten times the concentration in MCT oil alone.
- MCT oil, egg phospholipids, eth.anol, .and SnEt 2 are incubated with different bile salts, all at 4.6 mM 1 , under the same conditions described above.
- sodium cholate is the most efficient solubilizer.
- Cholic acid lacks solubilizing action in the oil.
- Example 1 illustrates the preparation of liposomes including BPD- MA (See Figure 17) as a light activated drug.
- a 100-ml batch of BPD-MA liposomes is prepared at room temperature (about 20° C.) using the following general procedure.
- BPD-MA, butylated hydroxytoluene ("BHT"), ascorbyl pahnirate, and the phospholipids DMPC and EPG are dissolved in methylene chloride.
- the molar ratio of light activated drag: EPG:DMPC is 1.0:3.7 and has the compositions illustrated in Table 4.
- the total lipid concenfration (% w/v) is about 2.06.
- the resulting solution is filtered through a 0.22 ⁇ m filter and then dried under vacuum using a rotary evaporator. Drying is continued until the amount of methylene chloride in the solid residue is no longer detectable by gas chromatography.
- a 10% lactose/water-for-injection solution is then prepared and filtered through a
- the lactose/water solution is allowed to remain at room temperature (about 25 ° C.) for addition to the flask containing the solid residue of the light activated drug/phospho lipid.
- the solid residue is dispersed in the 10% lactose/water solution at room temperature, stirred for about one hour, and passed through a MicrofluidizerTM homogenizer three to four times with the outlet temperature controlled to about 200°-250° C.
- the solution is then filtered through a 0.22 ⁇ m Durapore, hydrophilic filter.
- the filterability of the composition in g/cm 2 is typically greater than about 10. Moreover, the yield is about 100% by HPLC analysis, with light activated drug potency typically being maintained even after sterile filtration. Average particle sizes vary from about 150 to about 300 nm ( ⁇ 50 nm).
- Example 2 describes the delivery of a light activated drag to an atheroma.
- An emulsion is prepared having about .6 g SnEt 2 /ml of emulsion and about 20 g of MCT oil based hydrophobic phase/ml of emulsion.
- the 7C is positioned in a vessel of the cardiovascular system using over the guidewire techniques.
- the catheter is positioned such that the media delivery port is adjacent to the atheroma using radiopaque markers on the catheter and the balloon is expanded into contact with the vessel wall.
- the emulsion is delivered via the third utility lumen 16B of the catheter 10. After the delivery of the emulsion, the ultrasound energy is delivered at about 0.3 W/cm 2 at a frequency of approximately 1.3 MHz for about ten minutes. After the delivery of ulfrasound energy has concluded, the catheter is withdrawn from the vasculature of the tumor.
- the following Example describes the delivery of a light activated drag to a tumor.
- An emulsion is prepared having approximately .8 g SnEt 2 /ml of emulsion and approximately 30 g of MCT oil based hydrophobic phase/ml of emulsion.
- the catheter 10 illustrated in Figure 3 A is positioned in the vasculature of a rumor using over the guidewire techniques.
- the catheter is positioned such that the media delivery port is within the tumor using radiopaque markers included on the catheter.
- the prepared emulsion is delivered into the vasculature of the tumor via the utility lumen 16 A.
- the ulfrasound energy is delivered at about 0.3 W/cm 2 at a frequency of approximately 1.3 MHz for about fifteen minutes.
- the catheter is withdrawn from the vascular system of the patient.
- Example 2 describes the delivery of a light activated drug to a potential restenosis site.
- An emulsion is prepared having approximately .6 g SnEt 2 /ml of emulsion and approximately 30 g of MCT oil based hydrophobic phase/ml of emulsion.
- the catheter illusfrated in Figure 7C is positioned in the vasculature of a patient using over the guidewire techniques.
- the catheter is positioned such that the media delivery port is adjacent to a portion of the vessel which was previously treated with balloon angioplasty and the balloon is expanded into contact with the vessel wall.
- the prepared emulsion is delivered into the vasculature of the patient via the third utility lumen 16B.
- Ultrasound energy is delivered from the ultrasound assembly to the potential restenosis site at about 0.3 W/cm 2 at a frequency of approximately 1.3 MHz for about ten minutes. After the delivery of ultrasound energy has concluded, the catheter is withdrawn from the vascular system of the patient.
- MA:EPG:DMPC is about 1:3:7.
- the catheter illusfrated in Figure 7C is positioned in a vessel of the cardiovascular system using over the guidewire techniques.
- the catheter is positioned such that the media delivery port is adjacent to the atheroma using radiopaque markers included on the catheter and the balloon is expanded into contact with the vessel.
- Ultrasound energy is delivered at about 0.3 W/cm 2 at a frequency of approximately 1.3
- the catheter is withdrawn from the vascular system of the patient.
- Liposomes are prepared including BPD-MA (See Figure 17) as the light activated drug and DMPC and EPG as the phospholipids.
- the molar ratio of BPD-MA:EPG:DMPC is about 1:3:7.
- the catheter illustrated in Figure 8 is positioned in the vasculature of a tumor using over the guidewire techniques. The catheter is positioned such that the media delivery port is within the tumor using radiopaque markers included on the catheter. Ultrasound energy is delivered at about 0.3 W/cm 2 at a frequency of approximately 1.3
- the catheter is withdrawn from the vasculature of the tumor.
- Liposomes are prepared including BPD-MA (See Figure 17) as the light activated drug and DMPC and EPG as the phospholipids.
- BPD-MA See Figure 17
- EPG the phospholipids.
- the molar ratio of BPD-MA:EPG:DMPC is approximately 1:3:7.
- the catheter illusfrated in Figure 7C is positioned in the vasculature of a patient using over the guidewire techniques. The catheter is positioned such that the media delivery port is adjacent to a portion of the vasculature which was previously treated with balloon angioplasty and the balloon is inflated into contact with the vessel wall.
- Ultrasound energy is delivered at about 0.3 W/cm 2 at a frequency of approximately 1.3 MHz for about 15 minutes in order to rapture the liposomes and cause tissue death within the atheroma. After the delivery of ultrasound energy is concluded, the catheter is withdrawn from the vasculature of the patient.
- the following Example describes the delivery of a light activated drag to an atheroma.
- Liposomes are prepared including BPD-MA (See Figure 17) as the light activated drug and DMPC and EPG as the phospholipids.
- the molar ratio of BPD- MA:EPG:DMPC is about 1:3:7.
- the phospholipids are systemically delivered.
- the catheter illustrated in Figure 7C is positioned in the vasculature of a patient using over the guidewire techniques. The catheter is positioned such that the media delivery port is adjacent to the atheroma and the balloon is inflated into contact with the vessel wall.
- Ultrasound energy is delivered at about 0.3 W/cm 2 at a frequency of approximately 1.3 MHz for about 15 minutes. After the delivery of ultrasound energy is concluded, the catheter is withdrawn from the vasculature of the patient.
- Example 2 describes the delivery of a light activated drag to a tumor.
- Microbubbles are prepared including cisplatin and photofrin according to the methods disclosed in U.S. patent number 5,770,222.
- the microbubbles are systemically administered.
- the catheter illustrated in Figure 1 A is positioned within the vasculature of a tumor. Ulfrasound energy is delivered at about 0.3 W/cm 2 at a frequency of approximately 1.3 MHz for about 15 minutes. After the delivery of ultrasound energy is concluded, the catheter is withdrawn from the vasculature of the patient.
- Example 2 describes the delivery of a light activated drag to a tumor.
- Microbubbles .are prepared including cisplatin and photofrin according to the methods disclosed in U.S. patent number 5,770,222.
- the catheter illustrated in Figure 3A is positioned within the vasculature of a tumor.
- the microbubbles .are delivered to the tumor via the second utility lumen 16A of the catheter.
- Ulfrasound energy is delivered at about 0.3 W/cm 2 at a frequency of approximately 1.3 MHz for about 15 minutes. After the delivery of ulfrasound energy is concluded, the catheter is withdrawn from the vasculature of the patient.
- Example 2 describes the delivery of a light activated drag to a thrombosis.
- Microbubbles are prepared including heparin, photofrin and an albumin subsfrate.
- the microbubbles are systemically administered.
- the catheter illustrated in Figure 1 A is positioned adjacent to the thrombosis. Ulfrasound energy is delivered at about 0.2 W/cm 2 at a frequency of approximately 1.3 MHz for about 20 minutes. After the delivery of ultrasound energy is concluded, the catheter is withdrawn from the vasculature of the patient.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Medicinal Preparation (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU95005/98A AU9500598A (en) | 1997-09-19 | 1998-09-21 | Ultrasound assembly for use with light activated drugs |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61110596A | 1996-03-05 | 1996-03-05 | |
JP25581497A JP4791616B2 (ja) | 1997-09-19 | 1997-09-19 | 薬物坦持体及びその使用方法 |
JP9/255814 | 1997-09-19 | ||
US97284697A | 1997-11-18 | 1997-11-18 | |
US08/972,846 | 1997-11-18 | ||
US09/129,980 | 1998-08-05 | ||
US09/129,980 US6210356B1 (en) | 1998-08-05 | 1998-08-05 | Ultrasound assembly for use with a catheter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999013943A1 true WO1999013943A1 (fr) | 1999-03-25 |
Family
ID=27478372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/019797 WO1999013943A1 (fr) | 1996-03-05 | 1998-09-21 | Ensemble a ultrasons destine a etre utilise avec des medicaments actives par la lumiere |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999013943A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1180380A2 (fr) * | 2000-08-17 | 2002-02-20 | William N. Borkan | Cathéter pour traitement médical |
WO2001085213A3 (fr) * | 2000-05-08 | 2002-08-01 | Univ British Columbia | Supports pour formulations photosensibilisantes |
US7131963B1 (en) | 2002-06-27 | 2006-11-07 | Advanced Cardiovascular Systems, Inc. | Catheters and methods of using catheters |
US7267659B2 (en) | 2002-05-24 | 2007-09-11 | Dornier Medtech Systems Gmbh | Method and apparatus for transferring medically effective substances into cells |
WO2012143739A1 (fr) * | 2011-04-21 | 2012-10-26 | University Of Ulster | Thérapie sonodynamique |
US9060915B2 (en) | 2004-12-15 | 2015-06-23 | Dornier MedTech Systems, GmbH | Methods for improving cell therapy and tissue regeneration in patients with cardiovascular diseases by means of shockwaves |
EP3117784A1 (fr) * | 2009-07-08 | 2017-01-18 | Sanuwave, Inc. | Utilisation d'ondes de choc de pression intracorporelle en médecine |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4883790A (en) | 1987-01-20 | 1989-11-28 | University Of British Columbia | Wavelength-specific cytotoxic agents |
US4920143A (en) | 1987-04-23 | 1990-04-24 | University Of British Columbia | Hydro-monobenzoporphyrin wavelength-specific cytotoxic agents |
WO1991009629A1 (fr) * | 1989-12-22 | 1991-07-11 | Unger Evan C | Liposomes utilises comme agents de contraste pour imagerie ultrasonique |
WO1994005361A1 (fr) * | 1992-08-28 | 1994-03-17 | Cortrak Medical, Inc. | Appareil a matrice polymere d'administration de medicament et procede |
JPH0748710A (ja) | 1994-01-10 | 1995-02-21 | Yoshiaki Kakine | 天然草帽子 |
WO1996027341A1 (fr) * | 1995-03-08 | 1996-09-12 | Ekos, Llc | Appareil a ultrasons a usage therapeutique |
WO1996035469A1 (fr) * | 1995-05-10 | 1996-11-14 | Cardiogenesis Corporation | Systeme de traitement ou de diagnostic pour le tissu cardiaque |
WO1996036286A1 (fr) * | 1995-05-15 | 1996-11-21 | Coraje, Inc. | Thrombolyse a ultrason amelioree |
US5578291A (en) | 1993-05-14 | 1996-11-26 | The Board Of Regents Of The University Of Nebraska | Method and composition for optimizing left ventricular videointensity in echocardiography |
US5664382A (en) | 1993-09-09 | 1997-09-09 | Melnick; David W. | Method for making block forms for receiving concrete |
US5701899A (en) | 1993-05-12 | 1997-12-30 | The Board Of Regents Of The University Of Nebraska | Perfluorobutane ultrasound contrast agent and methods for its manufacture and use |
US5770222A (en) * | 1989-12-22 | 1998-06-23 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
-
1998
- 1998-09-21 WO PCT/US1998/019797 patent/WO1999013943A1/fr active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4883790A (en) | 1987-01-20 | 1989-11-28 | University Of British Columbia | Wavelength-specific cytotoxic agents |
US4920143A (en) | 1987-04-23 | 1990-04-24 | University Of British Columbia | Hydro-monobenzoporphyrin wavelength-specific cytotoxic agents |
WO1991009629A1 (fr) * | 1989-12-22 | 1991-07-11 | Unger Evan C | Liposomes utilises comme agents de contraste pour imagerie ultrasonique |
US5770222A (en) * | 1989-12-22 | 1998-06-23 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
WO1994005361A1 (fr) * | 1992-08-28 | 1994-03-17 | Cortrak Medical, Inc. | Appareil a matrice polymere d'administration de medicament et procede |
US5701899A (en) | 1993-05-12 | 1997-12-30 | The Board Of Regents Of The University Of Nebraska | Perfluorobutane ultrasound contrast agent and methods for its manufacture and use |
US5578291A (en) | 1993-05-14 | 1996-11-26 | The Board Of Regents Of The University Of Nebraska | Method and composition for optimizing left ventricular videointensity in echocardiography |
US5664382A (en) | 1993-09-09 | 1997-09-09 | Melnick; David W. | Method for making block forms for receiving concrete |
JPH0748710A (ja) | 1994-01-10 | 1995-02-21 | Yoshiaki Kakine | 天然草帽子 |
WO1996027341A1 (fr) * | 1995-03-08 | 1996-09-12 | Ekos, Llc | Appareil a ultrasons a usage therapeutique |
WO1996035469A1 (fr) * | 1995-05-10 | 1996-11-14 | Cardiogenesis Corporation | Systeme de traitement ou de diagnostic pour le tissu cardiaque |
WO1996036286A1 (fr) * | 1995-05-15 | 1996-11-21 | Coraje, Inc. | Thrombolyse a ultrason amelioree |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001085213A3 (fr) * | 2000-05-08 | 2002-08-01 | Univ British Columbia | Supports pour formulations photosensibilisantes |
EP1180380A3 (fr) * | 2000-08-17 | 2003-01-22 | William N. Borkan | Cathéter pour traitement médical |
EP1180380A2 (fr) * | 2000-08-17 | 2002-02-20 | William N. Borkan | Cathéter pour traitement médical |
US7267659B2 (en) | 2002-05-24 | 2007-09-11 | Dornier Medtech Systems Gmbh | Method and apparatus for transferring medically effective substances into cells |
US7131963B1 (en) | 2002-06-27 | 2006-11-07 | Advanced Cardiovascular Systems, Inc. | Catheters and methods of using catheters |
US9060915B2 (en) | 2004-12-15 | 2015-06-23 | Dornier MedTech Systems, GmbH | Methods for improving cell therapy and tissue regeneration in patients with cardiovascular diseases by means of shockwaves |
US10058340B2 (en) | 2009-07-08 | 2018-08-28 | Sanuwave, Inc. | Extracorporeal pressure shock wave devices with multiple reflectors and methods for using these devices |
EP3117784A1 (fr) * | 2009-07-08 | 2017-01-18 | Sanuwave, Inc. | Utilisation d'ondes de choc de pression intracorporelle en médecine |
US10238405B2 (en) | 2009-07-08 | 2019-03-26 | Sanuwave, Inc. | Blood vessel treatment with intracorporeal pressure shock waves |
US10639051B2 (en) | 2009-07-08 | 2020-05-05 | Sanuwave, Inc. | Occlusion and clot treatment with intracorporeal pressure shock waves |
US11666348B2 (en) | 2009-07-08 | 2023-06-06 | Sanuwave, Inc. | Intracorporeal expandable shock wave reflector |
US11925366B2 (en) | 2009-07-08 | 2024-03-12 | Sanuwave, Inc. | Catheter with multiple shock wave generators |
US12004760B2 (en) | 2009-07-08 | 2024-06-11 | Sanuwave, Inc. | Catheter with shock wave electrodes aligned on longitudinal axis |
US12004759B2 (en) | 2009-07-08 | 2024-06-11 | Sanuwave, Inc. | Catheter with shock wave electrodes aligned on longitudinal axis |
US12239332B2 (en) | 2009-07-08 | 2025-03-04 | Sanuwave, Inc. | Catheter with multiple shock wave generators |
WO2012143739A1 (fr) * | 2011-04-21 | 2012-10-26 | University Of Ulster | Thérapie sonodynamique |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6176842B1 (en) | Ultrasound assembly for use with light activated drugs | |
US20090105633A1 (en) | Ultrasound assembly for use with light activated drugs | |
EP0711127B2 (fr) | Procede de preparation de liposomes a inclusions gazeuses | |
JP3910630B2 (ja) | 新規治療薬送達システム | |
EP0660714B1 (fr) | Nouveaux systemes d'apport de medicaments aux liposomes | |
AU736301B2 (en) | Methods for delivering compounds into a cell | |
US6443898B1 (en) | Therapeutic delivery systems | |
US7083572B2 (en) | Therapeutic delivery systems | |
US20030147812A1 (en) | Device and methods for initiating chemical reactions and for the targeted delivery of drugs or other agents | |
JP2010280678A (ja) | 新規の音響活性薬剤輸送系 | |
WO2001026704A2 (fr) | Activation ciblee d'un medicament | |
WO1999013943A1 (fr) | Ensemble a ultrasons destine a etre utilise avec des medicaments actives par la lumiere | |
AU731072B2 (en) | Methods of preparing gas-filled liposomes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US US US US US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |