+

WO1999012660A1 - Method of forming multilayered coating film - Google Patents

Method of forming multilayered coating film Download PDF

Info

Publication number
WO1999012660A1
WO1999012660A1 PCT/JP1998/004099 JP9804099W WO9912660A1 WO 1999012660 A1 WO1999012660 A1 WO 1999012660A1 JP 9804099 W JP9804099 W JP 9804099W WO 9912660 A1 WO9912660 A1 WO 9912660A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
bismuth
coating
curing
compound
Prior art date
Application number
PCT/JP1998/004099
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Yokoyama
Akira Kasari
Takeshi Yawata
Tadayoshi Hiraki
Yasuhiro Tomisaki
Original Assignee
Kansai Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co., Ltd. filed Critical Kansai Paint Co., Ltd.
Priority to CA002303027A priority Critical patent/CA2303027A1/en
Priority to EP98941831A priority patent/EP1027938A4/en
Publication of WO1999012660A1 publication Critical patent/WO1999012660A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/542No clear coat specified the two layers being cured or baked together

Definitions

  • the present invention is formed in a method of forming a multilayer coating film by coating a cationic electrodeposition coating material and an aqueous intermediate coating material with an “et-on-et” coating, and then heating and cross-linking and curing both coating films together. Finish appearance of multi-layer coatings (smoothness, gloss, etc.) ⁇ Improving the interlayer adhesion of both coatings.
  • this multi-layer coating film has insufficient finished appearance such as smoothness and luster, and it has been difficult to eliminate this defect even by applying a top coat.
  • An object of the present invention is to solve the above-mentioned problems in a multilayer coating film composed of a cationic electrodeposition coating film and an aqueous intermediate coating film, and to provide a method for forming a multilayer coating film having excellent finished appearance and interlayer adhesion.
  • the purpose of this study was to use a block polyisocyanate compound as a cross-linking agent for both cationic electrodeposition coatings and aqueous intermediate coatings, and to cross-link and cure electrodeposition coatings. It can be achieved by adjusting the reaction so that it starts earlier than the intermediate coating film. As a result, the finished appearance of the multilayer coating film (smoothness, gloss, etc.) Are found to be improved, and the present invention
  • the present invention relates to a method of applying a cationic electrodeposition coating composition (A) containing a block polyisocyanate compound as a cross-linking agent and curing the formed electrodeposition coating film without curing the electrodeposition coating film.
  • An aqueous intermediate coating (B) containing a polyisocyanate compound as a crosslinking agent is applied to form an intermediate coating, and then heated to cure both coatings together to form a multilayer coating.
  • a method for forming a multilayer coating film characterized in that the crosslinking and curing reaction of the electrodeposition coating film is adjusted to start earlier than the crosslinking and curing reaction of the intermediate coating film.
  • the measurement of the time of the initiation of crosslinking and curing of the coating film of the cationic electrodeposition coating material (A) and the aqueous intermediate coating material (B) is performed using a pendulum-type viscoelasticity measuring device (manufactured by Toyo Ball Douin, Leo Vibron DDV-OPA type) This is performed using In concrete terms, the weight 2 2 g, using a pendulum inertia Mome down bets 8 5 0 g ⁇ cm 2, thickness 3 0 / painted on the steel sheet so as to zm uncured film after curing The pendulum is placed on a plate and heated at a predetermined temperature (for example, 140 to 180 ° C) for crosslinking and curing the coating film while vibrating the pendulum, and the value of the logarithmic decay rate of the pendulum is applied.
  • a predetermined temperature for example, 140 to 180 ° C
  • crosslinking and curing start time The time required from the start of heating to the time of the start of crosslinking and curing is referred to as “curing start time”. The shorter the time, the faster the crosslinking and curing reaction starts.
  • the comparison of the timing of cross-linking curing of both coatings is based on the results measured at the same temperature.
  • the cationic electrodeposition paint (A) used in the method of the present invention contains a block poly isocyanate compound as a crosslinking agent, and preferably has a base resin (A-1) having a hydroxyl group and a cationic group. It is a cationic electrodeposition coating composition containing a block poly isocyanate compound (A-2).
  • the base resin (A-1) the hydroxyl group participates in a crosslinking reaction with the block polyisocynate compound, and the cationic group contributes to form a stable aqueous dispersion.
  • Examples of (A-1) include the following.
  • the base resin (A-1) is a cationizing agent for the epoxy group of the polyepoxide resin which is included in the above (i) and which is excellent in anticorrosion obtained by the reaction between the polyphenol compound and epichlorohydrin. Is a product obtained by reacting
  • the polyepoxide resin is a low molecular weight or high molecular weight compound having two or more epoxy groups in one molecule, and is at least 200, preferably 400 to 400, more preferably 800. Those having a number average molecular weight in the range of 2,000 to 2,000 are suitable.
  • a polyepoxide resin those known per se can be used, for example, a polyphenol compound which can be produced by reacting a polyphenol compound with epichlorohydrin in the presence of an alcohol. Of polyglycidyl ethers. Examples of the polyphenol compounds that can be used here include bis (4-hydroxyphenyl) 1-2,2-propane, 4,4'-dihydroxybenzobenzophenone, and bis (4-hydroxyphenyl).
  • those particularly suitable for producing the base resin (A-1) have a number average molecular weight of at least about 380, preferably about 800 to about 200, And a polyglycidyl ether of a polyphenol compound having an epoxy equivalent of 190 to 200, preferably 40 to 100. This includes those partially reacted with polyols, polyether polyols, polyester polyols, polyamide amines, polycarboxylic acids, polyisocyanate compounds, etc., as well as ⁇ -force products. Those obtained by graft polymerization of acrylonitrile and acrylic monomers may also be used.
  • the reaction product (i) between the polyepoxy resin and the cationizing agent can be obtained by reacting most or all of the epoxy groups of the polyepoxide resin with the cationizing agent.
  • an amine compound such as a primary amine, a secondary amine, a tertiary amine, or a polyamine can be used.
  • an amine compound such as a primary amine, a secondary amine, a tertiary amine, or a polyamine.
  • a cationic group-containing resin by introducing a cationic group such as a secondary amino group, a tertiary amino group, or a quaternary ammonium base into the polyepoxy resin. it can.
  • Examples of the primary amine compound include methylamine, ethylamine, n-propylamine, isopropylamine, monoethanolamine, n-propanolamine, and isopropanolamine.
  • Examples of the secondary amine compound include getylamine, diethanolamine, di-n-propanolamine, diisopropanolamine, N-methylethanolamine, N-ethylethanolamine, and the like.
  • Examples of the tertiary amine compound include triethylamine, triethanolamine, N, N-dimethylethanolamine, N-methylethanolamine, N, N-ethylethylamine, and N-ethylethylamine.
  • polyamines examples include ethylenediamine, diethylenetriamine, hydroxyxethylaminoethylamine, ethylaminoethylamine, methylaminopropylamine, and dimethylamine. Noethylamine, dimethylaminopropylamine, and the like.
  • a basic compound such as ammonia, hydroxyamine, hydrazine, hydroxyshetyl hydrazine, N-hydroxyshetyl imidazoline is used as a cationizing agent, which is used as an epoxy group of the polyepoxy resin.
  • the basic group formed by the reaction may be converted to a cationic group by protonation with an acid.
  • Preferred acids that can be used are water-soluble organic carboxylic acids such as formic acid, acetic acid, glycolic acid, and lactic acid.
  • hydroxyl group contained in these cationic group-containing resins include, for example, a reaction with alkanolamine as the above-mentioned cationizing agent, and ring opening of force prolactone which may be introduced into a polyepoxide resin.
  • primary hydroxyl groups introduced by reaction with alkanolamine are preferred because of their excellent cross-linking reactivity with block polyisocyanate compounds (cross-linking agents).
  • cross-linking agents block polyisocyanate compounds
  • the content of the hydroxyl group in the base resin (A-1) is 20 equivalents in terms of hydroxyl equivalent. 5,000, especially 60 to 3,000, more preferably 100 to 1,000 mg KOHZg, and particularly, the primary hydroxyl group equivalent is in the range of 200 to 1,000 mg KOH / g. Is preferred.
  • the content of the cationic group is preferably at least the minimum necessary for stably dispersing the base resin in water, and is generally 3 to 3 in terms of KOH (mgZg solid content) (amine value). It is preferably in the range of 200, especially 5 to 150, more particularly 10 to 80.
  • the base resin (A-1) does not contain free epoxy groups in principle.
  • the block polyisocyanate compound (A-2) used as a cross-linking agent in the cationic electrodeposition coating (A) is a compound in which substantially all of the isocyanate groups of the polyisocyanate compound are volatile active hydrogen compounds. (Blocking agent) reacts and blocks it and renders it inactive at room temperature. When heated to a predetermined temperature or higher, the blocking agent dissociates and the original isocyanate group is regenerated, and the base resin (A — Involves in crosslinking reaction with 1).
  • Polyisocyanate compounds are aliphatic, alicyclic, and aromatic compounds having two or more free isocyanate groups in one molecule, such as hexamethylene diisocyanate and trimethylene diisocyanate.
  • Aliphatic diisocyanates such as sodium, tetramethylene diisocyanate, dimer monoacid diisocyanate, and lysine diisocyanate; isophorone diisocyanate, methylene bis (cyclohexyl isocyanate), methylcyclohexyl Alicyclic diisocyanates such as sandiisocyanate, cyclohexanediisocyanate, and cyclopentanediisocyanate; xylylene diisocyanate, tridiethylene isocyanate, diphenyl methane diisocyanate Aromatic diisocyanates such as polyisocyanate, naphthalene diisocyanate, and toluidine diisocyanate
  • Examples of the blocking agent used for temporary blocking of the isocyanate group of the polyisocyanate compound include phenol, cresol, xylenol, p-ethylphenol, o-isopropylphenol, p-isopropylphenol — Tert —butylphenol, p-tert-octylpheno
  • p-Phenol, thymol, p-naphthol, p-ditropanol, p-phenol-based blocking agents such as chlorophenol; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl sorb, butyl sorb, methyl carbitol, benzyl alcohol, phenyl sorb, furfuryla Alcohol-based blocking agents such as norecol, cyclohexanol, methyl glycolate, butyl glycolate, diacetone alcohol, methyl lactate, and ethyl lactate; Active methylene blocking agents such as tilacetone, dimethyl malonate, getyl malonate, and ethyl acetate; mercapt
  • Imid-based blocking agents diphenylamine, xylidine, dibutylamine, phenylnaphthylamine, aniline, carbazole and other amine-based blocking agents; imidazole, 2-ethylimidazole, etc.
  • Imidazole blocking agents urea blocking agents such as urea, thiourea and ethylene urea; carbamate blocking agents such as phenyl N-phenylcarbamate and 2-oxazolidone; ethyleneimine, propyleneimidone Blocking agents such as imamidoxoxime, formaldoxime, acetoaldoxime, acetoxime, methylethylketoxime, diacetyl monooxime, cyclohexanone oxime, etc .; sodium bisulfite, potassium bisulfite Sulfite block such as Agents: ⁇ -caprolactam, 5-valerolactam, abutyrolactam, ⁇ -prop. Lactam blocking agents such as piolactam;
  • the reaction between the polyisocyanate compound and the active hydrogen compound (blocking agent) for preparing the block polyisocyanate compound ( ⁇ -2) can be carried out by a method known per se, and the resulting block is obtained. It is desirable that the polyisocyanate compound does not substantially contain a free isocyanate group.
  • the mixing ratio of the base resin (A-1) and the block polysocyanate compound ( ⁇ -2) is not particularly limited, but is generally based on the total solid weight of both components.
  • the base resin ( ⁇ -1) is 40 to 90%, particularly 50 to 80%
  • the block polyisocyanate compound ( ⁇ -2) is 60 to 10%, particularly 50 to 20.0%. It is preferably within the range of 0%.
  • Cationic electrodeposition paint ( ⁇ ) is used to remove the cationic groups in the base resin ( ⁇ -1). It can be prepared by neutralizing with acidic compounds such as acetic acid, formic acid, lactic acid, and phosphoric acid, and dispersing and mixing in water together with the block polyisocynate compound.
  • the pH of the aqueous dispersion is 3 to 9, especially 5 to 5. It is preferably within the range of 7, and the resin solid content concentration is suitably within the range of 5 to 30% by weight.
  • the cationic electrodeposition paint (A) may include, if necessary, a hydroxide of a metal selected from aluminum, nickel, zinc, stotium, zirconium, molybdenum, tin, antimony, lanthanum, tungsten, etc.
  • a curing catalyst having an anti-oxidation property such as an oxide, an organic acid salt, or an inorganic acid salt; an extender pigment; a coloring pigment; an anti-pigment pigment;
  • tin octoate dibutyltin dilaurate, a manganese-containing compound, and a cobalt-containing compound are used.
  • a curing catalyst such as dibutyltin maleate, dibutyltin diacetate, dibutyltin dilaurethmercaptide-triethylenediamine, and dimethyltin dichloride can be blended.
  • the compounding amount is generally 0.1 to 10 parts by weight, particularly 0.5 to 2 parts by weight, per 100 parts by weight of the total of the base resin (A-1) and the block polyisocyanate compound (A-2).
  • a bismuth-containing compound (A-3) is further used as the cationic electrodeposition coating material (A), in addition to the aforementioned base resin (A-1) and block polyisocyanate compound (A-2). It is desirable to use the lead-free cationic electrodeposition paint contained. As a result, environmental health It is possible to form an electrodeposition coating film having excellent anti-corrosion properties and curability without using a lead compound which is a problem.
  • bismuth-containing compounds that can be added to the cationic electrodeposition coating (A) include bismuth oxides, hydroxides, salts with inorganic or organic acids, and include, for example, bismuth hydroxide, bismuth trioxide, and nitric acid.
  • Bismuth, bismuth benzoate, bismuth citrate, bismuth oxycarbonate, bismuth gaylate and the like are mentioned, and among them, bismuth hydroxide is preferred.
  • These bismuth-containing compounds are generally used in an amount of 0.1 to 10 parts by weight, especially 0.1 part by weight, per 100 parts by weight of the total of the base resin (A-1) and the block polyisocyanate compound (A-2). It can be blended in the range of 15 to 7.5 parts by weight, more particularly 0.2 to 5 parts by weight.
  • the bismuth-containing compound (A-3) a water-insoluble bismuth compound and a compound represented by the formula
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • n is 0 or 1
  • An aliphatic carboxylic acid-modified bismuth compound obtained by mixing and dispersing the aliphatic carboxylic acid shown in an aqueous medium in the presence of a dispersant, if necessary, disperses uniformly and stably in a water-insoluble form.
  • Bismuth aqueous dispersion paste can be used.
  • a water-dispersed paste containing a boronic acid-modified bismuth compound (hereinafter referred to as an aqueous dispersion paste of bismuth or simply a water-dispersed paste) is a method in which a water-insoluble bismuth compound and an aliphatic carboxylic acid represented by the above formula are dissolved in an aqueous medium. And by mixing and dispersing in the presence of a dispersant. At that time, the aliphatic carboxylic acid is used in such a ratio that the water-insoluble aliphatic carboxylic acid-modified bismuth compound is mainly produced.
  • the content of the water-soluble bismuth compound in the supernatant obtained by subjecting the aqueous dispersion of bismuth to centrifugal separation (at 1200 rpm for 30 minutes) is calculated as the weight of the metal bismuth,
  • the total amount of the water-insoluble bismuth compound used in the above is preferably about 40% or less, particularly about 30% or less, and more preferably about 20% or less.
  • Examples of the water-insoluble bismuth compound used in the preparation of such an aqueous dispersion paste of bismuth include, for example, bismuth oxide, bismuth hydroxide, basic bismuth carbonate, and the like having a solubility in water at 20 ° C of 0.0.
  • Bismuth compounds having a weight of 0.1 g or less are preferred, with bismuth oxide being particularly preferred.
  • the aliphatic carboxylic acid represented by the above formula is used for the purpose of converting the water-insoluble bismuth compound into a sufficiently uniform dispersion in an aqueous medium, and specifically, for example, Droxyacetic acid, lactic acid- Aliphatic hydroxycarboxylic acids such as hydroxypropionic acid; and aliphatic alkoxycarboxylic acids such as methoxyacetic acid, ethoxyacetic acid, and 3-methoxypropionic acid.
  • Droxyacetic acid lactic acid- Aliphatic hydroxycarboxylic acids such as hydroxypropionic acid
  • aliphatic alkoxycarboxylic acids such as methoxyacetic acid, ethoxyacetic acid, and 3-methoxypropionic acid.
  • lactic acid particularly L-lactic acid and methoxyacetic acid, are preferred. These can be used alone or in combination of two or more.
  • the aliphatic carboxylic acid may be used in combination with another organic acid, for example, acetic acid
  • the amount of the above-mentioned aliphatic cationic acid to be used is within a range in which the obtained aliphatic carboxylic acid-modified bismuth compound may be in a water-insoluble state, and varies depending on the kind of the aliphatic carboxylic acid used.
  • the molar ratio to the amount of bismuth in the water-insoluble bismuth compound is usually in the range of 0.5 to 1.7, preferably 0.75 to 1.3.
  • the molar ratio is based on the amount of bismuth in the water-insoluble bismuth compound.
  • the ratio can be generally in the range of 0.25 to 2.5, preferably 0.5 to 1.3.
  • a cationic dispersing resin or a surfactant known per se in the field of cationic electrodeposition coatings can be used without any limitation.
  • the cationic dispersing resin include those for electrodeposition coating described below.
  • the base resin can be appropriately selected and used from those listed.
  • resins such as tertiary amine type, quaternary ammonium salt type, and tertiary sulfonium salt type are exemplified.
  • the surfactant include nonionic surfactants such as acetylene glycol-based, polyethylene glycol-based, and polyhydric alcohol-based surfactants having an HLB in the range of 3 to 18, preferably 5 to 15. .
  • the amount of the dispersant used can vary depending on the type thereof, the amount of the water-insoluble bismuth compound used, and the like. It is preferably in the range of 1 to 150 parts by weight, particularly 10 to 100 parts by weight based on 0 parts by weight.
  • the production of the aqueous dispersion paste of bismuth using the water-insoluble bismuth compound, the aliphatic carboxylic acid and the dispersant described above can be performed in the same manner as the production of the pigment paste used in the cationic electrodeposition paint.
  • an aliphatic carboxylic acid and a water-insoluble bismuth compound are added to water containing a dispersant, and the mixture is dispersed in a dispersing mixer such as a ball mill or a sand mill. Can be manufactured.
  • the resulting water-dispersed pastes can generally have a solids concentration of 10 to 70% by weight, preferably 30 to 60% by weight.
  • the aqueous dispersion paste of bismuth may be prepared as a pigment paste by adding pigments used in ordinary cationic electrodeposition paints.
  • a pigment paste is prepared by blending a pigment dispersing resin, a neutralizing agent, and pigments, and performing a dispersion treatment in a dispersion mixer such as a ball mill or a sand mill, and then dispersing the bismuth in water. Paste can be added.
  • a neutralizing agent used for neutralizing the pigment dispersing resin for example, organic acids such as acetic acid, formic acid, and lactic acid can be used.
  • pigment-dispersing resin for example, a conventionally known pigment-dispersing resin can be used without any limitation.
  • a cation-type dispersing resin similar to that used for preparing the bismuth-dispersed paste can be used.
  • any pigment can be used without particular limitation as long as it is a pigment generally used in electrodeposition paints.
  • coloring pigments such as titanium oxide, carbon black, and red iron; , Talc, calcium carbonate, silica and other extenders; aluminum limolybdate, Waterproof pigments such as aluminum tripolyphosphate are mentioned.
  • an aqueous dispersion paste of bismuth or a pigment paste containing the aqueous dispersion paste can be blended with the binder-resin component of the cationic electrodeposition paint.
  • the bismuth dispersion base has a bismuth metal content of 0.1 per 100 parts by weight of the base resin (A-1) and the block polyisocyanate compound (A-2) in total. To 10 parts by weight, preferably 0.3 to 7 parts by weight, and more preferably 0.5 to 5 parts by weight.
  • the cross-linking and curing reaction of the cationic electrodeposition coating (A) coating film needs to start earlier than the cross-linking and curing reaction of the intermediate coating (B) coating film located in the upper layer.
  • the difference between the curing temperatures of the two coating films is preferably in the range of 5 to 20 ° C, particularly preferably in the range of 5 to 15 ° C.
  • the start time of the cross-linking curing reaction of the cationic electrodeposition coating (A) coating film can be easily controlled by, for example, appropriately selecting the type and the amount of the polyisocyanate compound, the blocking agent, the curing catalyst, and the like.
  • the “curing start time” from the start of heating to the start of cross-linking curing is suitably between 5 and 15 minutes in the coating process.
  • the object to be coated is a power source, carbon
  • the plate is preferably used as an anode, with a bath temperature of 20 to 35 ° C, a voltage of 100 to 400 V, a current density of 0.01 to 5 A, and an energization time of 1 to 10 minutes.
  • the coating film thickness can be about 10 to about a cured film.
  • the object to be coated include a substrate having a conductive metal surface, in particular, an automobile body, an electric product and the like.
  • the aqueous intermediate coating containing a block polyisocyanate compound as a cross-linking agent is applied to the coated surface without curing the coated film. Paint (B) is applied.
  • the aqueous intermediate coating composition (B) is an aqueous coating composition containing a block polyisocyanate compound as a crosslinking agent, and is preferably a base resin having a functional group capable of undergoing a crosslinking reaction with an isocyanate group such as a hydroxyl group.
  • This is a water-based paint containing (B-1) and a block polyisocyanate compound (B-2), which are mixed and dispersed in water.
  • Examples of the base resin (B-1) having a functional group capable of undergoing a crosslinking reaction with an isocyanate group such as a hydroxyl group in the aqueous intermediate coating material (B) include, for example, a polyester resin having two or more hydroxyl groups in one molecule. Acrylic resins are particularly preferred.
  • the hydroxyl group-containing polyester resin can be produced by subjecting a polybasic acid and a polyhydric alcohol to an esterification reaction by a method known per se, and has a number average molecular weight of 1,000 to 50,000, particularly 2,000 to 2,000, and a hydroxyl group.
  • the value is preferably from 20 to 200 mg KOHZg, especially from 50 to 150 mg K ⁇ H / g, and the acid value is preferably not more than 10 OmgKOHZg, especially from 10 to 70 mgK0HZg.
  • a polybasic acid is a compound having two or more carboxyl groups in one molecule.
  • phthalic acid isophthalic acid, terephthalic acid, succinic acid, adipic acid, azellanic acid, sebacic acid, tetrahydrophthalic acid, and hexakis
  • examples include phthalic acid, maleic acid, maleic acid, fumaric acid, itaconic acid, trimellitic acid, pyromellitic acid and anhydrides thereof.
  • Polyhydric alcohols are compounds having two or more hydroxyl groups in one molecule, such as ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, Examples include hydrogenated bisphenol A, triethyleneglycol, glycerin, trimethylol-l-ethane, trimethyl-l-luppan, and pentaerythritol.
  • a hydroxyl group-containing acrylic resin can be produced by copolymerizing a hydroxyl group-containing polymerizable monomer and a polymerizable monomer component containing an acryl-based monomer under ordinary conditions.
  • the number average molecular weight is 1000 to 5000, especially 2000 to 20000, the hydroxyl value is 20 to 200 mg KOH / g, especially 50 to 150 mg KOH / g, and the acid value is 1 O Omg KOHZg or less, especially 20 to 7 Omg KOHZg. preferable.
  • the hydroxyl group-containing polymerizable monomer is a compound having at least one hydroxyl group and at least one polymerizable unsaturated bond in one molecule. Examples thereof include hydroxyxethyl (meta) acrylate, hydroxypropyl (meta). ) Monoesters of glycols having 2 to 20 carbon atoms and (meth) acrylic acid, such as acrylates and hydroxybutyl (meth) acrylates.
  • Examples of the acryl monomer include monoesters of (meth) acrylic acid and a monohydric alcohol having 1 to 22 carbon atoms, such as methyl acrylate and methyl acrylate.
  • hydroxyl-containing acrylic resin In the production of the hydroxyl-containing acrylic resin, other polymerizable monomers other than these hydroxyl-containing polymerizable monomers and acryl-based monomers can be used in combination.
  • polymerizable monomers include, for example, C 2 of (meta) allylic acid such as methoxybutyl acrylate, methoxybutyl methacrylate, methoxethyl acrylate, methoxyl ethyl methacrylate, and the like.
  • N-Jimechirua Mi Noechiruaku Li rate N, N-Jimechirua Mi Noechirume Tak Li rate
  • N, N-Jechiru A Mi Noechiruaku Li rate N, N-Jechirua Minoethyl methyl acrylate, N-t—Butylaminoethyl acrylate, N—t—Butylaminoethyl methacrylate, N, N-Dimethylaminopropyl acrylate, N, N-Dimethylaminopropyl methacrylate
  • Amino (meta) acrylic monomers such as acrylates
  • acrylamide, methacrylic N-methylacrylamide, N-methylacrylamide, N-ethylacrylamide, N-ethylacrylamide, N-butylacrylamide, N-butylacrylamide, N-butylacrylamide, N-butylmethacrylamide (Meth) acrylamide monomers such as N, N-d
  • the block polyisocyanate compound ( ⁇ -2) is a cross-linking agent for the base resin ( ⁇ -1), and has been specifically described as a cross-linking agent in the cationic electrodeposition paint ( ⁇ ).
  • One or more compounds selected from those exemplified as the block polyisocyanate compound (II-2) can be used.
  • the mixing ratio of the base resin ( ⁇ -1) and the block poly isocyanate compound ( ⁇ -2) is not particularly limited, but based on the total solid weight of both components.
  • the base resin ( ⁇ -1) may be in the range of 40 to 90%, especially 50 to 80%, and the block polyisocyanate compound ( ⁇ -2) may be in the range of 60 to 10%, especially 50 to 20%. preferable.
  • the aqueous intermediate coating ( ⁇ ) is composed of a base resin ( ⁇ -1) and a block polyisocyanate compound ( ⁇ -2), and a curing catalyst, extender, It may contain a coloring pigment, a surface conditioner and the like.
  • a curing catalyst one or more selected from those exemplified for the cationic electrodeposition coating ( ⁇ ) can be used.
  • the compounding amounts thereof are based on the base resin ( ⁇ -1) and the block polyisocynate. It is generally suitable that the amount is in the range of 0.1 to 10 parts by weight, especially 0.5 to 2 parts by weight, per 100 parts by weight of the compound ( ⁇ -2).
  • the timing of the start of crosslinking and curing of the coating of the aqueous intermediate coating ( ⁇ ) is determined based on the timing of starting the crosslinking of the coating of the cationic electrodeposition coating ( ⁇ ) located thereunder. More specifically, the cross-linking and curing reaction of the cationic electrodeposition paint (A) is started 0.5 to 10 minutes, especially 5 to 10 minutes later than the start of the cross-linking and curing reaction. Is preferred.
  • the “curing start time” required from the start of heating of the coating film of the aqueous intermediate coating material (B) to the start of cross-linking curing is the “curing start time” of the coating film of the cationic electrodeposition paint (A).
  • the difference is between 0.5 and 10 minutes, especially between 5 and 10 minutes.
  • the timing of the start of crosslinking and curing of the coating film of the aqueous intermediate coating composition (B) can be easily controlled by, for example, appropriately selecting the type and the amount of the polyisocyanate compound, the blocking agent, the curing catalyst, and the like.
  • the onset of the cross-linking and curing reaction of the coating of the aqueous intermediate coating (B) is later than the onset of the cross-linking and curing of the coating of the cationic electrodeposition coating (A). In 5.5 to 20 minutes, especially between 10 and 15 minutes is suitable.
  • the aqueous intermediate coating (B) is obtained by uniformly mixing and dispersing the base resin (B-1) and the block polyisocyanate compound (B-2) and optionally other additives in water. It is preferable that the solid content concentration is adjusted in the range of 20 to 70% by weight.
  • the cationic electrodeposition coating (A) is applied and, if necessary, dried at a temperature of 120 ° C. or less without curing, and then the aqueous intermediate coating (B) is coated on the electrodeposition coating. After coating, both films are heated and crosslinked and cured together.
  • the aqueous intermediate coating (B) is applied by electrostatic coating, airless spraying, air spraying, etc., and its film thickness is about 5 to about 80 m, especially about 15 to about 35 m, based on the cured coating. A range of ⁇ m is suitable.
  • both cation electrodeposition coating (A) coating and waterborne intermediate coating (B) coating were applied.
  • the heating temperature for curing the bridge is equal to or higher than the dissociation temperature of the block polyisocyanate compound contained in the coating film, but is usually about 130 to about 180 ° C.
  • the coating film can be hardened by baking for a minute.
  • a top coat such as a solid paint, a metallic paint, and a clear paint is coated on the multilayer coating film formed by the method of the present invention by a known method, for example, 1 coat 1 coat. Painted by wake-up method (1C1B), 2-coat 1-bake method (2C1B), 2-coat 2-bake method (2C2B), 3-coat 1-bake method (3C1B) can do.
  • the measurement of the cross-linking start time of the electrodeposited coating film and the aqueous intermediate coating film was performed using a pendulum type viscoelasticity meter (Toyo Baldwin, Leo Vibron DDV-OPA type).
  • Polyester resin (1) 1) Polyester resin (1):
  • Acrylic resin (1) 210 parts of styrene, 294 parts of n-butyl methacrylate, 253 parts of hydroxybutyl acrylate, 200 parts of 2-ethylhexyl methacrylate, and 30 parts of acrylic acid are placed in a reaction vessel and placed at 5 ° C at 120 ° C. After reacting for an hour, an acryl resin having a number average molecular weight of about 20,000, an acid value of 25 mg KOHZg, and a hydroxyl value of 95 mg KOHZg was obtained.
  • Bisphenol A type epoxy resin with epoxy equivalent of 630 (Epico 1002 (trade name, manufactured by Shell Chemical Co., Ltd.)) 1,260 parts are dissolved in 450 parts of butyl ether solvent, 132 parts of ⁇ -nonylphenol and 105 parts of N-methylethanolamine Then, the mixture was heated to 140 ° C. and reacted at the same temperature to obtain an additional epoxy resin having a solid content of 77% and an amine value of 52.
  • To 130 parts of this resin were added 30 parts of block polyisocyanate compound (curing agent) and 1.3 parts of polypropylene glycol (number average molecular weight 4000), and then 2.1 parts of acetic acid was added to make it water-soluble. 20% aqueous lead acetate solution 6.5 parts are added, then deionized water is gradually added and dispersed to obtain an emulsion having a solid content of 30%.
  • the above block polyisocyanate compound is obtained by reacting 174 parts of 2,6-tolylene diisocyanate with 85 parts of polycaprolactone diol having a hydroxyl equivalent of 425 to 2-ethylhexyl alcohol monoether of ethylene glycol. (Blocking agent).
  • the “dispersion paste of bismuth” was prepared as follows.
  • Aliphatic hexafunctional block polyisocyanate compound A hexameric methylene diisocyanate trimer is blocked with methylethylketoxime.
  • Titanium white pigment "Tika J R 806J (manufactured by Tika, trade name)” (Note 4) Riki Bon Black: “Mitsubishi Riki Bon Black M-100"
  • Polyester resin 1000 parts, Dimethylaminoethanol (Note 1) 40 parts, Aliphatic trifunctional block polyisocyanate compound (Note 5) 410 parts, Titanium white pigment (Note 3) 1400 parts And 20 parts of carbon black (Note 4) were mixed and dispersed in 1800 parts of deionized water to obtain an aqueous intermediate coating (2).
  • Acrylic resin 1000 parts, dimethylaminoethanol (Note 1) Mix 40 parts, aliphatic trifunctional block polyisocyanate compound (Note 5) 410 parts, titanium white pigment (Note 3) 1400 parts and carbon black (Note 4) 20 parts with 1800 parts of deionized water It was dispersed to obtain an aqueous intermediate coating (3).
  • Polyester resin (2) 1 00 parts, dimethylaminoethanol (Note 1) 40 parts, aliphatic trifunctional block polyisocyanate compound (Note 6) 410 parts, Titanium white pigment (Note 3) 1400 parts 20 parts were mixed and dispersed in 1800 parts of deionized water to obtain an aqueous intermediate coating (2).
  • Aliphatic trifunctional block polyisocyanate compound A hexamethylene diisocyanate trimer was blocked with ethyl malonate.
  • Polyester resin 1000 parts, Dimethylaminoethanol (Note 1) 40 parts, Melamine resin (Note 7) 300 parts, Titanium white pigment (Note 3) 1 400 parts and Rikibon black (Note 4) 20 parts was mixed and dispersed in 1800 parts of deionized water to obtain an aqueous intermediate coating composition (5).
  • Cathode dipped steel sheet treated with zinc phosphate is immersed in a cathodic electrodeposition paint (1) to (3) as a cathode, and electrodeposited at 30 ° C and 200 V for 3 minutes. 25 / m), dried at 100 ° C for 10 minutes, and then Each of the paints (1) to (5) was applied by air spray (thickness of the cured film is 30 to 35 ⁇ m), and then heated at 170 ° C for 30 minutes to crosslink and cure both films.
  • the test method is as follows.
  • Gloss 60 degree specular reflectance.
  • Sharpness The result of measurement with an image clarity measuring device (IMAGE CLARITY METER, manufactured by Suga Test Instruments Co., Ltd.).
  • the numbers in the table are ICM values, and take values in the range of 0 to 100. The larger the value, the better the sharpness (image clarity). If the ICM value is 80 or more, the sharpness is extremely good.
  • Impact resistance Using a Dupont-type impact tester, drop a weight of 500 g with a striker core of 1 inch and 2 inches with the coating surface facing upward. No drop occurs on the coating film. Cm).
  • Moisture resistance The test plate was allowed to stand for 72 hours under the conditions of 50 ° C and a humidity of 95%, and the appearance and adhesion of the coating film were examined. Appearance evaluation: ⁇ indicates no abnormality, ⁇ indicates slight blistering, and X indicates slight blistering. Adhesion is performed using a taper test (a 1m x 1mm gobber, 100 pieces) tape peeling test.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

A method of forming a multilayered coating film by applying a cationic electrodeposition coating material containing a blocked polyisocyanate compound as a cross-linking agent, applying a water-based intercoating material containing a blocked polyisocyanate compound as a cross-linking agent on the electrodeposited coating film to form an intercoating film without curing the electrodeposited coating film, and heating the two coating films to simultaneously cure both, characterized by regulating the coating materials so that the cross-linking curing reaction of the electrodeposited coating film begins earlier than that of the intercoating film. This method can give a multilayered coating film improved in finish appearance (smothness, gloss, etc.), interlaminar adhesion between the coating films, etc.

Description

明 細 書  Specification
複層塗膜形成方法  Multilayer coating method
技術分野 Technical field
本発明は、 カチオン電着塗料および水性中塗り塗料をゥエツ トオンゥ エツ 卜で塗装し、 ついで加熱して両塗膜を一緒に架橋硬化せしめること により複層塗膜を形成する方法において、 形成される複層塗膜の仕上が り外観 (平滑性、 ツヤ感など) ゃ両塗膜の層間付着性などを改良するこ とに関する。  The present invention is formed in a method of forming a multilayer coating film by coating a cationic electrodeposition coating material and an aqueous intermediate coating material with an “et-on-et” coating, and then heating and cross-linking and curing both coating films together. Finish appearance of multi-layer coatings (smoothness, gloss, etc.) ゃ Improving the interlayer adhesion of both coatings.
背景技術 Background art
これまで、 自動車外板などに、 ブロックポリイソシァネー ト化合物を 架橋剤とするカチオン電着塗料、 およびポリエステル樹脂とアミノ樹脂 などを含有する水性中塗り塗料をゥエツ トオンゥエツ トで塗装し、 つい で加熱してこの両塗膜を一緒に硬化せしめて複層塗膜を形成することは すでに知られている。  Until now, automotive exterior panels and the like have been coated with a cationic electrodeposition paint using a block polyisocyanate compound as a cross-linking agent and an aqueous intermediate coating containing polyester resin and amino resin, etc. It is already known to heat and cure both coatings together to form a multilayer coating.
しかしながら、 この複層塗膜は、 平滑性、 ツヤ感などの仕上がり外観 が十分でなく、 この欠点は上塗り塗料を塗装しても解消させることは困 難であった。 しかも、 走行中に跳ね上げられた小石などがあたると、 該 両塗膜の層間でチッビング剥がれ (ピーリ ング) が生じやすいという課 題を有している。  However, this multi-layer coating film has insufficient finished appearance such as smoothness and luster, and it has been difficult to eliminate this defect even by applying a top coat. In addition, there is a problem in that if pebbles or the like that are flipped up during traveling hits, chipping peeling (peeling) easily occurs between the layers of the two coating films.
本発明の目的は、 カチオン電着塗膜および水性中塗り塗膜からなる複 層塗膜における上記の如き課題を解決し、 仕上がり外観や層間付着性な どのすぐれた複層塗膜の形成方法を提供することである。 今回、 この目 的は、 カチオン電着塗料および水性中塗り塗料の両塗料の架橋剤として ブロックポリイソシァネー ト化合物を使用し、 かつ電着塗膜の架橋硬化 反応が中塗り塗膜より早く開始するように調整してなることにより達成 することができ、 その結果、 複層塗膜の仕上がり外観 (平滑性、 ツヤ感 など) ゃ両塗膜の層間付着性などが改良されることを見出し、 本発明をAn object of the present invention is to solve the above-mentioned problems in a multilayer coating film composed of a cationic electrodeposition coating film and an aqueous intermediate coating film, and to provide a method for forming a multilayer coating film having excellent finished appearance and interlayer adhesion. To provide. The purpose of this study was to use a block polyisocyanate compound as a cross-linking agent for both cationic electrodeposition coatings and aqueous intermediate coatings, and to cross-link and cure electrodeposition coatings. It can be achieved by adjusting the reaction so that it starts earlier than the intermediate coating film. As a result, the finished appearance of the multilayer coating film (smoothness, gloss, etc.) Are found to be improved, and the present invention
Tcfikし 。 Tcfik.
発明の開示 Disclosure of the invention
本発明は、 プロックポリイソシァネー ト化合物を架橋剤として含有す るカチオン電着塗料 (A ) を塗装し、 形成される電着塗膜を硬化させる ことなく、 該電着塗膜上にプロックポリイソシァネー ト化合物を架橋剤 として含有する水性中塗り塗料 (B ) を塗装して中塗り塗膜を形成し、 ついで加熱して両塗膜を一緒に硬化させて複層塗膜を形成する方法であつ て、 該電着塗膜の架橋硬化反応が該中塗り塗膜の架橋硬化反応より早く 開始するように調整してなることを特徴とする複層塗膜形成法に関する。 本明細書において、 カチオン電着塗料( A )および水性中塗り塗料(B ) の塗膜の架橋硬化開始時期の測定は、 振子式粘弾性測定器 (東洋ボール ドウイン製、 レオバイブロン D D V— O P A型) を用いて行われる。 具 体的には、 重量 2 2 g、 慣性モーメ ン ト 8 5 0 g · c m 2の振子を使用 し、 膜厚が硬化後に 3 0 /z mになるように鋼板に塗装した未硬化塗膜上 にこの振子を載せ、 振子を振動させながら、 該塗膜を架橋硬化させるた めの所定の温度 (例えば 1 4 0〜 1 8 0 °C ) で加熱して、 振子の対数減 衰率の値が上昇を始める時を 「架橋硬化開始時期」 とする。 そして、 加 熱を開始してから架橋硬化開始時期までに要した時間を 「硬化開始時間」 とし、 それが短い方が 「架橋硬化反応が早く開始する」 ことを意味する。 両塗膜の架橋硬化開始時期の比較は、 同じ温度で測定した結果に基いて 行う。 発明の実施の形態 The present invention relates to a method of applying a cationic electrodeposition coating composition (A) containing a block polyisocyanate compound as a cross-linking agent and curing the formed electrodeposition coating film without curing the electrodeposition coating film. An aqueous intermediate coating (B) containing a polyisocyanate compound as a crosslinking agent is applied to form an intermediate coating, and then heated to cure both coatings together to form a multilayer coating. A method for forming a multilayer coating film, characterized in that the crosslinking and curing reaction of the electrodeposition coating film is adjusted to start earlier than the crosslinking and curing reaction of the intermediate coating film. In the present specification, the measurement of the time of the initiation of crosslinking and curing of the coating film of the cationic electrodeposition coating material (A) and the aqueous intermediate coating material (B) is performed using a pendulum-type viscoelasticity measuring device (manufactured by Toyo Ball Douin, Leo Vibron DDV-OPA type) This is performed using In concrete terms, the weight 2 2 g, using a pendulum inertia Mome down bets 8 5 0 g · cm 2, thickness 3 0 / painted on the steel sheet so as to zm uncured film after curing The pendulum is placed on a plate and heated at a predetermined temperature (for example, 140 to 180 ° C) for crosslinking and curing the coating film while vibrating the pendulum, and the value of the logarithmic decay rate of the pendulum is applied. The time when the temperature begins to rise is referred to as the “crosslinking and curing start time”. The time required from the start of heating to the time of the start of crosslinking and curing is referred to as “curing start time”. The shorter the time, the faster the crosslinking and curing reaction starts. The comparison of the timing of cross-linking curing of both coatings is based on the results measured at the same temperature. Embodiment of the Invention
以下、 本発明の複層塗膜形成法についてさらに詳細に説明する。  Hereinafter, the method for forming a multilayer coating film of the present invention will be described in more detail.
カチオン電着塗料 (A ) : Cationic electrodeposition paint (A):
本発明の方法で使用されるカチオン電着塗料 (A ) は、 ブロックポリ イソシァネー ト化合物を架橋剤として含有するものであり、 好適には、 水酸基およびカチオン性基を有する基体樹脂 (A— 1 ) とブロックポリ イソシァネー ト化合物 (A— 2 ) とを含有するカチオン電着塗料である。 基体樹脂 (A—1 ) において、 水酸基はブロックポリイソシァネー ト 化合物との架橋反応に関与し、 カチオン性基は安定な水分散液を形成さ せるために寄与するものであって、 基体樹脂 (A— 1 ) として、 例えば つぎのものが挙げられる。  The cationic electrodeposition paint (A) used in the method of the present invention contains a block poly isocyanate compound as a crosslinking agent, and preferably has a base resin (A-1) having a hydroxyl group and a cationic group. It is a cationic electrodeposition coating composition containing a block poly isocyanate compound (A-2). In the base resin (A-1), the hydroxyl group participates in a crosslinking reaction with the block polyisocynate compound, and the cationic group contributes to form a stable aqueous dispersion. Examples of (A-1) include the following.
(i) ポリエポキシ樹脂とカチオン化剤との反応生成物。  (i) A reaction product of a polyepoxy resin and a cationizing agent.
(ii) ポリカルボン酸とポリァミ ンとの重縮合物 (米国特許第 2 4 5 0 9 4 0号明細書参照) を酸でプロ トン化したもの。  (ii) Polycondensates of polycarboxylic acids and polyamines (see US Pat. No. 2,450,940) which are protonated with acids.
(iii) ポリイソシァネー ト化合物及びポリオールとモノ又はポリア ミ ンとの重付加物を酸でプロ トン化したもの。  (iii) Polyisocyanate compounds and polyadducts of polyols and mono- or polyamines, which are protonated with an acid.
(iv) 水酸基及びァミ ノ基含有ァク リル系またはビニル系モノマー の共重合体を酸でプロ トン化したもの (特公昭 4 5 - 1 2 3 9 5号公報、 特公昭 4 5— 1 2 3 9 6号公報参照) 。  (iv) A copolymer of an acrylic or vinyl monomer containing a hydroxyl group and an amino group, which is protonated with an acid (Japanese Patent Publication No. 45-12395, Japanese Patent Publication No. 45-1-1) See Japanese Patent Application Publication No. 23996.
( V) ポリカルボン酸樹脂とアルキレンィ ミ ンとの付加物を酸でプ 口 トン化したもの (米国特許第 3 4 0 3 0 8 8号明細書参照) 。  (V) A product obtained by converting an adduct of a polycarboxylic acid resin and an alkyleneimine into a proton with an acid (see US Pat. No. 3,430,888).
これらのカチオン性樹脂の具体例及び製造方法については、 例えば、 特公昭 4 5 - 1 2 3 9 5号公報、 特公昭 4 5 - 1 2 3 9 6号公報、 特公 昭 4 9一 2 3 0 8 7号公報、 米国特許第 2, 4 5 0 , 9 4 0号明細書、 米国特許第 3 , 4 0 3, 0 8 8号明細書、 米国特許第 3, 8 9 1 , 5 2 9号明細書、 米国特許第 3, 9 6 3 , 6 6 3号明細書などに記載されて いるので、 ここではこれらの引用を以つて詳細な説明に代える。 Specific examples and production methods of these cationic resins are described in, for example, JP-B-45-12395, JP-B-45-123396, and JP-B-49-123. No. 087, U.S. Pat.No. 2,450,940, Described in U.S. Pat. No. 3,403,088, U.S. Pat. No. 3,891,5 29, U.S. Pat. No. 3,963,666 Therefore, these descriptions will be replaced with detailed explanations here.
基体樹脂 (A— 1 ) として特に好ましいのは、 前記 ( i ) に包含され る、 ポリフヱノール化合物とェピクロルヒ ドリ ンとの反応により得られ る防食性に優れているポリエポキシド樹脂のエポキシ基にカチォン化剤 を反応せしめて得られる生成物である。  Particularly preferred as the base resin (A-1) is a cationizing agent for the epoxy group of the polyepoxide resin which is included in the above (i) and which is excellent in anticorrosion obtained by the reaction between the polyphenol compound and epichlorohydrin. Is a product obtained by reacting
該ポリエポキシ ド樹脂は、 エポキシ基を 1分子中に 2個以上有する低 分子量または高分子量の化合物であり、 少なく とも 2 0 0、 好ましくは 4 0 0〜4 , 0 0 0、 さらに好ましくは 8 0 0〜2 , 0 0 0の範囲内の 数平均分子量を有するものが適している。 そのようなポリエポキシド樹 脂としてはそれ自体既知のものを使用することができ、 例えば、 ポリフエ ノール化合物をアル力リの存在下にェピクロルヒ ドリ ンと反応させるこ とによって製造することができる、 ポリフヱノール化合物のポリグリシ ジルエーテルが包含される。 こ こで使用できるポリフヱノール化合物と しては、 例えば、 ビス (4ーヒ ドロキシフヱニル) 一2 , 2—プロパン、 4 , 4 ' —ジヒ ドロキシベンゾフヱノ ン、 ビス ( 4ーヒ ドロキシフヱ二 ル) 一 1, 1—ェタン、 ビス一 (4ーヒ ドロキシフヱニル) 一 1 . 1— イソブタン、 ビス (4—ヒ ドロキシ一 t e r t—ブチルーフヱニル) ― 2 , 2—プロパン、 ビス (2—ヒ ドロキシブチル) メタン、 1 , 5—ジ ヒ ドロキシナフタレン、 ビス (2, 4ージヒ ドロキシフエニル) メタン、 テトラ (4ーヒ ドロキシフエニル) 一1 , 1 , 2 , 2—ェタン、 4, 4 一一ジヒ ドロキシジフエニルエーテル、 4 , 4 ' —ジヒ ドロキシジフエ ニルスルホン、 フエノールノボラック、 クレゾ一ルノボラ、、ノ クなどがあ げられる。 The polyepoxide resin is a low molecular weight or high molecular weight compound having two or more epoxy groups in one molecule, and is at least 200, preferably 400 to 400, more preferably 800. Those having a number average molecular weight in the range of 2,000 to 2,000 are suitable. As such a polyepoxide resin, those known per se can be used, for example, a polyphenol compound which can be produced by reacting a polyphenol compound with epichlorohydrin in the presence of an alcohol. Of polyglycidyl ethers. Examples of the polyphenol compounds that can be used here include bis (4-hydroxyphenyl) 1-2,2-propane, 4,4'-dihydroxybenzobenzophenone, and bis (4-hydroxyphenyl). ) 1, 1-ethane, bis-1-(4-hydroxyphenyl) 1-1-isobutane, bis (4-hydroxy-tert-butyl-phenyl)-2,2-propane, bis (2-hydroxybutyl) methane, 1,5-dihydroxynaphthalene, bis (2,4dihydroxyphenyl) methane, tetra (4-hydroxyphenyl) 1-1,1,2,2-ethane, 4,4-dihydroxydiphenylether, 4, 4'—dihydroxydiphenylsulfone, phenol novolak, cresol novola, knock, etc. I can do it.
これらのポリエポキシド樹脂の中で、 基体樹脂 (A— 1 ) の製造に特 に適当なものは、 数平均分子量が少なく とも約 3 8 0、 好適には約 8 0 0〜約 2 0 0 0、 及びエポキシ当量が 1 9 0〜 2 0 0 0、 好適には 4 0 ◦〜 1 0 0 0のポリフヱノール化合物のポリグリ シジルエーテルである。 このものには、 ポリオール、 ポリエーテルポリオール、 ポリエステルポ リオ一ル、 ポリアミ ドアミ ン、 ポリ力ルポン酸、 ポリイソシァネー ト化 合物などと部分的に反応させたものも含まれ、 さらに ε—力プロラク ト ン、 ァク リルモノマーなどをグラフ ト重合させたものもよい。 ポリエ ポキシ樹脂とカチオン化剤との反応生成物 ( i ) は、 上記ポリエポキシ ド樹脂のエポキシ基の殆どもしくはすべてにカチオン化剤を反応するこ とにより得られる。  Among these polyepoxide resins, those particularly suitable for producing the base resin (A-1) have a number average molecular weight of at least about 380, preferably about 800 to about 200, And a polyglycidyl ether of a polyphenol compound having an epoxy equivalent of 190 to 200, preferably 40 to 100. This includes those partially reacted with polyols, polyether polyols, polyester polyols, polyamide amines, polycarboxylic acids, polyisocyanate compounds, etc., as well as ε-force products. Those obtained by graft polymerization of acrylonitrile and acrylic monomers may also be used. The reaction product (i) between the polyepoxy resin and the cationizing agent can be obtained by reacting most or all of the epoxy groups of the polyepoxide resin with the cationizing agent.
カチオン化剤としては、 例えば、 第 1級アミ ン、 第 2級アミ ン、 第 3 級ァミ ン、 ポリアミ ンなどのアミ ン化合物を用いることができ、 これを それ自体既知の方法でエポキシ基と反応させて、 該ポリエポキシ樹脂中 に第 2級ァミ ノ基、 第 3級ァミノ基、 第 4級アンモニゥム塩基などの力 チオン性基を導入することによりカチオン性基含有樹脂とすることがで きる。  As the cationizing agent, for example, an amine compound such as a primary amine, a secondary amine, a tertiary amine, or a polyamine can be used. To form a cationic group-containing resin by introducing a cationic group such as a secondary amino group, a tertiary amino group, or a quaternary ammonium base into the polyepoxy resin. it can.
第 1級アミ ン化合物としては、 例えばメチルァミ ン、 ェチルァミ ン、 n —プロピルァミ ン、 イソプロピルァミ ン、 モノエタノ一ルァミ ン、 n —プロパノ一ルァミ ン、 ィソプロパノ一ルァミ ン等をあげることができ、 第 2級アミ ン化合物としては、 例えばジェチルァミ ン、 ジエタノ一ルァ ミ ン、 ジ n—プロパノ一ルァミ ン、 ジイソプロパノールァミ ン、 N—メ チルェタノ一ルアミ ン、 N—ェチルェタノ一ルァミ ン等をあげることが でき、 第 3級アミ ン化合物としては、 例えばトリェチルァミ ン、 トリヱ 夕ノールァミ ン、 N , N—ジメチルエタノールァミ ン、 N—メチルジェ タノールァミ ン、 N , N—ジェチルエタノールァミ ン、 N—ェチルジェ タノ一ルアミ ン等をあげることができ、 ポリアミ ンとしては、 例えばェ チレンジァミ ン、 ジエチレントリァミ ン、 ヒ ドロキシェチルアミノエチ ルァミ ン、 ェチルァミノェチルァミ ン、 メチルァミ ノプロピルァミ ン、 ジメチルァミ ノェチルァミ ン、 ジメチルァミノプロピルァミ ン等をあげ ることができる。 Examples of the primary amine compound include methylamine, ethylamine, n-propylamine, isopropylamine, monoethanolamine, n-propanolamine, and isopropanolamine. Examples of the secondary amine compound include getylamine, diethanolamine, di-n-propanolamine, diisopropanolamine, N-methylethanolamine, N-ethylethanolamine, and the like. But Examples of the tertiary amine compound include triethylamine, triethanolamine, N, N-dimethylethanolamine, N-methylethanolamine, N, N-ethylethylamine, and N-ethylethylamine. Examples of polyamines include ethylenediamine, diethylenetriamine, hydroxyxethylaminoethylamine, ethylaminoethylamine, methylaminopropylamine, and dimethylamine. Noethylamine, dimethylaminopropylamine, and the like.
これらのアミ ン化合物以外の、 アンモニア、 ヒ ドロキシァミ ン、 ヒ ド ラジン、 ヒ ドロキシェチルヒ ドラジン、 N—ヒ ドロキシェチルイ ミダゾ リ ン等の塩基性化合物をカチオン化剤として用い、 それをポリエポキシ 樹脂のエポキシ基と反応させることにより形成される塩基性基を、 酸で プロ トン化してカチオン性基としてもよい。 用い得る酸としては、 ギ酸、 酢酸、 グリコール酸、 乳酸などの水溶性有機カルボン酸が好ましい。  Other than these amine compounds, a basic compound such as ammonia, hydroxyamine, hydrazine, hydroxyshetyl hydrazine, N-hydroxyshetyl imidazoline is used as a cationizing agent, which is used as an epoxy group of the polyepoxy resin. The basic group formed by the reaction may be converted to a cationic group by protonation with an acid. Preferred acids that can be used are water-soluble organic carboxylic acids such as formic acid, acetic acid, glycolic acid, and lactic acid.
これらのカチオン性基含有樹脂が有する水酸基としては、 例えば、 上 記カチオン化剤としてのアル力ノ一ルァミ ンとの反応、 ポリエポキシ ド 樹脂中に導入されることがある力プロラク トンの開環物およびポリオ一 ルとの反応などにより導入される第 1級水酸基 ; エポキシ樹脂が本来有 している第 2級水酸基などがあげられる。 このうち、 アル力ノールアミ ンとの反応により導入される第 1級-水酸基は、 ブロックポリイソシァネ ー ト化合物 (架橋剤) との架橋反応性がすぐれているので好ましい。 か かるアルカノ一ルァミ ンとしては、 上記カチオン化剤として上記で例示 したものが好ましい。  Examples of the hydroxyl group contained in these cationic group-containing resins include, for example, a reaction with alkanolamine as the above-mentioned cationizing agent, and ring opening of force prolactone which may be introduced into a polyepoxide resin. Primary hydroxyl group introduced by reaction with a product or a polyol; a secondary hydroxyl group originally contained in an epoxy resin; and the like. Of these, primary hydroxyl groups introduced by reaction with alkanolamine are preferred because of their excellent cross-linking reactivity with block polyisocyanate compounds (cross-linking agents). As such an alkanolamine, those exemplified above as the cationizing agent are preferable.
上記の基体樹脂 (A— 1 ) 中の水酸基の含有量は、 水酸基当量で 2 0 〜5, 000、 特に 60~3, 000、 さらに特に 100〜1, 000 mgKOHZgの範囲内にあることが好ましく、 特に、 第 1級水酸基当 量は 200〜1, 00 Omg KOH/gの範囲内にあることが好ましい。 また、 カチオン性基の含有量は、 該基体樹脂を水中に安定に分散しうる 必要な最低限以上であることが好ましく、 KOH(mgZg固形分) (ァ ミ ン価) 換算で、 一般に 3〜200、 特に 5〜150、 さらに特に 10 〜80の範囲内にあることが好ましい。 The content of the hydroxyl group in the base resin (A-1) is 20 equivalents in terms of hydroxyl equivalent. 5,000, especially 60 to 3,000, more preferably 100 to 1,000 mg KOHZg, and particularly, the primary hydroxyl group equivalent is in the range of 200 to 1,000 mg KOH / g. Is preferred. Further, the content of the cationic group is preferably at least the minimum necessary for stably dispersing the base resin in water, and is generally 3 to 3 in terms of KOH (mgZg solid content) (amine value). It is preferably in the range of 200, especially 5 to 150, more particularly 10 to 80.
基体樹脂 (A— 1) は遊離のエポキシ基は原則として含んでいないこ とが望ましい。  It is desirable that the base resin (A-1) does not contain free epoxy groups in principle.
他方、 カチオン電着塗料 (A) において架橋剤として使用されるブロッ クポリイソシァネー ト化合物 ( A— 2 ) は、 ポリイソシァネー ト化合物 のイソシァネー ト基の実質的にすべてを揮発性の活性水素化合物 (プロッ ク剤) で反応し封鎖して、 常温では不活性としたものであり、 所定温度 以上に加熱するとこのプロック剤が解離して元のィソシァネー ト基が再 生して、 基体樹脂 (A— 1) との架橋反応に関与する。  On the other hand, the block polyisocyanate compound (A-2) used as a cross-linking agent in the cationic electrodeposition coating (A) is a compound in which substantially all of the isocyanate groups of the polyisocyanate compound are volatile active hydrogen compounds. (Blocking agent) reacts and blocks it and renders it inactive at room temperature. When heated to a predetermined temperature or higher, the blocking agent dissociates and the original isocyanate group is regenerated, and the base resin (A — Involves in crosslinking reaction with 1).
ポリイソシァネー ト化合物は 1分子中に遊離のイソシァネー ト基 2個 以上有する脂肪族系、 脂環式系、 芳香族系の化合物であり、 例えばへキ サメチレンジイソシァネー ト、 トリメチレンジイソシァネー ト、 テ トラ メチレンジイソシァネー ト、 ダイマ一酸ジイソシァネー ト、 リジンジィ ソシァネー ト等の脂肪族ジイソシァネー ト ; イソホロンジィソシァネ一 ト、 メチレンビス (シクロへキシルイソシァネー ト) 、 メチルシクロへ キサンジイソシァネー ト、 シクロへキサンジイソシァネー ト、 シクロべ ンタンジイソシァネー ト等の脂環族ジイソシァネー ト ; キシリ レンジィ ソシァネー ト、 ト リ レンジイソシァネ一 ト、 ジフエニルメ タンジイソシ ァネー ト、 ナフタレンジイソシァネー ト、 トルイジンジイソシァネー ト 等の芳香族ジィソシァネー ト ; これらのポリイソシァネー ト化合物のゥ レタン化付加物、 ビューレツ トタイプ付加物、 イソシァヌル環タイプ付 加物等があげられる。 Polyisocyanate compounds are aliphatic, alicyclic, and aromatic compounds having two or more free isocyanate groups in one molecule, such as hexamethylene diisocyanate and trimethylene diisocyanate. Aliphatic diisocyanates such as sodium, tetramethylene diisocyanate, dimer monoacid diisocyanate, and lysine diisocyanate; isophorone diisocyanate, methylene bis (cyclohexyl isocyanate), methylcyclohexyl Alicyclic diisocyanates such as sandiisocyanate, cyclohexanediisocyanate, and cyclopentanediisocyanate; xylylene diisocyanate, tridiethylene isocyanate, diphenyl methane diisocyanate Aromatic diisocyanates such as polyisocyanate, naphthalene diisocyanate, and toluidine diisocyanate; and the like, such as perethane-modified adducts, buret-type adducts, and isocyanuric ring-type adducts of these polyisocyanate compounds. .
上記のポリイソシァネート化合物のィソシァネー ト基の一時的封鎖の ために使用されるブロック剤としては、 例えば、 フエノール、 クレゾ一 ル、 キシレノール、 p—ェチルフエノ一ル、 o—イソプロピルフエノー ノレ、 p— t e r t —ブチルフエノール、 p— t e r t—ォクチルフエノ Examples of the blocking agent used for temporary blocking of the isocyanate group of the polyisocyanate compound include phenol, cresol, xylenol, p-ethylphenol, o-isopropylphenol, p-isopropylphenol — Tert —butylphenol, p-tert-octylpheno
—ル、 チモール、 p —ナフ トール、 p —二トロフヱノール、 p —クロ口 フヱノールなどのフヱノ一ル系ブロック剤 ; メタノール、 エタノール、 プロパノール、 ブタノ一ル、 ァミルアルコール、 エチレングリコール、 エチレングリコールモノメチルエーテル、 エチレングリコールモノェチ ルエーテル、 エチレングリコールモノブチルエーテル、 ジエチレングリ コールモノメチルェ一テル、 プロピレングリコールモノメチルェ一テル、 メチルセ口ソルブ、 ブチルセ口ソルブ、 メチルカルビトール、 ベンジル アルコール、 フヱニルセ口ソルブ、 フルフリルァノレコール、 シクロへキ サノール、 グリコール酸メチル、 グリコール酸ブチル、 ジアセ トンアル コール、 乳酸メチル、 乳酸ェチルなどのアルコール系ブロック剤 ; ァセ チルアセトン、 マロン酸ジメチル、 マロン酸ジェチル、 ァセ ト酢酸ェチ ルなどの活性メチレン系ブロック剤 ; ブチルメルカプタン、 へキシルメ ルカブタン、 チォフエノール、 メチルチオフエノール、 ェチルチオフエ ノ一ル、 t e r t — ドデシルメルカプタンなどのメルカプタン系ブ口ッ ク剤 ; ァセトァニリ ド、 ァセ トァニシジ ド、 酢酸ァミ ド、 ベンズァミ ド などの酸アミ ド系ブロック剤 ; コハク酸イ ミ ド、 マレイン酸イ ミ ドなど のイ ミ ド系ブロック剤 ; ジフェニルァミ ン、 キシリ ジン、 ジブチルァミ ン、 フヱニルナフチルァミ ン、 ァニリ ン、 力ルバゾ一ルなどのアミ ン系 ブロック剤 ; ィ ミダゾ—ル、 2ェチルイ ミダゾールなどのィ ミダゾ—ル 系ブロック剤 ; 尿素、 チォ尿素、 エチレン尿素などの尿素系ブロック剤 ; N—フヱニルカルバミ ン酸フヱニル、 2 —ォキサゾリ ドンなどのカル バミ ン酸系ブロック剤 ; エチレンィ ミ ン、 プロピレンィ ミ ンなどのィ ミ ン系ブロック剤 ; ホルムアミ ドォキシム、 ホルムアルドォキシム、 ァセ トアルドォキシム、 ァセトキシム、 メチルェチルケトォキシム、 ジァセ チルモノォキシム、 シクロへキサノンォキシムなどのォキシム系ブロッ ク剤 ;重亜硫酸ソーダ、 重亜硫酸カリなどの亜硫酸系ブロック剤 ; ε — 力プロラクタム、 5—バレロラクタム、 ァ一ブチロラクタム、 β -プ。 ピオラクタムなどのラクタム系プロック剤 ; などがあげられる。 -Phenol, thymol, p-naphthol, p-ditropanol, p-phenol-based blocking agents such as chlorophenol; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, methyl sorb, butyl sorb, methyl carbitol, benzyl alcohol, phenyl sorb, furfuryla Alcohol-based blocking agents such as norecol, cyclohexanol, methyl glycolate, butyl glycolate, diacetone alcohol, methyl lactate, and ethyl lactate; Active methylene blocking agents such as tilacetone, dimethyl malonate, getyl malonate, and ethyl acetate; mercaptans such as butylmercaptan, hexylmethylcarbbutane, thiophenol, methylthiophenol, methylthiophenol, tert-dodecylmercaptan Blocking agents; acid amide blocking agents such as acetoanilide, acetonicide, amide amide and benzamide; imidic succinate, maleic acid, etc. Imid-based blocking agents; diphenylamine, xylidine, dibutylamine, phenylnaphthylamine, aniline, carbazole and other amine-based blocking agents; imidazole, 2-ethylimidazole, etc. Imidazole blocking agents; urea blocking agents such as urea, thiourea and ethylene urea; carbamate blocking agents such as phenyl N-phenylcarbamate and 2-oxazolidone; ethyleneimine, propyleneimidone Blocking agents such as imamidoxoxime, formaldoxime, acetoaldoxime, acetoxime, methylethylketoxime, diacetyl monooxime, cyclohexanone oxime, etc .; sodium bisulfite, potassium bisulfite Sulfite block such as Agents: ε-caprolactam, 5-valerolactam, abutyrolactam, β-prop. Lactam blocking agents such as piolactam;
プロックポリイソシァネ一 ト化合物 (Α— 2 ) を調製するための、 ポ リイソシァネー ト化合物と活性水素化合物 (ブロック剤) との反応はそ れ自体既知の方法により行うことができ、 得られるブロックポリイソシ ァネ— ト化合物は実質的に遊離のイソシァネー ト基を含有しないことが 望ましい。  The reaction between the polyisocyanate compound and the active hydrogen compound (blocking agent) for preparing the block polyisocyanate compound (Α-2) can be carried out by a method known per se, and the resulting block is obtained. It is desirable that the polyisocyanate compound does not substantially contain a free isocyanate group.
カチオン電着塗料 (Α ) において、 基体樹脂 (A— 1 ) とブロックポ リィソシァネー ト化合物 (Α— 2 ) との配合比率は、 特に制限されない が、 一般には、 該両成分の合計固形分重量に基づいて、 基体樹脂 (Α— 1 ) は 4 0〜9 0 %、 特に 5 0〜8 0 %、 ブロックポリイソシァネー 卜 化合物 (Α—2 ) は 6 0〜 1 0 %、 特に 5 0〜 2 0 %の範囲内にあるこ とが好ましい。  In the cationic electrodeposition coating (Α), the mixing ratio of the base resin (A-1) and the block polysocyanate compound (Α-2) is not particularly limited, but is generally based on the total solid weight of both components. Thus, the base resin (Α-1) is 40 to 90%, particularly 50 to 80%, and the block polyisocyanate compound (Α-2) is 60 to 10%, particularly 50 to 20.0%. It is preferably within the range of 0%.
カチオン電着塗料 (Α ) は、 基体樹脂 (Α— 1 ) 中のカチオン性基を 酢酸、 ギ酸、 乳酸、 りん酸などの酸性化合物で中和し、 ブロックポリイ ソシァネート化合物と共に水に分散混合することによって調製すること ができ、 その水分散液の p Hは 3 〜 9、 特に 5 〜 7の範囲内が好ましく、 樹脂固形分濃度は 5 〜 3 0重量%の範囲内が適している。 Cationic electrodeposition paint (Α) is used to remove the cationic groups in the base resin (Α-1). It can be prepared by neutralizing with acidic compounds such as acetic acid, formic acid, lactic acid, and phosphoric acid, and dispersing and mixing in water together with the block polyisocynate compound.The pH of the aqueous dispersion is 3 to 9, especially 5 to 5. It is preferably within the range of 7, and the resin solid content concentration is suitably within the range of 5 to 30% by weight.
カチオン電着塗料 (A ) には、 必要に応じて、 アルミニウム、 ニッケ ル、 亜鉛、 ス ト口ンチウム、 ジルコニウム、 モリブデン、 錫、 アンチモ ン、 ランタン、 タングステン等から選ばれた金属の水酸化物、 酸化物、 有機酸塩、 無機酸塩のような防锖性を有する硬化触媒 ;体質顔料 ;着色 顔料; 防鐯顔料 ;沈降防止剤などを配合することができる。  The cationic electrodeposition paint (A) may include, if necessary, a hydroxide of a metal selected from aluminum, nickel, zinc, stotium, zirconium, molybdenum, tin, antimony, lanthanum, tungsten, etc. A curing catalyst having an anti-oxidation property such as an oxide, an organic acid salt, or an inorganic acid salt; an extender pigment; a coloring pigment; an anti-pigment pigment;
さらに、 基体樹脂(A— 1 )とプロックポリイソシァネー ト化合物 (A 一 2 ) との架橋反応を促進するために、 錫ォク トエー ト、 ジブチル錫ジ ラウレー ト、 マンガン含有化合物、 コバルト含有化合物、 鉛含有化合物、 ジルコニウムォク トェ一 ト、 ジンクオク トェ一 ト、 ジブチル錫一ビス一 〇一フエニルフエ二レン、 ジブチル錫一 S , S—ジブチルジチォ一力一 ボネー ト、 トリフヱニルアンチモニージクロライ ド、 ジブチル錫マレエ — ト、 ジブチル錫ジアセテー ト、 ジブチル錫ジラウレ一 トメルカプチド- トリエチレンジァミ ン、 ジメチル錫ジク口ライ ドなどの硬化触媒を配合 することができる。 その配合量は、 基体樹脂 (A— 1 ) とブロックポリ イソシァネー ト化合物 (A— 2 ) との合計 1 0 0重量部あたり、 一般に 0 . 1 〜 1 0重量部、 特に 0 . 5 〜 2重量部の範囲内が適している。 特に、 本発明において、 カチオン電着塗料 (A ) として、 前述の基体 樹脂 (A— 1 ) およびプロックポリイソシァネート化合物 (A— 2 ) に 加えて、 さらにビスマス含有化合物 (A— 3 ) を含有してなる鉛フリー のカチオン電着塗料を使用することが望ましい。 これにより、 環境衛生 上問題となる鉛化合物を使用することなく、 防食性や硬化性に優れた電 着塗膜を形成することが可能となる。 カチオン電着塗料 (A) に配合しうるビスマス含有化合物としては、 ビスマスの酸化物、 水酸化物、 無機もしくは有機酸との塩などが包含さ れ、 例えば、 水酸化ビスマス、 三酸化ビスマス、 硝酸ビスマス、 安息香 酸ビスマス、 クェン酸ビスマス、 ォキシ炭酸ビスマス、 ゲイ酸ビスマス などがあげられ、 中でも水酸化ビスマスが好適である。 これらのビスマ ス含有化合物は、 基体樹脂 (A— 1) とブロックポリイソシァネート化 合物 (A— 2) との合計 100重量部あたり、 一般に 0. 1〜; 10重量 部、 特に 0. 15〜7. 5重量部、 さらに特に 0. 2〜5重量部の範囲 内で配合することができる。 また、 ビスマス含有化合物 (A— 3) として、 水不溶性ビスマス化合 物及び式 Furthermore, in order to accelerate the cross-linking reaction between the base resin (A-1) and the block polyisocyanate compound (A-12), tin octoate, dibutyltin dilaurate, a manganese-containing compound, and a cobalt-containing compound are used. Compounds, Lead-containing compounds, Zirconium octarate, Zinc octoate, Dibutyltin-bis-bisphenylphenylene, Dibutyltin-S, S, S-Dibutyldithiol-one-bonate, Triphenylantimony dichloride A curing catalyst such as dibutyltin maleate, dibutyltin diacetate, dibutyltin dilaurethmercaptide-triethylenediamine, and dimethyltin dichloride can be blended. The compounding amount is generally 0.1 to 10 parts by weight, particularly 0.5 to 2 parts by weight, per 100 parts by weight of the total of the base resin (A-1) and the block polyisocyanate compound (A-2). Within the range of parts is suitable. In particular, in the present invention, a bismuth-containing compound (A-3) is further used as the cationic electrodeposition coating material (A), in addition to the aforementioned base resin (A-1) and block polyisocyanate compound (A-2). It is desirable to use the lead-free cationic electrodeposition paint contained. As a result, environmental health It is possible to form an electrodeposition coating film having excellent anti-corrosion properties and curability without using a lead compound which is a problem. Examples of bismuth-containing compounds that can be added to the cationic electrodeposition coating (A) include bismuth oxides, hydroxides, salts with inorganic or organic acids, and include, for example, bismuth hydroxide, bismuth trioxide, and nitric acid. Bismuth, bismuth benzoate, bismuth citrate, bismuth oxycarbonate, bismuth gaylate and the like are mentioned, and among them, bismuth hydroxide is preferred. These bismuth-containing compounds are generally used in an amount of 0.1 to 10 parts by weight, especially 0.1 part by weight, per 100 parts by weight of the total of the base resin (A-1) and the block polyisocyanate compound (A-2). It can be blended in the range of 15 to 7.5 parts by weight, more particularly 0.2 to 5 parts by weight. As the bismuth-containing compound (A-3), a water-insoluble bismuth compound and a compound represented by the formula
HH
I I
R1- C + CH2)rC00H R 1 -C + CH 2 ) rC00H
0- R2 式中、 R1 は水素原子または炭素数 1〜3のアルキル基を表わし ; R2 は水素原子または炭素数 1〜10のアルキル基を表わし ; nは 0または 1である、 で示される脂肪族カルボン酸を、 水性媒体中で、 必要により分散剤の存 在下で混合分散せしめることにより得られる、 脂肪族カルボン酸変性ビ スマス化合物が非水溶性の形態で均一かつ安定に分散しているビスマス の水分散ペーストを使用することができる。 カチオン電着塗料 (A) に配合しうる、 上記の非水溶性の脂肪族カル ボン酸変性ビスマス化合物を含む水分散ペース ト (以下、 ビスマスの水 分散ペース ト又は単に水分散ペーストという) は、 水不溶性ビスマス化 合物および上記式で示される脂肪族カルボン酸を、 水性媒体中で分散剤 の存在下に混合分散することにより製造することができる。 その際、 該 脂肪族カルボン酸は、 非水溶性の脂肪族カルボン酸変性ビスマス化合物 が主として生成するような割合で使用される。 かく して、 生成する脂肪 族カルボン酸変性ビスマス化合物が非水溶性の状態で均一かつ安定に分 散しているビスマスの水分散ペース卜が得られ、 この水分散ペーストを 電着塗料に配合することにより、 電着塗膜のつきまわり性や仕上り性を 何ら損なわせることなく、 硬化性、 防食性を格段に向上させることがで きる。 During 0- R 2 formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms; R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; n is 0 or 1, in An aliphatic carboxylic acid-modified bismuth compound obtained by mixing and dispersing the aliphatic carboxylic acid shown in an aqueous medium in the presence of a dispersant, if necessary, disperses uniformly and stably in a water-insoluble form. Bismuth aqueous dispersion paste can be used. The water-insoluble aliphatic carboxylic acids described above that can be blended with the cationic electrodeposition paint (A) A water-dispersed paste containing a boronic acid-modified bismuth compound (hereinafter referred to as an aqueous dispersion paste of bismuth or simply a water-dispersed paste) is a method in which a water-insoluble bismuth compound and an aliphatic carboxylic acid represented by the above formula are dissolved in an aqueous medium. And by mixing and dispersing in the presence of a dispersant. At that time, the aliphatic carboxylic acid is used in such a ratio that the water-insoluble aliphatic carboxylic acid-modified bismuth compound is mainly produced. Thus, a water-dispersed paste of bismuth in which the aliphatic carboxylic acid-modified bismuth compound to be formed is uniformly and stably dispersed in a water-insoluble state is obtained, and this water-dispersed paste is mixed with the electrodeposition paint. As a result, the curability and corrosion resistance can be remarkably improved without impairing the throwing power and finish of the electrodeposition coating film.
上記ビスマスの水分散液は、 それを遠心分離 ( 1 2 0 0 0 r p mで 3 0分間) にかけて得られる上澄液中に存在する水溶性ビスマス化合物の 含有量が、 金属ビスマス重量換算で、 原料に用いた水不溶性ビスマス化 合物の全量の約 4 0 %以下、 特に約 3 0 %以下、 さらに特に約 2 0 %以 下であることが望ましい。  The content of the water-soluble bismuth compound in the supernatant obtained by subjecting the aqueous dispersion of bismuth to centrifugal separation (at 1200 rpm for 30 minutes) is calculated as the weight of the metal bismuth, The total amount of the water-insoluble bismuth compound used in the above is preferably about 40% or less, particularly about 30% or less, and more preferably about 20% or less.
このようなビスマスの水分散ペース 卜の調製に使用される水不溶性ビ スマス化合物としては、 例えば、 酸化ビスマス、 水酸化ビスマス、 塩基 性炭酸ビスマスなどの 2 0 °Cにおける水に対する溶解度が 0 . 0 0 1 g Z 1 0 0 g以下であるビスマス化合物が挙げられ、 中でも酸化ビスマス が好適である。  Examples of the water-insoluble bismuth compound used in the preparation of such an aqueous dispersion paste of bismuth include, for example, bismuth oxide, bismuth hydroxide, basic bismuth carbonate, and the like having a solubility in water at 20 ° C of 0.0. Bismuth compounds having a weight of 0.1 g or less are preferred, with bismuth oxide being particularly preferred.
また、 前記式で示される脂肪族カルボン酸は、 上記水不溶性ビスマス 化合物を水性媒体における十分に均一な分散体に変えることを目的とし て使用されるものであり、 具体的には、 例えば、 ヒ ドロキシ酢酸、 乳酸- ヒ ドロキシプロピオン酸などの脂肪族ヒ ドロキシカルボン酸 ; メ トキシ 酢酸、 エトキシ酢酸、 3—メ トキシプロピオン酸などの脂肪族アルコキ シカルボン酸などが挙げられる。 これらのうち、 乳酸、 特に L一乳酸及 びメ トキシ酢酸が好適である。 これらは単独又は 2種以上組合わせて用 いることができる。 また、 上記脂肪族カルボン酸は他の有機酸、 例えば 酢酸と併用してもよい。 The aliphatic carboxylic acid represented by the above formula is used for the purpose of converting the water-insoluble bismuth compound into a sufficiently uniform dispersion in an aqueous medium, and specifically, for example, Droxyacetic acid, lactic acid- Aliphatic hydroxycarboxylic acids such as hydroxypropionic acid; and aliphatic alkoxycarboxylic acids such as methoxyacetic acid, ethoxyacetic acid, and 3-methoxypropionic acid. Of these, lactic acid, particularly L-lactic acid and methoxyacetic acid, are preferred. These can be used alone or in combination of two or more. The aliphatic carboxylic acid may be used in combination with another organic acid, for example, acetic acid.
上記脂肪族カチオン酸の使用量は、 得られる脂肪族カルボン酸変性ビ スマス化合物が非水溶性の状態であり得る範囲内であり、 それは使用す る脂肪族カルボン酸の種類によって異なり、 例えば、 L一乳酸では、 水 不溶性ビスマス化合物中のビスマス量に対するモル比で通常 0.5〜1. 7、 好ましくは 0.75〜1.3の範囲内、 また、 メ 卜キシ酢酸では、 水 不溶性ビスマス化合物中のビスマス量に対するモル比で通常 0.25〜 2.5、 好ましくは 0.5〜 1.3の範囲内とすることができる。  The amount of the above-mentioned aliphatic cationic acid to be used is within a range in which the obtained aliphatic carboxylic acid-modified bismuth compound may be in a water-insoluble state, and varies depending on the kind of the aliphatic carboxylic acid used. In the case of monolactic acid, the molar ratio to the amount of bismuth in the water-insoluble bismuth compound is usually in the range of 0.5 to 1.7, preferably 0.75 to 1.3.In the case of methoxyacetic acid, the molar ratio is based on the amount of bismuth in the water-insoluble bismuth compound. The ratio can be generally in the range of 0.25 to 2.5, preferably 0.5 to 1.3.
上記分散剤としては、 カチオン電着塗料の分野においてそれ自体既知 のカチオン型分散用樹脂や界面活性剤などが何らの制限なく使用でき、 該カチオン型分散用樹脂としては、 後述する電着塗料用基体樹脂として 列記するものの中から適宜選択して使用することができる。 例えば、 3 級ァミ ン型、 4級アンモニゥム塩型、 3級スルホ二ゥム塩型などの樹脂 が挙げられる。 また、 界面活性剤としては、 例えば、 HLBが 3〜18- 好ましくは 5〜15の範囲内にあるアセチレングリコール系、 ポリェチ レングリコール系、 多価アルコール系などのノニオン型界面活性剤が挙 げられる。  As the dispersant, a cationic dispersing resin or a surfactant known per se in the field of cationic electrodeposition coatings can be used without any limitation. Examples of the cationic dispersing resin include those for electrodeposition coating described below. The base resin can be appropriately selected and used from those listed. For example, resins such as tertiary amine type, quaternary ammonium salt type, and tertiary sulfonium salt type are exemplified. Examples of the surfactant include nonionic surfactants such as acetylene glycol-based, polyethylene glycol-based, and polyhydric alcohol-based surfactants having an HLB in the range of 3 to 18, preferably 5 to 15. .
上記分散剤の使用量は、 その種類や水不溶性ビスマス化合物の使用量 等によって変えることができるが、 通常、 水不溶性ビスマス化合物 10 0重量部に対して 1〜 1 5 0重量部、 特に 1 0〜 1 0 0重量部の範囲内 が好適である。 The amount of the dispersant used can vary depending on the type thereof, the amount of the water-insoluble bismuth compound used, and the like. It is preferably in the range of 1 to 150 parts by weight, particularly 10 to 100 parts by weight based on 0 parts by weight.
以上に述べた水不溶性ビスマス化合物、 脂肪族カルボン酸及び分散剤 を用いるビスマスの水分散ペース 卜の製造は、 カチオン電着塗料におい て使用される顔料ペーストの製造と同様に行なうことができ、 具体的に は、 例えば、 分散剤を含む水に脂肪族カルボン酸と水不溶性ビスマス化 合物を加え、 ボールミル又はサンドミル等の分散混合機中で分散処理す ることにより、 ビスマスの水分散ペース トを製造することができる。 得 られる水分散ペース トは一般に 1 0〜7 0重量%、 好ましくは 3 0〜 6 0重量%の固形分濃度を有することができる。  The production of the aqueous dispersion paste of bismuth using the water-insoluble bismuth compound, the aliphatic carboxylic acid and the dispersant described above can be performed in the same manner as the production of the pigment paste used in the cationic electrodeposition paint. Specifically, for example, an aliphatic carboxylic acid and a water-insoluble bismuth compound are added to water containing a dispersant, and the mixture is dispersed in a dispersing mixer such as a ball mill or a sand mill. Can be manufactured. The resulting water-dispersed pastes can generally have a solids concentration of 10 to 70% by weight, preferably 30 to 60% by weight.
さらに、 ビスマスの水分散ペーストは、 通常のカチオン電着塗料に使 用される顔料類を加えて顔料ペース卜として調製してもよい。 具体的に は、 例えば、 顔料分散用樹脂、 中和剤及び顔料類を配合し、 ボールミル、 サンドミルなどの分散混合機中で分散処理して顔料ペーストを調製した 後、 これに上記ビスマスの水分散ペース トを加えることができる。 上記 顔料分散用樹脂の中和に使用される中和剤としては、 例えば、 酢酸、 ギ 酸、 乳酸などの有機酸を使用することができる。  Further, the aqueous dispersion paste of bismuth may be prepared as a pigment paste by adding pigments used in ordinary cationic electrodeposition paints. Specifically, for example, a pigment paste is prepared by blending a pigment dispersing resin, a neutralizing agent, and pigments, and performing a dispersion treatment in a dispersion mixer such as a ball mill or a sand mill, and then dispersing the bismuth in water. Paste can be added. As the neutralizing agent used for neutralizing the pigment dispersing resin, for example, organic acids such as acetic acid, formic acid, and lactic acid can be used.
上記顔料分散用樹脂としては、 例えば、 従来から既知のものが何ら制 限なく使用でき、 例えば、 前記ビスマス分散ペース卜の調製に際して使 用されると同様カチオン型分散用樹脂を用いることができる。  As the above-mentioned pigment-dispersing resin, for example, a conventionally known pigment-dispersing resin can be used without any limitation. For example, a cation-type dispersing resin similar to that used for preparing the bismuth-dispersed paste can be used.
上記顔料類としては、 通常、 電着塗料に使用される顔料であれば特に 制限なく任意の顔料が使用でき、 例えば、 酸化チタン、 カーボンブラッ ク、 ベンガラなどの着色顔料 ; クレー、 マイ力、 バリタ、 タルク、 炭酸 カルシウム、 シリカなどの体質顔料 ; リ ンモリブデン酸アルミニウム、 トリポリ リ ン酸アルミニウムなどの防鲭顔料が挙げられる。 As the above-mentioned pigments, any pigment can be used without particular limitation as long as it is a pigment generally used in electrodeposition paints. For example, coloring pigments such as titanium oxide, carbon black, and red iron; , Talc, calcium carbonate, silica and other extenders; aluminum limolybdate, Waterproof pigments such as aluminum tripolyphosphate are mentioned.
ビスマスの水分散ペースト又は該水分散ペース トを含む顔料ペース ト は、 カチオン電着塗料のバインダ一樹脂成分等に配合することができる。 上記ビスマスの分散べ一ストは、 一般に、 基体樹脂 (A— 1 ) とブロッ クポリイソシァネー ト化合物 (A— 2 ) との合計 1 0 0重量部あたりビ スマス金属含有量が 0 . 1〜1 0重量部、 好ましくは 0 . 3〜 7重量部、 さらに好ましくは 0 . 5〜 5重量部の範囲内となるような割合でカチォ ン電着塗料に配合することができる。  An aqueous dispersion paste of bismuth or a pigment paste containing the aqueous dispersion paste can be blended with the binder-resin component of the cationic electrodeposition paint. In general, the bismuth dispersion base has a bismuth metal content of 0.1 per 100 parts by weight of the base resin (A-1) and the block polyisocyanate compound (A-2) in total. To 10 parts by weight, preferably 0.3 to 7 parts by weight, and more preferably 0.5 to 5 parts by weight.
本発明において、 カチオン電着塗料 (A ) 塗膜の架橋硬化反応は、 上 層に位置する中塗り塗料 (B ) 塗膜の架橋硬化反応よりも早く開始する ことが必要であり、 そのためには、 例えば、 カチオン電着塗料 (A ) の 塗膜の硬化温度を、 中塗り塗料 (B ) の塗膜の硬化温度と比べてより低 温に設定することが好ましい。 例えば、 両塗膜の硬化温度差は 5〜2 0 °C、 特に 5〜1 5 °Cの範囲内にあることが好ましい。 カチオン電着塗料 ( A ) の架橋硬化反応の開始が中塗り塗料のそれより遅くなると、 一般 に、 複層塗膜の仕上がり外観 (平滑性、 ツヤ感など) ゃ両塗膜の層間付 着性などを改良することが困難になる。  In the present invention, the cross-linking and curing reaction of the cationic electrodeposition coating (A) coating film needs to start earlier than the cross-linking and curing reaction of the intermediate coating (B) coating film located in the upper layer. For example, it is preferable to set the curing temperature of the coating film of the cationic electrodeposition coating material (A) lower than the curing temperature of the coating film of the intermediate coating material (B). For example, the difference between the curing temperatures of the two coating films is preferably in the range of 5 to 20 ° C, particularly preferably in the range of 5 to 15 ° C. If the onset of the cross-linking curing reaction of the cationic electrodeposition coating (A) is later than that of the intermediate coating, the finished appearance of the multi-layer coating (smoothness, gloss, etc.) is generally observed. It becomes difficult to improve such.
カチオン電着塗料 (A ) 塗膜の架橋硬化反応の開始時期は、 例えば、 ポリイソシァネー ト化合物、 ブロック剤、 硬化触媒などの種類や配合量 などを適宜選択することによって容易に制御することができる。  The start time of the cross-linking curing reaction of the cationic electrodeposition coating (A) coating film can be easily controlled by, for example, appropriately selecting the type and the amount of the polyisocyanate compound, the blocking agent, the curing catalyst, and the like.
カチオン電着塗料 (A ) の塗膜に関し、 加熱を開始してから架橋硬化 開始時期までの 「硬化開始時間」 は、 その塗装工程において 5〜 1 5分 の間が適している。  Regarding the cationic electrodeposition paint (A) coating film, the “curing start time” from the start of heating to the start of cross-linking curing is suitably between 5 and 15 minutes in the coating process.
カチオン電着塗料 (A ) の塗装は、 例えば、 被塗物を力ソー ド、 炭素 板をアノー ドとし、 浴温 20〜35°C、 電圧 100〜400 V、 電流密 度 0. 01〜5A、 通電時間 1〜10分で行うことが好ましい。 塗装膜 厚は、 硬化塗膜で約 10〜約 程度とすることができる。 被塗物 としては、 例えば、 導電性金属表面を有する基材、 特に自動車車体、 電 気製品などがあげられる。 For the application of the cationic electrodeposition paint (A), for example, the object to be coated is a power source, carbon The plate is preferably used as an anode, with a bath temperature of 20 to 35 ° C, a voltage of 100 to 400 V, a current density of 0.01 to 5 A, and an energization time of 1 to 10 minutes. The coating film thickness can be about 10 to about a cured film. Examples of the object to be coated include a substrate having a conductive metal surface, in particular, an automobile body, an electric product and the like.
本発明の方法では、 カチオン電着塗料 (A) の塗装したのち、 その塗 膜を硬化させることなく、 その塗面に、 ブロックポリイソシァネー ト化 合物を架橋剤として含有する水性中塗り塗料 (B) が塗装される。  In the method of the present invention, after the cationic electrodeposition paint (A) is applied, the aqueous intermediate coating containing a block polyisocyanate compound as a cross-linking agent is applied to the coated surface without curing the coated film. Paint (B) is applied.
水性中塗り塗料 (B) : Waterborne intermediate paint (B):
水性中塗り塗料 (B) は、 ブロックポリイソシァネー ト化合物を架橋 剤として含有する水性塗料であって、 好適には、 水酸基などのイソシァ ネー ト基と架橋反応しうる官能基を有する基体樹脂 (B— 1) およびブ ロックポリイソシァネ一 ト化合物 (B— 2) を含有し、 これらを水に混 合分散せしめてなる水性塗料である。  The aqueous intermediate coating composition (B) is an aqueous coating composition containing a block polyisocyanate compound as a crosslinking agent, and is preferably a base resin having a functional group capable of undergoing a crosslinking reaction with an isocyanate group such as a hydroxyl group. This is a water-based paint containing (B-1) and a block polyisocyanate compound (B-2), which are mixed and dispersed in water.
水性中塗り塗料 (B) における水酸基などのイソシァネー ト基と架橋 反応しうる官能基を有する基体樹脂 (B— 1) としては、 例えば、 1分 子中に 2個以上の水酸基を有するポリエステル樹脂ゃァク リル樹脂が特 に好適である。  Examples of the base resin (B-1) having a functional group capable of undergoing a crosslinking reaction with an isocyanate group such as a hydroxyl group in the aqueous intermediate coating material (B) include, for example, a polyester resin having two or more hydroxyl groups in one molecule. Acrylic resins are particularly preferred.
水酸基含有ポリエステル樹脂は、 多塩基酸と多価アルコールとをそれ 自体既知の方法でエステル化反応させることによって製造することがで き、 その数平均分子量は 1000〜 50000、 特に 2000〜 200 00、 水酸基価は 20〜200mgKOHZg、 特に 50〜; 150mg K〇H/g、 酸価は 10 OmgKOHZg以下、 特に 10〜70mgK 0 HZ gの範囲内にあることが好ましい。 多塩基酸は 1分子中に 2個以上のカルボキシル基を有する化合物であ り、 例えばフタル酸、 イソフタル酸、 テレフタル酸、 コハク酸、 アジピ ン酸、 ァゼラィン酸、 セバシン酸、 テトラヒ ドロフタル酸、 へキサヒ ド 口フタル酸、 へッ ト酸、 マレイン酸、 フマル酸、 イタコン酸、 トリメ リ ッ ト酸、 ピロメ リ ッ ト酸およびこれらの無水物などがあげられる。 The hydroxyl group-containing polyester resin can be produced by subjecting a polybasic acid and a polyhydric alcohol to an esterification reaction by a method known per se, and has a number average molecular weight of 1,000 to 50,000, particularly 2,000 to 2,000, and a hydroxyl group. The value is preferably from 20 to 200 mg KOHZg, especially from 50 to 150 mg K〇H / g, and the acid value is preferably not more than 10 OmgKOHZg, especially from 10 to 70 mgK0HZg. A polybasic acid is a compound having two or more carboxyl groups in one molecule.For example, phthalic acid, isophthalic acid, terephthalic acid, succinic acid, adipic acid, azellanic acid, sebacic acid, tetrahydrophthalic acid, and hexakis Examples include phthalic acid, maleic acid, maleic acid, fumaric acid, itaconic acid, trimellitic acid, pyromellitic acid and anhydrides thereof.
多価アルコールは 1分子中に 2個以上の水酸基を有する化合物であり、 例えばエチレングリコール、 プロピレングリコール、 ジエチレングリ コ ール、 ブチレングリ コール、 へキサンジオール、 ジエチレングリコール、 ジプロピレングリコール、 ネオペンチルグリ コール、 水素化ビスフエノ —ル A、 トリエチレングリゴール、 グリセリ ン、 トリメチロ一ルェタン、 ト リメチ口一ルプ口パン、 ペンタエリスリ トールなどがあげられる。 水酸基含有ァク リル樹脂は、 水酸基含有重合性単量体およびァク リル 系単量体を含有する重合性単量体成分を通常の条件で共重合せしめるこ とによって製造することができ、 その数平均分子量は 1000〜500 00、 特に 2000〜 20000、 水酸基価は 20〜200mgKOH / g. 特に50〜150mgKOH/g、 酸価は 1 O OmgKOHZg 以下、 特に 20~7 OmgKOHZgの範囲内にあることが好ましい。 水酸基含有重合性単量体は、 1分子中に水酸基および重合性不飽和結 合をそれぞれ 1個以上有する化合物であり、 例えばヒ ドロキシェチル(メ タ) アタ リ レ一 ト、 ヒ ドロキシプロピル (メタ) ァク リ レー ト、 ヒ ドロ キシブチル (メタ) ァク リ レー トなどの炭素数 2〜20のグリコールと (メタ) アク リル酸とのモノエステル化物などがあげられる。 また、 ァ ク リル系単量体としては、 (メタ) アクリル酸と炭素数 1〜22の 1価 アルコールとのモノエステル化物、 例えばメチルァク リ レー ト、 メチル メ タク リ レー ト、 ェチルアタ リ レー ト、 ェチルメ タク リ レー ト、 プロピ ノレァク リ レー ト、 プロピルメ タク リ レー ト、 ブチルァク リ レー ト、 ブチ ノレメ タク リ レー ト、 へキシルァク リ レー ト、 へキンルメ タク リ レー ト、 ォクチルァク リ レー ト、 ォクチルメ タク リ レー ト、 ラウ リルァク リ レー ト、 ラウ リルメ タク リ レー ト、 2—ェチルへキシルァク リ レー ト、 2— ェチルへキシルメ タク リ レー トなどがあげられる。 Polyhydric alcohols are compounds having two or more hydroxyl groups in one molecule, such as ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, Examples include hydrogenated bisphenol A, triethyleneglycol, glycerin, trimethylol-l-ethane, trimethyl-l-luppan, and pentaerythritol. A hydroxyl group-containing acrylic resin can be produced by copolymerizing a hydroxyl group-containing polymerizable monomer and a polymerizable monomer component containing an acryl-based monomer under ordinary conditions. The number average molecular weight is 1000 to 5000, especially 2000 to 20000, the hydroxyl value is 20 to 200 mg KOH / g, especially 50 to 150 mg KOH / g, and the acid value is 1 O Omg KOHZg or less, especially 20 to 7 Omg KOHZg. preferable. The hydroxyl group-containing polymerizable monomer is a compound having at least one hydroxyl group and at least one polymerizable unsaturated bond in one molecule. Examples thereof include hydroxyxethyl (meta) acrylate, hydroxypropyl (meta). ) Monoesters of glycols having 2 to 20 carbon atoms and (meth) acrylic acid, such as acrylates and hydroxybutyl (meth) acrylates. Examples of the acryl monomer include monoesters of (meth) acrylic acid and a monohydric alcohol having 1 to 22 carbon atoms, such as methyl acrylate and methyl acrylate. Metal acrylate, ethyl acrylate, ethyl methacrylate, propanol acrylate, propyl methacrylate, butyl acrylate, butyno methacrylate, hexyl acrylate, hexyl methacrylate Relate, octyl acrylate, octyl methacrylate, lauryl acrylate, lauryl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, etc. .
水酸基含有ァク リル樹脂の製造にあたり、 これらの水酸基含有重合性 単量体およびァク リル系単量体以外の、 その他の重合性単量体を併用す ることもできる。  In the production of the hydroxyl-containing acrylic resin, other polymerizable monomers other than these hydroxyl-containing polymerizable monomers and acryl-based monomers can be used in combination.
その他の重合性単量体としては、 例えば、 メ トキシブチルァク リ レー ト、 メ トキシブチルメ タク リ レー ト、 メ トキシェチルァク リ レー ト、 メ トキシェチルメ タク リ レ一 卜などの (メ タ) アタ リル酸の C 2〜C 1 8ァ ルコキシアルキルエステル ; N , N—ジメチルァ ミ ノェチルァク リ レー ト、 N , N—ジメチルア ミ ノエチルメ タク リ レー ト、 N , N—ジェチル ア ミ ノエチルァク リ レー ト、 N , N—ジェチルア ミ ノエチルメ 夕ク リ レ ー ト、 N— t —ブチルァ ミ ノェチルァク リ レー ト、 N— t —ブチルァ ミ ノエチルメ タク リ レー 卜、 N, N—ジメチルァ ミ ノプロピルァク リ レー ト、 N , N—ジメチルァ ミ ノプロピルメ タク リ レー トなどのア ミ ノ (メ タ) ァク リル系単量体 ; アク リルア ミ ド、 メ タク リルァミ ド、 N—メチ ノレァク リルァ ミ ド、 N—メチルメ 夕ク リルァ ミ ド、 N—ェチルァク リル ア ミ ド、 N—ェチルメ タク リルア ミ ド、 N—ブチルアク リルア ミ ド、 N ーブチルメ タク リルア ミ ド、 N—ジメチルアク リルア ミ ド、 N—ジメチ ルメ タク リルァミ ドなどの (メ タ) アク リルアミ ド系単量体 ; アク リル 酸、 メタク リル酸、 マレイ ン酸、 ィタコン酸、 フマル酸、 メサコン酸お よびこれらの無水物やハーフエステル化物などの 1分子中にカルボキシ ル基および重合性不飽和結合をそれぞれ 1個以上有する化合物 ; グリシ ジルァク リ レー ト、 グリ シジルメタク リ レー トなどのグリ シジル基含有 単量体; スチレン、 α—メチルスチレン、 ビニルトルェン、 ァクリロ二 トリル、 酢酸ビニル、 塩化ビニルなどがあげられる。 Other polymerizable monomers include, for example, C 2 of (meta) allylic acid such as methoxybutyl acrylate, methoxybutyl methacrylate, methoxethyl acrylate, methoxyl ethyl methacrylate, and the like. -C 1 8 § Turkey alkoxyalkyl ester; N, N-Jimechirua Mi Noechiruaku Li rate, N, N-Jimechirua Mi Noechirume Tak Li rate, N, N-Jechiru A Mi Noechiruaku Li rate, N, N-Jechirua Minoethyl methyl acrylate, N-t—Butylaminoethyl acrylate, N—t—Butylaminoethyl methacrylate, N, N-Dimethylaminopropyl acrylate, N, N-Dimethylaminopropyl methacrylate Amino (meta) acrylic monomers such as acrylates; acrylamide, methacrylic N-methylacrylamide, N-methylacrylamide, N-ethylacrylamide, N-ethylacrylamide, N-butylacrylamide, N-butylacrylamide, N-butylmethacrylamide (Meth) acrylamide monomers such as N, N-dimethylacrylamide and N-dimethylmethylacrylamide; acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, mesaconic acid You And compounds having at least one carboxyl group and at least one polymerizable unsaturated bond in one molecule such as anhydrides and half-esterified products thereof; glycidyl group-containing monomers such as glycidyl acrylate and glycidyl methacrylate Styrene, α-methylstyrene, vinyl toluene, acrylonitrile, vinyl acetate, vinyl chloride, etc.
プロックポリイソシァネー ト化合物 (Β— 2) は、 基体樹脂 (Β— 1 ) の架橋剤であって、 具体的には、 前記のカチオン電着塗料 (Α) におけ る架橋剤として説明したプロックポリイソシァネー ト化合物 (Α— 2) として例示したものから選ばれる 1種以上を使用することができる。 水性中塗り塗料 (Β) において、 基体樹脂 (Β— 1) とブロックポリ イソシァネー ト化合物 (Β— 2) との配合比率は、 特に制限されないが、 該両成分の合計固形分重量に基づいて、 基体樹脂 (Β— 1) は 40〜9 0 %、 特に 50〜 80 %、 プロックポリイソシァネー ト化合物 (Β— 2) は 60〜 10%、 特に 50〜 20%の範囲内にあることが好ましい。 水性中塗り塗料 (Β) は、 基体樹脂 (Β— 1) およびブロックポリイ ソシァネ一 ト化合物 (Β— 2) に加えて、 さらに、 該両成分による架橋 反応を促進するため硬化触媒、 体質顔料、 着色顔料、 表面調整剤などを 含有することができる。 該硬化触媒としては、 上記カチオン電着塗料(Α ) について例示したものから選ばれる 1種以上を使用することができ、 その配合量は、 基体樹脂 (Β— 1 ) とプロックポリイソシァネー ト化合 物 (Β— 2) との合計 100重量部あたり、 一般に 0. 1〜10重量部、 特に 0. 5〜2重量部の範囲内が適している。  The block polyisocyanate compound (Β-2) is a cross-linking agent for the base resin (Β-1), and has been specifically described as a cross-linking agent in the cationic electrodeposition paint (Α). One or more compounds selected from those exemplified as the block polyisocyanate compound (II-2) can be used. In the water-based intermediate coating (Β), the mixing ratio of the base resin (Β-1) and the block poly isocyanate compound (Β-2) is not particularly limited, but based on the total solid weight of both components. The base resin (Β-1) may be in the range of 40 to 90%, especially 50 to 80%, and the block polyisocyanate compound (Β-2) may be in the range of 60 to 10%, especially 50 to 20%. preferable. The aqueous intermediate coating (Β) is composed of a base resin (体 -1) and a block polyisocyanate compound (Β-2), and a curing catalyst, extender, It may contain a coloring pigment, a surface conditioner and the like. As the curing catalyst, one or more selected from those exemplified for the cationic electrodeposition coating (塗料) can be used. The compounding amounts thereof are based on the base resin (Β-1) and the block polyisocynate. It is generally suitable that the amount is in the range of 0.1 to 10 parts by weight, especially 0.5 to 2 parts by weight, per 100 parts by weight of the compound (Β-2).
本発明において、 水性中塗り塗料 (Β) の塗膜の架橋硬化開始時期は、 その下層に位置するカチオン電着塗料 (Α) の塗膜の架橋硬化開始時期 に比べて遅く、 具体的には、 カチオン電着塗料 (A) の塗膜の架橋硬化 反応の開始時期より、 0. 5〜10分、 特に 5〜10分遅れて架橋硬化 反応が開始することが好ましい。 すなわち、 水性中塗り塗料 (B) の塗 膜の加熱を開始してから架橋硬化開始時期までに要した 「硬化開始時間」 が、 カチオン電着塗料 (A) の塗膜の 「硬化開始時間」 に比べて長いこ とであり、 その差は 0. 5〜10分、 特に 5〜1 0分の間が適している。 水性中塗り塗料 (B) の塗膜の架橋硬化開始時期は、 例えば、 ポリイ ソシァネー ト化合物、 ブロック剤、 硬化触媒などの種類や配合量などを 適宜選択することによって容易に制御することができる。 水性中塗り塗 料 (B) の塗膜の架橋硬化反応の開始時期は、 カチオン電着塗料 (A) の塗膜の架橋硬化反応の開始時期に比べて遅く、 具体的にはその塗装ェ 程において 5. 5〜20分、 特に 10〜15分の間が適している。 In the present invention, the timing of the start of crosslinking and curing of the coating of the aqueous intermediate coating (中) is determined based on the timing of starting the crosslinking of the coating of the cationic electrodeposition coating (Α) located thereunder. More specifically, the cross-linking and curing reaction of the cationic electrodeposition paint (A) is started 0.5 to 10 minutes, especially 5 to 10 minutes later than the start of the cross-linking and curing reaction. Is preferred. In other words, the “curing start time” required from the start of heating of the coating film of the aqueous intermediate coating material (B) to the start of cross-linking curing is the “curing start time” of the coating film of the cationic electrodeposition paint (A). The difference is between 0.5 and 10 minutes, especially between 5 and 10 minutes. The timing of the start of crosslinking and curing of the coating film of the aqueous intermediate coating composition (B) can be easily controlled by, for example, appropriately selecting the type and the amount of the polyisocyanate compound, the blocking agent, the curing catalyst, and the like. The onset of the cross-linking and curing reaction of the coating of the aqueous intermediate coating (B) is later than the onset of the cross-linking and curing of the coating of the cationic electrodeposition coating (A). In 5.5 to 20 minutes, especially between 10 and 15 minutes is suitable.
水性中塗り塗料 (B) は、 基体樹脂 (B— 1) およびブロックポリイ ソシァネー ト化合物 (B— 2) ならびに場合により他の添加物を水中に 均一に混合分散せしめることによって得られ、 塗装時の固形分濃度は 2 0〜70重量%の範囲内に調整しておく ことが好ましい。  The aqueous intermediate coating (B) is obtained by uniformly mixing and dispersing the base resin (B-1) and the block polyisocyanate compound (B-2) and optionally other additives in water. It is preferable that the solid content concentration is adjusted in the range of 20 to 70% by weight.
本発明の方法では、 カチオン電着塗料 (A) を塗装し、 硬化させるこ となく、 必要により 120°C以下の温度で乾燥したのち、 該電着塗膜上 に水性中塗り塗料 (B) を塗装した後、 加熱して両塗膜が一緒に架橋硬 化せしめられる。  In the method of the present invention, the cationic electrodeposition coating (A) is applied and, if necessary, dried at a temperature of 120 ° C. or less without curing, and then the aqueous intermediate coating (B) is coated on the electrodeposition coating. After coating, both films are heated and crosslinked and cured together.
水性中塗り塗料 (B) の塗装は、 静電塗装、 エアレススプレー、 エア スプレーなどによって行われ、 その膜厚は硬化塗膜に基いて、 約 5〜約 80〃m、 特に約 15〜約 35〃 mの範囲内が適している。 また、 カチ オン電着塗料 (A) 塗膜および水性中塗り塗料 (B) 塗膜の両塗膜を架 橋硬化させるための加熱温度は、 該塗膜に含まれるプロックポリイソシ ァネー ト化合物の解離温度以上であるが、 通常、 約 130〜約 180 °C が適しており、 この温度で 10〜40分間焼付けを行なうことにより塗 膜を硬化させることができる。 The aqueous intermediate coating (B) is applied by electrostatic coating, airless spraying, air spraying, etc., and its film thickness is about 5 to about 80 m, especially about 15 to about 35 m, based on the cured coating. A range of 〃 m is suitable. In addition, both cation electrodeposition coating (A) coating and waterborne intermediate coating (B) coating were applied. The heating temperature for curing the bridge is equal to or higher than the dissociation temperature of the block polyisocyanate compound contained in the coating film, but is usually about 130 to about 180 ° C. The coating film can be hardened by baking for a minute.
本発明の方法により形成される複層塗膜上には、 必要により、 ソリ ツ ドカラ一塗料、 メタリ ック塗料およびク リャ塗料などの上塗り塗料を、 既知の方法で、 例えば、 1コー ト 1ペイク方式 (1 C 1 B) 、 2コー ト 1ペイク方式 (2 C 1 B) 、 2コー ト 2ベイク方式 (2 C 2B) 、 3コ ー ト 1ベイク方式 (3 C 1 B) などにより塗装することができる。  If necessary, a top coat such as a solid paint, a metallic paint, and a clear paint is coated on the multilayer coating film formed by the method of the present invention by a known method, for example, 1 coat 1 coat. Painted by wake-up method (1C1B), 2-coat 1-bake method (2C1B), 2-coat 2-bake method (2C2B), 3-coat 1-bake method (3C1B) can do.
実施例 Example
以下、 本発明の方法を実施例および比較例によりさらに具体的に説明 する。 なお、 部および%はいずれも重量基準である。  Hereinafter, the method of the present invention will be described more specifically with reference to Examples and Comparative Examples. All parts and percentages are based on weight.
実施例および比較例におけるカチォン電着塗膜および水性中塗り塗膜 の架橋硬化開始時期の測定は、 振子式粘弾性測定器 (東洋ボールドウイ ン製、 レオバイブロン DDV— OPA型) を用いて行った。  In the examples and comparative examples, the measurement of the cross-linking start time of the electrodeposited coating film and the aqueous intermediate coating film was performed using a pendulum type viscoelasticity meter (Toyo Baldwin, Leo Vibron DDV-OPA type).
1. 試料の調製  1. Sample preparation
1) ポリエステル樹脂 (1) :  1) Polyester resin (1):
ネオペンチルグリコール 756部、 トリメチロールプロパン 109部、 へキサヒ ドロフタル酸 370部、 アジピン酸 292部およびィソフタル 酸 398部を反応容器に入れ、 220°Cで 6時間反応させた後、 無水ト リメ リ ッ ト酸 45部添加し、 170°Cで 30分反応させて、 数平均分子 量約 8000、 酸価 20mgKOHZg、 水酸基価 95mgKOH/g のポリエステル樹脂を得た。  756 parts of neopentyl glycol, 109 parts of trimethylolpropane, 370 parts of hexahydrophthalic acid, 292 parts of adipic acid and 398 parts of isophthalic acid are placed in a reaction vessel and reacted at 220 ° C for 6 hours. Toluic acid (45 parts) was added and reacted at 170 ° C for 30 minutes to obtain a polyester resin having a number average molecular weight of about 8000, an acid value of 20 mgKOHZg, and a hydroxyl value of 95 mgKOH / g.
2) ァク リル樹脂 ( 1 ) : スチレン 210部、 n—ブチルメタク リ レー ト 294部、 ヒ ドロキシ ブチルァク リ レー ト 253部、 2—ェチルへキシルメタクリ レー ト 20 0部、 アク リル酸 30部を反応容器に入れ、 120°Cで 5時間反応させ て、 数平均分子量約 20000、 酸価 25mgKOHZg、 水酸基価 9 5mgKOHZgのアクリルリ樹脂を得た。 2) Acrylic resin (1): 210 parts of styrene, 294 parts of n-butyl methacrylate, 253 parts of hydroxybutyl acrylate, 200 parts of 2-ethylhexyl methacrylate, and 30 parts of acrylic acid are placed in a reaction vessel and placed at 5 ° C at 120 ° C. After reacting for an hour, an acryl resin having a number average molecular weight of about 20,000, an acid value of 25 mg KOHZg, and a hydroxyl value of 95 mg KOHZg was obtained.
3) カチオン電着塗料 (1) : 3) Cationic electrodeposition paint (1):
エポキシ当量 630のビスフヱノール A型エポキシ樹脂 ( 「ェピコ一 ト 1002」 商品名、 シェル化学社製、 ) 1260部をプチルセ口ソル ブ 450部に溶解し、 ρ—ノニルフヱノール 132部および N—メチル エタノールァミ ン 105部を加え、 140°Cまで昇温させ、 同温度で反 応させて、 固形分 77%、 アミ ン価 52の付加エポキシ樹脂を得た。 こ の樹脂 130部にプロックポリイソシァネー ト化合物 (硬化剤) 30部 およびポリプロピレングリコール (数平均分子量 4000) 1. 3部を 加えた後、 酢酸 2. 1部を添加して水溶化し、 ついで 20%酢酸鉛水溶 液 6. 5部を加えてから、 脱イオン水を徐々に加えて分散し、 固形分 3 0 %のェマルジョ ンとする。  Bisphenol A type epoxy resin with epoxy equivalent of 630 (Epico 1002 (trade name, manufactured by Shell Chemical Co., Ltd.)) 1,260 parts are dissolved in 450 parts of butyl ether solvent, 132 parts of ρ-nonylphenol and 105 parts of N-methylethanolamine Then, the mixture was heated to 140 ° C. and reacted at the same temperature to obtain an additional epoxy resin having a solid content of 77% and an amine value of 52. To 130 parts of this resin were added 30 parts of block polyisocyanate compound (curing agent) and 1.3 parts of polypropylene glycol (number average molecular weight 4000), and then 2.1 parts of acetic acid was added to make it water-soluble. 20% aqueous lead acetate solution 6.5 parts are added, then deionized water is gradually added and dispersed to obtain an emulsion having a solid content of 30%.
一方、 75%エポキシ系ァミ ン型顔料分散樹脂 4. 7部を 88%ギ酸 水溶液 0. 16部で中和した後、 脱イオン水 22. 2部を加え、 さらに チタン白顔料 15部、 クレー 7部、 カーボンブラック 0. 3部、 塩基性 ゲイ酸鉛 3. 0部およびジォクチル錫ォキシド 3部を加え、 ボールミル 分散して固形分 55%の顔料ペーストを作成する。  On the other hand, 4.7 parts of a 75% epoxy-based amine-type pigment-dispersed resin was neutralized with 0.16 parts of a 88% aqueous formic acid solution, 22.2 parts of deionized water was added, and 15 parts of titanium white pigment and clay were added. 7 parts, 0.3 parts of carbon black, 3.0 parts of basic lead gayate and 3 parts of dioctyltin oxide are added and dispersed in a ball mill to prepare a pigment paste having a solid content of 55%.
ついで、 前記の固形分 30%ェマルジョ ンとこの固形分 55%の顔料 ペース卜とを混合した後、 脱イオン水で希釈して固形分 19%の電着浴 とした。 上記ブロックポリイソシァネー ト化合物は、 2 , 6— ト リ レンジィソ シァネー ト 174部と水酸基当量 425のポリ力プロラク トンジオール 85部との反応生成物にエチレングリコールの 2—ェチルへキシルアル コールモノエーテル (ブロック剤) を反応させることにより製造された ものである。 Next, the above-mentioned 30% solid content emulsion and the 55% solid content pigment paste were mixed, and diluted with deionized water to obtain an electrodeposition bath having a 19% solid content. The above block polyisocyanate compound is obtained by reacting 174 parts of 2,6-tolylene diisocyanate with 85 parts of polycaprolactone diol having a hydroxyl equivalent of 425 to 2-ethylhexyl alcohol monoether of ethylene glycol. (Blocking agent).
4) カチオン電着塗料 (2) :  4) Cationic electrodeposition paint (2):
上記カチオン電着塗料 (1) において、 20%酢酸鉛水溶液 6. 5部 を省略し、 また顔料ペース トの塩基性ゲイ酸鉛 3. 0部を水酸化ビスマ ス 3. 0部に代えた以外はすべてカチオン電着塗料 (1) と同様にして 調整した。  In the above cationic electrodeposition paint (1), except that 6.5 parts of a 20% aqueous lead acetate solution was omitted, and 3.0 parts of basic lead gayate of the pigment paste was replaced with 3.0 parts of bismuth hydroxide Were adjusted in the same manner as in the cationic electrodeposition paint (1).
5) カチオン電着塗料 (3) :  5) Cationic electrodeposition paint (3):
上記カチオン電着塗料 (1) における 20%酢酸鉛水溶液 6. 5部お よび顔料ペース卜の塩基性ゲイ酸鉛 3. 0部をビスマスの分散ペースト 1部 (金属ビスマス量として) に代えた以外はすべてカチオン電着塗料 (1) と同様にして調整した。  Except that 6.5 parts of a 20% aqueous lead acetate solution in the above cationic electrodeposition paint (1) and 3.0 parts of basic lead gaite in the pigment paste were replaced with 1 part of bismuth dispersed paste (as the amount of metallic bismuth) Were all adjusted in the same manner as the cationic electrodeposition paint (1).
ここで 「ビスマスの分散ペースト」 は次のようにして調整されたもの である。  Here, the “dispersion paste of bismuth” was prepared as follows.
容器に、 固形分 75%のエポキシ系 3級ァミ ン型顔料分散用樹脂 (ァ ミ ン価 100) 133. 3部およびメ トキシ酢酸 81. 1部を配合し均 —になるように撹拌した後、 この中に脱イオン水 233. 5部を強く撹 拌しながら滴下し、 さらに酸化ビスマス 111. 5部を加えてボールミ ルで 20時間混合分散して、 固形分 50%のビスマス分散ペース 卜を得 ο  In a container, 133.3 parts of an epoxy-based tertiary amine pigment-dispersing resin having a solid content of 75% (amin value: 100) and 81.1 parts of methoxyacetic acid were blended and stirred to a uniform level. Thereafter, 233.5 parts of deionized water was added dropwise with vigorous stirring, and 111.5 parts of bismuth oxide was further added and mixed and dispersed with a ball mill for 20 hours to obtain a bismuth dispersion paste having a solid content of 50%. Get ο
6) 水性中塗り塗料 (1) : ポリエステル樹脂 (l) 1000部 (固形分量として、 以下同様) 、 ジメチルァミノエタノール (注 1) 40部、 脂肪族系 6官能型プロック ポリイソシァネー ト化合物 (注 2) 410部、 チタン白顔料 (注 3) 1 400部およびカーボンブラック (注 4) 20部を脱イオン水 1800 部に混合分散して水性中塗り塗料 (1) を得た。 6) Waterborne intermediate coating (1): Polyester resin (l) 1000 parts (as solid content, the same applies hereinafter), dimethylaminoethanol (Note 1) 40 parts, aliphatic hexafunctional block polyisocyanate compound (Note 2) 410 parts, titanium white pigment (Note 3) ) 1400 parts and carbon black (Note 4) 20 parts were mixed and dispersed in 1800 parts of deionized water to obtain an aqueous intermediate coating (1).
(注 1) ジメチルアミノエタノール: 日本乳化剤 (株) 製、 商品名、 (Note 1) Dimethylaminoethanol: Nippon Emulsifier Co., Ltd., trade name,
「ァミノアルコール 2Ma b s」 "Amino alcohol 2Ma bs"
(注 2) 脂肪族系 6官能型ブロックポリイソシァネー ト化合物 : へキ サメチレンジイソシァネー 卜の 3量体のァダク ト物をメチル ェチルケトォキシムでブロックした。  (Note 2) Aliphatic hexafunctional block polyisocyanate compound: A hexameric methylene diisocyanate trimer is blocked with methylethylketoxime.
(注 3) チタン白顔料: 「ティカ J R 806J (ティカ製、 商品名) (注 4) 力一ボンブラック : 「三菱力一ボンブラック M— 100」  (Note 3) Titanium white pigment: "Tika J R 806J (manufactured by Tika, trade name)" (Note 4) Riki Bon Black: "Mitsubishi Riki Bon Black M-100"
(三菱化学 (株) 製、 商品名)  (Mitsubishi Chemical Corporation, trade name)
7) 水性中塗り塗料 (2) :  7) Waterborne intermediate coating (2):
ポリエステル樹脂 ( 1 ) 1000部、 ジメチルァミノエタノ一ル (注 1) 40部、 脂肪族系 3官能型プロックポリイソシァネー ト化合物 (注 5) 410部、 チタン白顔料 (注 3) 1400部およびカーボンブラッ ク (注 4) 20部を脱イオン水 1800部に混合分散して水性中塗り塗 料 (2) を得た。  Polyester resin (1) 1000 parts, Dimethylaminoethanol (Note 1) 40 parts, Aliphatic trifunctional block polyisocyanate compound (Note 5) 410 parts, Titanium white pigment (Note 3) 1400 parts And 20 parts of carbon black (Note 4) were mixed and dispersed in 1800 parts of deionized water to obtain an aqueous intermediate coating (2).
(注 5) 脂肪族系 3官能型ブロックポリイソシァネー ト化合物 : へキ サメチレンジイソシァネー 卜の 3量体をメチルェチルケトォ キシムでブロックした。  (Note 5) Aliphatic trifunctional block polyisocyanate compound: Hexamethylene diisocyanate trimer was blocked with methylethylketoxime.
8) 水性中塗り塗料 (3) :  8) Waterborne intermediate coating (3):
ァクリル樹脂 (1) 1000部、 ジメチルァミノエタノール (注 1) 40部、 脂肪族系 3官能型プロックポリイソシァネ— 卜化合物 (注 5) 410部、 チタン白顔料 (注 3) 1400部およびカーボンブラック (注 4) 20部を脱イオン水 1800部に混合分散して水性中塗り塗料 (3) を得た。 Acrylic resin (1) 1000 parts, dimethylaminoethanol (Note 1) Mix 40 parts, aliphatic trifunctional block polyisocyanate compound (Note 5) 410 parts, titanium white pigment (Note 3) 1400 parts and carbon black (Note 4) 20 parts with 1800 parts of deionized water It was dispersed to obtain an aqueous intermediate coating (3).
9) 水性中塗り塗料 (4) (比較用) : 9) Waterborne intermediate paint (4) (for comparison):
ポリエステル樹脂 (2) 1◦ 00部、 ジメチルァミノエタノール (注 1) 40部、 脂肪族系 3官能型ブロックポリイソシァネー ト化合物 (注 6) 410部、 チタン白顔料 (注 3) 1400部および力一ボンブラッ ク (注 4) 20部を脱イオン水 1800部に混合分散して水性中塗り塗 料 (2) を得た。  Polyester resin (2) 1 00 parts, dimethylaminoethanol (Note 1) 40 parts, aliphatic trifunctional block polyisocyanate compound (Note 6) 410 parts, Titanium white pigment (Note 3) 1400 parts 20 parts were mixed and dispersed in 1800 parts of deionized water to obtain an aqueous intermediate coating (2).
(注 6) 脂肪族系 3官能型ブロックポリイソシァネー ト化合物 : へキ サメチレンジイソシァネ一 卜の 3量体をマロン酸ェチルでブ ロックした。  (Note 6) Aliphatic trifunctional block polyisocyanate compound: A hexamethylene diisocyanate trimer was blocked with ethyl malonate.
10) 水性中塗り塗料 (5) (比較用) :  10) Waterborne intermediate coating (5) (for comparison):
ポリエステル樹脂 (1) 1000部、 ジメチルァミノエタノール (注 1) 40部、 メラミ ン樹脂 (注 7) 300部、 チタン白顔料 (注 3) 1 400部および力一ボンブラック (注 4) 20部を脱イオン水 1800 部に混合分散して水性中塗り塗料 (5) を得た。  Polyester resin (1) 1000 parts, Dimethylaminoethanol (Note 1) 40 parts, Melamine resin (Note 7) 300 parts, Titanium white pigment (Note 3) 1 400 parts and Rikibon black (Note 4) 20 parts Was mixed and dispersed in 1800 parts of deionized water to obtain an aqueous intermediate coating composition (5).
(注 7) メラミ ン樹脂: 「サイメル 303」 (三井サイアナミ ド (株) 製、 商品名、 メタノール変性メラミ ン樹脂)  (Note 7) Melamine resin: Cymel 303 (Mitsui Cyanamid Co., Ltd., trade name, methanol-modified melamine resin)
2. 実施例 1〜 5および比較例:!〜 2  2. Examples 1 to 5 and Comparative Example:! ~ 2
カチオン電着塗料 (1) 〜 (3) の電着浴にりん酸亜鉛処理したダル 鋼板をカソー ドとして浸漬し、 30°C、 200 Vで 3分間電着し (膜厚 は硬化塗膜で 25 / m) 、 100°Cで 10分乾燥してから、 水性中塗り 塗料 (1) 〜 (5) をエアスプレーでそれぞれ塗装し (膜厚は硬化塗膜 で 30〜35 ^m) 、 ついで 170°Cで 30分加熱して両塗膜を架橋硬 化した。 Cathode dipped steel sheet treated with zinc phosphate is immersed in a cathodic electrodeposition paint (1) to (3) as a cathode, and electrodeposited at 30 ° C and 200 V for 3 minutes. 25 / m), dried at 100 ° C for 10 minutes, and then Each of the paints (1) to (5) was applied by air spray (thickness of the cured film is 30 to 35 ^ m), and then heated at 170 ° C for 30 minutes to crosslink and cure both films.
かく して得られた複層塗膜の性能試験を行った。 試験結果は表 1のと おりである。  A performance test was performed on the multilayer coating film thus obtained. The test results are shown in Table 1.
Figure imgf000028_0001
試験方法は下記のとおりである。
Figure imgf000028_0001
The test method is as follows.
光沢 : 60度鏡面反射率。  Gloss: 60 degree specular reflectance.
鮮映性:写像性測定器 (IMAGE CLARITY METER 、 スガ試験機 (株) 製) で測定した結果である。 表中の数字は I CM値であり、 0〜100の範 囲の値をとる。 数値の大きい方が鮮映性 (写像性) が良く、 I CM値が 80以上であれば鮮映性が極めて良好であることを示す。  Sharpness: The result of measurement with an image clarity measuring device (IMAGE CLARITY METER, manufactured by Suga Test Instruments Co., Ltd.). The numbers in the table are ICM values, and take values in the range of 0 to 100. The larger the value, the better the sharpness (image clarity). If the ICM value is 80 or more, the sharpness is extremely good.
耐チッビング性 : Q— G— Rグラベロメ一ター (Qパネル (株) 製) を用いて、 直径 15〜20 mmの砕石 100 gをエアー圧約 4 K g/ c m 2で、 一 2 0 °Cにおいて塗面への吹き付け角度 9 0度で吹き付けた。 その後の塗面状態を目視で評価した。 〇は中塗り塗面に衝撃キズはわず か認められるが電着塗膜の剥離は全くない、 △は中塗り塗面に衝撃キズ がやや多く認められ、 しかも電着塗膜の剥離もわずかある、 Xは中塗り 塗面に衝撃キズが多く認められ、 しかも電着塗膜の剥離もかなりある、 ことを示す。 Chipping resistance: Using a Q-G-R gravelometer (Q Panel Co., Ltd.), 100 g of crushed stone with a diameter of 15 to 20 mm is applied with an air pressure of about 4 kg / c. m 2, and the spraying with spray angle 9 0 ° to the coated surface in one 2 0 ° C. Thereafter, the state of the coated surface was visually evaluated. 〇 shows slight scratches on the intermediate coated surface but no peeling of the electrodeposited film. △ shows slight impact scratches on the intermediate coated surface and slight peeling of the electrodeposited film. X indicates that many impact scratches were observed on the intermediate coated surface, and that the electrodeposition coating film was considerably peeled off.
耐衝撃性: デュポン式衝撃試験機を使用し、 撃芯 1ノ 2インチで、 塗 面を上側にして加重 5 0 0 gの重りを落下させ、 塗膜にヮレが生じない 落下距離 (高さ c m) を測定した。  Impact resistance: Using a Dupont-type impact tester, drop a weight of 500 g with a striker core of 1 inch and 2 inches with the coating surface facing upward. No drop occurs on the coating film. Cm).
耐湿性 : 5 0 °C、 湿度 9 5 %の条件で、 試験板を 7 2時間放置したあ との塗膜の外観および付着性を調べた。 外観の評価 : 〇は全く異常なし、 △はフクレゃハガレが少し認められ、 Xはフクレゃハガレが少多く認め られる、 ことを示す。 付着性はゴバン目 (大きさ 1 m m x 1 m mのゴバ ン目、 1 0 0個) テープ剥離テス トで行い、 9 0個以上ゴバン目塗膜が 残存している場合を〇とする。  Moisture resistance: The test plate was allowed to stand for 72 hours under the conditions of 50 ° C and a humidity of 95%, and the appearance and adhesion of the coating film were examined. Appearance evaluation: Δ indicates no abnormality, Δ indicates slight blistering, and X indicates slight blistering. Adhesion is performed using a taper test (a 1m x 1mm gobber, 100 pieces) tape peeling test.

Claims

請 求 の 範 囲 The scope of the claims
1 . ブロックポリイソシァネー ト化合物を架橋剤として含有するカチ オン電着塗料を塗装し、 形成される電着塗膜を硬化させることなく、 該 電着塗膜上にプロックポリィソシァネー ト化合物を架橋剤として含有す る水性中塗り塗料を塗装して中塗り塗膜を形成し、 ついで加熱して両塗 膜を一緒に硬化させて複層塗膜を形成する方法であって、 該電着塗膜の 架橋硬化反応が該中塗り塗膜の架橋硬化反応より早く開始するように調 整してなることを特徴とする複層塗膜形成法。  1. A cation electrodeposition paint containing a block polyisocyanate compound as a cross-linking agent is applied, and the block electrodeposition coating film is formed on the electrodeposition coating film without curing the formed electrodeposition coating film. A method of applying an aqueous intermediate coating containing a compound as a crosslinking agent to form an intermediate coating film, and then heating to cure the both coating films together to form a multilayer coating film. A method for forming a multilayer coating film, characterized in that the cross-linking and curing reaction of the electrodeposition coating film is adjusted to start earlier than the crosslinking and curing reaction of the intermediate coating film.
2 . カチオン電着塗料の塗膜の硬化温度が中塗り塗料の塗膜の硬化温 度よりも低く設定されている請求の範囲第 1項記載の複層塗膜形成法。  2. The method for forming a multilayer coating film according to claim 1, wherein the curing temperature of the coating film of the cationic electrodeposition coating material is set lower than the curing temperature of the coating film of the intermediate coating material.
3 . カチオン電着塗料の塗膜の硬化温度と中塗り塗料の塗膜の硬化温 度との間の温度差が 5〜2 0 °Cの範囲内にある請求の範囲第 1項記載の 複層塗膜形成法。  3. The method according to claim 1, wherein the temperature difference between the curing temperature of the coating film of the cationic electrodeposition paint and the curing temperature of the coating film of the intermediate coating is in the range of 5 to 20 ° C. Layer coating method.
4 . カチオン電着塗料の塗膜の硬化温度と中塗り塗料の塗膜の硬化温 度との間の温度差が 5〜 1 5 °Cの範囲内にある請求の範囲第 1項記載の 複層塗膜形成法。  4. The method according to claim 1, wherein the temperature difference between the curing temperature of the coating film of the cationic electrodeposition coating material and the curing temperature of the coating film of the intermediate coating material is within a range of 5 to 15 ° C. Layer coating method.
5 . カチオン電着塗料の塗膜の硬化開始時間が 5〜 1 5分の間である 請求の範囲第 1項記載の複層塗膜形成法。  5. The method for forming a multilayer coating film according to claim 1, wherein the curing start time of the coating film of the cationic electrodeposition paint is between 5 and 15 minutes.
6 . カチオン電着塗料がビスマス含有化合物をさらに含んでなる鉛フ リ一のカチオン電着塗料である請求の範囲第 1項記載の複層塗膜形成法 < 6. The method according to claim 1, wherein the cationic electrodeposition paint is a lead-free cationic electrodeposition paint further comprising a bismuth-containing compound.
7 . ビスマス含有化合物が水酸化ビスマス、 三酸化ビスマス、 硝酸ビ スマス、 安息香酸ビスマス、 クェン酸ビスマス、 ォキシ炭酸ビスマスお よびケィ酸ビスマスから選ばれる請求の範囲第 6項記載の複層塗膜形成 法。 7. The multi-layer coating film according to claim 6, wherein the bismuth-containing compound is selected from bismuth hydroxide, bismuth trioxide, bismuth nitrate, bismuth benzoate, bismuth citrate, bismuth oxycarbonate and bismuth silicate. Law.
8. ビスマス含有化合物が、 水不溶性ビスマス化合物および下記一般 式 8. The bismuth-containing compound is a water-insoluble bismuth compound and a compound represented by the following general formula:
H H
R1- C+CH2>TrC00H R 1 -C + CH 2 > TrC00H
I  I
0-R2 0-R 2
式中、 R1 は水素原子または炭素数 1〜3のアルキル基を表わし、 R2 は水素原子又は炭素数 1〜10のアルキル基を表わし、 nは 0 又は 1である、 In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and n is 0 or 1,
で示される脂肪族カルボン酸を、 水性媒体中で分散剤の存在下に混合分 散してなる水分散ペース卜であって、 その中に脂肪族カルボン酸変性ビ スマス化合物が非水溶性の状態で存在する水分散ペーストである請求の 範囲第 6項記載の複層塗膜形成法。 A water-dispersed paste obtained by mixing and dispersing an aliphatic carboxylic acid represented by in the presence of a dispersant in an aqueous medium, wherein the aliphatic carboxylic acid-modified bismuth compound is in a water-insoluble state. 7. The method for forming a multilayer coating film according to claim 6, wherein the method is a water-dispersed paste existing in the above.
9. カチォン電着塗料の塗膜の硬化開始時間と中塗り塗料の塗膜の硬 化開始時間との間の差が 0. 5〜10分である複層塗膜形成法。  9. A method for forming a multilayer coating film in which the difference between the curing start time of the coating film of the Kathyon electrodeposition paint and the curing start time of the coating film of the intermediate coating is 0.5 to 10 minutes.
10. 加熱硬化を約 130〜約 180°Cの温度で行なう請求の範囲第 1 項記載の複層塗膜形成法。  10. The method according to claim 1, wherein the heat curing is performed at a temperature of about 130 to about 180 ° C.
11. 中塗り塗料の塗膜上にさらに上塗り塗料を塗装する請求の範囲第 1項記載の複層塗膜形成法。  11. The method for forming a multilayer coating film according to claim 1, wherein a top coating material is further applied on the coating film of the intermediate coating material.
12. 請求の範囲第 1項記載の方法で複層塗膜が形成された物品。  12. An article having a multilayer coating formed by the method according to claim 1.
PCT/JP1998/004099 1997-09-11 1998-09-11 Method of forming multilayered coating film WO1999012660A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002303027A CA2303027A1 (en) 1997-09-11 1998-09-11 Method of forming multilayered coating film
EP98941831A EP1027938A4 (en) 1997-09-11 1998-09-11 Method of forming multilayered coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/246581 1997-09-11
JP24658197 1997-09-11

Publications (1)

Publication Number Publication Date
WO1999012660A1 true WO1999012660A1 (en) 1999-03-18

Family

ID=17150556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004099 WO1999012660A1 (en) 1997-09-11 1998-09-11 Method of forming multilayered coating film

Country Status (3)

Country Link
EP (1) EP1027938A4 (en)
CA (1) CA2303027A1 (en)
WO (1) WO1999012660A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152088A (en) * 1999-11-24 2001-06-05 Kansai Paint Co Ltd Cationic electrodeposition coating composition
EP1046431A3 (en) * 1999-04-19 2003-05-07 Kansai Paint Co., Ltd. Method for forming multi-layer paint film
JP2003525321A (en) * 2000-03-01 2003-08-26 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト Method for producing a multilayer coating on a conductive support

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082076A (en) * 2015-10-27 2017-05-18 旭化成株式会社 Polyisocyanate composition, paint composition and coating method
CN113278130B (en) * 2021-05-19 2022-08-05 万华化学集团股份有限公司 Modified HDI trimer, single-component polyurethane adhesive, preparation method of single-component polyurethane adhesive and pavement material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251973A (en) * 1984-05-25 1985-12-12 Nippon Paint Co Ltd Formation of dual-layer film
JPS6473099A (en) * 1987-09-14 1989-03-17 Nissan Motor Electrodeposition coating method
JPH06228796A (en) * 1992-10-23 1994-08-16 Herberts Gmbh Method of producing multilayer coating
JPH07163936A (en) * 1993-09-17 1995-06-27 Herberts Gmbh Preparation of multilayer lacquer coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251973A (en) * 1984-05-25 1985-12-12 Nippon Paint Co Ltd Formation of dual-layer film
JPS6473099A (en) * 1987-09-14 1989-03-17 Nissan Motor Electrodeposition coating method
JPH06228796A (en) * 1992-10-23 1994-08-16 Herberts Gmbh Method of producing multilayer coating
JPH07163936A (en) * 1993-09-17 1995-06-27 Herberts Gmbh Preparation of multilayer lacquer coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1027938A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046431A3 (en) * 1999-04-19 2003-05-07 Kansai Paint Co., Ltd. Method for forming multi-layer paint film
JP2001152088A (en) * 1999-11-24 2001-06-05 Kansai Paint Co Ltd Cationic electrodeposition coating composition
JP2003525321A (en) * 2000-03-01 2003-08-26 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト Method for producing a multilayer coating on a conductive support

Also Published As

Publication number Publication date
EP1027938A4 (en) 2004-04-28
EP1027938A1 (en) 2000-08-16
CA2303027A1 (en) 1999-03-18

Similar Documents

Publication Publication Date Title
JP3820594B2 (en) Cationic electrodeposition coating composition
CN101218313A (en) Method for forming multilayer coating film
JP2021529847A (en) How to improve the corrosion resistance of metal substrates
US6730203B2 (en) Multi-layer coating film-forming method
US8426500B2 (en) Cathodic electrodeposition paint containing a vinylpyrrolidone copolymer
JP5555569B2 (en) Cured electrodeposition coating film and method for forming multilayer coating film
US7005051B2 (en) Process for forming layered coated film, and layered coated film
KR100675049B1 (en) How to form a multilayer paint film
JPH02229869A (en) Cationic electro-deposition paint composition
WO1999012660A1 (en) Method of forming multilayered coating film
JP2002282773A (en) Method of forming multilayered film and multilayered film
MXPA04002331A (en) Aqueous dispersions and aqueous electrodepositable primers.
JP5631333B2 (en) Cathode electrodeposition resin having sulfo group or sulfamyl group
JPH11207252A (en) Multiple-layer coating
JP2004231989A (en) The eco-friendly electrodeposition painting method and painted article
JP2002086052A (en) Double-layered coating film formation method
JP2002066440A (en) Method for forming double-layered coating film
EP2861681A2 (en) Dual-cure compositions useful for coating metal substrates and processes using the compositions
JP7287384B2 (en) Coating method of cationic electrodeposition paint
JP3112749B2 (en) Coating method
JP2002066442A (en) Method for forming double-layered coating film
JP2002066441A (en) Method for forming double-layered coating film
JP2006045560A (en) Polyaddition product and cationic electrodeposition paint containing the polyaddition product
JP2002086053A (en) Double-layered coating film formation method
TW202140154A (en) Method for forming multilayer coating film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2303027

Country of ref document: CA

Ref country code: CA

Ref document number: 2303027

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09508434

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998941831

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998941831

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998941831

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载