+

WO1999009786A1 - Procede de mise en forme electronique de faisceaux de signaux acoustiques et detecteur acoustique - Google Patents

Procede de mise en forme electronique de faisceaux de signaux acoustiques et detecteur acoustique Download PDF

Info

Publication number
WO1999009786A1
WO1999009786A1 PCT/IB1998/000889 IB9800889W WO9909786A1 WO 1999009786 A1 WO1999009786 A1 WO 1999009786A1 IB 9800889 W IB9800889 W IB 9800889W WO 9909786 A1 WO9909786 A1 WO 9909786A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
output
transducers
signals
Prior art date
Application number
PCT/IB1998/000889
Other languages
English (en)
Inventor
Joseph Maisano
Werner Hottinger
Original Assignee
Phonak Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phonak Ag filed Critical Phonak Ag
Priority to DE69803933T priority Critical patent/DE69803933T2/de
Priority to IL13443598A priority patent/IL134435A/en
Priority to AT98922985T priority patent/ATE213581T1/de
Priority to EP98922985A priority patent/EP1005783B1/fr
Priority to JP2000510313A priority patent/JP2001516196A/ja
Priority to KR1020007001695A priority patent/KR20010023076A/ko
Priority to NZ502883A priority patent/NZ502883A/xx
Priority to DK98922985T priority patent/DK1005783T3/da
Priority to AU75441/98A priority patent/AU746584B2/en
Priority to CA002301216A priority patent/CA2301216C/fr
Publication of WO1999009786A1 publication Critical patent/WO1999009786A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the present invention is generically directed on a technique for so-called "beam forming" on acoustical signals.
  • the amplitude of the resulting signal A_. is proportional to the sine of the signal frequency ⁇ and to the distance p.
  • f r becomes approx. 7 kHz.
  • Such techniques for beam forming are well-known and have been realised using analogue signal processing, as e.g. shown in the US-A-2 237 298, US-A-4 544 927, US-A-4 703 506, US-A-5 506 908 or using digital signal processing, both in time or in frequency domain, as shown in the EP-A-0 381 498 (time domain) or in the US-A-5 581 620 (frequency domain) .
  • the resulting signal is dampened at low frequencies, which results in a bad signal to noise ratio.
  • the directivity index is very sensitive to matching of the individual microphone cells, especially at low frequencies.
  • the distance p between the microphone cells should be large (> 12 mm) for audio range.
  • the directivity largely depends upon the number of microphone cells and thus on the complexity of the overall arrangement .
  • the US-A-4 653 102 proposes the use of two directional microphones aimed in target direction and of a third microphone aimed in opposite direction.
  • the signal of the third microphone supposedly only containing noise is used to shape the response of the two primary microphones.
  • This technique obviously has the drawback within reverberating rooms, where the desired signal is reflected on walls, floor, ceiling and furniture and is therefore considered as noise by the system.
  • This technique is further unhandy as making use of at least three microphones .
  • the US-5 539 859 proposes a technique wherein reception characteristic is logged in on that direction wherefrom the highest energy impinges on a pair of microphones and considered in the sound environment. Principally, all sound impinging from directions other than from highest energy direction is considered as noise and its reception is cancelled.
  • an analogue to digital conversion and subsequent time to frequency domain conversion is performed on the output signals of two microphones. Exploiting the knowledge of the fixed mutual distance between the two microphones, wherefrom phase difference of the impinging signal spectra is dependent, there is determined the mutual phasing and thus impinging direction of highest energy sound signals, i.e. direction of highest en- ergy sound source within the acoustical surrounding. Signals impinging from that direction are amplified by means of in- phase shifting and adding similarly to an auto correlation technique, whereby signals from other impinging angles are cancelled as noise.
  • the preferred apparatus according to the present invention is a hearing aid apparatus, and especially a one ear hearing aid apparatus . It is a further object to provide such method and apparatus with good frequency response in the audio band, i.e. between approx. 0,1 and 10 kHz.
  • Still a further object of the present invention is to provide such method and apparatus which allow high signal to noise ratio realisation without unwanted side-lobes and with easily variable beam form, e.g. for acoustical zooming.
  • the inventive method comprises the steps of repetitively determining from sig- nals dependent from the acoustical signals a respective mutual delay signal according to reception delay at the at least two transducers; subjecting a signal dependent from the output signal of at least one of the at least two transducers to filtering with a filtering transfer characteristic; and of control- ling the filtering transfer characteristic in dependency of the mutual delay signal; further exploiting a signal dependent from the output signal of the filtering as electrical reception signal .
  • the inventive acoustical sensor apparatus comprises at least two acoustical/electrical transducers, arranged at a predetermined mutual distance in target direction, a time delay detection unit, which has at least two inputs and an output, the inputs thereof being respectively operationally connected to the outputs of the two transducers, whereby the time delay detection unit generates an output signal in dependency of the time delay of acoustical signals, impinging on the at least two spaced apart transducers, preferably a time domain to frequency domain converter unit generating the output signal of said time delay detection unit in frequency domain; a weighing unit with a predetermined weighing characteristic and with an input and with an output, whereby the input thereof is operationally connected to the output of the time delay detection unit and preferably receiv- ing the signal at said output of said time delay detection unit in frequency domain mode; with a filter unit with a controllable transfer characteristic, which has at least one input, a control input and an output and whereat the input is operationally connected to
  • Fig. 1 A functional block diagram of a two-cell directional microphone arrangement according to the prior art principle of "delay and sum";
  • Fig. 2 the first order cardoid amplification characteristic of prior art arrangement according to fig. 1;
  • Fig. 3 departing from the prior art arrangement of fig. 1 a further arrangement following up the technique of "delay and sum" for realising second order characteristic;
  • Fig. 4 the second order amplification characteristic as realised by the prior art arrangement according to fig. 3;
  • Fig. 5 in dependency of frequency the amplification characteristic of the arrangement according to fig. 1 or 3 at maximum amplification impinging angle of acoustical signals;
  • Fig. 6 a simplified functional block diagram of an inventive apparatus operating according to the inventive method and further showing the sequence of process signals;
  • Fig. 7 in a representation according to fig. 6 a first preferred realisation form of an inventive apparatus operating according to the inventive method;
  • Fig. 8 in an inventive apparatus operating according to the inventive method according to fig. 6 a further preferred form of realisation of a time delay detection unit;
  • Fig. 9 a polar diagram of signals as realised by the embodi- ment of fig. 8 for explaining operation of a comparator unit as provided in the fig. 8 embodiment;
  • Fig. 10 the course of comparison results in dependency of impinging angle of an acoustical signal and as realised by the embodiment according to fig. 8;
  • Fig. 11 a preferred form of realising superimposing result signal dependency from impinging angle of an acoustical signal at an embodiment according to fig. 8 ;
  • Fig. 12 in a representation according to fig. 10 the course of comparison results as realised with a preferred embodiment resulting in the fig. 11 dependency;
  • Fig. 13 in polar diagrammatic representation the dependency of superimposing result signals from impinging angle of acoustical signals and from frequency as realised by the embodiment according to fig. 8;
  • Fig. 14 a preferred realisation form of the fig. 8 embodiment, additionally counteracting frequency dependency as shown in fig. 13;
  • Fig. 15 in a representation according to fig. 13 the. depend- ency of the superimposing result signal with normalisation as realised by the embodiment of fig. 14 with a first preferred normalisation frequency function;
  • Fig. 16 a representation according to fig. 15, realised with a second preferred normalisation frequency function at the embodiment of fig. 14;
  • Fig. 17 a first (rigid line) and second (dashed line) preferred realisation form of amplitude filter characteristic at the embodiment of fig. 6 or 7;
  • Fig. 18a the effect of the amplitude filter amplitude versus amplitude transfer characteristic according to fig. 17
  • Fig. 18b the representation of the output signal of a time delay detection unit passed through the amplitude filter with a transfer characteristic according to fig. 17
  • Fig. 19 the spectrum of an acoustical signal converted into electrical and input to a controllable frequency fil- ter as provided by the present invention according to fig. 6;
  • Fig. 20 the electrical reception result signal realised by amplitude filter characteristic according to fig. 17 (rigid line) and reception signal as exemplified in fig. 19 at the inventive embodiment according to fig.
  • Fig. 21 the resulting dependency of amplification from impinging angle of an acoustical signal as realised by the fig. 17 amplitude filter characteristic (rigid and dashed lines) ;
  • Fig. 22 the amplification versus impinging angle characteristic as realised by the fig. 6 or fig. 8, 14 embodiments of the invention, making use of an amplitude filter characteristic with a maximum to minimum spec- tral amplitude transfer behaviour;
  • Fig. 23 in a simplified signal/functional block diagram a further preferred embodiment of the invention
  • Fig. 24 in a signal flow, functional block representation, a further mode of realisation of the time delay detection unit as shown in fig. 6 and
  • Fig. 25 in a signal flow, functional block representation, a further mode of realisation of the time delay detection unit following the technique as shown in fig. 8 or fig. 14.
  • At least two acoustical/electrical transducers 1 and 2 are provided with a predetermined mutual distance p along axis a. Acoustical signals IN are received by the transducers 1 and 2 as they impinge from different spatial directions ⁇ . The acoustical signals IN have frequency spectra which vary in time. Output signals of transducer 1, S x (t, ⁇ ) and of transducer 2, S 2 (t, ⁇ ), are formed as electrical signals at the output of the transducers 1 and 2.
  • the acoustical signals IN impinge on the transducers 1 and 2 with a time delay dt, which may be expressed by the phase difference ⁇ ⁇ at each spectral frequency ⁇ according to
  • the time delay dt ⁇ becomes equal for all spectral components at the different ⁇ .
  • the output signals S. and S 2 of the transduc- ers 1 and 2 are operationally connected to the respective inputs of a time delay detection unit 10, which generates an output signal A 10 according to the spectral distribution of time delays dt ⁇ , which are, as was explained, a function of the impinging angle ⁇ at which the respective frequency components impinge on the transducers 1 and 2 and thus in fact of ⁇ ⁇ .
  • a possible spectrum of output signal A 10 is also shown in fig. 6.
  • This spectrum varies in time according to the time variation of impinging acoustical signal IN.
  • the output signal A 10 of time delay detection unit 10 is input to a weighing unit 12.
  • a 12 results from respectively weighing the spectral amplitudes of A 10 according to the characteristic W.
  • the weighing unit 12 determines with its characteristic W the beam shape .
  • the output signal A 12 is applied to a filter unit 14 with a controllable transfer filter characteristic.
  • each spec- tral line of the time varying spectrum of the output signal S- tjCo) is amplified or attenuated according to the controlling spectrum W ⁇ • A 10 ⁇ .
  • unit 14 is a filter unit for input signal S 1 at which the transfer characteristic is varied, as controlled by A 12 .
  • the weighing unit 12 In dependency of the kind of filter unit 14 the weighing unit 12, generally spoken, calculates adjustment of filter characteristic determining coefficients as a function of A 10 .
  • the beam form can be adjusted and thus acoustical zooming is realised.
  • both transducer output signals may be advantageous to subject both transducer output signals to a controlled filtering at unit 14.
  • fig. 7 there is shown a first preferred form of realisation of the inventive principle according to fig. 6.
  • the output signals S x and S 2 are first converted from analogue to digital form in respective analogue/digital converters 16 and 17.
  • the digital output signals of the respective converters 16 and 17 are input to respective complex time domain/frequency domain converters 18 and 19.
  • the output spectra S 1 (t, ⁇ ) and S 2 (t, ⁇ ) of converters 18, 19 are input to the spectral time delay detection unit 10'.
  • Unit 10' computes according to formula (1) the phase difference spectrum ⁇ ⁇ divided by the respective frequency ⁇ to result in an output signal spectrum A 10 ' according to the time delay dt ⁇ as was explained in connection with fig. 6.
  • the output signal of the time delay detection unit 10', A 10 ' is further treated, as was explained in connection with fig. 6, by the weighing filter unit 12 and the controllable filter unit 14.
  • the unit 10' operates. Out of the spectral phase distribution ⁇ ln of signal S- and ⁇ 2n of signal S 2 the time delay dt ⁇ is calculated for each spectral line within an interesting spectral band.
  • the time domain to frequency domain conversion units 18 and 19 perform complex (real and imaginary) operation.
  • a second preferred realisation form of the present invention and especially as concerns realisation of the time delay detection unit 10, shall be explained with the help of fig. 8 and 9.
  • the output signal of one of the transducers is fed to a time delay unit 20, wherein, in a first form of this realisation, signal S ⁇ is time delayed by a predetermined frequency independent time delay ⁇ .
  • signal S x accords thus with signal A x .
  • the output signal of time delay unit 20 thus accords with signal A. 1 of fig. 1.
  • the time delay signal according to A x ' is superimposed to the output signal S 2 (t, ⁇ ) from transducer 2 at a superimposing unit 23 according to unit 3 of fig. 1, thus resulting in an output signal according to A_.(t, ⁇ ) of fig. 1.
  • the output signal A_.(t, ⁇ ) depends from the impinging acoustical signal direction ⁇ ac- cording to the first order cardoid beam of fig. 2, which cardoid function nevertheless varies with frequency ⁇ .
  • the output signal A., of superimposing unit 23 and e.g. the output signal S 2 (t, ⁇ ) from transducer 2 are input to a ratio unit 25, as a comparator unit .
  • a 20 according to fig. 9 is indicative of the impinging angle ⁇ 0 .
  • the division unit 25 of fig. 8 there is formed for each spectral component amplitude the ratio of A. to A., wherefrom there results a signal spectrum at the output of division unit 25 with a ratio spectrum.
  • the spectrum of A 10 according to fig. 6 thus becomes the spectrum of an amplitude ratio which nevertheless is indicative of the impinging angle ⁇ , at which each frequency component of the spectrum of the acoustical signal impinges with respect to the axis a of the two transducers (see fig. 6) .
  • the dotted line block indicates the delay detection unit 10 according to fig. 6. Further signal processing is performed as was explained by means of fig. 6, i.e. via weighing unit 12 and controllable filter unit 14.
  • the output ratio signal of unit 25 is a measure for the time delay dt ⁇ and is input to the weighing unit 12.
  • This amplitude ratio is shown for ⁇ at unit 20 of fig. 8 being selected to be
  • the cardoid function as shown in the figures 2, 9 and 11 is only valid for one specific frequency considered.
  • the outputs of the transducers 1 and 2 are converted into digital form by respective analogue to digital converters 16, 17 and the resulting digital signal of transducer 1 is time delayed by a time delay ⁇ ', which is larger than p/c.
  • the output signal S 2 of transducer 2 is further converted into frequency domain by a linear (not complex) time to frequency domain conversion unit 18 ' , whereas the output signal A., of superimposing unit 23 is converted to frequency domain at a linear time to frequency domain conversion unit 19 ' .
  • the frequency dependent polar diagram according to fig. 13 is taken into ac- count by a normaliser unit 30 which is in fact a filter.
  • the transfer characteristic of the filter is selected proportional to 1/ ⁇ . This results in a frequency dependency of the pole diagram as is shown in fig. 15 for the same distance and frequency values as shown in fig. 13.
  • a further, even improved normalisation function or filter characteristic at unit 30 of fig. 14 is achieved when the filter characteristic is selected as a function l/sin( ⁇ ). The result is shown in fig. 16. The characteristics match well from 0.5 to 4 kHz.
  • a further advantage of this normalisation technique is improved sensitivity in backwards direction. This improved sensitivity may be exploited for adaptive beam forming, that is for selectively eliminating noise sources from the rear side.
  • Fig. 24 shows in block diagram form, that the signal A 10 (dt ( ) may also be generated as the output signal of a comparator unit 60 to which on one hand the output signal of an omnidirectional transducer 61, having equal amplification of its acousti- cal/electrical reception characteristic substantially irrespective of the impinging angle ⁇ and the output signal of a directional transducer 62 with selected, beam shaped reception characteristic are led to.
  • time delaying ⁇ may also be performed by one of the transducers itself.
  • the output signals of the transducers 1 and 2 are first converted by respective analogue to digital converters 16 and 17 and then by respective time domain to fre- quency domain converters 18, 19 finally into frequency domain.
  • One signal, as an example S 2 of the converted output signals of the transducers, which, after time to frequency domain conversion may be represented as a spectrum of S 2 ⁇ pointers, is converted to its conjugate complex pointers at a conversion unit 50. At the output of this unit 50, the conjugate, complex pointers S * 2 ⁇ are generated.
  • This spectrum S 2 * and the pointer spectrum S x are multiplied to form the scalar product spectrum S 3 in a multiplication unit 52.
  • the pointers S 3( of spectrum S 3 have a phase angle with respect to the real axis, which is ⁇ ⁇ .
  • ⁇ ⁇ ⁇ • (p/c) • cos( ⁇ ⁇ )
  • a conversion unit 53 forms the imaginary part of the pointers S 3 ⁇ and a further unit 54 forms the amplitudes I S 3 ⁇ I of these pointers .
  • All the units 50, 52, 53, 54, 55 and 56 are preferably realised in one calculator unit .
  • each dt M spectral line amplitude of signal A 10 (see fig. 6) is attenu- ated to zero, if such amplitude is below or above predetermined values dt min ⁇ , dt mas ⁇ and is set to be "one" if such spectral component amplitude is between these two values.
  • Such selection of weighing function W results in an output signal spectrum A 12 , as shown in the figures 18a and 18b.
  • Fig. 19 shows a spectrum example of signal S- L .
  • All spectral lines of S 1 (Fig. b) are amplified by the value 1 according to A 12 or are nullified ac- cording to zero values of A 12 .
  • the weighing function I of fig. 17 is applied to the technique according to fig. 7 there results a beam form as shown in fig. 21 in strong lines.
  • If an amplitude filter characteristic is applied as shown by II in fig. 17, there results the characteristic as shown in fig. 21 in dashed line .
  • Fig. 22 shows the resulting beam if in analogy to fig. 17 and with an eye on figures 8 and 9 all ratio values which exceed (A-VA- it-ax are discarded. This is realised by the amplitude filter characteristic as also indicated in Fig. 22.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

On forme une caractéristique préétablie d'amplification en fonction de la direction (υ) d'où proviennent des signaux acoustiques reçus par deux transducteurs (1, 2) acoustiques/électriques distants l'un de l'autre, en déterminant de manière répétitive un signal de retard mutuel (A10) à partir des signaux de sortie des transducteurs et, en fonction du retard de réception au niveau des transducteurs, on filtre l'un (S1) des signaux de sortie, ce qui permet de réguler la caractéristique de transfert du filtrage en fonction du signal de retard mutuel (A12). Le signal de sortie issu du filtrage est ensuite utilisé en tant que signal de réception électrique (Sr).
PCT/IB1998/000889 1997-08-20 1998-06-08 Procede de mise en forme electronique de faisceaux de signaux acoustiques et detecteur acoustique WO1999009786A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE69803933T DE69803933T2 (de) 1997-08-20 1998-06-08 Verfahren zur elektronischen strahlformung von akustischen signalen und akustisches sensorgerät
IL13443598A IL134435A (en) 1997-08-20 1998-06-08 A method of producing acoustic signals electronically and an acoustic sensor
AT98922985T ATE213581T1 (de) 1997-08-20 1998-06-08 Verfahren zur elektronischen strahlformung von akustischen signalen und akustisches sensorgerät
EP98922985A EP1005783B1 (fr) 1997-08-20 1998-06-08 Procede de mise en forme electronique de faisceaux de signaux acoustiques et detecteur acoustique
JP2000510313A JP2001516196A (ja) 1997-08-20 1998-06-08 音響信号の電子的ビーム形成方法及び音響センサー装置
KR1020007001695A KR20010023076A (ko) 1997-08-20 1998-06-08 음향 신호를 전자적으로 비임 형성하는 방법 및 음향 센서장치
NZ502883A NZ502883A (en) 1997-08-20 1998-06-08 Amplification directional characteristic for deaf aid set established by electronic filtering in accordance with acoustic reception delay at twin transducers
DK98922985T DK1005783T3 (da) 1997-08-20 1998-06-08 Fremgangsmåde til elektronisk stråledannelse af akustiske signaler og akustisk affølingsapparat
AU75441/98A AU746584B2 (en) 1997-08-20 1998-06-08 A method for electronically beam forming acoustical signals and acoustical sensor apparatus
CA002301216A CA2301216C (fr) 1997-08-20 1998-06-08 Procede de mise en forme electronique de faisceaux de signaux acoustiques et detecteur acoustique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP97114413.4 1997-08-20
EP97114413A EP0820210A3 (fr) 1997-08-20 1997-08-20 Procédé électronique pour la formation de faisceaux de signaux acoustiques et dispositif détecteur acoustique

Publications (1)

Publication Number Publication Date
WO1999009786A1 true WO1999009786A1 (fr) 1999-02-25

Family

ID=8227250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1998/000889 WO1999009786A1 (fr) 1997-08-20 1998-06-08 Procede de mise en forme electronique de faisceaux de signaux acoustiques et detecteur acoustique

Country Status (14)

Country Link
EP (2) EP0820210A3 (fr)
JP (1) JP2001516196A (fr)
KR (1) KR20010023076A (fr)
CN (1) CN1267445A (fr)
AT (1) ATE213581T1 (fr)
AU (1) AU746584B2 (fr)
CA (1) CA2301216C (fr)
DE (1) DE69803933T2 (fr)
DK (1) DK1005783T3 (fr)
IL (1) IL134435A (fr)
NZ (1) NZ502883A (fr)
RU (1) RU2185710C2 (fr)
TR (1) TR200000457T2 (fr)
WO (1) WO1999009786A1 (fr)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326478A2 (fr) 2003-03-07 2003-07-09 Phonak Ag Procédé de génération des signaux de commande, procédé de transmission des signaux de commande et une prothèse auditive
EP1443798A2 (fr) * 2004-02-10 2004-08-04 Phonak Ag Prothèse auditive avec une fonction zoom pour l'oreille d'un individu
US7212643B2 (en) 2004-02-10 2007-05-01 Phonak Ag Real-ear zoom hearing device
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
US7286672B2 (en) 2003-03-07 2007-10-23 Phonak Ag Binaural hearing device and method for controlling a hearing device system
EP2262285A1 (fr) 2009-06-02 2010-12-15 Oticon A/S Dispositif d'écoute fournissant des repères de localisation améliorés, son utilisation et procédé
US8027495B2 (en) 2003-03-07 2011-09-27 Phonak Ag Binaural hearing device and method for controlling a hearing device system
EP2381700A1 (fr) 2010-04-20 2011-10-26 Oticon A/S Déréverbération de signal utilisant les informations d'environnement
US8111848B2 (en) 2003-03-07 2012-02-07 Phonak Ag Hearing aid with acoustical signal direction of arrival control
EP2439958A1 (fr) 2010-10-06 2012-04-11 Oticon A/S Procédé pour déterminer les paramètres dans un algorithme de traitement audio adaptatif et système de traitement audio
EP2463856A1 (fr) 2010-12-09 2012-06-13 Oticon A/s Procédé permettant de réduire les artéfacts dans les algorithmes avec gain à variation rapide
US8204263B2 (en) 2008-02-07 2012-06-19 Oticon A/S Method of estimating weighting function of audio signals in a hearing aid
US8249284B2 (en) 2006-05-16 2012-08-21 Phonak Ag Hearing system and method for deriving information on an acoustic scene
EP2503794A1 (fr) 2011-03-24 2012-09-26 Oticon A/s Dispositif de traitement audio, système, utilisation et procédé
EP2519032A1 (fr) 2011-04-26 2012-10-31 Oticon A/s Système comportant un dispositif électronique portable avec fonction temporelle
EP2528358A1 (fr) 2011-05-23 2012-11-28 Oticon A/S Procédé d'identification d'un canal de communication sans fil dans un système sonore
EP2541973A1 (fr) 2011-06-27 2013-01-02 Oticon A/s Contrôle de retour dans un dispositif d'écoute
EP2560410A1 (fr) 2011-08-15 2013-02-20 Oticon A/s Contrôle de modulation de sortie dans un instrument auditif
EP2563044A1 (fr) 2011-08-23 2013-02-27 Oticon A/s Procédé, dispositif d'écoute et système d'écoute pour maximiser un effet d' oreille meilleure
EP2563045A1 (fr) 2011-08-23 2013-02-27 Oticon A/s Procédé et système d'écoute binaurale pour maximiser l'effet d'oreille meilleure
EP2574082A1 (fr) 2011-09-20 2013-03-27 Oticon A/S Contrôle d'un système adaptatif d'annulation d'echo fondé sur l'ajout d'un signal de sonde
EP2584794A1 (fr) 2011-10-17 2013-04-24 Oticon A/S Système d'écoute adapté à la communication en temps réel fournissant des informations spatiales dans un flux audio
EP2613567A1 (fr) 2012-01-03 2013-07-10 Oticon A/S Procédé d'amélioration d'une estimation de chaîne de réaction à long terme dans un dispositif d'écoute
EP2613566A1 (fr) 2012-01-03 2013-07-10 Oticon A/S Dispositif d'écoute et procédé de surveillance de la fixation d'un embout auriculaire de dispositif d'écoute
US8565459B2 (en) 2006-11-24 2013-10-22 Rasmussen Digital Aps Signal processing using spatial filter
US8630431B2 (en) 2009-12-29 2014-01-14 Gn Resound A/S Beamforming in hearing aids
US9064502B2 (en) 2010-03-11 2015-06-23 Oticon A/S Speech intelligibility predictor and applications thereof
US9307332B2 (en) 2009-12-03 2016-04-05 Oticon A/S Method for dynamic suppression of surrounding acoustic noise when listening to electrical inputs
EP1365628B2 (fr) 2002-05-15 2017-03-08 Micro Ear Technology, Inc. Présentation dichotique du gradient du second ordre des signaux d'une prothèse auditive directionelle

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH693759A5 (de) * 1999-01-06 2004-01-15 Martin Kompis Vorrichtung und Verfahren zur Unterdrueckung von St oergeraeuschen.
AU753295B2 (en) * 1999-02-05 2002-10-17 Widex A/S Hearing aid with beam forming properties
EP1035752A1 (fr) * 1999-03-05 2000-09-13 Phonak Ag Procédé pour la mise en forme de la caractéristique spatiale d'amplification de réception d'un agencement de convertisseur et agencement de convertisseur
DE50003206D1 (de) 1999-06-02 2003-09-11 Siemens Audiologische Technik Hörhilfsgerät mit richtmikrofonsystem sowie verfahren zum betrieb eines hörhilfsgeräts
WO2001087009A2 (fr) * 2000-05-08 2001-11-15 Microbridge Technologies Inc. Capteur d'ecoulement gazeux, systeme de haut-parleur et micro, mettant en application la mesure de variations temporelles en pression absolue
WO2002003754A1 (fr) * 2000-07-03 2002-01-10 Nanyang Technological University Systeme de reseau de microphones
DE10312065B4 (de) * 2003-03-18 2005-10-13 Technische Universität Berlin Verfahren und Vorrichtung zum Entmischen akustischer Signale
DE10313330B4 (de) 2003-03-25 2005-04-14 Siemens Audiologische Technik Gmbh Verfahren zur Unterdrückung mindestens eines akustischen Störsignals und Vorrichtung zur Durchführung des Verfahrens
DE10331956C5 (de) 2003-07-16 2010-11-18 Siemens Audiologische Technik Gmbh Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteistiken einstellbar sind
DE10334396B3 (de) * 2003-07-28 2004-10-21 Siemens Audiologische Technik Gmbh Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
US7415117B2 (en) * 2004-03-02 2008-08-19 Microsoft Corporation System and method for beamforming using a microphone array
DE102004010867B3 (de) * 2004-03-05 2005-08-18 Siemens Audiologische Technik Gmbh Verfahren und Vorrichtung zum Anpassen der Phasen von Mikrofonen eines Hörgeräterichtmikrofons
TWI390945B (zh) * 2004-03-31 2013-03-21 Swisscom Ag 聲波通信用之方法及系統
WO2005109951A1 (fr) * 2004-05-05 2005-11-17 Deka Products Limited Partnership Discrimination angulaire de signaux acoustiques ou radio
DE102006046638A1 (de) 2005-12-15 2007-06-21 Strothmann, Rolf, Dr.rer.nat. Vorrichtung und Verfahren zur Ermittlung der Drehlage des Rotors einer elektrischen Maschine
DE112007003603T5 (de) * 2007-08-03 2010-07-01 FUJITSU LIMITED, Kawasaki-shi Tonempfangsanordnung, Richtcharakteristik-Ableitungsverfahren, Richtcharakteristik-Ableitungsvorrichtung und Computerprogramm
EP2238592B1 (fr) 2008-02-05 2012-03-28 Phonak AG Procédé de réduction de bruit dans un signal d'entrée d'un dispositif auditif et dispositif auditif
DE102008046040B4 (de) 2008-09-05 2012-03-15 Siemens Medical Instruments Pte. Ltd. Verfahren zum Betrieb einer Hörvorrichtung mit Richtwirkung und zugehörige Hörvorrichtung
EP2192794B1 (fr) 2008-11-26 2017-10-04 Oticon A/S Améliorations dans les algorithmes d'aide auditive
JP5777616B2 (ja) * 2009-07-24 2015-09-09 コーニンクレッカ フィリップス エヌ ヴェ 音声ビーム形成
EP2306457B1 (fr) 2009-08-24 2016-10-12 Oticon A/S Reconnaissance sonore automatique basée sur des unités de fréquence temporelle binaire
WO2012010195A1 (fr) 2010-07-19 2012-01-26 Advanced Bionics Ag Instrument auditif et procédé de fonctionnement associé
WO2011027005A2 (fr) 2010-12-20 2011-03-10 Phonak Ag Procédé et système d'amélioration de la voix dans une salle
CN104853671B (zh) * 2012-12-17 2019-04-30 皇家飞利浦有限公司 使用非干扰性音频分析生成信息的睡眠呼吸暂停诊断系统
CN104464739B (zh) * 2013-09-18 2017-08-11 华为技术有限公司 音频信号处理方法及装置、差分波束形成方法及装置
CN112240909A (zh) * 2020-09-30 2021-01-19 山东大学 一种桥梁拉索断丝声信号采集系统及方法
CN112492475B (zh) * 2020-11-30 2022-01-11 瑞声新能源发展(常州)有限公司科教城分公司 Mems麦克风及其工作控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289401A2 (fr) * 1987-04-30 1988-11-02 Fairchild Weston Systems Inc. Démodulateur numérique pour signaux multiplexés par division en fréquence (FDM)
GB2212619A (en) * 1987-10-23 1989-07-26 Szeto Lai Wan Magdalene Analyzing signals
EP0652686A1 (fr) * 1993-11-05 1995-05-10 AT&T Corp. Groupement adaptatif de microphones

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2036439C1 (ru) * 1990-09-21 1995-05-27 Томский научно-исследовательский и проектный институт нефтяной промышленности Акустический датчик положения границы раздела двух сред в трубе

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289401A2 (fr) * 1987-04-30 1988-11-02 Fairchild Weston Systems Inc. Démodulateur numérique pour signaux multiplexés par division en fréquence (FDM)
GB2212619A (en) * 1987-10-23 1989-07-26 Szeto Lai Wan Magdalene Analyzing signals
EP0652686A1 (fr) * 1993-11-05 1995-05-10 AT&T Corp. Groupement adaptatif de microphones

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.E.GREENBERG,P.M.ZUREK: "EVALUATION OF AN ADAPTIVE BEAMFORMING METHOD FOR HEARING AIDS.", THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol. 91, no. 3, March 1992 (1992-03-01), U.S.A., pages 1662 - 1676, XP002053435 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
EP1365628B2 (fr) 2002-05-15 2017-03-08 Micro Ear Technology, Inc. Présentation dichotique du gradient du second ordre des signaux d'une prothèse auditive directionelle
US7286672B2 (en) 2003-03-07 2007-10-23 Phonak Ag Binaural hearing device and method for controlling a hearing device system
EP1326478A2 (fr) 2003-03-07 2003-07-09 Phonak Ag Procédé de génération des signaux de commande, procédé de transmission des signaux de commande et une prothèse auditive
US8111848B2 (en) 2003-03-07 2012-02-07 Phonak Ag Hearing aid with acoustical signal direction of arrival control
US8027495B2 (en) 2003-03-07 2011-09-27 Phonak Ag Binaural hearing device and method for controlling a hearing device system
US7212643B2 (en) 2004-02-10 2007-05-01 Phonak Ag Real-ear zoom hearing device
EP1443798A2 (fr) * 2004-02-10 2004-08-04 Phonak Ag Prothèse auditive avec une fonction zoom pour l'oreille d'un individu
EP1443798A3 (fr) * 2004-02-10 2004-08-25 Phonak Ag Prothèse auditive avec une fonction zoom pour l'oreille d'un individu
US8249284B2 (en) 2006-05-16 2012-08-21 Phonak Ag Hearing system and method for deriving information on an acoustic scene
US8965003B2 (en) 2006-11-24 2015-02-24 Rasmussen Digital Aps Signal processing using spatial filter
US8565459B2 (en) 2006-11-24 2013-10-22 Rasmussen Digital Aps Signal processing using spatial filter
US8204263B2 (en) 2008-02-07 2012-06-19 Oticon A/S Method of estimating weighting function of audio signals in a hearing aid
US8526647B2 (en) 2009-06-02 2013-09-03 Oticon A/S Listening device providing enhanced localization cues, its use and a method
EP2262285A1 (fr) 2009-06-02 2010-12-15 Oticon A/S Dispositif d'écoute fournissant des repères de localisation améliorés, son utilisation et procédé
US9307332B2 (en) 2009-12-03 2016-04-05 Oticon A/S Method for dynamic suppression of surrounding acoustic noise when listening to electrical inputs
US8630431B2 (en) 2009-12-29 2014-01-14 Gn Resound A/S Beamforming in hearing aids
US9282411B2 (en) 2009-12-29 2016-03-08 Gn Resound A/S Beamforming in hearing aids
US9064502B2 (en) 2010-03-11 2015-06-23 Oticon A/S Speech intelligibility predictor and applications thereof
EP2381700A1 (fr) 2010-04-20 2011-10-26 Oticon A/S Déréverbération de signal utilisant les informations d'environnement
EP2439958A1 (fr) 2010-10-06 2012-04-11 Oticon A/S Procédé pour déterminer les paramètres dans un algorithme de traitement audio adaptatif et système de traitement audio
US8804979B2 (en) 2010-10-06 2014-08-12 Oticon A/S Method of determining parameters in an adaptive audio processing algorithm and an audio processing system
US9082411B2 (en) 2010-12-09 2015-07-14 Oticon A/S Method to reduce artifacts in algorithms with fast-varying gain
EP2463856A1 (fr) 2010-12-09 2012-06-13 Oticon A/s Procédé permettant de réduire les artéfacts dans les algorithmes avec gain à variation rapide
EP2503794A1 (fr) 2011-03-24 2012-09-26 Oticon A/s Dispositif de traitement audio, système, utilisation et procédé
EP2519032A1 (fr) 2011-04-26 2012-10-31 Oticon A/s Système comportant un dispositif électronique portable avec fonction temporelle
EP2528358A1 (fr) 2011-05-23 2012-11-28 Oticon A/S Procédé d'identification d'un canal de communication sans fil dans un système sonore
EP2541973A1 (fr) 2011-06-27 2013-01-02 Oticon A/s Contrôle de retour dans un dispositif d'écoute
EP2560410A1 (fr) 2011-08-15 2013-02-20 Oticon A/s Contrôle de modulation de sortie dans un instrument auditif
EP2563045A1 (fr) 2011-08-23 2013-02-27 Oticon A/s Procédé et système d'écoute binaurale pour maximiser l'effet d'oreille meilleure
EP2563044A1 (fr) 2011-08-23 2013-02-27 Oticon A/s Procédé, dispositif d'écoute et système d'écoute pour maximiser un effet d' oreille meilleure
EP2574082A1 (fr) 2011-09-20 2013-03-27 Oticon A/S Contrôle d'un système adaptatif d'annulation d'echo fondé sur l'ajout d'un signal de sonde
EP2584794A1 (fr) 2011-10-17 2013-04-24 Oticon A/S Système d'écoute adapté à la communication en temps réel fournissant des informations spatiales dans un flux audio
US9338565B2 (en) 2011-10-17 2016-05-10 Oticon A/S Listening system adapted for real-time communication providing spatial information in an audio stream
EP2613566A1 (fr) 2012-01-03 2013-07-10 Oticon A/S Dispositif d'écoute et procédé de surveillance de la fixation d'un embout auriculaire de dispositif d'écoute
EP2613567A1 (fr) 2012-01-03 2013-07-10 Oticon A/S Procédé d'amélioration d'une estimation de chaîne de réaction à long terme dans un dispositif d'écoute

Also Published As

Publication number Publication date
DE69803933T2 (de) 2002-10-10
EP0820210A3 (fr) 1998-04-01
JP2001516196A (ja) 2001-09-25
IL134435A0 (en) 2001-04-30
CN1267445A (zh) 2000-09-20
ATE213581T1 (de) 2002-03-15
EP0820210A2 (fr) 1998-01-21
DK1005783T3 (da) 2002-05-21
AU7544198A (en) 1999-03-08
AU746584B2 (en) 2002-05-02
RU2185710C2 (ru) 2002-07-20
EP1005783A1 (fr) 2000-06-07
KR20010023076A (ko) 2001-03-26
IL134435A (en) 2004-03-28
DE69803933D1 (de) 2002-03-28
CA2301216C (fr) 2004-07-13
CA2301216A1 (fr) 1999-02-25
EP1005783B1 (fr) 2002-02-20
TR200000457T2 (tr) 2000-05-22
NZ502883A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
EP1005783B1 (fr) Procede de mise en forme electronique de faisceaux de signaux acoustiques et detecteur acoustique
AU749652B2 (en) Method for electronically selecting the dependency of an output signal from the spatial angle of acoustic signal impingement and hearing aid apparatus
US7409068B2 (en) Low-noise directional microphone system
CA2407855C (fr) Techniques de suppression d'interferences
US7206421B1 (en) Hearing system beamformer
AU2004202688B2 (en) Method For Operation Of A Hearing Aid, As Well As A Hearing Aid Having A Microphone System In Which Different Directional Characteristics Can Be Set
US6603861B1 (en) Method for electronically beam forming acoustical signals and acoustical sensor apparatus
JP2008187749A (ja) オーバーサンプルされたフィルタバンクを用いる指向性オーディオ信号処理
US7127076B2 (en) Method for manufacturing acoustical devices and for reducing especially wind disturbances
EP1391138B1 (fr) Procede de generation d'un signal de sortie electrique et systeme de conversion acoustique/electrique
AU2790500A (en) Method for shaping the spatial reception amplification characteristic of a converter arrangement and converter arrangement
EP1827058A1 (fr) Appareil acoustique avec une transition graduelle entre des modes d'opération d'une prothèse auditive
US6947570B2 (en) Method for analyzing an acoustical environment and a system to do so
AU2002214808A1 (en) Directional microphone
US7502479B2 (en) Method for analyzing an acoustical environment and a system to do so
Goldin Autodirective Dual Microphone

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 134435

Country of ref document: IL

Ref document number: 98808321.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998922985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 75441/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2301216

Country of ref document: CA

Ref document number: 2301216

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 502883

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2000/00457

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 1020007001695

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998922985

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007001695

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998922985

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 75441/98

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1020007001695

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载