+

WO1999009637A1 - Dispositif de controle de machine - Google Patents

Dispositif de controle de machine Download PDF

Info

Publication number
WO1999009637A1
WO1999009637A1 PCT/US1998/012046 US9812046W WO9909637A1 WO 1999009637 A1 WO1999009637 A1 WO 1999009637A1 US 9812046 W US9812046 W US 9812046W WO 9909637 A1 WO9909637 A1 WO 9909637A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
monitor
sensor
machine
parameters
Prior art date
Application number
PCT/US1998/012046
Other languages
English (en)
Inventor
Ronald G. Canada
Eugene F. Pardue
James C. Robinson
Original Assignee
Csi Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Csi Technology, Inc. filed Critical Csi Technology, Inc.
Publication of WO1999009637A1 publication Critical patent/WO1999009637A1/fr

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/35Devices for recording or transmitting machine parameters, e.g. memory chips or radio transmitters for diagnosis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices

Definitions

  • the present invention relates generally to a machine monitor, and particularly to a self-contained machine monitor which attaches to a mount proximate a machine to sense machine operating parameters which are used to determine machine status.
  • Electric motors particularly ac induction motors, are employed in many industrial and manufacturing facilities.
  • ac induction motors are used to provide power to machinery in manufacturing facilities.
  • Downtime caused by a failure of an electric motor reduces productivity and profitability.
  • Electric motors therefore, are important elements of industrial facilities and their health and condition must be closely observed to prevent motor failures that result in costly unscheduled downtime.
  • U.S. Patent No. 5,189,350 to Mallett there is described a monitoring system for an electric motor.
  • a temperature sensor monitors the operating temperature of the motor.
  • a memory is provided for storing the "absolute maximum operating temperature” and a "predetermined maximum permitted operating temperature” of the motor.
  • An indicator is used for indicating the sensed motor temperature as lying within either a safe, hazardous, or dangerous range as determined by comparison of the sensed motor temperature to the stored maximums.
  • a recorder stores the number of times the motor has operated beyond the predetermined maximum permitted operating temperature and the number of times the motor has operated beyond the absolute maximum operating temperature.
  • an electric motor monitor capable of sensing and analyzing various stresses experienced by the motor during the life of the motor, including temperature, .and storing these stress data as the operation history of the motor.
  • the monitor should be configured to allow stored data to be easily downloaded for archival or further analysis.
  • the monitor should be relatively small and self-contained with its own internal power source, and capable of being mounted directly to the motor.
  • the monitor mounted directly to the motor it should be rugged and capable of withstanding the rigors of a harsh industrial environment.
  • the invention in one aspect provides a monitor that attaches to a mount proximate a machine for monitoring operation of the machine and producing an operation history.
  • the monitor includes a structural enclosure, an engagement surface formed on the enclosure, and a fastener for attaching the engagement surface to the mount.
  • a power supply supplies electrical power to the monitor.
  • a sensor is provided to sense one or more sensed parameters of the machine and to produce sensor signals corresponding to the sensed parameters.
  • a signal processor receives and processes the sensor signals based on the sensed parameter, and transforms the sensor signals from the time domain to the frequency domain to produce spectral data.
  • Information corresponding to the operating parameters are stored in memory as the operation history of the machine.
  • an output port is provided for outputting at least the stored operation of the machine.
  • the signal processor can be programmed to determine a number of different operating parameters and to perform a number of different tasks. For example, the signal processor can be programmed to perform a Fourier transform of sensor signals to produce information corresponding to the machine's operating parameters. Additionally, operating parameters which can be determined by the signal processor include machine speed, machine load, and various cumulatives of machine operation. For example, the signal processor can be programmed to determine cumulative time or machine operation in various load categories such as cumulative time of operation at over 100 percent rated load and cumulative of operation within the range of 80 to 100 percent rated load. As further ex.amples, the signal processor can determine cumulative time of machine operation at greater than a predetermined maximum machine temperature, and it can also determine the total number of machine starts.
  • a modular unit attaches to a motor to detect and store information corresponding to motor operation, including motor speed, motor load, and motor starts.
  • the unit includes one or more sensors for sensing one or more parameters of the motor to produce a plurality of sensor signals. At least one of the parameters corresponds to motor speed.
  • a signal processor receives and processes the sensor signals to produce motor speed data. Motor speed data is received and stored over time to produce an operation history of the motor.
  • An output device is provided for outputting at least the stored operation history of the motor.
  • a power supply supplies electrical power to the unit.
  • Various types of sensors may be employed in the modular unit.
  • sensors employed in the unit may include a vibration for sensing vibration generated by the motor during operation, a flux sensor for sensing magnetic flux produced by the motor during operation, or both.
  • the invention also provides a system for monitoring the condition of one or more machines.
  • the system includes at least one monitor attached proximate to the machine to sense and store a plurality of machine operating parameters where the stored parameters correspond to the operation history of the machine.
  • a portable data collector is used to download the stored operation history of each machine.
  • the system may further include a base computer into which the stored operation history is downloaded. The base computer receives and analyzes the downloaded operation history and produces information corresponding to the operating condition of the machines.
  • FIG. 1 is a side view of an ac induction motor with a monitor of the present invention attached to the motor by means of a mounting plate;
  • FIG. 2 is a sectional view of an electric motor monitor attached to an electric motor by means of a bolt threaded into the lifting eye bolt hole of the motor;
  • FIG. 3 is a sectional view of the motor monitor and mounting plate of FIG. 1;
  • FIG. 4 is a cross-sectional view of the monitor of FIGs. 1 and 2;
  • FIG. 5 is a functional block diagram of a preferred embodiment of monitor electronics and sensors;
  • FIG. 6 is a diagrammatic drawing illustrating a monitoring system that employs a portable data collector to periodically download data stored by various monitors and transfer the downloaded data to a base computer for processing and analysis;
  • FIG. 7 is a side view showing a monitor of the present invention attached to a pump.
  • FIG. 8 is a side view showing a monitor of the present invention attached to a transformer.
  • a motor monitor 100 capable of sensing, analyzing, storing, and outputting various motor operating data is attached externally to the frame 104 of a large industrial electrical machine, such as an ac induction motor 102.
  • the monitor 100 may be attached to an ac generator for sensing and recording various life history parameters of the generator.
  • the monitor 100 which is fully self-contained in sensors, data acquisition, and power, is small in comparison to the size of the motor 102 and mounted so as not to interfere with the operation of the motor 102.
  • FIG. 1 illustrates a monitor 100 mounted at a particular location on the motor frame 104, it will be understood that the monitor 100 may be mounted at any location on, near, or otherwise proximate the motor frame 104 where motor parameters, such as temperature, vibration, and flux, may be sensed.
  • motor parameters such as temperature, vibration, and flux
  • the monitor 100 should be capable of withstanding the environmental conditions typically experienced by an electric motor 102, including mechanical shock, temperature, and contamination from such materials as oil and water.
  • the monitor 100 consists of a ruggedized housing 110 capable of withstanding the typically harsh environments of industrial facilities. Electronics and sensors within the monitor 100 are sealed and protected by the housing 110 so that the monitor 100 may be mounted in exterior and wet environments.
  • the monitor 100 may be attached to the motor 102, or proximate to the motor 102, by any suitable attachment means, including bolts, screws, rivets, quick release fasteners, welding, adhesives, and magnets, a preferred means of attaching the monitor 100 to the motor 102 is shown in FIG. 1.
  • a mounting plate 106 is secured to the motor frame 104 by bolts (not shown).
  • the mounting plate 106 is attached to the frame 104 by an epoxy adhesive.
  • the mounting plate 106 includes a threaded recess 114 into which a threaded stud 117 is positioned.
  • the stud 117 is of sufficient length to protrude above the plate 106 as shown.
  • an engagement surface 116 that includes a threaded recess 119 sized to receive the stud 117.
  • FIG. 2 an alternate means of attaching the monitor 100 to the motor 102 is illustrated.
  • the mounting plate 106 is eliminated in FIG. 2 and stud 117 is instead threaded into an existing motor lifting eye bolt hole, shown generally at 115.
  • attachment of the monitor 100 to the motor is illustrated.
  • the monitor 100 may be conceptually viewed as a device that provides a function somewhat similar to the function provided by the odometer of .an automobile.
  • An automobile odometer provides the operator with information relating to how many total miles the vehicle has been driven. The mileage indicated by the odometer is used by the operator, and others, as a single measure of the general health and condition of the automobile.
  • the monitor 100 of the present invention senses, collects, analyzes, and stores information useful for ascertaining the health and condition of electric motors based on these factors.
  • the capability to analyze sensor data such as by Fourier transform or preferably by fast
  • the housing 110 of the monitor consists of a bucket 110a that is covered by lid 110b.
  • an annular flange 134 which joins with a corresponding annular flange 135 formed at the bottom of the lid 110b.
  • the bucket 110a and lid 110b are secured to each other by one or more clamps (not shown) which hold flanges 134, 135 in compression.
  • Set within a channel formed in flange 134 is a rubber O-ring 132 to prevent intrusion of moisture and other contaminants at the interface of flanges 134, 135.
  • the engagement surface 116 extends beyond the base of the bucket 110a to elevate the monitor 100 and help reduce thermal conductivity between the motor 102 and monitor 100.
  • sensors within the monitor 100 are preferably mounted at or near the engagement surface 116 at the base of the monitor 100.
  • the monitor 100 is threaded into the eye bolt hole 115 (FIG. 2) or mounting plate 106 (FIGs. 1 and 3)
  • the sensors establish contact with the motor frame 104 through the engagement surface 116 so that temperature, flux, and vibrations produced by the motor 102 can be detected more readily.
  • Sensors positioned at the base of the monitor 100 for sensing various parameters of the motor 102 during operation include a motor frame temperature sensor 120, a magnetic flux sensor 124 for sensing motor flux, and a radial vibration transducer 126 for sensing motor vibrations generated by the motor 102 and transmitted through the motor frame 104.
  • an ambient temperature sensor 122 is mounted on top of a removable shelf 128 that is held in compression between the bucket 110a and lid 110b as shown.
  • flux sensor 124 is a specially designed board of substantially circular dimension adhesively secured to the bottom of the bucket 110a. A metal trace deposited onto the board in a spiral pattern serves as the flux sensing element.
  • monitor 100 incorporates sensors within the monitor 100, it will be understood that sensors may be located external to the monitor 100 as well. For example, flux and vibration sensors may be incorporated within the motor 102, and at various locations within the motor 102. The outputs from these external sensors are interfaced with the monitor 100 by wires or by wireless means, such as infrared data link. Outputs from sensors 122, 124, and 126 are electrically connected to an electronics board 130 where the sensor outputs are processed and stored as motor operating parameters.
  • Two D cell batteries 144 which provide a source of dc electrical power for the monitor 100, are secured to shelf 128.
  • Equipment that is secured to shelf 128, including batteries 144, ambient temperature sensor 122, and infrared communications port 154, are electrically connected to the electronics board 130 via a ribbon cable.
  • Motor frame temperature sensor 120 is attached directly to the electronics board 130.
  • the electronics board 130 is positioned immediately above the flux sensor board 124.
  • a press nut 136 and associated hold down fitting 137 secures the electronics beard 130 in place.
  • a remote temperature sensor (not shown) to the electronics board 130 for measuring, for example, internal stator temperature.
  • a remote temperature sensor Formed in the wall of the bucket 110a is a knockout section 140.
  • the knockout section 140 is removed and a conduit fitting is attached in its place. Electrical connection between the remote sensor and board 130 is then provided via one or more electrical conductors routed through a conduit attached to the conduit fitting.
  • the remote temperature sensor when used, enables the user to measure internal stator temperature so that stator temperature increase can be determined from trend data. Outputs from all sensors are processed and stored by electronics contained on the electronics board 130. As illustrated in the functional block diagram of FIG.
  • the electronics include analog signal conditioning circuitry 141 for amplifying and frequency filtering flux and vibration signals, a microcomputer 170 programmed to control the processing and storage of sensor data, and a memory 142 for storing sensor data.
  • the functions provided by the signal conditioning circuitry 141 are performed by the microcomputer 170.
  • An electrical power source 144 provides all electrical power for the monitor 100. It will be understood that, for purposes of simplifying the block diagram illustration of FIG. 3, all connections to the power source 144 are omitted.
  • flux board 124 senses magnetic flux produced by the motor 102 and outputs an electrical signal corresponding to sensed flux on line 172.
  • Flux board 124 measures motor leakage flux much like an antenna.
  • Significant information about the motor's condition can be determined from the flux signal, including running or stopped status, motor speed and load (computed from slip), .and st.artup acceleration time.
  • a high resolution Fourier transform of the flux signal preferably a fast Fourier transform (FFT)
  • FFT fast Fourier transform
  • motor electrical condition indicators are measured from a high resolution flux spectrum. Voltage phase imbalance, stator condition, and rotor condition are measured as relative, trendable parameters. By obtaining a measured current spectrum for the motor at full load, a calibration and severity indication of these relative values can be determined.
  • vibration signals sensed by vibration transducer 126 are converted into a corresponding electrical signal and output on line 174.
  • the vibration signals are transformed from the time domain to the frequency domain by the monitor 100 using Fourier transform or fast Fourier transform (FFT) to produce information corresponding to motor operating parameters. From this sensor, the monitor 100 can determine the following parameters:
  • the frame temperature sensor 120 outputs an electrical signal on line 176 corresponding to the temperature of the motor frame 104, and ambient temperature sensor 122 outputs an electrical signal on line 178 corresponding to ambient temperature.
  • the difference between the two temperatures is the motor heating.
  • the microcomputer 170 receives each of the sensor signals on lines 172-178, processes and analyzes the signals, and stores the processed signals.
  • the monitor 100 tracks ambient temperature, motor frame temperature, and motor heating as trendable parameters, as well as the cumulative amount of time motor heat resides in three temperature ranges (low, medium, and high). Temperature profile investigations of a motor's external frame 104 shows the hottest points on a motor are midway between front and back on the side or top of the motor.
  • open frame motors show a maximum external temperature range between 35 °C and 50 °C.
  • Totally enclosed motors typically range between 40 °C and 60 °C. These temperature ranges are considered normal.
  • a general rule of temperature effect on motor reliability is that a long term
  • RAM internal random access memory
  • EEPROM electrically erasable programmable read only memory
  • the cumulative run time of the motor 102 can be determined and stored for the life of the motor 102.
  • the user wanted to know the cumulative run time of the motor 102 for the past 30 month period that information can be determined and stored as well.
  • Table 1 illustrates the types and formats of parameters that are determined and stored in a preferred embodiment of the invention, where the leftmost column identifies various parameters that are measured, the middle column identifies the measurement period(s) for each parameter, and the rightmost column identifies the interval at which parametric measurements are acquired.
  • Table 1 is divided into four categories of parameters - motor life, trend, maintenance, and variable frequency motor parameters. Each parameter is measured frequently and stored in a daily and monthly buffer. The maximum and average levels for certain parameters are stored daily and kept for 180 days in a circular buffer. Each average and maximum parameter value is stored monthly in the EEPROM 142 and saved for 60 months (5 years). Some parameters are stored as the cumulative value over defined intervals, including intervals of 180 days, 60 months, and lifetime.
  • each parameter is stored for the last 180 days, the last 60 months, and life.
  • each parameter is stored once per day for the last 180 day period and once per month for the last 60 month period.
  • information pertaining to motor maintenance may be input and stored in the monitor 100.
  • a record of all maintenance activity on the motor 102 can be entered through an external device, such as a CSITM 2110 data collector, and stored in the monitor 100.
  • Maintenance information includes the time and date of lubrication, machine alignment, and bearing replacements.
  • a communications port 154 (FIGs. 4 and 5), which is preferably a serial infrared (IR) data link.
  • the lid 110b is fabricated from an IR transmissible material, such as a polycarbonate material, so that communications port 154 can be protected within the monitor's housing 110.
  • Commumcations port 154 provides an interface for communicating with an external device, such as a portable data collector or notebook computer, via infrared data link to enable the history information to be downloaded.
  • the portable data collector or notebook computer may also be used to program, or download programs to, the monitor 100. For the parameters given in Table 1, data would need to be downloaded at least every 180 days to avoid loss of any data. In other applications, the circular data buffers may be designed with longer or shorter circular lives.
  • the downloaded information can be further analyzed to provide an indication of the remaining useful life of the motor 102 and to diagnose problems.
  • a portable data collector is used as a data gatherer only, with no data display capability. The data is simply moved from the monitor 100 to a base computer for analysis and archival.
  • Another option for data collection utilizes a full WindowsTM compatible pad computer running the necessary data analysis software. The pad computer should be rugged enough to analyze and display motor parametric data in the field.
  • all electrical power for the monitor 100 is provided by one or more dc batteries 144, such as two replaceable, D cell, Alkaline batteries 144 as previously discussed with respect to FIG. 4. Power consumption is kept to a minimum in the interest of prolonging battery life to at least two years.
  • Microcomputer 170 which in a preferred embodiment is an 8-bit microcomputer manufactured by Toshiba, minimizes power consumption by employing a power saving sleep mode where the microcomputer 170 remains idle, or sleeps most of the time.
  • the microcomputer 170 which includes a clock for maintaining time and date and for measuring elapsed time for certain parameters, awakes periodically, such as every 5 seconds, and checks the motor ON/OFF status.
  • the monitor 100 checks the overall amplitude measurements (load, temperature, and vibration) every 2 minutes, all measurements derived from FFT calculations once per hour, and starts per day are counted. If the motor 102 is OFF, no data is stored and the monitor 100 is set to capture the acceleration time upon start-up.
  • the D cell Alkaline batteries of the preferred embodiment could be replaced with a Peltier device.
  • This type of device includes a material which, when heated on one side and cooled on the other, produces electrical power. The larger the temperature differential, the more power that the device is able to produce.
  • the Peltier device would take advantage of motor heat to elevate the temperature of the hot side of the device, while ambient cooling would be used to reduce the temperature of the cold side.
  • a 120 volt power line can be connected to the monitor 100.
  • heat generated by the motor is typically transferred by the motor frame 104 to the ambient air, creating a heat blanket that surrounds the motor frame 104.
  • a heat blanket may also result from external factors, such as heating induced by absorption of sunlight. Under certain conditions with some motors, this heat blanket can be large enough to adversely effect the accuracy of the ambient temperature sensor 122 and significantly reduce battery life. Heat generated by the motor 102 and external factors is also conducted from the frame 104 and surrounding ambient air to the monitor 100.
  • shelf 128 is elevated by the bucket 110a so that equipment located on the shelf 128 is largely if not totally removed from the motor's heat blanket.
  • the bucket 110a itself, being fabricated from a low thermally conductive material, also functions in a lesser capacity to shield convective heat from the ambient temperature sensor 122 and batteries 144.
  • microcomputer 170 utilizes signals generated by the sensors 120-126. Some of the sensor signals are utilized by the microcomputer 170 with little or no conditioning of the signals, while other sensor signals receive some amount of conditioning by the signal conditioning circuitry 141, including amplification and frequency filtering, before microcomputer 170 uses them. For example, to determine "run time", the output of flux board 124 may be used directly by microcomputer 170 as an indication that the motor 102 is operating. To ensure the flux signal has sufficient strength, it is first amplified and frequency filtered as needed by the signal conditioning circuitry 141 before it is received by the microcomputer 170.
  • the microcomputer's internal clock is used to maintain a count of the total hours during which magnetic leakage flux is being generated by the motor 102. In this manner, the life history parameter of "run time" shown in Table 1 is determined.
  • the outputs of frame temperature sensor 120 and accelerometer 126 may be utilized as indications of when the motor 102 is operating.
  • microcomputer 170 compares the current frame temperature sensor output on line 176 to the previous maximum frame temperature. The stored maximum frame temperature is replaced by the current frame temperature when the current frame temperature exceeds the stored maximum.
  • the parameter labeled "starts” is determined directly from measured flux, or if preferred, it may be determined by monitoring temperature and vibration. When both exceed a selected threshold, a "running” condition is assumed. When either falls below its threshold, a “stopped” condition is assumed.
  • microcomputer 170 subtracts ambient temperature from the frame temperature to arrive at a motor heating temperature. Total motor run time at each of the low, mid, and high heating levels identified in Table 1 is then determined from the microcomputer's internal clock.
  • the analog output of flux board 124 is received from line 172 and amplified before being used by the microcomputer 170.
  • microcomputer 170 uses a signal representative of magnetic flux produced by the motor 102 to ascertain when the motor 102 is operating.
  • the analog output of vibration transducer 126 which represents vibration in the acceleration domain, is received by the signal conditioning circuitry 141 from line 174 where the vibration signal is preferably amplified, frequency filtered, and integrated.
  • the conditioned vibration signal is then provided to microcomputer 170 for storage and/or analysis.
  • the microcomputer 170 is programmed to transform sensor signals such as vibration and flux from the time domain to the frequency domain by means of a Fourier transform or a fast Fourier transform, producing spectral data. Integration of the vibration signal to the velocity domain may also be performed by the microcomputer 170.
  • the velocity domain vibration signal is used by the microcomputer 170 to determine the various vibration parameters identified in Table 1.
  • the "maximum vibration” is the maximum vibration measured in velocity units, but alternately, velocity may be integrated to obtain vibration measured in displacement units and the maximum displacement is, in this alternate embodiment, stored as the "maximum vibration”.
  • Motor speed can be determined from a Fourier transform, preferably a high resolution FFT of the digitized vibration signal. Preferred methods of determining motor speed from vibration spectral data are disclosed in pending U.S. Patent Application Serial No.
  • the monitor 100 is setup for the particular motor 102 on which it is installed.
  • a peripheral device such as a notebook computer or portable data collector is connected to the monitor 100 via the communications port 154 for programming, or training.
  • Various settings and adjustments are made to the monitor 100 during setup, including full load speed, number of poles, motor identification, and others.
  • operation of the monitor 100 is completely self-contained and maintenance-free.
  • the monitor's internal battery 144 and electronics are configured to operate for at least two years before battery power is depleted. Data stored in the memory 142 should be periodically downloaded, at least once every six months, and analyzed to determine the health and operating condition of the motor 102. When life-extending maintenance is performed on the motor 102, that maintenance information should be input to the monitor 100.
  • FIG. 6 illustrates, the present invention provides plant personnel with a convenient system for monitoring each machine. Illustrated in FIG. 6 are three electric motors 364, 366, and 368 onto which monitors 100 have been attached.
  • a portable data collector 362 such as a CSITM 2120 data collector, is used to periodically download data stored in each of the monitors' memory 142. After all downloading of data is completed, the collected data is transferred to a base computer 360 for analysis and archival.
  • the data collector 362 may be programmed to analyze the downloaded data on site to provide a quick determination of the operating condition of a particular motor. As described previously herein, a further function of the data collector 362 is to program, or download programs from, the monitors 100.
  • the monitor 100 may be configured slightly differently than described above since the specific factors which affect the life of a machine may vary based on the type of machine that is being monitored.
  • the monitor 100 is attached to a pump 400 to monitor the pump's operating condition.
  • a single sensor or a plurality of sensors may be employed to monitor the pump's operating condition. Since a high percentage of potential faults within the pump 400 are detectable from vibration, a preferred embodiment of the monitor 100 of FIG. 7 includes a single vibration sensor with no flux or temperature sensors. Vibration produced by the pump 400 is sensed by the monitor 100 and processed, recorded, and/or analyzed as described above to ascertain the health and condition of the pump.
  • the monitor 100 can be employed to monitor the operating condition of a transformer 500 by attaching the monitor 100 on or near the transformer 500. Flux produced by the transformer 500 can be sensed by the monitor 100 and analyzed to ascertain many faults which are typically experienced by transformers, whereas vibration produced by the transformer provides little useful information for ascertaining the condition of the transformer 500. Accordingly, the monitor 100 of FIG. 8 preferably includes only a single flux sensor with no vibration of temperature sensors. If additional data is desired, the monitor 100 may further include a temperature sensor for monitoring the transformer's temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

La présente invention concerne un dispositif de contrôle (100) fixé à un châssis (106) à proximité d'une machine (102) de façon à contrôler la condition et l'état de fonctionnement de la machine. Ce dispositif de contrôle (100) qui est monobloc, dispose de sa propre source d'énergie, de ses logiques de traitement et de sa chaîne de détection. Un certain nombre de sondes assurent le suivi des caractéristiques fonctionnelles de la machine telles que la température, les flux et les vibrations. Les sorties de sondes sont reprises en traitement et analyse par la logique de traitement de façon à évaluer divers paramètres de fonctionnement et notamment la vitesse et la charge de la machine, lesquels paramètres sont conservés en mémoire. Ce dispositif de contrôle permet de calculer et conserver en mémoire d'autres paramètres tels que les temps cumulés de fonctionnement de la machine pour différentes catégories de charge, le temps cumulé de fonctionnement de la machine à une température spécifique, et le nombre total de lancements de la machine. La logique de traitement peut également transformer en données fréquentielles les données temporelles des sondes. Un port communications permet également à un périphérique de communiquer avec le dispositif de contrôle et de télécharger les données stockées.
PCT/US1998/012046 1997-08-20 1998-06-09 Dispositif de controle de machine WO1999009637A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/915,069 US5852351A (en) 1996-08-22 1997-08-20 Machine monitor
US08/915,069 1997-08-20

Publications (1)

Publication Number Publication Date
WO1999009637A1 true WO1999009637A1 (fr) 1999-02-25

Family

ID=25435161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/012046 WO1999009637A1 (fr) 1997-08-20 1998-06-09 Dispositif de controle de machine

Country Status (2)

Country Link
US (1) US5852351A (fr)
WO (1) WO1999009637A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355796B (en) * 1998-05-04 2002-10-30 Csi Technology Inc Ultrasonic monitoring device
DE10339017A1 (de) * 2003-08-25 2005-04-07 Siemens Ag Vorrichtung zur Überwachung eines Antriebs
DE102006032974A1 (de) 2006-07-17 2008-01-31 Siemens Ag Elektrische Maschine und elektrischer Antrieb mit einer derartigen elektrischen Maschine
US20120114010A1 (en) * 2010-11-09 2012-05-10 Shockwatch, Inc. System, method and computer program product for monitoring temperature
EP3291181A1 (fr) * 2016-09-05 2018-03-07 Andreas Stihl AG & Co. KG Dispositif de détermination de données de fonctionnement d'un outil et système
DE102017112931A1 (de) * 2017-06-13 2018-12-13 Prüftechnik Dieter Busch Aktiengesellschaft Mobiles Transportmittel zum Transportieren von Datensammlern, Datensammelsystem und Datensammelverfahren
US11994434B2 (en) 2020-01-14 2024-05-28 Shock Watch, Inc. Temperature indicator

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US6138078A (en) * 1996-08-22 2000-10-24 Csi Technology, Inc. Machine monitor with tethered sensors
DE19716520B4 (de) * 1997-04-19 2007-04-19 Robert Bosch Gmbh Als Schaltung ausgebildete Vorrichtung zur Erfassung von Betriebsgrößen von Elektromotoren sowie Elektromotor
US6202491B1 (en) * 1997-07-22 2001-03-20 Skf Condition Monitoring, Inc. Digital vibration coupling stud
US6351714B1 (en) * 1998-03-03 2002-02-26 Entek Ird International Corporation Order tracking signal sampling process
US6087796A (en) * 1998-06-16 2000-07-11 Csi Technology, Inc. Method and apparatus for determining electric motor speed using vibration and flux
US6078874A (en) * 1998-08-04 2000-06-20 Csi Technology, Inc. Apparatus and method for machine data collection
US6405139B1 (en) * 1998-09-15 2002-06-11 Bently Nevada Corporation System for monitoring plant assets including machinery
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
DE10008020B4 (de) * 1999-02-22 2012-03-01 Fisher-Rosemount Systems., Inc. (N.D.Ges.D.Staates Delaware) Diagnosevorrichtung in einem Prozeßsteuersystem, das Mehrgrößen-Regeltechniken verwendet
US6832251B1 (en) 1999-10-06 2004-12-14 Sensoria Corporation Method and apparatus for distributed signal processing among internetworked wireless integrated network sensors (WINS)
US7891004B1 (en) 1999-10-06 2011-02-15 Gelvin David C Method for vehicle internetworks
US6735630B1 (en) 1999-10-06 2004-05-11 Sensoria Corporation Method for collecting data using compact internetworked wireless integrated network sensors (WINS)
US6859831B1 (en) 1999-10-06 2005-02-22 Sensoria Corporation Method and apparatus for internetworked wireless integrated network sensor (WINS) nodes
US7020701B1 (en) 1999-10-06 2006-03-28 Sensoria Corporation Method for collecting and processing data using internetworked wireless integrated network sensors (WINS)
US6826607B1 (en) 1999-10-06 2004-11-30 Sensoria Corporation Apparatus for internetworked hybrid wireless integrated network sensors (WINS)
US6529135B1 (en) * 1999-10-12 2003-03-04 Csi Technology, Inc. Integrated electric motor monitor
US6204772B1 (en) 1999-12-16 2001-03-20 Caterpillar Inc. Method and apparatus for monitoring the position of a machine
US6262550B1 (en) 1999-12-17 2001-07-17 General Electric Company Electrical motor monitoring system and method
DE69910800T2 (de) * 1999-12-23 2004-06-17 Abb Ab Verfahren und Vorrichtung zur Überwachung des Betriebszustandes einer einzelnen Maschine
US6401056B1 (en) * 1999-12-27 2002-06-04 General Electric Company Methods and apparatus for evaluating tool performance
US6370957B1 (en) 1999-12-31 2002-04-16 Square D Company Vibration analysis for predictive maintenance of rotating machines
JP4763217B2 (ja) * 2000-05-16 2011-08-31 アークレイ株式会社 測定データ処理システム
US20040030419A1 (en) * 2000-11-06 2004-02-12 Takanori Miyasaka Abnormality diagnosing device and method for mechanical equipment
US7552029B2 (en) * 2000-12-22 2009-06-23 Thermo Fisher Scientific Inc. Equipment monitoring system and method
US6813526B1 (en) 2001-08-13 2004-11-02 William A. Dodd, Jr. Fleet maintenance method
US6505086B1 (en) 2001-08-13 2003-01-07 William A. Dodd, Jr. XML sensor system
US7305467B2 (en) * 2002-01-02 2007-12-04 Borgia/Cummins, Llc Autonomous tracking wireless imaging sensor network including an articulating sensor and automatically organizing network nodes
US6839660B2 (en) * 2002-04-22 2005-01-04 Csi Technology, Inc. On-line rotating equipment monitoring device
US7035762B2 (en) * 2002-07-11 2006-04-25 Alcatel Canada Inc. System and method for tracking utilization data for an electronic device
US6799139B2 (en) * 2003-02-07 2004-09-28 Bently Nevada, Llc System for determining machine running speed from machine vibration: apparatus and method
US7184902B2 (en) * 2003-09-30 2007-02-27 Reliance Electric Technologies, Llc Motor parameter estimation method and apparatus
US7135830B2 (en) * 2003-09-30 2006-11-14 Reliance Electric Technologies, Llc System and method for identifying operational parameters of a motor
US7019951B2 (en) * 2004-06-03 2006-03-28 Rockwell Automation Technologies, Inc. Extended trip range motor control system and method
US7394629B2 (en) 2003-10-16 2008-07-01 Rockwell Automation Technologies, Inc. Motor overload tripping system and method with multi-function circuit interrupter
US7152019B2 (en) * 2004-11-30 2006-12-19 Oracle International Corporation Systems and methods for sensor-based computing
US20060181427A1 (en) * 2005-01-31 2006-08-17 Csi Technology, Inc. Machine condition indication system
US7551411B2 (en) * 2005-10-12 2009-06-23 Black & Decker Inc. Control and protection methodologies for a motor control module
US20070199989A1 (en) * 2006-02-27 2007-08-30 Csi Technology, Inc. Combined machine identification and diagnosis device
US20070200722A1 (en) * 2006-02-27 2007-08-30 Csi Technology, Inc. Belt pack accessory for machine condition monitoring
US20080030088A1 (en) * 2006-07-18 2008-02-07 Daniel Gizaw Compact integrated brushless permanent-magnet motor & drive
DE102007039702B4 (de) * 2007-08-22 2011-04-28 Sew-Eurodrive Gmbh & Co. Kg Verfahren zur Bestimmung einer Betriebsinformation eines Getriebes eines Antriebs und System
US8154417B2 (en) * 2007-10-05 2012-04-10 Itt Manufacturing Enterprises, Inc. Compact self-contained condition monitoring device
US20100013654A1 (en) * 2008-07-16 2010-01-21 Williams Bruce A Self-contained monitoring and remote testing device and method
US8474794B2 (en) 2009-03-06 2013-07-02 Liko Research & Development Ab Lift control systems for lifting devices and lifting devices comprising the same
US8442688B2 (en) 2010-01-28 2013-05-14 Holcim (US), Inc. System for monitoring plant equipment
US20110316691A1 (en) * 2010-06-24 2011-12-29 Brian Pepin Flat-hierarchy system for condition-based monitoring of distributed equipment
US8498826B2 (en) * 2010-11-30 2013-07-30 General Electric Company Method and system for machine condition monitoring
DE102011101599B4 (de) * 2011-05-13 2021-08-05 Sew-Eurodrive Gmbh & Co Kg System zur Bestimmung von Körperschall bei einem Prüfling
US9389165B2 (en) * 2011-06-23 2016-07-12 Virtjoule, Inc. System responsive to machine vibrations and method of use
US8981697B2 (en) * 2011-10-07 2015-03-17 Schweitzer Engineering Laboratories, Inc. Asset condition monitoring in an electric motor
JP6234012B2 (ja) * 2012-03-28 2017-11-22 Ntn株式会社 回転機械部品の携帯端末利用検査方法
KR20130115488A (ko) * 2012-04-12 2013-10-22 엘에스산전 주식회사 이동단말의 인버터상태 알림장치와 모터상태 분석장치
US9330560B2 (en) 2012-05-02 2016-05-03 Flowserve Management Company Reconfigurable equipment monitoring systems and methods
US9484791B2 (en) * 2012-08-08 2016-11-01 Infineon Technologies Ag Remote rotor parameter sensor for electric drives
US9337707B2 (en) * 2013-01-28 2016-05-10 Randy J. Dixon System, apparatus, and method for controlling a motor
US10054641B2 (en) 2013-09-20 2018-08-21 Schweitzer Engineering Laboratories, Inc. Monitoring synchronization of a motor using stator current measurements
CA2932148A1 (fr) 2013-12-16 2015-06-25 Tdg Aerospace, Inc. Systemes et procedes de surveillance
US20150185718A1 (en) * 2013-12-27 2015-07-02 General Electric Company Systems and methods for dynamically ordering data analysis content
US9922528B2 (en) 2014-03-12 2018-03-20 Precor Incorporation Fitness equipment unit service condition notification system
WO2015184467A1 (fr) * 2014-05-30 2015-12-03 Reylabs Inc. Systèmes et procédés impliquant des aspects d'exploration, de surveillance et/ou d'affichage d'efficacité d'actifs linéaires de mobiles
BE1021598B1 (fr) 2014-07-16 2015-12-16 Industrial Consulting Automation Research Engineering, En Abrégé: I-Care Module de transmission de signaux sans fil, systeme de diagnostic de machine industrielle et procede d'alimentation du module de transmission
US9811984B2 (en) * 2015-04-13 2017-11-07 Itt Manufacturing Enterprises Llc Sensing module for monitoring conditions of a pump or pump assembly
JP6438366B2 (ja) * 2015-08-28 2018-12-12 ファナック株式会社 電動機に対する動作指令を学習する機械学習方法および機械学習装置並びに該機械学習装置を備えた制御装置および電動機装置
US11016003B2 (en) 2016-11-17 2021-05-25 Ez Pulley Llc Systems and methods for detection and analysis of faulty components in a rotating pulley system
US9913006B1 (en) 2016-11-28 2018-03-06 01dB-METRAVIB, Société par Actions Simplifiée Power-efficient data-load-efficient method of wirelessly monitoring rotating machines
US11007101B2 (en) * 2017-05-02 2021-05-18 Liko Research & Development Ab Adaptive compensation of wear in person lifting assemblies
US11588432B2 (en) 2017-11-17 2023-02-21 Schweitzer Engineering Laboratories, Inc. Motor monitoring and protection using residual voltage
DE102019006038A1 (de) * 2018-08-28 2020-03-05 KSB SE & Co. KGaA Verfahren zur Detektion des Betriebszustandes einer rotiernden Maschine
CN109443528A (zh) * 2018-11-16 2019-03-08 国网江苏省电力有限公司盐城供电分公司 一种基于振动信号分析的变压器故障诊断系统及其诊断方法
CN113227926B (zh) * 2018-12-21 2024-08-27 Abb瑞士股份有限公司 用于监测电机的状况监测装置和方法
FR3091345B1 (fr) * 2018-12-27 2021-12-17 Naval Group Dispositif de détermination d’au moins un paramètre de fonctionnement d’une machine tournante, ensemble et procédé de maintenance associés
FR3092173B1 (fr) 2019-01-30 2021-06-11 Sdmo Ind Procédé de suivi de temps d’utilisation d’un groupe électrogène, dispositif autonome, procédé de suivi de la maintenance, et système correspondants.
US11573153B2 (en) 2019-08-21 2023-02-07 Computational Systems, Inc. Prediction of machine failure based on vibration trend information
IT202000014944A1 (it) 2020-06-23 2021-12-23 Gd Spa Procedimento per la manutenzione predittiva di una macchina automatica per la produzione o l’impacchettamento di articoli di consumo
US11941521B2 (en) 2020-09-11 2024-03-26 Acoem France Vibrating machine automated diagnosis with supervised learning
US11736051B2 (en) 2021-08-05 2023-08-22 Schweitzer Engineering Laboratories, Inc. Synchronous motor startup configuration to synchronous mode at a field zero-crossing
CN113900020B (zh) * 2021-08-20 2024-03-12 合众新能源汽车股份有限公司 一种新能源汽车驱动电机寿命估计方法、装置及电子设备
DE202023104808U1 (de) * 2023-08-24 2024-11-26 Paul Müller GmbH & Co. KG Unternehmensbeteiligungen Einheit zur Datenerfassung und -verarbeitung für einen Elektromotor einer Maschine, Elektromotor und Maschine hiermit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258421A (en) * 1978-02-27 1981-03-24 Rockwell International Corporation Vehicle monitoring and recording system
US4839830A (en) * 1986-03-10 1989-06-13 Siemens Aktiengesellschaft Apparatus and method for the processing of operating data of an electric motor
US5323325A (en) * 1989-07-20 1994-06-21 Fanuc Ltd. Method of displaying an operation history of a machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194178A (en) * 1975-02-07 1980-03-18 Rexnord Inc. Electric motor with internal wireless load monitor
US4495448A (en) * 1981-11-06 1985-01-22 Dumbeck Robert F Means and method of sensing motor rotation speed from stray escaping flux
US4575803A (en) * 1981-12-30 1986-03-11 Semco Instruments, Inc. Engine monitor and recorder
US4525763A (en) * 1983-11-30 1985-06-25 General Electric Company Apparatus and method to protect motors and to protect motor life
US4659976A (en) * 1985-04-24 1987-04-21 Dresser Industries, Inc. Method and apparatus for maximizing utilization of an electric motor under load
US4823067A (en) * 1988-02-16 1989-04-18 Weber Harold J Energy conserving electric induction motor control method and apparatus
GB2215148B (en) * 1988-02-18 1992-04-08 Fenner Co Ltd J H A monitoring system
US5019760A (en) * 1989-12-07 1991-05-28 Electric Power Research Institute Thermal life indicator
DE4107207A1 (de) * 1991-03-04 1992-09-10 Elektro App Werke Veb Verfahren und einrichtung zum schutz und fuehren von elektromotoren, anderen elektrischen betriebsmitteln oder elektroanlagen nach kriterien der lebensdauer
US5257190A (en) * 1991-08-12 1993-10-26 Crane Harold E Interactive dynamic realtime management system for powered vehicles
FR2681942B1 (fr) * 1991-09-27 1993-12-31 Sollac Procede et dispositif de surveillance de l'etat mecanique d'une machine tournante.
US5473229A (en) * 1992-05-27 1995-12-05 General Electric Company Interface between programmable electronically commutated motor and personal computer and method of operation
US5554900A (en) * 1994-02-04 1996-09-10 Schlenker Enterprises Ltd. Motor including embedded permanent-magnet rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258421A (en) * 1978-02-27 1981-03-24 Rockwell International Corporation Vehicle monitoring and recording system
US4839830A (en) * 1986-03-10 1989-06-13 Siemens Aktiengesellschaft Apparatus and method for the processing of operating data of an electric motor
US5323325A (en) * 1989-07-20 1994-06-21 Fanuc Ltd. Method of displaying an operation history of a machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355796B (en) * 1998-05-04 2002-10-30 Csi Technology Inc Ultrasonic monitoring device
DE10339017A1 (de) * 2003-08-25 2005-04-07 Siemens Ag Vorrichtung zur Überwachung eines Antriebs
DE10339017B4 (de) * 2003-08-25 2006-10-26 Siemens Ag Vorrichtung zur Überwachung eines Antriebs
DE102006032974B4 (de) 2006-07-17 2018-08-02 Siemens Aktiengesellschaft Elektrischer Antrieb mit einer elektrischen Maschine
DE102006032974A1 (de) 2006-07-17 2008-01-31 Siemens Ag Elektrische Maschine und elektrischer Antrieb mit einer derartigen elektrischen Maschine
US20120114010A1 (en) * 2010-11-09 2012-05-10 Shockwatch, Inc. System, method and computer program product for monitoring temperature
US8870453B2 (en) * 2010-11-09 2014-10-28 Shockwatch, Inc. System, method and computer program product for monitoring temperature
EP3291181A1 (fr) * 2016-09-05 2018-03-07 Andreas Stihl AG & Co. KG Dispositif de détermination de données de fonctionnement d'un outil et système
CN107798838A (zh) * 2016-09-05 2018-03-13 安德烈·斯蒂尔股份两合公司 用于对工具的操作数据进行采集的装置及系统
US10489988B2 (en) 2016-09-05 2019-11-26 Andreas Stihl Ag & Co. Kg Device for capturing operating data of a tool, and system
EP3291181B1 (fr) 2016-09-05 2021-11-03 Andreas Stihl AG & Co. KG Dispositif et système de détermination de données de fonctionnement d'un outil
DE102017112931A1 (de) * 2017-06-13 2018-12-13 Prüftechnik Dieter Busch Aktiengesellschaft Mobiles Transportmittel zum Transportieren von Datensammlern, Datensammelsystem und Datensammelverfahren
US11048250B2 (en) 2017-06-13 2021-06-29 Prüftechnik Dieter Busch AG Mobile transportation means for transporting data collectors, data collection system and data collection method
US11994434B2 (en) 2020-01-14 2024-05-28 Shock Watch, Inc. Temperature indicator

Also Published As

Publication number Publication date
US5852351A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US5852351A (en) Machine monitor
US5726911A (en) Electric motor monitor
US6138078A (en) Machine monitor with tethered sensors
US6297742B1 (en) Machine monitor with status indicator
US6124692A (en) Method and apparatus for reducing electrical power consumption in a machine monitor
US5952803A (en) Structural enclosure for machine sensors
US6199018B1 (en) Distributed diagnostic system
US6529135B1 (en) Integrated electric motor monitor
US5680025A (en) Proactive motor monitoring for avoiding premature failures and for fault recognition
US6295510B1 (en) Modular machinery data collection and analysis system
US7949479B2 (en) In on or relating to rotating machines
US20040263342A1 (en) System for monitoring motors
US6434512B1 (en) Modular data collection and analysis system
US8154417B2 (en) Compact self-contained condition monitoring device
CN101213436B (zh) 用于计算轴承寿命的电机接口模块设备
EP1250550B1 (fr) Maintenance intelligente d'un roulement
US5841255A (en) Flux detector system
WO1998039718A9 (fr) Systeme de diagnostic distribue
US20030040873A1 (en) Systems and methods for monitoring and storing performance and maintenace data related to an electrical component
EP0965092A1 (fr) Systeme de diagnostic distribue
US5747680A (en) Multiple parameter sensor and method of operation thereof
JP2654964B2 (ja) 軸受監視装置
CN110701085A (zh) 一种风机振动在线监测及管理系统
JP2017049155A (ja) 機械部品の状態自動判定システム
CN212693970U (zh) 一种电机再制造检测试验平台

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载