+

WO1999009076A1 - Polypropylene polydisperse et procede de production associe - Google Patents

Polypropylene polydisperse et procede de production associe Download PDF

Info

Publication number
WO1999009076A1
WO1999009076A1 PCT/JP1998/003613 JP9803613W WO9909076A1 WO 1999009076 A1 WO1999009076 A1 WO 1999009076A1 JP 9803613 W JP9803613 W JP 9803613W WO 9909076 A1 WO9909076 A1 WO 9909076A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
polymerization
molecular weight
group
monomer
Prior art date
Application number
PCT/JP1998/003613
Other languages
English (en)
French (fr)
Inventor
Tsutomu Ushioda
Jun Saito
Mototake Tsutsui
Yoshitoyo Yasuda
Hiroyuki Fujita
Minoru Adachi
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16749527&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999009076(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chisso Corporation filed Critical Chisso Corporation
Priority to EP98937812A priority Critical patent/EP1004603B1/en
Priority to US09/485,617 priority patent/US6441111B1/en
Priority to DE69810781T priority patent/DE69810781T2/de
Priority to JP2000509751A priority patent/JP4119607B2/ja
Publication of WO1999009076A1 publication Critical patent/WO1999009076A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to a dispersible propylene polymer having a large weight average molecular weight and a number average molecular weight ratio (MwZMn). More specifically, the present invention relates to a polydisperse propylene polymer having a low melting point suitable for molding a product having excellent rigidity and heat resistance, and a method for producing the same by multistage polymerization in the presence of a metallocene-supported catalyst.
  • MwZMn number average molecular weight ratio
  • Propylene polymers are widely used in various molding fields because of their excellent mechanical properties, chemical resistance, etc., and the extremely good balance between these properties and economic efficiency.
  • So-called Ziegler-Natta-based propylene polymers have been used mainly in combination with titanium trichloride or titanium tetrachloride, or an inorganic transition metal catalyst in which they are supported on a carrier such as magnesium chloride and an organic aluminum compound. It has been produced by homopolymerization of propylene using a catalyst or copolymerization of propylene with other olefins.
  • an organic polymer of a transition metal different from a zigzag-Natta catalyst that is, a catalyst combining so-called meta-opensene and aluminoxane
  • a catalyst combining so-called meta-opensene and aluminoxane has been used to polymerize an olefin such as propylene to produce an olefin polymer.
  • Manufacturing methods have been proposed.
  • the olefin polymer obtained by using these catalysts is generally a polymer having a relatively uniform molecular weight having a weight average molecular weight and a Z number average molecular weight ratio (MwZMn) of about 3 or less.
  • MwZMn Z number average molecular weight ratio
  • JP-A-5-140227 discloses a method for producing a polyolefin having a large ratio of weight average molecular weight / number average molecular weight using a plurality of metallocene compounds.
  • International Patent Publication W094 16009 discloses a propylene polymer composition having excellent mechanical properties, comprising a composition of two propylene polymers having different melt flow rates (MFR).
  • An object of the present invention is to provide a propylene polymer which provides a molded article having high rigidity and excellent heat resistance.
  • Another object of the present invention is to provide a method for producing the propylene polymer by multi-stage polymerization using a single transition metal compound.
  • the present inventors have found that in a multi-stage polymerization using a single transition metal compound, a propylene polymer obtained by polymerizing propylene by changing the polymerization conditions of each stage stepwise exhibits polydispersity, It was found that the moldability was excellent at the melting point, and the molded product formed from the material had high rigidity and excellent heat resistance.
  • the present invention relates to a multi-stage polymerization in which polymerization conditions are changed stepwise in the presence of a meta-acene catalyst supported by a transition metal compound and an aluminoxane or a reaction product thereof supported on a particulate carrier and an organic aluminum compound.
  • Is produced by polymerizing a propylene monomer or a mixed monomer of propylene and other olefins has a weight average molecular weight / number average molecular weight ratio (Mw / Mn) of 4.0 or more, and a melting point (Tm) of 165 ° C or less, And a difference between the melting point (Tm) and the heat distortion temperature (HDT) of 30 ° C or less. It is a propylene polymer.
  • Another aspect of the present invention is to provide a propylene monomer or a mixed monomer of propylene and another olefin with a transition metal compound selected from the group consisting of titanocene, zirconocene and hafnocene and an aluminoxane or a reaction product thereof in a particulate carrier.
  • a transition metal compound selected from the group consisting of titanocene, zirconocene and hafnocene and an aluminoxane or a reaction product thereof in a particulate carrier.
  • the polymerization is carried out by multistage polymerization in which polymerization conditions are changed stepwise in the presence of a catalyst supporting the substance and an organoaluminum compound. It is.
  • FIG. 1 is a GPC curve showing the molecular weight distribution of the propylene homopolymer produced in Example 1.
  • FIG. 2 is a GPC curve showing the molecular weight distribution of the propylene homopolymer produced in Comparative Example 1.
  • FIG. 3 is a GPC curve showing the molecular weight distribution of the commercially available propylene homopolymer of Comparative Example 2.
  • FIG. 4 is a flowchart of the method for producing a propylene polymer of the present invention.o
  • multi-stage polymerization refers to changing polymerization conditions stepwise through homopolymerization of a propylene monomer or copolymerization of a mixed monomer of propylene and another orolefin. Specifically, through the polymerization of a propylene monomer or a mixed monomer of propylene and another olefin, the propylene monomer / hydrogen molar ratio is changed stepwise, the polymerization temperature is changed stepwise, the polymerization pressure, Gradually change the feed rate of the monomer and their combination Include. Further, these conditions may be changed stepwise in a single polymerization reactor, or may be changed stepwise in a plurality of polymerization reactors arranged in series.
  • propylene polymer means a propylene homopolymer, a random copolymer of propylene containing 50% by weight or more of propylene units and a copolymer other than propylene, and a block copolymer. I do.
  • olefins other than propylene that can be copolymerized with propylene, and those having 2 to 12 carbon atoms, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1- Decene, 4-methyl-11-pentene, 3-methyl-11-pentene and mixed monomers thereof are preferably used.
  • ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1- Decene, 4-methyl-11-pentene, 3-methyl-11-pentene and mixed monomers thereof are preferably used.
  • an ⁇ -gen such as 1,5-hexadiene or 1,9-decadiene can be copolymerized in addition to the above-described components.
  • polydispersity means that the molecular weight of the polymer is non-uniform, and the width of the molecular weight distribution (MwZMn) (where Mw is the weight average molecular weight and Mn is the number average molecular weight).
  • MwZMn the width of the molecular weight distribution
  • polydispersity is used for propylene polymers having a value of 4.0 or more.
  • the propylene polymer of the present invention has a weight average molecular weight Z number average molecular weight ratio (MwZMn) calculated from the molecular weight distribution measured by GPC (gel permeation chromatography) of FIG. 10 or more, more preferably 15 or more polydisperse propylene polymers.
  • MwZMn weight average molecular weight Z number average molecular weight ratio
  • the above weight-average molecular weight and number-average molecular weight ratio (MwZMn) were determined by setting a mixed polystyrene column (PSKgel GMH6-HT, manufactured by Tosoh Corporation) to GPC (GPC-150C, Waters). .05% by weight o-dichloroben This is a value calculated from the weight average molecular weight (Mw) and number average molecular weight (Mn) measured at 135 ° C by feeding the zen solution at a flow rate of 1. OmlZ.
  • the polydisperse propylene polymer also has a melting point (Tm) of 165 ° C. or less, preferably 150 ° C. or less, more preferably 148.5 ° C. or less.
  • Tm melting point
  • the difference from the heat distortion temperature (HDT) measured at a weight of 0.451 MPa according to the standard JIS K7207 is 30 ° C or less, preferably 28 ° C or less, and most preferably about 25 ° C or less.
  • the ratio of the flexural modulus measured according to Japanese Industrial Standard J IS K7203 to the melting point (Tm) is 9 or more.
  • Preferred propylene homopolymers have a heat distortion temperature (HDT) of 118 ° C. or higher, preferably 120 ° C. or higher, more preferably about 122 ° C., and a flexural modulus of at least 1,300 MPa, preferably 1, 400MPa or more.
  • HDT heat distortion temperature
  • the melting point (Tm), heat distortion temperature (HDT), and flexural modulus of the propylene norefin copolymer differ depending on the type and content of the propylene copolymerized with propylene.
  • the melting point (T ra) of the propylene polymer was raised from room temperature to 230 ° C at a rate of 30 ° CZ using a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer). And hold for 10 minutes, then cool down to 20 ° C at a rate of 20 ° C, hold for another 10 minutes, then re-heat at a rate of 20 ° CZ to raise the temperature at which the melting peak appears. It is a measured value.
  • Heat distortion temperature (HDT) and flexural modulus were calculated as follows: 100 parts by weight of propylene polymer, tetrakis [methylene (3,5-di-t-butyl-4-hydroxyl-hydrazine cinnamate)] methane 0.05 parts by weight And 0.1 parts by weight of tris (2,4-di-tert-butylphenyl) phosphite and 0.1 part by weight of calcium stearate, and then the screw was set at an extrusion temperature of 230 ° C.
  • the propylene polymer of the present invention comprises a mixture of propylene monomer or propylene and another olefin, and a transition metal compound and aluminoxane selected from the group consisting of titanocene, zirconocene and hafnocene in a particulate carrier. It can be produced by polymerization by multi-stage polymerization in which the polymerization conditions are changed stepwise in the presence of a metallocene-supported catalyst carrying these reaction products and an organoaluminum compound.
  • the meta-metacene supported catalyst is a catalyst in which a transition metal compound selected from titanocene, zirconocene and hafnocene and an aluminoxane are supported on a particulate carrier.
  • the transition metal compound is represented by the following general formula.
  • represents a transition metal atom selected from the group consisting of titanium, zirconium and hafnium;
  • X and ⁇ may be the same or different and each represents a hydrogen atom, a Hagen atom or a hydrocarbon group,
  • (C 5 H 4 -m R 1 m ) and (C 5 H 4 — n R 2 n ) represent a substituted cyclopentagenenyl group, wherein m and n are integers from 1 to 3, and R 1 and R 2 may be the same or different, and each is a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group or an adjacent 2 ⁇ group on a cyclopentagenenyl ring. Represents a hydrocarbon group bonded to a carbon atom to form a ring, and
  • Q represents a divalent hydrocarbon group, an unsubstituted silylene group, or a hydrocarbon-substituted silylene group.
  • hydrocarbon group represented by X or Y examples include a linear or cyclic alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, an alkoxy group, and an aryloxy group. And a hydrogenated hydrocarbon group in which part or all of the hydrogen atoms are further substituted with a halogenated atom.
  • the hydrocarbon group having 1 to 20 carbon atoms represented by R 1 or R 2 is the same as the above.
  • the gayne-containing hydrocarbon group include a trialkylsilyl group, a triarylsilyl group, an alkylarylsilyl group, a trialkyllinylalkyl group, a trialkylsilylaryl group, a trialkylsilyloxy group, and the like.
  • a hydrocarbon group that forms a ring by bonding to two adjacent carbon atoms on a cyclopentagenenyl ring is, for example, a group that forms an indenyl group to form a fluorenyl group by bonding to a cyclopentagenenyl ring.
  • the divalent hydrocarbon group represented by Q is, for example, a linear or branched alkylene group, an unsubstituted or substituted cycloalkylene group, an alkylidene group, an unsubstituted or substituted cycloalkylidene, an unsubstituted or substituted fudylene. And some or all of these hydrogen atoms may be further substituted with halogen atoms.
  • the hydrocarbon-substituted silylene group is a silylene group substituted with the aforementioned hydrocarbon group, for example, a dialkylsilylene group, a diarylsilylene group, or the like.
  • the substitution positions of? 2 are arranged so that there is no symmetry plane including M mutually. More preferably, at least one of R 1 or R 2 replaces the carbon adjacent to the carbon attached to Q in the cycle pentagenenyl ring.
  • the above transition metal compound is most preferably a 100% racemic compound which is chiral with respect to two substituted cyclopentagenenyl groups, but is preferably 50% or less which does not impair the physical properties of the obtained propylene polymer. It may be a mixture of a racemic form and a meso form in which the meso form exists in the range.
  • racemic transition metal compounds include, for example, dimethylsilylene (2,3,5-trimethylcyclopent pentagenenyl) (2 ', 4', 5'-trimethynolacekopent pentagenenyl) titanium dikoxylide, dimethylsilylene (2,3,5-trimethylcyclopentadentenyl) (2 ', 4', 5'-trimethylcyclopentagenenyl) zirconium dichloride, dimethylsilylene (2,
  • dimethylsilylene (2,3,5-trimethylcyclopentapentaenyl) (2 ', 4', 5'-trimethylcyclopentagenenyl) zirconium Mudichloride, dimethylsilylenebis (2-methyl-4-phenylindenyl) zirconium dichloride is preferably used.
  • Aluminoxane is an organic aluminum compound represented by the following general formula (1) or (2).
  • R 3 may be the same or different and each is a hydrocarbon group having 1 to 6, preferably 1 to 4 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, Alkenyl groups such as alkyl groups such as pentyl group and hexyl group, aryl group, 2-methylaryl group, propenyl group, isopropenyl group, 2-methyl-1-propenyl group, butenyl group, and cyclopropyl And cycloalkyl groups such as a cyclobutyl group, a cyclopentyl group and a cyclohexyl group, and an aryl group, and an alkyl group is particularly preferable.
  • q is an integer of 4 to 30, preferably 6 to 30, and particularly preferably 8 to 30.
  • aluminoxane may be a commercially available product, or may be prepared under various known conditions, for example, by the following method.
  • a trialkylaluminum for example, trimethylaluminum. Triisobutylaluminum or a mixture thereof is directly reacted with water in an organic solvent such as toluene or ether in the presence of an acid or a catalyst.
  • Trialkylaluminum for example, trimethylaluminum. Triisobutylaluminum or a mixture thereof, and having water of crystallization Method of reacting with salts such as copper sulfate hydrate and aluminum sulfate hydrate.
  • solid inorganic or organic particles having a particle diameter of l to 500 ⁇ m, preferably 5 to 300 zm are used. Is done.
  • the particulate inorganic support a metal oxide, for example Si0 2, A1 2 0 3, MgO, Zr0 2, Ti0 2, Si0 2, A1 2 0 3 is preferably a mixture thereof or a composite oxide thereof, as a main component Oxides containing at least one selected from the group consisting of and MgO are particularly preferred. More specific inorganic compounds, Si0 2, A1 2 0 3 , MgO, S i0 2 - A1 2 0 3, Si0 2 - MgO, Si0 2 - Ti0 2, Si0 2 - A1 2 0 3 - MgO and the like can be mentioned Can be These inorganic oxide carriers are usually used by baking at 100 to 1000 ° C. for 1 to 40 hours. Instead of firing, for example, it may be chemically dehydrated with SiCl 4 , chlorosilane or the like before use.
  • the finely divided organic carrier examples include polymer fine particles, for example, fine particles of an olefin polymer such as polyethylene, polypropylene, poly (1-butene), poly (4-methyl-1-pentene), and fine particles of polystyrene.
  • polymer fine particles for example, fine particles of an olefin polymer such as polyethylene, polypropylene, poly (1-butene), poly (4-methyl-1-pentene), and fine particles of polystyrene.
  • the meta-opensene supported catalyst can be prepared by reacting the transition metal compound and aluminoxane in the presence of a particulate carrier. Usually, a transition metal compound soluble in hydrocarbon and aluminoxane are dehydrated. The desired metallocene-carrying catalyst can be obtained by depositing it on the finely divided carrier.
  • the order in which the transition metal compound and the aluminoxane are added to the particulate carrier can be arbitrarily changed.
  • a method in which a transition metal compound dissolved in an appropriate hydrocarbon solvent is first added to the particulate carrier, and then the aluminoxane is added The method in which a pre-reaction of the transition metal compound and the aluminoxane is added to the particulate carrier, or the method in which the aluminoxane is first added to the particulate carrier and then the transition metal compound is added, etc. Good.
  • reaction temperature is usually from 20 to 100 ° C, preferably from 0 to 100 ° C
  • reaction time is usually from 0.1 minute or more, preferably from 1 to 200 minutes. It is.
  • the loading ratio of the transition metal compound and the aluminoxane supported on the fine particle carrier is usually 12 to 1000 mol, preferably 50 to 500, as A1 atom derived from aluminoxane per mol of the transition metal atom derived from the transition metal compound. It is mor.
  • the prepared metallocene-supported catalyst is preactivated before polymerization by polymerizing a small amount of the olefin on the metallocene-supported catalyst before use.
  • the olefin used for the preactivation include ethylene, propylene, 1-butene, 1-hexene, 3-methyl-11-butene, 4-methyl-11-pentene, and a mixture thereof.
  • propylene is preferably used.
  • the polymerization amount of the olefin for preactivation of the metallocene-supported catalyst is usually from 10 to 1000% by weight, preferably from 30 to 300% by weight, more preferably from 30 to 300% by weight of the weight of the supported catalyst before preactivation. ⁇ 100% by weight.
  • Organoaluminum compounds are used as scavengers.
  • Organic Examples of aluminum compounds include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, triisobutylaluminum, trialkylaluminum such as tri-n-butylaluminum, dimethylaluminum chloride, dimethylaluminum bromide, and the like.
  • Dialkyl aluminum halides such as getyl aluminum chloride and diisopropyl aluminum chloride, methylaluminum sesquichloride, ethyl aluminum sesquichloride, ethyl aluminum sesquichloride, and isopropyl aluminum sesquichloride Alkyl aluminum dimethyl sesquihalide, and the like, and mixtures thereof.
  • Triethyl aluminum, triisobutyl Aluminum is used most preferably.
  • the propylene polymer of the present invention is produced by multi-stage polymerization in which polymerization conditions are changed in two or more stages.
  • the following polymerization process and polymerization conditions are separately applied to the polymerization conditions and polymerization processes in each stage.
  • the polymerization process includes, for example, aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; toluene, xylene, and ethylbenzene.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and isooctane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane
  • toluene xylene, and ethylbenzene.
  • Slurry polymerization method in which olefins are polymerized in an inert solvent such as aromatic hydrocarbons, gasoline fractions, hydrogenated diesel oil fractions, etc., bulk polymerization method using olefin monomer itself as a solvent, and polymerization in the gas phase
  • an inert solvent such as aromatic hydrocarbons, gasoline fractions, hydrogenated diesel oil fractions, etc.
  • bulk polymerization method using olefin monomer itself as a solvent and polymerization in the gas phase
  • Any of the usual propylene polymerization processes can be used, such as a gas phase polymerization method carried out in the above, a solution polymerization method in which a polymer produced by polymerization is in a liquid state, and a polymerization process combining these processes.
  • the same polymerization conditions as in the case of the polymerization of propylene using a generally known catalyst supported on a zigzag type are employed. That is, 30 to 150 ° C, preferably 40 to: At a polymerization temperature of 100 ° C, an orifice is supplied so as to maintain the polymerization pressure at atmospheric pressure to 7 MPa, preferably 0.2 to 5 MPa, React for minutes to 20 hours.
  • the weight average molecular weight (M w), number average molecular weight (Mn) and their ratio (Mw / Mn) of the resulting propylene polymer are adjusted by changing the selected polymerization conditions stepwise.
  • the molecular weight of the propylene polymer being polymerized in each polymerization stage is changed by changing the hydrogen concentration or the hydrogen amount, which is the chain transfer agent used in each polymerization stage, that is, the propylene monomer / hydrogen molar ratio.
  • a method of adjusting the weight average molecular weight Z number average molecular weight ratio (MwZMn) of the propylene polymer to be produced is adopted.
  • the propylene monomer molar ratio of hydrogen typically, 10 -.. 5-1 0, preferably 10 4-0 by stepwise changed within a range of 5, the weight average molecular weight of the propylene polymer Bruno
  • the number average molecular weight ratio (MwZMn) is adjusted to 4.0 or more.
  • a desired polydisperse propylene polymer is obtained through post-treatment steps such as a known catalyst deactivation treatment, removal of a catalyst residue, and drying, if necessary. .
  • the obtained propylene polymer is blended with various kinds of additive components within a range not to impair the object of the present invention. Usually, after melt-kneading the mixture, it is cut into granules to obtain a pellet, and various kinds of molding are performed. Provided for product manufacture.
  • Melt flow rate MFR: Measured at a load of 21.18N and a temperature of 230 ° C in accordance with Japanese Industrial Standard JIS K7210, Table 14, condition 14 (unit: gZlOmin) Crystallization temperature (Tc): differential scanning Using a calorimeter (DSC7, manufactured by Perkin-Elma Co., Ltd.), raise the temperature of the polypropylene from room temperature to 230 ° C at a rate of 30 ° CZ, hold at that temperature for 10 minutes, and then maintain the temperature for 20 ° CZ.
  • DSC7 calorimeter
  • the physical property measurement results of the obtained propylene homopolymer showed that the weight average molecular weight / number average molecular weight ratio (MwZMn) was 16.4, the melting point (Tm) was 147.1 ° C, and the heat distortion temperature (HDT) was 122 ° C.
  • MwZMn weight average molecular weight / number average molecular weight ratio
  • HDT heat distortion temperature
  • MFR melt flow rate
  • Tc crystallization temperature
  • flexural modulus was 1410 MPa.
  • the difference between Tm and HDT is calculated as 27.1 ° C, and the ratio of flexural modulus to Tm is calculated as 9.58.
  • Figure 1 shows the molecular weight distribution curve of the obtained propylene homopolymer by GPC. Show.
  • Example 1 polymerization was performed under the same conditions as in Example 1 except that 30 L Zhr of the ethylene monomer was continuously supplied during the polymerization for 240 minutes in the first stage and the polymerization for 210 minutes in the second stage in the propylene monomer. Was carried out, and the same treatment was carried out to obtain 6.5 kg of a propylene Z-ethylene copolymer.
  • the physical property measurement results of the obtained propylene / ethylene copolymer showed that the weight average molecular weight / number average molecular weight ratio (MwZMn) was 17.5, the melting point (Tm) was 138.0 ° C, and the heat distortion temperature (HDT) was 111. ° C, melt flow rate (MFR) was 30.0 g Z for 10 min, crystallization temperature (Tc) was 100.2 ° C, and flexural modulus was 1250 MPa.
  • MwZMn weight average molecular weight / number average molecular weight ratio
  • Tm melting point
  • HDT heat distortion temperature
  • MFR melt flow rate
  • Tc crystallization temperature
  • flexural modulus was 1250 MPa.
  • the difference between Tm and HDT is calculated as 27 ° C, and the ratio of flexural modulus to Tm is calculated as 9.06.
  • the physical properties of the obtained propylene homopolymer were measured.
  • the weight average molecular weight / number average molecular weight ratio (MwZMn) was 3.7, the melting point (Tm) was 148.5 ° C, and the heat distortion temperature (HDT) was 117. C, the melt flow rate (MFR) was 17.3 g, the crystallization temperature (Tc) was 110.4 ° C, and the flexural modulus was 1260 MPa. Therefore, the difference between Tm and HDT is calculated as 31.5 ° C, and the ratio of flexural modulus to Tm is calculated as 8.48.
  • FIG. 2 shows the molecular weight distribution curve of the obtained propylene homopolymer by GPC.
  • Physical properties of a commercially available homopolypropylene (trade name: Acheive (R) 3825, manufactured by Exxon Chemical Co., Ltd.) produced using a known metallocene catalyst are represented by a weight average molecular weight / number average molecular weight ratio (Mw ZM n). 1.95, melting point (Tm) 148.9 ° C, heat distortion temperature (HDT) 112 ° C, melt flow rate (MFR) 28 g Z 10min, crystallization temperature (Tc) 110.4 ° C, flexural modulus is 1140MPa o
  • the difference between Tm and HDT is calculated as 36.9 ° C, and the ratio of flexural modulus to Tm is calculated as 7.66.
  • Figure 3 shows the molecular weight distribution curve of a commercially available propylene polymer measured by GPC. The invention's effect
  • the polydisperse propylene polymer of the present invention has a low melting point, so that it has excellent moldability at low temperatures, and also reduces the heat sealing temperature when applied to films and the like. be able to.
  • a product molded from this polydisperse propylene polymer has high rigidity and heat resistance. Therefore, the polydisperse propylene polymer of the present invention is suitable for various molded articles as a propylene polymer for molding. Can be used.
  • the method for producing a propylene polymer of the present invention is a multi-stage polymerization in which the polymerization conditions are changed stepwise by a simple method through the polymerization, and the process is largely rationalized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Description

明 細 書
多分散性プロピレン重合体およびその製造方法
技術分野
本発明は、 重量平均分子量ノ数平均分子量比 (MwZMn) の大きな多分 散性プロピレン重合体に関する。 さらに詳しくは、 剛性および耐熱性に 優れた製品の成形に好適な低融点を有する多分散性プロピレン重合体、 およびメタロセン担持型触媒の存在下の多段重合によるその製造方法に 関する。
背景技術
プロピレン重合体は、 機械的特性、 耐薬品性などに優れ、 またそれら の特性と経済性とのバランスが極めて優れていることにより各成形分野 に広く採用されている。 これらのプロピレン重合体は、 従来、 主として 三塩化チタンや四塩化チタン、 あるいはそれらを塩化マグネシウムなど の担体に担持させた無機遷移金属触媒と有機アルミニウム化合物とを組 み合わせた、 いわゆるチーグラー · ナツタ系触媒を用いるプロピレンの 単独重合またはプロピレンとその他のォレフィ ンとの共重合により製造 されてきた。
一方、 近年、 チ一グラ一 · ナッタ系触媒とは異なる遷移金属の有機錯 体、 いわゆるメタ口センとアルミノキサンとを組み合わせた触媒を用い てプロピレンなどのォレフィ ンを重合させてォレフィ ン重合体を製造す る方法が提案されている。 たとえば、 特開昭 61— 130314号公報、 特開平 3— 12406号公報、 特開平 3—12407号公報、 特開平 6— 100579号公報、 米国特許 5, 296, 434号明細書、 Organometallics 13, 957 ( 1994) 等には, ァイソタクチックプロピレン重合体を与えるメタロセン触媒が記載され ている。 これらのメ夕口セン触媒を用いて得られたォレフィ ン重合体は、 一般 に、 重量平均分子量 Z数平均分子量比 (MwZMn) が約 3以下の比較的に 均一な分子量を有する重合体であり、 また共重合体の場合にはコモノマ 一が均一に共重合されることから、 チ一グラー · ナッタ系担持型触媒を 用いた場合よりも均質なォレフィ ン共重合体が得られる。
また、 一般に、 プロピレン重合体の物性、 特に剛性および耐熱性と 融点との間には相関があり、 高融点である方が、 剛性および耐熱性も高 い。
Journal of Molecular Catalysis A :Cheraical 102, 59-65 ( 1995) に は、 ァイソタクチックポリプロピレンを与える触媒を用いた場合の重合 温度とポリプロピレンの融点との関係について、 たとえば、 0 °Cでは高 融点のポリプロピレンが得られるが、 工業的な重合温度、 たとえば 70°C では、 得られるポリプロピレンの融点が極端に低くなることが記載され ている。 Organometall ics 13, 957 ( 1994)には、 触媒が担体に担持さ れていない実験室的な状態での重合、 いわゆる均一系重合において、 メ タロセン化合物の種類を選択することによって工業的な重合温度である 70°Cにおいても高融点のポリプロピレンが得られることが記載されてい る o
プロピレン重合体を工業的に製造するためには、 担体にメタロセン化 合物が担持されたメタロセン担持型触媒を用いる必要がある。 国際特許 公開 WO94Z28034号明細書には、 高温重合で高融点のプロピレン重合体 を与える前記メタ口セン化合物が担体に担持された担持型触媒を用いて プロピレンを重合した場合、 均一系重合で得られたポリプロピレンに 比較して得られるポリプロピレンの融点が低下することが記載されてい ο したがって、 メタロセン担持型触媒を用いて高剛性および耐熱性を有 する、 すなわち高融点のァイソタクチックポリプロピレンを工業的に製 造することは困難であった。
特開平 5— 140227号公報は、 複数のメタロセン化合物を使用して重量 平均分子量/数平均分子量比が大きなポリオレフィ ンを製造する方法を 開示している。 また、 国際特許公開 W094 16009号明細書は、 メルトフ ローレー ト (MFR) の異なる 2種のプロピレン重合体の組成物からなる 機械的特性の優れたプロピレン重合体組成物を開示している。
発明の目的
本発明の目的は、 高剛性を有し耐熱性に優れた成形品を与えるプロピ レン重合体を提供することである。
本発明の別の目的は、 単一の遷移金属化合物を使用する多段重合によ り前記プロピレン重合体を製造する方法を提供することである。
本発明者等は、 単一の遷移金属化合物を使用する多段重合において、 各段の重合条件を段階的に変化させてプロピレンを重合させて得られた プロピレン重合体が多分散性を示し、 低融点で成形性に優れ、 それを成 形した成形品が高剛性を有しかつ耐熱性に優れることを見出した。 発明の概要
本発明は、 微粒子状担体に遷移金属化合物およびアルミノキサンまた はそれらの反応生成物が担持されたメタ口セン担持型触媒および有機ァ ルミニゥム化合物の存在下、 重合条件を段階的に変化させる多段重合に より、 プロピレンモノマーまたはプロピレンとその他のォレフイ ンとの 混合モノマーを重合させて製造され、 重量平均分子量 数平均分子量比 (Mw/Mn) が 4. 0以上、 融点 (Tm) が 165°C以下、 および融点 (Tm) と熱 変形温度 (HDT) との差が 30°C以下であることを特徴とする多分散性プ ロピレン重合体である。
別の本発明は、 プロピレンモノマーまたはプロピレンとその他のォレ フィ ンとの混合モノマーを、 微粒子状担体にチタノセン、 ジルコノセン およびハフノセンよりなる群から選択される遷移金属化合物およびアル ミノキサンまたはそれらの反応生成物が担持されたメタ口セン担持型触 媒および有機アルミニウム化合物の存在下に、 重合条件を段階的に変化 させる多段重合により重合させることを特徴とする前記多分散性プロピ レン重合体の製造方法である。
図面の簡単な説明
図 1は、 実施例 1で製造したプロピレン単独重合体の分子量分布を示 す G P C曲線である。
図 2は、 比較例 1で製造したプロピレン単独重合体の分子量分布を示 す G P C曲線である。
図 3は、 比較例 2の市販のプロピレン単独重合体の分子量分布を示す G P C曲線である。
図 4は、 本発明のプロピレン重合体の製造方法のフロ一シー トであ る o
詳細説明
本明細書において、 「多段重合」 の用語は、 プロピレンモノマーの単 独重合またはプロピレンとその他のォレフィ ンとの混合モノマーの共重 合を通じて、 重合条件を段階的に変化させることを意味する。 具体的に は、 プロピレンモノマーまたはプロピレンとその他のォレフィ ンとの混 合モノマーの重合を通じて、 プロピレンモノマ一/水素モル比を段階的 に変化させる、 重合温度を段階的に変化させる、 重合圧力、 すなわちモ ノマ一の供給速度を段階的に変化させる、 およびそれらの組み合わせを 包含する。 また、 これらの条件は単独の重合反応器で段階的に変化させ てもよく、 直列に配列した複数の重合反応器毎に段階的に変化させても よい。
本明細書において、 「プロピレン重合体」 の用語は、 プロピレン単独 重合体、 プロピレン単位を 50重量%以上含有するプロピレンとプロピレ ン以外のォレフィ ンとのランダム共重合体およびプロック共重合体を意 味する。
プロピレンと共重合できるプロピレン以外のォレフィ ンには、 特に制 限はなく、 炭素数 2〜: 12のォレフィ ン、 たとえばエチレン、 1ーブテン、 1—ペンテン、 1—へキセン、 1—ォクテン、 1—デセン、 4一メチル 一 1—ペンテン、 3—メチル _ 1—ペンテンおよびそれらの混合モノマ —が好ましく使用される。 また、 所望により上記にォレフィ ンに加えて 少量の 1, 5—へキサジェン、 1, 9ーデカジエンなどの ω—ジェンを共 重合させることもできる。
本明細書において、 「多分散性」 の用語は、 重合体の分子量が不均一 であることを意味し、 分子量分布の幅 (MwZMn) (ここに、 Mwは重量平均 分子量、 Mnは数平均分子量である) が 4. 0以上のプロピレン重合体に対 して 「多分散性」 の用語を使用する。
本発明のプロピレン重合体は、 図 1の GPC (ゲルパ一ミェ一シヨン . クロマトグラフィー) で測定した分子量分布から算出した重量平均分子 量 Z数平均分子量比 (MwZMn) が 4. 0以上、 好ましくは 10以上、 さらに 好ましくは 15以上の多分散性プロピレン重合体である。
上記重量平均分子量 数平均分子量比 (MwZMn) は、 GPC (GPC- 150C、 ウォーターズ社製) に混合ポリスチレンカラム (PSKgel GMH6- HT、 東ソ 一(株)製) をセッ トし、 ポリマー濃度が 0. 05重量%の o—ジクロロベン ゼン溶液を 1. OmlZ分の流速で供給し、 135°Cの条件で測定した重量平均 分子量 (Mw) と数平均分子量 (Mn) とから算出した値である。
この多分散性プロピレン重合体は、 また、 165°C以下、 好ましくは 150 °C以下、 さらに好ましくは 148. 5°C以下の融点 (Tm) を有し、 そして融 点 (Tm) と日本工業規格 JIS K7207に準拠して加重 0. 451MPaで測定した 熱変形温度 (HDT) との差が 30°C以下、 好ましくは 28°C以下、 最も好ま しくは約 25°C以下である。 また、 融点 (Tm) に対する日本工業規格 J IS K7203に準拠して測定した曲げ弾性率の比が 9以上の機械的特性を有す る o
好ましいプロピレン単独重合体の熱変形温度 (HDT) は 118°C以上、 好 ましくは 120°C以上、 さらに好ましくは約 122°Cであり、 曲げ弾性率は少 なく とも 1, 300MPa、 好ましくは l,400MPa以上である。
プロピレンノォレフィ ン共重合体の融点 (Tm) 、 熱変形温度 (HDT) および曲げ弾性率は、 プロピレンと共重合させるォレフィ ンの種類およ びその含有量により異なる。
プロピレン重合体の前記した融点 (T ra ) は、 示差走査熱量分析計 (DSC7型、 パーキン ·エルマ一社製) を使用し、 ポリマーを室温から 230 °Cまで 30°CZ分の速度で昇温して 10分間保持し、 次いで一 20°Cまで 20°C 分の速度で降温してさらに 10分間保持した後、 20°CZ分の速度で再昇 温して融解時のピークを示す温度を測定した値である。
熱変形温度 (HDT) および曲げ弾性率は、 プロピレン重合体 100重量部 に、 テ トラキス 〔メチレン (3, 5—ジ一 t—ブチルー 4—ヒ ドロキシル —ハイ ド口シンナメート)〕 メタン 0. 05重量部、 トリス (2, 4—ジ一 t― ブチルフヱニル) フォスフアイ ト 0. 1重量部およびステアリ ン酸カルシ ゥム 0. 1重量部を混合し、 次いで押出し温度を 230°Cに設定したスクリュ —径 40mmの単軸押出し造粒機を使用してペレツ トとし、 さらにこのプロ ピレン重合体ペレツ トをスクリュ一径 40mmの射出成型機を使用して、 溶 融樹脂温度 250°C、 金型温度 50°Cの条件で射出成形した JIS形の試験片を 用いて測定した値である。
本発明の前記プロピレン重合体は、 プロピレンモノマ一またはプロピ レンとその他のォレフィ ンとの混合モノマーを、 微粒子状担体にチタノ セン、 ジルコノセンおよびハフノセンよりなる群から選択される遷移金 属化合物およびアルミノキサンまたはそれらの反応生成物が担持された メタロセン担持型触媒および有機アルミニウム化合物の存在下、 重合条 件を段階的に変化させる多段重合により重合させて製造することができ る o
メタ口セン担持型触媒は、 微粒子状担体にチタノセン、 ジルコノセン およびハフノセンより選択される遷移金属化合物とアルミノキサンとが 担持された触媒である。
遷移金属化合物は、 下記一般式で表される。
(C5H4 -mR 1 m) X
Q M
(C5H4 -„R 2 n ) Y
式中、 Μは、 チタニウム、 ジルコニウムおよびハフニウムよりなる群 から選択された遷移金属原子を表し、
Xおよび Υは、 同一でも異なっていてもよく、 それぞれは水素原子、 ハ口ゲン原子または炭化水素基を表し、
(C5H4 - mR1 m) および (C5H4nR2 n) は、 置換シクロペンタジェニル基 を表し、 ここに、 mおよび nは 1〜3の整数であり、 R 1および R 2は、 同 一でも異なっていてもよく、 それぞれは炭素数 1〜20の炭化水素基、 ケ ィ素含有炭化水素基またはシクロペンタジェニル環上の隣接する 2俩の 炭素原子と結合して環を形成する炭化水素基を表し、 および
Qは、 2価の炭化水素基、 非置換シリ レン基、 または炭化水素置換シ リ レン基を表す。
前記 Xまたは Yで表される炭化水素基は、 たとえば、 炭素数 1〜20の 鎖状または環状アルキル基、 置換または非置換のァリール基、 置換また は非置換のァラルキル基、 アルコキシ基、 ァリールォキシ基など、 およ びそれらの水素原子の一部または全部がハ口ゲン原子でさらに置換され たハ口ゲン化炭化水素基である。
前記 R1または R2で表される炭素数 1〜20の炭化水素基は、 上記と同様 の炭化水素基である。 ゲイ素含有炭化水素基は、 たとえば、 トリアルキ ルシリル基、 トリァリールシリル基、 アルキル—ァリールシリル基、 ト リアルキルンリルアルキル基、 ト リアルキルシリルァリール基、 ト リァ ルキルンリルォキシ基などである。 また、 シクロペンタジェニル環上の 隣接する 2個の炭素原子と結合して環を形成する炭化水素基は、 たとえ ば、 シク口ペンタジェニル環と結合してィンデニル基ゃフルォレニル基 を形成するような 2価の炭化水素基であり、 それらはハロゲン原子、 上 記した炭化水素基またはゲイ素含有炭化水素基でさらに置換されていて もよい。
前記 Qで表される 2価の炭化水素基は、 たとえば、 直鎖または分枝鎖 アルキレン基、 非置換または置換シクロアルキレン基、 アルキリデン基、 非置換または置換シクロアルキリデン、 非置換または置換フユ二レン基 などであり、 それらの水素原子の一部または全部はハロゲン原子でさら に置換されていてもよい。 また、 炭化水素置換シリ レン基は、 前述の炭 化水素基で置換されたシリ レン基、 たとえば、 ジアルキルシリ レン基、 ジァリ一ルシリ レン基などである。 シクロペンタジェニル環上の前記 R1および!?2の置換位は、 相互に Mを 含む対称面が存在しない配置をとることが好ましい。 さらに好ましくは、 R1または R2の少なくとも 1つは、 シク口ペンタジェニル環の Qに結合し ている炭素に隣接する炭素を置換している。
すなわち、 上記遷移金属化合物は、 2個の置換シクロペンタジェニル 基に関してキラルであるラセミ体 100 %の化合物であることが最も好ま しいが、 得られるプロピレン重合体の物性を損ねない 50%以下の範囲で メソ体が存在しているラセミ体とメソ体の混合物であってもよい。
具体的なラセミ体の遷移金属化合物として、 たとえば、 ジメチルシリ レン (2, 3, 5—トリメチルシク口ペンタジェニル) (2' , 4' , 5'— トリメチ ノレシク口ペンタジェニル) チタニウムジク口リ ド、 ジメチルシリ レン (2, 3, 5— トリメチルシク口ペンタジェニル) (2', 4' , 5' — トリメチルシ クロペンタジェニル) ジルコニウムジクロリ ド、 ジメチルシリ レン (2,
3, 5—トリメチルンクロペンタジェニル) (2', 4', 5' — トリメチルシク 口ペンタジェニル) ジルコニウムジメチル、 ジメチルシリ レン (2, 3, 5 — トリメチルシクロペンタジェニル) (2' , 4',5' — トリメチルシクロべ ンタジェニル) ハフニウムジクロリ ド、 ジメチルシリ レン (2, 3, 5— ト リメチルシク口ペンタジェニル) (2',4',5' — トリメチルシク口ペンタ ジェニル) ハフニウムジメチル、 ジメチルシリ レンビス (2—メチル一 4ーフヱニルインデニル) ジルコニウムジクロリ ド、 ジメチルシリ レン ビス ( 2—ェチル一 4—フヱニルインデニル) ジルコニウムジクロリ ド, ジメチルシリ レンビス (2—メチル一4, 5—ベンゾインデニル) ジルコ 二ゥムジクロリ ド等のチタノセン、 ジルコノセンおよびハフノセンが挙 げられる。 特に、 ジメチルシリ レン (2, 3, 5—トリメチルシク口ペンタ ジェニル) (2' , 4' , 5' — トリメチルシクロペンタジェニル) ジルコニゥ ムジクロリ ド、 ジメチルシリ レンビス (2—メチル一 4一フエ二ルイン デニル) ジルコニウムジクロリ ドが好ましく使用される。
アルミノキサンは、 下記の一般式(1)または(2)で表される有機アル ミニゥム化合物である。
R3 2Al-(0Al)q-0AlR3 2
I (1)
R3 一 (0Al)g + 2 "-" 1 (2)
R3
式中、 R3は、 同一でも異なっていてもよく、 それぞれは炭素数 1〜 6、 好ましくは 1〜4の炭化水素基、 たとえば、 メチル基、 ェチル基、 プロピル基、 ブチル基、 イソブチル基、 ペンチル基、 へキシル基等のァ ルキル基、 ァリル基、 2—メチルァリル基、 プロぺニル基、 イソプロべ ニル基、 2—メチル— 1—プロぺニル基、 ブテニル基等のアルケニル基、 シクロプロピル基、 シクロブチル基、 シクロペンチル基、 シクロへキシ ル基等のシクロアルキル基、 およびァリール基などであり、 特に、 アル キル基が好ましい。 qは、 4〜30の整数であり、 好ましくは 6〜30、 特 に好ましくは 8〜30である。
上記のアルミノキサンは、 市販品を使用することができ、 また公知の 様々な条件下、 たとえば下記の方法により調製してもよい。
i ) トリアルキルアルミニウム、 たとえば、 トリメチルアルミニウム. トリイソブチルアルミニウムまたはそれらの混合物を、 トルエン、 エー テル等の有機溶剤中において、 酸またはアル力リ触媒の存在下に直接水 と反応させる方法。
ii) トリアルキルアルミニウム、 たとえば、 トリメチルアルミニウム. トリィソブチルアルミニウムまたはそれらの混合物、 と結晶水を有する 塩類、 例えば硫酸銅水和物、 硫酸アルミニウム水和物と反応させる方 法。
m ) シリカゲル等に含浸させた水分と、 トリアルキルアルミニウム、 たとえばトリメチルアルミ二ゥム、 トリイソブチルアルミニウムとを、 それぞれ単独にまたは同時にあるいは逐次的に反応させる方法。
前記遷移金属化合物およびアルミノキサンまたはそれらの反応生成物 が担持される微粒子状担体として、 粒子径が l〜500 ^ m、 好ましくは 5 〜300 z mの顆粒状ないしは球状の無機または有機の固体微粒子が使用さ れる。
微粒子状無機担体としては、 金属酸化物、 たとえば Si02、 A1203、 MgO、 Zr02、 Ti02、 それらの混合物またはそれらの複合酸化物が好ましく、 主 成分として Si02、 A1203および MgOからなる群から選ばれた少なく とも 1 種を含有する酸化物が特に好ましい。 より具体的な無機化合物として、 Si02、 A1203、 MgO、 S i02 - A1203、 Si02— MgO、 Si02 - Ti02、 Si02— A1 203— MgO等が挙げられる。 これらの無機酸化物担体は、 通常、 100〜 1000 °Cで、 1〜40時間焼成して使用する。 また、 焼成する代わりに、 たとえば、 SiCl 4、 クロロシラン等により化学的に脱水して用いてもよ い。
微粒子状有機担体として、 重合体微粒子、 たとえばポリエチレン、 ポ リプロピレン、 ポリ (1—ブテン) 、 ポリ (4 —メチルー 1 —ペンテン) などのォレフィ ン重合体の微粒子、 ポリスチレンなどの微粒子などが挙 げられる。
メタ口セン担持型触媒は、 前記遷移金属化合物とアルミノキサンとを、 微粒子状担体の存在下に反応させることにより調製することができる。 通常、 炭化水素に可溶性の遷移金属化合物とアルミノキサンとを、 脱水 した微粒子状担体上に沈着させることにより所望のメタロセン担持型触 媒が得られる。 遷移金属化合物およびアルミノキサンを微粒子状担体に 加える順序は任意に変えることができ、 たとえば、 適当な炭化水素溶媒 に溶解させた遷移金属化合物を最初に微粒子状担体に加えた後、 次いで アルミノキサンを加える方法、 遷移金属化合物とアルミノキサンとを予 め反応させたものを微粒子状担体に加える方法、 またはアルミノキサン を最初に微粒子状担体に加えた後、 次いで遷移金属化合物を加える方法 などのいずれを採用してもよい。
上記の反応条件は、 反応温度が、 通常、 一 20〜: 100°C、 好ましくは 0 〜100°Cであり、 反応時間が、 通常、 0. 1分以上、 好ましくは 1〜200分 の範囲である。
微粒子状担体に担持された遷移金属化合物とアルミノキサンとの担持 比率は、 通常、 遷移金属化合物由来の遷移金属原子の 1モル当たり、 ァ ルミノキサン由来の A1原子として 12〜1000モル、 好ましくは 50〜500モ ルである。
上記調製したメタロセン担持型触媒は、 ォレフィ ンの重合に先立って、 予め少量のォレフィ ンをメタロセン担持型触媒上で重合させることによ り予備活性化して使用することが好ましい。 予備活性化に用いるォレフ イ ンとしては、 エチレン、 プロピレン、 1ーブテン、 1—へキセン、 3 一メチル一 1—ブテン、 4—メチル一 1—ペンテン等およびそれらの混 合物が挙げられ、 エチレンまたはプロピレンが好ましく使用される。 メタロセン担持型触媒の予備活性化のためのォレフィ ンの重合量は、 通常、 予備活性化前の担持型触媒の重量の 10〜; 1000重量%、 好ましくは 30〜300重量%、 さらに好ましくは 30〜100重量%である。
有機アルミニウム化合物はスキヤベンジャーとして使用される。 有機 アルミニウム化合物として、 たとえばトリメチルアルミニウム、 トリエ チルアルミニウム、 トリ一 n —プロピルアルミニウム、 トリイソプロピ ルアルミニウム、 トリイソブチルアルミニウム、 トリー n —ブチルアル ミニゥム等のトリアルキルアルミニウム、 ジメチルアルミニウムクロリ ド、 ジメチルアルミニウムブロミ ド、 ジェチルアルミニウムクロリ ド、 ジイソプロピルアルミニウムク口リ ド等のジアルキルアルミニゥムハラ ィ ド、 メチルアルミノウムセスキクロリ ド、 ェチルアルミニウムセスキ クロリ ド、 ェチルアルミ二ゥムセスキブ口ミ ド、 ィソプロピルアルミ二 ゥムセスキクロリ ド等のアルキルアルミ二ゥムセスキハライ ド等、 およ びそれらの混合物が挙げられ、 トリェチルアルミニウム、 トリイソプチ ルアルミニウムが最も好ましく使用される。
本発明のプロピレン重合体は、 重合条件を 2段階以上に変化させる多 段重合によって製造される。 各段階の重合条件および重合プロセスには、 下記の重合プロセスおよび重合条件がそれぞれ別々に適用される。
重合プロセスとして、 たとえば、 ブタン、 ペンタン、 へキサン、 ヘプ タン、 イソオクタン等の脂肪族炭化水素、 シクロペンタン、 シクロへキ サン、 メチルシクロへキサン等の脂環族炭化水素、 トルエン、 キシレン、 ェチルベンゼン等の芳香族炭化水素、 ガソリン留分や水素化ジーゼル油 留分等の不活性溶媒中でォレフィ ンを重合するスラリー重合法、 ォレフ ィ ンモノマ一自身を溶媒として用いるバルク重合法、 そして重合を気相 中で実施する気相重合法、 重合により生成する重合体が液状である溶液 重合法、 およびこれらのプロセスを組み合わせた重合プロセスなど、 通 常のプロピレン重合プロセスのいずれをも使用することができる。
プロピレンの重合条件は、 通常公知のチ一グラ一系担持型触媒による プロピレンの重合の場合と同様な重合条件が採用される。 すなわち、 30〜150 °C、 好ましくは 40〜: 100 °Cの重合温度で、 重合圧力を大気圧〜 7 MPa、 好ましくは 0. 2〜5 MPaに維持するようにォレフィ ンを供給し、 通常、 1分〜 20時間反応させる。
得られるプロピレン重合体の重量平均分子量 (M w ) 、 数平均分子量 (Mn) およびそれらの比 (Mw/Mn) は、 選択した重合条件を段階的に変 化させることにより調整される。
最も好ましくは、 各重合段階で使用される連鎖移動剤である水素濃度 または水素量、 すなわちプロピレンモノマー/水素モル比を変化させて、 各重合段階で重合しているプロピレン重合体の分子量を変化させ、 生成 するプロピレン重合体の重量平均分子量 Z数平均分子量比 (MwZMn) を 調整する方法が採用される。
この方法において、 プロピレンモノマー 水素モル比を、 通常、 10 - 5 〜1. 0、 好ましくは 10— 4〜0. 5の範囲内で段階的に変化させることにより、 プロピレン重合体の重量平均分子量ノ数平均分子量比 (MwZMn ) が 4. 0 以上に調整される。
本発明においては、 プロピレン重合体の重合反応終了後、 必要に応じ て公知の触媒失活処理、 触媒残渣除去、 乾燥等の後処理工程を経て、 目 的の多分散性プロピレン重合体が得られる。
得られたプロピレン重合体には、 本発明の目的を損なわない範囲で各 種の添加成分が配合され、 通常、 それを加熱溶融混練した後、 粒状に切 断してペレツ ト状態とし、 各種成形品の製造用に提供する。
プロピレン重合体の添加成分として、 酸化防止剤、 紫外線吸収剤、 帯 電防止剤、 造核剤、 滑剤、 難燃剤、 アンチブロッキング剤、 着色剤、 無 機質または有機質の充填剤等の各種添加剤、 ならびに種々の合成樹脂が 挙げられる。 実施例
以下に、 本発明を実施例および比較例によりさらに詳細に説明する。 以下の実施例および比較例において前記した物性以外に下記物性を測 定した。
メルトフローレート (MFR) : 日本工業規格 JIS K7210の表 1の条件 14 に準拠して、 荷重 21. 18N、 温度 230°Cで測定 (単位: g Z lOmin) 結晶化温度(Tc): 示差走査熱量分析計 (DSC7型、 パーキン ·エルマ一 社製) を使用しポリプロピレンを室温から 30°C Z分の速度で 230°Cまで 昇温して同温度に 10分間保持し、 次いで 20°CZ分の速度で一 20°Cまで降 温して同温度に 10分間保持し、 再び 20°C Z分の速度で 230°Cまで昇温し て同温度にて 10分間保持した後、 80°C /分の速度で 150°Cまで降温し、 さらに 150°Cからは 5 °Cノ分の速度で降温しながら結晶化時の最大ピー クを示す温度を測定 (単位 : °C)。
実施例 1
A . メタ口セン担持型触媒の調製
十分に乾燥し、 N 2置換した 500mlのフラスコに、 ジメチルシリ レンビ ス ( 2 —メチル一 4ーフヱニルインデニル) ジルコニウムジクロリ ド (rac : mesoモル比 = 96 : 4 ) 0. 38 g ( 0. 52 ol)、 およびメチルアルミ ノキサンの トルエン希釈品 286mmol (A 1原子換算) を仕込み、 10分間反 応させた。 次いで、 800°Cで 8時間焼成したシリカ (グレース . デビソ ン(R ) ) 10 gを添加して 10分間攪拌した。 それに続き、 容器を減圧排気 下に、 N2のわずかな流れを底部から加え、 溶媒を蒸発させながらその混 合物を 9時間、 70°Cに加熱した。 得られた乾燥固体を室温下で一晩冷却 し、 メタ口セン担持型触媒を得た。
十分に乾燥し、 N 2置換した 500mlのフラスコに上記で得られたメタロ セン担持型触媒およびィソペンタン 250mlを仕込み、 0 °Cに冷却した。 次いで、 ェチレンを 80mlZ分の流量で 4時間連続的に供給して予備重合 させ予備活性化処理を行った。 その後、 上澄み液をデカンテ一シヨ ンに より除去し、 さらに 100mlのイソペンタンで 4回、 デカンテ一シヨン法に より洗浄した。 さらに室温にて 2時間真空乾燥して 34. 4 gの予備活性化 したメタロセン担持型触媒を得た。
B . プロピレン重合体の製造
十分に N 2置換した 100 Lオートクレープに、 n—へキサン 33 L、 およ びトリェチルアルミニウム 66龍 olを仕込み、 5分間攪拌した。 次いで、 上記調製した予備活性化したメタロセン担持型触媒 6. 6 gを添加して 50 °Cに昇温した。 続いて、 H 2 0. 05molを導入し、 50°Cで圧力が 1. 08MPaの 一定圧力を維持するようにプロピレンモノマーを連続的に供給して 240 分間重合させた。 この間のプロピレンモノマ一 水素モル比は 4 X 10一3 であった。 引き続き H2 1. 36molをさらに導入してプロピレンモノマーノ 水素モル比を変え、 上記温度および圧力条件を維持するようにプロピレ ンモノマーを供給してさらに 210分間重合させた。 この間のプロピレン モノマー Z水素モル比は 0. 11であった。 得られたスラリーを濾過後、 乾 燥して 6. 6kgのプロピレン単独重合体を得た。
得られたプロピレン単独重合体の物性測定結果は、 重量平均分子量ノ 数平均分子量比 (MwZMn) が 16. 4、 融点 (Tm) が 147. 1°C、 熱変形温度 (HDT) が 122°C、 メルトフローレ一ト (MFR) が 26. 0 g Z lOmin 結晶化 温度 (Tc) が 110. 2°C、 曲げ弾性率は 1410MPaであった。
したがって、 Tmと HDTとの差は 27. 1°C、 また、 Tmに対する曲げ弾性率 の比は 9. 58と算出される。
得られたプロピレン単独重合体の GPCによる分子量分布曲線を図 1に 示す。
実施例 2
プロピレンノエチレン共重合体の製造
実施例 1において、 プロピレンモノマーの前段の 240分間の重合時お よび後段の 210分間の重合時のそれぞれにェチレンモノマー 30 L Zhrを 連続供給したこと以外は、 実施例 1と同一の条件で重合を実施し、 そし て同様に処理してプロピレン Zェチレン共重合体 6. 5Kgを得た。
得られたプロピレン/エチレン共重合体の物性測定結果は、 重量平均 分子量ノ数平均分子量比 (MwZMn) が 17. 5、 融点 (Tm) が 138. 0°C、 熱 変形温度 (HDT) が 111°C、 メルトフローレート (MFR) が 30. 0 g Z 10min、 結晶化温度 (Tc) が 100. 2°C、 曲げ弾性率は 1250MPaであった。
したがって、 Tmと HDTとの差は 27°C、 また、 Tmに対する曲げ弾性率の 比は 9. 06と算出される。
比較例 1
十分に N 2置換した 100 Lォートクレーブに、 n —へキサン 33 Lおよび トリェチルアルミニウム 66mmolを仕込み、 5分間攪拌した後、 実施例 1 で調製したメ夕口セン担持型触媒 13 gを添加して 50°Cに昇温した。 次い で、 H 2 0. 33molを導入した後、 50°Cで圧力 1. 08MPaの一定圧力を維持す るようにプロピレンモノマ一を連続的に供給して 180分間重合した。 こ の間のプロピレンモノマー Z水素モル比は 0. 026であった。 得られたス ラリ一を濾過後、 乾燥して 6. 6kgのプロピレン単独重合体を得た。
得られたプロピレン単独重合体の物性測定結果は、 重量平均分子量/ 数平均分子量比 (MwZMn) が 3. 7、 融点 (Tm) が 148. 5°C、 熱変形温度 (HDT) が 117。C、 メルトフローレート (MFR) が 17. 3 g Z lOmii 結晶化 温度 (Tc) が 110. 4°C、 曲げ弾性率は 1260MPaであった。 したがって、 Tmと HDTとの差は 31. 5°C、 また、 Tmに対する曲げ弾性率 の比は 8. 48と算出される。
得られたプロピレン単独重合体の GPCによる分子量分布曲線を図 2に 不す。
比較例 2
公知のメタロセン触媒を使用して製造された市販のホモポリプロピレ ン (商品名 : Acheive ( R ) 3825、 ェクソン化学社製) の物性測定結果は、 重量平均分子量/数平均分子量比 (Mw Z M n ) が 1 . 95、 融点 (Tm ) が 148. 9°C、 熱変形温度 (HDT) が 112°C、 メルトフローレート (MFR) が 28 g Z 10min、 結晶化温度 (Tc) が 110. 4°C、 曲げ弾性率は 1140MPaであつ o
したがって、 Tmと HDTとの差は 36. 9°C、 また、 Tmに対する曲げ弾性率 の比は 7. 66と算出される。
市販のプロピレン重合体の GPCによる分子量分布曲線を図 3に示す。 発明の効果
上記実施例に示したように本発明の多分散性プロピレン重合体は、 低 融点を有するので、 低温度での成形性に優れ、 またフィルム等に応用し た場合にはヒートシール温度を低下させることができる。 また、 この多 分散性プロピレン重合体から成形された製品は高い剛性と耐熱性を有す したがって、 本発明の多分散性プロピレン重合体は、 成形用プロピレ ン重合体として各種の成形品に好適に使用することができる。
また、 本発明のプロピレン重合体の製造方法は、 重合を通して、 重合 条件を段階的に単純な方法で変化させる多段重合であり、 その工程は大 幅に合理化されている。

Claims

請 求 の 範 囲
. 微粒子状担体に遷移金属化合物およびアルミノキサンまたはそれら の反応生成物が担持されたメタロセン担持型触媒および有機アルミ二 ゥム化合物の存在下、 重合条件を段階的に変化させる多段重合により、 プロピレンモノマーまたはプロピレンとその他のォレフィ ンとの混合 モノマーを重合させて製造され、 重量平均分子量 Z数平均分子量比 (Mw/Mn) が 4. 0以上、 融点 (Tm) が 165°C以下、 および融点 (Tm) と 熱変形温度 (HDT) との差が 30°C以下であることを特徴とする多分散 性プロピレン重合体。
. 融点 (Tm) に対する曲げ弾性率の比が 9以上である請求項 1記載の プロピレン重合体。
. プロピレン重合体が、 プロピレン単独重合体、 プロピレン単位を 50 重量%以上含有するプロピレンとプロピレン以外のォレフィ ンとのラ ンダム共重合体またはプロック共重合体である請求項 1または 2記載 のプロピレン重合体。
. プロピレンモノマーまたはプロピレンとその他のォレフィ ンとの混 合モノマーを、 微粒子状担体にチタノセン、 ジルコノセンおよびハフ ノセンよりなる群から選択される遷移金属化合物およびアルミノキサ ンまたはそれらの反応生成物が担持されたメタロセン担持型触媒およ び有機アルミニウム化合物の存在下に、 重合条件を段階的に変化させ る多段重合により重合させることを特徴とする請求項 1〜3に記載の プロピレン重合体の製造方法。
. 段階的に変化させる重合条件が、 プロピレンモノマー 水素モル比 である請求項 4記載の製造方法。
. 段階的に変化させる重合条件が、 直列に配置された複数の重合反応 器にそれぞれの重合条件として設定される請求項 4記載の製造方法。. 遷移金属化合物が、 メソ体を含んでいてもよいジメチルシリ レン ( 2, 3, 5— トリメチルシクロペンタジェニル) (2' , 4', 5' — トリメチ ルシクロペンタジェニル) ジルコニウムジクロリ ド、 ジメチルシリ レ ンビス (2—メチル一 4—フヱニルインデニル) ジルコニウムジクロ リ ドおよびジメチルシリ レンビス (2—メチル一4, 5—ベンゾインデ ニル) ジルコニウムジクロリ ドよりなる群から選択される請求項 4〜 6のいずれかに記載の製造方法。
PCT/JP1998/003613 1997-08-15 1998-08-13 Polypropylene polydisperse et procede de production associe WO1999009076A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98937812A EP1004603B1 (en) 1997-08-15 1998-08-13 Polydisperse propylene polymer and process for producing the same
US09/485,617 US6441111B1 (en) 1997-08-15 1998-08-13 Polydisperse propylene polymer and process for producing the same
DE69810781T DE69810781T2 (de) 1997-08-15 1998-08-13 Polydisperses propylenpolymer und verfahren zu dessen herstellung
JP2000509751A JP4119607B2 (ja) 1997-08-15 1998-08-13 多分散性プロピレン重合体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/220334 1997-08-15
JP22033497 1997-08-15

Publications (1)

Publication Number Publication Date
WO1999009076A1 true WO1999009076A1 (fr) 1999-02-25

Family

ID=16749527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003613 WO1999009076A1 (fr) 1997-08-15 1998-08-13 Polypropylene polydisperse et procede de production associe

Country Status (5)

Country Link
US (1) US6441111B1 (ja)
EP (1) EP1004603B1 (ja)
JP (1) JP4119607B2 (ja)
DE (1) DE69810781T2 (ja)
WO (1) WO1999009076A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515629A (ja) * 1999-11-29 2003-05-07 バーゼル・ポリオレフィン・ゲーエムベーハー 広範囲分子量分布を示しかつ短いイソタクチック配列長さを有する高分子量ポリプロピレン
JP2004528421A (ja) * 2001-03-06 2004-09-16 エクソンモービル・ケミカル・パテンツ・インク フィルム用プロピレンポリマー
JP2010106172A (ja) * 2008-10-31 2010-05-13 Japan Polypropylene Corp 射出成形用プロピレン系樹脂組成物およびその射出成形体
JP2010518225A (ja) * 2007-02-05 2010-05-27 ユニベーション・テクノロジーズ・エルエルシー ポリマー特性を制御する方法
JP2010241925A (ja) * 2009-04-03 2010-10-28 Japan Polypropylene Corp プロピレン系重合体の製造方法及びその方法により製造されるプロピレン系重合体
JP2015178568A (ja) * 2014-03-19 2015-10-08 株式会社プライムポリマー プロピレン系ブロック共重合体
WO2018081480A1 (en) 2016-10-26 2018-05-03 Acuitas Therapeutics, Inc. Lipid nanoparticle formulations
WO2020061426A2 (en) 2018-09-21 2020-03-26 Acuitas Therapeutics, Inc. Systems and methods for manufacturing lipid nanoparticles and liposomes
WO2021030701A1 (en) 2019-08-14 2021-02-18 Acuitas Therapeutics, Inc. Improved lipid nanoparticles for delivery of nucleic acids
JP2022528411A (ja) * 2019-06-11 2022-06-10 エルジー・ケム・リミテッド プロピレン-エチレンランダム共重合体
WO2022215036A1 (en) 2021-04-08 2022-10-13 Vaxthera Sas Coronavirus vaccine comprising a mosaic protein
US12257317B2 (en) 2017-03-17 2025-03-25 Newcastle University Adeno-associated virus vector delivery of a fragment of micro-dystrophin to treat muscular dystrophy

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022142B2 (en) * 2008-12-15 2011-09-20 Exxonmobil Chemical Patents Inc. Thermoplastic olefin compositions
JP5201784B2 (ja) * 2005-07-01 2013-06-05 旭有機材工業株式会社 配管部材用プロピレン系樹脂組成物並びにそれを用いて成形した配管部材および多層配管部材
JP5241111B2 (ja) * 2007-02-16 2013-07-17 旭有機材工業株式会社 プロピレン系樹脂組成物及びそれを用いて成形した配管部材
US8101685B2 (en) 2008-12-15 2012-01-24 Exxonmobil Chemical Patents Inc. Thermoplastic elastomer polyolefin in-reactor blends and molded articles therefrom
US8410217B2 (en) * 2008-12-15 2013-04-02 Exxonmobil Chemical Patents Inc. Thermoplastic polyolefin blends
US8093335B2 (en) * 2008-12-15 2012-01-10 Exxonmobil Chemical Patents Inc. Thermoplastic polyolefin in-reactor blends and molded articles therefrom
US8106127B2 (en) * 2008-12-15 2012-01-31 Exxonmobil Chemical Patents Inc. Heterogeneous in-reactor polymer blends
US8497325B2 (en) 2008-12-15 2013-07-30 Exxonmobil Chemical Patents Inc. Thermoplastic polyolefin blends and films therefrom
EP2216346A1 (en) * 2009-02-04 2010-08-11 Borealis AG Process for the production of polyolefins with broad molecular weight distribution
WO2012112259A2 (en) 2011-02-15 2012-08-23 Exxonmobil Chemical Patents Inc. Thermoplastic polyolefin blends

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275703A (ja) * 1990-03-26 1991-12-06 Mitsui Toatsu Chem Inc 幅広い分子量分布を有するシンジオタクチックポリ―α―オレフィンの製造方法
JPH0543624A (ja) * 1991-08-13 1993-02-23 Mitsubishi Petrochem Co Ltd ポリプロピレン微粒子の製造法
JPH0853509A (ja) * 1994-08-10 1996-02-27 Asahi Chem Ind Co Ltd ポリオレフィンの製造方法
JPH0967412A (ja) * 1995-09-04 1997-03-11 Nippon Petrochem Co Ltd 分子量分布が広いポリオレフィンの製造方法
JPH09110934A (ja) * 1995-10-20 1997-04-28 Chisso Corp プロピレン−エチレン共重合体およびその製造方法ならびにその成形品

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3443087A1 (de) 1984-11-27 1986-05-28 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von polyolefinen
JP2668732B2 (ja) 1989-06-09 1997-10-27 チッソ株式会社 オレフィン重合体製造用触媒
JP2668733B2 (ja) 1989-06-09 1997-10-27 チッソ株式会社 ポリオレフィン製造用触媒
DE4019053A1 (de) * 1990-06-15 1991-12-19 Basf Ag Polymerisate des propylens mit breitem molmassenverhaeltnis q
ATE136040T1 (de) 1991-05-27 1996-04-15 Hoechst Ag Verfahren zur herstellung von polyolefinen mit breiter molmassenverteilung
DE4120009A1 (de) 1991-06-18 1992-12-24 Basf Ag Loesliche katalysatorsysteme zur herstellung von polyalk-1-enen mit hohen molmassen
ES2093166T3 (es) * 1991-11-30 1996-12-16 Hoechst Ag Metalocenos con derivados de indenilo condensados con benzo como ligandos, procedimiento para su preparacion y su utilizacion como catalizadores.
TW294669B (ja) * 1992-06-27 1997-01-01 Hoechst Ag
JPH05239149A (ja) * 1992-11-24 1993-09-17 Mitsui Toatsu Chem Inc 高流動性射出成形用ポリプロピレン樹脂の製造方法
DE69431765T2 (de) 1993-01-11 2003-04-24 Mitsui Chemicals, Inc. Zusammensetzung von Propylen-Polymeren
WO1994028034A1 (en) 1993-05-25 1994-12-08 Exxon Chemical Patents Inc. Supported metallocene catalyst systems for the polymerization of olefins, preparation and use thereof
JP3405784B2 (ja) * 1993-09-28 2003-05-12 昭和電工株式会社 ポリオレフィンの製造方法
WO1995027740A1 (fr) * 1994-04-11 1995-10-19 Mitsui Petrochemical Industries, Ltd. Procede de production d'une composition de polymere de propylene, et composition de polymere de propylene
JPH08325327A (ja) * 1995-06-02 1996-12-10 Chisso Corp 高立体規則性ポリプロピレン
US6239058B1 (en) * 1995-07-18 2001-05-29 Fina Technology, Inc. Process for activating a metallocene catalyst supported on silica
JP3275703B2 (ja) 1996-05-20 2002-04-22 富士ゼロックス株式会社 画像形成装置の用紙搬送装置
US5739220A (en) * 1997-02-06 1998-04-14 Fina Technology, Inc. Method of olefin polymerization utilizing hydrogen pulsing, products made therefrom, and method of hydrogenation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275703A (ja) * 1990-03-26 1991-12-06 Mitsui Toatsu Chem Inc 幅広い分子量分布を有するシンジオタクチックポリ―α―オレフィンの製造方法
JPH0543624A (ja) * 1991-08-13 1993-02-23 Mitsubishi Petrochem Co Ltd ポリプロピレン微粒子の製造法
JPH0853509A (ja) * 1994-08-10 1996-02-27 Asahi Chem Ind Co Ltd ポリオレフィンの製造方法
JPH0967412A (ja) * 1995-09-04 1997-03-11 Nippon Petrochem Co Ltd 分子量分布が広いポリオレフィンの製造方法
JPH09110934A (ja) * 1995-10-20 1997-04-28 Chisso Corp プロピレン−エチレン共重合体およびその製造方法ならびにその成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1004603A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515629A (ja) * 1999-11-29 2003-05-07 バーゼル・ポリオレフィン・ゲーエムベーハー 広範囲分子量分布を示しかつ短いイソタクチック配列長さを有する高分子量ポリプロピレン
JP2004528421A (ja) * 2001-03-06 2004-09-16 エクソンモービル・ケミカル・パテンツ・インク フィルム用プロピレンポリマー
JP2010518225A (ja) * 2007-02-05 2010-05-27 ユニベーション・テクノロジーズ・エルエルシー ポリマー特性を制御する方法
JP2010106172A (ja) * 2008-10-31 2010-05-13 Japan Polypropylene Corp 射出成形用プロピレン系樹脂組成物およびその射出成形体
JP2010241925A (ja) * 2009-04-03 2010-10-28 Japan Polypropylene Corp プロピレン系重合体の製造方法及びその方法により製造されるプロピレン系重合体
JP2015178568A (ja) * 2014-03-19 2015-10-08 株式会社プライムポリマー プロピレン系ブロック共重合体
WO2018081480A1 (en) 2016-10-26 2018-05-03 Acuitas Therapeutics, Inc. Lipid nanoparticle formulations
US12257317B2 (en) 2017-03-17 2025-03-25 Newcastle University Adeno-associated virus vector delivery of a fragment of micro-dystrophin to treat muscular dystrophy
WO2020061426A2 (en) 2018-09-21 2020-03-26 Acuitas Therapeutics, Inc. Systems and methods for manufacturing lipid nanoparticles and liposomes
JP2022528411A (ja) * 2019-06-11 2022-06-10 エルジー・ケム・リミテッド プロピレン-エチレンランダム共重合体
US12065560B2 (en) 2019-06-11 2024-08-20 Lg Chem, Ltd. Propylene-ethylene random copolymer
WO2021030701A1 (en) 2019-08-14 2021-02-18 Acuitas Therapeutics, Inc. Improved lipid nanoparticles for delivery of nucleic acids
WO2022215036A1 (en) 2021-04-08 2022-10-13 Vaxthera Sas Coronavirus vaccine comprising a mosaic protein
US12005114B2 (en) 2021-04-08 2024-06-11 Vaxthera Sas Coronavirus vaccine comprising a mosaic protein

Also Published As

Publication number Publication date
EP1004603A4 (en) 2001-07-25
US6441111B1 (en) 2002-08-27
JP4119607B2 (ja) 2008-07-16
DE69810781D1 (de) 2003-02-20
DE69810781T2 (de) 2003-09-25
EP1004603B1 (en) 2003-01-15
EP1004603A1 (en) 2000-05-31

Similar Documents

Publication Publication Date Title
US6303698B1 (en) Propylene copolymer and process for the production thereof
JP4119607B2 (ja) 多分散性プロピレン重合体およびその製造方法
US5124418A (en) Supported polymerization catalyst
US4808561A (en) Supported polymerization catalyst
US4897455A (en) Polymerization process
US6248829B1 (en) Polymers of propene
EP0206794B2 (en) Supported polymerization catalyst
US5077255A (en) New supported polymerization catalyst
US4701432A (en) Supported polymerization catalyst
SK112495A3 (en) Method of manufacture of polyolefine with broad distribution of molecular mass by using of catalytic system
EP2129696A2 (en) Polymer supported metallocene catalyst composition for polymerizing olefins
JP3292649B2 (ja) α−オレフィンの単独重合体又は共重合体の製造方法
JP3196419B2 (ja) アルミニウムオキシ化合物及びそれを含有する重合用触媒
JP4487226B2 (ja) プロピレン/オレフィン・ブロック共重合体
JP3264338B2 (ja) 特定のアルミニウム化合物を含有する重合用触媒
WO2000008080A1 (fr) Copolymere sequence propylene//propylene/olefine et son procede de production
JPH08217816A (ja) 立体規則性ポリプロピレンの製造方法
JPH08165310A (ja) ポリオレフィン製造用触媒成分、該成分を含むポリオレフィン製造用触媒及びポリオレフィンの製造方法
EP2003150A1 (en) A process for preparation of polyolefin alloy
CN116710495A (zh) 混合催化剂组合物、包含其的催化剂和使用其制备基于烯烃的聚合物的方法
JP2008121030A (ja) 多分散性プロピレン重合体およびその製造方法
JP3444185B2 (ja) オレフィン(共)重合体組成物及びその製造方法
JP2001064329A (ja) プロピレン系共重合体およびその製造方法
US20080312390A1 (en) Process for preparation of polyolefin alloy
JP3070824B2 (ja) 二軸延伸フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09485617

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998937812

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998937812

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998937812

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998937812

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载