+

WO1999009053A1 - Derives de phenylethylamine - Google Patents

Derives de phenylethylamine Download PDF

Info

Publication number
WO1999009053A1
WO1999009053A1 PCT/JP1998/003627 JP9803627W WO9909053A1 WO 1999009053 A1 WO1999009053 A1 WO 1999009053A1 JP 9803627 W JP9803627 W JP 9803627W WO 9909053 A1 WO9909053 A1 WO 9909053A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
tbu
substituent
linear
Prior art date
Application number
PCT/JP1998/003627
Other languages
English (en)
French (fr)
Inventor
Ken-Ichiro Kotake
Toshiro Kozono
Tsutomu Sato
Hisanori Takanashi
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to EP98937826A priority Critical patent/EP1006122B1/en
Priority to US09/485,620 priority patent/US6255285B1/en
Priority to AU86490/98A priority patent/AU741216B2/en
Priority to KR1020007001529A priority patent/KR20010022924A/ko
Priority to DE69840296T priority patent/DE69840296D1/de
Priority to CA002301687A priority patent/CA2301687A1/en
Publication of WO1999009053A1 publication Critical patent/WO1999009053A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0815Tripeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0202Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-X-X-C(=0)-, X being an optionally substituted carbon atom or a heteroatom, e.g. beta-amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06078Dipeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0819Tripeptides with the first amino acid being acidic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0821Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a phenethylamine derivative which exhibits motilin receptor antagonistic activity and is useful as a medicament.
  • Motilin one of the gastrointestinal hormones, is a linear peptide composed of 22 amino acids and is well known to regulate gastrointestinal motility in mammals including humans. It has been reported that exogenous motilin induces gastric emptying in humans and dogs, causing contractions similar to fasting transmissible yields (HCI nterdigestive Migrating Contractions, IMC) (I toheta). 1., Scand. J. G astroentero 1., 11. 93-110 (1976); Peeterseta 1., G astroenterology 102, 97-101 (1992)). For this reason, erythromycin derivatives, motilin agonists, are being developed as gastrointestinal motility promoters (S atohetal., J. Pharmaco 1. Exp. Thera p., 271, 574). -579 (1994); L arteyetal, J. Med. Chem., 38, 1793—1798 (1995); Drug of Future, 19, 910—912 (1994)) o
  • the motilin receptor was known to mainly exist in the duodenum, but recently it was also found to be present in the large intestine of the lower gastrointestinal tract (Wi 11 i ameta, Am. J. Phy siol., 262. G50-G55 (1992)), it has been shown that motilin may be involved not only in the upper gastrointestinal tract but also in the lower gastrointestinal tract.
  • motilin receptor antagonists may be able to ameliorate conditions with elevated blood motilin, such as irritable bowel syndrome. Disclosure of the invention
  • An object of the present invention is to provide a phenethylamine derivative which has a motilin receptor antagonistic effect and is useful as a medicine.
  • the present inventors have conducted intensive studies for the purpose of developing a compound having an excellent motilin receptor gonist action.
  • the phenethylamine derivative represented by the general formula (1) was converted into an excellent motilin receptor He found that he was a gonist, and completed the present invention based on this finding.
  • the present invention relates to the general formula (1)
  • A represents an amino acid residue or a ⁇ -substituted amino acid residue.
  • one bond is formed with one NR 2 — to form an amide.
  • Is R 6 —CO— a linear or branched alkyl group having 2 to 7 carbon atoms which may have a substituent, a straight-chain or branched alkyl group having 3 to 8 carbon atoms which may have a substituent. It represents a chain or branched alkenyl group, a linear or branched alkynyl group having 3 to 8 carbon atoms which may have a substituent.
  • R 2 represents a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms which may have a substituent.
  • R 3 represents one CO—R 7 , a linear or branched alkyl group having 1 to 5 carbon atoms which may have a substituent, or a carbon atom having 2 to 5 carbon atoms which may have a substituent.
  • R 4 is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms, A branched alkynyl group, or a general formula (2)
  • R 5 represents a hydrogen atom or one OR 8 .
  • Re is a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, or a linear or branched alkyl group having 2 to 7 carbon atoms which may have a substituent.
  • R 7 is a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms which may have a substituent, a cycloalkyl group having 3 to 7 carbon atoms, —N (R 12 ) R 13, represents an OR 14.
  • R 8 represents a hydrogen atom or a linear alkyl group having 1 to 4 carbon atoms.
  • R 9 and R L 0 are the same or different and each have a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, which may have a substituent, and a substituent.
  • Ru is a linear or branched alkyl group having 1 to 5 carbon atoms which may have a substituent, a linear or branched alkyl group having 2 to 6 carbon atoms which may have a substituent.
  • a chained alkenyl group, a linear or branched alkynyl group having 2 to 6 carbon atoms which may have a substituent, a carbon atom which may be fused to a benzene ring or a heterocyclic ring having 3 to 6 carbon atoms Represents a cycloalkyl group or an aromatic ring having 6 to 12 carbon atoms which may have a substituent.
  • R 12 and R 13 are the same or different and each represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a cycloalkyl group having 3 to 7 carbon atoms.
  • RM represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 7 carbon atoms.
  • R 15 represents a hydrogen atom or a methyl group.
  • R 16 and R 17 together represent a cycloalkyl group or a cycloalkenyl group having 3 to 7 carbon atoms.
  • the present invention provides a drug containing the compound represented by the general formula (1) as an active ingredient. Further, the present invention provides a motilin receptor antagonist containing the above compound. Further, the present invention also provides a gastrointestinal motility inhibitor containing the above compound as an active ingredient. Furthermore, high motilin containing the above compound as an active ingredient Also provided is a therapeutic agent for bloodemia.
  • the amino acid residue in A may be any known amino acid residue, and examples thereof include ⁇ -, ⁇ -, and ⁇ -amino acid residues.
  • the ⁇ -substituted amino acid residue in A refers to a residue in which the hydrogen atom of the amino group at the ⁇ -position of the above amino acid residue is substituted.
  • substituent in the ⁇ -substituted amino acid residue include a linear or branched alkyl group having 1 to 3 carbon atoms which may be substituted with a benzene ring or the like, and a methyl group is preferable. .
  • Examples of the ⁇ -amino acid residue of the ⁇ -substituted amino acid residue in ⁇ include the amino acids described above, and include Val, Leu, Lele, Phe, Tyr, Trp, Phg, Chg g, Ch a, Ties Th i are preferred, and Val, Leu. I le, P he, Phg, Ch a are more preferred.
  • the ⁇ -substituted amino acid residues in A include ⁇ -methyl valine ( ⁇ —Me—V a 1), N-methyl leucine (N—Me—L eu), N-methyl isoleucine (N-Me-I 1 e) ), N-methylphenylalanine (N-Me-Phe), N-methyltyrosine (N_Me-Tyr), N-methyltryptophan (N-Me-Trp), N-methylphenylglycine ( N-Me-Phg), N-methylcyclohexylglycine (N-Me-Chg), N-methylcyclohexylalanine (N-Me-Cha), N-methyl tert bite-isine (N-Me — T le), N—methyl-2—Chenylalanine (N—Me—Th i), N—Me—V ai, N—Me_L eu, N-Me-I 1 e, N
  • the alkyl group of the linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent is a straight-chain or branched alkyl group having 1 to 5 carbon atoms.
  • a chain or branched alkyl group is preferred, a straight-chain or branched alkyl group having 2 to 3 carbon atoms is more preferred, and an ethyl group is particularly preferred.
  • R e - CO- of the R e carbon atoms, which may have a substituent
  • alkenyl group of the linear or branched alkenyl group having 2 to 7 carbon atoms a linear or branched alkenyl group having 4 to 6 carbon atoms is preferable.
  • R 6 of R 6 —CO— the alkynyl group of the linear or branched alkynyl group having 2 to 7 carbon atoms which may have a substituent has the number of carbon atoms 4-6 straight or branched alkynyl groups are preferred.
  • R 6 —CO— in R 6 the number of carbon atoms which may be substituted;!
  • substituent of a linear or branched alkenyl group having 2 to 6 carbon atoms, an optionally substituted linear or branched alkynyl group having 2 to 7 carbon atoms such as amino Group, methylamino group, ethylamino group, dimethylamino group, trimethylammonium group, hydroxyl group, carboxyl group, aminocarbonyl group, aminocarbonylamino group, pyridylthio group, methylthio group, phenyl group, 3-indolyl group, 4-hydroxyphenyl Group, 2-phenyl, 2-furyl, 3-imidazolyl, cyclohexyl, etc., amino, methylamino, phenyl, 3-india Ryl, 4-hydroxyphenyl, 2-phenyl,
  • R 6 CO—, the number of carbon atoms which may be substituted in R 6
  • Examples of the straight-chain or branched alkyl group having 1 to 6 include a straight-chain or branched-chain alkyl group having 2 or 3 carbon atoms and having one or more of the same or different substituents. Groups are preferred. Among them, 1-amino-2-phenylethyl, 1-1-methylamino-2-phenylethyl, 1-amino-2- (3-indolyl) ethyl, and 11-amino-2- (4-hydroxy) ) A phenylethyl group, a 1-amino-2- (2-phenyl) ethyl group, a 1-amino-2- (2-furyl) ethyl group, a 1-amino-2-cyclohexylethyl group, and a 2-phenylpropyl group are preferred, and a 1-aminopropyl group is preferred. A 2-phenylethyl group is particularly preferred.
  • R 6 of R 6 —CO— in R 6 has the above substituent.
  • a linear or branched alkenyl group having 4 to 6 carbon atoms is preferred.
  • R 6 of R 6 —CO— the linear or branched alkynyl group having 2 to 7 carbon atoms which may have a substituent includes the carbon atom having the above substituent 4-6 straight or branched alkynyl groups are preferred.
  • the heterocyclic benzene ring or a heterocyclic ring and cycloalkyl group fused with carbon atoms and optionally 3-7 for example, it is selected from 0, N or S Examples thereof include an aliphatic or aromatic 5- or 6-membered ring containing one or two hetero atoms, and specific examples include pyridine, pyrazine, furan, thiophene, pyrrole, and imidazole.
  • the cycloalkyl group having 3 to 7 carbon atoms which may be condensed with a benzene ring or a heterocyclic ring is a cycloalkyl group having 3 to 7 carbon atoms which is condensed with a benzene ring.
  • Alkyl groups are preferred, and among them, 1-benzocyclobutyl group is preferred.
  • R 6 CO—, the number of carbon atoms which may be substituted in R 6
  • aromatic ring of 6 to 12 aromatic rings examples include a benzene ring and a naphthalene ring.
  • R 6 of R 6 —CO— as the substituent of the optionally substituted aromatic ring having 6 to 12 carbon atoms, a hydroxyl group, a methoxy group, a phenoxy group, a benzyloxy group, a tert group —Butoxy group, amino group, methylamino group, dimethylamino group, ethylamino group, carboxyl group, methoxycarbonyl group, and the like. Further, the aromatic ring may have one or more identical or different substituents as described above.
  • the saturated or unsaturated heterocyclic heterocyclic ring having 3 to 12 carbon atoms which may have a substituent is, for example, from 0, N or S
  • An aliphatic or aromatic 5- to 10-membered monocyclic or condensed ring containing one or two selected hetero atoms can be mentioned, for example, pyrrolidine, piperidine, piperazine, tetrahydrogen. Examples include isoquinoline, pyridine, pyrazine, furan, thiophene, pyrrol, imidazole, quinolin, indone, benzimidazole, and benzofuran.
  • R 6 CO—, the number of carbon atoms which may be substituted in R 6
  • Examples of the substituent for the saturated or unsaturated heterocyclic ring having 3 to 12 include a hydroxyl group, a methoxy group, a phenoxy group, a benzyloquine group, a tert-butyloquine group, an amino group, a methylamino group, a dimethylamino group, an ethylamino group, and a carboxyl group. And methoxycarbonyl groups.
  • the heterocyclic ring may have one or more One or more of the substituents may have different substituents as described above.
  • R 6 of R 6 —CO— as the saturated or unsaturated heterocyclic ring having 3 to 12 carbon atoms which may have a substituent, one or more identical or different above-mentioned substituents
  • the above-mentioned heterocyclic ring which may have a group is mentioned.
  • a linear or branched alkyl group having 1 to 4 carbon atoms is preferable, a linear alkyl group having 1 to 2 carbon atoms is more preferable, and a methyl group is preferable. Particularly preferred.
  • the alkenyl group of the alkenyl group is preferably a straight-chain or branched alkenyl group having 3 to 6 carbon atoms.
  • the alkynyl group in the alkynyl group is preferably a linear or branched alkynyl group having 3 to 6 carbon atoms.
  • R 6 —C ⁇ C—R 6 , N (R 9 ) R 10 of R 9 and R 10 optionally having 1 to 5 carbon atoms, linear or branched Alkyl group, linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, linear chain having 2 to 6 carbon atoms which may have a substituent Or as a substituent of a branched alkynyl group, for example, an amino group, a hydroxyl group, a carboxyl group, an aminocarbonyl group, an aminocarbonylamino group, a pyridylthio group, a methylthio group, a phenyl group, and a 3-indolyl group , 4-hydroxyphenyl group, 2-phenyl group, 2-furyl group, 3-imidazolyl group, cyclohexyl group, and the like; amino group, phenyl group, 3-indolyl group, and 4-hydroxyphenyl group.
  • alkyl group, alkenyl group and alkynyl group may have one or more same or different substituents as described above.
  • a methyl group having the above substituents is preferable, and among them, a benzyl group, a 3-indolylmethyl group, a ⁇ -hydroxybenzyl group, a 2-thienylmethyl group, and a 2-furylmethyl group are preferable.
  • a cyclohexylmethyl group is preferred, and a benzyl group is particularly preferred.
  • the alkenyl group is preferably a linear or branched alkenyl group having 3 to 6 carbon atoms.
  • R 9 and R 10 the optionally substituted straight-chain or branched alkynyl group having 2 to 6 carbon atoms may be a straight-chain or branched-chain alkynyl group having 3 to 6 carbon atoms. Alkynyl groups are preferred.
  • a cycloalkyl group having 3 to 6 carbon atoms which may be condensed with a benzene ring or a heterocyclic ring in R 9 and R 10 of one N (R 9 ) R 10 in R 6 of R 6 —CO—
  • the heterocyclic ring include an aliphatic or aromatic 5- or 6-membered ring containing one or two hetero atoms selected from 0, N or S, and specifically, pyridine, pyrazine, Furan, thiophene, pyrrole, imidazole, and the like.
  • R 6 - in R 6 of CO- one N (R 9) in which R 9 and R 10 of R 10, a benzene ring or heterocyclic ring fused even if a good 3 to 6 carbon atoms consequent opening alkyl group Is a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, or a cyclohexyl group.
  • alkyl group include a cycloalkyl group having 3 to 6 carbon atoms which may be condensed with a benzene ring or the above heterocyclic ring.
  • N (R 9 ) R 10 at R 9 and R 10 examples of the aromatic ring having 6 to 12 carbon atoms which may have a substituent include a benzene ring and a naphthalene ring.
  • the aromatic ring may have one or more identical or different substituents as described above.
  • R 6 - CO- in R e of one N (R 9) R 9 and R 10 of R 10 has a definition as above, as an N (R 9) R 10 is Benjiruamino group, A benzylmethylamino group is preferred.
  • R 6 - in C 0- of R 6, in the RH one Oru as alkyl Le group linear or branched alkyl group having 1 to 5 carbon atoms which may have a substituent A linear or branched alkyl group having 1 to 4 carbon atoms is preferable, a linear alkyl group having 1 to 2 carbon atoms is more preferable, and a methyl group is particularly preferable.
  • R 6 in R 6 -CO- one of OR U of R TL, as an alkenyl group of straight or branched chain alkenyl group which may carbon atoms 2-6 may have a substituent Is preferably a linear or branched alkenyl group having 3 to 6 carbon atoms.
  • R 6 of R 6 —CO— at RH of one ORH, an alkynyl group of a linear or branched alkynyl group having 2 to 6 carbon atoms which may have a substituent is A straight-chain or branched alkynyl group having 3 to 6 carbon atoms is preferred.
  • R 6 - in R 6 of CO- have at [one OR u, straight-chain or branched alkyl group having 1 to 5 carbon atoms which may have a substituent, a substituent A straight-chain or branched alkenyl group having 2 to 6 carbon atoms which may be substituted; a straight-chain or branched alkynyl group having 2 to 6 carbon atoms which may have a substituent; Examples include, for example, an amino group, a hydroxyl group, a carboxyl group, Group, aminocarbonylamino group, pyridylthio group, methylthio group, phenyl group,
  • 3-indolyl 4-hydroxyphenyl, 2-phenyl, 2-furyl, 3-imidazolyl, cyclohexyl, etc., amino, phenyl, 3-indolyl, 4- Hydroxyphenyl, 2-phenyl, 2-furyl, and cyclohexyl are preferred, and phenyl is more preferred.
  • the above-mentioned alkyl group, alkenyl group and alkynyl group may have one or more same or different above-mentioned substituents.
  • R 6 of R 6 —CO— in R 6 the straight-chain or branched alkyl group having 1 to 5 carbon atoms which may have a substituent in the RH of ORH is the above-mentioned substituent.
  • Preferred is a methyl group having benzyl group, 3-benzyloxy group, p-hydroxybenzyl group, 2-phenylmethyl group, 2-furylmethyl group, and cyclohexylmethyl group. Particularly preferred.
  • R 6 —CO— in R 6 in one RH of ORH, the straight-chain or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent has carbon atoms
  • a straight-chain or branched alkenyl group of 3 to 6 is preferred.
  • R 6 - in R 6 of CO- one at RH of OR n, as linear or partial skill chain alkynyl group having 2 to 6 carbon atoms which may have a substituent, 3 carbon atoms Preferred are straight-chain or branched alkynyl groups of from 6 to 6.
  • R 6 - in CO- of R 6, in one OR of R u as double heterocycle benzene ring or a heterocyclic ring condensed with even if good 3 to 6 carbon atoms a cycloalkyl group, for example, An aliphatic or aromatic 5- or 6-membered ring containing one or two heteroatoms selected from, 0, N or S, specifically, pyridine, pyrazine, furan, thiophene, pyrrole, imidazole , And the like.
  • R 6 - in C 0- of R 6, in one ORM of R u, and a cycloalkyl group of benzene ring or a heterocyclic ring condensed with even if good 3 to 6 carbon atoms a cycloalkyl group Refers to cyclopropyl group, cyclobutyl group, cyclopentyl group, and hexyl group.
  • R E - CO- in R E of, and in RH one Oru, benzene ring or a heterocyclic ring condensed with good even if L, a cycloalkyl group having 3 to 6 carbon atoms And a cycloalkyl group having 3 to 6 carbon atoms which may be condensed with a benzene ring or the above heterocyclic ring.
  • R 6 - in R 6 of CO- in an OR of R u, the aromatic rings of the aromatic ring having 6 to 12 carbon atoms which may have a substituent, a benzene ring, Na Futaren ring like Can be
  • the substituent of the optionally substituted aromatic ring having 6 to 12 carbon atoms in one OR of R 6 may be a hydroxyl group, a methoxy group, a phenoxy group, A benzyloxy group, a tert-butyloxy group, an amino group, a methylamino group, a dimethylamino group, an ethylamino group, a carboxyl group, a methoxycarbonyl group, and the like.
  • the aromatic ring may have one or more identical or different substituents as described above.
  • R 6 —CO— in R 6 in one RH at ORH, as the optionally substituted aromatic ring having 6 to 12 carbon atoms, one or more identical or different aromatic rings
  • the optionally substituted aromatic ring having 6 to 12 carbon atoms one or more identical or different aromatic rings
  • R 6 - in C 0- of R 6, has a definition as above for one Oru, An OR 8, Benjiruokishi group.
  • R 6 - CO- of R 6 is a force having a definition as above, as R 6 is
  • a 2-phenylpropyl group, a 1-benzocyclobutyl group, a benzylamino group and a benzyloxy group are preferred, and a 1-amino-2-phenylethyl group is particularly preferred.
  • the alkyl group of the linear or branched alkyl group having 2 to 7 carbon atoms which may have a substituent includes a linear or branched alkyl group having 3 to 4 carbon atoms.
  • a propyl group is particularly preferred.
  • R 3 may have a substituent L, and the alkenyl group of the linear or branched alkenyl group having 3 to 8 carbon atoms may be a linear or branched alkenyl group having 4 to 8 carbon atoms. Alkenyl groups are preferred, and straight-chain or branched alkenyl groups having 5 to 7 carbon atoms are more preferred.
  • R 3 which may have a substituent, may be a straight-chain or branched alkynyl group having 3 to 8 carbon atoms, wherein the alkynyl group is a straight-chain or branched-chain alkynyl group having 3 to 7 carbon atoms.
  • An alkynyl group is preferable, and a linear or branched alkynyl group having 5 to 7 carbon atoms is more preferable.
  • Examples of the substituent of a linear alkenyl group or a linear or branched alkynyl group having 3 to 8 carbon atoms which may have a substituent include an amino group, a methylamino group, an ethylamino group, and a dimethylamino group.
  • alkyl group, alkenyl group and alkynyl group may have one or more same or different substituents described above.
  • the linear or branched alkyl group having 2 to 7 carbon atoms which may have a substituent includes one or more of the same or different carbon atoms having the same or different substituents.
  • Preferred are straight-chain or branched-chain alkyl groups of from 2 to 4, especially 2-amino-3-phenylpropyl, 2-amino-3- (3-indolyl) propyl, 2-amino-3- (4-hydroquin) Preferred are phenylpropyl, 2-amino-3- (2-phenyl) propyl, 2-amino-3- (2-furyl) propyl, 2-amino-3-cyclohexylpropyl and 3-phenylbutyl, and 2-amino-butyl.
  • a 3-phenylpropyl group is particularly preferred.
  • the linear or branched alkenyl group having 3 to 8 carbon atoms which may have a substituent in R t the linear or branched alkenyl group having 4 to 8 carbon atoms having the substituent may be used. Is preferably a branched alkenyl group.
  • R t a substituted or unsubstituted straight-chain or branched alkynyl group having 2 to 7 carbon atoms may be the straight-chain or branched alkynyl group having 3 to 7 carbon atoms.
  • a branched alkynyl group is preferable.
  • phenylanilanyl group N—Me phenylanilanyl group, ⁇ — (3-indolyl) araninyl group, tyrosinol group, ⁇ - (2-Chenyl) araninoyl group, ⁇ - (2-furyl) araninoyl group, / 5-cyclohexylaraninyl group, 3-phenylbutyryl group, 1-benzocyclobutylcarbonyl Group, a benzylaminocarbonyl group, or a benzyloxycarbonyl group is preferable, and a phenylalaninyl group is particularly preferable (
  • the alkyl group of a linear or branched alkyl group having 1 to 3 carbon atoms which may have a substituent in R 2 represents a methyl group, an ethyl group, a propyl group, an isopropyl group, A methyl group and an ethyl group are preferred, and a methyl group is more preferred.
  • Examples of the substituent of the linear or branched alkyl group having 1 to 3 carbon atoms which may have a substituent in R 2 include a phenyl group, a hydroxyl group, an amino group, a carboxy group, and the like. Can be Further, the alkyl group may have one or more of the same or different substituents described above.
  • a methyl group is preferable.
  • R 2 has the above definition, but R 2 is preferably a hydrogen atom or a methyl group.
  • one CO—R 7 in R 7 the optionally substituted straight-chain or branched alkyl group having 1 to 5 carbon atoms may be a straight-chain alkyl group having 1 to 3 carbon atoms. Or a branched alkyl group is preferred.
  • one of CO—R 7 , R 7 may optionally have a substituent: a linear or branched alkyl group having from! 5 to 5; Hydrogen, an alkoxy group, etc., and halogen is preferable,
  • R 3 one CO—R 7 of R 7, optionally substituted carbon atoms
  • the linear or branched alkyl group having 1 to 5 include a linear or branched alkyl group having 1 to 3 carbon atoms and having one or more of the same substituents. Preferred are a fluoromethyl group and a chloromethyl group.
  • R 3 the R? One CO- R 7, the cycloalkyl group having 3 to 7 carbon atoms, preferably a cycloalkyl group having 3 to 5 carbon atoms.
  • R 3 one CO—R 7 in R 7 , one N (R 12 ) R 13 in R 12 and R 3 as a straight-chain or branched alkyl group having 1 to 4 carbon atoms, A linear alkyl group of 1-2 is preferred, and a methyl group is more preferred.
  • R 3 one CO- in R 7 in R 7, at R 12 and 3 one N (R 12) R 13, the cycloalkyl group having 3 to 7 carbon atoms, a cycloalkyl group having 3 to 5 carbon atoms Is preferred.
  • R 7 one CO- R 7, in one N (R 12) R 12 and 3 of R 13, examples of R 12 and R 13, same or different, also can properly hydrogen atom a methyl group preferable.
  • R 3 one CO—R 7 of R 7 , one N (R 12 ) R 13 R 12 and Ri 3 have the above definitions, but one N (R 9 ) R 10 is amino And a methylamino group are preferred.
  • R 3 one CO—R 7 in R 7 , one OR 14 in R 14 , the straight-chain or branched alkyl group having 1 to 6 carbon atoms is a straight-chain having 1 to 2 carbon atoms. Is preferably an alkyl group, more preferably a methyl group.
  • the R 7 one CO- R 7, at R l4 one 0R l4, a cycloalkyl group having 3 to 7 carbon atoms are cyclopropyl group, cyclobutyl group, Shikurobe pentyl group, a cyclohexyl group
  • the power of cycloheptyl is preferably cyclopropyl.
  • R 7 one C0- R 7, R 14 one 0R 14 has a definition as above, as an OR 14, hydroxyl, main butoxy group are preferable.
  • one CO—R 7 is defined as above.
  • an amide group and an N-methylamide group are preferable.
  • the alkyl group a linear or branched alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable.
  • linear or branched alkenyl group having 2 to 5 carbon atoms which may have a substituent in R 3
  • a linear or branched alkenyl group having 2 to 3 carbon atoms is preferable.
  • linear or branched alkynyl group having 2 to 5 carbon atoms which may have a substituent in R 3
  • a linear alkynyl group having 2 to 3 carbon atoms is preferable.
  • substituents of a linear alkenyl group, a linear or branched alkynyl group having 2 to 5 carbon atoms, which may have a substituent include an amino group, an alkylamino group, a hydroxyl group, an alkoxy group, Examples thereof include a carboxyl group and a halogen, and an amino group is particularly preferred.
  • the alkyl group, alkenyl group, and alkynyl group may have one or more identical or different substituents described above.
  • a methyl group and an aminomethyl group are preferable.
  • R 3 has the above definition, but R 3 is preferably an amide group, an N-methylamide group, a methyl group, or an aminomethyl group, and particularly preferably an amide group or a methyl group.
  • linear or branched alkyl group having 1 to 6 carbon atoms in R 4 a linear or branched alkyl group having 2 to 5 carbon atoms is preferable, and a branched or branched alkyl group having 3 to 5 carbon atoms.
  • a chain alkyl group is more preferred, and a tert-butyl group is particularly preferred.
  • linear or branched alkenyl group having 2 to 6 carbon atoms for R 4 a linear or branched alkenyl group having 3 to 5 carbon atoms is preferable, and a branched chain alkenyl group having 3 to 5 carbon atoms is preferable.
  • a chain alkenyl group is more preferred.
  • straight-chain or branched alkynyl group having 2 to 6 carbon atoms in R 4 a straight-chain or branched alkynyl group having 3 to 5 carbon atoms is preferable, and a branched chain alkynyl group having 3 to 5 carbon atoms is preferable.
  • a chain alkynyl group is more preferred.
  • R 15 in R 4 in the general formula (2) a methyl group is preferable.
  • a cycloalkyl group having 3 to 7 carbon atoms formed by R 16 and R 17 in R 4 in general formula (2) together a cycloalkyl group having 3 to 5 carbon atoms is preferable.
  • the cycloalkenyl group having 3 to 7 carbon atoms formed by R 16 and R 17 in R 4 in the general formula (2) together is preferably a cycloalkenyl group having 4 to 6 carbon atoms.
  • R 4 is preferably an isopropyl group, a tert-butyl group, a 1,1-dimethylpropyl group, a 1,1-dimethyl-2-propenyl group, and particularly preferably a tert-butyl group.
  • linear alkyl group having 1 to 4 carbon atoms in R 12 of one OR 12 in R 5 a methyl group and an ethyl group are preferable, and a methyl group is more preferable.
  • the R 5, hydroxyl, main Bok alkoxy group are preferable, a hydroxyl group is particularly preferred.
  • Salt forming acids include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, and phosphoric acid, and acetic acid, oxalic acid, maleic acid, fumaric acid, citric acid, tartaric acid, methanesulfonic acid, trifluorosulfonic acid Organic acids such as acetic acid can be mentioned.
  • the compounds of the present invention have optical isomers, and each optical isomer and a mixture thereof are all included in the present invention.
  • Is a derivative of an amino acid containing a dipeptide or a tripeptide can be performed by either a solid phase method or a liquid phase method.
  • an automatic organic synthesizer can be used, but it can also be carried out manually.
  • amino acids constituting the compounds of the present invention are commercially available and can be easily purchased. However, when they are not commercially available, generally well-known methods such as the Strecker method and the Bucherer method are used. It can be produced by a method such as acetamide oxalate ester method or a method of alkylating an amino-protected glycine ester.
  • La Nin esters are, for example, commercially available, Oh Rui tyrosine ester (Ty r one OR 14 (wherein obtainable by esterifying tyrosine, R l4 is as defined above )),
  • the substituent R 4 (where R 4 is the m-position) is obtained by the usual organic chemical method, for example, the Friedel-Crafts reaction in the presence of an acid catalyst such as a protonic acid or a Lewis acid.
  • an acid catalyst such as a protonic acid or a Lewis acid.
  • it represents the case of an alkyl group, an alkenyl group, or an alkynyl group, and can be produced by introducing the same c ) in this paragraph.
  • the introduction of the substituent R 4 is not limited to this stage, but can be performed at any possible stage in the production.
  • the p- human Dorokishi m- substituted phenyl ⁇ La Nin esters of ⁇ - Amino groups, after benzyl O Kin carbonyl protecting For example, by performing the O-alkylation, R 8 one OR 8 get those alkyl groups be able to. If R 5 is a hydrogen atom or an alkoxy group, then --alkylation is performed, and R 2 is an alkyl group Can be obtained.
  • R 2 After protecting the hydroxyl group of R 5 with a substance that can be easily removed at a later stage, for example, a benzyl group, N-alkylation and deprotection allow R 2 to be an alkyl group and R 5 to be a hydroxyl group. Can be obtained.
  • a substance that can be easily removed at a later stage for example, a benzyl group, N-alkylation and deprotection allow R 2 to be an alkyl group and R 5 to be a hydroxyl group. Can be obtained.
  • the ⁇ -amino-protected substituted phenylalanine ester can be reacted directly with the amine HN (R 12 ) R 13 or after conversion to carboxylic acid By condensing with an amine HN (R 12 ) R 13 according to a conventional method, it can be converted to an ⁇ -amino group protected substituted phenylalanine amide.
  • R 3 is a substituted alkyl group, a halogen-substituted alkyl group, a hydroxyalkyl group, an aminoalkyl group, an aldehyde or an alcohol obtained by reducing an ester of an ⁇ -amino group-protected substituted phenylalanine ester, It can be converted to a methyl group or the like.
  • ⁇ -substituted amino acids are commercially available and readily available for purchase, but when they are not commercially available, generally well-known methods, such as the reaction of ⁇ -bromocarbonate units with primary amines (J. Med. Chem., 37. 2678 (1994)), or amino-protected amino acid or its ester is treated with a base and an alkylating agent to obtain a ⁇ ⁇ ⁇ ⁇ -alkylated product. can do.
  • Amino group protection of amino acids ⁇ -amino group, A-Ala, and Abu are protected by fluorenylmethyloxycarbonyl (Fmoc) group, tert-butynecarbonyl (Boc) group, and benzylo group. It is more efficient to use a xycarbonyl (Z) group.
  • Preferred examples of the amino-protecting group in the solid phase synthesis include, for example, an Fmoc group.
  • Examples of the method for activating the carboxyl group include a method using benzotriazole-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate (BOP), a method using 0- (7-azabenzotriazole).
  • BOP benzotriazole-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate
  • BOP a method using 0- (7-azabenzotriazole.
  • HATU 3-tetramethylperonium hexafluorophosphate
  • DIC diisopropylcarpoimide
  • WS CI N-ethyl N ' — 3-Dimethylaminopropylcarbodiimide
  • DCC dicyclohexylcarbodiimide
  • DPPA diphenylphosphoryl azide
  • a method using hydroxybenzotriazole (HOBT) or N-hydroxysuccinimide (HONSu) in combination A mixed acid anhydride method using a luminate or the like, or an ⁇ -carboxyl group as an amino acid is a pen-fluorophenyl ester (OP f ⁇ ), an ⁇ -carboxyl group is a p-nitrophenyl ester ( ⁇ ) as an amino acid, There are a method using an ⁇ -carboxyl group as an amino acid using ⁇ -hydroxysuccinimide ester (0Su) and a method using each of these and ⁇ ⁇ ⁇ in combination.
  • HOBT hydroxybenzotriazole
  • HONSu N-hydroxysuccinimide
  • bases such as triethylamine (TEA), diisopropylethylamine (DIEA), N-methylmorpholine (NMM), and 4-dimethylaminopyridine (DMAP) can be added.
  • TAA triethylamine
  • DIEA diisopropylethylamine
  • NMM N-methylmorpholine
  • DMAP 4-dimethylaminopyridine
  • the compounds of the present invention can also be produced by applying the specific production methods described in the examples.
  • amino acid residues and ⁇ -amino acid residues are in L-form unless otherwise specified.
  • HPLC used was Hitachi L-6300, and the column used was Waters BONDAS PHERE 5 a C 18 300 A (300 ⁇ , 3.950 mm).
  • the eluents are as follows: solution A: distilled water with 0.1% trifluoroacetic acid (TFA), solution B: linear gradient with 0.1% TFA acetonitrile (MeCN), solution B: 0-70%, 35 minutes, flow rate 1 m Performed for 1 min and detected at 280 nm (UV).
  • Method b According to method a, linear gradient B solution: 0 to 60%, 30 minutes, flow rate 1 ml Zmin.
  • Method c According to method a, linear gradient B solution: 20 to 60%, for 40 minutes at a flow rate of 1 m1 / in.
  • Method d According to method a, the column used was Waters BONDAS PHERE 5 C18 10 OA (100 ⁇ , 3.9 x 150 mm).
  • HPLC Waters 600E or Gisone 306, Column: YMC—Pac ODS (120 ⁇ , 250 ⁇ 20 mm l.D.).
  • Mass spectrum (MS) was measured using EI-MS using Shimadzu G CMS-QP1000 or G CMS-QP 5050 A, and FAB-MS using JASCO 70-250 SEQ.
  • NMR was measured by the following f method or g method.
  • f method Measured using Bu rucher DX-500 (500 MHz).
  • g method Measured using J EOL J NM-EX-270 (270 MHz).
  • the resin used as the solid phase is a commercially available product, for example, a product of Nova Biochem.
  • Method 1 1.5 to 2 equivalents of an acid component (eg, amino acid, ⁇ -substituted amino acid, carboxylic acid), 3 equivalents of ⁇ , 3 equivalents of ⁇ , and 0.1 mm of resin Using 1 ⁇ , N-dimethylformamide (DMF) of 31111 and 6 equivalents of NMM, shaking for 1.5 to 2 hours.
  • an acid component eg, amino acid, ⁇ -substituted amino acid, carboxylic acid
  • 3 equivalents of ⁇ 3 equivalents of ⁇ , and 0.1 mm of resin
  • DMF N-dimethylformamide
  • Method 2 Using 1.5 to 2 equivalents of the acid component, 3 equivalents of HATU, 3 ml of DMF for 0.1 mm of resin, and 6 equivalents of NMM for 1 How to shake for 5 to 2 hours.
  • Method 3 Using 1.5 to 2 equivalents of acid component to resin, 3 equivalents of HOBT, 3 ml of DMF to 0.1 lmmo of resin, and 3.2 equivalents of DIC, shake for 2 hours how to.
  • Method 4 Using 5 equivalents of acid component to resin, 0.1 equivalent of DMAP, 0.1 ml of resin, 3 ml of DMF to 1 lmmo, and 5 equivalents of DIC and shaking for 4 hours Law.
  • Method 5 A method in which 2 equivalents of an active ester of an acid component (for example, P fp ester), 3 equivalents of HOBT, and 0.1 mmo 1 of resin are shaken for 2 hours with 0.1 ml of DMF.
  • an active ester of an acid component for example, P fp ester
  • 3 equivalents of HOBT for example, 3 equivalents of HOBT
  • 0.1 mmo 1 of resin for example, 3 equivalents of HOBT, and 0.1 mmo 1 of resin are shaken for 2 hours with 0.1 ml of DMF.
  • Method 6 Use 10 equivalents of substituted or unsubstituted bromoacetic acid, 0.1 ml of resin, 3 ml of DMF, and 13 equivalents of DIC, shake for 30 minutes, filter, and reacylate under the same conditions. After that, repeat washing with DMF, add 60 equivalents of amine dissolved in dimethyl sulfoxide (DMSO) and shake for 2 hours. Law.
  • a resin to be used as a solid phase for example, Rink Amide Resin
  • an appropriate solvent for example, DMF
  • 20% piperidine ZDMF is added thereto and shaken. Wash repeatedly with DMF.
  • the acid component is force-pulled by the first method.
  • This operation is repeated by the number of acid components to be bound by using the force coupling method of the first to sixth methods.
  • the order of deprotection and cleaving of the obtained resin can be appropriately changed or performed simultaneously.
  • the clean-vaging process is completed by shaking in a 95% aqueous TFA solution at room temperature for 30 to 45 minutes. After the completion of the cleavage step, the resin is removed by filtration, and the filtrate is concentrated under reduced pressure and dried to obtain a crude phenylalanine derivative.
  • the deprotection of an amino acid in solid phase synthesis can be specifically performed, for example, by the following method.
  • Fmoc group when resin 0.025 to 0.1 mmo 1 is used, 0.1 mmo 1 of resin is mixed with 5 ml of 20% pyridine / DMF, shaken for 5 minutes, and filtered. After adding a new 5 m1 and shaking for 20 to 30 minutes, it can be removed by repeating filtration and DMF washing.
  • 0.2 mmo 1 resin add 7 ml of 20% piperidine ZDMF and filter for 5 minutes. Then, add 7 ml and shake for 30-45 minutes, then remove by repeating filtration and DMF washing.
  • the Boc, tBu, and Trt groups can be removed simultaneously with the cleaving in the cleaving process.
  • Example 1 The same operation as in Example 1 (3) was performed using Fmoc-Tic-OH in place of Fmoc-Hyp-OH of Example 1, to obtain 34.4 mg of the TFA salt of the title compound.
  • Example 1 The same operation as in Example 1 (3) was performed using Fmoc-Thz-OH in place of Fmoc-Hyp-OH of Example 1, to obtain 20.2 mg of the TFA salt of the title compound.
  • Example 1 (3) The same operation as in Example 1 (3) was performed, except that Fmo c—2—AB z—OH was used instead of Fmo c—Hyp—OH in Example 1, to obtain 6.9 mg of the TFA salt of the title compound. .
  • Example 1 The same operation as in Example 1 (3) was performed using Fmoc—Phg—OH instead of Fmoc—Hyp—OH in Example 1 (however, Fmoc—Phg—OH, Boc— Power coupling of P he—OH was performed by the first method.), 17.7 mg of the TFA salt of the title compound was obtained.
  • Example 6 (2) The same operation as in Example 6 (2) was carried out except that Fmo c—Pro—OH ⁇ AcOEt was used instead of Fmo c—D—Hyp—OH in Example 6 (2). 27 mg of T?
  • Example 6 (2) The same operation as in Example 6 (2) was performed using Fmo c—D—Pro—OH ⁇ AcOEt instead of Fmo c—D—Hyp—OH in Example 6 (2). Compound Yield 33.6 mg.
  • Fmoc—Phg—OH of Example 5 Fmoc—Phe—OH was used as the resin, and Rin Amide Resin (0.47 mmo 1 / g) 2 13 mg (0. Immo 1 ) was carried out in the same manner as in Example 5 to obtain 20.5 mg of the TFA salt of the title compound.
  • Fmoc-Va1OH instead of Fmoc-Phg-OH of Example 5 was used as a resin.
  • Rink Amide Re sin (0.47 mmol / g) 213 mg (0. Immo1)
  • the same operation as in Example 5 was performed using to obtain 28.4 mg of the TFA salt of the title compound.
  • Example 6 (2) The same operation as in Example 6 (2) was performed using Fmo c—A la—OH ⁇ H 20 instead of Fmo c—D—Hyp—OH in Example 6 (2) (however, -. a coupling of a la- ⁇ ⁇ ⁇ 2 0, Fmo c- Ph e- OH is having conducted in the first method), to obtain a TF a salt 27. 8 mg of the title compound.
  • Example 13 The same procedure as in Example 1 3 with Fmo c- L eu- OH instead of Fmo c- A la -OH ⁇ H 2 0
  • Example 13 the TFA salt 3 1. 6 mg of the title compound Obtained.
  • Example 6 Example 2 was repeated using Fmoc-Va1—OH instead of Fmoc—Phe—OH and Fmoc—Phg—OH instead of Fmoc—D—Hyp. 6 Perform the same operation as in (2) (however, coupling of Fmoc-Val-OH and Fmoc-Phg-OH was performed in the first method), and the TFA salt of the title compound was obtained. . 2 mg were obtained.
  • Example 6 Example 2 was repeated using Fmo c—L eu—OH instead of Fmo c—P he—OH and Fmo c—P hg— ⁇ H instead of Fmo c—D—Hyp. 6 Perform the same operation as in (2) (however, the force coupling of Fmoc—Leu—OH and Fmoc—Phg—OH was performed in the first method), and the TFA salt of the title compound was obtained. 3 mg was obtained.
  • Boc-Phe-OH was coupled by the second method. After completion of the reaction, filtration, DMF washing, and DCM washing were performed, and cleaving was performed with 3 ml of a 95% TFA aqueous solution. The reaction solution was concentrated under reduced pressure, and the residue was dissolved in 2 ml of DMF and purified by HP LC. The fractions were collectively concentrated and freeze-dried to obtain 21.9 mg (18A) and 12.9 mg (18B) of the TFA salt of the title compound, respectively.
  • Rinnk Amide Re sin (0.47mmol / g) 213mg (0.lmmol) was put in the reaction vessel, the resin was swollen with DMF, and then Fmoc treated with piperidine. .
  • Fmoc-Tyr (3-tBu) -OH was coupled by the first method. After filtration and DMF washing, Fmoc treatment was performed with piperidine. Next, coupling was performed using ⁇ -promophenylacetic acid and benzylamine according to the sixth method to construct a ⁇ -substituted amino acid residue.
  • Example 5 The same operation as in Example 5 was performed using 274 mg (0.2 mmo 1) of Wag Resin (0.73 mmo 1 / g) as the resin of Example 5 (however, Fmo c-Ty r (3-t BU) —OH was subjected to force coupling according to Method 4.), to obtain 31.2 mg of the TFA salt of the title compound.
  • Fmoc-Phg-OH In place of Fmoc-Phg-OH in Example 5, Fmoc-Tyr (tBu) -OH was used as a resin, and Rink Amide Resin (0.47 mmo1 / g) 107 mg (0 Perform the same operation as in Example 5 using .05mmo 1) (however, the reaction solution after clear bay treatment was concentrated under reduced pressure, the residue was dissolved in 3 ml of methanol, and then again under reduced pressure. Then, 15.8 mg of TFA salt of the title compound was obtained.
  • Example 21 The same operation as in Example 21 was carried out using Fmoc-Hph-OH instead of Fmoc-Tyr (tBu) -OH of Example 21, to obtain 19.4 mg of the TFA salt of the title compound.
  • Fmoc-Hph-OH instead of Fmoc-Tyr (tBu) -OH of Example 21, to obtain 19.4 mg of the TFA salt of the title compound.
  • Example 21 Fmo c—Ty r (t Bu) —OH instead of Fmo c—Th i — The same operation as in Example 21 was carried out using OH to obtain 21.5 ′ mg of the TFA salt of the title compound.
  • Example 21 The same operation as in Example 21 was performed using F moc—S—A 1 a—OH instead of Fmo c—Ty r (tBu) —0H of Example 21 to obtain the title compound TF A 29.4 mg of the salt were obtained.
  • Example 21 The same operation as in Example 21 was performed using Fmoc-a-Abu-OH instead of Fmoc-Tyr (tBu) -OH of Example 21 to give the TFA salt of the title compound. 4 mg were obtained.
  • Example 21 The same operation as in Example 21 was carried out, except that Fmoc—Tyr (tBu) -10H in Example 21 was replaced by Fmoc—Aib—OH, to give the TFA salt of the title compound 27. 2 mg were obtained.
  • Example 21 The same operation as in Example 21 was performed using Fmo c—I 1 e -OP fp instead of Fmo c—Ty r (tBu) —0H in Example 21 (however, Fmo c—I 1 e — Coupling of OP fp was performed by Method 5.), 18.9 mg of the TFA salt of the title compound was obtained.
  • Example 21 The same operation as in Example 21 was performed using Fmoc-Chg-OH instead of Fmoc-Tyr (tBu) -10H of Example 21.
  • the crude product was further dissolved in DMSO and purified by HPLC, and the fractions were combined, concentrated, and lyophilized to obtain 10.1 mg of the TFA salt of the title compound.
  • Example 21 The same operation as in Example 21 was performed using Fmo c—T 1 e —OH instead of Fmo c—Ty r (tBu) -OH in Example 21, to give 23.8 mg of the TFA salt of the title compound. Obtained.
  • Example 21 Fmo c—Ty r (tBu) in Example 21 was replaced with Fmo c—A sp (OtBu) —OH, and the remaining solvent was Me CN instead of methyl alcohol. And the same operation as in Example 21 was carried out to obtain 30.2 mg of the TFA salt of the title compound.
  • Example 21 Fmo c—Glu (0 tBu) -OH was used instead of Fmo c—Ty r (tBu) -OH, and Me CN was used instead of methanol for the remaining solvent. And using the same procedure as in Example 21 to obtain 28.2 mg of the TFA salt of the title compound.
  • Example 21 Fmoc—Tyr (tBu) -10H was replaced with Fmoc—Aad (0tBu) -1OH, and the remaining solvent was MeCN instead of methanol. The same operation as in Example 21 was performed to obtain 31.8 mg of the TFA salt of the title compound.
  • Example 21 The same operation as in Example 21 was performed using Fmoc-Asn-OH instead of Fmoc-Tyr (tBu) -OH of Example 21, to give 21.5 mg of the TFA salt of the title compound. Obtained.
  • Example 21 The same operation as in Example 21 was performed using F moc—G 1 n-OP fp instead of Fmo c—Ty r (t Bu) 1 OH in Example 21) (provided that Fmo c—G 1 Power coupling of n-0 P fp was performed by the fifth method. ), 7.2 mg of TFA salt 2 "of the title compound.
  • Example 21 The same operation as in Example 21 was performed using Fmoc—Cit—OH in place of Fmoc—Tyr (tBu) -OH of Example 21, to obtain 25.6 mg of the TFA salt of the title compound. I got
  • Example 21 The same operation as in Example 21 was performed using F moc—D ab (B oc) -OH instead of Fmo c—Ty r (tBu) —0H in Example 21, to obtain a TFA salt of the title compound. 29. lmg was obtained.
  • Example 21 The same procedure as in Example 21 was carried out, except that Fmo c—O rn (Bo c) —OH was used instead of Fmo c—Ty r (t Bu) -OH in Example 21), to give a TFA salt of the title compound. 7 mg were obtained.
  • Example 21 The same operation as in Example 21 was carried out using Fmo c—Lys (Bo c) —OH in place of Fmo c—Ty r (t Bu) -OH in Example 21) to give the TFA salt of the title compound. 2 mg were obtained.
  • Example 21 The same operation as in Example 21 was performed using Fmoc-Ser (tBu) —OH in place of Fmoc—Tyr (tBu) -OH in Example 21, to obtain the TFA salt of the title compound. .5 mg were obtained.
  • Example 21 The same operation as in Example 21) was performed using Fmoc—Hse (Trt) —OH instead of Fmoc—Tyr (tBu) -10H in Example 21. After concentrating the crystal, the precipitate was reprecipitated with getyl ether to obtain 7.8 mg of the TFA salt of the title compound.
  • Example 21 The same operation as in Example 21 was performed using F moc—T hr (t Bu) -OH instead of Fmo c—Tyr (t Bu) —0H in Example 21, to obtain the title compound TF A 24. lmg of the salt was obtained.
  • Example 21 The same operation as in Example 21 was performed using Fmoc—Abu—OH instead of Fmoc—Tyr (tBu) —0H in Example 21, to give 19.6 mg of the TFA salt of the title compound. I got
  • Example 21 The same operation as in Example 21 was performed using Fmoc-Nva-OH in place of Fmoc-Tyr (tBu) -10H in Example 21, to obtain 19.8 mg of the TFA salt of the title compound. I got
  • Example 21 The same procedure as in Example 21 was carried out except that Fmoc-Met-OH was used instead of Fmoc-Tyr (tBu) -OH in Example 21, to obtain 24.3 mg of the TFA salt of the title compound.
  • Fmoc-Met-OH was used instead of Fmoc-Tyr (tBu) -OH in Example 21, to obtain 24.3 mg of the TFA salt of the title compound.
  • Example 21 The same operation as in Example 21 was carried out, except that Fmo c—His (Bo c) —OH was used instead of Fmo c—Ty r (t Bu) -OH in Example 21, to obtain a TFA salt of the title compound. 7 mg were obtained.
  • Example 21 The same operation as in Example 21 was performed using Fmo c—T rp (B oc) -OH instead of Fmo c—Tyr (t Bu) -OH in Example 21, to give 14.5 mg of the TFA salt of the title compound. I got
  • Example 21 The same operation as in Example 21 was performed using Fmo c—T iq —OH instead of Fmo c—Ty r (tBu) —OH of Example 21, to give 23.7 mg of the TFA salt of the title compound. Obtained.
  • Example 49 The same operation as in Example 49 was performed using 1-benzocyclobutane carboxylic acid instead of 4-pyridylthioacetic acid in Example 49 (however, the force coupling of 1-benzocyclobutane carboxylic acid was performed by the third method). 23.8 mg of the title compound as a diastereomeric mixture.
  • Example 52 The same operation as in Example 52 was performed using Fmoc-Phg-OH instead of Fmoc-Tyr (tBu) -OH in Example 52, to obtain 23.2 mg of the TFA salt of the title compound. Obtained.
  • the same operation as in Example 52 was performed using 1110 (: -d-111-OH) to obtain 27.4 mg of the TFA salt of the title compound.
  • Example 52 The same procedure as in Example 52 was carried out, except that Fmo c—Tyr (tBu) -OH of Example 52 was used instead of Fmo c—T rp (B oc) —OH, to obtain a TFA salt of the title compound. 9 mg were obtained.
  • H is-Ph g— Ty r (3-t B u)-NH 2
  • Example 52 The same operation as in Example 52 was performed using Fmo c—His (Bo c) —OH instead of Fmo c—Ty r (tBu) -OH in Example 52, to give the TFA salt of the title compound 14. 4 mg were obtained.
  • Example 50 instead of 1-benzocyclobutanecarboxylic acid, (Sat) -13-phenylbutyric acid was used as a resin, and Rink Amide Resin (0.47 mm o 1 / g) The same operation as in Example 50 was performed using 107 mg (0.05 mmol). However, Fmoc-Phg-OH was coupled by the first method, and 3-phenylbutyric acid was coupled by the second method. 18. lmg of the title compound were obtained.
  • Fmo c-2 4-di me thoxy-4 '-(carbo xy me t hy l oxy) -benz hy dryl am inelinkedto Am inomethy 1 Resin (0.55 mm o 1 / g) 45 mg ( After adding 0.025 mmo 1), the resin was swollen with DMF, and then subjected to Fmoc removal with piperidine. Then, Fmoc-Tyr (3-tBu) - ⁇ H was force-coupled by the first method. After filtration and DMF washing, Fmoc treatment was performed with piperidine. Next, Fmoc—Phg—OH was coupled by the third method. DMF washing, DCM washing, and methanol washing were performed, and then dried.
  • the dried resin was transferred to an ACT-496 MOS (advanced ChemTech) reaction vessel.
  • the resin was swollen with DMF, and then subjected to Fmoc removal with piperidine.
  • a mixture of Fmo c — /? — A la—OH, HOBT, and DMF 0.5 ml (Fmo c-/ 3-A 1 a-OH 0.55 Ommo K HOBT 0.075 mmo 1), DIC / DMF 0. 25 ml (DIC 0.080 mmo 1) was added and shaken for 2 hours. After filtration and washing with DMF, re-use with piperidine Fmoc treatment was performed.
  • Example 59 The same operation as in Example 59 was performed using Fmoc—Aib—OH in place of Fmoc—; 3—A1a-0H in Example 59, to obtain 15.3 mg of the TFA salt of the title compound.
  • Fmoc—Aib—OH in place of Fmoc—; 3—A1a-0H in Example 59, to obtain 15.3 mg of the TFA salt of the title compound.
  • Example 59 The same operation as in Example 59 was performed using Fmoc—I 1 e-OH in place of Fmoc—3—Ala—0H in Example 59, to give 15.4 mg of the TFA salt of the title compound.
  • Example 63 The same operation as in Example 59 was carried out using Fmoc-Chg-OH in place of Fmoc- / 3-Ala-OH of Example 59, to obtain 12.2 mg of the TFA salt of the title compound.
  • Example 63
  • Example 59 The same operation as in Example 59 was performed using Fmoc-Cha-OH in place of Fmoc- / 3-Ala-3H in Example 59, to obtain 16.7 mg of the TFA salt of the title compound.
  • Example 59 The same operation as in Example 59 was performed using Fmoc-Cha-OH in place of Fmoc- / 3-Ala-3H in Example 59, to obtain 16.7 mg of the TFA salt of the title compound.
  • Example 59 The same operation as in Example 59 was carried out using Fmoc—T1e—OH in place of Fmoc—3—Ala—OH of Example 59, to give 14.9 mg of the TFA salt of the title compound.
  • Example 59 The same operation as in Example 59 was performed using Fmoc-Asp (OtBu) -OPfp instead of Fmoc- / 3-Ala-OH of Example 59. However, DI CZDMF 0.25m1 was not added at the time of Fmo c -A s (O t Bu) — OP fp cutting. 18. lmg of the TFA salt of the title compound was obtained.
  • Example 59 The same operation as in Example 59 was performed using Fmoc-Aad (0tBu) _OH instead of Fmoc- / 5-Ala-OH of Example 59, and the TFA salt of the title compound 16. 8 mg were obtained.
  • Example 59 The same operation as in Example 59 was carried out using Fmoc—Asn—OH in place of 1110 (— ⁇ ⁇ 18 13-0H in Example 59, to obtain 17.2 mg of the TFA salt of the title compound. .
  • Example 65 The same operation as in Example 65 was performed using F moc—G 1 n-OP fp instead of Fmo c—A sp (O t Bu) —OP fp of Example 65, to give the TFA salt of the title compound. 9 mg was obtained.
  • Example 59 The same operation as in Example 59 was performed using Fmoc—Cit-OH in place of Fmoc— / S—Ala—OH of Example 59, to give 15.3 mg of the TFA salt of the title compound.
  • Example 59 Instead of Fmo c — / 3 — Al 3 — 0 ⁇ 1 in Example 59? The same operation as in Example 59 was carried out using 1110 c -D ab (Bo c) OH to obtain 15.3 mg of the TFA salt of the title compound.
  • Example 59 The same operation as in Example 59 was performed using F in oc—Lys (Bo c) —OH instead of Fmo c— / 3—A la—0H in Example 59, to give the TFA salt of the title compound. .8 mg were obtained.
  • Example 59 The same operation as in Example 59 was performed using Fmoc—Ser (tBu) -OH instead of Fmoc— / 3—Ala— ⁇ H in Example 59, to give the TFA salt of the title compound. 4 mg were obtained.
  • Example 59 The same operation as in Example 59 was carried out, except that Fmo c—Th r (tBu) —OH was used instead of Fmo c— / 3—A la—OH in Example 59, to obtain a TFA salt of the title compound. 5 mg were obtained.
  • Example 59 The same operation as in Example 59 was carried out using Fmoc—Abu—OH instead of Fmoc— / S—Ala-0H in Example 59, to obtain 13.6 mg of the TFA salt of the title compound. .
  • Example 59 The same operation as in Example 59 was carried out using Fmoc—Nva—OH in place of Fmoc—; 3-Ala-OH of Example 59, to obtain 13.9 mg of the TFA salt of the title compound.
  • Example 59? 0 €;-/ 3--8 1a-OH was replaced with Fmoc-Met-OH, and the same operation as in Example 59 was carried out to obtain 11.6 mg of the TFA salt of the title compound.
  • Example 59 The same operation as in Example 59 was carried out using Fmoc—Pro—OH.AcOEt instead of Fmoc——Ala_OH of Example 59, to obtain 14.8 mg of the TFA salt of the title compound. I got
  • Example 59 The same operation as in Example 59 was carried out, except that Fmoc—Hyp—OH was used instead of Fmoc— / 3—Ala—OH in Example 59, to give 11.2 mg of the TFA salt of the title compound.
  • Example 59 The same operation as in Example 59 was carried out using Fmoc—Tic—OH in place of Fmoc——Ala—OH in Example 59, to obtain 16.1 mg of the TFA salt of the title compound.
  • Example 59 The same operation as in Example 59 was carried out using Fmoc-Tiq-OH in place of Fmoc- / 3-Ala-OH of Example 59, to obtain 14.7 mg of the TFA salt of the title compound. .
  • Example 59 The same operation as in Example 59 was carried out using Fmo c—2—Ab a—OH in Example 59 instead of Fmo c——A 1 a—OH to obtain 15.2 mg of the TFA salt of the title compound.
  • Fmo c—2—Ab a—OH Fmo c——A 1 a—OH
  • Example 59 The same operation as in Example 59 was performed using Fmoc-Hph-OH in place of Fmoc- / 3-Ala-OH of Example 59, to obtain 16. Omg of the TFA salt of the title compound. .
  • Example 59 The same operation as in Example 59 was performed using ⁇ -methylhydrocinnamic acid instead of Fmo c— — A la— 0H of Example 59 (however, since the Fmo c removal treatment before cleaving was unnecessary, Not performed.), 15.2 mg of the title compound.
  • Example 84 was replaced by sodium methylcinnamate instead of ⁇ -methylhydroxycinnamate. The same operation as described above was performed to obtain 16.4 mg of the title compound.
  • Example 84 using 3-quinolinecarboxylic acid instead of ⁇ -methylhydrocinnamic acid of Example 84 Perform the same operation as described above to obtain 16.9 mg of the TF ⁇ salt of the title compound.
  • Fmo c—D—Phg—OH in place of Fmo c—Ph g—OH of Example 5, and Fmo c—2, 4-dimethoxy-4 ′-(carbo xym et hy lo xy) — Benz hy dryl amine 1 ink edto A minome t hy l Re sin (0.55 mmo 1 / g) 182 mg (0.1 mmo 1) was used and the same operation as in Example 5 was performed.
  • force coupling of Fmoc-D-Phg-OH and Boc-Phe-OH was performed by the third method. This gave 15.4 mg of the TFA salt of the title compound.
  • the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure.
  • the resulting residue was used as a solution of 5 ml of DMF, and 0.115 ml of NMM (1.66 mmol) and chloroform at 15 ° C. 0.159 ml (1.66 mmol) of ethyl carbonate was added, and the mixture was stirred for 20 minutes.
  • the reaction solution was further stirred for 30 minutes while publishing ammonia gas and left at room temperature.
  • the reaction solution was diluted with ethyl acetate, washed with water, and then washed with saturated saline.
  • reaction solution was diluted with acetic acid Echiru, washed with saturated N a HC0 3 solution, washed with water, then with saturated brine.
  • the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure.
  • reaction solution was diluted with acetic acid E chill, washed with saturated N aHC0 3 solution, washed with water, then with saturated brine.
  • the reaction solution was distilled off under reduced pressure, and the obtained residue was dissolved in methylene chloride, washed with water, and then washed with saturated saline.
  • the organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the obtained residue was converted into a methylene chloride 5 ml solution, and TFA acetic acid 3 ml was added.
  • 0.183 ml (1.66 mmol) of NMM and 0.159 ml (1.66 mmol) of ethyl ethyl carbonate were added, and the mixture was stirred for 30 minutes.
  • the reaction solution was stirred for 30 minutes while bubbling ammonia gas into the reaction solution, allowed to stand at room temperature, diluted with ethyl acetate, washed with water, and then washed with saturated saline.
  • reaction solution was diluted with acetic acid Echiru, washed with saturated N a HC0 3 solution, washed with water, then with saturated brine.
  • e—Ch a—Phe (3-tBu) —NH 2 192 mg (43%) was obtained.
  • reaction solution was diluted with methylene chloride, washed with water, and then with saturated saline.
  • the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the obtained residue was subjected to silica gel column chromatography.
  • Example 100 The same operation as in Example 100 was carried out, except that Fmoc-D-Phg-0H was used instead of 1110 c—Phg—OH of Example 100, to obtain 7.2 mg of the title compound.
  • Example 101 N — ((S) —3—phenylbutyryl) —D—Ph g_Ty r (3—t Bu) -NH 2
  • Fmoc—D—Phg—OH is used instead of Fmoc—Phg—OH in Example 101, to obtain 16.1 mg of the title compound.
  • Boc—L—one (3-methyl-1-butenyl) glycineol N-Me-Val-Tyr (3-tBu) —NH 2 0.17 g of methylene chloride TFA lm 1 was added to the 2 ml solution, and the mixture was stirred at room temperature for 10 minutes.
  • the residue obtained by evaporating the solvent under reduced pressure was diluted with methylene chloride, washed with saturated N aHC0 3 solution.
  • N—Me—Va 1—Ty r (3- t Bu) —NH 2 13 lmg (93%) was obtained.
  • the organic layer was washed with saturated saline, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained residue was made into a solution of 2 ml of dioxane-4 ml of water, and 4 ml of 10% hydrochloric acid-methanol was added thereto, followed by stirring at room temperature overnight. After that, the mixture was made alkaline with an aqueous 2N NaOH solution, extracted with methylene chloride, and 5 ml of dioxane and 1.5 g of ditertbutyldicarbonate were added to the aqueous layer.
  • N-Boc-3-aminohydrocinnamic acid 0.27 g (l. 03mmol), real N—Me—Va 1—Ty r (3-tBu) —NH 2 obtained according to Example 89—0.24 g (0.687 mmol), and HOB T 0.23 g (1.72 mmo)
  • 0.27 ml of DIC (1.72 mmo 1) was added under ice-cooling. After stirring for 1 day at room temperature, the reaction was diluted with acetic acid Echiru, saturated N a HC 0 3 solution, water, and saturated brine.
  • N- (N—Bo c—3-aminohydrocinnamyl) N—Me—Val—Ty r (3-tBu) -NH 2 285mg was prepared as methylene chloride 2ml solution and TFA 1ml In addition, the mixture was stirred at room temperature for 15 minutes. The residue obtained by evaporating the solvent under reduced pressure was diluted with methylene chloride and washed with saturated NaHC_ ⁇ 3 aq.
  • N— (2-benzoxycarbonylamino-1-3-phenylpropyl) -Ph g—Ty r (3-t Bu) -NH 2 40.Omg (0.0664mmo 1) in methanol lm 1 15. Omg of palladium on carbon was added, and the mixture was stirred overnight at room temperature under a hydrogen atmosphere. After filtration, the filtrate was concentrated under reduced pressure, and the resulting residue was subjected to silica gel gel chromatography (developing solvent, chromate form: methanol: aqueous ammonia 10: 1: 0.1) to give N— (2— amino one 3- Fuwenirupu port pills) to give an Ph g-Ty r (3- t Bu) -NH 2 29. Omg (92%).
  • N—Me—V a 1—Ty r (3— tBu) A solution of NH 2 10 Omg (0.287m 11 0 1) in 01 ⁇ 1 ml and triethylamine (0.006 ml) was added, and the mixture was stirred at room temperature for 2 hours.
  • reaction solution was diluted with acetic acid Echiru, washed with saturated NaHCO 3 solution, washed with water, washed with saturated brine. After the organic layer was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the obtained residue was subjected to silica gel column chromatography (developing solvent: ethyl acetate: n-hexane 2: 1) to give B 0 c — N—Feniru GlyN-Me-Val-Tyr (3-tBu) —NH 2 139 mg (83%) was obtained.
  • Ty r (3- tBu) -OMe To a mixed solution of 2.00 g (7.97 mmol) of 1,4-dioxane 15 mi and water 15 ml, add 929 mg (8.76 mmo 1) of sodium carbonate under ice-cooling. ) And 1.91 g (8.75 mmo 1) of ditertbutyl dicarbonate were added and stirred for 2 hours. Under ice-cooling, saturated NH 4 C 1 water was added, and the mixture was extracted with black hole form and washed with saturated saline.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

明 細 書 一 フヱネチルァミン誘導体 技術分野
本発明は、 モチリンレセプターアンタゴニスト作用等を示し、 医薬として有用 な、 フヱネチルァミン誘導体に関するものである。 背景技術
消化管ホルモンの 1つであるモチリンは、 22個のァミノ酸からなる直鎖のぺ プチドであり、 ヒ トを含む哺乳動物の消化管運動を調節していることはよく知ら れている。 外因性に与えたモチリンは、 ヒ トおよびィヌにおいて空腹期伝播性収 H C I n t e r d i g e s t i v e M i g r a t i n g C o n t r a c t i o n s, I MC) と同様な収縮を引き起こし、 胃排出を促進することが報告され ている (I t o h e t a 1. , S c a n d. J . G a s t r o e n t e r o 1. , 11. 93- 110 (1976) ; P e e t e r s e t a 1. , G a s t r o e n t e r o l o gy 102, 97— 101 (1992) ) 。 そのた め、 モチリンァゴニストであるエリス口マイシン誘導体が消化管運動機能促進剤 として開発が進められている (S a t o h e t a l . , J. Ph a rma c o 1. Exp. Th e r a p. , 271, 574-579 (1994) ; L a r t e y e t a l. , J. Me d. Ch e m. , 38, 1793— 1798 (1995) ; D r u g o f t h e F u t u r e, 19, 910— 912 (1994) ) o
一方、 モチリンレセプターアン夕ゴニス卜としてべプチドおよびポリべプチド の誘導体が報告されている (D e p o o r t e r e e t a 1. , E u r. J . Ph a rma c o l . , 286, 241 -247 (1995) : P o i t r a s e t a l . , B i o c h em. B i o p hy s. Re s. Commu n. , 205, 449-454 (1994) ; Ta k a n a s h i e t a 1. , J. Ph a rma c o l . Ex . Th e r. , 273, 624— 628 (1995) ) 。 これらは、 モチリ ンの消化管運動に対する作用の研究や、 本分野における医 薬品の開発研究において薬理学的なツールとして使用されている。
モチリンレセプターは、 十二指腸に主に存在することが知られていたが、 最近、 下部消化管の大腸にも存在することが認められ (Wi 1 1 i am e t a し , Am. J. Phy s i o l . , 262. G50— G55 (1992) ) 、 上部消 化管運動ばかりでなく、 下部消化管運動にもモチリ ンが関与する可能性が示され ている。
また、 下痢症状を示す過敏性腸症候群患者ゃストレス下の過敏性腸症候群患者 が高モチリン血症を示すことが報告されており (P r e s t 0 n e t a 1. , Gu t, 26, 1059- 1064 (1985) ; Fu k u d o e t a 1. , To ho k u J. Ex p. Me d. , 151, 373— 385 (1987) ) 、 本病態に血中モチリンの上昇が関与する可能性が示唆されている。 その他にも高 モチリ ン血症が報告されている病態として、 クローン病、 潰瘍性大腸炎、 脾炎、 糖尿病、 肥満、 吸収不良症候群、 細菌性下痢症、 萎縮性胃炎、 胃腸切除術後など がある。 よって、 モチリンレセプ夕一アンタゴニストは、 過敏性腸症候群などの 血中モチリンが上昇している病態を改善し得る可能性がある。 発明の開示
本発明の目的は、 モチリンレセプターアンタゴニスト作用を有し、 医薬として 有用な、 フヱネチルァミン誘導体を提供することである。
本発明者らは、 優れたモチリンレセプタ一アン夕ゴニスト作用を有する化合物 の開発を目的として鋭意研究を重ねた結果、 一般式 (1) で表されるフエネチル アミン誘導体が、 優れたモチリンレセプ夕一アン夕ゴニストであることを見いだ し、 この知見に基づいて本発明を完成させた。
すなわち、 本発明は、 一般式 (1)
(1)
Figure imgf000004_0001
(式中、 Aは、 アミノ酸残基、 または Να—置換アミノ酸残基を表す。 ここで、一 Αは、 一NR2—とアミ ドを形成するように結合している。
は、 R6— CO—、 置換基を有していてもよい炭素数 2〜7の直鎖もしくは 分枝鎖状のアルキル基、 置換基を有していてもよい炭素数 3〜8の直鎖もしくは 分枝鎖状のアルケニル基、 置換基を有していてもよい炭素数 3〜8の直鎖もしく は分枝鎖状のアルキニル基を表す。
R2は、 水素原子、 または置換基を有していてもよい炭素数 1〜3の直鎖もし くは分枝鎖状のアルキル基を表す。
R3は、 一 CO— R7、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは 分枝鎖状のアルキル基、 置換基を有していてもよい炭素数 2〜5の直鎖もしくは 分枝鎖状のアルケニル基、 置換基を有していてもよい炭素数 2〜5の直鎖もしく は分枝鎖状のアルキニル基を表す。
R4は、 水素原子、 炭素数 1〜6の直鎖もしくは分枝鎖状のアルキル基、 炭素 数 2〜6の直鎖もしくは分枝鎖状のアルケニル基、 炭素数 2〜6の直鎖もしくは 分枝鎖状のアルキニル基、 または一般式 (2)
Figure imgf000005_0001
を表す。
R5は、 水素原子、 または、 一 OR8を表す。
Reは、 置換基を有していてもよい炭素数 1〜6の直鎖もしくは分枝鎖状のァ ルキル基、 置換基を有していてもよい炭素数 2〜 7の直鎖もしくは分枝鎖状のァ ルケニル基、 置換基を有していてもよい炭素数 2〜 7の直鎖もしくは分枝鎖状の アルキニル基、 ベンゼン環もしくは複素環と縮合していてもよい炭素数 3〜7の シクロアルキル基、 置換基を有していてもよい炭素数 6〜12の芳香環、 置換基 を有していてもよい炭素数 3〜12の飽和もしくは不飽和の複素環、 一 N (R9) R10、 または、 — ORuを表す。 R7は、 水素原子、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分 一 枝鎖状のアルキル基、 炭素数 3〜7のシクロアルキル基、 — N (R12) R13、 一 OR14を表す。
R8は、 水素原子、 または炭素数 1〜4の直鎖状のアルキル基を表す。
R9および RL 0は、 同一または異なって、 水素原子、 置換基を有していてもよ い炭素数 1〜 5の直鎖もしくは分枝鎖状のアルキル基、 置換基を有していてもよ い炭素数 2〜6の直鎖もしくは分枝鎖伏のアルケニル基、 置換基を有していても よい炭素数 2〜 6の直鎖もしくは分枝鎖状のアルキニル基、 ベンゼン環もしくは 複素環と縮合していてもよい炭素数 3〜6のシクロアルキル基、 または、 置換基 を有していてもよい炭素数 6〜1 2の芳香環を表す。
Ruは、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分枝鎖状のァ ルキル基、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のァ ルケニル基、 置換基を有していてもよい炭素数 2~6の直鎖もしくは分枝鎖状の アルキニル基、 ベンゼン環もしくは複素環と縮合していてもよい炭素数 3〜6の シクロアルキル基、 または、 置換基を有していてもよい炭素数 6〜1 2の芳香環 を表す。
R12および R13は、 同一または異なって、 水素原子、 炭素数 1〜4の直鎖もし くは分枝鎖状のアルキル基、 または炭素数 3〜 7のシクロアルキル基を表す。
RMは、 水素原子、 炭素数 1〜6の直鎖もしくは分枝鎖状のアルキル基、 また は炭素数 3〜 7のシクロアルキル基を表す。
R15は水素原子またはメチル基を表す。
R16および R17は、 一緒になって、 炭素数 3〜7のシクロアルキル基もしくは シクロアルケ二ル基を表す。 )
で示される化合物、 その水和物、 またはその薬学的に許容しうる塩を提供するも のである。
また、 本発明は、 一般式 (1) で示される化合物を有効成分として含有する医 薬を提供する。 さらに、 本発明は、 上記化合物を含有するモチリ ンレセプターァ ンタゴ二ストを提供する。 また、 上記化合物を有効成分として含有する消化管運 動抑制剤も提供する。 さらに、 上記化合物を有効成分として含有する高モチリン 血症治療剤も提供する。
一般式 (1) で示される化合物の定義において、 Aにおけるアミノ酸残基は、 通常知られるアミノ酸残基であれば何でもよく、 例えば、 α—、 β―、 ァ—アミ ノ酸残基などが挙げられ、 具体的には、 例えば、 グリシン (G 1 y:) 、 ァラニン (A l a) リ ン (Va 1 ) 、 ロイシン (L e u) 、 イソ シン ( I 1 e) 、 フエ二ルァラニン (Ph e) 、 チロシン (Ty r) 、 トリブトファン (T r p)、 ヒスチジン (H i s ) 、 ァスパラギン (A s n) 、 グルタミ ン (G i n) 、 ァス パラギン酸 (A s p) 、 グルタ ミ ン酸 (G 1 u) 、 リジン (Ly s) 、 セリ ン (S e r) 、 卜レオニン (Th r) 、 メチォニン (Me t) 、 プロリ ン (P r o) 、 β—了ラニン (/3— A 1 a) 、 ヒ ドロキシプロリ ン (Hy p) 、 シトルリ ン (C i t ) 、 オル二チン (〇 r n) 、 フヱニルグリ シン (P h g) 、 ノルバリン (N V a) 、 アミノィソブチル酸 (A i b) 、 ホモフヱニルァラニン (Hp h) 、 2—チェ二ルァラニン (T h i ) 、 7—ァミ ノブチル酸 (ァ一 Ab u) 、 シクロ へキシルグリシン (C h g) 、 シクロへキンルァラニン (C h a) t e r t - シン (T 1 e) 、 アミ ノアジピン酸 (A a d) 、 ジァミ ノブチル酸 (Da b) 、 ホモセリ ン (Hs e) 、 アミ ノブチル酸 (Ab u) 、 2—アミノ安息香酸 (2 — Ab z) 、 チォプロリ ン (Th z) 、 1、 2、 3、 4ーテトラヒ ドロイソキノ リ ン一 3—力ルボン酸 (T i c ) 、 1、 2、 3、 4—テトラヒ ドロイソキノ リ ン 一 1—カルボン酸 (T i q) 、 1—ァミ ノ シクロプロパンカルボン酸 (Ap e) 、 1一アミノシクロブタンカルボン酸、 1一アミ ノ ンクロペンタンカルボン酸、 1 —アミノシクロへキサンカルボン酸 (Ah c) 、 などが挙げられ、 'リ ン (V a 1 ) シン (L e u) 、 イソロイシン ( I 1 e) 、 フエ ルァラニン (Ph e) 、 チロシン (Ty r) 、 トリブトファン (T r p) 、 フエニルグリ シン ( P h g) 、 ヒ ドロキンプロリ ン (Hy p) 、 ホモフエ二ルァラニン (H p h) 、 シ ク口へキンルグリシン (C h g) 、 シクロへキシルァラニン (C h a) 、 t e r t—ロイシン (T 1 e) 、 2—チェ二ルァラニン (Th i ) 、 が好ましく、 バ、) ン (Va l ) 、 ロイシン (L e u) 、 イソロイシン (I 1 e) 、 フエニルァラ二 ン (Ph e) 、 フエニルグリ シン (Ph g) 、 シクロへキシルァラニン (Ch a) 、 がさらに好ましい。 これらアミノ酸残基および Να—アミノ酸残基は、 L体、 D体、 DL体のいずれでもよいが、 L体が好ましい。
Aにおける Να—置換ァミノ酸残基とは、 上記の ァミノ酸残基の α位のァ ミノ基の水素原子が置換されているものをいう。 Να—置換ァミノ酸残基におけ る置換基としては、 ベンゼン環などで置換されていてもよい炭素数 1〜3の直鎖 もしくは分枝鎖状のアルキル基などが挙げられ、 メチル基が好ましい。
Αにおける Να—置換ァミノ酸残基の α—アミノ酸残基としては、 上記のァミ ノ酸が挙げられ、 V a l、 L e u、 Ϊ l e、 Ph e、 Ty r、 T r p、 Ph g、 Ch g、 Ch a、 T i e s Th i、 が好ましく、 Va l、 L e u. I l e、 P h e、 Phg、 Ch a、 がさらに好ましい。
Aにおける Να—置換ァミノ酸残基としては、 Ν—メチルバリン (Ν— Me— V a 1 ) 、 N—メチルロイシン (N— Me— L e u) 、 N—メチルイソロイシン (N-Me - I 1 e) 、 N—メチルフヱニルァラニン (N— Me— Ph e) 、 N —メチルチロシン (N_Me— Ty r) 、 N—メチルトリプトファン (N— Me -T r p) 、 N—メチルフェニルグリ シン (N— M e— P h g) 、 N—メチルシ クロへキシルグリ シン (N— Me— Ch g) 、 N—メチルシクロへキシルァラニ ン (N— Me— Ch a) 、 N—メチル t e r t一口イシン (N— Me— T l e) 、 N—メチルー 2—チェ二ルァラニン (N— Me— Th i ) などが挙げられ、 N— Me— V a i、 N— Me_L e u、 N-Me - I 1 e、 N— Me— P h e、 N— Me— Ph g、 N— Me— Ch a、 が好ましく、 N— Me— Va し N-Me - P h g、 がさらに好ましい。
における、 R6— CO—の R6における、 置換基を有していてもよい炭素数 1〜6の直鎖もしくは分枝鎖状のアルキル基のアルキル基としては、 炭素数 1〜 5の直鎖もしくは分枝鎖状のアルキル基が好ましく、 炭素数 2〜 3の直鎖もしく は分枝鎖状のアルキル基がさらに好ましく、 ェチル基が特に好ましい。
における、 Re— CO—の Reにおける、 置換基を有していてもよい炭素数
2〜7の直鎖もしくは分枝鎖状のアルケニル基のアルケニル基としては、 炭素数 4〜6の直鎖もしくは分枝鎖状のアルケニル基が好ましい。
における、 R6— CO—の R6における、 置換基を有していてもよい炭素数 2〜 7の直鎖もしくは分枝鎖状のアルキニル基のアルキニル基としては、 炭素数 4〜6の直鎖もしくは分枝鎖状のアルキニル基が好ましい。
における、 R 6— C O—の R 6における、 置換基を有していてもよい炭素数 ;!〜 6の直鎖もしくは分枝鎖状のアルキル基、 置換基を有していてもよい炭素数 2〜了の直鎖もしくは分枝鎖状のアルケニル基、 置換基を有していてもよい炭素 数 2〜 7の直鎖もしくは分枝鎖状のアルキニル基、 の置換基としては、 例えば、 アミノ基、 メチルァミノ基、 ェチルァミノ基、 ジメチルァミノ基、 トリメチルァ ンモニゥム基、 水酸基、 カルボキシル基、 ァミノカルボニル基、 ァミノカルボ二 ルァミノ基、 ピリジルチオ基、 メチルチオ基、 フヱニル基、 3—インドリル基、 4—ヒドロキシフヱニル基、 2—チェニル基、 2—フリル基、 3—イミダゾリル 基、 シクロへキシル基、 などが挙げられ、 アミノ基、 メチルァミノ基、 フヱニル 基、 3—インドリル基、 4—ヒ ドロキシフヱニル基、 2—チェニル基、 2—フリ ル基、 シクロへキシル基が好ましく、 アミ ノ基、 フエニル基がさらに好ましい。 また、 上記アルキル基、 アルケニル基、 アルキニル基は、 1もしくはそれ以上の 同一もしくは異なった上記の置換基を有していてもよい。
における、 R 6— C O—の R 6における、 置換基を有していてもよい炭素数
1〜6の直鎖もしくは分枝鎖状のアルキル基としては、 1もしくはそれ以上の同 一もしくは異なつた上記置換基を有している炭素数 2〜 3の直鎖もしくは分枝鎖 状のアルキル基が好ましく、 なかでも 1一アミ ノー 2—フヱニルェチル基、 1一 メチルァミノー 2—フヱニルェチル基、 1—ァミ ノ一 2— ( 3—インドリル) ェ チル基、 1一アミノー 2— (4ーヒ ドロキシ) フヱニルェチル基、 1—アミノー 2 - ( 2—チェニル) ェチル基、 1一アミノー 2— (2—フリル) ェチル基、 1 —アミノー 2—シクロへキシルェチル基、 2—フヱニルプロピル基が好ましく、 1—アミノー 2—フヱニルェチル基が特に好ましい。
R ,における、 R 6—C O—の R 6における、 置換基を有していてもよい炭素数 2〜7の直鎖もしくは分枝鎖状のアルケニル基としては、 上記置換基を有してい る炭素数 4〜6の直鎖もしくは分枝鎖状のアルケニル基が好ましい。
における、 R 6— C O—の R 6における、 置換基を有していてもよい炭素数 2〜 7の直鎖もしくは分枝鎖状のアルキニル基としては、 上記置換基を有してい る炭素数 4〜6の直鎖もしくは分枝鎖状のアルキニル基が好ましい。 における、 R 6 _ C O—の R 6における、 ベンゼン環もしくは複素環と縮合 していてもよい炭素数 3〜7のシクロアルキル基の複素環としては、 例えば、 0、 Nまたは Sから選択されるへテロ原子を 1又は 2個含む脂肪族または芳香族の 5 または 6員環が挙げられ、 具体的には、 ピリジン、 ピラジン、 フラン、 チォフエ ン、 ピロール、 イミダゾ一ル、 などが挙げられる。
における、 R 6— C O—の R 6における、 ベンゼン環もしくは複素環と縮合 していてもよい炭素数 3〜7のシクロアルキル基としては、 ベンゼン環と縮合し ている炭素数 3〜7のシクロアルキル基が好ましく、 なかでも 1一べンゾシクロ ブチル基が好ましい。
における、 R 6— C O—の R 6における、 置換基を有していてもよい炭素数
6〜1 2の芳香環の芳香環としては、 ベンゼン環、 ナフタレン環が挙げられる。
における、 R 6— C O—の R 6における、 置換基を有していてもよい炭素数 6〜1 2の芳香環の置換基としては、 水酸基、 メ トキシ基、 フエノキシ基、 ベン ジルォキシ基、 t e r t —ブチルォキシ基、 アミノ基、 メチルァミノ基、 ジメチ ルァミノ基、 ェチルァミノ基、 カルボキシル基、 メ トキシカルボニル基、 などが 挙げられる。 また、 上記芳香環は、 1もしくはそれ以上の同一もしくは異なった 上記の置換基を有していてもよい。
における、 R 6— C O—の R 6における、 置換基を有していてもよい炭素数 3 ~ 1 2の飽和もしくは不飽和の複素環の複素環としては、 例えば、 0、 Nまた は Sから選択されるへテロ原子を 1又は 2個含む脂肪族または芳香族の 5〜1 0 員の単環または縮合環が挙げられ、 具体的には、 ピロリ ジン、 ピぺリジン、 ピぺ ラジン、 テトラヒドロイソキノリン、 ピリジン、 ピラジン、 フラン、 チォフェン、 ピロ一ル、 ィ ミダゾール、 キノ リ ン、 インド一ノレ、 ベンゾィミダゾ一ル、 ベンゾ フラン、 などが挙げられる。
における、 R 6— C O—の R 6における、 置換基を有していてもよい炭素数
3〜1 2の飽和もしくは不飽和の複素環の置換基としては、 水酸基、 メ トキシ基、 フェノキシ基、 ベンジルォキン基、 t e r t—プチルォキン基、 アミノ基、 メチ ルァミノ基、 ジメチルァミノ基、 ェチルァミノ基、 カルボキシル基、 メ 卜キシカ ルポ二ル基、 などが挙げられる。 また、 上記複素環は、 1もしくはそれ以上の同 一もしぐは異なった上記の置換基を有していてもよい。
における、 R6— CO—の R6における、 置換基を有していてもよい炭素数 3〜12の飽和もしくは不飽和の複素環としては、 1もしくはそれ以上の同一も しくは異なった上記置換基を有していてもよい上記複素環が挙げられる。
における、 R6— C 0—の R6における、 一 N (R9) R10の R9および R10 における、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分枝鎖状のァ ルキル基のアルキル基としては、 炭素数 1〜4の直鎖もしくは分枝鎖状のアルキ ル基が好ましく、 炭素数 1〜2の直鎖状のアルキル基がさらに好ましく、 メチル 基が特に好ましい。
における、 R6— C 0—の Reにおける、 一 N (R9) R10の R 9および R10 における、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のァ ルケニル基のアルケニル基としては、 炭素数 3〜6の直鎖もしくは分枝鎖状のァ ルケニル基が好ましい。
における、 Re— C 0—の R6における、 一 N (R9) R10の R9および R10 における、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のァ ルキニル基のアルキニル基としては、 炭素数 3〜 6の直鎖もしくは分枝鎖状のァ ルキニル基が好ましい。
における、 R6— C〇一の R6における、 一 N (R9) R10の R9および R10 における、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分枝鎖状のァ ルキル基、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のァ ルケニル基、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状の アルキニル基、 の置換基としては、 例えば、 アミノ基、 水酸基、 カルボキシル基、 ァミノカルボニル基、 ァミノカルボニルァミノ基、 ピリジルチオ基、 メチルチオ 基、 フヱニル基、 3—インドリル基、 4ーヒドロキシフヱニル基、 2—チェニル 基、 2—フリル基、 3—イミダゾリル基、 シクロへキシル基、 などが挙げられ、 アミノ基、 フヱニル基、 3—インドリル基、 4ーヒドロキシフヱニル基、 2—チ ェニル基、 2—フリル基、 シクロへキシル基が好ましく、 フヱニル基がさらに好 ましい。 また、 上記アルキル基、 アルケニル基、 アルキニル基は、 1もしくはそ れ以上の同一もしくは異なった上記の置換基を有していてもよい。 における、 R6— CO—の R6における、 一 N (R9) R10の R9および R10 における、 置換基を有していてもよい炭素数 1〜 5の直鎖もしくは分枝鎖状のァ ルキル基としては、 上記置換基を有しているメチル基が好ましく、 なかでもベン ジル基、 3—インドリルメチル基、 ρ—ヒドロキシベンジル基、 2—チェニルメ チル基、 2—フリルメチル基、 シクロへキシルメチル基が好ましく、 ベンジル基 が特に好ましい。
Riにおける、 R6— CO—の R6における、 一 N (R9) R10の R9および R10 における、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のァ ルケニル基としては、 炭素数 3~6の直鎖もしくは分枝鎖状のアルケニル基が好 ましい。
における、 R6— CO—の Reにおける、 一 N (R9) R,。の R9および R10 における、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のァ ルキニル基としては、 炭素数 3〜6の直鎖もしくは分枝鎖状のアルキニル基が好 ましい。
における、 R6—CO—の R6における、 一 N (R9) R10の R9および R10 における、 ベンゼン環もしくは複素環と縮合していてもよい炭素数 3〜6のシク 口アルキル基の複素環としては、 例えば、 0、 Nまたは Sから選択されるへテロ 原子を 1又は 2個含む脂肪族または芳香族の 5または 6員環が挙げられ、 具体的 には、 ピリジン、 ピラジン、 フラン、 チォフェン、 ピロール、 イミダゾール、 な どが挙げられる。
における、 R6— CO—の R6における、 一 N (R9) R10の R9および R10 における、 ベンゼン環もしくは複素環と縮合していてもよい炭素数 3〜6のシク 口アルキル基のシクロアルキル基とは、 シクロプロピル基、 シクロブチル基、 シ クロペンチル基、 シクロへキシル基をいう。
R,における、 R6— CO—の Reにおける、 一 N (R9) R10の R9および R10 における、 ベンゼン環もしくは複素環と縮合していてもよい炭素数 3〜6のシク 口アルキル基としては、 ベンゼン環もしくは上記複素環と縮合していてもよい炭 素数 3〜6のシクロアルキル基が挙げられる。
における、 Re— CO—の Reにおける、 一 N (R9) R10の R9および R10 における、 置換基を有していてもよい炭素数 6〜12の芳香環の芳香環としては、 ベンゼン環、 ナフタレン環が挙げられる。
における、 R6— C 0—の R6における、 一 N (R9) R10の R9および R10 における、 置換基を有していてもよい炭素数 6〜12の芳香環の置換基としては、 水酸基、 メ トキシ基、 フエノキシ基、 ベンジルォキン基、 t e r t—プチルォキ シ基、 アミノ基、 メチルァミノ基、 ジメチルァミノ基、 ェチルァミノ基、 カルボ キシル基、 メ トキシカルボニル基、 などが挙げられる。 また、 上記芳香環は、 1 もしくはそれ以上の同一もしくは異なった上記の置換基を有していてもよい。
における、 R6— CO—の Reにおける、 一 N (R9) R10の R9および R10 は以上のような定義を有するが、 一 N (R9) R10としては、 ベンジルァミノ基、 ベンジルメチルァミノ基が好ましい。
における、 R6— C 0—の R6における、 一 ORuの RHにおける、 置換基 を有していてもよい炭素数 1〜5の直鎖もしくは分枝鎖状のアルキル基のアルキ ル基としては、 炭素数 1〜 4の直鎖もしくは分枝鎖状のアルキル基が好ましく、 炭素数 1〜2の直鎖状のアルキル基がさらに好ましく、 メチル基が特に好ましい。 における、 R6—CO—の R6における、 一 ORUの RT Lにおける、 置換基 を有していてもよい炭素数 2〜 6の直鎖もしくは分枝鎖状のアルケニル基のアル ケニル基としては、 炭素数 3〜6の直鎖もしくは分枝鎖状のアルケニル基が好ま しい。
における、 R6— CO—の R6における、 一 ORHの RHにおける、 置換基 を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のアルキニル基のアル キニル基としては、 炭素数 3〜6の直鎖もしくは分枝鎖状のアルキニル基が好ま しい。
における、 R6— CO—の R6における、 一 ORuの 【における、 置換基 を有していてもよい炭素数 1〜5の直鎖もしくは分枝鎖状のアルキル基、 置換基 を有していてもよい炭素数 2〜 6の直鎖もしくは分枝鎖状のアルケニル基、 置換 基を有していてもよい炭素数 2~6の直鎖もしくは分枝鎖状のアルキニル基、 の 置換基としては、 例えば、 アミノ基、 水酸基、 カルボキシル基、 ァミノカルボ二 ル基、 ァミノカルボニルァミノ基、 ピリジルチオ基、 メチルチオ基、 フヱニル基、
3—インドリル基、 4—ヒ ドロキシフヱニル基、 2—チェニル基、 2—フリル基、 3—イ ミダゾリル基、 シクロへキシル基、 などが挙げられ、 アミノ基、 フエニル 基、 3—インドリル基、 4ーヒ ドロキシフヱニル基、 2—チェニル基、 2—フリ ル基、 シクロへキシル基が好ましく、 フヱニル基がさらに好ましい。 また、 上記 アルキル基、 アルケニル基、 アルキニル基は、 1もしくはそれ以上の同一もしく は異なった上記の置換基を有していてもよい。
における、 R6— CO—の R6における、 ORHの RHおける、 置換基を有 していてもよい炭素数 1~5の直鎖もしくは分枝鎖状のアルキル基としては、 上 記置換基を有しているメチル基が好ましく、 なかでもべンジル基、 3—インドリ ルメチル基、 p—ヒ ドロキシベンジル基、 2—チェニルメチル基、 2 _フリルメ チル基、 シクロへキシルメチル基が好ましく、 ベンジル基が特に好ましい。
R,における、 R6— CO—の R6における、 一 ORHの RHにおける、 置換基 を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のアルケニル基として は、 炭素数 3~6の直鎖もしくは分枝鎖状のアルケニル基が好ましい。
における、 R6— CO—の R6における、 一 ORnの RHにおける、 置換基 を有していてもよい炭素数 2〜6の直鎖もしくは分技鎖状のアルキニル基として は、 炭素数 3〜 6の直鎖もしくは分枝鎖状のアルキニル基が好ましい。
Riにおける、 R6— CO—の R6における、 一 OR の Ruにおける、 ベンゼ ン環もしくは複素環と縮合していてもよい炭素数 3〜6のシクロアルキル基の複 素環としては、 例えば、 0、 Nまたは Sから選択されるへテロ原子を 1又は 2個 含む脂肪族または芳香族の 5または 6員環が挙げられ、 具体的には、 ピリジン、 ピラジン、 フラン、 チォフェン、 ピロール、 イミダゾール、 などが挙げられる。
における、 R6— C 0—の R6における、 一 ORMの Ruにおける、 ベンゼ ン環もしくは複素環と縮合していてもよい炭素数 3〜6のシクロアルキル基のシ クロアルキル基とは、 シクロプロピル基、 シクロブチル基、 シクロペンチル基、 シク口へキシル基をいう。
における、 RE— CO—の REにおける、 一 ORuの RHにおける、 ベンゼ ン環もしくは複素環と縮合していてもよ L、炭素数 3〜 6のシクロアルキル基とし ては、 ベンゼン環もしくは上記複素環と縮合していてもよい炭素数 3〜 6のシク— 口アルキル基が挙げられる。
における、 R6— CO—の R6における、 一 OR の Ruにおける、 置換基 を有していてもよい炭素数 6〜12の芳香環の芳香環としては、 ベンゼン環、 ナ フタレン環が挙げられる。
における、 R6— CO—の R6における、 一OR の Ruおける、 置換基を 有していてもよい炭素数 6〜 12の芳香環の置換基としては、 水酸基、 メ トキシ 基、 フヱノキシ基、 ベンジルォキシ基、 t e r t—ブチルォキシ基、 アミノ基、 メチルァミノ基、 ジメチルァミノ基、 ェチルァミノ基、 カルボキシル基、 メ トキ シカルボニル基、 などが挙げられる。 また、 上記芳香環は、 1もしくはそれ以上 の同一もしくは異なつた上記の置換基を有していてもよい。
R,における、 R6— C O—の R6における、 一 ORHの RHにおける、 置換基 を有していてもよい炭素数 6〜 12の芳香環としては、 1もしくはそれ以上の同 —もしくは異なった上記置換基を有していてもよいベンゼン環、 ナフタレン環が 挙げられる。
における、 R6— C 0—の R6における、 一 ORuの は以上のような定 義を有するが、 一 OR8としては、 ベンジルォキシ基が好ましい。
における、 R6— C O—の R6は以上のような定義を有する力、 R6としては、
1—アミノー 2—フヱニルェチル基、 1ーメチルァミノ一 2—フヱニルェチル基、 1—アミノー 2— (3—イン ドリル) ェチル基、 1—ァミノ一 2— (4—ヒ ドロ キシ) フヱニルェチル基、 1一アミノー 2— (2—チェニル) ェチル基、 1—ァ ミノ一 2— (2—フリル) ェチル基、 1ーァミノ一 2—シクロへキシルェチル基、
2—フヱニルプロピル基、 1一べンゾシクロブチル基、 ベンジルァミノ基、 ベン ジルォキシ基が好ましく、 1一アミノー 2—フヱニルェチル基が特に好ましい。
における、 置換基を有していてもよい炭素数 2〜7の直鎖もしくは分枝鎖 状のアルキル基のアルキル基としては、 炭素数 3〜 4の直鎖もしくは分枝鎖状の アルキル基が好ましく、 プロピル基が特に好ましい。
R ,における、 置換基を有していてもよ L、炭素数 3〜 8の直鎖もしくは分枝鎖 状のアルケニル基のアルケニル基としては、 炭素数 4〜 8の直鎖もしくは分枝鎖 状のアルケニル基が好ましく、 炭素数 5〜 7の直鎖もしくは分枝鎖状のアルケニ ル基がさらに好ましい。
R ,における、 置換基を有していてもよ 、炭素数 3〜 8の直鎖もしくは分枝鎖 状のアルキニル基のアルキニル基としては、 炭素数 3〜 7の直鎖もしくは分枝鎖 状のアルキニル基が好ましく、 炭素数 5〜7の直鎖もしくは分枝鎖状のアルキニ ル基がさらに好ましい。
R!における、 置換基を有していてもよ t、炭素数 2〜 7の直鎖もしくは分枝鎖 状のアルキル基、 置換基を有していてもよい炭素数 3〜8の直鎖もしくは分枝鎖 状のアルケニル基、 置換基を有していてもよい炭素数 3〜8の直鎖もしくは分枝 鎖状のアルキニル基、 の置換基としては、 例えば、 アミノ基、 メチルァミノ基、 ェチルァミノ基、 ジメチルァミノ基、 水酸基、 カルボキシル基、 ァミノカルボ二 ル基、 ァミノカルボニルァミノ基、 ピリジルチオ基、 メチルチオ基、 フヱニル基、 3—インドリル基、 4ーヒ ドロキシフヱニル基、 2—チェニル基、 2 —フリル基、 3—イ ミダゾリル基、 シクロへキシル基、 などが挙げられ、 アミノ基、 フヱニル 基、 3 —インドリル基、 4—ヒ ドロキシフヱニル基、 2—チェニル基、 2 —フリ ル基、 シクロへキシル基が好ましく、 アミノ基、 フヱニル基がさらに好ましい。 また、 上記アルキル基、 アルケニル基、 アルキニル基は、 1もしくはそれ以上の 同一もしくは異なった上記の置換基を有していてもよい。
における、 置換基を有していてもよい炭素数 2〜7の直鎖もしくは分枝鎖 状のアルキル基としては、 1もしくはそれ以上の同一もしくは異なった上記置換 基を有している炭素数 3〜4の直鎖もしくは分枝鎖状のアルキル基が好ましく、 なかでも 2—アミノー 3—フヱニルプロピル基、 2—アミノー 3— ( 3—インド リル) プロピル基、 2—アミノー 3— ( 4—ヒドロキン) フヱニルプロピル基、 2—アミノー 3— (2—チェニル) プロピル基、 2—アミノー 3— ( 2—フリル) プロピル基、 2 —アミノー 3 —シクロへキシルプロピル基、 3—フヱニルブチル 基が好ましく、 2—アミノー 3 —フヱニルプロピル基が特に好ましい。
R tにおける、 置換基を有していてもよい炭素数 3〜8の直鎖もしくは分枝鎖 状のアルケニル基としては、 上記置換基を有している炭素数 4〜8の直鎖もしく は分枝鎖状のアルケニル基が好ましい。 R tにおける、 置換基を有していてもよ 、炭素数 2〜 7の直鎖もしくは分枝鎖 状のアルキニル基としては、 上記置換基を有している炭素数 3〜7の直鎖もしく は分枝鎖状のアルキニル基が好ましい。
は、 以上のような定義を有するが、 としては、 フヱニルァラニノィル基、 N— M eフヱニルァラニノィル基、 β— ( 3—インドリル) ァラニノィル基、 チ ロシノィル基、 β— ( 2—チェニル) ァラニノィル基、 β— ( 2—フリル) ァラ ニノィル基、 /5—シクロへキシルァラニノィル基、 3—フヱ二ルブチリル基、 1 一べンゾシクロブチルカルボニル基、 ベンジルァミノカルボニル基、 またはベン ジルォキシカルボニル基、 が好ましく、 フヱニルァラニノィル基が特に好ましい (
R 2における、 置換基を有していてもよい炭素数 1〜3の直鎖もしくは分枝鎖 状のアルキル基のアルキル基とは、 メチル基、 ェチル基、 プロピル基、 イソプロ ピル基を示し、 メチル基、 ェチル基が好ましく、 メチル基がさらに好ましい。
R 2における、 置換基を有していてもよい炭素数 1〜3の直鎖もしくは分枝鎖 状のアルキル基の置換基としては、 フヱニル基、 水酸基、 アミノ基、 カルボキシ ル基、 などが挙げられる。 また、 上記アルキル基は、 1もしくはそれ以上の同一 もしくは異なった上記の置換基を有していてもよい。
R 2における、 置換基を有していてもよい炭素数 1〜3の直鎖もしくは分枝鎖 状のアルキル基としては、 メチル基が好ましい。
R 2は、 以上のような定義を有するが、 R 2としては、 水素原子、 メチル基が好 ましい。
R 3における、 一 C O— R 7の R 7における、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分枝鎖状のアルキル基としては、 炭素数 1〜 3の直鎖もし くは分枝鎖状のアルキル基が好ましい。
R 3における、 一 C O— R 7の R 7における、 置換基を有していてもよい炭素数 :!〜 5の直鎖もしくは分枝鎖状のアルキル基、 の置換基としては、 例えば、 ハロ ゲン、 アミノ基、 水酸基、 アルコキシ基、 などが挙げられ、 ハロゲンが好ましい,
R 3における、 一 C O— R 7の R 7における、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分枝鎖状のアルキル基としては、 1もしくはそれ以上の同 一の上記置換基を有している炭素数 1〜3の直鎖もしくは分枝鎖状のアルキル基 が好ましく、 フルォロメチル基、 クロロメチル基がさらに好ましい。
R3における、 一 CO— R7の R?における、 炭素数 3〜7のシクロアルキル基 としては、 炭素数 3〜5のシクロアルキル基が好ましい。
R3における、 一CO— R7の R7における、 一 N (R12) R13の R12および 3における、 炭素数 1〜4の直鎖もしくは分枝鎖状のアルキル基としては、 炭素 数 1〜2の直鎖状のアルキル基が好ましく、 メチル基がさらに好ましい。
R3における、 一 CO— R7の R7における、 一 N (R12) R13の R12および 3における、 炭素数 3〜7のシクロアルキル基としては、 炭素数 3〜5のシクロ アルキル基が好ましい。
R3における、 一 CO— R7の R7における、 一 N (R12) R13の R12および 3における、 R12および R13としては、 同一もしくは異なって、 水素原子もしく はメチル基が好ましい。
R3における、 一CO— R7の R7における、 一 N (R12) R13の R12および Ri 3は以上のような定義を有するが、 一 N (R9) R10としては、 アミノ基、 メチル ァミノ基が好ましい。
R3における、 一 CO— R7の R7における、 一 OR14の R14における、 炭素数 1〜6の直鎖状もしくは分枝鎖状のアルキル基としては、 炭素数 1〜2の直鎖状 のアルキル基が好ましく、 メチル基がさらに好ましい。
R3における、 一CO— R7の R7における、 一 0Rl4の Rl4における、 炭素数 3〜 7のシクロアルキル基とは、 シクロプロピル基、 シクロブチル基、 シクロべ ンチル基、 シクロへキシル基、 シクロへプチル基をいう力 シクロプロピル基が 好ましい。
R3における、 一 C0— R7の R7における、 一 0R14の R14は以上のような定 義を有するが、 一 OR14としては、 水酸基、 メ トキシ基が好ましい。
R3における、 一 CO— R7は以上のような定義を有する力 一 CO— R7とし ては、 アミ ド基、 N—メチルアミ ド基、 が好ましい。
R 3における、 置換基を有していてもよい炭素数 1〜 5の直鎖もしくは分枝鎖 状のアルキル基としては、 炭素数 1〜3の直鎖もしくは分枝鎖状のアルキル基が 好ましく、 メチル基が特に好ましい。
R 3における、 置換基を有していてもよい炭素数 2〜 5の直鎖もしくは分技鎖 状のアルケニル基としては、 炭素数 2〜3の直鎖もしくは分枝鎖状のアルケニル 基が好ましい。
R 3における、 置換基を有していてもよい炭素数 2〜 5の直鎖もしくは分枝鎖 状のアルキニル基としては、 炭素数 2〜3の直鎖状のアルキニル基が好ましい。
R 3における、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分技鎖 状のアルキル基、 置換基を有していてもよい炭素数 2〜5の直鎖もしくは分枝鎖 状のアルケニル基、 置換基を有していてもよい炭素数 2〜5の直鎖もしくは分枝 鎖状のアルキニル基、 の置換基としては、 アミノ基、 アルキルアミノ基、 水酸基、 アルコキシ基、 カルボキシル基、 ハロゲン、 などが挙げられ、 ァミノ基が特に好 ましい。 また、 上記アルキル基、 アルケニル基、 アルキニル基は、 1もしくはそ れ以上の同一のもしくは異なった上記の置換基を有していてもよい。
R 3における、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分枝鎖 状のアルキル基としては、 メチル基、 アミノメチル基が好ましい。
R 3は、 以上のような定義を有するが、 R 3としては、 アミ ド基、 N—メチルァ ミ ド基、 メチル基、 アミノメチル基、 が好ましく、 アミ ド基、 メチル基、 が特に 好ましい。
R 4における、 炭素数 1〜6の直鎖もしくは分枝鎖状のアルキル基としては、 炭素数 2〜 5の直鎖もしくは分枝鎖状のアルキル基が好ましく、 炭素数 3〜 5の 分枝鎖状のアルキル基がさらに好ましく、 t e r t —ブチル基が特に好ましい。
R 4における、 炭素数 2〜6の直鎖もしくは分枝鎖状のアルケニル基としては、 炭素数 3〜 5の直鎖もしくは分枝鎖状のアルケニル基が好ましく、 炭素数 3 ~ 5 の分枝鎖状のアルケニル基がさらに好ましい。
R 4における、 炭素数 2〜 6の直鎖もしくは分枝鎖状のアルキニル基としては、 炭素数 3〜5の直鎖もしくは分枝鎖状のアルキニル基が好ましく、 炭素数 3〜5 の分枝鎖状のアルキニル基がさらに好ましい。
R 4における、 一般式 (2 ) における R 1 5としては、 メチル基が好ましい。 R4における、 一般式 (2) における R16および R17が一緒になって形成する 炭素数 3〜7のシクロアルキル基としては、 炭素数 3〜5のシクロアルキル基が 好ましい。
R4における、 一般式 (2) における R16および R17が一緒になって形成する 炭素数 3〜 7のシクロアルケニル基としては、 炭素数 4〜6のシクロアルケニル 基が好ましい。
R4としては、 イソプロピル基、 t e r t—ブチル基、 1, 1ージメチルプロ ピル基、 1, 1一ジメチルー 2 _プロぺニル基が好ましく、 t e r t—ブチル基 が特に好ましい。
R5における、 一OR12の R12における、 炭素数 1〜4の直鎖状のアルキル基 としては、 メチル基、 ェチル基が好ましく、 メチル基がさらに好ましい。
R5としては、 水酸基、 メ 卜キシ基が好ましく、 水酸基が特に好ましい。
一般式 ( 1 )
Figure imgf000020_0001
(式中、 R2、 R3、 R4および R5は、 前記と同じ意味を表す。 ) で示され る化合物としては、 Ph e—Hy p— Ty r (3— t B u) — NH2、 P h e - Th z— Ty r (3 - t Bu) - NH2、 Ph e— P r o— Ty r (3 - t Bu) — NH2、 P h e -P h g-Ty r (3- t B u) — NH2、 Ph e-Ph g-P h e (3— t Bu— 4—メ トキシ) 一 NH2、 P h e -N-Me -P h g-Ty r (3— t Bu) —NH2、 Ph e-N-Me-D-Ph g-Ty r (3— t B u) — NH2、 Ph e— Ph e— Ty r (3 - t Bu) —NH2、 Ph e—Ch a — Ty r (3— t Bu) -題 2、 Ph e— Ch g— Ty r (3— t Bu) — N H2、 Ph e - T i e— Ty r (3— t Bu) — NH2、 P h e -V a 1 -Ty r (3— t Bu) - NH2、 Ph e - L e u - Ty r (3— t Bu) — NH2、 P h e— Ty r— Ty r (3— t Bu) — NH2、 Ph e-Hp h-Ty r (3— t B u) — NH2、 Ph e - Th i _Ty r (3 - t B u) — NH2、 P h e— I 1 e— Ty r (3— t B u) - NH2、 Ph e-Th r -Ty r (3 - t B u) ― NH2、 Ph e—T r p - Ty r (3 - t B u) - NH2、 Ty r— Ph g— Ty r (3— t Bu) —NH2、 Ph g— Ph g - Ty r (3— t B u) - NH2、 T r p— Ph g— Ty r (3— t B u) —NH2、 C h a-P h g-Ty r (3— t B u) — NH2、 Hp h-P h g-Ty r (3— t B u) — NH2、 N- (a- メチルヒ ドロシンナミル) 一 Ph g— Ty r (3— t B u) — NH2、 P h e— N-Me - V a 1 -Ty r (3— t B u) — NH2、 N— (a—メチルヒ ドロシ ンナミル) 一N— Me— D— P h g— Ty r (3— t B u) — NH2、 P h e— V a 1 -N-Me -Ty r (3— t B u) - NH2、 Ph e - Ph g - Ty r
(3— t B u) — NHMe、 P h e - P h g - Ty r (3 - t B u) _0H、 N ― (3—フエ二ルブチリル) 一P h g— Ty r (3— t B u) — NH2、 N- (ベンジルァミ ノカルボニル) 一 N— Me— D— P h e— Ty r (3— t B u) 一 NH2、 N— (ベンジルォキシカルボニル) 一 P h g— Ty r (3— t B u) — NH2、 N— (ベンジルォキンカルボニル) 一 N— Me— V a l— Ty r (3 - t B u) — NH2、 N- (S) _ 3—フヱニルブチリル一 P h g— T y r (3 - t B u) —NH2、 N— ( (R) 一 3—フエ二ルブチリル) 一 P h g— T y r (3- t B u) -NH2. L- - ( 3—メチル一 2—ブテニル) グリ シノィル 一 N— Me— V a l— Ty r (3— t B u) — NH2、 - (4一ペンチニル) グリシノィルー N— Me— V a 1— T y r (3— t B u) — NH2、 N— (2 一アミノー 3—フエニルプロピル) 一P h g— Ty r (3— t B u) —NH2、 N- (2—アミノー 3—フエニルプロピル) 一V a l— Ty r (3— t B u) — NH2、 N- [2— (3 - t e r tブチルー 4—ヒ ドロキシフエニル) 一 1—メ チルェチル] —3—メチル一 2— (N—メチルー N—フエ二ルァラニノィルアミ ノ) ブタナミ ド、 Ph e— N— Me— V a 1— N—Me— Ty r (3— t B u) -NH2 N- [2 - (3 - t e r tプチルー 4ーヒ ドロキシフエニル) 一 1一 メチルェチル] 一 3—メチル一2— [ N—メチル一 N— (N— Me—フヱニル ァラニノィル) ァミノ] ブタナミ ドが好ましく、 P h e— Ph g— Ty r (3— t B u) —NH2、 Ph e-N-Me-D-P h g-Ty r (3— t B u) — N H2、 Ph e-Ph e-Ty r (3— t B u) — NH2、 Ph e-Ch a-Ty r (3 - t B u) 一 NH2、 P h e - V a 1 -Ty r (3— t B u) - NH2、 P h e-L e u-Ty r (3— t B u) - NH2、 Ph e-Ty r-Ty r (3— t B u) 一 NH2、 Ph e-Hp h-Ty r (3— t B u) — NH2、 P h e - I 1 e— Ty r (3— t Bu) — NH2、 T r p-Ph g-Ty r (3 - t B u) - NH2、 Ch a-P h g-Ty r (3 - t B u) —NH2、 Ph e - N— Me - V a 1 -Ty r (3— t Bu) — NH2、 Ph e—Va l— N— Me— Ty r (3 - t Bu) — NH2、 Ph e-Ph g-Ty r (3 - t B u) - NHMe、 N - (ベンジルァミノカルボニル) 一 N— Me— D— Ph e— Ty r (3— t B u) 一 NH2、 N- (S) — 3—フヱニルブチリルー Ph g— Ty r (3— t Bu) 一 NH2、 N- (2—ァミノ一 3—フエニルプロピル) 一 Ph g— Ty r (3— t B u) —NH2、 N— (2—アミノー 3—フエニルプロピル) 一V a 1 -T y r (3— t B u) — NH2、 N- [2— (3— t e r tプチルー 4—ヒ ドロキシ フエニル) 一 1—メチルェチル] 一 3—メチル一2— (N—メチルー N—フエ二 ルァラニノィルァミノ) ブ夕ナミ ド、 Ph e— N— Me— Va 1 -N-M e -T y r (3— t Bu) — NH2、 N— [2— (3— t e r tプチルー 4—ヒ ドロキ シフヱニル) 一 1—メチルェチル] ― 3—メチル一2— [ N—メチル一 N— (N— Me—フヱニルァラニノィル) ァミ ノ] ブタナミ ドがさらに好ましい。 塩を形成する酸としては、 塩酸、 臭化水素酸、 ヨウ化水素酸、 硫酸、 燐酸など の無機酸、 および酢酸、 シユウ酸、 マレイン酸、 フマル酸、 クェン酸、 酒石酸、 メタンスルホン酸、 トリフルォロ酢酸などの有機酸が挙げられる。
また、 本発明の化合物には光学異性体が存在するが、 それぞれの光学異性体、 およびそれらの混合物は全て本発明に含まれる。
本発明の化合物は、 水和物として得ることもできる。 発明を実施するための最良の形態
一般式 ( 1 )
Figure imgf000023_0001
(式中、 A、 R2、 R3、 R4および R5は、 それぞれ、 前記と同じ意味を表 す。 ) で示される化合物は、 ジペプチドまたはトリペプチドを含むアミノ酸誘導 体であり、 その製造は、 固相法、 液相法のいずれでも行うことができる。 固相法 で製造を行うには、 自動有機合成装置を使用することができるが、 マニュアル操 作で行うこともできる。
本発明の化合物を構成するァミノ酸は、 ほとんどが市販されおり容易に購入可 能であるが、 市販されていない場合には、 一般的によく知られた方法、 例えば、 S t r e c k e r法、 B u c h e r e r法、 ァセトアミ ドマ口ン酸エステノレ法、 またはァミノ基保護グリシンエステルをアルキル化する方法などにより製造する ことができる。
p—ヒドロキシー m—置換フヱニルァラニンエステルは、 例えば、 市販の、 あ るいはチロシンをエステル化することにより得られるチロシンエステル (Ty r 一 OR14 (式中、 Rl4は前記と同じ意味を表す。 ) ) から、 通常の有機化学的方 法、 例えばプロトン酸やルイス酸などの酸触媒の存在下でのフリーデルクラフツ 反応により、 m位に置換基 R4 (ここで、 R4は、 前記定義のうち、 アルキル基、 アルケニル基、 またはアルキニル基の場合を表す。 以下、 この段落において同じ c ) を導入し製造することができる。 なお、 置換基 R4の導入は、 この段階に限ら れるものではなく、 製造上の可能ないかなる段階おいても行うことができる。 p—ヒ ドロキシー m—置換フェニルァラニンエステルの α—ァミノ基を、 例え ばベンジルォキンカルボニル保護した後、 0—アルキル化を行うことにより、 一 OR8の R8がアルキル基のものを得ることができる。 R5が水素原子およびアル コキシ基のものに関しては、 続いて —アルキル化を行い、 R2がアルキル基 のものを得ることができる。 R5の水酸基を、 例えばべンジル基など、 後の段階 で除去しやすいもので保護した後、 N—アルキル化を行い、 脱保護を行うことに より、 R2がアルキル基で R5が水酸基のものを得ることができる。
R3に関しては、 ァミノ基等が適切に保護された置換フヱ二ルァラニンエステ ルのエステルを利用して、 種々の変換を行うことにより所望の構造のものを得る ことができる。
例えば、 R3がアミ ドの場合は、 α—アミノ基保護置換フヱニルァラニンエス テルを、 直接ァミン HN (R12) R13と反応させることにより、 または、 カルボ ン酸に変換した後に常法に従ってァミン HN (R12) R13と縮合させることによ り、 α—アミノ基保護置換フヱニルァラニンアミ ドへ変換することができる。
例えば、 R3が置換アルキル基の場合は、 α—ァミノ基保護置換フヱニルァラ ニンエステルのエステルを還元して得られるアルデヒ ドもしくはアルコールから、 ハロゲン置換アルキル基、 ヒ ドロキシアルキル基、 アミノアルキル基、 メチル基 等へ変換することができる。
Να—置換アミノ酸は、 ほとんどが市販されおり容易に購入可能であるが、 市 販されていない場合には、 一般的によく知られた方法、 例えば α—ブロモカルボ ン酸ユニッ トと一級ァミンを反応させる方法 ( j . Me d. Ch em. , 37. 2678 (1994) ) 、 またはアミノ基保護アミノ酸もしくはそのエステルを 塩基およびアルキル化剤で処理することにより Ν—アルキル化する方法、 などに より製造することができる。
アミノ酸の Να—アミノ基、 /3— A l a、 ァ一 Ab uのアミノ基保護は、 フル ォレニルメチルォキシカルボニル (Fmo c) 基、 t e r t—ブトキンカルボ二 ル (Bo c) 基、 ベンジルォキシカルボニル (Z) 基、 などで行うことが効率的 である。 固相合成において好ましいァミノ基の保護基としては、 例えば、 Fmo c基が挙げられる。 側鎖官能基の保護は、 例えば A s p、 G 1 u、 A a d残基の カルボキシル基の保護の場合は t e r t—プチルエステル (〇 t B u) として、 S e r、 Th r、 Ty r残基の水酸基の保護の場合は t e r t—プチル ( t B u) 基で、 Hs e残基の水酸基の保護の場合はトリフエニルメチル (T r t) 基で、 H i s残基のィミダゾリル基、 D a b、 0 r n、 L y s残基の側鎖ァミノ基ゃト リブトフアン残基のインドール基の保護の場合は B o c基で行う。 なお、 ァミノ 酸残基の保護は上記以外の保護基を使用することも可能である。
カルボキシル基の活性化法としては、 ベンゾトリアゾールー 1ーィルーォキシ ートリス (ジメチルァミノ) ホスホニゥム へキサフルォロホスフヱート (BO P) を用いる方法、 0— (7—ァザべンゾトリアゾ一ル— 1一ィル) 一 1、 1、 3、 3—テトラメチルゥロニゥム へキサフルォロホスフェート (HATU) を 用いる方法、 ジイソプロピルカルポジイミ ド (D I C) を用いる方法、 N—ェチ ルー N' — 3—ジメチルァミノプロピルカルボジィミ ド (WS C I ) を用いる方 法、 ジシクロへキシルカルポジイミ ド (DCC) を用いる方法、 ジフヱニルホス ホリルアジド (DPPA) を用いる方法、 それぞれこれらの試薬と 1—ヒ ドロキ シベンゾトリアゾール (HOBT) もしくは N—ヒ ドロキシスクシンイミ ド (H ONS u) とを組み合わせて用いる方法、 イソブチルクロ口ホルメートなどを用 いる混合酸無水物法、 または、 アミノ酸として α—カルボキシル基がペン夕フル オロフヱニルエステル (OP f ρ) 、 アミノ酸として α—カルボキシル基が p— ニトロフエニルエステル (ΟΝρ) 、 アミノ酸として α—カルボキシル基が Ν— ヒ ドロキシスクシンィミ ドエステル (0 S u) を用いる方法、 それぞれこれらと ΗΟΒΤとを組み合わせて用いる方法、 などがある。 なお、 必要に応じ、 トリェ チルァミン (TEA) 、 ジィソプロピルェチルァミ ン (D I E A) 、 N—メチル モルホリン (NMM) 、 4 -ジメチルァミノピリジン (DMA P) などの塩基を 添加することにより、 反応を促進させることができる。
が N (R9) R10— CO—の化合物 (R9および R10は前記と同じ意味を表 す。 ) は、 アミノ酸 (A) のァミノ基と N, N' —カルボニルジイミダゾ一ル、 ホスゲン、 トリホスゲン、 クロ口炭酸 p—二トロフヱニルなどの試薬と混合して 攪拌後、 HN (R9) R10を加える方法、 またはジペプチドュニッ 卜と R9 (R10) N = C = 0、 もしくは R 9 (Rio) NC (=0) C Iを反応させる方法、 などに より製造することができる。
が RuO— CO—の化合物は、 置換フヱニルァラニンアミ ドと N— (C02 Rii) —了ミノ酸を力ップリングさせる方法、 またはァミノ酸 (A) のァミノ基 を C 1 C02Ruと反応させる方法、 などによって製造することができる。 がアルキル基、 アルケニル基、 アルキニル基の化合物は、 必要に応じ置換 官能基が保護された相当するアルキルハラィ ドもしくはアルデヒドを用いて、 ァ ミノ酸 (A) のアミノ基を常法に従いアルキル化し、 必要に応じ脱保護すること により得ることができる。
また、 本発明の化合物は、 実施例に記載される具体的な製造方法を応用して製 造することもできる。
なお、 本出願が主張する優先権の基礎となる特許出願である特願平 9— 2 5 5 8 7 9号、 特願平 1 0— 1 8 6 8 0 2号の明細書に記載の内容は全て引用により 本明細書の中に取り込まれるものとする。 実施例
以下、 本発明の化合物の製造について実施例に基づき、 さらに具体的に説明す るが、 本発明はこれらの実施例に限定されるものではない。 なお、 以下の実施例 において、 アミノ酸残基および Ν α—アミノ酸残基は、 特に示さない限り L体を 示す。
また、 本発明化合物の有用性を説明するために、 本発明化合物の代表的化合物 のモチリンレセプターアンタゴニスト作用に関する薬理試験結果を試験例に示す c 表 A— 1〜A— 7および表 B— 1〜B— 1 1に実施例化合物の化学構造式または 化学名を示す。
表 A — 1 実施例
番号 構造式または化学名
1 Phe-Hyp-Ty r (3-tBu) -NH2
2 Phe-T i c-Ty r (3-tBu) -NH2
3 Phe-Thz-Tyr (3-tBu) -NH2
4 Phe-2-Abz-Tyr (3-tBu) - H2
5 Phe-Phg- Tyr (3-tBu) -NH2
6 Phe-D-Hyp-Tyr (3-tBu) -NH2
7 P e-Pro-Tyr (3-tBu) -NH2
8 Phe-D-Pro-Tyr (3-tBu) -NH2
9 Phe— Phg— Phe (3- iBu-4- (トキシ)— NH:
1 0 Phe-Phe-Ty r (3-tBu) -Mz
1 1 Phe-Val-Tyr (3-tBu) -NH2
1 2 Phe-Phg- Tyr- NH2
1 3 Phe-Ala-Tyr (3-tBu) -NH2
1 4 Phe-Leu-Ty r (3-tBu)-NH2
1 5 Val-Phg-Tyr (3-tBu) -NH2
1 6 Leu-Phg-Tyr (3-tBu)-NH2
1 7 Phe-Gly-Tyr (3-tBu) -NH2
Figure imgf000028_0001
表 A — 3 実施例
構造式または化学名
1
3 4 Phe-Asn-Ty r (3-tBu) -
3 5 Phe-G!n-Tyr (3-tBu) - ■ΝΗ2
3 6 Phe-Ci t-Tyr (3-tBu) - ■ΝΗ2
3 7 Phe-Dab-Ty r (3-tBu) - ■ΝΗ:
3 8 P e-Orn-Tyr (3-tBu) - -ΝΗ2
3 9 Phe-Lys-Tyr (3-tBu) - - Η2
4 0 P e-Ser-Ty r (3-tBu) - - Η 2
4 1 - Η2
4 2 - Η2
4 3 Phe-Abu-Tyr (3-tBu) - ζ
4 4 Phe-Nva-Tyr (3-tBu) -ΝΗ2
4 5 -ΝΗ2
4 6 Phe-Hi s-Tyr (3-tBu) -ΝΗ2
4 7 Phe-Trp-Ty r (3-tBu) -ΝΗ2
4 8 Phe-Tiq-Tyr (3-tBu) -ΝΗ2
4 9 N- (4 -ピリシ' )け才ァセチル) -Phg
5 0 Ν- (1- "ンソ'シク。フ'タンカルホ': 表 A— 4 実施例
番号 構造式または化学名
5 1 N-(2-インド -ルカルホ' -Phg-Tyr (3- tBu) -NH2
5 2 Tyr-Phg-Tyr (3-tBu) -NH2
5 3 Phg-Phg-Tyr (3-tBu) -NH2
5 4 Thi— Ph2 - Tvr - tRii)— NH 2
5 5 Trp-Phg-Tyr (3-tBu) -NH2
5 6 Hi s-Phg-Tyr (3-tBu) -NH2
5 7 N-((i)- 3-フ I二ルフ'チリル) -Phg-Tyr (3 -tBu)-NH
5 8 N- (2-ビ フエ二ルカルホ' ニル) -Phg-Tyr (3- tBu) -NH2
5 9 (3-Ala-Phg-Tyr (3-tBu)-NH2
6 0 Aib-Phg-Tyr(3-tBu)- H2
6 1 I le-Phg-Tyr (3-tBu) -NH2
6 2 Chg-Phg-Tyr (3-tBu) -NH2
6 3 Cha-Phg-Tyr (3-tBu) -NH2
6 4 Tle-Phg-Tyr (3-tBu) -NH2
6 5 Asp-Phg-Tyr (3-tBu) -NH2
6 6 Aad-Phg-Tyr (3-tBu) -NH2
6 7 Asn-Phg-Tyr (3-tBu) -NH2 表 A — 5 実施例
構造式または化学名
6 8 Gl n-Phg-Tyr (3-tBu) - H2
6 9 C i t-Phg-Tyr (3-lBu) -NH2
7 0 Dab-Phg-Ty r (3-tBu) -NH2
7 1 Lys-Phg-Tyr (3-tBu) -NH2
7 2 Ser-Phg-Tyr (3-tBu) -NH2
7 3 Hse-Phg-Ty r (3-tBu) -NH2
7 4 Thr-Phg-Tyr (3-tBu) -NH2
7 5 Abu-Phg-Tyr (3-tBu) -NH2
7 6 Nva-Phg-Tyr (3-(Bu) -NH2
7 7 Me t-P g-Tyr (3-tBu) -NH2
7 8 Pro-Phg-Tyr (3-tBu) - H2
7 9 Hyp-Phg- Tyr (3- tBu) -NH2
8 0 Ti c-Phg-Tyr (3-tBu)-NH2
8 1 Tiq-Phg-Tyr (3-tBu) -NH2
8 2 2-Abz-Phg-Tyr (3-tBu) -NH2
8 3 Hph-Phg-Tyr (3-tBu) -NH2
8 4 N—(d— チルヒト'口シンナモイル)一 Phg— Tyr (3— tBu)— NH: 表 A— 6 実施例
番号 構造式または化学名
8 5 Ν-( α —メチルシンナモイル) -Phg-Tyr(3-tBu)-NH2
8 6 N-(3- リンカルホ'ニル) -Phg-Tyr(3-tBu)-NH2
8 7 N-(3-フランァクリ αィル) -Phg-Tyr(3-tBu)-NH2
8 8 Phe-D-Phg-Tyr(3-tBu)-NH 2
8 9 Phe-N-Me-Val-Tyr(3-tBu)-NH 2
9 0 Ν-(α - チルヒド。シンナモイル) -N-Me-D-Phg-Tyr(3-tBu)-NH2 9 1 Phe-Val-N-Me-Tyr(3-tBu)-NH 2
9 2 Phe-Phg-Tyr(3-tBu)-NHMe
9 3 Phe-Apc-Tyr(3-tBu)-NHMe
9 4 Phe-Ahc-Tyr(3-tBu)-NHMe
9 5 N-ァセチル -transHyp(0-へ'ンシ'ル) -Tyr(3-tBu)-NHMe
9 6 Phe-Cha-Phe(3-tBu)-NH 2
9 7 N- (へ'ンシ'ルァミノカルホ'ニル) -N-Me-D-Phg-Tyr(3-tBu)-NH2
9 8 N- (へ'ンシ'ル才キシカルホ'ニル) -Phg-Tyr(3-tBu)-NHMe
9 9 N- (へ'ンシ'ル才キシカルホ'ニル) -N-Me-Val-Tyr(3-tBu)-NH2
1 0 0 N-((R)-3—フ I二ルフ'チリル) -Phg-Tyr(3-tBu)— NH2
1 0 1 N-((S)-3—フエ二ルフ'チリル) -Phg-Tyr(3-tBu) - NH2
1 0 2 N-((R)-3—フエ二)レフ'チリル) -D-Phg-Tyr(3-tBu)— NH2 表 A— 7 実施例
番号 構造式または化学名
1 0 3 N-((S)-3—フ; L二ルフ'チリル) -D-Phg-Tyr(3-tBu)- NH2
1 0 4 L-a -(3-メチル -2-フ'テニル)ク 'リシバル- N-Me-Val-Tyr(3-tBu)-NH 2
1 0 5 α -(4-へ。ンチニル)ク'リシバル- N-Me-Vaレ Tyr(3-tBu)-NH2
1 0 6 α -(2- チニル)ク'リシバル- N-Me-Vaレ Tyr(3-tBu)-NH2
1 0 7. N-((S)-3-フエ二ルフ'チリル) -N-Me-Vaレ Tyr(3-tBu)-NH2
1 0 8 N-((R)-3-フエ二ルフ'チリル) -N-Me-Vaレ Tyr(3-tBu)-NH2
1 0 9 N- -アミノヒドロシンナモイル) -N-Me-Val-Tyr(3-tBu)-NH2
1 1 0 N-(2-アミ 3-フエ二ルフ。 Dピル) -Phg-Tyr(3-tBu)-NH2
1 1 1 N-(2-ァミノ- 3-フエニルフ ° I]ピル) -N-Me-Phg-Tyr(3-tBu)-NH2
1 1 2 N- (フエニルピルビバル) -N-Me-Vaレ Tyr(3-tBu)-NH2
1 1 3 N-フエ二)ト Gly-N-Me-Vaレ Tyr(3-tBu)-NH2
1 1 4 N-Me-N-フエ::ル -Gly-N-Me-Vaレ Tyr(3-tBu)-NH2
1 1 5 N-(3-フエ二)レフ'チル) -Val-Tyr(3-tBu)-NH2
1 1 6 N-(2-ァミノ- 3-フエ二ルフ。 Πピル) -Val-Tyr(3-tBu)-NH2
1 1 7 2-[(2-アミ 3-フエ二ルフ。ロピル)アミノト N-[2-アミ l-[(3-tertフ'チル -4-ヒド口 キシフエ::ル)メチル]ェチルト3-メチルフ'タナミト'
1 1 8 N-[2-(3-tert チル -4-ヒト' 0キシフエニル) -1-メチルェチル】 - 3-好ル -2-(N- チル- N-フ I二ルァラ二バルァミノ)フ'タナミド
1 1 9 Phe-N-Me-Val-N-Me-Tyr(3-tBu)-NH 2
1 2 0 N-[2-(3-tertフ'チル -4-ヒト' Dキシフ; tニル )-1- チルェチ)レ] - 3- チ -2-(Ν-ヌチ)レ-
N-Me-フエ二ルァラ二バルァミノ)フ'タナミト'
1 2 1 N-[2-(3-tertフ'チル -4-匕ト' Dキシフエニル) -1- チルェチル] -N-Me-3-メチル -2- ίΝ-ヌチル -N-フ 1二ルァラ二バルァミノ)フ'タナミト' ― ― 表 B—
Figure imgf000034_0001
表 B— 2
Figure imgf000035_0001
表 B— 3
Figure imgf000036_0001
表 B— 4
F
Figure imgf000037_0001
実施例 Ri' RA 番号
90 CHs へ
97 CH3
HNヽ
102 H
103 H
表 B— 5
Figure imgf000038_0001
表 B— 6
Figure imgf000039_0001
表 B— 7 表 B— 8
Figure imgf000040_0002
Figure imgf000040_0001
表 B— 9 表 B— 1 0
Figure imgf000041_0001
表 B
Figure imgf000042_0001
なお、 以下の実施例における HPLCによる保持時間 (RT : m i n. ) の測 定は、 以下の a法〜 e法のいずれかの方法を用いた。
a法: HPLCは日立 L— 6300、 カラムは Wa t e r s BONDAS PHERE 5 a C 18 300 A ( 300オングストローム、 3. 9 15 0mm) を使用した。 溶出液は、 A液: 0. 1 %トリフルォロ酢酸 (T F A) 蒸留水、 B液: 0. 1%TFA ァセトニトリル (Me CN) でリニアグラジ ェント、 B液: 0〜70%、 35分間、 流速 1 m 1 m i nで行い、 280 nm (UV) で検出した。
b法: a法に従い、 リニアグラジェン 卜 B液: 0〜60%、 30分間、 流速 1 m l Zm i nで行った。
c法: a法に従い、 リニアグラジェン 卜 B液 : 20〜60%、 40分間、 流速 1 m 1 / i nで行つた。
d法: a法に従い、 カラムは Wa t e r s n BONDAS PHERE 5 C 18 10 OA ( 100オングス トローム、 3. 9 x 150mm) を使用し た o
e法: a法に従い、 HPLCに島津 LC— 10 ADを使用した。
また、 必要に応じ、 粗生成物の精製を以下の H P L Cを用いて行った。 HPLC : Wa t e r s 600 Eまたは G i 1 s o n 306、 カラム: YMC— P a c k ODS (120オングス トローム、 250 x 20mm l . D. ) 。
溶出液は A液: 0. 1%TFA 蒸留水、 B液: 0. l%TFA Me CNでリ 二アグラジェント。 流速 10m 1 Zm i nで行い、 280 nm (UV) で検出し た。
質量スぺク トル (MS) は、 E I— MSは島津 G CMS— QP 1000または G CMS— QP 5050 Aを用いて、 FAB— MSは J ASCO 70— 250 SEQを用いて、 それぞれ測定した。
NMRは、 以下の f 法または g法により測定した。
f 法: Bu r u c h e r DX- 500 (500 MHz) を用いて測定。 g法: J EOL J NM-EX- 270 (270MH z) を用いて測定。 固相として使用する樹脂は、 市販品、 例えば、 No v a B i o c h e m社製の R i nk Am i d e Re s i n、 B a c h e m社製の Fmo c— 2、 4一 d i me t ho x y— 4' 一 (c a r b o xyme t h y 1 o xy) —b e n z h y d r y l am i n e l i n k e d t o Am i n ome t hy l Re s i n、 または渡辺化学社製の Wa n g Re s i nを使用することが便宜であり、 以下の実施例において適宜使用した。
固相合成におけるカツプリングの方法としては、 以下の第 1法〜第 5法が便宜 であり、 以下の実施例において適宜使用した。
第 1法:樹脂に対して 1. 5〜2当量の酸成分 (例えばアミノ酸、 Να—置換 アミノ酸、 カルボン酸) 、 3当量の Β〇Ρ、 3当量の ΗΟΒΤ、 樹脂 0. 1mm 0 1に対し31111の1^, N—ジメチルホルムアミ ド (DMF) 、 及び 6当量の N MMを用い、 1. 5〜2時間振とうする方法。
第 2法:樹脂に対して 1. 5〜 2当量の酸成分、 3当量の HAT U、 樹脂 0. 1 mm 0 1に対し 3 m 1の DM F、 及び 6当量の N MMを用い、 1. 5〜2時間 振とうする方法。
第 3法:樹脂に対して 1. 5〜2当量の酸成分、 3当量の HOBT、 樹脂 0. lmmo 1に対し 3m 1の DMF、 及び 3. 2当量の D I Cを用い、 2時間振と うする方法。
第 4法:樹脂に対して 5当量の酸成分、 0. 1当量の DMAP、 樹脂 0. lm mo 1に対し 3 m 1の DM F、 及び 5当量の D I Cを用い、 4時間振とうする方 法。
第 5法:樹脂に対して 2当量の酸成分の活性エステル (例えば P f pエステル) 、 3当量の HOBT、 樹脂 0. 1 mmo 1に対し 3m 1の DMFを用い、 2時間 振とうする方法。
Nな—置換ァミノ酸残基の構築については、 以下に示す第 6法などが便宜であ り、 以下の実施例において適宜使用した。
第 6法: 10当量の置換あるいは無置換ブロモ酢酸、 樹脂 0. lmmo 1に対 し 3mlの DMF、 及び 13当量の D I Cを用い、 30分間振とうし、 ろ過後、 同条件で再度ァシル化した後、 DMFにて洗浄を繰り返し、 これにジメチルスル ホキシド (DM SO) に溶解した 60当量のアミンを加え、 2時間振とうする方 法。
固相合成における具体的な操作の一例は以下の通りである。 反応容器に固相と して使用する樹脂、 例えば R i n k Ami d e R e s i nを入れ、 これに適 当な溶媒、 例えば DMFを加え膨潤させ、 次いでこれに 20%ピぺリ ジン ZDM Fを加え振とうし、 さらに DMFで繰り返し洗浄する。 これに酸成分を第 1法に て力ップリングさせる。 この操作を第 1法〜第 6法の力ップリング方法を用いて、 結合させる酸成分の数だけ繰り返す。 得られた樹脂の脱保護及びクリーべイジの 順番は適宜入れ替え、 または同時に行うことができる。 クリ一ベイジ工程は 95 %TFA水溶液中、 室温にて 30〜 45分間振とうすることで完了する。 クリー ベイジ工程の終了後、 樹脂をろ過して除き、 ろ液を減圧にて濃縮、 乾燥すること で粗フヱニルァラニン誘導体を得る。
固相合成におけるアミノ酸の脱保護は具体的には例えば以下の方法で行うこと ができる。 Fmo c基は、 樹脂 0. 025〜0. 1 mm o 1を用いた場合は、 榭 脂 0. 1 mmo 1に対し、 20%ピぺリ ジン/ DMF 5mlを加え 5分間振と うし、 ろ過後新たに 5 m 1加え 20〜 30分間振とうした後、 ろ過、 DMF洗浄 を繰り返すことで除去でき、 また樹脂 0. 2mmo 1を用いる場合は、 20%ピ ペリジン ZDMF 7mlを加え 5分間、 ろ過後新たに 7 m 1加え 30〜 45分 間振とうした後、 ろ過、 DMF洗浄を繰り返すことで除去できる。 Bo c基、 t B u基、 T r t基はクリーべィジ工程でクリーべィジと同時に除去できる。 実施例 1
Phe-Hyp-Ty r (3 - t B u) -NH2
(1) Ty r (3- t B u) — OMeの合成
Ty r— OMe ' HC l 25. 0 g (0. 108 m o 1 ) の酢酸 t e r t— ブチル 500ml溶液に、 70%HC l O4 18ml (0. 204mo l) を 加え、 室温にて 4日間攪拌した。 反応液を減圧下に留去し、 得られた残さを酢酸 ェチル 400m 1に溶解後、 飽和 N aHC03水溶液 800m 1に注入し攪拌し た。 有機層をとり、 飽和 N aHC03水溶液で洗浄、 飽和食塩水で洗浄後、 無水 硫酸ナトリウムで乾燥し、 減圧下に溶媒を留去した。 得られた残さにエーテル 5 00mlを加え、 室温にて終夜攪拌した。 析出した結晶を濾取し、 Ty r (3—一 t B u) -OMe 10. 8 g (40%) を得た。
NMR (g法、 DMS0— d6) : δ 1. 39 (9Η, s)、 1. 85 (3 Η, b r s) 、 2. 81 (1Η, d d, J = 14. 0, 7. 6Hz) 、 3. 02 (1H, dd, J =14. 0. 5. lHz) 、 3. 70 (1H, dd, J = 7. 6, 5. lHz) 、 3. 73 (3H, s) 、 6. 57 (1H, d, J =8. 2H z) 、 6. 86 (1 H, dd, J =8. 2, 1. 8Hz) 、 7. 04 (1H, d, J = 1. 8H z)
(2) Fmoc— Ty r (3 - t B u) —OHの合成
Ty r (3-t Bu) -OMe 2. 0 g (8. Ommo l) のメタノール 40m 1溶液に、 氷冷下 1 N水酸化ナトリウム水溶液 8. 8ml (8. 8mmo 1) を滴下し、 2時間攪拌後、 室温にてさらに 4時間攪拌した。 反応液を減圧に て濃縮し、 氷冷下、 1N塩酸を加えて pH9とした反応液に、 Fmo c— OSu 3. 0 g (8. 8mmo l) の 1, 4—ジォキサン 40mlの溶液と飽和炭酸 水素ナトリウム水溶液を、 反応液の pH8〜9を維持しながら交互に滴下後、 室 温にて 1曰間攪拌した。 反応液は塩酸酸性とした後、 酢酸ェチルにて抽出し、 酢 酸ェチル層は無水硫酸マグネシウムにて乾燥後、 減圧にて濃縮した。 得られた粗 生成物はシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へ キサン =1 : 1、 及び酢酸を添加した酢酸ェチル: n—へキサン =1 : 1) に付 し、 さらに溶出に用いた酢酸を除去するため、 フラクションを水洗、 無水硫酸マ グネシゥムにて乾燥を行った後、 減圧にて濃縮し、 Fmo c— Ty r (3— t B u) -OH 2. 3g (収率: 61%) を得た。
NMR (g法、 CDC ") : <5 1. 38 (9H, s) 、 3. 09 (2H, m) 、 4. 19 (1H, m) 、 4. 39 (2 H, d, J =7Hz) , 4. 64 (1 H, m) 、 5. 19 (1 H, d, J=8Hz) 、 6. 58 (1 H, d, J = 8Hz) 、 6. 84 (1H, d, J = 8Hz) 、 7. 05 (1H, b r s) 、 7. 26- 7. 77 (8H, m)
(3) Phe-Hy p-Ty r (3— t Bu) — NH2の合成
反応容器に R i nk Ami d e Re s i n (0. 45mmo 1 /g) 22 2mg (0. 1 mmo 1 ) を入れ、 DM Fにて樹脂を膨潤させた後、 ピぺリジン にて脱 F mo c処理した。 次いで Fmo c— Ty r (3— t Bu) — OHを第 1 法にてカップリングした。 ろ過、 DM F洗浄後、 ピぺリジンにて脱 Fmo c処理 した。 次いで Fmo c— Hy p—〇Hを第 2法にてカップリングした。 ろ過、 D MF洗浄後、 ピぺリジンにて再度脱 Fmo c処理した。 次いで B 0 c— P h e— 〇Hを第 2法にてカップリングした。 反応終了後、 ろ過、 DMF洗浄、 塩化メチ レン (DCM) 洗浄を行い、 95%TFA水溶液 3 m 1にてクリーべイジを行つ た。 反応液は減圧にて濃縮後、 残さを DM F 2m 1に溶解し HP L Cにて精製 した。 フラクショ ンごとにまとめて濃縮後、 凍結乾燥し、 標題化合物の TF A塩 23. 2mgを得た。
HPLC (b法) : RT 17. 15
F AB-MS : 497 (M+H+)
NMR "法、 DMSO - d 6) : δ 1. 32 (9H„ s) 、 1. 75 (1 H, d d d. J = 13, 8, 5H z) 、 2. 00 (1 H, d d、 J = 13, 8H z) 、 2. 76 (1 H, d d, J = 14, 8H z) 、 2. 86 (1 H, d d, J = 14, 6Hz) 、 2. 92 ( 1 H, d d, J = 14, 7Hz) 、 3. 09 (1 H, d d. J = 14, 6H z) 、 3. 18 ( 1 H, d d, J = 10, 4Hz) 、
3. 54 (1 H, d, J = 10H z) 、 4. 25 (1 H, b r s) 、 4. 29 -
4. 38 (2H, m) 、 4. 46 (1 H, d d, J =8, 8H z) 、 5. 13 (1 H, d, J =3H z) 、 6. 65 (1 H, d, J =8H z) 、 6. 88 (1
H, d d, J = 8. 2Hz) 、 7. 01 ( 1 H, d, J =2Hz) 、 7. 02 (1H, s) 、 7. 23— 7. 43 (6H, m) 、 7. 89 (1 H, d, J =8 Hz) 、 8. 09 (3 H, b r s) 、 9. 09 (1 H, s) 実施例 2
Ph e - T i c— Ty r (3— t Bu) -NH2
実施例 1の Fmo c -Hy p— OHの代わりに Fmo c—T i c— OHを用い て実施例 1 (3) と同様の操作を行い、 標題化合物の TF A塩 34. 4mgを得 た。 HPLC (b法) : RT21. 56
FAB-MS : 543 (M+H十)
NMR (g法、 DMSO— d 6) : δ 1. 30 (9H, s) 、 2. 58— 3. 24 (6H, m) 、 4. 27— 4. 85 (5H, m) 、 6. 56— 7. 41 (1 4H, m) 、 7. 81 -8. 36 (4H, m) 、 9. 09— 9. 11 (1 H, m) 実施例 3
Ph e-Th z-Ty r (3— t Bu) -NH2
実施例 1の Fmo c -Hy p— OHの代わりに Fmo c— Th z— OHを用い て実施例 1 (3) と同様の操作を行い、 標題化合物の TFA塩 20. 2mgを得 た。
HPLC (b法) : RT 19. 31
F AB-MS : 499 (M + H+)
NMR (g法、 DMSO - d 6) : δ 1. 32 (9Η, s) 、 2. 70— 3· 15 (6H, m) , 4. 16 (1 Η, d, J = 9H z) 、 4. 39 (1 H, m) 、 4. 62 (1H, m) 、 4. 82 (1 H, t, J = 7Hz) 、 5. 02 (1 H, d, J =9Hz) 、 6. 64 ( 1 H, d, J =8H z) 、 6. 82-7. 41 (9H, m) 、 8. 00— 8. 13 (4H. m) 、 9. 10 (1H, s) 実施例 4
Ph e-2-Ab z-Ty r (3 - t Bu) - NH2
実施例 1の Fmo c— Hy p— OHの代わりに Fmo c— 2— AB z— OHを 用いて実施例 1 (3) と同様の操作を行い、 標題化合物の TFA塩 6. 9mgを 得た。
HPLC (b法) : RT20. 99
F AB-MS : 503 (M + H + )
NMR (g法、 DMSO— d 6) : δ 1. 29 (9Η, s) 、 2. 81— 3. 10 (4H, m) 、 4. 28 (1H. m) 、 4. 52 (1H, m) 、 6. 64 (1H, d, J =8Hz) 、 6. 94 (1H, d, J =8Hz) 、 7. 14— 7 68 (l lH, m 8. 14 (1H, d, J = 8Hz 8. 31 (2 H, b一 r s 8. 67 (1H, d, J =8Hz 9. 10 (1 H, s 11. 2 7 (1H, s) 実施例 5
Ph e-Ph g-Ty r (3- t B u) -NH2
実施例 1の Fmo c—H y p— OHの代わりに Fmo c— Ph g— OHを用い て実施例 1 (3) と同様の操作を行い (ただし、 Fmo c— P h g— OH、 Bo c -P h e— OHの力ップリングは第 1法にて行った。 ) 、 標題化合物の TFA 塩 17. 7mgを得た。
HPLC (b法) : RT 19. 52
F AB-MS : 517 (M+H+)
NMR ( f 法、 DMSO - d 6) : δ 1. 32 (9Η, s ) 、 2. 74 (1 H, d d, J = 14, 8Hz) 、 2. 89 ( 1 H, d d, J = 14, 5Hz) 、 2. 92 (1 H, d d, J = 14, 8Hz 3. 07 (1 H, d d, J = 14, 5Hz 4. 17 (1 H, b r s 4. 39 (1H, d d d, J =8, 8, 5H z 5. 60 (1 H, d, J =8Hz 6. 65 (1 H, d, J =8H z 6. 87 (1 H, d d. J = 8, lHz 6. 98 (1 H. s 7. 06 (1 H, d, J = lH z 7. 10-7. 50 (11 H, m 8. 09 (3H, b r s) 、 8. 48 (1H, d, J =8Hz) 、 9. 06 (1H, d, J =8Hz) 、 9. 09 (1H, s) 実施例 6
Ph e - D— Hy p—Ty r (3 - t B u) -NH2
( 1) Fmo c— D— H y p— OHの合成
D-Hy p-OH262mg (2. Ommo 1 ) を飽和炭酸水素ナ卜リウム水 溶液 5m 1に攪拌溶解し、 氷冷下 Fmo c—OS u 742mg (2. 2mmo 1 ) 、 1. 4一ジォキサン 10m 1の混液を滴下後、 反応温度を室温まで戻し、 3日間攪拌した。 この間反応液の pHが 8〜9に保たれるよう、 適宜飽和炭酸水 素ナトリウム水溶液を追加した。 反応液は氷冷下塩酸酸性とした後、 酢酸ェチル にて抽出操作を行った。 酢酸ェチル層は水、 飽和食塩水で洗浄を行い、 無水硫酸 マグネシウムにて乾燥後、 減圧にて濃縮した。 得られた粗生成物はシリカゲルク ロマ卜グラフィー (展開溶媒 クロ口ホルム、 及び酢酸を添加したクロ口ホルム : メタノール = 10 : 1) にて分離精製して、 さらに溶出に用いた酢酸を除去す るため、 一度フラクションを減圧にて濃縮し、 再度酢酸ェチルに溶解させた後水 洗し、 無水硫酸マグネシウムにて乾燥を行った後、 減圧にて濃縮し、 無色粉末 6 6 Omg (93%) を得た。
NMR (g法、 DMS〇— d 6) : δ 1. 89— 2. 29 (2Η, m) 、 3. 26— 3. 56 (3H. m) 、 4. 10— 4. 47 (4H, m) 、 5. 15 (1 H, b r s) 、 7. 28- 7. 94 (8H. m) 、 12. 64 (1 H, b r s)
(2) P h e -D-Hy p-Ty r (3 - t B u) — NH2の合成
反応容器に R i nk Am i d e R e s i n (0. 47mmo 1 / g) 21 3mg (0. lmmo 1 ) を入れ、 DMFにて樹脂を膨潤させた後、 ピぺリジン にて脱 F mo c処理した。 次いで Fmo c—Ty r (3— t Bu) — OHを第 1 法にてカップリングした。 ろ過、 DMF洗浄後、 ピぺリジンにて脱 Fmo c処理 した。 次いで Fmo c— D— Hy p— OHを第 2法にてカップリングした。 ろ過、 DMF洗浄後、 ピぺリジンにて脱 Fmo c処理した。 次ぃで 1110。ー?1 6— OHを第 2法にてカップリングした。 ろ過、 DM F洗浄後、 ピぺリジンにて再度 脱 Fmo c処理した。 反応終了後、 ろ過、 DMF洗浄、 D CM洗浄を行い、 95 %TFA水溶液 3m 1にてクリ一ベイジを行った。 反応液は減圧にて濃縮後、 残さを DMF 2m 1に溶解し HP LCにて精製した。 フラクションごとにまと めて濃縮後、 凍結乾燥し、 標題化合物の TF A塩 21. 5mgを得た。
HPLC (d法) : RT16. 68
F AB-MS : 497 (M+H+)
NMR (g法、 DMSO— d 6) : δ 1. 32 (9Η, s) 、 1. 45— 1, 76 (2H, m) 、 2. 62— 3. 09 (4H, m) 、 3. 59— 4. 78 (6 H, m) 、 5. 14 (1 H, b r s) 、 6. 64 (1 H, d, J =8Hz) 、 . 82 (l H, d, J = 6H z) 、 7. 00 (1 H, s) 、 7. 1 3 (2H, — s) 、 7. 23 - 7. 36 (5 H, m) 、 8. 1 6 (3H, b r s) 、 8. 4 1 (1 H, d, J = 9 H z) 、 9. 08 ( 1 H, s ) 実施例 7
P h e -P r o -Ty r (3— t B u) — NH2
実施例 6 (2) の Fmo c— D— Hy p— OHの代わりに Fmo c— P r o— OH · A c OE tを用いて実施例 6 (2) と同様の操作を行い、 標題化合物の T ?八塩27. Omgを得た。
HP L C (b法) : RT 1 8. 8 7
F AB-MS : 48 1 (M+H+)
NMR (g法、 DMS O - d 6) : δ 1. 3 2 (9 Η, s ) 、 1. 38— 2. 1 0 (4 H, m) 、 2. 7 5 ( 1 H, d d, J = 1 4, 9 H z) 、 2. 84— 3. 85 (5H, m) 、 4. 25 - 4. 4 9 (3 H, m) 、 6. 64 (1 H, d, J =8 H z) 、 6. 82 - 7. 3 5 (9 H, m) 、 7. 70— 8. 30 (4 H, m) 、 9. 09 ( 1 H, s ) 実施例 8
P h e -D- P r o -T y r (3— t B u) -NH2
実施例 6 (2) の Fmo c— D— H y p— OHの代わりに Fmo c— D— P r o— OH · A c OE tを用いて実施例 6 (2) と同様の操作を行い、 標題化合物 の丁?八塩33. 6mgを得た。
HP L C (b法) : RT 1 9. 8 7
F AB-MS : 48 1 (M+H+)
NMR (g法、 DMSO - d 6) : δ 1. 3 1 (9Η, s) 、 1. 4 1 - 2. 04 (4H, m) 、 2. 55 - 3. 5 1 (6 H, m) 、 4. 1 5— 4. 7 0 (3 H, m) 、 6. 6 1 - 6. 6 7 ( 1 H, m) 、 6. 80— 6. 83 ( 1 H, m) 、 6. 98 - 7. 0 1 (1 H, m) 、 7. 1 2— 7. 34 (7 H, m) 、 8. 02 - 8. 39 (4H, m) 、 9. 08 (1 H, s) 実施例 9
P h e -P h g-P h e (3— t B u— 4—メ 卜キシ) 一 NH2
(1) Z-Ty r (3 - t -B u) 一 OMeの合成
Ty r (3 - t B u) -OMe 1. l gの H20 1 0m l溶液に、 氷冷下、 N aHC03 0. 7 g (6. 5 7mmo 1 ) , Z-C 1 0. 92m l (6. 57mmo 1 ) を加え、 室温にて 1時間攪拌した。 反応液を酢酸ェチルで希釈し、 水で洗浄、 飽和食塩水で洗浄した。 有機層を無水硫酸ナ卜リウ厶で乾燥し、 減圧 下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィ一 (展開溶媒 酢酸ェチル: n—へキサン二 1 : 2) に付し、 Z— Ty r (3— t -B u) -OMe 1. 44 g (85%) を得た。
NMR (g法、 CDC 1 3) : δ 1. 36 (9 H, s ) 、 3. 04 (2 H, b r d, J = 5. 6 H z) 、 3. 72 (3 H, s) 、 4. 5 7 - 4. 68 ( 1 H. m) 、 4. 9 7 ( 1 H, b r s) 、 5. 1 0 (2 H, s) 、 5. 20 ( 1 H, b r d, J = 7. 9 H z) 、 6. 55 ( 1 H, d, J = 7. 9 H z) 、 6. 78 (1 H, d d, J = 2. 0, 7. 9 H z) 、 6. 9 5 (1 H, d, J = 2. OH z) 、 7. 26 - 7. 4 1 (5 H, m)
(2) Z-P h e (3— t B u— 4—メ トキシ) 一OMeの合成
Z-Ty r (3— t B u) -OM e 0. 4 gのアセトン 3 m 1溶液に、 室温 下、 K2C03 0. 22 g ( 1. 56mmo 1 ) 、 ヨウ化メチル 0. 65m l (10. 4mmo 1 ) を加え、 5時間加熱還流した。 反応液を減圧下に溶媒を留 去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢 酸ェチル: n—へキサン = 1 : 2) に付し、 Z— P h e (3— t B u— 4ーメ ト キシ) 一 OMe 0. 10 g (24%) を得た。
NMR (g法、 CDC 1 3) : 5 1. 33 (9H, s ) , 3. 05 (2H, b r d, J = 5. 6 H z) 、 3. 7 2 (3 H, s) 、 3. 8 1 (3H, s) 、 4. 57 - 4. 68 (1 H, m) 、 5. 1 0 (2H, s) 、 5. 1 9 (1 H, b r d, J = 7. 9 H z) 、 6. 76 ( 1 H, d, J = 8. 2 H z) 、 6. 90 (1 H, d d, J = 2. 0, 8. 2 H z) 、 6. 96 (1 H, d, J = 2. 0 H z) 、 7. 26- 7. 40 (5H, m)
(3) P h e (3— t B u— 4—メ トキシ) 一 OMeの合成
Z— Ph e (3— t Bu— 4ーメ トキシ) 一 OMe 0. 17 gのメタノール 2m l溶液に、 室温下、 10%パラジウム炭素 0. 02 gを加え、 水素雰囲気 下 20時間攪拌した。 反応液を濾過し、 減圧下に溶媒を留去した後、 得られた残 さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル) に付し、 P h e (3— t Bu— 4—メ トキシ) 一OMe 88mg (77%) を得た。
E I -MS : 265 (M+)
NMR (g法、 CDC 13) : δ 1. 35 (9Η, s) 、 2. 81 (1 H. d d, J = 13. 6, 7. 8Hz) 、 3. 02 (1 H, d d, J = 13. 6, 5. 0Hz) 、 3. 67-3. 71 (1H, m) 、 3. 73 (3H, s) 3. 81 (3H, s) 、 6. 80 (1 H, d, J = 8. 2H z) 、 7. 00 (1 H, d d, J =2. 0, 8. 2Hz) 、 7. 05 (1H, d, J =2. OH z)
(4) Fmo c-Ph e (3— t B u— 4—メ トキシ) 一OHの合成
P h e (3— t B u— 4ーメ トキシ) 一 OMe 87 m g (0. 33mmo 1 ) のメタノール 2m 1溶液に、 氷冷下 1 N水酸化ナトリウム水溶液 0. 4m l (0. 4mmo l ) を滴下し、 1時間攪拌後、 室温にてさらに 3時間攪拌した。 反応液を減圧にて濃縮し、 氷冷下 1 N塩酸、 飽和炭酸水素ナトリウム水溶液を加 えて pH9とした反応液に、 Fmo c— OS u 122mg (0. 36 mmo 1 ) の 1, 4—ジォキサン 2m 1溶液を滴下後、 室温にて 3時間攪拌した。 反応液 は塩酸酸性とした後、 酢酸ェチルにて抽出し、 酢酸ェチル層は無水硫酸マグネシ ゥムにて乾燥後、 減圧にて濃縮した。 得られた粗生成物はプレパラティブ薄相ク 口マトグラフィー (展開溶媒 CHC 13、 及び CHC 13: メタノール =4 : 1) にて精製し、 Fmo c— Ph e (3— t B u— 4ーメ トキシ) 一 OH 125m g (80%) を得た。
NMR (g法、 CDC l 3) -j 1. 33 (9H, s) , 2. 99-3. 2 1 (2H, m) 、 3. 76 (3H, s) 、 4. 12 (1 H, m) 、 4. 32 (2 H, m) 、 4. 57 (1 H, b r s) 、 5. 25 (1 H, d, J =6Hz) 、 6. 74 (1 H. d、 J = 8H z) 、 6. 95 (1 H, d, J = 8Hz) 、 7. 06 (1 H, b r s) 、 7. 22— 7. 74 (8 H, m) 一 (5) P h e -P h g-P h e ( 3— t B u— 4—メ トキシ) 一 NH2の合成 実施例 5の Fmo c— Ty r (3— t B u) — 0 Hの代わりに F m o c— P h e (3— t B u— 4一メ 卜キシ) 一 OHを、 樹脂として R i n k Am i d e R e s i n (0. 47mmo 1 /g) 2 1 3 m g (0. l mmo l ) を用いて、 実施例 5と同様の操作を行い、 標題化合物の TF A塩 1 8. 8mgを得た。
HP LC (e法) : RT22. 70
F AB-MS : 531 (M + H+)
NMR ( f 法、 DMS O— d 6) : δ 1. 30 (9Η, s) 、 2. 78 (1 H, d d, J = 14, 9H z) 、 2. 90 (1 H, d d, J = 1 4, 8 H z) 、 2. 94 (1 H, d d, J = 1 4. 5 H z) 、 3. 04 (1 H, d d, J = 1 4, 5H z) 、 3. 69 (3 H, s) 、 4. 1 7 (1 H, b r s) 、 4. 43 (1 H, d d d, J = 1 4, 9, 8H z) 、 5. 60 (1 H, d, J = 8H z) 、 6. 8 2 (1 H, d, J =8H z) 、 7. 0 1 (1 H, s) 、 7. 06 (1 H, d d, J =8, l H z) 、 7. 15 (1 H, d, J = l H z) 、 7. 1 7— 7. 48
(1 1 H, m) 、 8. 08 (3H, b r s) 、 8. 54 (1 H, d, J = 8 H z) 、 9. 06 (1 H, d, J = 8H z) 実施例 10
P h e -P h e -Ty r (3- t B u) -NH2
実施例 5の F mo c— P h g— OHの代わりに Fmo c— P h e— OHを、 樹 脂として R i n k Am i d e R e s i n (0. 47mmo 1 /g) 2 1 3m g (0. Immo 1 ) を用いて、 実施例 5と同様の操作を行い、 標題化合物の T FA塩 20. 5mgを得た。
HPL C (e法) : RT 1 9. 4 1
F AB-MS : 53 1 (M + H+)
NMR ( f 法、 DMSO - d 6) : δ 1. 3 1 (9Η, s) 、 2. 74 (1 H, d d, J = 14, 8H z) 、 2. 82 (1 H, d d, J = 1 4, 9 H z) 、 2. 87 (1 H. d d, J = 1 4, 9H z) 、 2. 89 (1 H, d d, J = 1 4. 5Hz) 、 3. 03 (1 H, dd. J = 14, 4Hz) 、 3. 10 (1 H, d d, " J = 14, 4Hz) 、 4. 00 (1 H, b r s) 、 4. 40 (1H, ddd, J =8. 8, 5Hz) 、 4. 61 (1H, ddd, J =9, 8, 4Hz) . 6. 6 5 (1H, d, J = 8Hz) 、 6. 87 (1H, dd, J =8. 2Hz) 、 7. 00- 7. 10 (2H, m) 、 7. 15— 7. 28 (1 OH, m) 、 7. 30 (1 H, s) 、 7. 98 (3 H, b r s) 、 8. 23 (1H, d, J =8Hz) 、 8. 66 (1H, d, J =8Hz) 、 9. 07 (1H, s) 実施例 11
Phe-Va l -Ty r (3~ t Bu) -NH2
実施例 5の Fmo c— Ph g— OHの代わりに Fmo c -V a 1一 OHを、 榭 脂として R i nk Am i d e Re s i n (0. 47mmo l/g) 213m g (0. Immo 1 ) を用いて、 実施例 5と同様の操作を行い、 標題化合物の T FA塩 28. 4mgを得た。
HP L C (e法) : RT 18. 68
F AB-MS : 483 (M+H + )
NMR (f 法、 DMSO - d6) : δ 0. 83 (3Η, d, J =7H z) 、 0. 84 (3 H, d, J -7H z) . 1. 31 (9H, s) 、 1. 96 ( 1 H, d q q. J = 7, 6, 6Hz) 、 2. 71 ( 1 H, d d, J = 14, 9Hz) 、 2. 86 (1 H, dd, J = 14, 6Hz) 、 2. 88 (1 H, dd, J = 14, 8Hz) 、 3. 03 (1H, dd. J = 14. 5Hz) 、 4. 13 (1H, b r s) 、 4. 25 (1H, dd, J =9, 6Hz) 、 4. 40 (1H, ddd, J =9, 8, 6Hz) 、 6. 65 (1 H, d, J =8Hz) 、 6. 88 (1 H, d d, J =8, 2Hz) 、 6. 99 (1H, s) 、 7. 05 (1H, d, J =2H z) 、 7. 13-7. 25 (5 H. m) 、 7. 35 (1 H, s) 、 8. 05 (1 H, d, J = 8Hz) 、 8. 07 (3H, b r s) 、 8. 43 (1H, d; J = 9Hz) 、 9. 08 (1H, s) 実施例 12 Ph e-Ph g-Ty r-NH2 ― 実施例 5の Fmo c— Ty r (3— t B u) — 0 Hの代わりに F m o c— T y r (t B u) —OHを、 樹脂として R i n k Am i d e R e s i n (0. 4 7mmo 1 /g) 213mg (0. Immo 1 ) を用いて、 実施例 5と同様の操 作を行い、 標題化合物の TF A塩 21. 7mgを得た。
HPLC (e法) : RT13. 40
F AB-MS : 461 (M + H+)
NMR (f 法、 DMSO - d 6) : <5 2. 73 ( 1 H, d d, J = 14, 8 Hz) 、 2. 89 (1H, d d, J =14, 5H z) 、 2. 93 (1 H, d d, J = 14, 8Hz) 、 3. 07 (1 H, d d, J = 14, 5H z) 、 4. 17 (1 H, d d, J = 8, 5H z) 、 4. 39 (1H, d d d, J =8, 8, 5H z) 、 5. 59 (1 H, d, J =8H z) 、 6. 63 (2H, d) 、 6. 99 (1H, s) 、 7. 03 (2 H, d) 、 7. 20— 7. 50 (1 1 H, m) . 8. 05 (3H, b r s) 、 8. 45 ( 1 H, d, J =8Hz) 、 9. 06 (1 H, d, J = 8Hz) 、 9. 16 (1 H, s) 実施例 13
P h e -A 1 a -T y r (3 - t B u) -NH2
実施例 6 (2) の Fmo c—D— Hy p—O Hの代わりに Fmo c— A l a— OH · H20を用いて実施例 6 (2) と同様の操作を行い (ただし、 Fmo c— A l a— ΟΗ · Η20、 Fmo c— Ph e— OHのカツプリングは第 1法にて行つ た。 ) 、 標題化合物の TF A塩 27. 8mgを得た。
HPLC (e法) ·· RT17. 82
F AB-MS : 455 (M + H+)
NMR (f 法、 DMSO— d 6) : δ 1. 22 (3Η, d, J = 6Hz) ヽ 1. 31 (9 H. s) 、 2. 71 (1H, d d, J = 14, 9H z) 、 2. 86 (1H, d d, J = 14, 9H z) 、 2. 87 (1 H, d d, J = 14, 5H z) 、 3. 06 (1H, d d, J = 14, 5Hz) 、 4. 04 (1H, b r s) 、 4. 30-4. 40 (2H, m) 、 6. 65 (1H, d, J =8H z) 、 6. 86 (1 H, d d, J = 8, 2H z) 、 7. 03 ( 1 H, d, J = 2H z) 、 7. 0 4 (1 H, s) 、 7. 1 7— 7. 27 (5H, m) 、 7. 39 (1 H. s) 、 8. 0 1 (1 H, d, J = 8H z) 、 8. 06 (3 H, b r s) 、 8. 58 (1 H, d, J =8H z) 、 9. 08 (1 H, s ) 実施例 14
P h e -L e u -Ty r (3— t B u) — NH2
実施例 13の Fmo c— A l a -OH · H20の代わりに Fmo c— L e u— OHを用いて実施例 1 3と同様の操作を行い、 標題化合物の TFA塩 3 1. 6 m gを得た。
HP L C (e法) : RT 20. 0 2
F AB-MS : 497 (M + H + )
NMR ( f 法、 DMS O— d 6) : δ 0. 86 (3 Η, d, J =6 H z) 、 0. 89 (3H, d, J =6 H z) 、 1. 3 1 (9 H, s) 、 1. 43 (2H, d d, J = 7, 7 H z) 、 1. 6 1 ( 1 H, t q q, J = 1, 6, 6H z) 、 2. 73 (1 H, d d. J = 1 4. 8 H z) 、 2. 8 1 - 2. 93 (2 H, m) 、 3. 09 ( 1 H, d d. J = 1 4. 5 H z) 、 4. 04 ( 1 H, b r s) 、 4. 3 1 — 4. 42 (2H, m) 、 6. 64 (1 H, d, J - 8 H z ) , 6. 8 5 (1 H, d d, J =8, 2 H z) 、 7. 02 ( 1 H, d, J = 2 H z) 、 7. 03 (1 H, s) 、 7. 18 - 7. 26 (5 H, m) 、 7. 37 ( 1 H, s) 、 8. 00 (1 H, d, J =8H z) 、 8. 05 (3 H, b r s) 、 8. 56 (1 H, d, J = 8H z ) 、 9. 08 (1 H, s ) 実施例 1 5
V a l -P h g-Ty r (3 - t B u) -NH2
実施例 6 (2) の Fmo c— P h e— OHの代わりに Fmo c -V a 1 — OH を、 Fmo c— D— Hy pの代わりに Fmo c— P h g— O Hを用いて、 実施例 6 (2) と同様の操作を行い (ただし、 Fmo c— V a l — OH、 Fmo c— P h g— OHのカップリングは第 1法にて行った。 ) 、 標題化合物の TF A塩 1 8. 2 m gを得た。
HPLC (e法) : RT17. 64
FAB-MS : 469 (M + H+)
NMR (g法、 DMS 0 - d 6) : δ 0. 90 (3H, d, J = 7Hz) 、
0. 91 (3H, d, J = 7Hz) 、 1 31 (9H, s) 、 2. 02 (1H, m) 、 2. 72 (1H, d d, J = 14, 9Hz) 、 2. 87 (1H, d d, J = 14, 5Hz) 、 3. 77 (1 H, m) 、 4. 42 (1H, m) 、 5. 61 (1 H, d, J =8Hz) 、 6. 60 (1 H, d, J = 8Hz) 、 6. 80 (1 H, d d, J =8, 2Hz) 、 6. 99-7. 01 (2H, m) 、 7. 25-7 45 (6H, m) 、 8. 03 (3 H, b r s) 、 8. 46 (1 H, d, J = 8 Hz) 、 8. 94 (1 H. d, j =8Hz) 、 9. 07 (1 H, s) 実施例 16
L e u-P h g-Ty r (3 - t B u) — NH2
実施例 6 (2) の Fmo c— P h e— OHの代わりに Fmo c—L e u— OH を、 Fmo c— D— Hy pの代わりに Fmo c— P h g—〇 Hを用いて、 実施例 6 (2) と同様の操作を行い (ただし、 Fmo c— L e u— OH、 Fmo c— P h g— OHの力ップリングは第 1法にて行った。 ) 、 標題化合物の TF A塩 19. 3 m gを得た。
HPLC (e法) : RT18. 74
F AB-MS : 483 (M + H+)
NMR (g法、 DMSO - d 6) : δ 0. 87 (3Η, d, J = 7H z) 、 0. 89 (3 H, d, J = 7Hz) 、 1. 32 (9 H, s) 、 1. 50— 1. 6 5 (3H, m) 、 2. 73 (1H, d d, J = 14, 8Hz) 、 2. 87 (1 H, d d, J = 14, 5Hz) 、 3. 93 (1 H, m) 、 4. 41 (1 H, m) 、 5. 59 (1 H, d, J =8Hz) 、 6. 62 (1 H, d, J =8Hz) 、 6. 81 (1H, d d, J = 8, lHz) 、 6. 99-7. 01 (2H, m) 、 7. 28 -7. 44 (6H, m) 、 8. 06 (3H, b r s) 、 8. 43 (1H, d, J =8Hz) 、 9. 08 (1H, s) 、 9. 09 (1H, d, J =8Hz) 実施例 17
Ph e-G 1 y-Ty r (3 - t B u) -NH2
実施例 5の Fmo c— P h g— OHの代わりに Fmo c— G l y— OP f pを、 樹脂として R i nk Am i d e R e s i n (0. 47mmo 1 /g) 213 mg (0. Immo 1 ) を用いて、 実施例 5と同様の操作を行い (ただし、 Fm o c— G l y— OP f pのカツプリングは第 5法にて行った。 ) 、 標題化合物の TFA塩 20. 8mgを得た。
HPLC (d法) ·· RT17. 23
F AB-MS : 441 (M+H+)
NMR 法、 DMSO— d 6) : δ 1. 32 (9Η, s) 、 2. 64 (1 H, d d, J = 14, 9Hz) 、 2. 88 (1H, d d, J = 14, 5Hz) 、 2. 91 (1 H, d d, J = 14, 8Hz) 、 3. 07 (1H, dd, J = 14, 5Hz) 、 3. 65 (1 H, d d, J = 17, 6H z) 、 3. 90 (1 H, dd, J =17, 6H z) , 4. 07 (1 H, b r s) 、 4. 36 (1H, d d d, J =9, 8, 5Hz) 、 6. 64 (1 H, d, J = 8H z) 、 6. 85 (1 H, d d. J =8. lHz) 、 7. 01 (1 H, d, J = lHz) . 7. 06 (1 H, s) 、 7. 20— 7. 35 (5 H, m) 、 7. 45 (1 H, s) 、 8. 10 (3
H, b r s) 、 8. 19 (1 H, d, J 8Hz) 、 8. 62 (1H, d d, =6, 6Hz) 、 9. 09 (1H, s) 実施例 18
18A : Ph e-N-Me-Ph g-Ty r (3 - t B u) -NH2
18B : Ph e-N-Me-D-Ph g-Ty r (3— t Bu) -NH2 反応容器に R i nk Am i d e Re s i n (0. 47 mmo 1 /g) 21 3mg (0. Immo 1 ) を入れ、 DMFにて樹脂を膨潤させた後、 ピぺリジン にて脱 Fmo c処理した。 次いで Fmo c— Ty r (3 - t B u) 一 OHを第 1 法にてカップリングした。 ろ過、 DMF洗浄後、 ピぺリジンにて脱 Fmo c処理 した。 次いで α—プロモフヱニル酢酸、 40%メチルァミ ン水溶液を使用し第 6 法にてカップリングを行い、 N 一置換アミノ酸残基を構築した。 ろ過、 DMF 洗浄後、 Bo c— Ph e— OHを第 2法にてカツプリングした。 反応終了後、 ろ 過、 DMF洗浄、 D CM洗浄を行い、 95%TFA水溶液 3m lにてクリーべ イジを行った。 反応液は減圧にて濃縮後、 残さを DMF 2m lに溶解し HP L Cにて精製した。 フラクションごとにまとめて濃縮後、 凍結乾燥し、 表題化合物 の TFA塩 21. 9mg (18A) 、 及び 12. 9mg (18 B) をそれぞれ得 た。
18 A
HPLC (c法) : RT 16. 64
F AB-MS : 531 (M+H+)
NMR (g法、 DMSO— d 6) : δ 1. 27 (9Η, s) 、 2. 45 (3 H, s) 、 2. 62— 3. 11 (4H, m) 、 4. 60 (2H, m) 、 6. 07 (1H, s) 、 6. 41 (2H. d, J = 7Hz) 、 6. 56 (1H, d, J = 8Hz) 、 6. 71 (1 H, d, J =8Hz) 、 7. 05- 7. 32 (11 H, m) 、 8. 29 (3H, b r s) 、 8 39 (1 H, d、 J = 9Hz) 、 9 13 (1H, s)
18B
HP LC (c法) : RT 14. 20
FAB-MS : 531 (M+H+)
NMR (f 法、 DMSO— d 6) : δ 28 (9H, s) 、 2. 47 (3
H, s) 、 2. 70 (1H, dd, J = 14, 9Hz) 、 2. 87 (1 H, d d, J = 14, 5Hz) . 2. 96 (2H, d, J = 7Hz) 、 4. 42 (1 H, d dd, J = 5, 9, 8Hz) . 4. 49 (1 H, b r s) 、 6. 27 (1 H, s) 、 6. 62 (1 H, d, J = 8Hz) 、 6. 92 (1 H, d d, J =8. 2Hz) 、 7. 00 (1H, s) 、 7. 05— 7. 36 (11 H. m) 、 7. 45 (1H, s) 、 8. 14 (3 H, b r s) 、 8. 32 (1 H, d, J = 8Hz) 、 9. 0 4 (1H, s) 実施例 19 N—ベンジル一 N— (4—ピリジルチオァセチル) 一 Ph g— Ty r (3— t B u) 一 NH2
反応容器に R i nk Am i d e Re s i n (0. 47mmo l /g) 21 3mg (0. lmmo l ) を入れ、 DM Fにて樹脂を膨潤させた後、 ピぺリジン にて脱 Fmo c処理した。 次いで Fmo c— Ty r (3 - t B u) 一 OHを第 1 法にてカップリングした。 ろ過、 DMF洗浄後、 ピぺリジンにて脱 Fmo c処理 した。 次いで α—プロモフヱニル酢酸、 ベンジルァミ ンを使用し第 6法にてカツ プリングを行い、 Να—置換アミノ酸残基を構築した。 ろ過、 DMF洗浄後、 D MF 1. 5m l、 NMM 1. 5m 1、 4一ピリジルチオ酢酸 34mg (0. 2mmo 1 ) の混液、 HATU 114mg (0. 3 mm o 1 ) を加え 2時間振 とうし、 カップリングを行った。 反応終了後、 ろ過、 DMF洗浄、 DCM洗浄、 メタノール洗浄を行い樹脂を乾燥した。 95%TFA水溶液 3m lにてクリ一 ベイジを行った。 反応液は減圧にて濃縮後、 残さを DMF 2m lに溶解し HP LCにて精製した。 フラクションごとにまとめて濃縮後、 凍結乾燥し、 標題化合 物の TF A塩 19. 8mgをジァステレオ混合物として得た。
HPLC (b法) : RT22. 90, 23. 39
F AB-MS : 611 (M + H + ) 実施例 20
Ph e-Ph g-Ty r (3 - t B u) 一 OH
実施例 5の樹脂として Wa n g R e s i n (0. 73mmo 1 /g) 274 mg (0. 2mmo 1 ) を用いて実施例 5と同様の操作を行い (ただし、 Fmo c一 Ty r (3- t BU) —OHを第 4法にて力ップリングした。 ) 、 標題化合 物の TF A塩 31. 2mgを得た。
HP L C (b法) : RT 20. 62
F AB-MS : 518 (M+H+)
NMR 法、 DMSO—d6) : δ 1. 31 (9Η, s) 、 2. 82 (1 H, d d, J = 14, 8Hz) 、 2. 89 (1 H, d d, J = 14, 8Hz) 、 2. 94 (1H, d d, J = 14, 5Hz) 、 3. 04 (1H, d d, J =14 5Hz) 、 4. 10 (1 H, b r s) 、 4. 35 ( 1 H, d d d, J =8, 8, " 5Hz) 、 5. 61 (1H, d, J =8H z) 、 6. 66 ( 1 H, d, J = 8H z) 、 6. 84 (1 H, d d, J = 8, lHz) 、 7. 04 (1 H, d, J =l Hz) 、 7. 15-7. 45 (10 H, m) 、 c a 7. 9 (amb i g u o u s, b r) 、 8. 68 (1 H, d, j = 8Hz) 、 9. 02 ( 1 H, d, J = 8Hz) 、 9. 14 (1 H, s) 実施例 21
Ph e-Ty r-Ty r (3— t Bu) - NH2
実施例 5の F mo c - P h g— OHの代わりに F mo c -T y r ( t B u) ― OHを、 樹脂として R i n k Am i d e R e s i n (0. 47 mmo 1 /g) 107mg (0. 05mmo 1 ) を用いて、 実施例 5と同様の操作を行い (ただ し、 クリ一ベイジ処理後の反応液は減圧にて濃縮後、 残さをメタノール 3m lに 溶解した後、 再度減圧にて濃縮した。 ) 、 標題化合物の TFA塩 15. 8mgを 得た。
HPLC (e法) : RT18. 78
F AB-MS : 547 (M+ ) 実施例 22
Ph e-Hp h-Ty r (3~ t B u) -NH2
実施例 21の Fmo c— T y r ( t B u) — O Hの代わりに F m o c— H p h — OHを用いて実施例 21と同様の操作を行い、 標題化合物の TFA塩 19. 4 mgを得た。
HPLC (e法) : RT21. 53
F AB-MS : 545 (M+H+) 実施例 23
Ph e -Th i -Ty r (3— t B u) -NH2
実施例 21の Fmo c— Ty r (t Bu) — O Hの代わりに Fmo c— Th i — OHを用いて実施例 2 1と同様の操作を行い、 標題化合物の TF A塩 2 1. 5 ' m gを得た。
HP L C (e法) : RT 1 9. 65
F AB-MS : 537 (M + H+) 実施例 24
P h e - β-Α 1 a -Ty r (3— t B u) — NH2
実施例 2 1の Fmo c— Ty r ( t B u) — 0 Hの代わりに F m o c— S— A 1 a— OHを用いて実施例 2 1と同様の操作を行い、 標題化合物の TF A塩 29. 4mgを得た。
HP L C (e法) : RT 1 7. 5 1
F AB-MS : 455 (M+H + ) 実施例 25
P h e - r -Ab u-Ty r (3 - t B u) -NH2
実施例 2 1の Fmo c— Ty r ( t B u) — O Hの代わりに F m o c—ァ— A b u— OHを用いて実施例 2 1と同様の操作を行い、 標題化合物の TF A塩 34. 4 m gを得た。
HP L C (e法) : RT 1 7. 59
F AB-MS : 469 (M+H+) 実施例 26
P h e— A i b— T y r (3— t B u) -NH2
実施例 21の Fmo c— T y r ( t B u) 一 0 Hの代わりに F m o c— A i b —OHを用い、 て実施例 2 1と同様の操作を行い、 標題化合物の TF A塩 27. 2mgを得た。
HP L C (e法) : RT 19. 82
F AB-MS : 469 (M + H+) 実施例 27
P h e - I 1 e -Ty r (3 - t Bu) — NH2
実施例 21の Fmo c— Ty r ( t B u) — 0 Hの代わりに Fmo c— I 1 e -OP f pを用いて実施例 21と同様の操作を行い (ただし、 Fmo c— I 1 e — OP f pのカツプリングは第 5法にて行った。 ) 、 標題化合物の TF A塩 18. 9mgを得た。
HPLC (e法) : RT 19. 35
F AB-MS : 497 (M+H+) 実施例 28
Ph e-Ch g-Ty r (3 t Bu) — NH2
実施例 21の Fmo c— Ty r (t Bu) 一 0 Hの代わりに F m o c— C h g 一 OHを用いて実施例 21と同様の操作を行った。 さらに粗生成物を DMSOに 溶解し H PLCにて精製し、 フラクションはまとめて濃縮後、 凍結乾燥し、 標題 化合物の TFA塩 10. lmgを得た。
HPLC (e法) : RT20. 54
F AB-MS : 523 (M+H+)
NMR (g法、 DMSO - d 6) : δ 0. 82— 1. 20 (5Η, m) 、 1. 31 (9H, s) 、 1. 46- 1. 73 (6H, m) 、 2. 70 (1 H, d d, J = 14, 9Hz) 、 2. 82-2. 90 (2H, m) 、 3. 02 (1 H, d d. J = 14, 5Hz) 、 4. 10 (1 H, b r s) 、 4. 24 (1 H, t , J = 8Hz) 、 4. 42 (1H, d d. J = 13. 5Hz) 、 6. 64 (1 H, d, J = 8Hz) 、 6. 86 (1H, d d, J =8, lHz) 、 7. 00 (1H, s) 、 7. 04 (1H, d, J = lHz) 、 7. 18 (5 H, s) 、 7. 34 (1H, s) 、 8. 01-8. 04 (4H, m) 、 8. 42 (1H, d, J =9Hz) 、 9. 07 (1H, s) 実施例 29
Ph e-Ch a-Ty r (3— t Bu) -NH2 実施例 28の Fmo c— Ch g—〇Hの代わりに Fmo c— C h a— OHを用 いて実施例 28と同様の操作を行い、 標題化合物の TF A塩 10. Omgを得た。
HPLC (e法) : RT22. 35
F AB-MS : 537 (M+H+)
NMR (g法、 DMSO— d 6) : δ 0. 81— 1. 25 (5H, m) 、 1. 31 (9H, s) 、 1. 40- 1. 77 (8H, m) 、 2. 68— 2. 89 (3 H, m) 、 3. 09 ( 1 H, d d, J = 14, 4H z) 、 4. 02 (1 H, b r s) 、 4. 33-4. 38 (2H, m) 、 6. 63 (1 H, d, J =8Hz) 、 6. 85 (1H. d d, J = 8. l H z) 、 7. 01-7. 04 (2H, m) 、 7. 23 (5H, s) 、 7. 35 ( 1 H, s) 、 7. 98 (1 H, d, J = 8H z) 、 8. 03 (3 H, b r s) 、 8. 55 ( 1 H, d, J =8Hz) 、 9. 07 (1H, s) 実施例 30
Ph e— T i e - Ty r (3 - t B u) -NH2
実施例 21の Fmo c— Ty r ( t B u) 一 OHの代わりに Fmo c— T 1 e — OHを用いて実施例 21と同様の操作を行い、 標題化合物の TFA塩 23. 8 m gを得た。
HP L C (e法) : RT 18. 87
F AB-MS : 497 (M+H + ) 実施例 31
Ph e - As p— Ty r (3— t B u) - NH2
実施例 21の Fmo c— Ty r ( t B u) 一〇 Hの代わりに Fmo c— A s p (O t B u) —OHを、 残さの溶剤にはメ夕ノ一ルの代わりに Me CNを用いて, 実施例 21と同様の操作を行い、 標題化合物の TF A塩 30. 2mgを得た。
HPLC (e法) : RT17. 13
F AB-MS : 499 (M+H+) 実施例 32
Ph e-G 1 u-Ty r (3 - t B u) -NH2
実施例 21の Fmo c— Ty r ( t B u) 一 OHの代わりに Fmo c— G l u (0 t B u) 一 OHを、 残さの溶剤にはメ夕ノ一ルの代わりに Me CNを用いて、 実施例 21と同様の操作を行い、 標題化合物の TF A塩 28. 2mgを得た。
HPLC (e法) : RT17. 37
F AB-MS : 513 (M+H + ) 実施例 33
Ph e-Aa d-Ty r (3 - t B u) -NH2
実施例 21の Fmo c— Ty r ( t B u) 一 0 Hの代わりに F m o c— A a d (0 t B u) 一 OHを、 残さの溶剤にはメ夕ノールの代わりに Me CNを用いて、 実施例 21と同様の操作を行い、 標題化合物の TF A塩 31. 8mgを得た。
HPLC (e法) : RT17. 54
F AB-MS : 527 (M + H + ) 実施例 34
Ph e-As n-Ty r (3— t Bu) -NH2
実施例 21の Fmo c— T y r ( t B u) 一 O Hの代わりに F m o c— A s n 一 OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A塩 21. 5 mgを得た。
HPLC (e法) : RT17. 04
F AB-MS : 498 (M + H+) 実施例 35
Ph e-G 1 n-Ty r (3— t B u) -NH2
実施例 21) の Fmo c— Ty r (t Bu) 一 O Hの代わりに F m o c— G 1 n-OP f pを用いて実施例 21と同様の操作を行い (ただし、 Fmo c— G 1 n - 0 P f pの力ップリングは第 5法にて行った。 ) 、 標題化合物の TF A塩 2 " 7. 2mgを得た。
HPLC (e法) : RT 16. 90
F AB-MS : 512 (M + H+) 実施例 36
Ph e-C i t -Ty r (3- t B u) -NH2
実施例 21の Fmo c—Ty r ( t B u) 一 OHの代わりに F mo c— C i t — OHをを用いて実施例 21と同様の操作を行い、 標題化合物の TF A塩 25. 6mgを得た。
HPLC (e法) : RT16. 68
F AB-MS : 541 (M+H+) 実施例 37
Ph e-Da b-Ty r (3- t Bu) -NH2
実施例 21の Fmo c— Ty r ( t B u) — 0 Hの代わりに F m o c— D a b (B o c) 一 OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A 塩 29. lmgを得た。
HPLC (e法) : RT16. 07
F AB-MS : 484 (M+H + ) 実施例 38
Ph e-O r n-Ty r (3 - t Bu) -NH2
実施例 21) の Fmo c—Ty r (t Bu) 一 OHの代わりに Fmo c— O r n (Bo c) —OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A塩 33. 7mgを得た。
HPLC (e法) : RT16. 04
F AB-MS : 498 (M+H+) 実施例 39 一 Ph e-Ly s-Ty r (3— t Bu) -NH2
実施例 21) の Fmo c— Ty r ( t Bu) 一 OHの代わりに Fmo c— Ly s (Bo c) —OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A塩 29. 2mgを得た。
HPLC (e法) : RT 16. 49
F AB-MS : 512 (M+H+) 実施例 40
Ph e-S e r-Ty r (3— t Bu) - NH2
実施例 21の Fmo c— Ty r (t Bu) 一 OHの代わりに Fmo c - S e r (t B u) —OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A 塩 25. 5 m gを得た。
HP L C (e法) : RT17. 31
F AB-MS : 471 (M+H+) 実施例 41
Ph e— H s e— Ty r (3— t Bu) -NH2
実施例 21の Fmo c— T y r (t Bu) 一 0 Hの代わりに F m o c— H s e (T r t) —OHを用いて実施例 21) と同様の操作を行った。 クリ一ベイジ力 クテル濃縮後、 ジェチルエーテルにて再沈殿を行い、 標題化合物の TFA塩 7. 8mgを得た。
HPLC (e法) ·· RT17. 64
F AB-MS : 485 (M+H+) 実施例 42
Ph e— Th r— Ty r (3— t Bu) -NH2
実施例 21の Fmo c— Ty r (t Bu) — 0 Hの代わりに F m o c— T h r (t Bu) 一 OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A 塩 24. lmgを得た。
HPLC (e法) : RT 17. 40
FAB-MS : 485 (M+H+) 実施例 43
Ph e-Ab u-Ty r (3 - t B u) 一 NH2
実施例 21の Fmo c— T y r ( t B u) — 0 Hの代わりに F m o c— A b u — OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A塩 19. 6 mgを得た。
HPLC (e法) : RT 18. 55
F AB-MS : 469 (M+H+) 実施例 44
Ph e-Nv a-Ty r (3 - t B u) 一 NH2
実施例 21の Fmo c— T y r ( t B u) 一 0 Hの代わりに F m o c— N v a 一 OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A塩 19. 8 mgを得た。
HPLC (e法) : RT 18. 82
F AB-MS : 483 (M+H + ) 実施例 45
Ph e— Me t— Ty r (3— t Bu) - NH2
実施例 21の Fmo c— Ty r ( t B u) 一 O Hの代わりに F m o c—M e t 一 OHを用いて実施例 21と同様の操作を行い、 標題化合物の TFA塩 24. 3 mgを得た。
HPLC (e法) : RT18. 79
F AB-MS : 515 (M+H+) 実施例 46 Ph e - H i s— Ty r (3— t Bu) -NH2
実施例 21の Fmo c— Ty r (t Bu) 一 OHの代わりに Fmo c— H i s (Bo c) —OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A 塩 26. 7mgを得た。
HPLC (e法) : RT 16. 78
F AB-MS : 521 (M + H+) 実施例 47
Ph e-T r p-Ty r (3— t Bu) - NH2
実施例 21の Fmo c— Ty r (t Bu) 一 OHの代わりに Fmo c— T r p (B o c) 一 OHを用いて実施例 21と同様の操作を行い、 標題化合物の TFA 塩 14. 5mgを得た。
HPLC (e法) : RT20. 76
F AB-MS : 570 (M + H+) 実施例 48
P h e -T i q-T y r (3— t B u) -NH2
実施例 21の Fmo c— Ty r ( t B u) —OHの代わりに Fmo c— T i q — OHを用いて実施例 21と同様の操作を行い、 標題化合物の TF A塩 23. 7 mgを得た。
HPLC (e法) : RT21. 87
F AB-MS : 543 (M+H+) 実施例 49
N- (4—ピリジルチオァセチル) — Ph g— Ty r (3— t B u) -NH2 反応容器に Fmo c— 2、 4-d i me t ho xy-4' ― (c a r b o xy me t hy l o xy) -b e n z hy d r y l am i n e 1 i n k e d t o Am i n o m e t h y 1 Re s i n (0. 55 mm o 1 / g) 91 m g ( 0. 05mmo 1 ) を入れ、 DMFにて樹脂を膨潤させた後、 ピぺリジンにて脱 Fm o c処理した。 次いで F mo c-Ty r (3~ t B u) -OH を第 1法にて力ッ プリングした。 ろ過、 DM F洗浄後、 ピぺリジンにて脱 Fmo c処理した。 次い で Fmo c— P h g— OHを第 3法にてカップリングした。 ろ過、 DMF洗浄後、 ピぺリジンにて再度脱 Fmo c処理した。 次いで DMF 1. 5m l、 NMM 0. 5m 1、 4一ピリジルチオ酢酸 17mg (0. lmmo l ) の混液、 HO BT 23mg (0. 15mmo 1 ) 及び D I C 25m l (0. 16mmo 1 ) を加え 2時閒振とうし、 カップリングを行った。 反応終了後、 ろ過、 DMF洗浄、 DCM洗浄、 メタノール洗浄を行い、 次いで樹脂を乾燥した。 95%TFA水溶 液 2m 1にてクリ一ベイジを行った。 反応液は減圧にて濃縮後、 残さをメタノ ール 3 m lに溶解した後、 再度減圧にて濃縮し、 標題化合物の TF A塩 27. 8 mgを得た。
HPLC (a法) : RT17. 55
F AB-MS : 521 (M+H+) 実施例 50
N- (1—ベンゾシクロブタンカルボニル) 一 Ph g— Ty r (3 - t B u) -NH2
実施例 49の 4—ピリジルチオ酢酸の代わりに 1一ベンゾシクロブ夕ンカルボ ン酸を用いて実施例 49と同様の操作を行い (ただし、 1一べンゾシクロブタン カルボン酸の力ップリングは第 3法にて行った。 ) 、 標題化合物 23. 8mgを ジァステレオ混合物として得た。
HPLC (a法) : RT23. 43. 23. 68
F AB-MS : 500 (M+H+) 実施例 51
N- (2—インド一ルカルボニル) P h g-Ty r (3— t B u) -NH 2 実施例 50の 1—ベンゾシクロブ夕ンカルボン酸の代わりに 2—インドール力 ルボン酸を用いて実施例 50と同様の操作を行い、 標題化合物 8. Omgを得た c HPLC (a法) : RT24. 64
FAB-MS : 513 (M + H+) 実施例 52
Ty r-Ph g-Ty r (3- t Bu) -NH2
反応容器に Fmo c— 2、 4— d i me t ho x y-4' - (c a r b o xy me t hy l o xy) -b e n z hy d r y l am i n e l i nk e d t o Am i n o m e t h y 1 Re s i n (0. 55mmo l /g) 91mg (0. 05mmo 1 ) を入れ、 DMFにて樹脂を膨潤させた後、 ピぺリジンにて脱 Fm 0 c処理した。 次いで Fmo c—Ty r ( 3— t B u ) —◦ Hを第 1法にてカツ プリングした。 ろ過、 DMF洗浄後、 ピぺリ ジンにて脱 Fmo c処理した。 次い で Fmo c— P h g— OHを第 3法にてカップリングした。 ろ過、 DMF洗浄後、 ピペリジンにて脱 Fmo c処理した。 次いで Fmo c— Ty r ( t B u) -OH を第 3法にてカップリングした。 ろ過、 DMF洗浄後、 ピぺリ ジンにて再度脱 F mo c処理した。 反応終了後、 DCM洗浄、 メタノール洗浄を行い、 次いで樹脂 を乾燥した。 95%TFA水溶液 2m 1にてクリーべイジを行った。 反応液は 減圧にて濃縮後、 残さをメタノール 3m 1に溶解し、 再度減圧にて濃縮し、 標題 化合物の丁 八塩26. 2mgを得た。
HPLC (a法) ·· RT17. 43
F AB-MS : 533 (M+H+) 実施例 53
Ph g-Ph g-Ty r (3 - t Bu) -NH2
実施例 52の Fmo c— Ty r (t B u) 一 O Hの代わりに F m o c— P h g —OHを用いて実施例 52と同様の操作を行い、 標題化合物の TF A塩 23. 2 m gを得た。
HPLC (a法) : RT18. 42
FAB-MS : 503 (M + H+) 実施例 54 一 Th i— Ph g— Ty r (3 - t B u) -NH2
実施例 52の Fmo c— Ty r ( t B u) ー011の代ゎりに?1110 (:—丁111 一 OHを用いて実施例 52と同様の操作を行い、 標題化合物の TF A塩 27. 4 mgを得た。
HPLC (a法) ·· RT18. 43
F AB-MS : 523 (M+H+) 実施例 55
T r p-Ph g-Ty r (3~ t B u) -NH2
実施例 52の Fmo c— Ty r ( t B u ) 一 OHの代わりに Fmo c—T r p (B o c) — OHを用いて実施例 52と同様の操作を行い、 標題化合物の TFA 塩 20. 9mgを得た。
HPLC (a法) : RT 19. 84
F AB-MS : 556 (Μ+ ) 実施例 56
H i s - Ph g— Ty r (3 - t B u) - NH2
実施例 52の Fmo c— Ty r ( t B u) 一 OHの代わりに Fmo c— H i s (Bo c) —OHを用いて実施例 52と同様の操作を行い、 標題化合物の TFA 塩 14. 4m gを得た。
HPLC (a法) ·· RT 15. 12
FAB-MS : 507 (M+H+) 実施例 57
N— ( (土) 一3—フエ二ルブチリル) 一 P h g— Ty r (3— t B u) -N H2
実施例 50の 1一べンゾシクロブタンカルボン酸の代わりに (土) 一3—フエ ニルブチル酸を、 樹脂として R i n k Am i d e Re s i n (0. 47mm o 1 /g) 107mg (0. 05 mm o l ) を用いて、 実施例 50と同様の操作 を行った。 ただし、 Fmo c— Ph g— OHは第 1法にて、 3—フヱニルブチル 酸は第 2法にてカップリングを行った。 標題化合物 18. lmgを得た。
HPLC (a法) : RT25. 19
F AB-MS : 516 (M+H+) 実施例 58
N— (2—ビフヱニルカルボニル) 一 Ph g— Ty r (3 - t B u) 一 NH2 実施例 57の 3—フヱニルブチル酸の代わりに 2—ビフヱニルカルボン酸を用 いて実施例 57と同様の操作を行い、 標題化合物 15. lmgを得た。
HPLC (a法) : RT26. 23
F AB-MS : 550 (M+H+) 実施例 59
3-A l a-Ph g-Ty r (3- t Bu) -NH2
反応容器に Fmo c— 2、 4— d i me t h o x y— 4' 一 (c a r b o xy me t hy l oxy) -b e n z hy d r y l am i n e l i n k e d t o Am i n o m e t h y 1 R e s i n (0. 55 mm o 1 / g) 45 m g (0. 025mmo 1 ) を入れ、 DMFにて樹脂を膨潤させた後、 ピぺリ ジンにて脱 F mo c処理した。 次いで Fmo c— Ty r (3— t B u) —〇Hを第 1法にて力ッ プリングした。 ろ過、 DMF洗浄後、 ピぺリ ジンにて脱 Fmo c処理した。 次い で Fmo c— P h g— OHを第 3法にてカップリングした。 DMF洗浄、 DCM 洗浄、 メタノール洗浄を行い、 次いで乾燥した。
乾燥させた樹脂は ACT— 496 MOS (Ad v a n c e d Ch emTe c h社製) の反応容器に移した。 樹脂は DMFにて膨潤後、 ピぺリジンにて脱 F mo c処理を行った。 次いで Fmo c— /?— A l a— OH、 HOBT、 DMFの 混液 0. 5m l (Fmo c - /3 - A 1 a-OH 0. 05 Ommo K HOBT 0. 075mmo 1 ) , D I C/DMF 0. 25m l (D I C 0. 080 mmo 1) を加え 2時間振とうした。 ろ過、 DM F洗浄後、 ピぺリジンにて再度 脱 Fmo c処理した。 反応終了後、 D CM洗浄を行い、 95%TFA水溶液 1 m 1にてクリ一ベイジを行った。 反応液をろ取した後、 再度 95%TFA水溶液 lm 1を加え 30分間振とうした。 ろ液は合わせて減圧にて濃縮後、 残さにメタ ノール 3m 1を加え溶解し、 再度濃縮し、 標題化合物の TFA塩 13. 4mgを wた o
HPLC (e法) : RT16. 72
F AB-MS : 441 (M+H+) 実施例 60
A i b-Ph g-Ty r (3- t Bu) -NH2
実施例 59の Fmo c— ;3— A 1 a— 0 Hの代わりに F m o c— A i b -OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 15. 3mgを 得た。
HPLC (e法) : RT 17. 12
F AB-MS : 455 (M+H+) 実施例 61
I 1 e-Ph g-Ty r (3— t B u) -NH2
実施例 59の Fmo c— 3— A l a— 0 Hの代わりに Fmo c— I 1 e -OH を用いて実施例 59と同様の操作を行い、 標題化合物の TFA塩 15. 4mgを た o
HPLC (e法) : RT 18. 25
F AB-MS : 483 (M+H+) 実施例 62
Ch g-Phg-Ty r (3 - t Bu) -NH2
実施例 59の Fmo c— /3— A l a -OHの代わりに Fmo c— Ch g— OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 12. 2mgを 得た。 HPLC (e法) : RT19. 61 - FAB-MS : 509 (M+H+) 実施例 63
Ch a-Ph g-Ty r (3~ t Bu) -NH2
実施例 59の Fmo c— /3— A l a—〇Hの代わりに Fmo c -C h a -OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 16. 7mgを ί守た。
HPLC (e法) : RT21. 34
F AB-MS : 523 (M+H+) 実施例 64
T 1 e-Ph g-Ty r (3— t B u) -NH2
実施例 59の Fmo c— 3— A l a— OHの代わりに Fmo c— T 1 e -OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 14. 9mgを 1 た。
HPLC (e法) : RT18. 02
F AB-MS : 483 (M+H+) 実施例 65
As p-Ph g-Ty r (3— t B u) -NH2
実施例 59の Fmo c— /3— A l a— OHの代わりに Fmo c -A s p (O t B u) — OP f pを用いて実施例 59と同様の操作を行った。 ただし、 Fmo c -A s (O t Bu) — OP f pのカツプリ ングの際、 D I CZDMF 0. 2 5m 1は加えなかった。 標題化合物の TF A塩 18. lmgを得た。
HPLC (e法) : RT16. 42
F AB-MS : 485 (M+H+) 実施例 66 Aa d-Ph g-Ty r (3 - t B u) -NH2
実施例 59の Fmo c— /5— A l a— OHの代わりに Fmo c - A a d (0 t B u) _OHを用いて実施例 59と同様の操作を行い、 標題化合物の TFA塩 1 6. 8mgを得た。
HPLC (e法) : RT16. 79
F AB-MS : 513 (M+H + ) 実施例 67
As n-Ph g-Ty r (3 - t B u) -NH2
実施例 59の 1110 ( — ^ー八 1 3—0 Hの代わりに Fmo c— A s n— OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 17. 2mgを 得た。
HPLC (e法) : RT 16. 17
F AB-MS : 484 (M + H+) 実施例 68
G l n-Ph g-Ty r (3 - t B u) — NH2
実施例 65の Fmo c— A s p (O t B u) — OP f pの代わりに F m o c— G 1 n-OP f pを用いて実施例 65と同様の操作を行い、 標題化合物の TF A 塩 15. 9mgを得た。
HPLC (e法) : RT16. 39
F AB-MS : 498 (M+H+) 実施例 69
C i t -Ph g-Ty r (3~ t B u) -NH2
実施例 59の Fmo c— /S— A l a— OHの代わりに Fmo c— C i t -OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 15. 3mgを た。
HPLC (e法) : RT 16. 36 FAB-MS : 527 (M+H+) ― 実施例 Ί 0
Da b-Ph g-Ty r (3 - t B u) — NH2
実施例 59の Fmo c— /3— A l 3—0^1の代ゎりに?1110 c -D a b (Bo c) 一 OHを用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 15. 3mgを得た。
HPLC (e法) : RT15. 28
F AB-MS : 470 (M+H+) 実施例 71
Ly s-Ph g-Ty r (3 - t Bu) - NH2
実施例 59の Fmo c— /3— A l a— 0 Hの代わりに F in o c— L y s (Bo c) —OHを用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 16. 8 m gを得た。
HPLC (e法) : RT 15. 21
F AB-MS : 498 (M + H + ) 実施例 72
S e r-Ph g-Ty r (3— t B u) - NH2
実施例 59の Fmo c— /3— A l a—〇Hの代わりに Fmo c— S e r ( t B u) 一 OHを用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 15. 4m gを得た。
HPLC (e法) : RT16. 30
F AB-MS : 457 (M+H+) 実施例 73
Hs e-Ph g-Ty r (3— t Bu) -NH2
実施例 59の Fmo c— jS— A l a— OHの代わりに Fmo c -H s e (T r t) 一 OHを用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 24. 9 m gを得た。
HPLC (e法) : RT16. 50
F AB-MS : 471 (M+H+) 実施例 74
Th r - Ph g - Ty r (3 - t B u) -NH2
実施例 59の Fmo c— /3— A l a—O Hの代わりに Fmo c— Th r ( t B u) —OHを用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 15. 5mgを得た。
HPLC (e法) : RT16. 41
F AB-MS : 471 (M+H+) 実施例 75
Ab u-Ph g-Ty r (3- t B u) -NH2
実施例 59の Fmo c— / S— A l a -0 Hの代わりに Fmo c— Ab u— OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 13. 6mgを 得た。
HPLC (e法) : RT16. 90
F AB-MS : 455 (M + H+) 実施例 76
N V a -P h g-Ty r (3— t Bu) -NH2
実施例 59の Fmo c— ;3— A l a -OHの代わりに Fmo c— Nv a— OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 13. 9mgを 得た。
HPLC (e法) : RT17. 79
F AB-MS : 469 (M+H+) 実施例 77
Me t -Ph g-Ty r (3- t B u) -NH2
実施例 59の? 0€;— /3—八 1 a— OHの代わりに F mo c -Me t -OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 11. 6mgを 得た。
HPLC (e法) : RT18. 09
F AB-MS : 501 (M+H+) 実施例 Ί 8
P r o-Ph g-Ty r (3- t Bu) -NH2
実施例 59の Fmo c— — A l a_OHの代ゎりにFmo c— P r o— OH . A c OE tを用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 14. 8 m gを得た。
HPLC (e法) : RT17. 02
F AB-MS : 467 (M+H + ) 実施例 79
Hyp-Ph g-Ty r (3 - t B u) -NH2
実施例 59の Fmo c— /3— A l a— OHの代わりに Fmo c— Hy p— OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 11. 2mgを
•Hfた。
HPLC (e法) : RT16. 54
FAB-MS : 483 (M + H+) 実施例 80
T i c-Phg-Ty r (3 - t Bu) -NH2
実施例 59の Fmo c— — A l a— OHの代わりに Fmo c— T i c -OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 16. lmgを 得た。 HP L C (e法) : RT19. 56
FAB-MS : 529 (M+H+) 実施例 81
T i q-Ph g-Ty r (3~ t Bu) -NH2
実施例 59の Fmo c— /3— A l a— OHの代わりに Fmo c— T i q-OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 14. 7mgを 得た。
HPLC (e法) : RT19. 33
F AB-MS : 529 (M+H + ) 実施例 82
2-Ab z-Ph g-Ty r (3 - t B u) 一 NH2
実施例 59の Fmo c— — A 1 a— OHの代わりに Fmo c— 2— Ab z— OHを用いて実施例 59と同様の操作を行い、 標題化合物の T FA塩 15. 2m gを得た。
HPLC (e法) : RT21. 38
FAB-MS : 489 (M + H+) 実施例 83
Hp h-P h g-Ty r (3— t B u) - NH2
実施例 59の Fmo c— /3— A l a— OHの代わりに Fmo c -H p h-OH を用いて実施例 59と同様の操作を行い、 標題化合物の TF A塩 16. Omgを 得た。
HPLC ( e法) : RT20. 72
F AB-MS : 531 (M + H+) 実施例 84
N- (α—メチルヒ ドロシンナモイル) 一 Ph g— Tv r (3— t B u) -N H2
実施例 59の Fmo c— — A l a— 0 Hの代わりに α—メチルヒ ドロ桂皮酸 を用いて実施例 59と同様の操作を行い (ただし、 クリーべイジ前の脱 Fmo c 処理は不必要なので行わなかった。 ) 、 標題化合物 15. 2mgを得た。
HPLC (e法) : RT25. 22
F AB-MS : 516 (M+H+) 実施例 85
N— (α—メチルシンナモイル) 一Ph g— Ty r (3— t B u) -NH2 実施例 84の α—メチルヒ ドロ桂皮酸の代わりにひ—メチル桂皮酸を用いて実 施例 84と同様の操作を行い、 標題化合物 16. 4mgを得た。
HPLC (e法) : RT26. 18
F AB-MS : 514 (M+H+) 実施例 86
N- (3—キノ リ ンカルボニル) 一Ph g— Ty r (3— t B u) -NH2 実施例 84の α—メチルヒ ドロ桂皮酸の代わりに 3—キノリンカルボン酸を用 いて実施例 84と同様の操作を行い、 標題化合物の TF Α塩 16. 9mgを得た c HPLC (e法) : RT20. 73
F AB-MS : 525 (M+H+) 実施例 87
N— (3—フランァク リロイル) 一Ph g— Ty r (3— t B u) -NH2 実施例 84のひーメチルヒ ドロ桂皮酸の代わりに 3—フランァクリル酸を用い て実施例 84と同様の操作を行い、 標題化合物 8. 2mgを得た。
HPLC (e法) : RT23. 08
F AB-MS : 490 (M + H+) 実施例 88 一 P h e -D-P h g-Ty r (3- t B u) -NH2
実施例 5の Fmo c—Ph g— OHの代わりに Fmo c— D— Phg— OHを、 樹旨として Fmo c— 2、 4-d i me t hoxy-4' - (c a r b o xym e t hy l o xy) — b e n z hy d r y l am i n e 1 i nk e d t o A m i n ome t hy l Re s i n (0. 55 mm o 1 / g ) 182 m g (0. 1 mmo 1 ) を用いて、 実施例 5と同様の操作を行った。 ただし、 Fmo c— D — P h g— OH、 B o c— P h e— OHの力ップリングは第 3法にて行った。 標 題化合物の TF A塩 15. 4mgを得た。
HPLC (a法) : RT20. 96
F AB-MS : 517 (M + H+)
NMR (g法、 DMSO - d 6) : δ 1. 27 (9Η, s) 、 2. 57— 3. 06 (4H, m) 、 4. 28 -4. 35 (2H, m) 、 5. 63 (1H, d, J = 8Hz) 、 6. 53 (1H, d, J = 8Hz) 、 6. 70 (1H. d. J =8 Hz) 、 6. 79 (2H, d, J = 7Hz) 、 7. 00— 7. 29 (11 H, m) 、 7. 51 (1H, s) 、 8. 20 (3 H, b r s) 、 8. 71 (1 H, d, J = 8Hz) 、 9. 07 (1 H, s) 、 9. 13 (1 H, d, J = 8H z) 実施例 89
Ph e-N-Me-Va l -Ty r (3- t B u) -NH2
(1) Z-Ty r (3- t B u) 一 NH2の合成
Z-Ty r (3- t B u) -OMe 15. 3 g (39. 8mmo l ) を 1, 4—ジォキサン 100m lの溶液とし、 2 N水酸化ナトリウム水溶液 100m l を加え、 室温にて 2時間半攪拌した。 反応液に 2 N塩酸を加えて酸性にした後、 酢酸ェチルで抽出し、 水で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水 硫酸ナトリウムで乾燥後、 減圧下に溶媒を留去し、 得られた残さを DMF 10 0m 1の溶液とし、 一 15°Cで NMM 4. 77m l (43. 4mmo l ) およ び クロ口炭酸ェチル 4. 15m l (43. 4 mm o 1 ) を加えた。 反応液にァ ンモニァガスをパブリングさせながら 1時間半攪拌し、 室温にて放置後、 反応液 を酢酸ェチルで希釈し、 水で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無— 水硫酸ナトリウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカ ゲルカラムクロマ卜グラフィ一 (展開溶媒 塩化メチレン: メタノ一ル= 100 : 1) に付し、 Z— Ty r (3- t B u) -NH2 10. 9 g (74%) を得 た。
(2) Ty r (3- t B u) — NH2の合成
Z-Ty r (3- t B u) -NH2 9. 89 g (26. 7 mm o l ) のメタ ノール 350m l溶液に、 10%パラジウム炭素 3. 5 gを加え、 水素雰囲気下、 室温にて 10時間攪拌した。 濾過後、 減圧下に濾液を濃縮し、 得られた残さをシ リカゲルカラムクロマトグラフィー (展開溶媒 塩化メチレン: メタノール =2 0 : 1) に付し、 Ty r (3— t Bu) — NH2 5. 11 g (81%) を得た。
NMR (g法、 CDC 1 3) : δ 1. 40 (9Η, s) 、 2. 64 (1H, d d, J =9. 6, 13. 9Hz) 、 3. 18 ( 1 H, d d, J =4. 0, 13. 9Hz) 、 3. 49 (1 H, s) 、 3. 58 ( 1 H. d d, J =4. 0, 9. 6 Hz) 、 5. 45 (1 H, b r s) 、 6. 65 (1 H, d, J = 7. 9Hz) . 6. 92 (1H, d d, J = 2/0, 12. 0Hz) 、 7. 10 (1 H, d, J =2. 0Hz) 、 6. 94 (1 H, d, 6. 6Hz) 、 7. 2-7. 4 (8H, m) 、 7. 7-7. 9 (2H, m) 、 8. 46 (1 H, d, 7. 6H z) 、 9. 06 (1 H, d)
(3) Z-N-Me-Va 1 -Ty r (3— t Bu) — NH2の合成
Z-N-Me - V a 1 -OH 400 m g (1. 52mmo 1 ) . Ty r (3 - t Bu) -NH2 30 Omg (1. 27 mm o 1 ) 、 および H 0 B T 23 Omg (1. 52mmo l ) の DMF 7 m 1溶液に、 氷冷下、 D I C 0. 2 4m l (1. 52 mmo 1 ) を滴下し、 室温にて 15時間半攪拌した。 反応液を 酢酸ェチルで希釈し、 飽和食塩水で洗浄した。 有機層を無水硫酸ナトリウムで乾 燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマトグラフィ 一 (展開溶媒 塩化メチレン: メタノール:ァンモニァ水- 100 : 3 : 1 ) に 付し、 Z— N— Me— Va l— Ty r (3— t Bu) -NH2 810mgを得 (— o
(4) Bo c-Ph e-N-Me-Va 1 -Ty r (3— t Bu) — NH2の 合成
Z-N-Me V a 1 -Ty r (3 - t Bu) -NH 2 810mg、 および 1 0%パラジウム炭素 30 Omgのメタノール 50m 1溶液を水素気流下 13時 間半攪拌した。 反応液を濾過し減圧下に溶媒を留去し得られた N— Me— V a 1 -Ty r (3- t B u) -NH 2 47 Omg ( 1. 35mmo l ) 、 B o c— Ph e - OH 39 Omg (1. 48 mm o 1 ) 、 および H 0 B T 23 Omg (1. 48mmo l ) の DMF 12 m 1溶液に、 氷冷下、 D I C 0. 23m 1 (1. 48mmo 1 ) を滴下し、 室温にて 13時間半攪拌した。 反応液を酢酸 ェチルで希釈し、 飽和食塩水で洗浄した。 有機層を無水硫酸ナ卜リウムで乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 塩化メチレン : メタノール: ァンモニァ水ニ 100 : 3 : 1 ) に付 し、 Bo c— Ph e— N— Me— V a l— Ty r (3— t Bu) -NH2 38 Omg (47%) を得た。
(5) Ph e— N— Me— V a l— Ty r (3— t B u) — NH2の合成
Bo c-Ph e-N-Me-Va 1 -Ty r (3— t B u) — NH2 380 mg (0. 638 mm o 1 ) の TFA15m lを室温にて 1時間半攪拌した。 減 圧下に反応液を留去し、 得られた残さを酢酸ェチルで希釈し、 飽和 NaHC03 水溶液で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸ナ卜リウムで 乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマト グラフィ一 (展開溶媒 塩化メチレン : メタノール: ァンモニァ水- 100 : 1 0 : 1) に付し、 Ph e— N— Me— Va 1— Ty r (3— t Bu) -NH2 24 Omg (76%) を得た。
FAB-MS : 497 (M+H+)
NMR (g法、 CDC ") : δ 0. 74 (2 H, d, J =6. 6H z) 、 0. 79 (1H, d, J =6. 6Hz) 、 0. 89 (1H, d, J = 6. 6Hz) 、 0. 92 (2H, d, J =6. 6Hz) 、 l. 36 (3 H, s) 、 l. 38 (6H, s) 、 2. 27-2. 35 (1 H. m) 、 2. 71 (2H, s) 、 2. 81 (1H, s) 、 2. 77-3. 19 (4H, m) 、 3. 56-3. 61 (2 一 /3H, m) 、 3. 80-3. 90 (1/3H, m) 、 3. 95 (2/3H, d, J = 10. 9Hz) 、 4. 46 (1/3 H, d, J = 11. 2Hz) 、 4. 55 —4. 65 (1/3H, m) 、 4. 70-4. 85 (2/3H, m) 、 6. 60 -7. 40 (8H, m) 実施例 90
N— (a—メチルヒ ドロシンナモィル) 一 N— Me— D— Ph g— Ty r (3 - t B u) -NH2
(1) Z-N-Me -P h g-Ty r (3— t Bu) — NH2の合成
Z-N-Me-P h g-OH 3. 28 g (11. Ommo 1 ) , T y r (3
— t Bu) - NH2 2. 16 g (9. 17 mm o 1 ) 、 および HO B T 1.
40 g (9. 17mmo l ) の DMF 60 m 1溶液に、 氷冷下、 D I C 1.
42m l (9. 17mmo 1 ) を滴下し、 氷冷にて 4時間攪拌した。 反応液を酢 酸ェチルで希釈し、 飽和食塩水で洗浄した。 有機層を無水硫酸ナ卜リウムで乾燥 後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマトグラフィ 一 (展開溶媒 塩化メチレン : メタノール: ァンモニァ水 = 100 : 5 : 1 ) に 付し、 Z— N— Me— Ph g— Ty r (3— t B u) — NH2 4. 03 g (8
5%) を得た。
(2) N-Me-D-P h g-Ty r (3— t B u) — NH2の合成
Z— N— Me— Phg— Ty r (3 - t Bu) - NH2 4. 03 g、 および 10%パラジウム炭素 2. 0 gのメタノール 200m l溶液を水素雰囲気下 4時 間攪拌した。 反応液を濾過し減圧下に溶媒を留去し、 得られた残さをシリカゲル カラムクロマトグラフィー (展開溶媒 塩化メチレン: メタノール: アンモニア 水 = 100 : 5 : 1) に付し、 N— Me— P h g— Ty r (3 - t B u) -NH 2 1. 48 g (50%) および N— Me— D - Ph g— Ty r (3— t B u) -NH2 92 Omg (31%) を得た。
(3) N— ( 一メチルヒ ドロシンナモイル) 一N— Me— D— P h g— Ty r (3- t B u) — NH2の合成 一メチルヒ ドロ桂皮酸 141 mgの塩化チォニル 1 Om 1溶液に、 DMF 0. 01mlを加え、 80°Cにて 1. 5時間攪拌した。 反応液を減圧下に留去 し、 得られた残さを塩化メチレンに溶解後、 N— Me— D— Phg— Ty r (3 - t B u) -NH2 30 Omg (0. 78 mm o 1 ) 、 N a H C 03 260m g (3. 13mmo l) の H20 6 m 1溶液に加え、 室温にて 45分間攪拌し た。 反応液を酢酸ェチルで希釈し、 水で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸ナトリウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残 さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサ ン =4: 1) に付し、 N— (α—メチルヒ ドロシンナモイル) 一 Ν— Me— D— Phg-Ty r (3- t Bu) -NH2 210 m g ( 51 %) を得た。
E I—MS : 529 (M+)
NMR (g法、 CDC 13) : δ 1. 18 (3/2 H, d, J = 6. 3 H z) 、 1. 25 (3/2H, d, J =6. 9Hz) 、 1. 35 (9H, s) 、 2. 6 4-3. 14 (6H, m) 、 2. 73 (3/2H, s) 、 2. 81 (3/2H. s) 、 4. 67 (1H, d d, J = 7. 4, 14. 0Hz) 、 5. 09 (1/2 H, s) 、 5. 38 (1 H, b r d, J = 8. 9Hz) 、 5. 47 (1/2H. s) 、 5. 75 (1/2H, s) 、 5. 77 (1/2H, s) 、 5. 86 (1/ 2H, s) 、 6. 06 (1/2H, b r d, J = 7. 9Hz) 、 6. 48-6. 72 (2H, m) . 6. 86— 7. 00 (2H, m) 、 7. 14-7. 34 (9 H, m) 実施例 91
Phe-Va 1 -N-Me-Ty r (3 - t B u) — NH2
(1) Z— Phe (3_ t B u— 4—ベンジルォキシ) 一 OMeの合成 Z-Ty r (3 - t B u) -OMe 1. 05g (2. 73mmo l) の DM F 10m 1溶液に、 氷冷下、 水素化ナトリウム (60% i n o i l) 1 2 Omg (3. 0 Ommo 1 ) およびベンジルブロミ ド 0. 357ml (3. 0 Ommo 1 ) を加えて、 4時間攪拌した。 飽和塩化アンモニゥム水溶液で中和し た後、 酢酸ェチルで抽出し、 水で洗浄し、 次いで飽和食塩水で洗浄した。 有機層 を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さを一 シリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサン = 1 : 5) に付し、 Z— Ph e (3 - t B u— 4—ベンジルォキシ) 一 OMe 6 88mg (53%) を得た。
(2) Z-N-Me-P h e ( 3— t B u— 4—ベンジルォキシ) 一 OMeの 合成
Z— Ph e (3— t Bu— 4—ベンジルォキン) 一OMe 68 Omg (1. 43mmo 1 ) の DMF 8 m 1溶液に、 氷冷下、 水素化ナトリウム (60% i n o i l) 74. 4 m g (1. 86 mm o 1 ) およびヨウ化メチル 0. 13 4m l (2. 15mmo l ) を加えて、 1時間攪拌した。 飽和塩化アンモニゥム 水溶液で中和した後、 酢酸ェチルで抽出し、 水で洗浄し、 次いで飽和食塩水で洗 浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサン = 1 : 4) に付し、 Z— N— Me— Ph e (3— t Bu— 4—ベン ジルォキシ) 一OMe 659mg (94%) を得た。
(3) N-Me -Ty r (3— t Bu) — NH2の合成
Z— N—Me— Ph e ( 3— t B u— 4—ベンジルォキシ) 一 OMe 655 mg (1. 34mmo l) の 1, 4一ジォキサン 8 m 1溶液に、 氷冷下、 2 N水 酸化ナトリウム水溶液 2m 1を加え、 室温として 1時間攪拌した。 2 N塩酸を加 えて酸性にしてクロ口ホルムで抽出し、 水で洗浄し、 次いで飽和食塩水で洗浄し た。 有機層を無水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得られた 残さを DMF 5m 1の溶液とし、 一 15°Cで NMM 0. 183m l (1. 6 6mmo l) および クロ口炭酸ェチル 0. 159m l (1. 66mmo l) を 加え、 20分間攪拌した。 反応液にアンモニアガスをパブリングさせながらさら に 30分間攪拌し、 室温にて放置後、 反応液を酢酸ェチルで希釈し、 水で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸マグネシゥムで乾燥し、 減圧下 に溶媒を留去した後、 得られた残さをメタノール 7m 1の溶液とし、 20%水酸 化パラジウム炭素 l O Omgを加え、 水素雰囲気下、 室温にて 4時間攪拌した c 濾過後、 減圧下に濾液を濃縮し、 N— Me— Ty r (3— t Bu) — NH2 3 14mg (94%) を得た。
(4) B o c -V a 1 -N-Me -Ty r (3— t Bu) — NH2の合成 N-Me -Ty r (3 - t B u) 一 NH2 12 Omg (0. 480匪 o l )
、 Bo c— V a l - OH 156mg (0. 718mmo l ) および HOBT 11 Omg (0. 718mmo l ) の DMF 2 m 1溶液に、 氷冷下、 D I C 0. 111m l (0. 718mmo 1 ) を加え、 室温にて終夜攪拌した。 反応液 を酢酸ェチルで希釈し、 飽和 NaHC03水溶液で洗浄、 水で洗浄、 次いで飽和 食塩水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留 去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢 酸ェチル: n—へキサン =2 : 1) に付し、 Bo c—Va l— N— Me— Ty r (3- t B u) -NH2 147mg (68%) を得た。
(5) Z-Ph e -V a 1 - N- e -Ty r (3— t Bu) — NH2の合成 B o c - V a 1 -N-M e -T y r (3 - t B u) -NH2 146mg (0.
325 mm o 1 ) の塩化メチレン 2 m 1溶液に、 T F A 1 m 1を加えて、 室温に て 30分間攪拌した。 '减圧下に溶媒を留去し得られた V a 1 -N-Me-Ty r (3— t B u) —NH2の TF A塩の DMF 2m lに、 氷冷下、 TEA 0. lm l , Z-P h e -ON p 219mg (0. 348 mm o 1 ) および DMA P 93. 5mg (0. 765mmo 1 ) を加え、 室温にて 2時間攪拌した。 反 応液を酢酸ェチルで希釈し、 飽和 N a HC03水溶液で洗浄、 水で洗浄、 次いで 飽和食塩水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒 を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサン = 1 : 1) に付し、 Z— Ph e— Va l—N— Me — Ty r (3— t B u) — NH2 189mg (92%) を得た。
(6) P h e -V a 1 -N-Me-Ty r (3— t Bu) —NH2の合成 Z-Ph e-Va l -N-Me-Ty r (3- t Bu) -NH2 183 m g (0. 29 Ommo 1 ) のメタノール 3m 1溶液に 10%パラジウム炭素 10 Omgを加え、 水素雰囲気下、 室温にて 5時間攪拌した。 濾過後、 減圧下に濾液 を濃縮し、 得られた残さをシリ力ゲル力ラムクロマトグラフィー (展開溶媒 酢 酸ェチル:メタノール- 10 : 1) に付し、 Ph e— Va l— N— Me— Ty r (3 - t B u) -NH2 108mg (75%) を得た。 ― NMR (g法、 CDC ") : δ 0. 69 (3H, d d, J =6. 9, 17. 8Hz) 、 0. 89 (3 H, d d, J =6. 9, 14. 5H z) 、 l. 36 (9 /2H, s) 、 l. 39 (9/2H, s) 、 2. 67 (1 H, d d, J =9. 6, 13. 5Hz) 、 2. 78— 2. 94 (1 H, m) 、 2. 97 (3/2H, s) 、 3. 09 (3/2H, s) 、 3. 12— 3. 40 (2H, m) 、 3. 59 (1H, d d d, J =3. 6. 9. 3. 10. 2H z) 、 4. 34— 4. 42 (1/2H, m) 、 4. 68 (1/2 H, d d, J =6. 6, 11. lHz) 、 4. 79 (1 /2H, d d, J =7. 9, 8. 9 H z) 、 5. 18— 5. 26 (1/2H, m) 、 5. 35 (1/2 H, b r s) 、 5. 49 C1/2H, b r s) 、 6. 60
(1H, d d, J =7. 9, 12. 2H z) 、 6. 86 (1H, d d d, J = 1. 6, 6. 3, 6. 3H z) 、 7. 06 (1H, s) 、 7. 16-7. 34 (5 H, m) 、 7. 76 (1/2H, b r s) 、 7. 85 ( 1/2 H, d, J = 8. 9H z) 、 7. 95 (1/2H, d, J = 7. 9H z) 実施例 92
Ph e-Ph g-Ty r (3 - t Bu) -NHMe
(1) Ty r (3— t Bu) — NHMeの合成
Ty r (3— t Bu) —OMe 10. 6 g (42. Ommo 1 ) のメタノー ノレ 8 Om l溶液に、 40%メチルァミ ン/メタノール溶液 8 Om 1とシアン化ナ トリウム 0. 41 gを加え、 室温にて 4時間攪拌した。 反応液を減圧下に留去し、 得られた残さを塩化メチレンに溶解後、 水で洗浄し、 次いで飽和食塩水で洗浄し た。 有機層を無水硫酸ナトリウムで乾燥し、 減圧下に溶媒を留去した後、 得られ た残さをシリ力ゲル力ラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタ ノール:アンモニア水 =20 : 1 : 0. 1) に付し、 Ty r (3 - t B u) -N HMe 7. 3 g (70%) を得た。
(2) Ph e-Ph g-Ty r (3— t Bu) —NHMeの合成
B o c -P h g-OH 15 Omg (0. 597 mm o い 、 Ty r (3— t B u) -NHMe 136mg (0. 542 mm o 1 ) 、 H O B T 11 Omg (0. 813mmo 1 ) および DMAP 99mg (0. 813mmo l ) の D MF 3m 1溶液に、 氷冷下、 WS C I · HC 1 156 m g (0. 813mm o 1 ) を加え、 室温にて 4時間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 N aHC03水溶液で洗浄、 水で洗浄、 次いで飽和食塩水で洗浄した。 有機層を無 水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得られた残さを塩化メチ レン 3m 1溶液とし、 TF A 2m 1を加えた。 '室温にて 15分間攪拌後、 反応液 を減圧下に留去し、 得られた残さを塩化メチレンに溶解し、 飽和 NaHC03水 溶液で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸マグネシウムで 乾燥後、 減圧下に溶媒を留去し得られた Ph g— Ty r (3— t B u) -NHM eの TFA塩 0. 44 g、 Bo c -Ph e-OH 158mg (0. 597m mo 1 ) HOBT 11 Omg (0. 813 mm o 1 ) および DM A P 16 5mg (1. 36mmo l ) の DMF 5 m 1溶液に、 氷冷下、 WS C I · H C 1 156mg (0. 813mmo 1 ) を加え、 室温にて 2時間攪拌した。 反応 液を酢酸ェチルで希釈し、 飽和 N a HC03水溶液で洗浄、 水で洗浄、 次いで飽 和食塩水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を 留去し得られた残さの塩化メチレン 4m l溶液に、 TFA 4m lを加え、 室 温にて 40分間攪拌した。 反応液を減圧下に留去し、 得られた残さを塩化メチレ ンに溶解し、 飽和 N aHC03水溶液で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し得られた残さを シリカゲルカラムクロマトグラフィー (展開溶媒 クロ口ホルム : メタノール: アンモニア水 = 20 : 1 : 0. 1) に付し、 Ph e— P h g— Ty r (3— t B u) -NHMe 158mg (4工程 55%) を得た。
FAB-MS : 531 (M + H+)
NMR (g法、 DMSO - d 6) : δ 1. 30 (9H, s) 、 1. 78 (1 H, b r s) 、 2. 6— 3. 0 (4H, m) 、 3. 17 (3 H, d, J =4. 6 H z) 、 3. 45-3. 50 (1 H, m) 、 4. 05— 4. 15 (1 H, m) 、 4. 3-4. 4 (1H, m) 、 5. 48 (1H, s) 、 6. 64 (1H, d, J =8. 3Hz) 、 6. 81 (1H, d d. J =2. 0, 8. 3Hz) 、 6. 97 (1H, d, J =2. 0Hz) 、 7. 17-7. 28 (1 OH, m) 、 7. 71 (1H, m) 、 8. 45 ( 1 H, b r s) 、 8. 48 (1H, d, J = 8. 2H z) 、 9. 11 (1H, s) 実施例 93
Ph e-Ap c-Ty r (3~ t B u) -NHMe
(1) Z-Ap c -Ty r (3 - t B u) —NHMeの合成
Z— Ap e— OH 206mg (0. 877 mm o 1 ) 、 T y r ( 3— t B u ) -NHMe 219mg (0. 876 mm o 1 ) 、 H O B T 178mg ( 1. 32mmo 1 ) および DMAP 214mg (1. 75mmo l ) の DMF 3 m 1溶液に、 氷冷下、 WS C I · HC 1 252mg (1. 31mmo l) を加 え、 室温にて 2時間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 NaHC03 水溶液で洗浄、 水で洗浄、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸マグ ネシゥムで乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムク 口マトグラフィー (展開溶媒 酢酸ェチル: n—へキサン =1 : 1) に付し Z— Ap c-Ty r (3~ t B u) -NHMe 205 m g ( 50 %) を得た。
(2) B o c-Ph e-Ap c-Ty r (3 - t B u) —NHMeの合成 Z-Ap c -Ty r (3— t B u) -NHMe 201 mg (0. 430 mm o l ) のメタノール 3m 1溶液に 10%パラジウム炭素 l O Omgを加え、 水素雰囲気下、 室温にて 2時間攪拌した。 濾過後、 減圧下に濾液を濃縮し得られ た残さを DMF 3m 1溶液とし、 氷冷下、 B 0 c— P h e— OH 228 m g (0. 859mmo 1 ) , BOP 38 Omg (0. 859mmo l ) および N MM 0. 472m l (4. 30 mm o 1 ) を加え、 室温にて 3日間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 N a HC03水溶液で洗浄、 水で洗浄、 次い で飽和食塩水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶 媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶 媒 へキサン ··酢酸ェチル = 1 : 1) に付し、 Bo c— Ph e— Ap e— Ty r (3- t B u) -NHMe 108 m g ( 43 %) を得た。
(3) Ph e-Ap c-Ty r (3 - t B u) 一 NHMeの合成
Bo c— Ph e— Ap e— Ty r (3— t Bu) -NHMe 103mg (0, 178 mm o 1 ) の塩化メチレン 2 m 1溶液に、 T F A 1 m 1を加えた。 室温に て 1時間攪拌後、 反応液を減圧下に留去し、 得られた残さを塩化メチレンに溶解 し、 飽和 NaHC03水溶液で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を 無水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカ ゲルカラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタノール: アンモ ニァ水 = 10 : 1 : 0. 1) に付し、 Ph e— Ap e— Ty r (3— t B u) — NHMe 68. 4mg (80%) を得た。
NMR (g法、 CDC 13) : δ 1. 10— 1. 40 (4H, m) 、 1. 3 6 (9H, s) 、 2. 83 (3H, d, J =4. 6H z) 、 2. 80— 3. 15 (2H, m) 、 3. 30-3. 70 (3H, m) 、 4. 91 (1 H, d d, J = 7. 6, 9. 7Hz) 、 5. 56 (1 H, b r s) 、 6. 56 (1 H, d, J =
7. 9H z) 6. 73 ( 1 H, b r s) 、 6. 89 (1 H, d d, J = 2. 0, 7. 9Hz) 7. 02 (1 H, d, J = 2. 0Hz) 、 7. 10— 7. 40 (6H, m) 実施例 94
Ph e— Ah c— Ty r (3— t B u) -NHMe
(1) Z— Ah c— Ty r (3— t B u) — NHMeの合成
Z-Ah c -OH 40 Omg (1. 44 mm o 1 ) 、 T y r ( 3 _ t B u ) -NHMe 36 Omg (1. 44mmo 1 ) , HOBT 389mg (2. 8 8mmo 1 ) および DMA P 351 mg (2. 88mmo l ) の DMF 5 m 1溶液に、 氷冷下、 WSC I · HC 1 552mg (2. 88mmo 1 ) を加え、 室温にて 2時間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 NaHC03水溶 液で洗浄、 水で洗浄、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸マグネシ ゥムで乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマ トグラフィー (展開溶媒 酢酸ェチル: n—へキサン = 1 : 2) に付し、 Z— A h e— Ty r (3— t B u) -NHMe 203mg (28%) を得た。
(2) Z-Ph e-Ah c-Ty r (3— t B u) —NHMeの合成
Z— Ah c— Ty r (3— t Bu) -NHMe 192mg (0. 377 mm o l) のメタノール 2m l— 1, 4一ジォキサン 1m lの混合溶液に 10% パラジウム炭素 l O Omgを加え、 水素雰囲気下、 室温にて終夜攪拌した。 濾 過後、 減圧下に濾液を濃縮し得られた残さを DMF 2m l溶液とし、 氷冷下、 Z-Ph e-ON 19 Omg (0. 452 mm o 1 ) および DMA P 69. lmg (0. 566mmo 1 ) を加え、 室温にて終夜攪拌した。 反応液を酢酸ェ チルで希釈し、 飽和 N aHC03水溶液で洗浄、 水で洗浄、 次いで飽和食塩水で 洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサン =2 : 1) に付し、 Z— Ph e— Ah c— Ty r (3 - t B u) -NHMe 217mg (88%) を得た。
(3) Ph e— Ah c— Ty r (3 - t B u) 一 NHMeの合成
Z— Ph e - Ah c— Ty r (3 - t Bu) -NHMe 192 m g (0. 3 2 Ommo 1 ) のメタノール 2 m i溶液に、 10 %パラジウム炭素 100m gを加え、 水素雰囲気下、 室温にて終夜攪拌した。 濾過後、 減圧下に濾液を濃縮 し、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロロホ ルム: メタノール =10 : 1) に付し、 Ph e— Ah c— Ty r (3— t Bu) -NHMe 136mg (81%) を得た。
E I—MS : 523 (M++ 1)
NMR (g法、 CDC 13) : δ 1. 00— 1. 90 (1 OH, m ) 、 1. 37 (9 H, s) 、 2. 64 - 2. 80 (1 H, m) 、 2. 75 (3H, d, J =4. 6Hz) 、 2. 90-3. 15 (2H, m) 、 3. 22- 3. 40 (2H, m) 、 4. 52-4. 62 (1 H, m) 、 6. 19 (1 H, d, J =8. 3Hz) 、 6. 77 (1 H, d, J = 7. 9Hz) 、 6. 83 (1H, d, J = 7. 9H z) 、 6. 98 (1H, s) 、 7. 12-7. 38 (7H, m) 、 7. 96 (1 H, s ) 実施例 95
N—ァセチル一 t r a n s H y p (0—ベンジル) —Ty r (3— t B u) - NHMe (1) Bo c- t r a n s Hy p (0— b e n z y l ) — Ty r (3— t Bu) — OMeの合成
Bo c- t r a n sHy p (O-b e n z y l ) -OH 30 Omg (0. 933mmo 1 ) 、 Ty r (3— t B u) - OMe 28 lmg (1. 12mm o l ) 、 HOBT 189mg (1. 40 mm o 1 ) および DMA P 171m g (1. 40mmo l ) の DMF 7 m 1溶液に、 氷冷下、 WS C I · H C 1 268mg (1. 4 Ommo 1 ) を加え、 室温にて 1時間攪拌した。 反応液を酢 酸ェチルで希釈し、 飽和 N a HC03水溶液で洗浄、 水で洗浄、 飽和食塩水で洗 浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサン- 1 : 1) に付し、 B o c— t r a n s Hy p (0— b e n z y l) 一 Ty r (3— t B u) — OMe 505 m g ( 97 %) を得た。
(2) t r a n sHy p (O— b e n z y l ) —Ty r (3— t B u) - NH Meの合成
Bo c- t r a n sHy p (O-b e n z y l ) -Ty r (3 - t Bu) -O Me 500 mg (0. 901 mmo 1 ) のメタノール 5 m 1溶液に、 40 %メチルアミン Zメタノール溶液 5 m 1とシアン化ナトリウム 1 Omgを加え、 室温にて終夜攪拌した。 反応液を減圧下に留去し、 得られた残さを塩化メチレン に溶解後、 水で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸マグネ シゥムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さを塩化メチレン 5m 1溶液とし、 TF A酢酸 3m 1を加えた。 室温にて 15分間攪拌後、 反応液を減 圧下に留去し、 得られた残さを塩化メチレンに溶解し、 飽和 NaHC03水溶液 で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥 後、 減圧下に溶媒を留去し、 t r a n s Hy p (0— b e n z y l ) —Ty r (3- t Bu) -NHMe 380 m g ( 93 %) を得た。
(3) N—ァセチル一 t r a n sHy p (O—ベンジル) 一Ty r (3— t B u) —NHMeの合成
t r a n sHy (O-b e n z y l ) 一 Ty r (3— t B u) -NHMe 104mg (0. 229mmo 1 ) の塩化メチレン lm 1溶液に、 氷冷下、 ピリ ジン lm 1と塩化ァセチル 0. 024m l (0. 344mmo 1 ) を加え、 40 分間攪拌した。 塩化メチレンで希釈し、 飽和 N aHC03水溶液で洗浄後、 有機 層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した。 得られた残さを シリカゲルカラムクロマトグラフィ一 (展開溶媒 クロロホルム : メ夕ノール: アンモニア水 = 20 : 1 : 0. 1) に付し、 N—ァセチルー t r a n s Hy p (0—ベンジル) 一 Ty r (3 - t B u) — NHMe 94 m g (83%) を得 た。
FAB-MS : 496 (M+H+)
NMR (g法、 CDC 13) : δ 1. 36 (9H, s) 、 1. 93 (3H, s) 、 2. 23 (2H, d d. J = 7. 2. 6. 9Hz) 、 2. 74 (3H, d, J = 5. 0Hz) 、 2. 98 (1H, d d, J =6. 9, 14Hz) 、 3. 10 (1 H. d d, J =6. 5, 14Hz) 、 3. 50 (2H, m) 、 4. 18 (1 H, m) 、 4. 4-4. 6 (4 H, m) 、 5. 88 (1 H, s ) 、 6. 28 (1 H, m) 、 6. 60 (1H, d, J =7. 9H z) 、 6. 62 (1H, s) 、 6. 81 (1 H, d d, J = 2. 0, 5. 2Hz) 、 6. 99 (1 H, d, J = 2. 0Hz) 、 7. 26- 7. 38 (5H, m) 実施例 96
Ph e-Ch a-Ph e (3 - t B u) 一 NH2
(1) N- [ビス (メチルチオ) メチレン] 一 3— t一ブチルフエ二ルァラ二 ンの合成
カリウム t—ブトキシド 1. 78 g (15. 8mmo l ) の THF 30m 1溶液に、 窒素雰囲気下、 一 78°Cで N— [ビス (メチルチオ) メチレン] グリ シンェチルエステル (An g ew. Ch em. I n t e r n a t . Ed i t. , 14, 426 (1975) ) 3. 28 g (15. 8 mm o l ) および 3— t—ブ チルベンジルブ口ミ ド (Eu r. J. Me d. Ch em. , 23, 477 (19 88) ) 2. 39 g (10. 5mmo 1 ) の THF 10m l溶液を加え、 室温 にて 1時間攪拌した。 氷冷下、 水 10m 1を加えた後、 2 N水酸化ナ卜リウム水 溶液 5 m lを加え、 室温としてさらに 1時間攪拌した。 氷冷下、 反応液に 2 N塩 酸を加えて酸性とし、 クロ口ホルムで抽出し、 水で洗浄し、 次いで飽和食塩水で 洗浄した。 有機層を無水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得 られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル) に 付し、 N— [ビス (メチルチオ) メチレン] 一 3— t—プチルフヱ二ルァラニン 577mg (16%) を得た。
(2) Ph e (3 - t B u) — NH2の合成
N- [ビス (メチルチオ) メチレン] — 3— t—プチルフヱ二ルァラニン 49 2mg (1. 51 mmo 1 ) の DMF溶液 5m 1に、 一 15。Cで NMM 0. 1 83m l (1. 66mmo l ) および クロ口炭酸ェチル 0. 159m l (1. 66mmo 1 ) を加え、 30分間攪拌した。 反応液にアンモニアガスをバブリン グさせながらさらに 30分間攪拌し、 室温にして放置後、 反応液を酢酸ェチルで 希釈し、 水で洗浄し、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸マグネシ ゥムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さを 1, 4一ジォキサン 3m lに溶かし、 2N塩酸 1 m 1を加えて室温にて 3日間攪拌した。 氷冷下、 飽和 N a HC 03水で中和した後、 クロ口ホルムで抽出し、 水で洗浄し、 次いで 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで乾燥し、 減圧下に溶媒を留 去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 ク ロロホルム : メタノール = 10 : 1 ) に付し、 Ph e (3 - t B u) -NH2 21 Omg (63%) を得た。
E I -MS : 221 (M++ 1 ).
NMR (g法、 CDC 13) : < 1. 32 (9H, s) 、 2. 69 (1H, d d, J =9. 6, 13. 5H z) 、 3. 29 (1 H, d d, J = 4. 0, 13. 5Hz) 、 3. 62 (1H, d d, J =4. 0, 9. 6Hz) 、 5. 38 (1H, b r s) 、 7. 00- 7. 38 (4H, m)
(3) Bo c— Ch a— Ph e (3— t Bu) —NH2の合成
Ph e (3 - t B u) -NH 2 205 m g (0. 932mmo l ) 、 Bo c — Ch a - OH 35 lmg (1. 2 lmmo 1 ) . HOBT 164 m g (1. 2 lmmo 1 ) および DMAP 148mg (1. 21mmo l ) の DM F 4m 1溶液に、 氷冷下、 WS C I · HC 1 232mg (1. 2 lmmo 1 ) を加え、 室温にて 1時間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 NaHC 03水溶液で洗浄、 水で洗浄、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸 マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲル カラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサン =2 : 1) に 付し、 Bo c— Ch a— Ph e (3— t Bu) — NH2 326mg (74%) を得た。
(4) Z-Ph e-Ch a-Ph e (3 - t B u) 一 NH2の合成
Bo c-Ch a-Ph e (3 - t B u) -NH2 322 m g (0. 681m mo 1 ) の塩化メチレン 2 m 1溶液に、 T F A 1 m 1を加えて、 室温にて 2時間 攪拌した。 減圧下に溶媒を留去し得られた C h a— P h e (3 - t B u) -NH 2の TFA塩の DMF 2m lに、 氷冷下、 TEA 0. lm l , Z-Ph e -ONp 343mg (0. 817 mm o 1 ) および DMA P 125mg (1. 02mmo 1 ) を加え、 室温にて 3時間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 N a HC03水溶液で洗浄、 水で洗浄、 次いで飽和食塩水で洗浄した。 有機 層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さ をシリカゲル力ラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタノール =10 : 1) に付し、 Z— Ph e— Ch a— Ph e (3 - t B u) -NH2 1 92mg (43%) を得た。
(5) Ph e-Ch a-P h e (3— t B u) —NH2の合成
Z - Ph e - Ch a— Ph e (3 - t B u) - NH2 188mg (0. 28 7mmo 1 ) のメタノール 3m 1溶液に 10%パラジゥム炭素 10 Omgを加 え、 水素雰囲気下、 室温にて終夜攪拌した。 濾過後、 減圧下に濾液を濃縮し、 得 られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタノ一ル = 10 : 1) に付し、 Ph e— Ch a— P h e (3— t B u) -NH 2 69. Omg (46%) を得た。
E I -MS : 520 (M+)
NMR (g法、 CDC ") : δ 0. 80- 1. 75 (13 H. m) 1. 2 9 (9H, s) 、 2. 70 (1 H, d d, J = 8. 6, 13. 5Hz) 、 3. 0 0— 3. 28 (3H, m) 、 3. 40 (1 H, d d. J = 4. 0, 8. 6H z) . 4. 18-4. 32 (1 H, m) 、 4. 66 (1 H, d d, J = 6. 9, 6. 9— Hz) 、 5. 32 (1 H, b r s) 、 6. 20 (1H, b r s) 、 6. 50 (1 H, d, J = 7. 9Hz) 、 7. 01 (1H, d, J = 6. 3H z) . 7. 12 -7. 38 (7H, m) 、 7. 58 (1 H, d, J =6. 9H z) 実施例 97
N— (ベンジルァミノカルボニル) 一 N— Me— D— Ph g— Ty r (3— t B u) -NH2
ベンジルァミン 27m gの塩化メチレン 2m l溶液に、 氷冷下、 トリホスゲ ン 74mg (0. 25mmo l ) 、 D I EA 0. 04m lを加え、 室温にて 45分間攪拌した。 反応液を減圧下に留去し、 得られた残さを塩化メチレンに溶 解後、 N— Me— D— Ph g— Ty r (3 - t B u) -NH2 10 Omg (0. 26匪 o 1 ) 、 N a HC03 84mg (0. 99mmo l ) の H20 2m l 溶液に加え、 室温にて 5時間攪拌した。 反応液を塩化メチレンで希釈し、 水で洗 浄、 次いで飽和食塩水で洗浄した。 有機層を無水硫酸ナトリウムで乾燥し、 減圧 下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマ卜グラフィー
(展開溶媒 クロ口ホルム: メタノール: アンモニア水 == 100 : 10 : 1) に 付し、 N— (ベンジルァミノカルボニル) 一 N— Me— D— P h g— Ty r (3 - t B u) -NH2 7 Omg (54%) を得た。
E I -MS : 498 (M+- 18)
NMR (g法、 CDC 13) : ( 1. 34 (9H. s) 、 2. 72 (3H, s) 、 2. 93 (1 H, d d, J二 7. 6, 14. 3H z) 、 3. 05 (1 H, d d, J = 5. 8, 14. 3Hz) 、 4. 40 (2 H, b r d. J = 5. 3 H z) 、 4. 68 (1H, d d, J = 7. 6, 13. 9H z) 、 4. 99-5. 12 (1 H, m) 、 5. 70- 5. 38 (1 H, m) 、 5. 40 (1 H, b r s) 、 6. 14-6. 32 (2H, m) 、 6. 55 (1 H, d. J = 7. 9H z) 、 6. 66 (1H, d d. J = 1. 8, 8. l Hz) 、 6. 97 (1 H, d, J = 1 0. 2Hz) 、 7. 07— 7. 16 ( 1 H, m) 、 7. 25— 7. 36 (1 OH, m) N- (ベンジルォキシカルボニル) 一 Phg— Ty r (3— t Bu) -NHM e
(1) Z— Phg— Ty r (3— t Bu) — OMeの合成
Z-P h g-OS u 640mgの DMF 10 m 1溶液に、 氷冷下、 T y r (3 - t Bu) - OMe 463mg (1. 84 mm o 1 ) および DMA P 4 08mg (3. 34mmo 1 ) を加え、 室温にて 1時間攪拌した。 反応液を酢酸 ェチルで希釈し、 飽和 N aHC03水溶液で洗浄、 水で洗浄、 次いで飽和食塩水 で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した 後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチ ル: n—へキサン- 1 : 1) に付し、 Z— Phg— Ty r (3— t Bu) — OM e 905 m g (quan t. ) を得た。
(2) N— (ベンジルォキンカルボニル) 一 Phg— Ty r (3— t Bu) — NHMeの合成
Z— Phg - Ty r (3— t Bu) -OMe 90 Omg (1. 73mmo 1 ) のメタノール 10m 1溶液に、 40%メチルァミンノメ夕ノール溶液 10m 1と シアン化ナトリウム 1 Omgを加え、 室温にて終夜攪拌した。 反応液を減圧下に 留去し、 得られた残さを塩化メチレンに溶解後、 水で洗浄し、 次いで飽和食塩水 で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した 後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチ ル: n—へキサン- 2 : 1) に付し、 N— (ベンジルォキンカルボニル) 一 Ph g-Ty r (3— t Bu) -NHMe 737mg (82%) を得た。
FAB-MS : 518 (M + H+)
NMR (g法、 DMSO— d6) : δ 1. 30 (9H, s) 、 2. 57 (3 H, d, J =4. 3Hz) 、 2. 5-2. 9 (2H, m) 3. 30 (1H, d, J = 5. 3 Hz) 、 4. 0-4. 1 (1H, m) 、 4. 2-4. 4 (1H, m) 、 5. 03 (2H, s) 、 5. 28 (1 H, d, J =8. 5Hz) 、 6. 5-6. 8 (2H, m) 、 6. 94 (1H, d, 6. 6Hz) 、 7. 2-7. 4 (8H, m) 、 7. 7-7. 9 (2H, m) 、 8. 46 (1 H, d, 7. 6Hz) 、 9.
98 06 (1H, d) 実施例 99
N— (ベンジルォキシカルボニル) 一 N— Me— V a 1 -Ty r (3 - t B u) -NH2
Ty r (3- t B u) -NH2 1. 70 g (7. 20mmo l ) 、 Z - N— Me -V a 1 -OH 2. 10 g (7. 92mmo l ) 、 HOBT 1. 07 g (7. 92mmo 1 ) および DMAP 97 Omg (7. 94mmo 1 ) の DM F 20m 1溶液に、 氷冷下、 WS C I · HC 1 1. 52 g (7. 93mmo 1) を加え、 室温にて 2時間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 Na HC03水溶液で洗浄、 水で洗浄、 次いで飽和食塩水で洗浄した。 有機層を無水 硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカ ゲルカラムクロマトグラフィ一 (展開溶媒 酢酸ェチル: n—へキサン =2 : 1) に付し、 N— (ベンジルォキシカルボニル) 一 N— Me—V a 1 -Ty r (3— t Bu) -NH2 3. 30 g (95%) を得た。
FAB-MS : 484 (M+H + )
NMR (g法、 CDC 13) : δ 0. 83 (3H, d, J =6. 6Hz) 、 0. 88 (3H. d, J =6. 6H z) 、 l. 36 (9 H, s) 、 2. 15— 2. 30 (1H, m) 、 2. 75 (3H, s) 、 2. 80- 3. 05 (2H, m) 、 4. 02 (1 H, d, J = 10. 9Hz) 、 4. 52— 4. 64 (1 H, m) 、 5. 13 (2 H, s) 、 5. 39 (1H, b r s) 、 5. 88 (1H, b r s) 、 6. 40-6. 84 (3H, m) 、 7. 08 (1H, s) 、 7. 28— 7. 42 (5H, m) 実施例 100
N- ( (R) —3—フヱニルブチリル) — Ph g— Ty r (3 - t B u) -N H2
反応容器に Fmo c— 2, 4— d i me t ho x y-4 ― (c a r b o xy me t hy l o xy) — b e n z hy d r y l am i n e 1 i nk e d t o Am i n o m e t h y 1 Re s i n (0. 55 mm o 1 / g) 182 m g (0. lmmo 1 ) を入れ、 DMFにて樹脂を膨潤させた後、 ピぺリ ジンにて脱 Fm 0 c処理。 次いで Fmo c— Ty r (3 - t B u) 一 OH を (第 1法) にてカツ プリングさせる。 ろ過、 DMF洗浄後、 ピぺリジンにて脱 Fmo c処理。 次いで Fmo c— P h g— OHを (第 3法) にてカップリング。 ろ過、 DMF洗浄後、 ピぺリジンにて再度脱 Fmo c処理。 次いで (R) — 3—フヱニルブチル酸を (第 3法) にてカップリング。 反応終了後、 ろ過、 DMF洗浄、 DCM洗浄を行 い樹脂を乾燥。 95%TFA水溶液 3m 1にてクリーべイジを行った。 反応液 は減圧にて濃縮後、 残さを DMF lm 1に溶解し HP LCにて精製。 フラクショ ンごとにまとめて濃縮後、 凍結乾燥、 標題化合物 15. 6mgを得る。
HPLC (a法) : RT22. 96
F AB-MS : 516 (M+H+)
NMR (f法、 DMSO— d6) : δ 1. 16 (3H, d, J = 7Hz) 、 1. 32 (9H, s) 、 2. 41 (1H, dd, J = 14, 8Hz) 、 2. 56 (1H, dd. J = 14. 8Hz) 、 2. 74 (1H, dd, J = 14, 9Hz) 、 2. 89 (1H, dd, J = 14, 5Hz) 、 3. 15 (1H, d d q, J = 8, 8, 7Hz) 、 4. 38 (1H, d d d, J =9, 8, 5Hz) 、 5. 42 (1H, d, J=8Hz) 、 6. 63 (1H, d, J=8Hz) 、 6. 81 (1 H, dd, J -8, 2Hz) 、 7. 01 (2H, b r s) 、 7. 05— 7. 30 (11 H, m) 、 8. 30 (1H, d, J = 8Hz) 、 8. 31 (1 H, d, J = 8Hz) 、 9. 08 (1 H, s) 実施例 101
N- ( (S) 一 3—フヱニルブチリル) — Phg— Ty r (3- t B u)— N H2
実施例 100の (R) —3—フヱニルブチル酸の代わりに (S) —3—フヱニ ルブチル酸を用い、 実施例 100と同様の操作を行い、 標題化合物 13. 3mg を得る。
HPLC (a法) : RT23. 00 FAB-MS : 516 (M + H+)
NMR (f 法、 DMSO— d 6) : δ 1. 11 (3H, d, J = 8H z) , 1. 30 (9 H, s) 、 2. 40 (1 H, d d, J - 14, 6Hz) 、 2. 52
( 1 H, d d, J = 14, 10Hz) 、 2. 69 (1 H, d d, J = 14, 9H z) 、 2. 89 (1H, d d, J = 14, 5Hz) 、 3. 13 (1H, d d q, J = 10, 6, 8Hz) 、 4. 36 (1H, d d d, J =9, 8, 5H z) 、 5. 47 (1H, d, J = 8Hz) 、 6. 62 (1 H, d, J =8Hz) 、 6. 79
(1 H, d d, J =8. 2Hz) 、 6. 99 ( 1 H, d, J = 2Hz) 、 7. 0 0 (1H. s) 、 7. 10-7. 30 (l l H, m) 、 8. 20 (1H, d, J = 8Hz) 、 8. 43 (1H, d, J =8Hz) 、 9. 08 (1 H, s) 実施例 102
N- ( (R) —3—フエ二ルブチリル) 一 D— P h g— Ty r (3— t Bu) -NH2
実施例 100の 1110 c— Ph g— OHの代わりに Fmo c -D-P h g-0 Hを用い、 実施例 100と同様の操作を行い、 標題化合物 7. 2mgを得る。
HPLC (a法) : RT23. 07
F AB-MS : 516 (M+H+)
NMR (g法、 DMSO— d 6) : δ 1. 13 (3H, d, J = 7 H z) 、 1. 27 (9H, s) , 2. 38— 2. 64 (3H, m) 、 2. 88 (1 H, d d, J = 14. 4Hz) , 3. 15 (1H, m) 、 4. 26 (1H, m) 、 5.
50 (1 H, d. J =8Hz) 、 6. 53 (1H, d, J =8Hz) 、 6. 69
(1H, d d, J = 8, 1Hz) . 6. 98 (1 H, b r s) 、 7. 10— 7.
42 (12H, m) 、 8. 48 (1H, d, J = 8Hz) 、 8. 54 (1 H, d J = 8Hz) 、 9. 06 (1H, s) 実施例 103
N— ( (S) —3—フエ二ルブチリル) — D— Ph g_Ty r (3— t Bu) -NH2 実施例 101の Fmo c— Ph g— OHの代わりに Fmo c— D— P h g— 0 Hを用い、 実施例 101と同様の操作を行い、 標題化合物 16. lmgを得る。
HPLC (a法) : RT22. 98
F AB-MS : 516 (M+H+)
NMR (g法、 DMSO_d 6) : δ 1. 1 7 (3 Η, d, J = 7H z) 、 1. 27 (9H, s) 、 2. 39-2. 65 (3H, m) 、 2. 91 (1 H, d d, J = 14, 3H z) 、 3. 16 (1 H, m) 、 4. 28 (1 H, m) 、 5. 42 (1 H, d, J = 8H z) 、 6. 55 ( 1 H, d, J = 8 H z) . 6. 73 (1 H, d d, J =8, l H z) 、 6. 80— 7. 44 (13H, m) 、 8. 3 7 (1H, d, J = 8H z) 、 8. 58 (1 H, d, J =8H z) 9. 07 (1H. s) 実施例 104
L-a - (3—メチルー 2—ブテニル) グリ シノィルー N— Me— V a 1— Ty r (3- t B u) -NH2
実施例 89で得られた N— Me— V a l— Ty r (3— t B u) — NH2 2 28mg (0. 653mmo l ) 、 B o c— L— 一 ( 3—メチルー 2—ブテ ニル) グリシン (B i o o r g. Me d. C h em. L e t t. , 2, 387 (1992) ) 34 Omg (1. 4 Ommo 1 ) 、 および HOBT 189mg (1. 40mmo l ) の DMF 6 m 1溶液に、 氷冷下、 D I C 0. 22m l (1. 4 Ommo 1 ) を加えた。 室温にて一日間攪拌した後、 反応液を酢酸ェチ ルで希釈し、 飽和 N aHC03水溶液、 水、 飽和食塩水で洗浄した。 有機層を無 水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリ 力ゲルカラムクロマトグラフィ一 (展開溶媒 クロ口ホルム : メタノール: アン モニァ水 = 50 : 1 : 0. 1) に付し、 B o c— L— (3—メチル一 2—ブ テニル) グリシノィル一 N— Me— V a l— Ty r (3— t B u) -NH2 0. 17 g (45%) を得た。
次いで、 B o c— L— 一 (3—メチル一 2—ブテニル) グリ シノィルー N -Me-Va l -Ty r (3~ t B u) -NH2 0. 17 gの塩化メチレン 2m l溶液に、 TFA lm 1を加えて、 室温にて 10分間攪拌した。 減圧下に 溶媒を留去して得られた残さを塩化メチレンで希釈し、 飽和 N aHC03水溶液 で洗浄した。 得られた残さをシリ力ゲル力ラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタノール:アンモニア水 =20 : 1 : 0. 1) に付し、 L— α 一 (3—メチル一2—ブテニル) グリシノィルー N— Me— Va 1— Ty r (3- t Bu) -NH2 13 lmg (93%) を得た。
FAB-MS : 475 (M+H+)
NMR (g法、 CDC 1 3) : δ 0. 79 (2 H, d, J =6. 6H z) 、 0. 82 (1 H, d, J = 6. 6Hz) 、 0. 89 (1H. d, J =6. 3H z) 、 0. 95 (2H, d, J = 6. 3H z) 、 l. 36 (6H, s) 、 l. 38 (3H, s) 、 1. 62 (3H, s) 、 1. 69 (3 H, s) 、 2. 2— 2. 4 (3H, m) 、 2. 67 (2H, s) 、 2. 9— 3. 1 (2H, m) 、 2. 97 (1H, s) 、 3. 40 (6. 5/1 OH, m) 、 3. 65 (3. 5/10Hf m) 、 4. 00 (6. 5/1 OH, d, J = 10. 9H z) 、 4. 39 (3. 5 /1 n, d, J = 10. 9H z) 、 4. 50-4. 80 (1 H, m) 、 4. 9 5-5. 10 (1H, m) 、 5. 57 (1 H, b r s) 、 5. 91 (3/1 OH, b r s ) 、 6. 07 (7/1 OH, b r s) 、 6. 60-6. 72 (23/1 OH, m) . 6. 87-6. 96 (1 H, m) 、 7. 03 (7/1 OH, s) 、 7. 09 (3/1 OH, s) 、 9. 19 (7/1 OH, d, J = 7. 6 H z) 実施例 105
a- (4—ペンチニル) グリシノィルー N— Me— V a 1— Ty r (3— t B u) -NH2
(1) B o c-DL-a- (4—ペンチニル) グリシンの合成
カリウム t-ブトキシド 0. 45 g (4. O Ommo l ) の THF 6m l溶 液に、 窒素雰囲気下、 一 78°Cで N— [ビス (メチルチオ) メチレン] グリシン ェチルエステル 690mg (3. 33mmo l ) の THF 2m lを加えた。 15分間攪拌後、 5—ョード一 1一ペンチン (J . C h em. S o c. P e r k i n T r a n s I . 2909 (1990) ) 777mg (4. O Ommo l ) の THF 2m l溶液を加え、 室温にて 1. 5時間攪拌した。 反応液に、 飽和 N — aHC03水溶液を加え、 酢酸ェチルで抽出した。 有機層を飽和食塩水で洗浄し、 無水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去した。 得られた残さをジォ キサン 2 m l —水 4m lの溶液とし、 1 0%塩酸一メタノール 4 m 1を加 えて室温にて終夜攪拌した。 その後、 2NN a OH水溶液を加えてアルカリ性と し、 塩化メチレンで抽出後、 水層にジォキサン 5 m 1 と二炭酸ジ t e r tプチ ル 1. 5 gを加えた。 終夜攪拌後、 2 N塩酸を加えて酸性にし、 塩化メチレン で抽出し、 無水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 粗 B o c— DL— α— (4—ペンチニル) グリシン 0. 46 gを得た。
NMR (g法、 CDC 1 3) : δ 1. 45 (9Η, s ) 、 l. 60— 1. 7 0 (2H, m) 、 1. 80 (1 H, m) 、 1. 9 7 ( 1 H, t, J = 2. 6H z) 、 1. 98 ( 1 H, m) 、 2. 25 (2 H, d t , J = 2. 6. 6. 9 H z) 、 4. 35 (1 H, b r s ) 、 5. 02 (1 H, b r s )
(2) B o c - a- (4一ペンチニル) グリシノィルー N— Me— V a 1 — Ty r (3— t B u) — NH2の合成
粗 B o c— DL—ひ一 (4—ペンチニル) グリ シン 0. 34 g ( l. 4 1m mo 1 ) 、 実施例 89に従って得られた N— M e - V a 1 -T y r (3— t B u) — NH2 20 Omg (0. 572mmo 1 ) , および HOBT 1 50 m g (1. 1 4mmo l ) の DMF 5 m 1溶液に、 氷冷下、 D I C 0. 1 8m l (1. 1 4mmo 1 ) を加えた。 室温にて 1 9時間攪拌した後、 反応液を酢酸ェ チルで希釈し、 飽和 N a HC03水溶液、 水、 飽和食塩水で洗浄した。 有機層を 無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシ リカゲルカラムクロマ卜グラフィ一 (展開溶媒 クロロホルム: メタノール:ァ ンモニァ水 = 50 : 1 : 0. 1) に付し、 B 0 c— α— (4一ペンチニル) グリ シノィル一 Ν— Me—V a 1 — Ty r (3— t B u) —NH2を、 低極性化合物 として 202mg (6 1%) を、 高極性化合物として 65mg (20%) を得た。
(3) a - (4一ペンチニル) グリ シノィル一 N— Me— V a 1 — Ty r (3 - t B u) — NH2の合成 上記の低極性化合物 195mgおよび高極性化合物 6 Omgそれぞれを塩化一 メチレン 2m lの溶液とし、 TF A lm 1を加えて、 室温にて 15分間攪拌 した。 減圧下に溶媒を留去して得られた残さを塩化メチレンで希釈し、 飽和 Na HC03水溶液で洗浄した。 得られた残さをシリ力ゲルカラムクロマトグラフィ 一 (展開溶媒 クロ口ホルム : メタノール: アンモニア水 = 20 : 1 : 0. 1) に 付し、 α— (4—ペンチニル) グリ シノィルー N— Me— V a 1— Ty r (3 - t B u) 一 NH2を、 低極性化合物からは 10 l mg (63%) 、 高極性化合 物からは 17mg (34%) 得た。
低極性化合物
F AB-MS : 473 (M+H+)
NMR (g法、 CDC 1 3) : δ 0. 75 (3Η, d, J =6. 6H z) 、 0. 91 (3H, d, J =6. 3 H z) 、 1. 37 (9H, s) 、 1. 4— 1. 8 (4H. m) 、 1. 93 (1 H, t, J =2. 5H z) 、 2. 17-2. 27 (3H, m) 、 2. 69 (3 H. s ) 、 2. 82 (1 H, d d, J = 10. 1, 14. 2Hz) 、 3. 18 (1 H, d d, J =5. 6, 14. 2Hz) 、 3. 5 3 (1H, m) 、 4. 52 ( 1 H, d, J = 10. 9H z) 、 4. 63 (1 H. m) 、 5. 90 (1 H, b r s) 、 6. 31 ( 1 H, b r s) 、 6. 64 (1 H, d, J = 7. 3Hz) 、 6. 65 ( 1 H, d, J = 7. 9Hz) 、 6. 78 (1H, d, J = 7. 9 H z ) 、 7. 06 ( 1 H, s )
高極性化合物
FAB-MS : 473 (M+H + )
NMR (g法、 CDC 1 3) : δ 0. 78— 0. 97 (6 Η, m) 、 1. 3 7 (6Η, s) 、 1. 39 (3H, s) 、 1. 4— 1. 8 (4H, m) 、 1. 9 6 (1 H, m) 、 2. 17-2. 22 (2H, m) 、 2. 33 (1H, m) 、 2. 66 (2H, s) 、 2. 87-3. 11 (2H, m) 、 2. 97 (1H, s) 、
3. 43- 3. 69 (14/1 OH, m) 、 3. 98 (7/1 OH, d, J =1 0. 9Hz) 、 4. 42 (3/1 OH, d, J = 10. 9H z ) , 4. 48 -
4. 76 (1H, m) 、 5. 43 (1H, b r s) 、 5. 81 (3/1 OH, b r s) 、 6. 08 (7/1 OH, b r s) 、 6. 62-6. 77 (2H, m) . 6. 8 1 (3/1 O H, d, J = 7. 9 H z) , 6. 90 (7/ 1 O H, d, J = 7. 9H z) 、 7. 03 (7/1 O H, s) 、 7. 1 0 (3/1 O H, s) 、 9. 03 (6/ 1 O H, d, J = 7. 3H z) 実施例 106
a - (2—プチニル) グリ シノィル一 N— Me— V a l — T y r (3— t B u) 一 NH2
(1) B o c -DL-α - (2—プチニル) グリ シンェチルエステルの合成 カリウム t-ブトキシド 0. 40 g (3. 55mmo l ) の THF 6m l溶液 に、 窒素雰囲気下、 一 7 8°Cで N— [ビス (メチルチオ) メチレン] グリシンェ チルエステル 6 1 0mg (2. 96mmo l ) の THF 2m lを加えた。 2 0分間攪拌後、 1ーョ一ドー 2—ブチン ( C h em. L e t t . . 62 1 ( 1 98 1) ) 64 Omg (3. 5 5mmo 1 ) の THF 2m 1溶液を加え、 室温 にて 30分時間攪拌した。 反応液に、 飽和 N a HC 03水溶液を加え、 酢酸ェチ ルで抽出した。 有機層を飽和食塩水で洗浄し、 無水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去した。 得られた残さをジォキサン 2m l—水 4m lの溶 液とし、 1 0%塩酸一メタノール 4 m 1を加えて室温にて終夜攪拌した。 その 後、 2 NN a OH水溶液を加えて中和し、 飽和 N a H C 03水溶液を加えてアル カリ性とした後、 塩化メチレンで抽出し、 無水炭酸ナトリウムで乾燥、 減圧下に 溶媒を留去した。
得られた残さの塩化メチレン 5m 1溶液に、 二炭酸ジ t e r tブチル 0.
65 gを加え、 1時間攪拌した。 水で洗净し、 無水硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマトグラフィー
(展開溶媒 酢酸ェチル: n—へキサン = 1 : 6) に付し、 B o c— DL— α— (2—プチニル) グリシンェチルエステル 5 75mg (76%) を得た。
NMR (g法、 CDC 1 3) : δ 1. 29 (3 Η, t, J = 7. 3 H z) 、 1. 46 (9 H, s) 、 l. 7 7 (3 H, t , J = 2. 6H z) 、 2. 56— 2,
7 7 (2H, m) 、 4. 1 8 - 4. 27 (2H, m) 、 4. 38 (1 H, m) 、 5. 30 (1 H, b r s) (2) B o c— - (2—プチニル) グリシノィル一 N— M e— V a 1— Ty r (3- t B u) — NH2の合成
B o c -DL-α- (2—ブチニル) グリシンェチルエステル 570mg (2. 23mmo 1 ) のメタノール 6m l—水 2 m 1溶液に、 水酸化リチウ ム 1水和物 140mg (3. 35mmo 1 ) を加えて、 室温にて 2時間攪拌し た。 氷冷下に、 2 N塩酸で酸性にし、 塩化メチレンで抽出後、 無水硫酸マグネシ ゥムで乾燥し、 減圧下に溶媒を留去し、 B o c— DL— (2—プチニル) グ リシン 0. 50 g (定量的) を得た。
Bo c-DL-a- (2—プチニル) グリ シン 123 m g ( 0. 541mm o 1 ) 、 実施例 89に従って得られた N— Me— V a 1 -Ty r (3— t B u) -NH2 378mg (l. 08mmo l ) 、 および HOBT 146 m g (1. 08mmo l ) の DMF 4 m 1溶液に、 氷冷下、 D I C 0. 13m l (0. 81 lmmo 1 ) を加えた。 室温にて終夜攪拌した後、 反応液を酢酸ェチルで希 釈し、 飽和 NaHC03水溶液、 水、 飽和食塩水で洗浄した。 有機層を無水硫酸 マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲル カラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタノール:アンモニア 水 = 50 : 1 : 0. 1) に付し、 B 0 c— a - (2 -プチニル) グリシノィルー N-Me -V a 1 -Ty r (3— t B u) — NH2を、 低極性化合物として 13 8mgを、 高極性化合物として 59mgを得た。
(3) - (2—プチニル) グリ シノィルー N— Me— V a 1— Ty r (3 - t Bu) 一 NH2の合成
上記の低極性化合物 138mgおよび高極性化合物 59 mgそれぞれを塩 化メチレン 2m lの溶液とし、 TF A 1 m 1を加えて、 室温にて 15分間攪 拌した。 減圧下に溶媒を留去して得られた残さを塩化メチレンで希釈し、 飽和 N aHCO 3水溶液で洗浄した。 得られた残さをシリカゲルカラムクロマトグラフィ 一 (展開溶媒 クロ口ホルム : メタノール: アンモニア水 =20 : 1 : 0. 1) に 付し、 な一 (2—プチニル) グリ シノィルー N— Me—Va 1— Ty r (3— t B u) — N H 2を、 低極性化合物からは 80 m g、 高極性化合物からは 47 m g得た。 低極性化合物
FAB-MS: 459 (M+H+)
NMR (g法、 CDC 13) : δ 0. 75 (3H, d, J 6. 6Hz) 、 0. 90 (3H, d, J =6. 6Hz) 、 1. 38 (9H, s ) 1. 77 (3H, s) 、 2. 1-2. 5 (6H, m) 、 2. 74 (3H. s) 2. 81 (1H. d d. J =9. 9, 14. 2Hz) 、 3. 18 (1 H, d d, J = 5. 6, 14. 2Hz) 、 3. 66 (1H, d d, J = 5. 0, 7. 6Hz) 、 4. 47 (1 H, d, J = 11. 2Hz) 、 4. 57 (1 H, m) 、 5. 66 (1 H, b r s) 、 6. 26 (1H, b r s) 、 6. 47 (1H, d, J = 7. 3Hz) 、 6. 64 (1H, d, J =7. 9Hz) 、 6. 78 (1H, d, J =7. 9Hz) 、 7. 05 (1H, s)
高極性化合物
FAB-MS : 459 (M+H+)
NMR (g法、 CDC 13) : ( 0 78— 0. 96 (6H, m) 、 1. 3 8 (6H, s) 、 1. 39 (3H, s) 1. 78 (3H, s) 、 2. 30-2
45 (4H, m) 、 2. 68 (2H, s) 、 2. 92— 3. 13 (2H, m) 、 2. 97 (1 H, s) 、 3. 48 (1H, dd, J = 4. 3, 9. 2Hz) 、 3. 98 (7/1 OH, d, J = 11. 2Hz) 、 4. 42 (3/1 OH. d, J = 11. 2Hz ) 、 4. 53- 4. 78 (1 H, m) , 5. 52 (1 H, b r s) 、 6. 14 (1H, b r s) 、 6. 62 - 6. 70 (2H, m) 、 6. 81
(3/1 OH, d, J = 7. 9Hz) 、 6. 90 (7/1 OH. d, J = 7. 9 Hz) 、 7. 04 (7/1 OH, s) 、 7. 10 (3/1 OH, s) 、 9. 10
(1 H, d, J = 7. 3Hz) 実施例 107
N— ( (S) — 3—フヱニルブチリル) 一 N Me -V a 1 -Ty r (3— t B u) -NH2
(S) —3—フヱニルー n—酪酸 0. 11ml (0. 736mmo l) 、 実 施例 89に従って得られた N— Me— V a 1— Ty r (3- t B u) -NH2 234mg (0. 670mmo l ) 、 および HOB T 99 m g (0. 736 mmo l ) の DMF 3m l溶液に、 氷冷下、 D I C 0. 11m l (0. 73 6mmo 1 ) を加えた。 室温にて 25時間攪拌した後、 反応液を酢酸ェチルで希 釈し、 飽和 NaHC03水溶液、 水、 飽和食塩水で洗浄した。 有機層を無水硫酸 マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲル カラムクロマトグラフィー (展開溶媒 クロ口ホルム : メ夕ノール:アンモニア 水 = 50 : 1 : 0.1) に付し、 N— ( (S) — 3 _フヱニルブチリル) 一 N— Me -V a 1 -Ty r (3— t B u) -NH2 259 m g (78%) を得た。
E I一 MS : 496 (M +)
NMR (g法、 CDC 1 3) : δ 0. 76 (3 H, d, J =6. 6H z) 、 0. 89 (3H, d, J = 6. 3H z) 、 l. 27 (3 H, d, J =6. 9 Hz) 、 1. 34 (9H, s) 、 2. 17 - 2. 31 (1 H, m) 、 2. 38-2. 5 7 (2H, m) 、 2. 72 (3 H, s) 、 2. 81 ( 1 H, d d, J =8. 2, 14. 2Hz) 、 2. 96 ( 1 H, d d, J =6. 3, 14. 2Hz) 、 3. 3 4 (1H, m) 、 4. 46 (1 H, d, J = 11. 2H z) 、 4. 56 ( 1 H, m) 、 5. 50 (1 H, s) 、 5. 59 (1 H, b r s) 、 6. 00 (1 H, b r s) 、 6. 45 (1H, d, J = 7. 9H z) 、 6. 66 (1 H, d, J =
7. 6H z) 、 6. 78 (1 H, d d, J - 1. 7, 7. 9 H z) 、 7. 05 (1 H, d, J =1. 7 H z ) 7. 20 7. 36 (5H, m) 実施例 108
N- ( (R) ― 3—フエ二ルブチリル) 一 N— Me— V a l— Ty r (3— t B u) -NH2
(R) — 3—フヱニルー n_酪酸 0. 085m l (0. 558mmo l ) 、 実施例 89に従って得られた N— Me—V a 1— Ty r (3— t Bu) -NH2
15 Omg (0. 429mmo l ) 、 および HOBT 75mg (0. 55 8mmo l ) の DMF 3 m 1溶液に、 氷冷下、 D I C 0. 087m l (0. 558mmo 1 ) を加えた。 室温にて 25時間攪拌した後、 反応液を酢酸ェチル で希釈し、 飽和 NaHC03水溶液、 水、 飽和食塩水で洗浄した。 有機層を無水 硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカ ゲルカラムクロマトグラフィ一 (展開溶媒 クロ口ホルム : メタノール: アンモ ニァ水 =50 : 1 : 0.1) に付し、 N— ( (R) —3—フヱニルブチリル) ― N-Me - V a 1 -Ty r (3 - t B u) 一 NH2 186 m g (87%) を得
E I -MS : 497 (M ++ 1)
NMR (g法、 CDC 1 3) : δ 0. 51 (3 H, d, J =6. 6Hz) 、 0. 82 (3H, d, J = 6. 6H z) 、 1. 31 (3H, d, J = 7. 3Hz) 、 1. 38 (9H, s) 、 2. 04- 2. 23 (1 H, m) 、 2. 38 (1H, d d, J = 7. 3, 14. 8H z) 、 2. 65 (1 H, d d, J = 7. 6, 14. 8Hz) 、 2. 73 (3H, s) 、 2. 90 (1 H, d d, J =7. 9, 14. 2H z) 、 3. 00 (1 H, d d, J =6. 3, 14. 2H z) 、 3. 30 (1 H, m) 、 4. 36 (1 H, d, J = 10. 9H z) 、 4. 60 (1 H, m) 、 5. 67 (1 H, b r s) 、 5. 99 (1 H, b r s) 、 6. 15 (1 H, b r s) 、 6. 63 (1H, d, J =8. 3Hz) 、 6. 76 (1 H, d, J = 7. 9Hz) 、 6. 82 (1 H, d, J =: 7. 9Hz) 、 7. 07 (1 H, s) 、 7. 17-7. 29 (5H, m) 実施例 109
N- (/3—アミノ ヒ ドロシンナモイル) 一N— Me— V a 1— Ty r (3— t B u) -NH2
/3—アミノヒ ドロ桂皮酸 0. 67 g (4. 05mmo 1 ) 、 炭酸ナトリウム 0. 45 g (4. 26mmo l ) 、 2NN a OH水溶液 2. 5m 1、 水 8 m 1、 およびジォキサン 8m 1の混合物に、 氷冷下、 二炭酸ジ t e r tブチル 0. 93 g (4. 26 mmo 1 ) を加え、 室温にて 3時間攪拌した。 氷冷下、 濃塩酸を加えて酸性にし、 塩化メチレンで抽出した後、 無水硫酸マグネシウムで 乾燥、 減圧下に溶媒を留去し、 N— B 0 C— /3—アミノヒドロ桂皮酸 1. 14 gを得た。
N— B o c— 3—アミノヒドロ桂皮酸 0. 27 g (l. 03mmo l ) 、 実 施例 89に従って得られた N— Me— V a 1— Ty r (3 - t B u) — NH2 0. 24 g (0. 687mmo l ) 、 および HOB T 0. 23 g ( 1. 72 mmo l ) の DMF 5 m 1溶液に、 氷冷下、 D I C 0. 27m l (1. 72 mmo 1 ) を加えた。 室温にて 1日間攪拌した後、 反応液を酢酸ェチルで希釈し、 飽和 N a H C 03水溶液、 水、 飽和食塩水で洗浄した。 有機層を無水硫酸マグネ シゥムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラム クロマトグラフィー (展開溶媒 クロ口ホルム : メタノール: アンモニア水 =6 0 : 1 : 0.1) に付し、 N— ( N— Bo c— 3—アミノヒ ドロシンナモイル) -N-Me -V a 1 -Ty r (3 - t Bu) -NH2 291 mg (71%) を 得た。
N- ( N— Bo c— 3—アミノヒドロシンナモィル) 一 N— Me— Va l— Ty r (3 - t B u) -NH2 285mgを塩化メチレン 2m lの溶液とし、 TFA 1m lを加えて、 室温にて 15分間攪拌した。 減圧下に溶媒を留去して 得られた残さを塩化メチレンで希釈し、 飽和 NaHC〇3水溶液で洗浄した。 得 られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタノール: アンモニア水 =20 : 1 : 0.1) に付し、 N— ( jS—アミノヒ ドロシンナモイル) 一 N— Me— V a l— Ty r (3 - t B u) -NH2 19 7mg (83%) を得た。
FAB-MS : 497 (M+H+) 実施例 110
N— (2—アミノー 3—フエニルプロピル) 一 Ph g— Ty r (3— t B u) -NH2
Ph g— Ty r (3 - t Bu) -NH2 120 m g (0. 325mmo 1 ) および Z—フエ二ルァラニナール (J. O r . Ch em. , 5 Ί_, 28 (1 992) ) 112mg (0. 396mmo l ) の Me CN 3m l溶液に、 氷 冷下、 酢酸 0. lm 1および 水素化シァノホウ素ナトリウム 41. 5mg (0. 66 lmmo 1 ) を加え、 2時間攪拌した。 反応液に水を加えた後、 酢酸 ェチル抽出し、 水で洗浄、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで 乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマト グラフィ一 (展開溶媒 クロ口ホルム: メタノール =20: 1) に付し、 N— (2 —ベンゾキシカルボニルァミノ一 3—フエニルプロピル) 一 Ph g— Ty r (3 - t B u) — NH2 187mg (89%) を得た。
N— (2—ベンゾキシカルボニルァミノ一 3—フエニルプロピル) 一 Ph g— Ty r (3— t Bu) -NH2 40. Omg (0. 0664mmo 1 ) のメタ ノール lm 1溶液に、 10%パラジウム炭素 15. Omgを加え、 水素雰囲 気下、 室温にて終夜攪拌した。 濾過後、 減圧下に濾液を濃縮し、 得られた残さを シリ力ゲル力ラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタノール: アンモニア水 =10 : 1 : 0.1) に付し、 N— (2—アミノ一3—フヱニルプ 口ピル) 一Ph g—Ty r (3— t Bu) -NH2 29. Omg (92%) を 得た。
E I—MS : 503 (M + + 1)
NMR (g法、 CDC 13 ) : δ 1. 36 (9H, s) 、 2. 20-3. 05 (7H, m) 、 3. 47 (1 H, s) 4. 08 ( 1 H, d, J =4. 6 H z ) 、 4. 54-4. 72 (1 H, m) 、 5. 56 (1 H, b r s) 、 6. 56 (1H, d, J = 7. 9Hz) 、 6. 81 (1 H, d、 J = 7. 9H z) 、 7. 02- 7. 30 (11 H, m) 、 8. 01 (1H, d, J =8. 4H z) 実施例 111
N- (2—ァミノ一 3—フヱニルプロピル) 一N— Me— Ph g— Ty r (3 - t B u) -NH2
N- (2—ベンゾキシカルボニルァミノ一 3—フエニルプロピル) 一 Phg— Ty r (3— t Bu) -NH2 60. Omg (0. 0943mmo 1 ) の Me CN 1m l溶液に、 氷冷下、 35%ホルムアルデヒ ド液 0. 081m l (0. 94mmo l ) 、 酢酸 0. 1 m 1、 水素化シァノホウ素ナトリウム 18. 7mg (0. 283mmo 1 ) を加え、 2時間攪拌した。 反応液を水で希釈し、 クロ口ホルムで抽出し、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで乾 燥し、 減圧下に溶媒を留去した。 得られた残さをメタノール 1m l溶液とし、 パラジウム炭素 15. Omgを加え、 水素雰囲気下、 室温にて 3日間攪拌した。 濾過後、 減圧下に濾液を濃縮し、 得られた残さをシリカゲルカラムクロマトグラ フィ一 (展開溶媒 クロ口ホルム : メタノール: アンモニア水 = 10 : 1 : 0. 1) に付し、 N— (2—アミノー 3—フヱニルプロピル) 一 N— Me— Phg— Ty r (3- t B u) -NH2 29. 7 m g (61 %) を得た。
FAB-MS : 517 (M+H + )
NMR (g法、 CDC 1 3 ) : 5 1. 38 (9H, s) 、 2. 07 (2H, s) 、 2. 16-3. 20 (7H, m) 、 3. 47 (3 H, s) 、 4. 13 (1 H, s) 、 4. 60- 4. 80 (1 H, m) 、 5. 46— 5. 60 (1 H, m) 、 6. 52 - 7. 32 (13 H, m) 、 8. 15 (1H, d、 J =7. 9Hz) 実施例 112
N- (フヱ二ルビルピノィル) 一 N— Me— V a l— Ty r (3— t Bu) ― NH2
フエ二ルビルビン酸 179mg (l. 09mmo 1 ) の塩化メチレン 2m 1溶液に、 塩化チォニル 0. 079m l (1. 1 mm o 1 ) を加え、 60度に て 1時間加熱攪拌した。 反応液を減圧下に留去し、 得られた残さを塩化メチレン 2m 1溶液とし、 氷冷下、 N— Me— V a l— Ty r (3— t Bu) — NH2 19 Omg (0. 544 mmo 1 ) および卜リエチルァミ ン 0. 152m l (1. 09mmo 1 ) を加えた。 室温にて 2時間攪拌後、 反応液に水を加え、 ク ロロホルムで抽出し、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで乾燥 後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマ卜グラフィ 一 (展開溶媒 塩化メチレン : メタノール: アンモニア水 =20 : 1 : 0.1) に付し、 N— (フエ二ルビルピノィル) 一 N— Me_Va l— Ty r (3— t Bu) — NH2 50. 7 mg (19%) を得た。
NMR (g法、 CDC 1 3) : δ 0. 97 (3 Η, d, J =6. 6Η ζ) 、 0. 99 (3 Η, d, J =6. 6Η ζ) 、 1. 37 (9Η, s) 、 2. 30-2. 52 (1H, m) 、 2. 85 (3H, s) 、 2. 92— 3. 16 (2H, m) 、 4. 53 (1H, d, J =10. 9Hz) 、 4. 63 (1H, d d. J = 7. 3, . 3Hz) 、 5. 46 (2 H, b r s) 、 5. 84 (1H, b r s) 、 6. 5— (1H, d, J = 7. 9H z) 、 6. 95 (1H, d, J =6. 9Hz) 、 7. 12 (1 H, s) 、 7. 44 (2H, t, J =1. 6Hz) 、 7. 60— 7. 7 (1 H, m) 、 7. 95 (2 H, d, J = 7. 6 H z) 実施例 113
N—フエニル一 G 1 y-N-Me -V a 1 -Ty r (3 - t B u) -NH2 B o c— N—フエ二ルー G 1 y 108mg (0. 430mmo l ) の THF lm 1溶液に、 一 15度で、 N—メチルモルホリン 0. 048m l (0. 4 4mmo 1 ) 、 クロ口炭酸ィソブチル 0. 056m l (0. 43mmo l ) 、 N— Me— V a 1— Ty r (3— t B u) — NH2 10 Omg (0. 287m 11 0 1 ) の01^ 1 m 1溶液およびトリェチルァミ ン 0. 060m l (0. 43mmo 1 ) を加え、 室温にて 2時間攪拌した。 反応液を酢酸ェチルで希釈 し、 飽和 NaHC03水溶液で洗浄、 水で洗浄、 飽和食塩水で洗浄した。 有機層 を硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲ ルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサン二 1 : 1) に付し、 B 0 c— N—フエ二ルー G l y-N-Me-V a l -Ty r (3— t B u) — NH2 139mg (83%) を得た。
B 0 c— N—フエ二ルー G 1 y-N-Me -V a 1 -T y r ( 3 - t B u ) - NH2 13 Omg (0. 223 mm o 1 ) の塩化メチレン 1m l溶液に、 T FA 1m lを加え、 室温にて 1時間攪拌した。 反応液を減圧下に留去し、 得ら れた残さを塩化メチレンに溶解し、 飽和 N a HC03水溶液で洗浄、 飽和食塩水 で洗浄した。 有機層を硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得ら れた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロ口ホルム: メ タノール:アンモニア水 = 10 : 1 : 0. 1) に付し、 N—フエ二ルー G 1 y— N-Me-Va l -Ty r (3~ t B u) -NH2 69. 7mg (65%) を 得た。
FAB-MS : 483 (M + H+)
NMR (g法、 CDC 1 3) : δ 0. 78 (3Η, d, J =6. 6Hz) 、 0. 94 (3H, d, J =6. 3Hz) 、 1. 35 (9H, s) 、 2. 16- 2.— 36 (1H, m) 、 2. 66 (3H, s) 、 2. 78 (1H, d d, J = 10. 2, 14. 2H z) 、 3. 13 (1 H, d d, J =5. 5, 14. 2H z) 、 3. 42 (1 H, d, J = 16. 5Hz) 、 3. 74 (1 H, d, J = 16. 5Hz) 、 4. 48-4. 64 (2H, m) 、 4. 86 (1 H, b r s) 、 5. 39 (1 H, b r s) 、 6. 07 (1 H, b r s) 、 6. 27 (1H( d, J = 8. 3H z) 、 6. 34 (1H, d, J = 7. 2Hz) 、 6. 67 (2H, d, J -8. 3Hz) 、 6. 74-6. 84 (1 H, m) 、 7. 05 (1 H, s) 、 7. 24 -7. 30 (1H, m) 実施例 114
N— Me— N—フエニル一 G l y -N-M e - V a l—Ty r (3— t Bu) -NH2
Z— N—フヱニルー G l y 184mg (0. 646mmo l) の THF 2 m 1溶液に、 氷冷下、 NMM 0. 071m l (0. 65mmo 1 ) 、 クロ口 炭酸イソブチル 0. 084m l (0. 65mmo 1 ) , N-Me-Va 1 -T y r (3 - t B u) -NH2 150mg (0. 430mmo l ) の DMF 2 m 1溶液およびトリェチルァミン 0. 090m l (0. 65 mmo 1 ) を加 え、 室温にて 3時間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 NaHC03 水溶液で洗浄、 水で洗浄、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで 乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマトグラ フィー (展開溶媒 酢酸ェチル: n—へキサン =2 : 1) に付し、 Z— N— (フニ ニル) — G l y— N - Me— Va l—Ty r (3 - t B u) -NH2 186m g (70%) を得た。
Z— N—フエ二ルー G 1 y— N— Me— Va 1—Ty r (3— t B u) — NH 2 180mg (0. 292mmo l ) のメタノール 2ml溶液に、 10%パ ラジウム炭素 100m gを加え、 水素雰囲気下、 室温にて終夜攪拌した。 反応 液に 35%ホルムアルデヒド 0. 50m l (5. 83 mm o 1 ) を加え、 水素 雰囲気下、 室温にてさらに 3時間攪拌した。 濾過後、 濾液に水を加えクロ口ホル ムで抽出し、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで乾燥後、 減圧 下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマトグラフィー (展開 溶媒 酢酸ェチル: n—へキサン = 2 : 1) に付し、 N— Me— N—フヱ二ルー G 1 y-N-Me - V a 1 -T y r (3— t Bu) — NH2 32. 0 m g (2 2%) を得た。
FAB-MS : 497 (M+H+)
NMR (g法、 CDC 1 3) : δ 0. 78 (3H, d, J =6. 9Hz) 、 0. 88 (3H, d, J =6. 3Hz) 、 l. 37 (9H, s) 、 2. 18— 2. 36 (1H, m) 、 2. 63 (1H, d, J =4. 6H z) 、 2. 84 (3H, s) 、 2. 88-2. 96 (1 H, m) 、 2. 99 (3 H, s) 、 3. 92 (1 H, d, J = 16. 5Hz) 、 4. 06 (1H, d, J = 16. 5Hz) 、 4. 12 (1 H, d, J = 7. 3Hz) 、 4. 62 (1 H, d d, J =6. 6, 7. 9Hz) 、 5. 35 (2 H, b r s) 、 5. 92 (1 H, b r s) 、 6. 56 (1 H, d, J =1. 9Hz) 、 6. 64 (2H, d, J =7. 9H z) 、 6.
74 (1 H, t, J = 7. 9Hz) 、 6. 82 (1 H, d, 7. 9H z) 、 7.
08 (1H, s) 、 7. 21 (2H, t, J = 7. 9Hz) 、 7. 35 (1 H, d, J = 4. 0 H z) 実施例 115
N— ( 3—フエニルブチル) 一 Va l— Ty r (3— t B u) -NH2
Va 1— Ty r (3— t B u) — NH2 330 m g (0. 985mmo 1 ) およびフヱニルブチルアルデヒ ド 146mg (0. 986mmo l ) の Me C N 2m 1溶液に、 氷冷下、 酢酸 0. lm 1および水素化シァノホウ素ナトリ ゥム 124mg (l. 97 mmo 1 ) を加え、 室温にて 3時間攪拌した。 反応 液に水を加えて酢酸ェチルで抽出し、 飽和食塩水で洗浄した。 有機層を硫酸マ グネシゥムで乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラム クロマトグラフィー (展開溶媒 クロ口ホルム: メタノール: = 10 : 1) に付し- N- ( 3—フエニルブチル) — V a l— Ty r (3— t Bu) _NH2 236 mg (51%) を得た。 FAB-MS : 468 (M + H + )
NMR (g法、 CDC 1 3) : δ 0. 57 (4/3 H, d, J =6. 9Hz) 、 0. 62 (5/3H, d, J =6. 9Hz) 、 0. 75 (4/3H, d, J =
6. 6Hz) 、 0. 62 (5/3 H, d, J =6. 6Hz) 、 l. 23 (3 H, d, J =6. 9Hz) 、 1. 38 (9H, s) 、 1. 56— 1. 76 (2H, m) 、 1. 86- 2. 02 (1 H, m) 、 2. 20- 2. 32 (1 H, m) 、 2. 3 6 (4/9H, d, J =6. 9H z) 、 2. 39 (5/9 H, d, J =6. 9H z) 、 2. 64— 2. 74 (1 H, m) 、 2. 76 (1 H, d, J = 4. 3Hz) 、 2. 94-3. 08 (2H, m) 、 4. 50- 4. 64 (1 H, m) 、 5. 1 0-5. 28 (1H, m) 、 5. 88 (5/9 H, b r s) 、 6. 00 (4/9 H, b r s) 、 6. 59 (1H, d, J = 7. 9H z) 、 6. 93 (1 H, d,
J = 7. 9Hz) 、 7. 06 ( 1 H, s) 、 7. 10— 7. 36 (5H, m) 、
7. 64- 7. 76 ( 1 H, m) 実施例 116
N- (2—ァミノ一 3—フヱニルプロピル) 一 V a l—Ty r (3— t Bu) -NH2
Va l -Ty r (3 - t B u) -NH2 106mg (0. 316mmo 1 ) および Z—フヱニルァラニナール 90. Omg (0. 318mmo l ) の TH F 2m 1溶液に、 氷冷下、 硫酸マグネシウム 30 Omgおよび水素化シァノ ホウ素ナトリウム 40. Omg (0. 637mmo 1 ) を加え、 室温にて 2時 間攪拌した。 濾過後、 濾液に水を加えてクロ口ホルムで抽出し、 飽和食塩水で洗 浄した。 有機層を硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得られ た残さをシリ力ゲル力ラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタ ノール =20 : 1) に付し、 N— [2— (ベンゾキシカルボニルァミノ) 一3— フエニルプロピル] 一 Va l—Ty r (3— t Bu) — NH2 95. 7 mg
(50%) を得た。
N— [2— (ベンゾキシカルボニルァミノ) 一 3—フエニルプロピル] —Va 1 -Ty r (3- t B u) -NH2 94. lmg (0. 156mmo l ) のメ タノール 2m 1溶液に、 パラジウム炭素 50. Omgを加え、 水素雰囲気下、 室温にて終夜攪拌した。 濾過後、 減圧下に濾液を濃縮し、 得られた残さをシリカ ゲル力ラムクロマトグラフィー (展開溶媒 クロ口ホルム : メタノール:ァンモ ニァ水 =10 : 1 : 0.1) に付し、 N— (2—アミノ一 3—フヱニルプロピル] -V a 1 -Ty r (3— t Bu) -NH2 47. Omg (64%) を得た。
FAB-MS : 469 (M+H+)
NMR (g法、 CDC 1 3) : δ 0. 75 (3H, d, J =6. 9Hz) 、 0. 87 (3H, d, J =6. 9H z) 、 1. 38 (9H, s) 、 1. 90-2. 08 (1 H, m) 、 2. 38- 2. 54 (3 H, m) 、 2. 66 -2. 78 (1 H, m) 、 2. 81 (1 H, d, J =4. 6Hz) 、 2. 92 - 3. 08 (2H, m) 、 4. 60— 4. 72 (1 H, m) 、 5. 20— 5. 36 ( 1 H, m) 、 6. 55 (1 H, b r s) 、 6. 61 ( 1 H, d, J = 7. 9Hz) 、 6. 92 (1 H, d, J =7. 9Hz) 、 7. 07 (1 H, s) 、 7. 13 (2 H, d, J = 6. 9Hz) 、 7. 16-7. 36 (3 H, m) 、 7. 74 (1 H, d. J =8. 2 H z) 実施例 117
2 - [ (2—アミ ノー 3—フエニルプロピル) ァミノ] — N— [2—アミノー 1— [ (3 - t e r tプチルー 4—ヒ ドロキシフヱニル) メチル] ェチル] 一 3 —メチルブタナミ ド
(1) N- [2- (ベンゾキシカルボニルァミ ノ) 一 1_ [ (3— t e r t ブチルー 4—ヒ ドロキシフエニル) メチル] ェチル] — 2— (t e r tブトキシ カルボニルァミノ) 一 3—メチルブタナミ ドの合成
Ty r (3- t B u) -OMe 2. 00 g (7. 97mmo l ) の 1, 4一 ジォキサン 15m i、 水 15m 1の混合溶液に、 氷冷下、 炭酸ナトリウム 929mg (8. 76mmo 1 ) および二炭酸ジ t e r tブチル 1. 91 g (8. 75mmo 1 ) を加えて 2時間攪拌した。 氷冷下、 飽和 NH4C 1水を加 え、 クロ口ホルムで抽出し、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウム で乾燥後、 減圧下に溶媒を留去し、 得られた残さをエタノール 20m l、 TH F 20m 1の混合溶液とし、 氷冷下、 水素化ホウ素リチウム 520mg (2 3. 9mmo l ) を加え、 4時間攪拌した。 反応液に 2 N H C 1水を加え、 クロ 口ホルムで抽出、 水、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで乾燥 後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマトグラフィ — (展開溶媒 酢酸ェチル: n—へキサン = 1 : 1) に付し、 [1— [ (3— t e r tブチル一 4—ヒ ドロキシフエニル) メチル] 一 2—ヒ ドロキシェチル] 力ルバミ ド酸 t e r tブチルエステル 2. 26 g (88%) を得た。
[1 - [ (3— t e r tブチルー 4—ヒ ドロキンフエニル) メチル) 一 2—ヒ ドロキシェチル] 力ルバミ ド酸 t e r tブチルエステル 2. 26 g (7. 00 mmo l) の THF 25m l溶液に、 氷冷下、 トリフヱニルホスフィ ン 3. 67 g (14. Ommo l) 、 フタルイミ ド 2. 06 g (14. Ommo 1 ) およびジイソプロピルァゾジカルボキシレート 2. 76m l (14. Ommo 1 ) を加え、 1時間攪拌した。 水を加え酢酸ェチルで抽出し、 飽和食塩水で洗浄 した。 有機層を硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得られた残 さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサ ン = 1 : 2) に付し、 [1一 [ (3— t e r tプチル一 4ーヒドロキシフヱニル) メチル ] — 2— (1, 3—ジォキソ一 1, 3—ジヒ ドロイソインド一ル一2—ィ ル) ェチル] カルバミ ド酸 t e r tブチルエステルを含む混合物を得た。
この [1一 [ (3— t e r tブチルー 4ーヒ ドロキシフエニル) メチル) 一 2 — (1. 3—ジォキソー 1, 3—ジヒ ドロイソインドール一 2—ィル) ェチル] 力ルバミ ド酸 t e r tブチルエステルを含む混合物のメ夕ノール 15m l溶液 にヒ ドラジン 1水和物 2m lを加え、 室温にて 4時間攪拌した。 濾過後、 減圧 下に濾液を濃縮し、 得られた残さをシリカゲルカラムクロマトグラフィー (展開 溶媒 クロ口ホルム : メタノール: アンモニア水 = 10 : 1 : 0.1) に付し、 [2—アミノー 1— [ (3— t e r tブチル一 4—ヒ ドロキシフェニル) メチル] ェチル] 力ルバミ ド酸 t e r tブチルエステル 1. 55 g (69%) を得た。
[2—ァミノ一 1— [ (3— t e r tプチルー 4—ヒドロキシフエニル) メチ ル] ェチル] 力ルバミ ド酸 t e r tブチルエステル 1. 53 g (4. 75mm o l) の塩化メチレン 2 Om l溶液に、 トリェチルァミン 0. 725m l (5. 23mmo 1 ) およびクロ口炭酸べンジル 0. 746m l (5. 23m mo 1 ) を加え、 15分間攪拌した。 氷冷下、 飽和 NaHC03水を加え塩化メ チレンで抽出し、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで乾燥後、 減圧下に溶媒を留去し、 得られた残さをシリカゲルカラムクロマトグラフィ一 (展開溶媒 酢酸ェチル: n—へキサン = 1 : 1) に付し、 [2— (ベンゾキシ カルボニルァミノ) — i_ [ (3— t e r tブチルー 4—ヒドロキシフヱニル) メチル] ェチル] 力ルバミ ド酸 t e r tブチルエステル 1. 78 g (82%) を得た。
NMR (g法、 CDC 1 3) : δ 1. 39 (9 Η, s) 、 l. 40 (9 H, s) 、 2. 60 -2. 80 (2H, m) 、 3. 08— 3. 38 (2H, m) 、 3. 80- 3. 94 (1 H, m) 、 4. 58 -4. 72 (1 H, m) 、 5. 10 (2 H, s) 、 5. 28 (1H, b r s) 、 6. 59 (1 H, d, J = 7. 9Hz) 、 6. 85 (1H, d, J = 7. 9Hz) 、 7. 02 (1H, s) 、 7. 34 (5 H, b r s)
[2— (ベンゾキシカルボニルァミノ) 一 1ー [ (3— t e r tプチル一 4― ヒ ドロキシフヱニル) メチル] ェチル] 力ルバミ ド酸 t e r t—ブチルエステル 402mg (0. 882mmo 1 ) の塩化メチレン 2m l溶液に TFA 2 m lを加え、 室温にて 30分間攪拌した。 反応液を減圧下に留去し、 得られた残 さを DMF 3m 1に溶解し、 氷冷下、 B o c— V a 1 287 m g (1. 32 mmo l ) 、 HOBT 179 m g (1. 32mmo 1 ) . DMAP 162m g (1. 33mmo 1 ) および WS C I · HC 1 254mg (1. 32mmo 1 ) を加え、 室温にて 4時間攪拌した。 反応液を酢酸ェチルで希釈し、 飽和 Na HC03水溶液で洗浄、 水で洗浄、 飽和食塩水で洗浄した。 有機層を硫酸マグネ シゥムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラム クロマトグラフィー (展開溶媒 酢酸ェチル: n—へキサン = 1 : 1) に付し、 N- [2- (ベンゾキシカルボニルァミノ) 一 1— [ (3— t e r tブチル一 4ーヒ ドロキシフヱニル) メチル] ェチル] 一 2— (t e r tブトキンカルボ二 ルァミノ) 一3—メチルブタナミ ド 363mg (74%) を得た。 (2) 2- [ (2—アミ ノー 3—フエニルプロピル) ァミ ノ] — N— [2—ァ ミノー 1— [ (3— t e r tプチルー 4—ヒ ドロキシフヱニル) メチル] ェチル] —3—メチルブタナミ ドの合成
N— [2— (ベンゾキシカルボニルァミノ) 一 1— [ (3— t e r tブチル _ 4—ヒ ドロキシフヱニル) メチル] ェチル] 一 2— ( t e r tブトキシカルボ ニルァミノ) 一 3—メチルブタナミ ド 436mg (0. 786 mm o l ) の塩 化メチレン 2m l溶液に、 TF A 2m 1を加え、 室温にて 30分間攪拌した。 反応液を減圧下に留去し、 氷冷下、 残さに飽和 N a HC03水を加えてクロロホ ル厶で抽出し、 飽和食塩水で洗浄した。 有機層を硫酸マグネシウムで乾燥し、 減 圧下に溶媒を留去した後、 得られた残さを Me CN 3m l溶液とし、 氷冷下、 Z—フエ二ルァラニナ一ル 245 mg (0. 866mmo l ) 、 酢酸 0. 1 m 1および水素化シァノホウ素ナトリウム 98. 8mg (1. 57mmo 1 ) を加え、 3時間攪拌した。 水を加えてクロ口ホルム抽出し、 飽和食塩水で洗浄し た。 有機層を硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた 残さをシリカゲルカラムクロマ トグラフィー (展開溶媒 酢酸ェチル: n—へキ サン = 1 : 1) に付し、 N— [2—ベンゾキシカルボニルァミ ノ一 1 _ [ (3 - t e r tブチルー 4—ヒ ドロキシフヱニル) メチル] ェチル] _ 2— [ [2— ( ベンゾキシカルボニルァミ ノ) 一3—フヱニルプロピル] ァミ ノ] —3—メ チルブタナミ ド 282mg (50%) を得た。
N— [2—ベンゾキシカルボニルァミ ノー 1一 [ (3— t e r tブチルー 4一 ヒ ドロキシフヱニル) メチル] ェチル] 一 2— [ [2 - ( ベンゾキシカルボ二 ルァミノ) 一 3—フヱニルプロピル] ァミノ] — 3—メチルブタナミ ド 132 mg (0. 183 mm o l ) のメタノール 2 m 1溶液に 10 %パラジウム炭素 80mgを加え、 水素雰囲気下、 室温にて 2日間攪拌した。 濾過後、 減圧下に 濾液を濃縮し、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロ口ホルム: メタノール: アンモニア水 = 10 : 1 : 0.1) に付し、 2— [ (2—アミノー 3—フエニルプロピル) ァミノ] — N— [2—ァミノ一 1— [ (3 - t e r tブチルー 4ーヒ ドロキシフヱニル) メチル] ェチル"! 一 3—メ チルブタナミ ド 24. 2mg (29%) を得た。
F AB-MS : 455 (M+H+)
NMR (g法、 CDC 1 3) : δ 0. 70 (3 Η, d d, J =2. 0, 6. 6Hz) . 0. 84 (3H, d, J =6. 9Hz) 、 1. 37 (9H. s) 、 1. 98-2. 04 (1 H, m) 、 2. 24— 2. 86 (9H, m) 、 2. 94— 3. 12 (1H, m) 、 4. 10— 4. 26 (1H, m) 、 6. 62 (1 H, d, J =7. 9Hz) 、 6. 87 (1 H, d, J = 7. 9Hz) 、 7. 00 (1 H, s) 、 7. 12-7. 34 (5H, m) 実施例 118
N- [2— (3 - t e r tブチルー 4ーヒ ドロキシフヱニル) 一 1—メチルェ チル] ― 3—メチル一2— ( N—メチルー N—フエ二ルァラニノィルァミ ノ) ブタナミ ド
(1) Z-N, 0—ジベンジル一 Ty r (3 - t B u) — OMeの合成
Z-Ty r (3- t B u) -OMe 3. 0 g (7. 78mmo l ) の DMF 20m 1溶液に、 氷冷下、 水素化ナト リウム 0. 68 g (17. 1 mmo 1 ) を加えて 15分間攪拌後、 ベンジルブロ ミ ド 2. 3m 1 (19. 5mmo 1 ) を加えた。 3時間攪拌後、 反応液に飽和 NaHC03水溶液を加え、 酢酸ェチル で抽出し、 水、 飽和食塩水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィ 一 (展開溶媒 酢酸ェチル: n—へキサン =1 : 5) に付し、 Z— N, 〇ージべ ンジル _Ty r (3— t B u) —〇Me 4. 14 g (94%) を得た。
(2) N—ベンジル一 2— (4—ベンジルォキン一 3 - t e r tブチルフエ二 ル) 一 1ーメチルー N— (ベンジルォキシカルボニル) ェチルァミ ンの合成
Z-N, 0—ジベンジル一 Ty r (3— t B u) — OMe 4. 14 g (7. 32 mmo 1 ) のエタノール 36m i— THF 6 m 1溶液に、 氷冷下、 2 M 水素化ホウ素リチウム一 THF溶液 11. 0m l (22. Ommo l ) を加え て、 室温にて終夜攪拌した。 水を加え、 酢酸ェチルで抽出し、 飽和食塩水で洗浄、 無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した。 得られた残さを塩化 メチレン 50m 1の溶液とし、 氷冷下、 トリェチルァミン 2. Oml (14. 4m 1 ) 、 続いてメタンスルホニルクロリ ド 0. 72ml (9. 36mmo 1 ) を加えて、 30分間攪拌した。 反応液を飽和 NaHC03水溶液で洗浄し、 有機 層を無水硫酸マグネシウムで乾燥、 減圧下に溶媒を留去した後、 得られた残さを THF 1 Om 1の溶液とし、 1M水素化トリェチルホウ素リチウム一 THF溶 液 28. Oml (28. Ommo l) を加えた。 3時間攪拌した後、 氷冷下に 水を加え、 塩化メチレンで抽出した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィ ― (展開溶媒 酢酸ェチル: n—へキサン =1 : 5) に付し、 N—ベンジル— 2 一 (4—ベンジルォキシ一 3 - t e r tブチルフエニル) 一 1—メチルー N— (ベンジルォキシカルボニル) ェチルァミン 2. 35 g (61%) を得た。
(3) 2— (3— t e r tブチルー 4ーヒ ドロキシフヱニル) 一 1—メチルェ チルァミ ンの合成
N—べンジルー 2— (4一ベンジルォキン一 3 - t e r tブチルフヱニル) 一 1—メチル一N— (ベンジルォキシカルボニル) ェチルァミン 2. 35 g
(4. 5 Ommo 1 ) および 20%水酸化パラジウム一炭素触媒 0. 50gの メタノール 3 Oml懸濁液を、 水素雰囲気下、 終夜攪拌した。 触媒を濾別した 後、 減圧下に溶媒を留去し、 2— (3 - t e r tプチルー 4ーヒ ドロキシフヱ二 ル) 一 1—メチルェチルァミン 0. 90 g (96%) を得た。
NMR (g法、 CDC 13) : δ 1. 16 (3Η, d, J =6. 6Hz) 、 1. 39 (9H, s) 、 2. 45 (1 H, d d, J =4. 9, 13. 3Hz) 、
2. 69 (1H, d d, J =4. 9, 13. 3Hz) 、 3. 15 (1H, m) 、
3. 5 (2H, b r s) 、 6. 58 (1H, d, J = 7. 9Hz) 、 6. 83 (1H, d d, J = 1. 6, 7. 9Hz) 、 7. 03 (1 H, d, J = 1. 6H z )
(4) N— [2— (3— t e r tブチルー 4ーヒ ドロキシフヱニル) 一 1—メ チルェチル] 一 3—メチル一2— (メチルァミノ) ブタナミ ドの合成
2— (3 - t e r tブチルー 4ーヒドロキシフヱニル) 一 1—メチルェチルァ ミン 0. 31 g (l. 50mmo 1) . Z-N-Me-Va 1 -OH 0. 4 0 g (1. 5 Ommo 1 ) 、 および HOBT 0. 30 g (2. 25mmo 1 ) の DMF 5m 1溶液に、 氷冷下、 D I C 0. 35m l (2. 25mmo 1 ) を加えた。 室温にて 2時間攪拌した後、 反応液を酢酸ェチルで希釈し、 飽和 Na HC03水溶液、 水、 飽和食塩水で洗浄した。 有機層を無水硫酸マグネシウムで 乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマト グラフィ一 (展開溶媒 クロ口ホルム: メタノ一ル= 125 : 1) に付し、 2— [N- (ベンジルォキンカルボニル) 一N—メチルァミノ] —N— [2 - (3— t e r tブチルー 4ーヒドロキンフエニル) 一 1—メチルェチル] 一 3—メチル ブタナミ ド 0. 55 g (81%) を得た。
2 - [N— (ベンジルォキシカルボニル) 一 N—メチルァミノ] 一 N— [2— (3 - t e r tプチルー 4ーヒドロキシフエニル) 一 1—メチルェチル] 一 3— メチルブタナミ ド 0. 54 g (l. 19mmo 1 ) および 20%水酸化パラジ ゥムー炭素触媒 0. 10 gのメタノール 8m 1懸濁液を、 水素雰囲気下、 2 時間攪拌した。 触媒を濾別した後、 減圧下に溶媒を留去し、 N— [2— (3- t e r tブチル一 4—ヒ ドロキシフヱニル) 一 1ーメチルェチル] 一 3—メチル -2- (メチルァミノ) ブタナミ ド 0. 36 g (95%) を得た。
(5) N- [2— (3— t e r tプチルー 4ーヒ ドロキシフエニル) 一 1—メ チルェチル] ― 3—メチルー 2— ( N—メチル一N—フヱニルァラニノィルァ ミノ) ブタナミ ド
N— [2— (3— t e r tブチル一 4—ヒドロキシフヱニル) 一 1—メチルェ チル] 一 3—メチル一2— (メチルァミノ) ブタナミ ド 0. 36 g (1. 12 mmo l ) 、 Bo c— Ph e— OH 0. 75 g (2. 81随0 1 ) 、 ぉょび HOBT 0. 38 g (2. 81mmo l ) の DMF 5m l溶液に、 氷冷下、 D I C 0. 44m l (2. 81 mm o 1 ) を加えた。 室温にて 2. 5日間攪拌 した後、 反応液を酢酸ェチルで希釈し、 飽和 NaHC03水溶液、 水、 飽和食塩 水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去し た後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロ口 ホルム: メ夕ノール =80 : 1) に付し、 N— [2 - (3 - t e r tブチルー 4 —ヒドロキシフヱニル) 一 1ーメチルェチル] 一 2— [N- (N— Bo c—フエ 二ルァラニノィル) —N—メチルァミノ] —3—メチルブ夕ナミ ド 333mg (52%) を得た。
N— [2— (3— t e r tプチル一 4ーヒ ドロキシフエニル) 一 1—メチルェ チル] —2— [N— (N— B 0 c—フエ二ルァラニノィル) 一N—メチルァミノ] —3—メチルブタナミ ド 333mgを塩化メチレン 4m lの溶液とし、 TF A 2m lを加えて、 室温にて 10分間攪拌した。 減圧下に溶媒を留去して得ら れた残さを塩化メチレンで希釈し、 飽和 NaHC03水溶液で洗浄した。 得られ た残さをシリカゲルカラ厶クロマ トグラフィ一 (展開溶媒 クロ口ホルム : メタ ノール: アンモニア水二 75 : 1 : 0. 1 ) に付し、 N— [2— (3— t e r t ブチル一 4—ヒ ドロキンフエニル) 一 1ーメチルェチル] ― 3—メチルー 2— ( N—メチルー N—フェニルァラニノィルァミ ノ) ブ夕ナミ ド 164 mg (60%) を得た。
E I -MS : 468 (M + + 1 )
NMR (g法、 CDC 1 3) : δ 0. 72 (3/2 H. d, J =6. 6Hz) 、 0. 81 (3/2 H, d, J = 6. 6H z) 、 0. 93 (3Z2H, d, J = 6. 6Hz) . 0. 94 (3Z2トし d, J = 6. 3H z) 、 1. 07 (3/2 H, d, J =6. 6H z) 、 1. 08 (3/2 H, d, J = 6. 6H z) 、 1. 37 (4 H, s) 、 l. 40 (5 H, s) 、 2. 23 - 2. 42 (1 H, m) 、 2. 43 - 2. 90 (3H, m) 、 2. 75 (5/3 H, s) 、 2. 84 (4/ 3 H, s ) 、 3. 19 ( 1/2 H, d d , J = 4. 3, 13. 8H z) 、 3. 6 2 (1/2H, m) 、 3. 82— 3. 88 ( 1 H, m) 、 4. 23 (1 H, m) 、 4. 47 (2/5 H, d, J二 10. 9Hz) 、 6. 00 (3/5 H, d, J =8. 2Hz) 、 6. 61 (2/5 H, d, J = 7. 9H z) 、 6. 66 (3/ 5H, d d, J = 2. 0, 7. 9H z) 、 6. 77 (3/5 H, d, J = 7. 9 Hz) 、 6. 83 (2/5H, d d, J =2. 0, 7. 9H z) 、 6. 99 (3 ノ 5H, d, J =2. 0H z) 、 7. 05 (2/5H, d, J = 2. 0H z) 、 7. 1-7. 4 (7 H, m) 、 8. 22 (3/5 H, d, J =8. 3H z) 実施例 119
Ph e-N-Me-Va 1 -N-Me-Ty r (3— t Bu) -NH2 (1) Z-N-Me -V a 1 -N-Me -Ty r (3— t B u) — OMeの合 成
Z-N-Me -V a 1 -OH 3. 25 g、 N— M e - T y r ( 3 - t B u ) -OMe 2. 2 g. HOBT 1. 88 gの DMF 30 m l溶液に、 氷冷下 D I C 1. 9m 1を加え、 室温にて 23時間攪拌した。 反応液に水を加え、 ェ 一テルで抽出した。 飽和食塩水で洗浄し、 有機層を硫酸ナトリウムで乾燥し、 減 圧下に溶媒を留去した後、 得られた残さをシリ力ゲルカラムクロマトグラフィ一 (展開溶媒 クロ口ホルム : メタノール: アンモニア水 = 1 00 : 1 0 : 1) に 付し、 Z— N— Me— V a 1 -N-Me -T y r (3— t B u) -OM e 1. 96 g (4 7%) を得た。
(2) Z— N— Me— V a l — N— M e— T y r (3— t B u) — NH2の合 成
Z-N-Me -V a 1 -N-Me -T y r (3— t B u) —OMe 1. 96 g、 1, 4一ジォキサン 4 0m 1の溶液に、 室温下、 2 NN a OH 5m lを 加え、 2時間攪拌した。 反応液を希塩酸で p H 3に調節し、 酢酸ェチルで抽出し た。 飽和食塩水で洗浄し、 有機層を硫酸ナ トリウムで乾燥した。 減圧下に溶媒を 留去して得た Z— N— Me - V a 1 -N-Me -T y r (3— t B u) — OHの TH F 20m 1溶液に、 氷冷下、 クロ口炭酸ェチル 0. 40m l、 NMM 0. 46m lを加え、 1 5分間攪拌した。 続いてアンモニアガスを 5分間吹き込 んだ。 反応液を減圧下に溶媒を留去して、 析出した塩を濾去し、 酢酸ェチルで洗 浄した。 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマト グラフィ― (展開溶媒 n—へキサン:酢酸ェチル = 2 : 3) に付し、 Z— N— Me -V a 1 -N-Me -T y r (3 - t B u) -NH2 1. 1 7 g (6 1%) を得た。
(3) N-Me -V a 1 -N-Me -T y r (3 - t B u) 一 NH2の合成 Z-N-Me -V a 1 -N-Me -Ty r (3 - t B u) -NH2 1. 1 7 g、 20%水酸化パラジウム炭素 0. 24 gのメタノール 20m l混合物を 室温下、 水素雰囲気下、 1時間攪拌した。 反応液を濾過し、 メタノールで洗浄し た。 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラ フィ一 (展開溶媒 クロ口ホルム : メタノール: アンモニア水 = 100 : 10 : 1) に付し、 N— Me— Va l— N— Me— Ty r (3 - t B u) -NH2 6 09mg (71%) を得た。
(4) Z-Ph e-N-Me-Va 1 -N-Me-Ty r (3 - t Bu) -N H2の合成
Z-P h e -OH 742mgの THF 3 m 1溶液に氷冷下、 クロ口炭酸ィ ソブチル 0. 32m l、 NMM 0. 27 m 1を加え、 15分間攪拌した。 続 いて N— Me— V a 1— N— Me—Ty r (3— t B u) -NH2 60 Omg の THF 3m l溶液を加え、 室温下 10時間攪拌した。 反応液に水を加え、 酢 酸ェチルで抽出した。 飽和食塩水で洗浄した後、 有機層を硫酸ナトリゥムで乾燥 し、 減圧下に溶媒を留去した。 得られた残さをシリカゲルカラムクロマトグラフィ 一 (展開溶媒 n—へキサン : アセトン =3 : 2) に付し、 Z— Ph e—N— M e - V a 1 -N-Me -T y r (3— t B u) - NH2 611 mg (58%) を得た。
(5) Ph e-N-Me-Va 1 -N-Me-Ty r (3— t Bu) -NH2 の合成
Z-Ph e-N-Me-Va 1 -N-Me -Ty r (3— t Bu) -NH2 610mg、 10%パラジウム炭素 l O Omgのメタノール 15 m 1混合物 を室温下、 水素雰囲気下、 17時間攪拌した。 反応液を濾過し、 メタノールで洗 浄した。 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマト グラフィ一(展開溶媒 酢酸ェチル) に付し、 Ph e— N— Me— Va l— N— Me -Ty r (3— t Bu) -NH2 43 lmg (89%) を得た。
E I -MS : 511 (M++ 1)
NMR (g法、 CDC 1 3) : δ 0. 50 (9/1 OH, d, J = 6. 3H z) 、 0. 75 (9/1 OH, d, J = 6. 6Hz) 、 0. 79 (21/1 OH, d, J =6. 9Hz) 、 0. 93 (21/1 OH, d, J =6. 6H z) 、 l. 34 (63/1 OH, s) 、 1. 39 (27/1 OH, s) 、 2. 15-2. 9 9 (46/1 OH, m) 、 2. 46 (21/1 OH, s) 、 2. 78 (21/1 OH, s) 、 3. 02 (9/1 OH, s) 、 3. 03 (9/1 OH, s) 、 3. 15 (7/1 OH, d d, J = 14. 9, 5. 9Hz) 、 3. 33 (3/1 OH, d d, J = 13. 9, 6. 9Hz) 、 3. 72 (7/10 H, d d, J =8. 9, 5. 0Hz) 、 3. 91 (3/1 OH, dd, J = 8. 1, 5. lHz) 、 4. 92 (3/1 OH, d, J = 10. 9Hz) 、 5. 02- 5. 09 (14/10 H, m) 、 5. 29 (7/1 OH, b r s) 、 5. 49 (7/1 OH, dd, J = 10. 7, 5. 8Hz) 、 5. 98 (7/1 OH, b r s) 、 6. 32 (7/ 1 OH, d, J = 7. 9Hz) , 6. 60-6. 67 (6/1 OH, m) 、 6. 72 (7/1 OH, dd, J = 7. 9, 2. 0Hz) 、 6. 97 (3/1 OH, dd, J = 7. 9, 2. OHz) 、 7. 10— 7. 39 (67/1 OH, m) 実施例 120
N- [2— (3 - t e r tブチル一 4ーヒ ドロキシフェニル) 一 1ーメチルェ チル] 一 3—メチル _2— [ N—メチルー N— (N_Me—フヱニルァラニノ ィル) ァミノ] ブタナミ ド
N- [2— (3 - t e r tブチルー 4—ヒ ドロキシフエニル) 一 1ーメチルェ チル] 一 3—メチル _ 2— (メチルァミノ) ブタナミ ド 115mg (0. 35 9mmo 1 ) 、 B o c - N—Me - P h e - OH 17 Omg (0. 610mm o l) の塩化メチレン 1. 5m 1溶液に、 氷冷下、 BOP 318mg (0. 718mmo 1 ) 、 続いて TE A 0. 10ml (0. 718mmo l) を加え た。 室温にて 2日間攪拌した後、 反応液を塩化メチレンで希釈し、 水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた 残さをシリカゲルカラムクロマ卜グラフィー (展開溶媒 クロ口ホルム : メタノ ール =150: 1) に付し、 N— [2— (3 - t e r tブチル一4—ヒ ドロキシ フエニル) ー1ーメチルェチル] 一 2— [N- (N—B 0 c—N— Me—フエ二 ルァラニノィル) 一N—メチルァミノ] — 3—メチルブタナミ ド 149mg
(71%) を得た。
N- [2— (3— t e r tブチルー 4ーヒ ドロキシフヱニル) ― 1ーメチルェ チル] ー2— [N- (N— B o c—N—Me—フヱニルァラニノィル) 一N—メ チルァミノ] — 3—メチルブタナミ ド 145mgを塩化メチレン 2mlの溶 液とし、 TFA 1m lを加えて、 室温にて 15分間攪拌した。 減圧下に溶媒を 留去して得られた残さを塩化メチレンで希釈し、 飽和 N aHC03水溶液で洗浄 した。 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロ口 ホルム : メタノール: アンモニア水 =80 : 1 : 0.1) に付し、 N— [2— (3 - t e r tプチルー 4ーヒ ドロキシフヱニル) 一 1ーメチルェチル] 一 3 —メチル一 2— [ N—メチルー N— (N— M e—フエ二ルァラニノィル) アミ ノ] ブタナミ ド 86mg (72%) を得た。
E I -MS : 481 (M +)
NMR (g法、 CDC 1 3) : δ 0. 52 ( 1 Η, d, J =6. 6H z) 、 0. 78 (2 H, d, J =6. 6H z) 、 0. 93 (3H, d, J =6. 3Hz) 、 1. 08 (1 H, d, J = 6. 6H z) 、 1. 13 (2H, d, J = 6. 6H z) 、 l. 36 (5 H, s) 、 1. 39 (4 H, s) 、 2. 1— 2. 3 (1H, m) 、 2. 25 (2 H, s ) 、 2. 32 ( 1 H, s ) 、 2. 5— 2. 9 (3 H, m) 、 2. 59 (2 H, s ) 、 2. 62 (1 H, s ) 、 3. 08 (1/2 H, d, J =6. 6H z) 、 3. 58 ( 1Z2H, t , J = 6. 3Hz) 、 3. 65— 3. 73 (1/2 H, m) 、 4. 07— 4. 25 (3/5 H, m) 、 4. 46 (2/ 5 H, d, J = 11. 2H z) 、 5. 62 (1/2H, b r s) 、 6. 06 (1/2H, d, J - 8. 3H z) 、 6. 59-6. 64 (lH, m) 、 6. 7 5-6. 94 (1 H, m) 、 7. 01 -7. 12 ( 1 H, m) 、 7. 2-7. 4 (6H, m) 、 8. 18 (1/2H, d, J = 8. 3 H z) 実施例 121
N- [2— (3— t e r tプチルー 4—ヒ ドロキシフエニル) 一 1—メチルェ チル] 一 N— Me— 3—メチルー 2— ( N—メチルー N—フヱニルァラニノィ ルァミノ) ブタナミ ド
(1) 2 - (4一ベンジルォキシ一 3— t e r tプチルフヱニル) 一 N— (ベ ンジルォキシカルボニル) 一 N—M e— 1ーメチルェチルァミ ンの合成
実施例 91に従って得られた Z— N— Me— P h e (3— t Bu— 4—ベンジ ルォキシ) 一 OMe 1. 60 g (3. 27 mm o 1 ) のエタノール 18m l -THF 3m 1溶液に、 氷冷下、 2M水素化ホウ素リチウム一 THF溶液 4. 9m l (9. 8 Ommo 1 ) を加えて、 室温にて終夜攪拌した。 水を加え、 酢酸 ェチルで抽出し、 飽和食塩水で洗浄、 無水硫酸マグネシウムで乾燥し、 減圧下に 溶媒を留去した。 得られた残さを塩化メチレン 15m lの溶液とし、 氷冷下、 トリェチルァミ ン 0. 88m l (6. 3 2 mmo 1 ) 、 続いてメタンスルホ二 ルクロリ ド 0. 27m l (3. 47 mmo 1 ) を加えて、 30分間攪拌した。 反応液を飽和 N a H C 03水溶液で洗浄し、 有機層を無水硫酸マグネシゥ厶で乾 燥、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトダラ フィー (展開溶媒 酢酸ェチル: η—へキサン二 1 : 2) に付し、 メシラート 0. 88 g (50%. 2工程) を得た。 このメ シラート 0. 88 g (l. 62 mmo 1 ) の THF 5m lの溶液に、 1 M水素化トリェチルホウ素リチウム一 THF溶液 5. 8m l (5. 8mmo l ) を加えた。 1. 5時間攪拌した後、 氷冷下に水を加え、 塩化メチレンで抽出した。 有機層を無水硫酸マグネシウムで 乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマト グラフィー (展開溶媒 酢酸ェチル: n—へキサン = 1 : 5) に付し、 2— (4 —ベンジルォキン一 3— t e r tブチルフエニル) 一 N— (ベンジルォキシカル ボニル) 一 N— Me— 1—メチルェチルァミ ン 0. 50 g (68%) を得た。
(2) 2— (3— t e r tブチルー 4—ヒ ドロキシフヱニル) 一 N— M e— 1 ーメチルェチルァミ ンの合成
2 - (4一ベンジルォキシー 3 - t e r tプチルフェニル) 一N— (ベンジル ォキシカルボ二ル) 一 N— Me— 1ーメチルェチルァミン 0. 49 g (1. 09mmo 1 ) および 20 %水酸化パラジウム一炭素触媒 0. 1 0 gのメタノ ール 5m 1懸濁液を、 水素雰囲気下、 2. 5時間攪拌した。 触媒を濾別した後- 減圧下に溶媒を留去し、 2 - (3— t e r tプチルー 4ーヒ ドロキシフヱニル) —N— Me— 1ーメチルェチルァミ ン 0. 23 g (96%) を得た。
NMR (g法、 CD C 1 3) : δ 1. 1 2 (3Η, d, J = 6. 3 H z) 、 1. 38 (9 H, s) 、 2. 42 ( s, 3 H) 、 2. 64 (2H, d, J =6. 6 H z) 、 2. 75 - 2. 9 0 ( l H, m) 、 6. 55 ( 1 H, d, J = 7. 9 Hz) 、 6. 84 (1H, d d, J = 1. 6, 7. 9Hz) 、 7. 04 (1H, d, J = 1. 6H z)
(3) N- [2 - (3 - t e r tプチルー 4ーヒ ドロキシフヱニル) 一 1ーメ チルェチル] —N— Me— 3—メチル一 2—メチルアミノブタナミ ドの合成
2 - (3 - t e r tブチルー 4—ヒ ドロキシフェニル) 一 N— Me— l—メチ ルェチルァミ ン 0. 22 g (0. 994mmo l ) , Z-N-Me-Va l - OH 0. 55mg (2. 09 mm o 1 ) 、 および H 0 B T 0. 30 g (1. 99mmo l) の DMF 3 m 1溶液に、 氷冷下、 D I C 0. 31m l (1. 99mmo 1 ) を加えた。 室温にて 38時間攪拌した後、 反応液を酢酸ェチルで 希釈し、 飽和 NaHC03水溶液、 水、 飽和食塩水で洗浄した。 有機層を無水硫 酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲ ルカラムクロマ卜グラフィ一 (展開溶媒 酢酸ェチル: n—へキサン二 1 : 4) に付し、 2— [N- (ベンジルォキンカルボニル) 一N—メチルァミノ] — N 一 [2 - (3 - t e r tブチルー 4ーヒ ドロキシフヱニル) 一 1ーメチルェチル] 一 N— Me— 3—メチルブタナミ ド 155mg (33%) を得た。
2- [N- (ベンジルォキシカルボニル) 一N—メチルァミノ] —N— [2 - (3 - t e r tプチルー 4—ヒ ドロキシフヱニル) 一 1—メチルェチル] — N— Me— 3—メチルブタナミ ド 150mg (0. 320 mm o 1 ) および 20 %水酸化パラジウム一炭素触媒 0. 02 gのメタノール 2m l懸濁液を、 水 素雰囲気下、 3時間攪拌した。 触媒を濾別した後、 減圧下に溶媒を留去し、 N 一 [2— (3 - t e r tブチル一 4—ヒ ドロキシフエニル) 一 1—メチルェチル] 一 N— Me— 3—メチル一 2— (メチルァミノ) ブタナミ ド 97mg (92%) を得た。
(4) N- [2 - (3 - t e r tプチルー 4ーヒ ドロキシフエニル) _ 1ーメ チルェチル] ― N_Me— 3—メチル一 2— ( N—メチル一N—フヱニルァラ ニノィルァミノ) ブタナミ ドの合成
N- [2— (3 - t e r tブチル一 4ーヒ ドロキシフェニル) 一 1—メチルェ チル] 一 N— Me— 3—メチル一2— (メチルアミノ) ブタナミ ド 93mg (0. 278mmo l ) , Bo c-Ph e-OH 125 m g (0. 473mm o l ) の塩化メチレン 1. 5m 1溶液に、 氷冷下、 BOP 246 m g (0. 556mmo 1 ) 、 続いて TE A 0. 077m l (0. 556mmo l ) を加 えた。 室温にて 2. 5日間攪拌した後、 反応液を塩化メチレンで希釈し、 水で洗 浄した。 有機層を無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した後、 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロ口ホルム
: メタノール =150 : 1) に付し、 N— [2— (3— t e r tブチル一4ーヒ ドロキシフヱニル) 一1—メチルェチル] 一 2— [N— (N— Bo c—フヱニル ァラニノィル) —N—メチルァミノ] 一 N— M e— 3—メチルブ夕ナミ ド 10 8mg (67%) を得た。
N- [2 - (3- t e r tプチルー 4ーヒ ドロキシフヱニル) 一 1ーメチルェ チル] 一 2— [N- (N—B 0 c—フエ二ルァラニノィル) 一 N—メチルァミノ] —N— Me— 3—メチルブ夕ナミ ド 108mgを塩化メチレン 2m lの溶液 とし、 T F A lm lを加えて、 室温にて 15分間攪拌した。 減圧下に溶媒を留 去して得られた残さを塩化メチレンで希釈し、 飽和 N a HC03水溶液で洗浄し た。 得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロロホ ルム : メタノール: アンモニア水 =60 : 1 : 0.1) に付し、 N— [2— (3 - t e r tブチルー 4ーヒ ドロキシフヱニル) 一 1—メチルェチル] 一 N— M e— 3—メチルー 2— ( N—メチルー N—フヱニルァラニノィルァミ ノ) ブタ ナミ ド 71mg (80%) を得た。
E I -MS : 481 (M +)
NMR (g法、 CDC 1 3) : δ 0. 41 (3Η, d, J = 6. 6Hz) 、 0. 74 (3H, d, J = 6. 6Hz) 、 1. 08 (3H, d, J = 6. 6Hz) 、 1. 36 (9H, s) 、 2. 07- 2. 24 (1 H, m) 、 2. 55— 2. 7 6 (2H. m) 、 2. 81 (3H, s) 、 2. 86- 3. 00 (2H, m) 、 2. 90 (3 H, s) 、 3. 94 (1H, t, J =6. 6Hz) 、 4. 94 (1H, d, J = 10. 9Hz) 、 5. 02-5. 11 (1H, m) 、 6. 61 (1H, d, J = 8. 3Hz) 、 6. 89 (1 H, d d, J =2. 0, 7. 9H z) 、 7. 00 (1H, d, J = 1. 7Hz) 、 7. 10— 7. 35 (6H, m) 試験例 1
モチリン受容体結合試験
モチリン受容体結合試験は次の方法で行った [B 0 r ma n s e t a 1. , Re gu l . P e p t i d e s, 15, 143 (1986) ] 。 屠殺したゥサギ より十二指腸を摘出し、 粘膜を剥離後、 5 OmM T r i s— HC 1緩衝液中で homo g e n i z eして受容体試料とした。 受容体試料を125 Iモチリン 25 pMと共にインキュベートした後に、 受容体に結合した放射活性を測定した。 ィ ンキュベー卜液中に薬物の代わりに DMS〇 (1%) を添加した際の放射活性か ら、 大過剰のモチリン (10— 7M) を添加した際の放射活性を引いた差を特異的 結合とした。 薬物の活性は特異的結合を 50%に減少させる濃度 ( I C50、 nM) で表した。 結果を表 C一 1に示す。 試験例 2
ゥサギ摘出十二指腸縦走筋標本の収縮に対する作用
モチリンによるゥサギ摘出十二指腸縦走筋標本の収縮に対する作用を次の方法 で調べた。 屠殺したゥサギより摘出した十二指腸標本 (3 X I 0mm) を、 28 °Cに加温した K r e b s溶液を満たした恒温槽 (0 r g a n b a t h 10m 1 ) 中に縦走筋方向に懸垂した。 混合ガス (95%02、 5%C02) を K r e b s溶液に連続的に通気し、 十二指腸標本の収縮は、 i s o t o n i c t r a n s d u c e r (TD- 111 T、 日本光電 (株) ) を介して等張性 (負荷 1 g) に記録した。 収縮の程度はァセチルコリン 10—4Mの濃度による収縮を 100% として、 それに対する割合で示した。 薬物の活性は、 恒温槽内に添加したモチリ ンによる濃度依存的収縮に対する影響を、 pA2値として計算した。 結果を表 C 一 1に示す。 表 C一 1 実施例番号 モチリン受容体結合試験 収縮抑制試験
I C5o (nM) P A2
5 12 7. 81
18B 3 7 8. 58
118 1. 9 8. 43
119 4. 3 8. 59
産業上の利用の可能性
本発明の化合物は、 モチリ ンレセプターアンタゴニスト作用等を有し、 過敏性 腸症候群治療薬等の医薬として有用である。

Claims

99/09053 ιί求の範囲
1. —般式 (1)
(I)
Figure imgf000137_0001
(式中、 Aは、 アミノ酸残基、 または Να—置換アミノ酸残基を表す。 ここで、
Αは、 一 NR2—とアミ ドを形成するように結合している。
は、 R6—CO—、 置換基を有していてもよい炭素数 2〜7の直鎖もしくは 分枝鎖状のアルキル基、 置換基を有していてもよい炭素数 3〜8の直鎖もしくは 分枝鎖状のアルケニル基、 置換基を有していてもよい炭素数 3〜8の直鎖もしく は分枝鎖状のアルキニル基を表す。
R2は、 水素原子、 または置換基を有していてもよい炭素数 1〜3の直鎖もし くは分枝鎖状のアルキル基を表す。
R3は、 一 CO— R7、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは 分枝鎖状のアルキル基、 置換基を有していてもよい炭素数 2~5の直鎖もしくは 分枝鎖状のアルケニル基、 置換基を有していてもよい炭素数 2〜 5の直鎖もしく は分枝鎖状のアルキニル基を表す。
R4は、 水素原子、 炭素数 1〜6の直鎖もしくは分枝鎖状のアルキル基、 炭素 数 2〜 6の直鎖もしくは分枝鎖状のアルケニル基、 炭素数 2〜 6の直鎖もしくは 分枝鎖状のアルキニル基、 または一般式 (2)
Figure imgf000137_0002
を表す。
R5は、 水素原子、 または、 一 OR8を表す。 R6は、 置換基を有していてもよい炭素数— 1〜6の直鎖もしくは分-枝鎖状のァ ルキル基、 置換基を有していてもよい炭素数 2〜7の直鎖もしくは分枝鎖状のァ ルケニル基、 置換基を有していてもよい炭素数 2〜 7の直鎖もしくは分枝鎖状の アルキニル基、 ベンゼン環もしくは複素環と縮合していてもよい炭素数 3〜7の シクロアルキル基、 置換基を有していてもよい炭素数 6〜12の芳香環、 置換基 を有していてもよい炭素数 3〜12の飽和もしくは不飽和の複素環、 一 N (R9) R1()、 または、 一 ORnを表す。
R7は、 水素原子、 置換基を有していてもよい炭素数 1〜5の直鎖もしくは分 枝鎖状のアルキル基、 炭素数 3~7のシクロアルキル基、 一 N (R12) R13、 - OR14を表す。
R8は、 水素原子、 または炭素数 1〜4の直鎖状のアルキル基を表す。
R9および 。は、 同一または異なって、 水素原子、 置換基を有していてもよ い炭素数 1〜 5の直鎖もしくは分枝鎖状のアルキル基、 置換基を有していてもよ い炭素数 2〜6の直鎖もしくは分枝鎖状のアルケニル基、 置換基を有していても よい炭素数 2〜 6の直鎖もしくは分枝鎖状のアルキニル基、 ベンゼン環もしくは 複素環と縮合していてもよい炭素数 3〜6のシクロアルキル基、 または、 置換基 を有していてもよい炭素数 6〜12の芳香環を表す。
R uは、 置換基を有していてもよ 、炭素数 1〜 5の直鎖もしくは分枝鎖状のァ ルキル基、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状のァ ルケニル基、 置換基を有していてもよい炭素数 2〜6の直鎖もしくは分枝鎖状の アルキニル基、 ベンゼン環もしくは複素環と縮合していてもよい炭素数 3〜6の シクロアルキル基、 または、 置換基を有していてもよい炭素数 6〜12の芳香環 を表す。
R12および R13は、 同一または異なって、 水素原子、 炭素数 1〜4の直鎖もし くは分枝鎖状のアルキル基、 または炭素数 3〜 7のシクロアルキル基を表す。
R14は、 水素原子、 炭素数 1〜6の直鎖もしくは分枝鎖状のアルキル基、 また は炭素数 3〜 7のシクロアルキル基を表す。
R15は水素原子またはメチル基を表す。
16ぉょび尺17は、 一緒になつて、 炭素数 3〜 7のシクロアルキル基もしくは シクロアルケ二ル基を表す。 )
で示される化合物、 その水和物、 またはその薬学的に許容しうる塩。
2. —般式 (1) において、 Aが、 ノくリ ン (V a 1 ) 、 ロイシン (L e u) 、 イソロイシン ( I 1 e ) 、 フエ二ルァラニン (Ph e) 、 チロシン (Ty r) 、 トリプトファン (T r p) 、 フェニルグリシン (P h g) 、 ヒドロキシプロリン (Hy p) 、 ホモフヱニルァラニン (Hp h) 、 シクロへキシルグリシン (Ch g) 、 シクロへキシルァラニン (Ch a) 、 t e r t—ロイシン (T l e) 、 2 一チェ二ルァラニン (Th i ) 、 N—メチルバリ ン (N— Me— Va 1 ) 、 N- メチルロイシン (N— Me— L e u) 、 N—メチルイソロイシン (N— Me— I 1 e) 、 N—メチルフエ二ルァラニン (N— Me— Ph e) 、 N—メチルフエ二 ルグリシン (N— Me— Ph g) 、 N—メチルシクロへキシルァラニン (N— M e -C h a) 、 または、 N—メチル t e r t—ロイシン (N— Me— T l e) 、 である請求項 1記載の化合物、 その水和物、 またはその薬学的に許容しうる塩。
3. —般式 (1) において、 1^が、 フエ二ルァラニノィル基、 N— Me 一フヱニルァラニノィル基、 β— (3—インドリル) ァラニノィル基、 チロシノ ィル基、 β— (2—チェニル) ァラニノィル基、 β— (2—フリル) ァラニノィ ル基、 /3—シクロへキシルァラニノィル基、 3—フヱニルブチリル基、 1一ベン ゾシクロブチルカルボニル基、 ベンジルァミノカルボニル基、 またはベンジルォ キシカルボニル基、 である請求項 1〜2のいずれか 1項に記載の化合物、 その水 和物、 またはその薬学的に許容しうる塩。
4. 一般式 (1) において、 R2が、 水素原子またはメチル基である請求 項 1〜3のいずれか 1項に記載の化合物、 その水和物、 またはその薬学的に許容 しつる ia。
5. 一般式 (1) において、 R3が、 アミ ド基、 N—メチルアミ ド基、 メ チル基、 またはアミノメチル基である請求項 1〜4のいずれか 1項に記載の化合 物、 その水和物、 または薬学的に許容しうる塩。
6. 一般式 (1) において、 R4力、 イソプロピル基、 t e r t—ブチル 基 (t Bu) 、 l, 1ージメチルプロピル基、 または、 1, 1—ジメチルー 2— プロぺニル基、 である請求項 1〜5のいずれか 1項に記載の化合物、 その水和物- またはその薬学的に許容しうる塩。
7. —般式 (1) において、 R5力、 水酸基またはメ トキシ基である請求 項 1〜6のいずれか 1項に記載の化合物、 その水和物、 またはその薬学的に許容 しつな塩。
8. —般式 (1) において、 Aが、 ノ'リ ン (V a 1 ) 、 ロイシン (L e u)
、 イソロイシン ( I 1 e) 、 フエ二ルァラニン (Ph e) 、 チロシン (Ty r) 、 トリプトファン (T r p) 、 フェニルグリシン (P h g) 、 ヒ ドロキンプロリン (Hyp) 、 ホモフエ二ルァラニン (H p h) 、 シク口へキンルグリ シン (C h g) 、 シクロへキンルァラニン (C h a) 、 t e r t—ロイシン (T 1 e) 、 2 —チェ二ルァラニン (Th i ) 、 N—メチルバリ ン (N— Me— Va 1 ) 、 N- メチルロイシン (N— Me— L e u) 、 N—メチルイソロイシン (N— Me— I 1 e ) 、 N—メチルフエ二ルァラニン (N— Me— Ph e) 、 N—メチルフエ二 ルグリシン (N— Me— Ph g) 、 N—メチルシクロへキンルァラニン (N— M e-Ch a) 、 または、 N—メチル t e r t—ロイシン (N— Me— T 1 e) で あり ; R,が、 フヱニルァラニノィル基、 N— Me—フヱニルァラニノィル基、 β- (3—インドリル) ァラニノィル基、 チロシノィル基、 β— (2—チェニル) ァラニノィル基、 (2—フリル) ァラニノィル基、 3—シクロへキシルァラ ニノィル基、 3—フヱニルブチリル基、 1一べンゾシクロブチルカルボニル基、 ベンジルァミノカルボニル基、 またはベンジルォキンカルボニル基、 であり ; R 2が、 水素原子またはメチル基であり ; R3が、 アミ ド基、 N—メチルアミ ド基、 メチル基、 またはァミノメチル基であり ; R4が、 ィソプロピル基、 t e r t— ブチル基 (t B u) 、 1, 1—ジメチルプロピル基、 または、 1, 1ージメチル —2—プロぺニル基であり ; R5が、 水酸基またはメ トキシ基、 である請求項 1 に記載の化合物、 その水和物または、 その薬学的に許容しうる塩。
9. Ph e-Ph g-Ty r (3- t Bu) -ΝΗ2 Ph e-N-Me
-D-P h g-Ty r (3— t B u) - NH2、 Ph e— Ph e - Ty r (3 t B u) — NH2、 Ph e-C h a-Ty r (3— t Bu) — NH2、 P h e - V a 1 -Ty r (3 - t Bu) — NH2、 Ph e-L e u-Ty r (3— t B u) — NH2、 Ph e— Ty r— Ty r (3— t B u) —NH2、 Ph e— Hp h— T y r (3- t B u) — NH— 2、 Ph e- I l e-Ty r (3 - t B u) -NH2 T r p-Ph g-Ty r (3 - t B u) - NH2、 Ch a-Ph g-Ty r (3 - t B u) — NH2、 P h e -V a 1 -N-Me -Ty r (3— t Bu) — NH2、 P h e -P h g-Ty r (3— t Bu) — NHMe、 N- (ベンジルァミノカル ボニル) — N— Me— D— P h e— Ty r (3— t Bu) — NH2、 N- (S) —3—フエ二ルブチリル一 P h g-Ty r (3— t Bu) _NH2、 N- (2— ァミノ一 3—フエニルプロピル) 一 Ph g— Ty r (3— t Bu) — NH2、 N 一 (2—ァミノ一 3—フエニルプロピル) 一 Va l— Ty r (3— t Bu) -N H2、 N_ [2— (3— t e r tブチル一 4—ヒ ドロキンフエニル) 一 1—メチ ルェチル] — 3—メチル一 2— ( N—メチル一N—フエ二ルァラニノィルアミ ノ) ーブタナミ ド、 Ph e— N— Me— Va l _N— Me— Ty r (3— t Bu) 一 NH2、 N— [2— (3— t e r tブチルー 4ーヒ ドロキシフエニル) _ 1一 メチルェチル] 一 3—メチル一2— [ N—メチル一 N— (N— Me—フヱニル ァラニノィル) ァミノ] ブタナミ ドからなる化合物群から選択される請求項 1記 載の化合物、 その水和物、 またはその薬学的に許容しうる塩。
10. 請求項 1〜 9のいずれか 1項に記載の化合物を有効成分として含有 する医薬。
11. 請求項 1〜9のいずれか 1項に記載の化合物を含有するモチリンレ セプターアンタゴニスト。
12. 請求項 1〜 9のいずれか 1項に記載の化合物を有効成分として含有 する消化管運動抑制剤。
13. 請求項 1〜 9のいずれか 1項に記載の化合物を有効成分として含有 する高モチリン血症治療剤。
PCT/JP1998/003627 1997-08-15 1998-08-14 Derives de phenylethylamine WO1999009053A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP98937826A EP1006122B1 (en) 1997-08-15 1998-08-14 Phenethylamine derivatives
US09/485,620 US6255285B1 (en) 1997-08-15 1998-08-14 Phenethylamine derivatives
AU86490/98A AU741216B2 (en) 1997-08-15 1998-08-14 Phenethylamine derivatives
KR1020007001529A KR20010022924A (ko) 1997-08-15 1998-08-14 페네틸아민 유도체
DE69840296T DE69840296D1 (de) 1997-08-15 1998-08-14 Phenylethylenamin-derivate
CA002301687A CA2301687A1 (en) 1997-08-15 1998-08-14 Phenethylamine derivatives

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/255879 1997-08-15
JP25587997 1997-08-15
JP10/186802 1998-05-28
JP18680298 1998-05-28

Publications (1)

Publication Number Publication Date
WO1999009053A1 true WO1999009053A1 (fr) 1999-02-25

Family

ID=26503986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003627 WO1999009053A1 (fr) 1997-08-15 1998-08-14 Derives de phenylethylamine

Country Status (10)

Country Link
US (1) US6255285B1 (ja)
EP (1) EP1006122B1 (ja)
KR (1) KR20010022924A (ja)
CN (1) CN1272114A (ja)
AT (1) ATE416186T1 (ja)
AU (1) AU741216B2 (ja)
CA (1) CA2301687A1 (ja)
DE (1) DE69840296D1 (ja)
TW (1) TW460478B (ja)
WO (1) WO1999009053A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017231A1 (fr) * 1998-09-24 2000-03-30 Chugai Seiyaku Kabushiki Kaisha Derives d'ethylamine
WO2000044770A1 (fr) * 1999-01-28 2000-08-03 Chugai Seiyaku Kabushiki Kaisha Derives phenethylamine substitues
WO2001085694A3 (en) * 2000-05-05 2002-04-04 Ortho Mcneil Pharm Inc Substituted diamide derivatives useful as motilin antagonists
WO2002059141A1 (fr) * 2001-01-25 2002-08-01 Chugai Seiyaku Kabushiki Kaisha Derives peptidiques
KR100342762B1 (ko) * 1993-06-28 2002-11-18 와이어쓰 활성성분으로서치환된펜에틸아민을포함하는약제학적조성물
EP1510515A1 (en) 2000-06-13 2005-03-02 Eli Lilly And Company Phenylglycine derivatives as serine protease inhibitors
EP2431380A2 (en) 2006-09-11 2012-03-21 Tranzyme Pharma, Inc. Macrocyclic antagonist of the motilin receptor for treatment of gastrointestinal dysmotility disorders

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329372B1 (en) * 1998-01-27 2001-12-11 Celltech Therapeutics Limited Phenylalanine derivatives
US6716452B1 (en) 2000-08-22 2004-04-06 New River Pharmaceuticals Inc. Active agent delivery systems and methods for protecting and administering active agents
WO2002016404A1 (fr) * 2000-08-24 2002-02-28 Chugai Seiyaku Kabushiki Kaisha Derive de peptide cyclique
US8394813B2 (en) 2000-11-14 2013-03-12 Shire Llc Active agent delivery systems and methods for protecting and administering active agents
WO2002057791A2 (en) * 2000-11-29 2002-07-25 Lifespan Biosciences, Inc. Diagnostic and therapeutic compositions and methods related to grp 38
CN1533400A (zh) * 2001-04-10 2004-09-29 ����˹̩����ҩ��˾ 用于药物发现的探针、系统和方法
KR100575919B1 (ko) * 2001-06-28 2006-05-02 화이자 프로덕츠 인코포레이티드 미소체 트리글리세라이드 전달 단백질(mtp) 및/또는아포지방단백질 b(apo b)분비의 억제제로서의트리아미드-치환된 인돌, 벤조푸란 및 벤조티오펜
US7169752B2 (en) * 2003-09-30 2007-01-30 New River Pharmaceuticals Inc. Compounds and compositions for prevention of overdose of oxycodone
US7338939B2 (en) * 2003-09-30 2008-03-04 New River Pharmaceuticals Inc. Abuse-resistant hydrocodone compounds
US20060014697A1 (en) * 2001-08-22 2006-01-19 Travis Mickle Pharmaceutical compositions for prevention of overdose or abuse
US20070066537A1 (en) * 2002-02-22 2007-03-22 New River Pharmaceuticals Inc. Compounds and compositions for prevention of overdose of oxycodone
US7375082B2 (en) * 2002-02-22 2008-05-20 Shire Llc Abuse-resistant hydrocodone compounds
KR20040094677A (ko) * 2002-01-29 2004-11-10 와이어쓰 코넥신 헤미채널 조절을 위한 조성물 및 방법
ES2500117T3 (es) * 2002-02-22 2014-09-30 Shire Llc Novedosos compuestos farmacéuticos de liberación sostenida para prevenir el abuso de sustancias controladas
US7105486B2 (en) * 2002-02-22 2006-09-12 New River Pharmaceuticals Inc. Abuse-resistant amphetamine compounds
US7659253B2 (en) * 2002-02-22 2010-02-09 Shire Llc Abuse-resistant amphetamine prodrugs
US7700561B2 (en) * 2002-02-22 2010-04-20 Shire Llc Abuse-resistant amphetamine prodrugs
EP1481078A4 (en) * 2002-02-22 2006-08-16 New River Pharmaceuticals Inc USE OF A PEPTIDE DRUG CONJUGATION TO REDUCE VARIABILITY OF MEDICAMENT SERUM MIRRORS BETWEEN PATIENTS
BRPI0410792B8 (pt) * 2003-05-29 2021-05-25 New River Pharmaceuticals Inc compostos de anfetamina resistentes à dependencia
JP4928261B2 (ja) * 2003-06-18 2012-05-09 トランザイム・ファーマ・インコーポレイテッド モチリン受容体の大環状拮抗薬
EA008864B1 (ru) * 2003-09-30 2007-08-31 Нью Ривер Фармасьютикалз Инк. Фармацевтические композиции для предотвращения передозировки или неправильного употребления лекарственных средств
US20080287371A1 (en) * 2007-05-17 2008-11-20 Tranzyme Pharma Inc. Macrocyclic antagonists of the motilin receptor for modulation of the migrating motor complex
SG11201802777XA (en) 2015-10-14 2018-05-30 X Therma Inc Compositions and methods for reducing ice crystal formation
CN112812334B (zh) * 2021-01-11 2022-06-17 浙江博菲电气股份有限公司 一种新能源电机用阻燃槽楔的制备工艺及阻燃槽楔

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003483A1 (en) * 1992-07-30 1994-02-17 Chiron Corporation Endothelin receptor-binding compounds
WO1996040208A1 (en) * 1995-06-07 1996-12-19 Torrey Pines Institute For Molecular Studies Novel mu opioid receptor ligands: agonists and antagonists

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470830A (en) 1993-08-06 1995-11-28 Ohmeda Pharmaceutical Products Division Inc. Motilin-like polypeptides that inhibit gastrointestinal motor activity
JP3449766B2 (ja) 1993-11-19 2003-09-22 中外製薬株式会社 モチリンアンタゴニスト
US5712253A (en) 1996-06-18 1998-01-27 Abbott Laboratories Macrocyclic 13-membered ring derivatives of erythromycins A and B
US6013633A (en) * 1997-08-07 2000-01-11 University Of Cincinnati Compounds for control of appetite, blood pressure, cardiovascular response, libido, and circadian rhythm
US5972939A (en) * 1997-10-28 1999-10-26 Ortho-Mcneil Pharmaceutical, Inc. Cyclopentene derivatives useful as antagonists of the motilin receptor
EP1149843A4 (en) * 1999-01-28 2012-06-06 Chugai Pharmaceutical Co Ltd SUBSTITUTED PHENETHYLAMINE DERIVATIVES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003483A1 (en) * 1992-07-30 1994-02-17 Chiron Corporation Endothelin receptor-binding compounds
WO1996040208A1 (en) * 1995-06-07 1996-12-19 Torrey Pines Institute For Molecular Studies Novel mu opioid receptor ligands: agonists and antagonists

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEPOORTERE I., ET AL.: "ANTAGONISTIC PROPERTIES OF ÚPHE3,LEU13¾PORCINE MOTILIN.", EUROPEAN JOURNAL OF PHARMACOLOGY, ELSEVIER SCIENCE, NL, vol. 286., 1 January 1995 (1995-01-01), NL, pages 241 - 247., XP002913859, ISSN: 0014-2999, DOI: 10.1016/0014-2999(95)00453-5 *
POITRAS, P., ET AL.: "MOTILIN SYNTHETIC ANALOGUES AND MOTILIN RECEPTOR ANTAGONISTS.", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ACADEMIC PRESS INC. ORLANDO, FL, US, vol. 205., no. 01., 1 January 1994 (1994-01-01), US, pages 449 - 454., XP002913858, ISSN: 0006-291X, DOI: 10.1006/bbrc.1994.2686 *
TAKANASHI H., ET AL.: "GM-109: A NOVEL, SELECTIVE MOTILIN RECEPTOR ANTAGONIST IN THE SMOOTH MUSCLE OF THE RABBIT SMALL INTESTINE.", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, AMERICAN SOCIETY FOR PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, US, vol. 273., no. 02., 1 January 1995 (1995-01-01), US, pages 624 - 628., XP002913857, ISSN: 0022-3565 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342762B1 (ko) * 1993-06-28 2002-11-18 와이어쓰 활성성분으로서치환된펜에틸아민을포함하는약제학적조성물
US6586630B1 (en) * 1998-09-24 2003-07-01 Chugai Seiyaku Kabushiki Kaisha Ethylamine derivatives
WO2000017231A1 (fr) * 1998-09-24 2000-03-30 Chugai Seiyaku Kabushiki Kaisha Derives d'ethylamine
WO2000044770A1 (fr) * 1999-01-28 2000-08-03 Chugai Seiyaku Kabushiki Kaisha Derives phenethylamine substitues
EP1149843A4 (en) * 1999-01-28 2012-06-06 Chugai Pharmaceutical Co Ltd SUBSTITUTED PHENETHYLAMINE DERIVATIVES
US7553969B1 (en) * 1999-01-28 2009-06-30 Chugai Seiyaku Kabushiki Kaisha Substituted phenethylamine derivatives
US7112586B2 (en) 2000-05-05 2006-09-26 Ortho-Mcneil Pharmaceutical, Inc. Substituted diamine derivatives useful as motilin antagonists
US6967199B2 (en) 2000-05-05 2005-11-22 Ortho-Mcneil Pharmaceutical, Inc. Substituted diamine derivatives useful as motilin antagonists
US6511980B2 (en) 2000-05-05 2003-01-28 Ortho Mcneil Pharmaceutical, Inc. Substituted diamine derivatives useful as motilin antagonists
US7166601B2 (en) 2000-05-05 2007-01-23 Ortho-Mcneil Pharmaceutical, Inc. Substituted diamine derivatives useful as motilin antagonists
WO2001085694A3 (en) * 2000-05-05 2002-04-04 Ortho Mcneil Pharm Inc Substituted diamide derivatives useful as motilin antagonists
EP1510515A1 (en) 2000-06-13 2005-03-02 Eli Lilly And Company Phenylglycine derivatives as serine protease inhibitors
WO2002059141A1 (fr) * 2001-01-25 2002-08-01 Chugai Seiyaku Kabushiki Kaisha Derives peptidiques
EP2431380A2 (en) 2006-09-11 2012-03-21 Tranzyme Pharma, Inc. Macrocyclic antagonist of the motilin receptor for treatment of gastrointestinal dysmotility disorders

Also Published As

Publication number Publication date
DE69840296D1 (de) 2009-01-15
CN1272114A (zh) 2000-11-01
EP1006122A4 (en) 2004-10-13
CA2301687A1 (en) 1999-02-25
EP1006122A1 (en) 2000-06-07
AU741216B2 (en) 2001-11-29
US6255285B1 (en) 2001-07-03
EP1006122B1 (en) 2008-12-03
AU8649098A (en) 1999-03-08
TW460478B (en) 2001-10-21
ATE416186T1 (de) 2008-12-15
KR20010022924A (ko) 2001-03-26

Similar Documents

Publication Publication Date Title
WO1999009053A1 (fr) Derives de phenylethylamine
US7183252B2 (en) Indole peptidomimetics as thrombin receptor antagonists
US5162336A (en) Tetrahydro-pyrido-indoles as cholecystokinin and gastrin antagonists
US5190922A (en) Terminally modified tri-, tetra- and pentapeptide anaphylatoxin receptor ligands
JP2001512138A (ja) Vla−4が介在する白血球付着を阻害するベンジル化合物
SK63498A3 (en) Novel macrocyclic compounds as metalloprotease inhibitors
JPH07503485A (ja) オピオイドペプチド
US6235876B1 (en) Liquid phase process for the preparation of GNRH peptides
WO2003059933A2 (en) Conformationally constrained c-backbone cyclic peptides
PT99940A (pt) Processo de preparacao de ligandos hexa- e heptapeptidicos do receptor da anafilatoxina e de composicoes farmaceuticas
PT99939A (pt) Processo de preparacao de ligandos hexa- e heptapeptidicos modificados do receptor da anafilatoxina e de composicoes farmaceuticas
HU185229B (en) Process for preparing pharmaceutically active peptides and acetates thereof
JP3583928B2 (ja) フェネチルアミン誘導体
JPH09503200A (ja) C反応性タンパク質断片から誘導されたオリゴペプチド
HU190915B (en) Process for preparing new tripeptide derivatives
US4256736A (en) Psychopharmacological peptides
US4501733A (en) Polypeptides, a process for their preparation, their use, and a _process for the purification of polypeptides
RU2694051C2 (ru) СПОСОБ ЖИДКОФАЗНОГО СИНТЕЗА H-Inp-(D)Bal-(D)Trp-Phe-Apc-NH2 И ЕГО ФАРМАЦЕВТИЧЕСКИ ПРИЕМЛЕМЫХ СОЛЕЙ
US5663148A (en) Anaphylatoxin receptor ligands containing lipophilic residues
US5786447A (en) Opioid peptide analogs
WO2002102833A1 (fr) Nouveaux derives d&#39;endomorphine
CA1131217A (en) Psycho-pharmacological peptides
CN109929012B (zh) 地加瑞克关键四肽中间体的制备方法
WO1994009031A1 (en) Analogues of cholecystokinin (30-33) containing an alpha-substituted aminoacid
JPS63141995A (ja) 新規活性ペプチド

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98809657.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2301687

Country of ref document: CA

Ref document number: 2301687

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 86490/98

Country of ref document: AU

Ref document number: 09485620

Country of ref document: US

Ref document number: 1020007001529

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998937826

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998937826

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007001529

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 86490/98

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020007001529

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载