WO1999004833A1 - Dispositif d'assistance cardiaque ventriculaire a contre-pulsation - Google Patents
Dispositif d'assistance cardiaque ventriculaire a contre-pulsation Download PDFInfo
- Publication number
- WO1999004833A1 WO1999004833A1 PCT/FR1998/001631 FR9801631W WO9904833A1 WO 1999004833 A1 WO1999004833 A1 WO 1999004833A1 FR 9801631 W FR9801631 W FR 9801631W WO 9904833 A1 WO9904833 A1 WO 9904833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aorta
- sleeve
- intermediate fluid
- counter
- aortic
- Prior art date
Links
- 230000000747 cardiac effect Effects 0.000 title claims abstract description 13
- 230000002861 ventricular Effects 0.000 title claims abstract description 8
- 239000012530 fluid Substances 0.000 claims abstract description 33
- 210000000709 aorta Anatomy 0.000 claims abstract description 31
- 239000008280 blood Substances 0.000 claims abstract description 11
- 210000004369 blood Anatomy 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 claims abstract description 5
- 230000009471 action Effects 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 13
- 210000002376 aorta thoracic Anatomy 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 4
- 239000011554 ferrofluid Substances 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 claims description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims 1
- 230000004087 circulation Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 230000017531 blood circulation Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000003205 diastolic effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000002027 skeletal muscle Anatomy 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 208000001435 Thromboembolism Diseases 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 206010001526 Air embolism Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 206010049565 Muscle fatigue Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229910018194 SF 6 Inorganic materials 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 210000001765 aortic valve Anatomy 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 239000003633 blood substitute Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 210000004903 cardiac system Anatomy 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- -1 polyoxymethylene Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/148—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/161—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel mechanically acting upon the outside of the patient's blood vessel structure, e.g. compressive structures placed around a vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
- A61M60/226—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
- A61M60/232—Centrifugal pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/289—Devices for mechanical circulatory actuation assisting the residual heart function by means mechanically acting upon the patient's native heart or blood vessel structure, e.g. direct cardiac compression [DCC] devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/465—Details relating to driving for devices for mechanical circulatory actuation
- A61M60/468—Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being hydraulic or pneumatic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/869—Compliance chambers containing a gas or liquid other than blood to compensate volume variations of a blood chamber
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/871—Energy supply devices; Converters therefor
- A61M60/873—Energy supply devices; Converters therefor specially adapted for wireless or transcutaneous energy transfer [TET], e.g. inductive charging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8237—Charging means
- A61M2205/8243—Charging means by induction
Definitions
- the present invention relates to a heartbeat ventricular assist device.
- This device acts as a storage and generation system for pulsating hydraulic energy. It is designed to be used as a component of an autonomous cardiac assistance device operating in counter-pulsation.
- the heart assist devices currently used such as the system NOVACOR ® NP 100 of BAXTER company and IP ® HeartMate TCI company uses a heart pump comprising an actuator and a flexible chamber or pocket.
- the flexible chamber periodically fills or empties of blood under the action of the actuator.
- This actuator is either an electromagnet or an electric motor with transformation, by means of a cam, of the circular movement provided by the electric motor into linear movement.
- the mechanical action is done on the pocket (in polyurethane) placed in diversion on the patient's left ventricle. Valves, allowing a unidirectional circulation of blood, are placed at the entry and exit of the bag.
- Muscle can be wrapped around the aorta
- centrifugal pumps placed in diversion on the left ventricle could allow better reliability due to the absence of diaphragm or bag made of polymer material, the resistance of which over time, with repeated stresses, is always problematic. In addition, they also make it possible to overcome the delicate problem constituted by pressure compensation resulting from variations in the volume of the pockets. Nevertheless, serious problems remain concerning: the reliability of the bearings or bearings, problems of thrombus on the bearings, noise problems, the need for extra-corporal circulation for the installation of these devices. In addition, a failure of the pump can lead to closed circuit operation of the heart because there is no valve. In addition, there is a risk of coagulation in the branch in diversion.
- Intra-aortic balloon pumps have been used clinically since the 1960s in recovery from heart shock.
- the balloon is inserted into the patient's aorta, usually through the femoral artery.
- An external console makes it possible to inflate and deflate the balloon, with helium, in synchronism with the heart.
- the balloon is inflated in diastole and deflated in systole. Deflating the balloon decreases the afterload of the heart, which therefore ejects more blood.
- the inflation of the balloon in diastole raises the aortic pressure and forces the blood in the arterial circuit.
- IABPs are not suitable for long-term assistance for at least two reasons.
- the balloon would not resist it from a mechanical point of view.
- operation requires a console and an external gas storage not very compatible with normal life.
- the percutaneous passage of pneumatic tubing constitutes an important source of infection.
- aortomyoplasty to exert the action of counter-pulsation, by wrapping a skeletal muscle (generally the latissimus dorsi) around the aorta.
- This method has the drawbacks mentioned above with regard to the use of skeletal muscles.
- a cardiac assistance device is proposed using the following elements:
- an aortic prosthesis performing the counter-pulsation action on the aorta.
- This prosthesis is in the form of an aortic sleeve placed on the descending aorta and in which the blood circulates.
- an intermediate fluid external to the sleeve ensuring the cyclic compression of the sleeve in the diastolic phase and providing the counter-pulsation effect.
- an electro-hydraulic actuator transforming stored electrical energy into hydraulic energy delivered to the intermediate fluid.
- a compensation chamber also called compliance chamber, making it possible to accommodate the variation in volume of intermediate liquid.
- the subject of the invention is therefore a heartbeat ventricular assist device, comprising the following implanted elements:
- the means capable of performing a counter-pulsation action consist of an aortic sleeve placed on the descending aorta and into which the intermediate fluid penetrates,
- the device further comprises a compliance chamber for accommodating the change in volume of the intermediate fluid during the operation of one actuator.
- the aortic sleeve is inserted on the descending aorta.
- the aortic sleeve may comprise a tubular membrane of flexible material, replacing a section of the aorta, the membrane being enclosed within a rigid shell sealed on the aorta so as to define a chamber. annular around the membrane, the intermediate fluid entering the annular chamber through an orifice provided in the shell.
- the aortic sleeve is attached to the descending aorta.
- the aortic sleeve may comprise an element made of flexible material enclosing the aorta and constituting a closed volume with an orifice for the introduction of the intermediate fluid, the sleeve also comprising a rigid shell to contain said element made of flexible material.
- the actuator can be a centrifugal pump. It can also use a ferrofluid as a driving element.
- the power supply means may include one or more rechargeable batteries.
- the device further comprises implanted means allowing the reception of an electromagnetic signal for recharging said battery.
- the compliance chamber may include means making it possible to introduce, while the compliance chamber is already implanted, gas for charging or discharging it.
- FIG. 1 represents a heartbeat ventricular assist device according to the present invention and shown in position on a patient
- FIG. 2 represents an aortic sleeve according to the present invention, inserted on the descending aorta of the patient,
- FIG. 3 represents an aortic sleeve according to the present invention, attached to the descending aorta of the patient,
- FIG. 4 is a sectional view along the axis IV-IV of FIG. 3, - Figure 5 shows another aortic sleeve according to the present invention, attached to the descending aorta of the patient.
- the cardiac assistance device shown in FIG. 1 comprises an aortic sleeve 1 placed on the descending aorta 10 of the patient, an electro-hydraulic actuator 2, a compliance chamber 3 and an electrical circuit 4 comprising one or more batteries of food.
- the electro-hydraulic actuator 2 is in fluid communication with the aortic sleeve 1 through the flexible conduit 5. It is also in fluid communication with the compliance chamber 3 through the flexible conduit 6.
- the electric circuit 4 supplies the actuator electro-hydraulic 2 thanks to the electrical cord 7. All these elements are of course made of biocompatible materials.
- the aortic sleeve 1 is described in more detail in Figure 2 which is a partial view. In section to show the inside of the sleeve. As shown in Figure 2, this aortic sleeve replaces a section of the aorta. It comprises a membrane 11 located between two tubular ends 12 and 13 intended to be grafted onto corresponding parts of the aorta. The membrane 11 is made of flexible material.
- the aortic sleeve 1 also comprises a rigid shell 14, of generally cylindrical shape, sealingly sealed on the tubular ends 12 and 13. Between the rigid shell 14 and the assembly constituted by the membrane 11 and the tubular ends 12 and 13 exists so a space elongated annular 15.
- the flexible conduit 5 terminates in this annular space 15.
- the aortic sleeve performs the counter-pulsation action on the blood under the effect of the intermediate fluid introduced into the annular space 15 thanks to the flexible conduit 5.
- the membrane 11 has been shown in solid lines during the systolic phase, that is to say while the intermediate fluid flows back towards the actuator.
- the membrane is shown in dashed lines during the diastolic phase, that is to say while the intermediate fluid flows towards the annular space 15.
- This type of sleeve (prosthetic sleeve) must have a lower compliance than that of the natural aorta so as to decrease the afterload of the heart and increase its ejection, therefore its flow.
- compliance must not be zero either. It can typically be of the order of 1 to 3.10 8 Pa.m 3 .
- Compliance can be achieved at the source, that is to say at the level of the prosthetic sleeve, by giving a certain elasticity to the latter. This can be achieved for example using metallic reinforcements overmolded in the wall of the membrane 11 and forming a spring, such as the reinforcements 16.
- the compliance can also be transferred further in the actuation chain, after the intermediate fluid , and integrated at the level of the electro-hydraulic actuator.
- FIG. 3 Another example of an aortic sleeve is described in Figure 3 in a perspective view. Unlike the aortic sleeve described above, this sleeve is attached to the descending part of the aorta 9 and not inserted into the aorta.
- the sleeve 20, shown in Figure 3 comprises an element 21 of flexible material here taking the form of a sheath when it is wound around the aorta 10. This flexible element constitutes a closed volume in which the flexible conduit 5 terminates.
- a rigid shell 22 encloses the element 21 so that this element can act directly on the aorta as a function of the pressure exerted by the intermediate fluid. As shown in Figure 4, the rigid shell 22 has a hinge 23 and a clasp 24 facilitating its implementation.
- FIG. 5 Another example of an added aortic sleeve is shown in partially sectional view in FIG. 5.
- the element 31 made of flexible material takes the form of a serpentine when it is wound around the aorta 10. This flexible element constitutes a closed volume in which the flexible conduit 5 terminates.
- a rigid shell 32 similar to the shell 22 of FIGS. 3 and 4, encloses the element 31 so that the action of the intermediate fluid is exerted directly on the 'aorta.
- the inserted and attached aortic sleeves do not have the same properties and their use will be depending on the implantation conditions.
- an added sleeve makes it possible to obtain excellent hemo-compatibility since there is no synthetic material in contact with the blood.
- Its implantation is simplified since it is possible to install it, and possibly remove it without damaging the aorta and the intercostal arteries.
- no interruption of blood flow is necessary during the procedure.
- the intermediate fluid provides compression towards the inside of the aortic sleeve and therefore of the arterial circuit.
- the volume of the arterial circuit is reduced in the diastolic phase, and increased in the systolic phase, thus ensuring the increase in blood flow by physiological effect on the heart.
- This intermediate fluid is preferably physiological saline, or a blood substitute, such as DEXTRAN, so as not to create a problem in the event of leakage of this fluid inside the body or in the arterial circuit.
- the electro-hydraulic actuator 2 makes it possible to supply hydraulic energy to the aortic sleeve using the intermediate fluid.
- the actuator can advantageously use ferrofluids as the driving element.
- This actuator can also be constituted by a centrifugal pump.
- the compliance chamber 3 (or compensation chamber), represented in FIG. 1, makes it possible to compensate for the variations in volume of the intermediate fluid. It is filled with a gas such as air, argon, nitrogen, SF 6 . Variations in the volume of the intermediate fluid in the actuator cause, depending on the type of electro-hydraulic actuator, variations in the volume of gas present in the actuator.
- the compliance chamber makes it possible to accommodate these variations in volume in the human body, without physical communication with the outside.
- Access to the interior of the compliance chamber may be provided by means of a flexible tube 8, for example made of silicone polymer, connecting the interior of the compliance chamber has a chamber 9, for example made of polyoxymethylene, provided with a septum, for example made of silicone.
- a flexible tube 8 for example made of silicone polymer
- connecting the interior of the compliance chamber has a chamber 9, for example made of polyoxymethylene, provided with a septum, for example made of silicone.
- the ventricular cardiac assistance device according to the invention is completely autonomous thanks to one or more rechargeable batteries implanted in the body.
- the battery or batteries are housed in the electrical circuit 4.
- An autonomy of 24 hours minimum can be ensured thanks, on the one hand to the very principle of the counter-pulsation device which works in synergy with the heart, and requires little energy, on the other hand thanks to a good efficiency of the actuator coupled to high-performance batteries.
- an electrical energy of the order of 2 W is necessary for the operation of the device.
- a 24-hour autonomy requires Cd-Ni batteries weighing approximately 1.2 kg (mass energy 40 Wh / kg) or lithium-ion batteries weighing approximately 0 , 8 kg (mass energy 60 Wh / kg), which is compatible with complete implantation.
- the device can also be provided with a remote power supply and remote control system.
- This system ensures the recharging of the batteries implanted preferentially during the patient's rest periods, as well as the data transmission and the remote control of the device.
- the techniques of data transmission by induction or infrared are well known and have been successfully tested in animals.
- Such a system is shown in Figure 1. It includes an organ 40 located just under the skin of the patient and performing two roles vis-à-vis an external device 41.
- the organ 40 connected to the circuit electric 4 by the electric cord 42, can be receiver of an electromagnetic wave making it possible to charge by induction the batteries housed in the electric circuit 4.
- It can be transmitter of data provided in the form of electric signals by a device housed in the electric circuit 4 and transmitting information on the state of the cardiac assist device and on the state of the patient.
- the present invention provides the following advantages.
- the use of an intermediate fluid makes it possible to decouple the aortic sleeve from the actuator, therefore to better distribute the implanted volumes, and not to overstress the aorta mechanically. It provides high reliability because there are no moving mechanical parts, so no risk of wear, seizure, etc.
- the implantation does not require total extra-corporeal circulation, nor an incision in the apex, operations always disabling for the native heart.
- the device is intrinsically safe, a failure of the device causing no risk of blood clotting and thromboembolism, nor any reduction in blood flow ensured by the natural heart.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Mechanical Engineering (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Computer Networks & Wireless Communication (AREA)
- External Artificial Organs (AREA)
Abstract
L'invention concerne un dispositif d'assistance cardiaque ventriculaire à contre-pulsation, comprenant les éléments implantés suivants: un manchon aortique (1) lacé sur l'aorte descendante (10) et apte à réaliser une action de contre-pulsation sur le sang circulant dans l'aorte sous l'effet d'un fluide intermédiaire pénétrant dans le manchon, un actionneur électro-hydraulique (2) exerçant son action sur le fluide intermédiaire pour réaliser ladite action de contre-pulsation, une chambre de compliance (3) permettant d'accommoder la variation de volume du fluide intermédiaire au cours du fonctionnement de l'actionneur (2), des moyens d'alimentation électrique pour alimenter l'actionneur électro-hydraulique (2).
Description
DISPOSITIF D'ASSISTANCE CARDIAQUE VENTRICULAIRE A
CONTRE-PULSATION
Domaine technique
La présente invention concerne un dispositif d'assistance cardiaque ventriculaire à contre-pulsation. Ce dispositif permet d'agir comme système de stockage et de génération d'énergie hydraulique pulsative. Il est conçu pour être utilisé comme composant d'un appareil autonome d'assistance cardiaque fonctionnant en contre-pulsation.
Etat de la technique antérieure
Les dispositifs d'assistance cardiaque actuellement utilisés, tels que le système NOVACOR® NP 100 de la société BAXTER et le HEARTMATE® IP de la société TCI utilisent une pompe cardiaque comprenant un actionneur et une chambre souple ou poche. La chambre souple se remplit ou se vide périodiquement de sang sous l'action de l' actionneur. Cet actionneur est soit un électro-aimant, soit un moteur électrique avec transformation, au moyen d'une came, du mouvement circulaire fourni par le moteur électrique en mouvement linéaire. L'action mécanique se fait sur la poche (en polyuréthanne) placée en dérivation sur le ventricule gauche du patient. Des valves, permettant une circulation unidirectionnelle du sang, sont placées à l'entrée et à la sortie de la poche.
Ces dispositifs posent un certain nombre de problèmes. Leur fonctionnement, en parallèle avec le coeur natif, entraîne un fonctionnement non synergique de celui-ci avec pour conséquence, dans la plupart des
cas, une dégradation des fonctions du coeur. Le dispositif d'assistance doit donc suppléer en totalité au ventricule gauche du patient ce qui, associé à un rendement moyen des actionneurs, implique une puissance électrique élevée (de l'ordre de 25 ) . Il en résulte que l'alimentation électrique nécessaire pour assurer une autonomie d'une journée doit être fournie par des batteries relativement volumineuses, non implantables dans le corps humain. Ces batteries sont extérieures au corps. Elles sont portées en bandoulière ou à la ceinture, la liaison électrique avec le dispositif implanté se faisant par un câble transcutané.
Ces dispositifs causent aussi des micro ou macro-thromboembolismes qui sont dus notamment à la grande surface d'échange synthétique et à la conception hydraulique induisant des zones de turbulence ou de stase. Les actionneurs et les vannes induisent un bruit important, entraînant une gêne pour le patient et son entourage. La sécurité de ces dispositifs est sujette à caution. Une déchirure de la poche peut entraîner une hémorragie ou une embolie gazeuse. Une panne quelconque peut avoir des conséquences fatales en quelques secondes car le coeur natif ne travaille plus.
La mise en place d'un tel dispositif nécessite une circulation extracorporelle totale ainsi qu'une incision de l'apex du coeur pour la pose d'une canule. Ces opérations sont toujours invalidantes pour le coeur natif.
On connaît également des projets de dispositifs utilisant des muscles squelettiques tels que le latissimus dorsi en tant qu' actionneur. Le muscle peut être enroulé autour de l'aorte
(aortomyoplastie) ou du coeur (cardiomyoplastie) . Il peut également actionner indirectement une poche à sang à l'aide d'une transformation mécanique ou hydraulique.
Le muscle est dans ce cas actionné périodiquement à l'aide d'un appareil de type stimulateur de manière à exercer une action mécanique sur le système cardio- vasculaire. Ces dispositifs présentent un certain nombre d'inconvénients. Leur mise en place nécessite une opération chirurgicale lourde et invalidante pour un patient déjà affaibli. La transformation physiologique du muscle pour le rendre apte à un fonctionnement cyclique rapide nécessite un apprentissage de plusieurs semaines, ce qui fait que le dispositif d'assistance cardiaque n'est pas opérationnel immédiatement après l'opération. Deux opérations sous anesthésie générale sont nécessaires pour mettre en place définitivement le système. A terme, des problèmes de fatigue du muscle peuvent apparaître. Enfin, l'efficacité du système du point de vue de la mortalité à long terme est controversée.
Il a également été proposé, en particulier dans le brevet US-A-5 290 227, de placer une pompe centrifuge en série sur l'aorte montante et fonctionnant en phase avec le coeur natif. Le fonctionnement de la pompe dans cette partie de l'aorte permet de bien alimenter le cerveau et le haut du corps dont les ramifications aboutissent à la crosse aortique. Cependant, la mise en place de la pompe centrifuge nécessite une circulation extra-corporelle totale, toujours invalidante. Les artères coronaires gauche et droite étant situées immédiatement en sortie du coeur après la valve aortique, et donc en amont de la turbine d'assistance, le fonctionnement en systole de la pompe centrifuge provoque une diminution de la pression coronaire et donc un déficit coronaire gauche et surtout droit.
On connaît étalement des pompes centrifuges placées en dérivation sur le ventricule gauche. Ces
dispositifs permettent potentiellement une meilleure fiabilité du fait de l'absence de diaphragme ou de sac en matériau polymère dont la tenue dans le temps, avec des sollicitations répétées, est toujours problématique. De plus, ils permettent également de s'affranchir du délicat problème constitué par la compensation en pression résultant des variations de volume des poches. Néanmoins, de sérieux problèmes subsistent concernant : la fiabilité des roulements ou des paliers, des problèmes de thrombus sur les paliers, des problèmes de bruit, la nécessité d'une circulation extra-corporelle pour la mise en place de ces dispositifs. En outre, une panne de la pompe peut entraîner un fonctionnement en circuit fermé du coeur car il n'y a pas de valve. De plus, il y a risque de coagulation dans la branche en dérivation.
On connaît par ailleurs des dispositifs d'assistance cardiaque fonctionnant en contre-pulsation. Les pompes à ballonnet intra-aortique (IABP) sont utilisées cliniquement depuis les années i960 en récupération de choc cardiaque. Le ballonnet est inséré dans l'aorte du patient, généralement par l'artère fémorale. Une console extérieure permet de gonfler et de dégonfler le ballonnet, avec de l'hélium, en synchronisme avec le coeur. Le ballonnet est gonflé en diastole et dégonflé en systole. Le dégonflage du ballonnet diminue la post-charge du coeur qui, de ce fait, éjecte plus de sang. Le gonflage du ballonnet en diastole remonte la pression aortique et force le sang dans le circuit artériel. Néanmoins, les IABP ne sont pas adaptés à une assistance à long terme pour au moins deux raisons. D'une part, le ballonnet n'y résisterait pas d'un point de vue mécanique. D'autre part, le fonctionnement nécessite une console et un stockage de gaz externe peu compatible avec une vie normale. De
plus, le passage percutané des tubulures pneumatiques constitue une source d'infection importante.
On peut aussi utiliser l'aortomyoplastie pour exercer l'action de contre-pulsation, en enroulant un muscle squelettique (généralement le latissimus dorsi) autour de l'aorte. Ce procédé présente les inconvénients mentionnés plus haut quant à l'utilisation des muscles squelettiques. De plus, on peut craindre une lésion de la paroi aortique à cause des compressions répétées de l'aorte.
L'article de A. KANTRO ITZ et al. intitulé "A Mechanical Auxiliary Ventricle. Histologie Responses to Long-term, Intermittent Pumping in Calves", paru dans la revue Trans. Am. Soc. Artif. Intern. Organs, Vol. 41, pages M340-M345, 1995, décrit un projet expérimenté chez l'animal. Un ballon extra-aortique est mis en action selon le même principe que l'IABP. Ce système présente toujours l'inconvénient de nécessiter une source d'énergie pneumatique portable, mais extérieure.
D'autres projets, utilisant le principe de la contre-pulsation, ont été divulgués. Ils sont décrits dans les documents WO 93/05827, EP-A-0 216 042, WO 92/08500 et US-A-4 979 936. Dans US-A-4 938 766, R.K. JARVIK décrit des dispositifs implantés sur l'aorte et réalisant un stockage hydraulique passif avec transfert d'énergie hydraulique entre la phase systole et la phase diastole. Les systèmes de stockage décrits sont soit mécaniques (à l'aide d'une structure ressort), soit magnétiques (à l'aide d'aimants permanents). Ces dispositifs n'ont apparemment pas été testés pratiquement. De toutes façons, le gain réel de débit cardiaque devrait être limité, les dispositifs n'apportant aucune énergie au système cardiaque.
Exposé de l'invention
Pour remédier aux inconvénients de l'art antérieur mentionnés ci-dessus, on propose, selon la présente invention, un dispositif d'assistance cardiaque utilisant les éléments suivants :
- une prothèse aortique réalisant l'action de contre-pulsation sur l'aorte. Cette prothèse se présente sous la forme d'un manchon aortique placé sur l'aorte descendante et dans lequel circule le sang.
- un fluide intermédiaire extérieur au manchon, assurant la compression cyclique du manchon en phase diastolique et procurant l'effet de contre- pulsation. - un actionneur électro-hydraulique transformant de l'énergie électrique stockée en une énergie hydraulique délivrée au fluide intermédiaire.
- une chambre de compensation, encore appelée chambre de compliance, permettant d'accommoder la variation de volume de liquide intermédiaire.
- un dispositif de stockage d'énergie électrique permettant l'autonomie énergétique complète du dispositif d'assistance cardiaque.
- un système de transmission d'énergie et de données entre l'extérieur et l'intérieur du corps permettant la recharge des batteries et le télécontrôle du dispositif.
L'invention a donc pour objet un dispositif d'assistance cardiaque ventriculaire à contre-pulsation, comprenant les éléments implantés suivants :
- des moyens aptes à réaliser une action de contre-pulsation sur le sang circulant dans l'aorte sous l'effet d'un fluide intermédiaire,
- un actionneur électro-hydraulique exerçant son action sur le fluide intermédiaire pour réaliser ladite action de contre-pulsation,
- des moyens d'alimentation électrique pour alimenter l' actionneur électro-hydraulique, caractérisé en ce que :
- les moyens aptes à réaliser une action de contre-pulsation sont constitués d'un manchon aortique placé sur l'aorte descendante et dans lequel pénètre le fluide intermédiaire,
- le dispositif comprend en outre une chambre de compliance permettant d'accommoder la variation de volume du fluide intermédiaire au cours du fonctionnement de 1 'actionneur. Selon une première variante de réalisation, le manchon aortique est inséré sur l'aorte descendante. Dans ce cas, le manchon aortique peut comprendre une membrane tubulaire en matériau souple, se substituant à un tronçon de l'aorte, la membrane étant enfermée à l'intérieur d'une coque rigide scellée sur l'aorte de manière à définir une chambre annulaire autour de la membrane, le fluide intermédiaire pénétrant dans la chambre annulaire par un orifice prévu dans la coque.
Selon une deuxième variante de réalisation, le manchon aortique est rapporté sur l'aorte descendante. Dans ce cas, le manchon aortique peut comprendre un élément en matériau souple enserrant l'aorte et constituant un volume fermé avec un orifice pour l'introduction du fluide intermédiaire, le manchon comprenant également une coque rigide pour contenir ledit élément en matériau souple.
L' actionneur peut être une pompe centrifuge. Il peut aussi utiliser un ferrofluide comme élément moteur.
Les moyens d'alimentation électrique peuvent comprendre une ou plusieurs batteries rechargeables .
De préférence, le dispositif comprend en outre des moyens implantés permettant la réception d'un signal électromagnétique de recharge de ladite batterie.
Il peut aussi comprendre en outre des moyens implantés permettant une transmission de données par induction ou par rayonnement infrarouge avec un appareil externe.
La chambre de compliance peut comporter des moyens permettant d'introduire, alors que la chambre de compliance est déjà implantée, du gaz pour la charger ou la décharger.
Brève description des dessins
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- la figure 1 représente un dispositif d'assistance cardiaque ventriculaire à contre-pulsation selon la présente invention et représenté en position sur un patient,
- la figure 2 représente un manchon aortique selon la présente invention, inséré sur l'aorte descendante du patient,
- la figure 3 représente un manchon aortique selon la présente invention, rapporté sur l'aorte descendante du patient,
- la figure 4 est une vue en coupe selon l'axe IV-IV de la figure 3,
- la figure 5 représente un autre manchon aortique selon la présente invention, rapporté sur l'aorte descendante du patient.
Description détaillée de modes de réalisation de 1 ' invention
Le dispositif d'assistance cardiaque représenté à la figure 1 comprend un manchon aortique 1 placé sur l'aorte descendante 10 du patient, un actionneur électro-hydraulique 2, une chambre de compliance 3 et un circuit électrique 4 comprenant une ou plusieurs batteries d'alimentation. L' actionneur électro-hydraulique 2 est en communication de fluide avec le manchon aortique 1 grâce au conduit souple 5. Il est également en communication de fluide avec la chambre de compliance 3 grâce au conduit souple 6. Le circuit électrique 4 alimente l' actionneur électro-hydraulique 2 grâce au cordon électrique 7. Tous ces éléments sont bien sûr réalisés dans des matériaux biocompatibles.
Le manchon aortique 1 est décrit plus en détail à la figure 2 qui est une vue partiellement. En coupe afin de montrer l'intérieur du manchon. Comme le montre la figure 2, ce manchon aortique se substitue à un tronçon de l'aorte. Il comprend une membrane 11 située entre deux extrémités tubulaires 12 et 13 destinées à être greffées sur des parties correspondantes de l'aorte. La membrane 11 est en matériau souple. Le manchon aortique 1 comprend aussi une coque rigide 14, de forme générale cylindrique, scellée de manière étanche sur les extrémités tubulaires 12 et 13. Entre la coque rigide 14 et l'ensemble constitué par la membrane 11 et les extrémités tubulaires 12 et 13 existe donc un espace
annulaire allongé 15. Le conduit souple 5 (voir la figure 1) aboutit dans cet espace annulaire 15.
Le manchon aortique réalise l'action de contre-pulsation sur le sang sous l'effet du fluide intermédiaire introduit dans l'espace annulaire 15 grâce au conduit souple 5. Sur la figure 2, la membrane 11 a été représentée en traits pleins pendant la phase systolique, c'est-à-dire pendant que le fluide intermédiaire reflue vers 1 ' actionneur. La membrane est figurée en traits mixtes pendant la phase diastolique, c'est-à-dire pendant que le fluide intermédiaire afflue vers l'espace annulaire 15.
Ce type de manchon (manchon prothétique) doit présenter une compliance plus faible que celle de l'aorte naturelle de manière à diminuer la post-charge du coeur et à augmenter son éjection, donc son débit. Par contre, la compliance ne doit pas non plus être nulle. Elle peut être typiquement de l'ordre de 1 à 3.108 Pa.m3. La compliance peut être réalisée à la source, c'est-à-dire au niveau du manchon prothétique, en donnant une certaine élasticité à celui-ci. Ceci peut être réalisé par exemple à l'aide de renforts métalliques surmoulés dans la paroi de la membrane 11 et formant ressort, tels que les renforts 16. La compliance peut aussi être reportée plus loin dans la chaîne d'actionnement, après le fluide intermédiaire, et intégrée au niveau de l' actionneur électro-hydraulique .
Un autre exemple de manchon aortique est décrit à la figure 3 dans une vue en perspective. Contrairement au manchon aortique décrit précédemment, ce manchon est rapporté sur la partie descendante de l'aorte 9 et non pas inséré dans l'aorte. Le manchon 20, représenté à la figure 3, comprend un élément 21 en matériau souple prenant ici la forme d'un fourreau
lorsqu'il est enroulé autour de l'aorte 10. Cet élément souple constitue un volume fermé dans lequel aboutit le conduit souple 5. Une coque rigide 22 enserre l'élément 21 pour que cet élément puisse agir directement sur l'aorte en fonction de la pression qu'exerce le fluide intermédiaire. Comme le montre la figure 4, la coque rigide 22 possède une articulation 23 et un fermoir 24 facilitant sa mise en place.
Un autre exemple de manchon aortique rapporté est représenté en vue partiellement en coupe sur la figure 5. Dans cet exemple, l'élément 31 en matériau souple prend la forme d'un serpentin lorsqu'il est enroulé autour de l'aorte 10. Cet élément souple constitue un volume fermé dans lequel aboutit le conduit souple 5. Une coque rigide 32, analogue à la coque 22 des figures 3 et 4, enserre l'élément 31 de manière que l'action du fluide intermédiaire s'exerce directement sur l'aorte.
Les manchons aortiques inséré et rapporté ne présentent pas les mêmes propriétés et leur utilisation se fera en fonction des conditions d'implantation. Par rapport à un manchon inséré, un manchon rapporté permet d'obtenir une hémo-compatibilité excellente puisqu'il n'y a pas de matériau synthétique en contact avec le sang. Son implantation est simplifiée puisqu'il est possible de l'installer, et éventuellement de le retirer sans léser l'aorte et les artères intercostales. De plus, aucune interruption du flux sanguin n'est nécessaire durant l'intervention. Par contre, on ne fait que remonter la pression diastolique sans pour autant augmenter la compliance artérielle globale, ce qui est moins favorable au niveau synergique pour le coeur et limite l'augmentation du débit sanguin. Enfin, il y a, à la
longue, un risque de léser par compression la paroi aortique.
Le fluide intermédiaire assure la compression vers l'intérieur du manchon aortique et donc du circuit artériel.
Le volume du circuit artériel est diminué en phase diastolique, et augmenté en phase systolique, assurant ainsi l'augmentation du débit sanguin par effet physiologique sur le coeur. Ce fluide intermédiaire est préférentiellement du sérum physiologique, ou un substitut du sang, tel que le DEXTRAN , de manière à ne pas créer de problème en cas de fuite de ce fluide à l'intérieur du corps ou dans le circuit artériel. L' actionneur électro-hydraulique 2 permet de réaliser l'apport d'énergie hydraulique au manchon aortique grâce au fluide intermédiaire. L' actionneur peut avantageusement utiliser des ferrofluides comme élément moteur. Cet actionneur peut aussi être constitué par une pompe centrifuge.
La chambre de compliance 3 (ou chambre de compensation) , représentée sur la figure 1, permet de compenser les variations de volume du fluide intermédiaire. Elle est remplie d'un gaz tel que de l'air, de l'argon, de l'azote, du SF6. Les variations de volume du fluide intermédiaire dans l' actionneur entraînent, suivant le type d' actionneur électro-hydraulique, des variations du volume de gaz présent dans l' actionneur. La chambre de compliance permet d'accommoder ces variations de volume dans le corps humain, sans communication physique avec l'extérieur.
Il peut être prévu un accès à l'intérieur de la chambre de compliance grâce à un tube souple 8, par exemple en polymère de silicone, reliant
l'intérieur de la chambre de compliance à une chambre 9, par exemple en polyoxyméthylène, pourvue d'un septum par exemple en silicone. On peut alors charger ou recharger en gaz, par voie transcutanée, la chambre de compliance.
Le dispositif d'assistance cardiaque ventriculaire selon l'invention est complètement autonome grâce à une ou plusieurs batteries rechargeables implantées dans le corps. La ou les batteries sont logées dans le circuit électrique 4.
Une autonomie de 24 heures minimum peut être assurée grâce, d'une part au principe même du dispositif en contre-pulsation qui fonctionne en synergie avec le coeur, et nécessite peu d'énergie, d'autre part grâce à un bon rendement de l' actionneur couplé à des batteries performantes. Typiquement, une énergie électrique de l'ordre de 2 W est nécessaire au fonctionnement du dispositif. Compte tenu des rendements, une autonomie de 24 heures nécessite des batteries au Cd-Ni d'un poids d'environ 1,2 kg (énergie massique 40 Wh/kg) ou des batteries lithium-ion d'un poids d'environ 0,8 kg (énergie massique 60 Wh/kg), ce qui est compatible avec une implantation complète.
Le dispositif peut aussi être pourvu d'un système de télé-alimentation et de télécontrôle. Ce système assure la recharge des batteries implantées préférentiellement durant les périodes de repos du patient, ainsi que la transmission de données et le télécontrôle du dispositif. Les techniques de transmission de données par induction ou par infrarouge sont bien connues et ont été expérimentées avec succès chez l'animal. Un tel système est représenté sur la figure 1. Il comprend un organe 40 situé juste sous la peau du patient et assurant deux rôles vis-à-vis d'un appareil externe 41. L'organe 40, relié au circuit
électrique 4 par le cordon électrique 42, peut être récepteur d'une onde électromagnétique permettant de charger par induction les batteries logées dans le circuit électrique 4. Il peut être émetteur de données fournies sous forme de signaux électriques par un dispositif logé dans le circuit électrique 4 et transmettant des informations sur l'état du dispositif d'assistance cardiaque et sur l'état du patient.
La présente invention procure les avantages suivants. L'utilisation d'un fluide intermédiaire permet de découpler le manchon aortique de 1' actionneur, donc de mieux répartir les volumes implantés, et de ne pas trop solliciter mécaniquement l'aorte. Elle procure une grande fiabilité du fait qu'il n'y a pas de pièces mécaniques mobiles, donc pas de risque d'usure, de grippages, etc. L'implantation ne nécessite pas de circulation extra-corporelle totale, ni d'incision dans l'apex, opérations toujours invalidantes pour le coeur natif. Le dispositif est intrinsèquement sûr, une panne du dispositif n'entraînant aucun risque de coagulation du sang et de thrombo-embolisme, ni aucune diminution du débit sanguin assurée par le coeur naturel. Une éventuelle déchirure du manchon aortique par fatigue n'entraînerait pas de conséquences fâcheuses, car le fluide extérieur au manchon est hémocompatible et assure une double barrière d' étancheité. De plus, la compensation de pression se faisant en interne, les risques de complications infectieuses dues au passage d'un tuyau percutané sont supprimées. La conception du dispositif en contre-pulsation permet un fonctionnement en synergie avec le coeur, ce qui n'est pas le cas de la plupart des dispositifs d'assistance actuels qui fonctionnent en dérivation complète du ventricule. On peut espérer plus de cas de récupération des fonctions
du coeur natif, parce que le coeur travaille dans de meilleures conditions, et que le dispositif favorise la perfusion coronaire. Dans ces conditions, le dispositif est conçu pour pouvoir être enlevé aisément. Les bruits de fonctionnement sont plus faibles que pour les dispositifs actuels, amenant une qualité de vie meilleure pour le patient et son entourage. Le patient bénéficie d'une meilleure qualité de vie du fait d'une implantation complète du dispositif d'assistance cardiaque, en particulier il n'a plus besoin de sacoches ou de ceinture externe pour y loger les batteries d'alimentation.
Claims
1. Dispositif d'assistance cardiaque ventriculaire à contre-pulsation, comprenant les éléments implantés suivants : - des moyens aptes à réaliser une action de contre-pulsation sur le sang circulant dans l'aorte sous l'effet d'un fluide intermédiaire,
- un actionneur électro-hydraulique (2) exerçant son action sur le fluide intermédiaire pour réaliser ladite action de contre-pulsation,
- des moyens d'alimentation électrique pour alimenter l'actionneur électro-hydraulique (2), caractérisé en ce que :
- les moyens aptes à réaliser une action de contre-pulsation sont constitués d'un manchon aortique
(1, 20, 30) placé sur l'aorte descendante (10) et dans lequel pénètre le fluide intermédiaire,
- le dispositif comprend en outre une chambre de compliance (3) permettant d'accommoder la variation de volume du fluide intermédiaire au cours du fonctionnement de l'actionneur (2).
2. Dispositif selon la revendication 1, caractérisé en ce que le manchon aortique (1) est inséré sur l'aorte descendante (10) .
3. Dispositif selon la revendication 2, caractérisé en ce que le manchon aortique (1) comprend une membrane tubulaire (11) en matériau souple, se substituant à un tronçon de l'aorte, la membrane étant enfermée à l'intérieur d'une coque rigide (14) scellée sur l'aorte de manière à définir une chambre annulaire (15) autour de la membrane (11), le fluide intermédiaire pénétrant dans la chambre annulaire par un orifice prévu dans la coque (14) .
4. Dispositif selon la revendication 1, caractérisé en ce que le manchon aortique (20,30) est rapporté sur l'aorte descendante (10) .
5. Dispositif selon la revendication 4, caractérisé en ce que le manchon aortique (20,30) comprend un élément en matériau souple (21,31) enserrant l'aorte et constituant un volume fermé avec un orifice pour l'introduction du fluide intermédiaire, le manchon comprenant également une coque rigide (22,32) pour contenir ledit élément en matériau souple.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'actionneur (2) est une pompe centrifuge.
7. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'actionneur (2) utilise un ferrofluide comme élément moteur.
8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les moyens d'alimentation électrique comprennent au moins une batterie rechargeable.
9. Dispositif selon la revendication 8, caractérisé en ce qu'il comprend en outre des moyens implantés (40) permettant la réception d'un signal électromagnétique de recharge de ladite batterie.
10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend en outre des moyens implantés (40) permettant une transmission de données par induction ou par rayonnement infrarouge avec un appareil externe (41) .
11. Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la chambre de compliance comporte des moyens (8,9) permettant d'introduire, alors que la chambre de compliance est déjà implantée, du gaz pour la charger ou la recharger.
12. Dispositif selon la revendication 3, caractérisé en ce que ladite membrane (11) est pourvue de renforts flexibles (16) .
13. Dispositif selon la revendication 5, caractérisé en ce que l'élément en matériau souple (31) du manchon aortique est susceptible d'être enroulé autour de l'aorte (10) à la façon d'un serpentin.
14. Dispositif selon la revendication 5, caractérisé en ce que l'élément en matériau souple (21) du manchon aortique est susceptible d'être enroulé autour de l'aorte (10) à la façon d'un fourreau.
15. Dispositif selon l'une quelconque des revendications 5, 13 et 14, caractérisé en ce que la coque rigide (22,32) comprend une articulation (23) et un moyen de fermeture (24) permettant de la disposer autour de l'élément en matériau souple (21,31) pour le contenir.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9709428A FR2766373B1 (fr) | 1997-07-24 | 1997-07-24 | Dispositif d'assistance cardiaque ventriculaire a contre-pulsation |
FR97/09428 | 1997-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999004833A1 true WO1999004833A1 (fr) | 1999-02-04 |
Family
ID=9509586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR1998/001631 WO1999004833A1 (fr) | 1997-07-24 | 1998-07-23 | Dispositif d'assistance cardiaque ventriculaire a contre-pulsation |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2766373B1 (fr) |
WO (1) | WO1999004833A1 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000076288A2 (fr) | 1999-06-10 | 2000-12-21 | Sunshine Heart Company Pty Ltd | Dispositifs, systemes et procedes d'assistance cardiaque |
US6450942B1 (en) | 1999-08-20 | 2002-09-17 | Cardiorest International Ltd. | Method for reducing heart loads in mammals |
WO2003011365A1 (fr) * | 2001-07-30 | 2003-02-13 | Sunshine Heart Company Pty Ltd | Moyen generant une pression de liquide |
WO2003028787A1 (fr) * | 2001-09-28 | 2003-04-10 | Sunshine Heart Company Pty Ltd | Methode pour une operation de pontage coronarien sur le coeur battant d'un patient |
AU764210B2 (en) * | 1999-06-10 | 2003-08-14 | Sunshine Heart Company Pty Ltd | Heart assist devices, systems and methods |
WO2002024254A3 (fr) * | 2000-09-23 | 2003-10-16 | Harefield Cardiac Ltd | Dispositif d'assistance a la circulation sanguine |
JP2006520209A (ja) * | 2002-11-15 | 2006-09-07 | サンシャイン・ハート・カンパニー・ピーティーワイ・リミテッド | 大動脈変形を利用した心臓補助装置 |
JP2007509653A (ja) * | 2003-10-31 | 2007-04-19 | サンシャイン・ハート・カンパニー・ピーティーワイ・リミテッド | 同期制御システム |
AU2006200168B2 (en) * | 1999-06-10 | 2008-08-14 | Sunshine Heart Company Pty Ltd | Heart assist devices, systems and methods |
US8425397B2 (en) | 2003-10-31 | 2013-04-23 | Sunshine Heart Company Pty Ltd | Percutaneous gas-line |
US8469873B2 (en) | 2003-10-30 | 2013-06-25 | Sunshine Heart Company Pty Ltd | Blood vessel wrap |
US8702583B2 (en) | 2003-11-11 | 2014-04-22 | Sunshine Heart Company Pty, Ltd. | Actuator for a heart assist device |
US8876850B1 (en) | 2014-06-19 | 2014-11-04 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US9017359B2 (en) | 2010-11-22 | 2015-04-28 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US9042979B2 (en) | 2010-04-02 | 2015-05-26 | Sunshine Heart Company Pty Limited | Combination heart assist systems, methods, and devices |
US9987153B2 (en) | 2010-06-08 | 2018-06-05 | The Regents Of The University Of Minnesota | Vascular elastance |
US10583292B2 (en) | 2016-10-18 | 2020-03-10 | Chf Solutions, Inc. | Electronic neuromodulatory emulation of extra- and intra-aortic balloon pump counter-pulsation systems and methods |
WO2020058538A3 (fr) * | 2018-09-21 | 2020-07-09 | Munoz Saiz Manuel | Coeur artificiel électromécanique |
US11141581B2 (en) | 2019-09-06 | 2021-10-12 | Aria Cv, Inc. | Diffusion and infusion resistant implantable devices for reducing pulsatile pressure |
US11331105B2 (en) | 2016-10-19 | 2022-05-17 | Aria Cv, Inc. | Diffusion resistant implantable devices for reducing pulsatile pressure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0718943D0 (en) * | 2007-09-28 | 2007-11-07 | Univ Nottingham | Mechanical support |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911898A (en) * | 1974-04-05 | 1975-10-14 | Jr Frank A Leachman | Heart assist method and device |
US4650485A (en) * | 1983-12-30 | 1987-03-17 | Berardino Della Sala | Total artificial heart |
US4979936A (en) * | 1987-04-28 | 1990-12-25 | Trustees Of The University Of Pennsylvania | Autologous biologic pump motor |
DE4020120A1 (de) * | 1990-06-25 | 1991-01-31 | Klaus Prof Dr Ing Affeld | Medizinische vorrichtung zur erzeugung eines alternierenden volumenstroms fuer den antrieb von implantierbaren blutpumpen |
WO1993005827A1 (fr) * | 1991-09-27 | 1993-04-01 | Medtronic, Inc. | Dispositif d'aide cardiaque implantable |
FR2731910A1 (fr) * | 1995-03-23 | 1996-09-27 | Commissariat Energie Atomique | Dispositif d'assistance circulatoire implantable de maniere permanente |
-
1997
- 1997-07-24 FR FR9709428A patent/FR2766373B1/fr not_active Expired - Fee Related
-
1998
- 1998-07-23 WO PCT/FR1998/001631 patent/WO1999004833A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911898A (en) * | 1974-04-05 | 1975-10-14 | Jr Frank A Leachman | Heart assist method and device |
US4650485A (en) * | 1983-12-30 | 1987-03-17 | Berardino Della Sala | Total artificial heart |
US4979936A (en) * | 1987-04-28 | 1990-12-25 | Trustees Of The University Of Pennsylvania | Autologous biologic pump motor |
DE4020120A1 (de) * | 1990-06-25 | 1991-01-31 | Klaus Prof Dr Ing Affeld | Medizinische vorrichtung zur erzeugung eines alternierenden volumenstroms fuer den antrieb von implantierbaren blutpumpen |
WO1993005827A1 (fr) * | 1991-09-27 | 1993-04-01 | Medtronic, Inc. | Dispositif d'aide cardiaque implantable |
FR2731910A1 (fr) * | 1995-03-23 | 1996-09-27 | Commissariat Energie Atomique | Dispositif d'assistance circulatoire implantable de maniere permanente |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7357771B2 (en) | 1999-06-10 | 2008-04-15 | Sunshine Heart Company Pty Limited | Heart assist devices, systems and methods |
WO2000076288A3 (fr) * | 1999-06-10 | 2001-05-25 | Sunshine Heart Co Pty Ltd | Dispositifs, systemes et procedes d'assistance cardiaque |
WO2000076288A2 (fr) | 1999-06-10 | 2000-12-21 | Sunshine Heart Company Pty Ltd | Dispositifs, systemes et procedes d'assistance cardiaque |
JP2008207018A (ja) * | 1999-06-10 | 2008-09-11 | Sunshine Heart Co Pty Ltd | 心臓補助デバイス |
EP2263713A3 (fr) * | 1999-06-10 | 2013-07-10 | Sunshine Heart Company Pty Ltd | Dispositifs, systèmes et procédés d'assistance cardiaque |
AU764210B2 (en) * | 1999-06-10 | 2003-08-14 | Sunshine Heart Company Pty Ltd | Heart assist devices, systems and methods |
AU2006200168B2 (en) * | 1999-06-10 | 2008-08-14 | Sunshine Heart Company Pty Ltd | Heart assist devices, systems and methods |
US6808484B1 (en) | 1999-06-10 | 2004-10-26 | Sunshine Heart Company Pty Ltd | Heart assist devices, systems and methods |
EP2263713A2 (fr) | 1999-06-10 | 2010-12-22 | Sunshine Heart Company Pty Ltd. | Dispositifs, systèmes et procédés d'assistance cardiaque |
US6832982B1 (en) | 1999-08-20 | 2004-12-21 | Coral Licensing International Ltd. | Method of treating a living organism to achieve a heart load reduction, and apparatus for carrying out the method |
US6450942B1 (en) | 1999-08-20 | 2002-09-17 | Cardiorest International Ltd. | Method for reducing heart loads in mammals |
WO2002024254A3 (fr) * | 2000-09-23 | 2003-10-16 | Harefield Cardiac Ltd | Dispositif d'assistance a la circulation sanguine |
US6984201B2 (en) | 2000-09-23 | 2006-01-10 | Harefield Cardiac Limited | Blood circulation assistance device |
US7306558B2 (en) | 2001-07-30 | 2007-12-11 | Sunshine Heart Company Pty Ltd. | Fluid pressure generating means |
WO2003011365A1 (fr) * | 2001-07-30 | 2003-02-13 | Sunshine Heart Company Pty Ltd | Moyen generant une pression de liquide |
US7740575B2 (en) | 2001-07-30 | 2010-06-22 | Sunshine Heart, Inc. | Fluid pressure generating means |
WO2003028787A1 (fr) * | 2001-09-28 | 2003-04-10 | Sunshine Heart Company Pty Ltd | Methode pour une operation de pontage coronarien sur le coeur battant d'un patient |
US7347811B2 (en) | 2002-11-15 | 2008-03-25 | Sunshine Heart Company Pty Ltd. | Heart assist device utilising aortic deformation |
JP2006520209A (ja) * | 2002-11-15 | 2006-09-07 | サンシャイン・ハート・カンパニー・ピーティーワイ・リミテッド | 大動脈変形を利用した心臓補助装置 |
US9555176B2 (en) | 2002-11-15 | 2017-01-31 | Sunshine Heart Company Pty, Ltd. | Implantable device utilizing arterial deformation |
US8469873B2 (en) | 2003-10-30 | 2013-06-25 | Sunshine Heart Company Pty Ltd | Blood vessel wrap |
US8425397B2 (en) | 2003-10-31 | 2013-04-23 | Sunshine Heart Company Pty Ltd | Percutaneous gas-line |
JP2007509653A (ja) * | 2003-10-31 | 2007-04-19 | サンシャイン・ハート・カンパニー・ピーティーワイ・リミテッド | 同期制御システム |
US9119908B2 (en) | 2003-10-31 | 2015-09-01 | Sunshine Heart Company Pty. Ltd. | Synchronization control system |
US9561375B2 (en) | 2003-10-31 | 2017-02-07 | Sunshine Heart Company Pty, Ltd. | Synchronization control system |
US8702583B2 (en) | 2003-11-11 | 2014-04-22 | Sunshine Heart Company Pty, Ltd. | Actuator for a heart assist device |
US9042979B2 (en) | 2010-04-02 | 2015-05-26 | Sunshine Heart Company Pty Limited | Combination heart assist systems, methods, and devices |
US11583420B2 (en) | 2010-06-08 | 2023-02-21 | Regents Of The University Of Minnesota | Vascular elastance |
US10617538B2 (en) | 2010-06-08 | 2020-04-14 | Regents Of The University Of Minnesota | Vascular elastance |
US9987153B2 (en) | 2010-06-08 | 2018-06-05 | The Regents Of The University Of Minnesota | Vascular elastance |
US9017359B2 (en) | 2010-11-22 | 2015-04-28 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US10702682B2 (en) | 2010-11-22 | 2020-07-07 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US11938291B2 (en) | 2010-11-22 | 2024-03-26 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US11406803B2 (en) | 2010-11-22 | 2022-08-09 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US10751519B2 (en) | 2010-11-22 | 2020-08-25 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US10350397B2 (en) | 2010-11-22 | 2019-07-16 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US9333328B2 (en) | 2010-11-22 | 2016-05-10 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US8876850B1 (en) | 2014-06-19 | 2014-11-04 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US10682448B2 (en) | 2014-06-19 | 2020-06-16 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US11992636B2 (en) | 2014-06-19 | 2024-05-28 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US9242082B2 (en) | 2014-06-19 | 2016-01-26 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US9610391B2 (en) | 2014-06-19 | 2017-04-04 | Aria Cv, Inc. | Systems comprising an implantable component for treating pulmonary hypertension |
US9039725B1 (en) | 2014-06-19 | 2015-05-26 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US9801989B2 (en) | 2014-06-19 | 2017-10-31 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US11511089B2 (en) | 2014-06-19 | 2022-11-29 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US10583292B2 (en) | 2016-10-18 | 2020-03-10 | Chf Solutions, Inc. | Electronic neuromodulatory emulation of extra- and intra-aortic balloon pump counter-pulsation systems and methods |
US11331105B2 (en) | 2016-10-19 | 2022-05-17 | Aria Cv, Inc. | Diffusion resistant implantable devices for reducing pulsatile pressure |
WO2020058538A3 (fr) * | 2018-09-21 | 2020-07-09 | Munoz Saiz Manuel | Coeur artificiel électromécanique |
US11833343B2 (en) | 2019-09-06 | 2023-12-05 | Aria Cv, Inc. | Diffusion and infusion resistant implantable devices for reducing pulsatile pressure |
US11141581B2 (en) | 2019-09-06 | 2021-10-12 | Aria Cv, Inc. | Diffusion and infusion resistant implantable devices for reducing pulsatile pressure |
Also Published As
Publication number | Publication date |
---|---|
FR2766373A1 (fr) | 1999-01-29 |
FR2766373B1 (fr) | 1999-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999004833A1 (fr) | Dispositif d'assistance cardiaque ventriculaire a contre-pulsation | |
EP0014130B1 (fr) | Prothèse cardiaque totale et dispositif de régulation de son débit sanguin | |
US10149934B2 (en) | Arterial closure device | |
FR2555056A1 (fr) | Prothese cardiaque totale comportant deux pompes decouplees associees en une unite fonctionnellement indissociable, et valves electrocommandees pour une telle prothese | |
US5139517A (en) | Orthotopic intraventricular heart pump | |
ES2377076T3 (es) | Sistema de asistencia para órganos | |
US4397049A (en) | Hydraulically actuated cardiac prosthesis with three-way ventricular valving | |
EP2016961B1 (fr) | Dispositif d'assistance cardiaque | |
EP0324669B1 (fr) | Prothèse cardiaque totalement implantable à membranes flottantes, à raccord rapide et à éléments sensibles amovibles | |
FR2773995A1 (fr) | Pompe a sang implantable et procede pour alimenter en sang le systeme circulatoire d'un patient | |
US20060155158A1 (en) | Percutaneously introduced blood pump and related methods | |
JPH09509595A (ja) | 往復ポンプ装置 | |
US4389737A (en) | Hydraulically actuated cardiac prosthesis with three-way ventricular valving | |
WO2019191851A1 (fr) | Système et procédé d'assistance à la circulation de fluide | |
WO1994026326A1 (fr) | Procede d'entrainement d'un muscle squelettique pour un c×ur biomecanique et c×ur biomecanique utilisant un tel muscle | |
FR2591489A1 (fr) | Prothese cardiaque totale comportant deux modules de pompage relies par une liaison fonctionnelle. | |
WO2022194981A1 (fr) | Dispositif d'assistance par compression cardiaque directe | |
FR2767874A1 (fr) | Actionneur pour exercer une pression de fluide, a faible consommation d'energie | |
US8372145B2 (en) | Implantable artificial ventricle having low energy requirement | |
FR2767565A1 (fr) | Actionneur a ferrofluide et son application a un dispositif d'assistance cardiaque | |
CA2261846A1 (fr) | Coeur bio-mecanique a contre-pulsion diastolique extra-aortique | |
JP7541762B2 (ja) | 心腔プロテーゼ、および、これに関連する心臓補助システム | |
WO1999004832A1 (fr) | Chambre de compliance implantable pour dispositif d'assistance cardiaque | |
FR2681789A1 (fr) | Appareil d'assistance cardio-circulatoire. | |
FR2731910A1 (fr) | Dispositif d'assistance circulatoire implantable de maniere permanente |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1999509436 Format of ref document f/p: F |