WO1999003869A2 - Verfahren zur herstellung von alkylglykosiden - Google Patents
Verfahren zur herstellung von alkylglykosiden Download PDFInfo
- Publication number
- WO1999003869A2 WO1999003869A2 PCT/EP1998/004283 EP9804283W WO9903869A2 WO 1999003869 A2 WO1999003869 A2 WO 1999003869A2 EP 9804283 W EP9804283 W EP 9804283W WO 9903869 A2 WO9903869 A2 WO 9903869A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carried out
- glucose
- alcohol
- microwave radiation
- water
- Prior art date
Links
- -1 alkyl glycosides Chemical class 0.000 title claims abstract description 23
- 229930182470 glycoside Natural products 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 31
- 230000005855 radiation Effects 0.000 claims abstract description 28
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 24
- 239000008103 glucose Substances 0.000 claims abstract description 24
- 238000002360 preparation method Methods 0.000 claims abstract description 14
- 238000006359 acetalization reaction Methods 0.000 claims description 27
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 26
- 229960001031 glucose Drugs 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 22
- 238000001035 drying Methods 0.000 claims description 19
- 239000006188 syrup Substances 0.000 claims description 6
- 235000020357 syrup Nutrition 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000003377 acid catalyst Substances 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 2
- 150000003138 primary alcohols Chemical class 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 21
- 235000001727 glucose Nutrition 0.000 abstract 3
- 150000002304 glucoses Chemical class 0.000 abstract 2
- 239000003054 catalyst Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 11
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 8
- JXNPEDYJTDQORS-HZJYTTRNSA-N (9Z,12Z)-octadecadien-1-ol Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCO JXNPEDYJTDQORS-HZJYTTRNSA-N 0.000 description 7
- JXNPEDYJTDQORS-UHFFFAOYSA-N linoleyl alcohol Natural products CCCCCC=CCC=CCCCCCCCCO JXNPEDYJTDQORS-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 6
- 238000004821 distillation Methods 0.000 description 6
- 150000002191 fatty alcohols Chemical class 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000006384 oligomerization reaction Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- WNWHHMBRJJOGFJ-UHFFFAOYSA-N 16-methylheptadecan-1-ol Chemical compound CC(C)CCCCCCCCCCCCCCCO WNWHHMBRJJOGFJ-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- CFOQKXQWGLAKSK-KTKRTIGZSA-N (13Z)-docosen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCCO CFOQKXQWGLAKSK-KTKRTIGZSA-N 0.000 description 1
- SPFMQWBKVUQXJV-BTVCFUMJSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;hydrate Chemical class O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O SPFMQWBKVUQXJV-BTVCFUMJSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 1
- CFOQKXQWGLAKSK-UHFFFAOYSA-N 13-docosen-1-ol Natural products CCCCCCCCC=CCCCCCCCCCCCCO CFOQKXQWGLAKSK-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 239000011552 falling film Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000002951 idosyl group Chemical class C1([C@@H](O)[C@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- ALSTYHKOOCGGFT-MDZDMXLPSA-N oleyl alcohol Chemical compound CCCCCCCC\C=C\CCCCCCCCO ALSTYHKOOCGGFT-MDZDMXLPSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/126—Microwaves
Definitions
- the invention relates to the production of alkyl glycosides by acetalization of glycoses with alcohols under microwave radiation and to a process for the production of dried glycoses from water-containing glycose preparations under microwave radiation.
- Alkyl glycosides are nonionic surfactants, which are becoming increasingly important due to their excellent detergent properties and high ecotoxicological compatibility. They are usually prepared from glycoses and fatty alcohols, which are acetalized in the presence of acidic catalysts. The catalyst is then neutralized with a base. In order to shift the reaction equilibrium to the side of the products, the water of reaction which forms is distilled off. To avoid the polymerization of the glycoses, the fatty alcohol is used in a large excess. The acetalization is therefore usually followed by a step in which the unreacted alcohol is removed by distillation.
- the task could be solved if the acetalization reaction is carried out under microwave radiation.
- the present invention therefore relates to a process for the preparation of alkyl glycosides by acetalization reaction of aliphatic alcohols with glycoses in the presence of an acidic catalyst, characterized in that the acetalization reaction is carried out under microwave radiation.
- alkyl glycosides means reaction products of glycoses such as glucose, fructose, mannose, galactose, talose, gulose, allose, old rose, idose, arabinose, xylose, lyose and ribose with aliphatic primary alcohols, the alcohol being more than an acetal bond is bound to the glycose and the glycose can in turn be linked to one another by glycosidic linkage.
- the number of linked glycoses is characterized by the so-called degree of oligomerization and is within the scope of the invention at values between 1 and 10, preferably between 1 and 3 and in particular between 1.1 and 1.5.
- the degree of oligomerization is a quantity to be determined analytically, which can also assume fractional numerical values.
- the glycoses in particular glucose
- the aliphatic alcohols preferably with aliphatic primary alcohols having 6 to 22 carbon atoms.
- suitable alcohols are capronic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol, linoleyl alcohol.
- fatty alcohols with 12 to 18 carbon atoms such as coconut, palm, palm kernel or tallow fatty alcohol are preferred.
- Glucose is preferably used as glycose in the process according to the invention.
- Glucose is available on the market as an anhydrous, finely divided powder, as a glucose monohydrate with one mole of crystal water and as a glucose syrup.
- the glucose syrup is a syrup-like glucose / water mixture with an active substance content of glucose which varies between 70 and 97% by weight. All of these forms of glucose can be used in the process according to the invention. If water-containing glucose products are involved, it is preferred to dry them with the acid catalyst before bringing them into contact and to convert them into the anhydrous form. Drying can be carried out, for example, by thermal treatment, but dark-colored decomposition products often occur.
- Another object of the present invention therefore relates to a process for the preparation of dried glycoses, in particular glucose, by drying water-containing glycose preparations, characterized in that the water-containing glycose preparations are first suspended in aliphatic alcohols and then dried under microwave radiation.
- the already mentioned glucose monohydrates and glucose syrups are suitable as water-containing glycose preparations, in particular glucose preparations.
- Suitable aliphatic alcohols are the alcohols already mentioned in connection with the acetalization, in particular those which are liquid at room temperature (about 20 to 25 ° C.).
- the water-containing glycose preparations are suspended in the alcohols in a weight ratio of 1: 2 to 1:10, in particular 1: 2.5 to 1: 4.5.
- the suspension can be carried out in the usual way, for example by means of a stirrer or by means of ultrasound.
- the suspensions obtained are then subjected to microwave radiation, preferably the microwave radiation is carried out with a high-frequency power of 5 to 100 Wh / kg, preferably 10 to 50 Wh / kg.
- the high-frequency power is given in watt-hours (Wh) per kilogram batch.
- the drying is particularly advantageously carried out at temperatures below the melting point of the glycoses, in particular below the melting point of glucose, particularly preferably at temperatures from 30 to 80 ° C. It has proven to be useful if the drying is carried out in vacuo, preferably at 10 to 50 mbar.
- the water is preferably continuously removed by distillation, the drying being considered complete when no further water separates.
- the amount of water separated can be determined, for example, by freezing the collected water in a cold trap. After drying has ended, the excess alcohol is generally distilled off in a gentle manner known per se.
- the dried glycoses generally have residual water contents below 5, preferably below 3% by weight.
- drying of the water-containing glycose preparations can also be combined with the usual thermal drying.
- drying is first carried out thermally in the customary manner and, to remove the remaining amounts of water, the drying described above is used under microwave radiation.
- the glycoses dried in the manner according to the invention or in the customary manner can be used for the acetalization according to the invention under microwave radiation.
- the preferably dried glycoses are reacted with the alcohols already described in a molar ratio of 1: 2 to 1:10, preferably 1: 3 to 1: 6.
- the acetalization takes place after addition of the acidic catalysts.
- All acidic compounds, including the so-called Lewis acids are generally suitable as catalysts.
- Sulfuric acid, phosphoric acid, aliphatic and / or aromatic sulfonic acids, in particular p-toluenesulfonic acid, and the sulfonic acid ion exchange resins are particularly suitable.
- the quantities of acidic catalysts used correspond the usual amounts and are preferably in the range from 0.001 to 1% by weight, based on the total batch.
- the acetalization reaction of the glycose with the alcohol in the presence of the catalyst can be carried out in a variety of ways.
- a partial amount of the alcohol is initially charged with the catalyst and a suspension of the glycose in the remaining amount of alcohol is gradually added.
- a suspension of the glycose in a partial amount of the alcohol is introduced and about one third of the required amount of catalyst, suspended in a part of the alcohol, is added. The rest of the required amount of catalyst is metered in later in portions.
- the acetalization is carried out under microwave radiation, preferably under microwave radiation with a high-frequency power of 10 to 200 Wh / kg, in particular of 20 to 90 Wh / kg.
- the microwave radiation is preferably carried out unpulsed.
- the acetalization is favored by heating the reaction mixture to temperatures from 70 to 140, preferably from 100 to 120 ° C.
- the water of reaction formed is preferably continuously distilled off. To ensure this, a vacuum of 10 to 50 mbar is preferably applied.
- the end of the reaction is considered reached when no further water of reaction separates out.
- the water can be collected, for example, by freezing it in a cold trap.
- the end of the reaction is usually reached after 2 to 3 hours and is therefore much faster than the usual production methods.
- the acetalization is preferably carried out batchwise.
- the microwave laboratory systems commonly used on the market for synthesis for example M Lavis 1000 from MLS, can be used for the microwave radiation.
- the catalyst can be neutralized, as usual, by adding organic or inorganic basic compounds; if desired, a pH of at least 8, preferably 8 to 10, can be set in addition to the neutralization of the acid catalyst.
- the excess alcohol can also be distilled off in a conventional manner, for example by means of falling film evaporators or thin film evaporators, to residual amounts of preferably less than 5% by weight.
- Information on suitable basic catalysts and the gentle distillation of the excess alcohol can be found, for example, in European patent application EP-A-362 671.
- the drying of the glycoses is carried out under microwave irradiation and the acetalization in the presence of an acidic catalyst under microwave irradiation in a joint reaction.
- the water-containing glycose preparation is first suspended with the aliphatic alcohols in the manner described above and, as described, freed of water (dried) with microwave radiation.
- the water which has been freed from water is not freed from the excess alcohol, but instead is used immediately for the acetalization reaction which takes place in the manner described above in the presence of an acidic catalyst and under microwave radiation. It may be necessary to replenish some of the alcohol so that the molar ratios of glycose to alcohol required for the acetalization reaction are present.
- the same alcohol is expediently used for drying and for the acetalization reaction under microwave radiation.
- light-colored, solid alkyl glycosides are obtained in a gentle and rapid manner and have degrees of oligomerization from 1 to 10, preferably from 1 to 3 and in particular from 1.1 to 1.5.
- the distilled water was frozen out in a cold trap.
- Example 1 The device mentioned in Example 1 was used to control the temperature, the vacuum and the microwave radiation. After the reaction had ended, the mixture was neutralized with 0.093 g of a 50% by weight sodium hydroxide solution and with 0.1 g of magnesium oxide. The excess alcohol was removed by distillation. A dodecanol glucoside with a degree of oligomerization of 1.43 was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Saccharide Compounds (AREA)
Abstract
Die Erfindung betrifft die Herstellung von Alkylglykosiden durch Acetalisierung von Glycosen mit Alkoholen unter Mikrowelleneinstrahlung sowie ein Verfahren zur Herstellung von getrockneten Glykosen aus wasserhaltigen Glykosezubereitungen unter Mikrowelleneinstrahlung.
Description
"Verfahren zur Herstellung von Alkylglykosiden"
Die Erfindung betrifft die Herstellung von Alkylglykosiden durch Acetalisierung von Glyco- sen mit Alkoholen unter Mikrowelleneinstrahlung sowie ein Verfahren zur Herstellung von getrockneten Glykosen aus wasserhaltigen Glykosezubereitungen unter Mikrowelleneinstrahlung.
Alkylglykoside stellen nichtionische Tenside dar, die infolge ihrer ausgezeichneten Detergenzeigenschaften und hohen ökötoxikologischen Verträglichkeit zunehmend an Bedeutung gewinnen. Zu ihrer Herstellung geht man üblicherweise von den Glycosen und Fettalkoholen aus, die in Gegenwart saurer Katalysatoren acetalisiert werden. Anschließend wird der Katalysator mit einer Base neutralisiert. Um das Reaktionsgleichgewicht auf die Seite der Produkte zu verschieben, wird das sich bildende Reaktionswasser abdestilliert. Zur Vermeidung der Polymerisation der Glycosen wird der Fettalkohol in großem Überschuß eingesetzt. An die Acetalisierung schließt sich daher in der Regel ein Schritt an, in dem der nichtumgesetzte Alkohol destillativ entfernt wird.
Sowohl bei der Acetalisierung selber als auch bei der anschließenden destillativen Abtrennung des unumgesetzten Fettalkohls kann es zur unerwünschten Bildung von dunkel gefärbten Zersetzungsprodukten kommen. Aus diesem Grund versucht man über schonende Verfahrensfuhrung den Gehalt an unerwünschten dunklen Zersetzungsprodukten zu minimieren. Die bislang schonenden bekannten Verfahren bedingen aber auch stets relativ lange Reaktionszeiten, die für die Acetalisierung etwa 6 bis 8 Stunden beträgt. Es besteht daher ein Bedürfnis nach schonenden Verfahren zur Herstellung von Alkylglykosiden, die zum einen die dunklen Zersetzungsprodukte minimieren und trotzdem nur kurze Reaktionszeiten aufweisen.
Aufgabe der vorliegenden Erfindung war es daher, ein schonendes Verfahren zur direkten Herstellung von Alkylglykosiden bereit zu stellen, wobei die Farbqualität der erhalten Alkylglykoside verbessert ist, d.h. die dunklen Zersetzungsprodukte minimiert werden, und dies bei insgesamt kürzeren Reaktionszeiten.
Überraschenderweise konnte die Aufgabe gelöst werden, wenn die Acetalisierungsreaktion unter Mikrowelleneinstrahlung durchgeführt wird.
Ein Gegenstand der vorliegenden Erfindung betrifft daher ein Verfahren zur Herstellung von Alkylglykosiden durch Acetalisierungsreaktion von aliphatischen Alkoholen mit Glykosen in Gegenwart eines sauren Katalysators, dadurch gekennzeichnet, daß die Acetalisierungsreaktion unter Mikrowelleneinstrahlung durchgeführt wird.
Im Sinne der vorliegenden Erfindung werden unter dem Begriff der Alkylglykoside Reaktionsprodukte von Glykosen wie Glucose, Fructose, Mannose, Galactose, Talose, Gulose, Allose, Altrose, Idose, Arabinose, Xylose, Lyose und Ribose mit aliphatischen primären Alkoholen verstanden, wobei der Alkohol über eine Acetalbindung an den Glykosen gebunden und die Glykosen wiederum miteinander glykosidisch verknüpft sein können. Die Anzahl der miteinander verknüpften Glykosen wird durch den sogenannten Oligomerisierungsgrad charakterisiert und liegt im Rahmen der Erfindung bei Werten zwischen 1 und 10, vorzugsweise zwischen 1 und 3 und insbesondere zwischen 1,1 und 1,5. Bei dem Oligomerisierungsgrad handelt es sich um eine analytisch zu ermittelnde Größe, die auch gebrochenen Zahlenwerte annehmen kann.
Nach dem erfindungsgemäßen Verfahren werden die Glykosen, insbesondere die Glucose, mit den aliphatischen Alkoholen, vorzugsweise mit aliphatischen primären Alkoholen mit 6 bis 22 C- Atomen, umgesetzt. Beispiele für geeignete Alkohole sind Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol. Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie
deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen.
Bevorzugt sind technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen wie Kokos-, Palm-, Palmkern- oder Taigfettalkohol.
Als Glykose wird bei dem erfindungsgemäßen Verfahren vorzugsweise Glucose eingesetzt. Glucose ist am Markt als wasserfreies, feinteiliges Pulver, als Glucosemonohydrat mit einem Mol Kristallwasser und als Glucosesirup erhältlich. Bei dem Glucosesirup handelt es sich um sirupartige Glucose/Wasser-Mischungen mit einem Aktivsubstanzgehalt an Glucose, der zwischen 70 und 97 Gew.% schwanken an. Alle diese Formen der Glucose können in dem erfindungsgemäßen Verfahren eingesetzt werden. Sofern es sich um wasserhaltige Glucoseprodukte handelt, ist es aber bevorzugt, diese vor dem Intaktbringen mit dem sauren Katalysator zu trocknen und in die wasserfreie Form zu überfuhren. Die Trocknung kann beispielsweise durch thermische Behandlung erfolgen, wobei aber häufig dunkel verfärbte Zersetzungsprodukte entstehen.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft daher ein Verfahren zur Herstellung von getrockneten Glykosen, insbesondere Glucose, durch Trocknung wasserhaltiger Glykosezubereitungen dadurch gekennzeichnet, daß die wasserhaltigen Glykosezubereitungen zunächst in aliphatischen Alkohlen suspendiert und anschließend unter Mikrowelleneinstrahlung getrocknet werden.
Als wasserhaltige Glykosezubereitungen, insbesondere Glucosezubereitungen, sind die schon genannten Glucosemonohydrate und Glucosesirupe geeignet. Als aliphatische Alkohole sind die schon im Zusammenhang mit der Acetalisierung genannten Alkohole geeignet, insbesondere solche, die bei Raumtemperatur (etwa 20 bis 25 °C) flüssig sind. Für die Trocknung werden die wasserhaltigen Glykosezubereitungen in den Alkohlen in Gewichtsverhältnissen von 1 : 2 bis 1 : 10, insbesondere von 1 : 2,5 bis 1 : 4,5 suspendiert.
Die Suspendierung kann auf übliche Weise erfolgen, beispielsweise mittels Rührer oder mittels Ultraschall. Die erhaltenen Suspensionen werden anschließend einer Mikrowelleneinstrahlung unterworfen, vorzugsweise wird die Mikrowelleneinstrahlung mit einer Hochfrequenzleistung von 5 bis 100 Wh/kg, vorzugsweise von 10 bis 50 Wh/kg, durchgeführt. Die Hochfrequenzleistung ist in Wattstunden (Wh) pro Kilogramm Ansatz angegeben. Mit besonderem Vorteil wird die Trocknung bei Temperaturen unterhalb des Schmelzpunktes der Glykosen, insbesondere unterhalb des Schmelzpunktes der Glucose, besonders bevorzugt bei Temperaturen von 30 bis 80 °C durchgeführt. Es hat sich als zweckdienlich erwiesen, wenn die Trocknung im Vakuum durchgeführt wird, vorzugsweise bei 10 bis 50 mbar. Während des Trockenvorgangs wird vorzugsweise kontinuierlich das Wasser destillativ abgetrennt, wobei die Trocknung als beendet gilt, wenn sich kein weiteres Wasser abscheidet. Die Menge an abgeschiedenem Wasser kann beispielsweise bestimmt werden durch Ausfrieren des aufgefangenen Wassers in einer Kühlfalle. Nach Beendigung der Trocknung wird in der Regel der überschüssige Alkohol auf an sich bekannte schonende Weise abdestilliert. Die getrockneten Glykosen weisen in der Regel Rest- Wassergehalte unter 5, vorzugsweise unter 3 Gew.-% auf.
Falls gewünscht kann die Trocknung der wasserhaltigen Glykosezubereitungen auch kombiniert werden mit der üblichen thermischen Trocknung. In diesem Fall trocknet man zunächst auf übliche Weise thermisch und setzt zur Entfernung der Restmengen an Wasser die oben beschriebene Trocknung unter Mikrowelleneinstrahlung ein.
Die nach der erfindungsgemäßen Art oder auf übliche Weise getrockneten Glykosen können für die erfindungsgemäße Acetalisierung unter Mikrowelleneinstrahlung eingesetzt werden. Für die Acetalisierung unter Mikrowelleneinstrahlung werden die vorzugsweise getrockneten Glykosen mit den schon beschriebenen Alkoholen in einem Molverhältnis von 1 : 2 bis 1 : 10, vorzugsweise 1 : 3 bis 1 : 6 umgesetzt. Die Acetalisierung erfolgt nach Zugabe der sauren Katalysatoren. Als Katalysatoren sind generell alle sauren Verbindungen einschließlich der sogenannten Lewis-Säuren geeignet. Besonders geeignet sind Schwefelsäure, Phosphorsäure, aliphatische und/oder aromatische Sulfonsäuren, insbesondere p-Toluolsulfonsäure, und die sulfosauren Ionenaustauschharze. Die Einsatzmengen an sauren Katalysatoren entsprechen
den üblichen Mengen und liegen vorzugsweise im Bereich von 0,001 bisl Gew.% -bezogen auf Gesamtansatz.
Die Acetalisierungsreaktion der Glykose mit dem Alkohol in Gegenwart des Katalysators ist in vielfältiger Weise durchführbar. So ist es nach einer Variante des erfindungsgemäßen Verfahrens möglich, eine Mischung der Gesamtmengen aller Komponenten vorzulegen und durch Mikrowelleneinstrahlung, vorzugsweise zusammen mit dem Erwärmen, die Reaktion einzuleiten. Nach einer anderen Variante wird eine Teilmenge des Alkohols mit dem Katalysator vorgelegt und eine Suspension der Glykose in der restlichen Alkoholmenge nach und nach hinzugefügt. Nach der bevorzugten Variante wird eine Suspension der Glykose in einer Teilmenge des Alkohols vorgelegt und mit etwa einem Drittel der erforderlichen Katalysatormenge, suspendiert in einem Teil des Alkohols, versetzt. Der Rest der erforderlichen Katalysatormenge wird später portionsweise zudosiert.
Die Acetalisierung wird unter Mikrowelleneinstrahlung durchgeführt, vorzugsweise unter einer Mikrowelleneinstrahlung mit einer Hochfrequenzleistung von 10 bis 200 Wh/kg, insbesondere von 20 bis 90 Wh/kg. Die Mikrowelleneinstrahlung wird vorzugsweise ungepulst durchgeführt. Begünstigt wird die Acetalisierung durch Erwärmen des Reaktionsansatzes auf Temperaturen von 70 bis 140, vorzugsweise von 100 bis 120 °C. Das entstehende Reaktionswasser wird vorzugsweise ständig abdestilliert. Um dies zu gewährleisten, wird vorzugsweise ein Vakuum von 10 bis 50 mbar angelegt. Das Ende der Reaktion gilt dann als erreicht, wenn sich kein weiteres Reaktionswasser abscheidet. Um die Menge des Reaktionswassers zu bestimmen, kann das Wasser beispielsweise durch Ausfrieren in einer Kühlfalle aufgefangen werden. Das Ende der Reaktion wird in der Regel nach 2 bis 3 Stunden erreicht und ist damit viel schneller als die üblichen Herstellwege.
Die Acetalisierung erfolgt gemäß obigen Ausführungen vorzugsweise batch- Weise. Für die Mikrowelleneinstrahlung können die am Markt gängigen Mikrowellenlaborsysteme zur Synthese, z.B. M Lavis 1000 der Fa. MLS verwendet werden.
Nach Ende der Reaktion kann wie üblich der Katalysator durch Zugabe von organischen oder anorganischen basischen Verbindungen neutralisiert, falls gewünscht kann über die Neutralisation des sauren Katalysators hinaus ein pH- Wert von wenigstens 8, vorzugsweise 8 bis 10, eingestellt werden. Der überschüssige Alkohol kann ebenfalls auf an sich übliche schonende Weise beispielsweise mittels Fallfilmverdampfer oder Dünnschichtverdampfer auf Restmengen von vorzugsweise unter 5 Gew.% abdestilliert werden. Angaben zu geeigneten basischen Katalysatoren und der schonenden Abdestillation des Alkoholüberschusses sind beispielsweise der europäischen Patentanmeldung EP-A-362 671 zu entnehmen.
Nach einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird die Trocknung der Glykosen unter Mikrowelleneinstrahlung und die Acetalisierung in Anwesenheit eines sauren Katalysators unter Mikrowelleneinstrahlung in einer gemeinsamen Reaktion durchgeführt. Hierzu wird zunächst die wasserhaltige Glykosezubereitung auf oben beschriebene Weise mit den aliphatischen Alkohlen suspendiert und wie beschrieben unter Mikrowelleneinstrahlung von Wasser befreit (getrocknet). Die von Wasser befreite Glykose wird nun aber nicht von dem überschüssigem Alkoholen befreit, sondern gleich weiter für die Acetalisierungsreaktion eingesetzt, die auf oben beschriebene Weise in Anwesenheit eines sauren Katalysators und unter Mikrowelleneinstrahlung erfolgt. Gegebenenfalls ist es notwendig, etwas von dem Alkohol nachzudosieren, damit die für die Acetalisierungsreaktion notwendigen Molverhältnisse von Glykose zu Alkohol vorliegen. Zweckmäßigerweise nimmt man für die Trocknung und für die Acetalisierungsreaktion unter Mikrowelleneinstrahlung den gleichen Alkohol.
Nach dem erfindungsgemäßen Verfahren werden auf schonende und schnelle Weise hellfarbige, feste Alkylglykoside erhalten, die Oligomerisierungsgrade von 1 bis 10, vorzugsweise von 1 bis 3 und insbesondere von 1,1 bis 1,5 aufweisen.
Beispiele
Beispiel 1 Trocknung von Glucosesirup
62,5 g handelsüblicher Glucosesirup (70 Gew.% Glucose, 30 Gew.% Wasser) wurden mit 200 g Dodecanol bei 50°C in Gegenwart von Ultraschall suspendiert. Bei einem Vakuum von 30 mbar wurde langsam auf Temperaturen bis 70°C erwärmt unter Mikrowellenbestrahlung zwischen 10 und 50 Wh/kg. Die Erwärmung, Mirkowellenstrahlung und das Vakuum wurden gesteuert durch ein computergesteuertes Mikrowellenlaborsystem der Fa. MLS, ausgestattet mit interner und externer Temperaturkontrolle sowie Vakuumsensorik.
Das abdestillierte Wasser wurde in einer Kühlfalle ausgefroren. Die berechnete maximale
Wassermenge war nach 1,5 Stunden erhalten worden. Der überschüssige Alkohol wurde destillativ abgetrennt. Es wurde pulvrige Glucose mit einem Schmelzpunkt von 140°C erhalten.
Beispiel 2 Acetalisierung
45 g (0,25 MOL) handelsübliche getrocknete Glucose wurden mit 195 g (1,04 MOL) Dodecanol versetzt. Insgesamt wurden 0,58 g Dodecylbenzolsulfonsäure, gelöst in 15 g (0,08 Mol) Dodecanol, zugegeben. Der Ansatz wurde mittels Mikrowelleneinstrahlung auf 80°C erwärmt und 1/3 der genannten Katalysatorlösung zugegeben. Anschließend wurde ein Vakuum von 30mbar angelegt. Die Temperatur wurde langsam auf 100 bis 120 °C gesteigert und die restliche 2/3 Menge der Katalysatorlösung portionsweise zugegeben. Die Mikrowelleneinstrahlung betrug 20 bis 90 Wh/kg. Nach 2 Stunden war die maximal berechnete Wassermenge, die in einer Kühlfalle ausgefroren worden war, erreicht. Zur Steuerung der Temperatur, des Vakuums und der Mikrowelleneinstrahlung wurde das in Beispiel 1 genannte Gerät verwendet. Nach Beendigung der Reaktion wurde mit 0,093 g einer 50 gew.-%igen Natriumhydroxid-Lösung und mit 0,1 g Magnesiumoxid neutralisiert. Der überschüssige Alkohol wurde destillativ abgetrennt. Man erhielt ein Dodecanolglucosid mit einem Oligomerisierungsgrad von 1,43.
Claims
1. Verfahren zur direkten Herstellung von Alkylglykosiden durch Acetalisierungsreaktion von aliphatischen Alkoholen mit Glykosen in Gegenwart eines sauren Katalysators, dadurch gekennzeichnet, daß die Acetalisierungsreaktion unter Mikrowelleneinstrahlung durchgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Acetalisierungsreaktion mit primären Alkohlen mit 6 bis 22 C-Atomen durchgeführt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Acetalisierungsreaktion mit Glucose, vorzugsweise mit Glucosesirup, mit Glucosemonohydrat oder mit wasserfreiem Glucosepulver, durchgeführt wird.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Acetalisierungsreaktion unter Mikrowelleneinstrahlung mit einer Hochfrequenzleistung von 10 bis 200 Wh/kg, vorzugsweise 20 bis 90 Wh/kg, durchgeführt wird.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Acetalisierungsreaktion bei Temperaturen von 70 bis 140°C, vorzugsweise von 100 bis 120°C, durchgeführt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Acetalisierungsreaktion im Vakuum vorzugsweise bei 10 bis 50 mbar durchgeführt wird.
7. Verfahren zur Herstellung von getrockneten Glykosen, insbesondere Glucose, durch Trocknung wasserhaltiger Glykosezubereitungen, dadurch gekennzeichnet, daß die wasserhaltigen Glykosezubereitungen zunächst in aliphatischen Alkoholen suspendiert und anschließend unter Mikrowelleneinstrahlung getrocknet werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Trocknung unterhalb des Schmelzpunktes der Glykose, insbesondere unterhalb des Schmelzpunktes der Glucose, besonders bevorzugt bei Temperaturen von 30 bis 80°C durchgeführt wird.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Trocknung unter Mikrowelleneinstrahlung mit einer Hochfrequenzleistung von 5 bis 100 Wh/kg, vorzugsweise 10 bis 50 Wh/kg, durchgeführt wird.
10. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Trocknung im Vakuum vorzugsweise bei 10 bis 50 mbar, durchgeführt wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19730836.8 | 1997-07-18 | ||
DE1997130836 DE19730836A1 (de) | 1997-07-18 | 1997-07-18 | Verfahren zur Herstellung von Alkylglykosiden |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1999003869A2 true WO1999003869A2 (de) | 1999-01-28 |
WO1999003869A3 WO1999003869A3 (de) | 1999-04-08 |
Family
ID=7836112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1998/004283 WO1999003869A2 (de) | 1997-07-18 | 1998-07-10 | Verfahren zur herstellung von alkylglykosiden |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19730836A1 (de) |
WO (1) | WO1999003869A2 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006232811A (ja) * | 2005-01-31 | 2006-09-07 | Japan Science & Technology Agency | グリコシド化合物の製造方法 |
CN102250160A (zh) * | 2011-05-30 | 2011-11-23 | 浙江赞宇科技股份有限公司 | 一种用微波-超声波协同催化制备烷基糖苷的方法 |
CN102786560A (zh) * | 2011-05-19 | 2012-11-21 | 扬州晨化科技集团有限公司 | 制备月桂烷基葡萄糖苷的方法 |
CN102786557A (zh) * | 2011-05-19 | 2012-11-21 | 扬州晨化科技集团有限公司 | 制备十四烷基葡萄糖苷的方法 |
CN103232497A (zh) * | 2013-04-09 | 2013-08-07 | 浙江赞宇科技股份有限公司 | 一种烷基糖苷的制备方法 |
CN103319549A (zh) * | 2013-07-18 | 2013-09-25 | 扬州大学 | 一种烷基糖苷的合成方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10117208A1 (de) * | 2001-04-06 | 2002-10-10 | Wolff Walsrode Ag | Verfahren zur Herstellung von niederviskosen, wässrigen Celluloseetherlösungen |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4294624A (en) * | 1980-03-14 | 1981-10-13 | Veltman Preston Leonard | Drying co-mingled carbohydrate solution and recycled product by dielectric heating |
NL9400040A (nl) * | 1994-01-10 | 1995-08-01 | Suiker Unie | Werkwijze voor het bereiden van polysaccharidederivaten. |
DE4404633A1 (de) * | 1994-02-14 | 1995-08-17 | Henkel Kgaa | Verfahren zur Herstellung praktisch wasserfreier Zuckertenside |
-
1997
- 1997-07-18 DE DE1997130836 patent/DE19730836A1/de not_active Withdrawn
-
1998
- 1998-07-10 WO PCT/EP1998/004283 patent/WO1999003869A2/de active Application Filing
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006232811A (ja) * | 2005-01-31 | 2006-09-07 | Japan Science & Technology Agency | グリコシド化合物の製造方法 |
CN102786560A (zh) * | 2011-05-19 | 2012-11-21 | 扬州晨化科技集团有限公司 | 制备月桂烷基葡萄糖苷的方法 |
CN102786557A (zh) * | 2011-05-19 | 2012-11-21 | 扬州晨化科技集团有限公司 | 制备十四烷基葡萄糖苷的方法 |
CN102786560B (zh) * | 2011-05-19 | 2014-12-17 | 扬州晨化新材料股份有限公司 | 制备月桂烷基葡萄糖苷的方法 |
CN102250160A (zh) * | 2011-05-30 | 2011-11-23 | 浙江赞宇科技股份有限公司 | 一种用微波-超声波协同催化制备烷基糖苷的方法 |
CN102250160B (zh) * | 2011-05-30 | 2013-12-18 | 浙江赞宇科技股份有限公司 | 一种用微波-超声波协同催化制备烷基糖苷的方法 |
CN103232497A (zh) * | 2013-04-09 | 2013-08-07 | 浙江赞宇科技股份有限公司 | 一种烷基糖苷的制备方法 |
CN103232497B (zh) * | 2013-04-09 | 2015-11-18 | 浙江赞宇科技股份有限公司 | 一种烷基糖苷的制备方法 |
CN103319549A (zh) * | 2013-07-18 | 2013-09-25 | 扬州大学 | 一种烷基糖苷的合成方法 |
CN103319549B (zh) * | 2013-07-18 | 2015-08-19 | 扬州大学 | 一种烷基糖苷的合成方法 |
Also Published As
Publication number | Publication date |
---|---|
WO1999003869A3 (de) | 1999-04-08 |
DE19730836A1 (de) | 1999-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0301298B1 (de) | Verfahren zur Herstellung von Alkylglykosiden | |
EP0357969B1 (de) | Verfahren zur Herstellung von Alkylglucosidverbindungen aus Oligo-und/oder Polysacchariden | |
EP0362671A1 (de) | Verfahren zur direkten Herstellung von Alkylglykosiden | |
DE69612745T2 (de) | Verfahren zur herstellung von hydroxyalkylamiden | |
EP0635022B1 (de) | Verfahren zur herstellung von alkylglykosiden | |
EP0495174B1 (de) | Verfahren zur Herstellung von Alkylglycosiden und Alkylpolyglycosiden | |
EP0448799A2 (de) | Verfahren zur Herstellung von Kohlenhydrattensiden | |
DE10122255C1 (de) | Verfahren zur Herstellung von Tensidgemischen | |
EP0613482B1 (de) | Verfahren zur herstellung von alkyl- und/oder alkenyloligoglykosiden | |
EP0514627B1 (de) | Verfahren zur Herstellung von Alkylpolyglycosiden | |
WO1999003869A2 (de) | Verfahren zur herstellung von alkylglykosiden | |
EP0609274B1 (de) | Verfahren zur herstellung hellfarbiger alkyloligoglykosid-pasten | |
EP0249013B1 (de) | Verfahren zur Herstellung von Alkyloligoglycosiden | |
EP0252241B1 (de) | Verfahren zur Herstellung von Butyloligoglycosiden | |
WO1990006932A1 (de) | Verfahren zur herstellung von oberflächenaktiven alkylglucosiden | |
DE4104640A1 (de) | Verfahren zur herstellung hellfarbener alkylpolyglycoside | |
WO1991019723A1 (de) | Verfahren zur aufhellung verfärbter oberflächenaktiver alkylglykoside und aufbereitung des gebleichten gutes | |
WO1993010133A1 (de) | Verfahren zur herstellung von alkyloligoglucosiden mit vermindertem polyglucosegehalt | |
DE4431856A1 (de) | Verfahren zur Herstellung von Alkylpolyglycosiden | |
EP0617045A2 (de) | Verfahren zur kontinuierlichen Herstellung von Alkylglycosiden | |
DE4429134A1 (de) | Verfahren zur Herstellung von Alkyl- und/oder Alkenyloligoglykosiden | |
WO1993011142A1 (de) | Verfahren zur herstellung von niedrigalkyloligoglucosiden | |
DE4431858A1 (de) | Verfahren zur Herstellung von Alkylpolyglycosiden | |
EP0615974A1 (de) | Verfahren zur Herstellung von Alkylglycosiden | |
WO1998045307A1 (de) | Verfahren zur herstellung von alkyl- und/oder alkenyloligoglykosiden |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |