+

WO1999003783A1 - Poudre de pseudo-boehmite pour support catalytique et son procede de fabrication - Google Patents

Poudre de pseudo-boehmite pour support catalytique et son procede de fabrication Download PDF

Info

Publication number
WO1999003783A1
WO1999003783A1 PCT/JP1998/003174 JP9803174W WO9903783A1 WO 1999003783 A1 WO1999003783 A1 WO 1999003783A1 JP 9803174 W JP9803174 W JP 9803174W WO 9903783 A1 WO9903783 A1 WO 9903783A1
Authority
WO
WIPO (PCT)
Prior art keywords
pore
pseudo
pore volume
powder
catalyst carrier
Prior art date
Application number
PCT/JP1998/003174
Other languages
English (en)
French (fr)
Inventor
Takayuki Tsukada
Hiroyuki Nakamura
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to US09/254,658 priority Critical patent/US6174511B1/en
Priority to EP98932528A priority patent/EP0950638B1/en
Priority to JP50690699A priority patent/JP3788629B2/ja
Priority to DK98932528.7T priority patent/DK0950638T3/da
Publication of WO1999003783A1 publication Critical patent/WO1999003783A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention relates to a pseudo-boehmite raw material powder used for producing a catalyst carrier for hydrorefining, and a method for producing the same.
  • TECHNICAL FIELD The present invention relates to a pseudo-bottle-mite raw material powder for producing a catalyst carrier capable of suppressing the decrease, a method for producing the same, and a catalyst carrier for a hydrorefining catalyst produced from the powder. Background art
  • the catalyst used for hydrorefining is typically prepared by supporting an active metal of Groups VIa and VIII of the Periodic Table on a porous alumina support.
  • a porous alumina support needs to have a large surface area in order to uniformly disperse the active metal.
  • Naoka has a mesopore in the range of tens to hundreds of angstroms. It is desirable that the volume of the called pores be large.
  • the reactant in order for the reactant to reach the active surface inside the pores of the catalyst and for the reaction product to escape therefrom, it is required that the pores have a specific size. In order to satisfy these requirements, it is important to adjust not only the pore size but also the pore size distribution according to the reactants.
  • the catalyst activity can be maintained for a long time by selecting the pore size distribution of the catalyst carrier in consideration of the type of feedstock oil, reaction conditions, catalyst particle size, etc.
  • a method for adjusting the pore size distribution for example, fine powder of a water-insoluble organic polymer, a water-soluble organic solvent such as alcohol, carboxylic acid, and ketone, or a surfactant such as a higher alcohol or a higher alkylamine can be used.
  • a method of adding an additive to an alumina raw material powder is known. Additives are removed by forming a powdered refractory inorganic oxide or hydroxide, followed by drying and firing.
  • a method for adjusting the pore size distribution of a catalyst carrier by treating a molded, dried or calcined carrier or catalyst with hot water, an aqueous solution of an acid or a metal salt, steam, or the like. I have.
  • a method of adding a peptizing agent such as an acid or an alkali to a pseudo-boehmite powder, kneading the resulting mixture, forming it into a pellet, drying and firing is adopted.
  • a method in which firing conditions such as temperature are changed when firing the molded aggregated powder in order to adjust the pore diameter of the alumina carrier.
  • firing conditions such as temperature are changed when firing the molded aggregated powder.
  • changing the firing temperature and firing atmosphere alone will result in a specific pore size range. It is difficult to increase the pore volume of the pores to which it belongs.
  • a kneading process of pseudo-boehmite powder can be considered as a process capable of adjusting the pore size distribution in a process other than firing.
  • the size of the primary and secondary particles of the pseudo-boehmite powder and the peptizing property of the powder are important factors.
  • Some pseudo-boehmite powders have poor deflocculation properties, cannot be deflocculated with acids or alkalis, and become alumina supports with a broad pore size distribution.
  • Japanese Patent Publication No. 6-81174 describes that after adding an aluminum aluminate solution to an aqueous aluminum salt solution in the presence of hydroxycarboxylic acid to obtain a slurry, the aqueous aluminate solution and the aluminate solution are further added. It discloses a method for producing pseudo-boehmite in which an alkaline solution is added simultaneously to form an aluminum hydroxide precipitate in two stages.
  • the obtained pseudo-boehmite powder is excellent in peptizing property, and by using it as a raw material for a catalyst carrier, an alumina carrier having a sharp pore distribution can be produced.
  • a carrier having a sharp pore size distribution prepared from pseudopyramite powder having good peptizing properties has low water stability.
  • a new problem arises in that the strength is reduced in the step of impregnating the catalyst metal solution.
  • An object of the present invention is to provide a pore having a sharp pore size distribution such that the pore volume is 60 to 120 angstroms, particularly a specific pore within this range, and a large pore volume in a range. It is another object of the present invention to provide a pseudo-boehmite powder for producing an alumina catalyst carrier with a small decrease in strength when impregnated with a catalyst metal salt solution. Further, a further object of the present invention is to provide a hydrogenation suitable for hydrorefining treatment such as desulfurization and / or denitrification of a petroleum fraction having a specific boiling point range using such pseudo-boehmite powder as a raw material powder. An object of the present invention is to provide a catalyst carrier for purification. Disclosure of the invention
  • the present inventor examined the pore size distribution of the pseudo-boehmite powder, and found that the use of pseudo-boehmite powder having a large pore volume but a broad pore size distribution as the raw material powder gave a desirable result. It has been found that a catalyst support for hydrodesulfurization having a sharp pore distribution corresponding to the boiling point range of petroleum fractions can be easily manufactured. This discovery contradicts the conventional wisdom in the industry of using pseudo-boiling powder having a sharp pore size distribution to obtain a carrier with a sharp pore size distribution. It will be extremely useful as a technology for manufacturing catalyst carriers in the future.
  • a method for producing a pseudo-boehmite powder for a catalyst carrier by performing a neutralization reaction between an aluminum salt solution and an aluminum aluminate solution, wherein the reaction temperature in the neutralization reaction is reduced. 55-71 ° C, preferred ⁇ 57-70 ° C, pH 8.5-9.5, solution delivery time 6-28 minutes, preferred ⁇ 7-7-25 minutes.
  • the present invention provides a method for producing pseudo-boehmite powder for a catalyst carrier, which comprises precipitating underneath.
  • a large pore volume such that the pore volume is 0.8 to 1.8 cc / g in a pore diameter range of 20 to 600 ⁇ as measured by a nitrogen adsorption method is obtained.
  • Broad pores with a distribution of broad pores such that the maximum rate of change of pore volume with respect to pore diameter is 0.018 cc / 9 ⁇ years old or less. Flour can be easily manufactured. If the pseudo-boehmite powder having these characteristics i) and ii) is used as a raw material powder, the pores can be reduced to 60 to 120 angstroms, particularly in a specific pore diameter range within this range, for example, a pore diameter.
  • a catalyst carrier for hydrorefining which has a fine pore distribution with a large pore volume of pores belonging to 60 to 90 angstroms or a pore diameter of 85 to 120 angstroms, can be produced very easily.
  • the liquid transfer time is 6 to 28 minutes, more specifically, 12 to 25 minutes at about 57 ° C, 10 to 20 minutes at about 65 ° C, and 7 to 15 minutes at about 70 ° C.
  • the term “liquid sending time” means the time from the start of sending the aluminum salt solution and the aluminum aluminate solution to the reaction tank until the end of the solution sending.
  • the pseudo-mite powder which is a raw material for producing a catalyst carrier for hydrorefining, has a pore diameter of 20 to 600 nm as measured by a nitrogen adsorption method.
  • the pore volume of the pores over the mouth is in the range of 0.75 to 1.8 cc / g, and the maximum value of the rate of change of the pore volume with respect to the pore diameter is 0.018 cc / g ⁇ Angs Bok Rohm as c above the catalyst support for pseudo Bemai Bok powder wherein there is provided a or less, Ri by the the use of pseudo Bemai Bok powder of this nature as a starting powder, pore diameter 60 to 1 20 It is possible to extremely easily produce a catalyst carrier for hydrorefining, which has a pore distribution having a large pore volume in angstrom and has excellent water stability.
  • the “pore size distribution” in the present specification is measured by a nitrogen (N 2 ) adsorption method and determined by a BJH method.
  • the nitrogen adsorption method is a method of measuring the pore volume of a porous body by adsorbing nitrogen in the pores, and is a well-known method in the art.
  • the BJH method uses the nitrogen adsorption method to determine the amount of nitrogen adsorbed in the pores under the relative pressure of nitrogen applied when (liquid) nitrogen is adsorbed on or desorbed from the porous body. This is a method to find the adsorption isotherm or desorption isotherm, and to find the pore distribution etc. from this. This technique is also known in the art and is disclosed in detail, for example, by E. P. Barrett, G. Joyner, P. P. Halenda, Journal of the American Chemical Society, vol. 73 p. 373 (1951). If permitted by the legislation of the designated country specified in this international application, the disclosure of the relevant document shall be incorporated into the — part of the text.
  • the nitrogen adsorption volume at the pore diameter of the porous body determined at each relative pressure is calculated.
  • the pore diameter sampled within a predetermined pore diameter range that is, It is preferable that the values of the plurality of relative pressures are equally spaced and large.
  • sampling should be performed at eight or more points, preferably at substantially equal intervals, within the pore diameter range of 20 to 100 angstroms.
  • the pore diameter distribution particularly the rate of change of the pore volume with respect to the pore volume, can be determined relatively accurately.
  • the relative pressure is 0.9902, 09802, 09751,
  • the pore size distribution is determined by measurement on the detachment side. In the range of the relative pressure, the range of the pore diameter is measured in the range of 20 to 600 angstroms.
  • a catalyst carrier having a sharp pore size distribution suitable for a catalyst for hydrorefining can be produced.
  • an alumina catalyst carrier for hydrorefining produced using the pseudo-boehmite powder of the present invention.
  • This alumina catalyst carrier for hydrorefining is a fraction having a boiling point of 200 to 360 ° C in a petroleum fraction.
  • the volume average pore size is, for example, 60 to 120 angstroms, and the pore volume of pores having a pore size of 20 to 600 angstroms is 0.3 to 1. Occ / g. It is desirable that the pore volume of the pores at 90 ⁇ is 0.3 to 0.7 cc / g.
  • a petroleum fraction having a 50% distillation temperature of 450 ° C or higher for example, as a catalyst carrier suitable for desulfurization of atmospheric residual oil, for example, an average pore diameter of 60 to 1 20 Angstrom
  • the pore volume of pores of 0 to 600 angstroms or less is 0.3 to 1.0 cc / g, and the pore volume of pores having a pore diameter of 85 to 120 angstroms is 0.3 to 0.3. Desirably, it is 7 cc / g.
  • Fig. 1 shows that the pore diameter of pseudo-bright mites produced in Examples 1 to 3 is 20 to 600 angstrom, and the pore volume and the maximum value of the rate of change of the pore volume with respect to the pore diameter are neutralized. It is a table (Table 1) shown together with the reaction conditions.
  • FIG. 2 shows the pore volume and the rate of change of the pore volume in the pore diameter of 20 to 600 angstroms of the aggregates produced in Examples 4 to 6 and Reference Examples 1 to 4 with respect to the pore diameter.
  • FIG. 3 shows the pore volume of the pseudoboehmite produced in Examples 7 to 9 and Reference Examples 5 and 6 in the pore diameter of 20 to 600 angstroms and the maximum change rate of the pore volume with respect to the pore diameter. It is a table (Table 3) showing the values together with the neutralization reaction conditions, and shows the case where the reaction temperature is 65 ° C.
  • FIG. 4 shows the pore volume of pseudoboehmite produced in Examples 10 to 12 and Reference Examples 7 and 8, and the pore volume and the rate of change of the pore volume with respect to the pore diameter in the range of 20 to 600 angstroms.
  • FIG. 5 is a graph showing the pore volume and the maximum value of the rate of change of the pore volume with respect to the pore diameter in the pore diameter of 20 to 600 angstroms of the pseudo-boehmite produced in Reference Examples 9 to 12.
  • a table (Table 5) is shown together with the sum reaction conditions.
  • FIG. 6 shows the pore volume and pore diameter of the alumina carrier produced using the pseudoboehmite of Examples 1 to 3 in the pore diameter of 20 to 600 angstrom.
  • 7 is a table (Table 6) showing the test results of pore volume and water stability in Table 1.
  • FIG. 7 shows the pore volume and pore volume of the alumina carrier produced using the pseudoboehmite of Examples 4 to 6 and Reference Examples 1 to 4 at 20 to 600 ⁇ .
  • 8 is a table (Table 7) showing test results of pore volume and water stability in 60 to 90 angstroms.
  • FIG. 8 shows the pores of the alumina carrier produced using the pseudoboehmite of Examples 7 to 9 and Reference Examples 5 and 6 ⁇
  • the pore volume and pore diameter at 20 to 600 ⁇ . 9 is a table (Table 8) showing test results of pore volume and water stability at 90 angstroms.
  • FIG. 9 shows the pore volume and pore diameter of the alumina carrier produced using the pseudo-boils of Examples 10 to 12 and Reference Examples 7 and 8 in the range of 20 to 600 angstroms.
  • Table 9 shows the test results of pore volume and water stability in 60-90 angstrom.
  • FIG. 10 shows the pore volume and pore size of the alumina carrier manufactured using the aggregates of Reference Examples 9 to 12 in the pore diameter of 20 to 600 angstroms of 60 to 90 angstroms. Is a table (Table 10) showing the test results of pore volume and water stability in Table 1.
  • FIG. 11 is a graph showing the pore size distribution of the pseudo-boehmite powder obtained in Example 4 and Reference Examples 1 and 3.
  • Fig. 12 is a graph showing the evaluation of the properties of the alumina carrier obtained with respect to changes in the reaction temperature and the liquid sending time (precipitation generation time) when preparing pseudo-boehmite as a raw material. Best mode for implementing
  • the pseudo-boehmite powder of the present invention can be produced by a neutralization reaction between an aluminum salt solution and an alkali aluminate solution.
  • Various arbitrary aluminum salts such as aluminum sulfate, aluminum chloride, and aluminum nitrate can be used as the aluminum salt. Of these, aluminum sulfate and aluminum chloride are preferred because they are inexpensive.
  • the aluminum salts may be used alone or in combination of two or more.
  • any aluminum aluminate such as sodium aluminate and aluminate can be used. Since sodium aluminate is easily available and inexpensive, sodium aluminate can be used. preferable.
  • the alkali aluminate may be used alone or in combination of two or more kinds.
  • the conditions for the neutralization reaction that forms a precipitate are adjusted so that the temperature (reaction temperature) of the neutralization solution in the reaction tank is 55 to 71 ° C and the pH is 8.5 to 9.5. It is preferable. If the temperature of the neutralization solution is lower than 55 ° C, the precipitated particles are strongly aggregated, and the pore volume of the powder obtained through the aging and drying steps is not preferable. On the other hand, if the temperature of the solution in the reaction vessel exceeds 71 ° C., a vialite phase having a large particle diameter is formed, and the specific surface area is undesirably reduced.
  • the concentration of the reactant supplied to the neutralization precipitation tank is preferably adjusted so that the concentration (final concentration) of the formed solid (precipitate) is maintained in the range of 1 to 5 mol.
  • concentration (final concentration) of the formed solid (precipitate) is maintained in the range of 1 to 5 mol.
  • the liquid sending time is preferably from 6 to 28 minutes.
  • the pore volume of the obtained aggregated powder is less than 0.75 cc / g, and the pore volume of the obtained carrier is small.
  • the maximum value of the rate of change of the pore volume to the pore diameter determined by the BJH method exceeds 0.018 cc / g.
  • Undesirable sharp peaks are generated in the pore size distribution. More preferably, it is 7 to 25 minutes. More preferably, at about 57 ° C for about 12-25 minutes, at about 65 ° C for 10-20 minutes, about 70. In C, it takes 7 to 13 minutes. After formation of the precipitate, it is desirable to age the neutralization solution.
  • the crystallinity of the solid mate is improved.
  • the aging time is not particularly limited, but is suitably 2 hours or less. If the ripening time is too long, the aggregated mitite particles grow too much and the pore volume of the simulated aggregate is reduced. After the ripening is completed, the fake mites and liquid are filtered. Separate the body. After separation, water is used to wash and remove by-products such as sodium sulfate and sodium chloride adsorbed on the surface of the pseudo-boehmite particles, and then dried using a spray dryer or the like. Dry using.
  • the drying temperature is not particularly limited, but if the drying temperature is too high, the obtained pseudo-boehmite is not preferable because it undergoes a phase transition to iron alumina.
  • the pseudo-boehmite powder thus produced has a pore volume measured by a nitrogen adsorption method, for example, a pore volume of 20 to 600 angstroms. It is in the range of 75 to 1.8 cc / g, and the maximum value of the rate of change of the pore volume with respect to the diameter of the pore is not more than 0.018 cc / g ⁇ angstrom.
  • the volume average pore size of the alumina catalyst carrier is controlled within the range of 60 to 120 angstrom. It can be easily controlled, and an alumina catalyst carrier having a large (sharp) pore size distribution with a large pore volume in a specific range can be easily obtained. Furthermore, the alumina catalyst carrier can be easily impregnated with a catalyst metal salt solution. A decrease in strength can be suppressed.
  • the operation for producing an alumina catalyst carrier using the obtained pseudo-boehmite powder will be described below. The obtained pseudo-bright mites are kneaded using a whisk.
  • an acid or alcohol is added as a deflocculant, and then water is added to obtain a moldable water content and kneading is performed.
  • the acidic solution and the alkaline solution those having a capability of peptizing the alumina raw material powder are used.
  • the acidic solution for example, inorganic acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids such as acetic acid, citric acid, and oxalic acid can be used.
  • nitric acid and organic acids are preferable because they all evaporate and leave no residue in the subsequent calcination step.
  • ammonia, quaternary ammonium hydroxide such as tetrapropylammonium hydroxide, sodium hydroxide, sodium hydroxide, sodium hydroxide, sodium aluminate and the like can be used.
  • ammonia and quaternary ammonium hydroxide are: It is particularly preferred because it evaporates in a subsequent firing step.
  • a sharp pore distribution can be formed in a range of pore diameter of 60 to 120 angstroms of the catalyst carrier. For this reason, the inventors consider as follows.
  • pseudo-boehmite with insufficient peptizing properties as described in the prior art, and having a high peak near 40 angstrom is kneaded.
  • the peak near Angstrom remains intact, pores larger than 200 Angstroms are reduced, and another peak appears in the range of 60 to 120 Angstroms.
  • the kneaded material having such a pore size distribution is fired, it becomes a carrier having a bimodal or broad pore size distribution.
  • the pseudo-bobble mite powder of the present invention also reduces pores having a pore diameter of 200 angstroms or more, and a sharp peak appears in the range of 60 to 120 angstroms.
  • the peak near 40 ⁇ is originally low, only the peak in the range of 60 to 120 ⁇ produced by kneading exists as a main peak.
  • the kneaded pseudo-boehmite is generally formed into an appropriate size and shape by a molding machine.
  • the formed body is dried in a dryer at a temperature of, for example, 80 to 150 ° C. for several ten minutes to a whole day and night, and then, in a firing furnace, for example, at a temperature of 400 to 100 ° C.
  • a temperature of thus, an alumina catalyst carrier having a sharp pore size distribution having a large pore volume in a specific range of pores can be obtained.
  • Adjustment of the average pores of the alumina catalyst carrier can be arbitrarily controlled by the type and concentration of the deflocculant added during kneading or the kneading time. Examples of the method for producing pseudo-boehmite powder of the present invention will be described below, but the present invention is not limited thereto.
  • Example 1 After adding 75 liters of water to a neutralization settling tank with an internal volume of 150 liters, the mixture was heated to a water temperature of 57 ° C. Then, the neutralization precipitation tank and heated to 57 e C aluminate San'naboku Riu ⁇ solution of 1 M concentration, heated to approximately 1.8 rate Torr / min liquid feed liquid feed at a rate Then monitor 57 ° C 0 ⁇ A 5 M aqueous solution of aluminum sulfate was sent. The feed rate of the aluminum sulfate aqueous solution was finely adjusted so that the pH of the mixed solution was constant at 9.0.
  • Table 1 shows the obtained results.
  • Table 1 shows the maximum value of the rate of change dV / dD of the pore volume (V) with respect to the pore diameter (D) determined by the BJH method and the pore volume of the pores at a pore diameter of 20 to 600 angstroms. The values are shown together with the solution temperature and pH at the time of precipitation, and the precipitation time of the aqueous sodium aluminate solution and the aqueous aluminum sulfate solution. In the table, “precipitation generation time” refers to the time for sending the reaction solution.
  • Example 2 shows the maximum value of the rate of change dV / dD of the pore volume (V) with respect to the pore diameter (D) determined by the BJH method and the pore volume of the pores at a pore diameter of 20 to 600 angstroms. The values are shown together with the solution temperature and pH at the time of precipitation, and the precipitation time of the aqueous sodium aluminate solution
  • Pseudo-boehmite powder was obtained under the same conditions as in Example 1 except that the solution temperature during the reaction (precipitation generation) was adjusted to 65 ° C.
  • the pore volume of the obtained pseudo-boehmite powder is 20 to 600 ⁇ , and the maximum value of the rate of change dV / d D of the pore volume with respect to the pore diameter determined by the BJH method is shown in Table 1. Shown in 1.
  • Example 1 Example 1 was repeated except that the solution temperature during the reaction (precipitation generation) was adjusted to 70 ° C, and the solution sending speed was changed to 3.0 liters / minute to complete the solution sending in 10 minutes. Under the same conditions of pH 9.0 as above, a mitite powder was obtained. Table 1 shows the maximum value of the pore volume of the pores of the obtained pseudo-boehmite powder having a pore diameter of 20 to 600 angstroms and the rate of change of the pore volume with respect to the pore diameter determined by the BJH method. Examples 4 to 6 and Reference Examples 1 to 4
  • the solution temperature during the reaction was adjusted to 57 ° C, and the solution sending speed was changed to 0.8 to 6.0 liters / minute, and the solution sending times were 5 minutes (Reference Example 1) and 10 minutes, respectively.
  • Reference Example 2 15 minutes (Example 4), 20 minutes (Example 5), 25 minutes (Example 6), 30 minutes (Reference Example 3), 35 minutes (Reference Example 4) Except for the above, pseudo-boehmite powder was obtained under the same pH 9.0 conditions as in Example 1.
  • the total pore volume of pores having a pore diameter of 20 to 600 angstroms and the rate of change of the pore volume with respect to the pore diameter were determined by the BJH method.
  • Example 7 The solution temperature during the reaction was adjusted to 65 ° C, and the solution sending time was 5 minutes (Reference Example 5) and 10 minutes (implementation) so that the solution sending speed was 1.2 to 6.0 liters / minute.
  • Example 7) The same pH as in Example 1 except that the procedure was completed in 5 minutes: 15 minutes (Example 8), 20 minutes (Example 9), and 25 minutes (Reference Example 6) .9. Under the condition of 0, pseudo-boehmite powder was obtained. Pore size of pseudo-bobmite powder obtained at each precipitation time 20-600 years Maximum of the change rate of the pore volume of pores of pores and the pore volume determined by the BJH method with respect to the pore diameter. The values are shown in Table 3. Examples 10 to 12 and Reference Examples 7 to 8
  • the solution temperature during the reaction was adjusted to 70 ° C, and the solution sending time was 5 minutes (Example 7), 7 minutes (Example 10), 10 minutes (Example 11), 15 minutes (Example Example 12), except for changing the feed rate of the sodium aluminate aqueous solution (in the range of 1.5 to 6.0 liters / minute) so that the process can be completed in 5 types: 20 minutes (Reference Example 8).
  • the pH of the mixed solution was adjusted to be 9.0-constant, to obtain pseudo-bir-mite powder.
  • the pH of the mixed solution was adjusted in the same manner as in Example 1 except that the solution temperature during the reaction was adjusted to 53 ° C, and the solution sending speed was changed to 1.5 liter / minute to terminate the solution sending.
  • the pore volume of this aggregated powder is in the range of 20 to 600 angstrom and the BJH method is used.
  • Table 5 shows the maximum value of the change rate of the obtained pore volume with respect to the pore diameter.
  • Example 1 Except that the solution temperature during the reaction was adjusted to 72 ° C and the solution sending speed was changed to 3.0 liters / minute to terminate the solution sending, the same procedure as in Example 1 was repeated. Pseudo-boehmite powder was obtained by adjusting H to 9.0-constant. Table 5 shows the maximum values of the pore volume of the pseudoboehmite powder in the range of 20 to 600 angstroms and the rate of change of the pore volume with respect to the pore diameter determined by the BJH method. Reference Example 1 1 to 1 2
  • Example 7 to 9 and Reference Examples 5 and 6 when the solution sending time was 25 minutes or more, the pores The pore volume in the range of up to 600 angstroms is small, and the maximum value of the rate of change of the pore volume with respect to the pores becomes large (Reference Example 6). On the other hand, if the liquid sending time is 5 minutes or less, the powder becomes a powder having a small pore volume in the range of 20 to 600 angstroms in pore diameter (Reference Example 5). Also, as is clear from Tables 1 and 4, when the solution temperature was 70 ° C (Examples 10 to 12 and Reference Examples 7 and 8), the solution sending time was more than 20 minutes (Reference Example 8).
  • Pores The pore volume in the range of 20 to 600 angstroms is small, and the maximum value of the rate of change of the pore volume with respect to the pores is large. On the other hand, if the liquid sending time is 5 minutes or less (Reference Example 7), the powder will have a small pore volume in the range of 20 to 600 ⁇ .
  • the pore volume of the pores at a pore diameter of 20 to 600 angstroms is in the range of 0.75 to 1.Scc / g and the maximum value of dv / d D is 0.018 cc / g
  • Examples in which pseudo-bright mites of ⁇ or less were obtained are shown as examples, and otherwise, as reference examples.
  • the pseudo-boehmite powders obtained in Examples 1 to 12 and Reference Examples 1 to 12 were respectively kneaded in a kneader. Add nitric acid as a deflocculant and knead to a solids concentration of about 5
  • the aggregated flour obtained in Examples 4 to 9 and Reference Examples I to 12 was used for producing a catalyst carrier for desulfurization of atmospheric residual oil. That is, in the kneading step of these pseudo-boehmite, the pore volume in the range of 60 to 90 angstroms of the carrier obtained by adjusting the peptizer and the kneading time was adjusted to be large. Specific pore volume of the obtained alumina carrier (20-600 angstroms, 60-90 angstroms and 85-120 angstroms) was measured with ASAP2400 manufactured by Micromeritics by a nitrogen adsorption method. Tables 6 to 10 show the measurement results.
  • the alumina support 12 shows the characteristics of the alumina support obtained with respect to changes in the reaction temperature and the liquid sending time (precipitation generation time in the table) when preparing the aggregate as a raw material.
  • the graph is shown.
  • the mark o indicates a pore size distribution where a sharp peak exists at a pore size of 60 to 90 angstroms or a pore size of 85 to 120 angstroms of the alumina carrier, and a carrier having good water stability.
  • the X mark indicates a carrier for which one or both of pore size distribution and water stability were not satisfied.
  • the suitable liquid sending time in the neutralization reaction of pseudo-boehmite which is a raw material for producing a hydrorefining catalyst carrier, slightly changes depending on the neutralization reaction temperature. Then, in the graph, if the liquid sending time and the neutralization reaction temperature are selected in the area surrounded by the solid line, it is understood that a pseudo-boehmite raw material powder which is extremely good for the production of the catalyst carrier for hydrorefining can be obtained.
  • the alumina carrier produced from the pseudo-boehmite powders obtained in Examples 1 to 3 has a large pore volume having a pore diameter in the range of 85 to 120 ⁇ , and within the range.
  • the alumina carrier produced from the pseudo-boehmite powders obtained in Examples 4 to 9 has a large pore volume with a pore diameter in the range of 60 to 90 angstroms, and a shrinkage within the pore diameter range. It has a pore size distribution with a sharp peak, indicating that it has a pore structure suitable for desulfurization and denitrification catalyst of vacuum gas oil.
  • the alumina carriers produced from the pseudo-boehmite powders of Examples 1 to 9 have high water stability and little decrease in strength during impregnation of the catalyst metal solution. Industrial applicability
  • the aggregated powder obtained by the production method of the present invention is a very suitable raw material powder for producing a hydrorefining catalyst carrier having a sharp pore size distribution and excellent water stability.
  • a catalyst carrier for desulfurization and denitrification of a fraction having a boiling point of 200 to 36 CTC in a petroleum fraction such as vacuum gas oil, or a 50% distillate such as an atmospheric residue It is a suitable material for catalyst carriers intended for desulfurization of petroleum fractions with a temperature of 450 ° C or higher.
  • the hydrorefining catalyst alumina catalyst carrier obtained from the pseudo-boehmite powder of the present invention has a fine pore size and fine pore distribution which are optimal for hydrorefining reactions such as hydrodesulfurization and denitrification.
  • the catalyst activity can be maintained for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

明 細 書 触媒担体用擬ベーマイ 卜粉末及びその製造方法 技術分野
本発明は、 水素化精製用触媒担体を製造するために使用される擬ベーマイ 卜 原料粉末及びその製造方法に関し、 さらに詳細には、 細孔径分布がシャープで 且つ触媒金属塩溶液の含浸工程における強度低下を抑制することができる触媒 担体を製造するための擬べ一マイ 卜原料粉末及びその製造方法並びに該粉未よ り製造された水素化精製用触媒のための触媒担体に関する。 背景技術
水素化精製に用いられる触媒は、 典型的には多孔性アルミナ担体に周期律表 第 V I a族及び第 V I I I族の活性金属を担持させることによって調製される。 か かるアルミナ担体は、 活性金属を均一に分散させるために大きな表面積を有す ることが必要であり、 そのためには直佳が数十から数百オングス卜口一厶の範 囲にあるメソポアと呼ばれる細孔の容積が大きいことが望ましい。 一方、 触媒 細孔内部の活性表面へ反応物が到達するとともに、 反応生成物がそこから離脱 するためには特定の大きさの細孔径を有することも要求される。 これらの要求 を満足するには、 細孔径のみならず細孔佳分布を反応物に応じて調整しておく ことが重要である。 例えば、 常圧残渣油あるいは減圧軽油を触媒で分解処理する場合、 分解反応 時に大きな分子量の油が分解し、 触媒 (触媒担体) の細孔を閉塞することによ り触媒の活性を低下させる。 このため、 かかる常圧残渣油あるいは減圧軽油の 処理には、 それらの被処理油の分子量に応じた特定の細孔径範囲にピークを示 すシャープな細孔怪分布を有するとともにその特定の細孔径範囲に属する細孔 の卜一夕ルの細孔容積が大きな触媒担体が必要とされている。 従来、 水素化精製用触媒を製造する際、 原料油種、 反応条件、 触媒粒子径等 を考慮して触媒担体の細孔径分布を選定することにより、 触媒活性を長期間維 持することができることがわかっている。 かかる細孔径分布を調整する方法と して、 例えば、 水不溶性有機重合体の微粉末、 アルコール、 カルボン酸、 ケト ン等の水溶性有機溶剤あるいは高級アルコール、 高級アルキルアミン等の界面 活性剤等を、 アルミナ原料粉体への添加剤として加える方法が知られている。 添加物は微粉状の耐火性無機酸化物または水酸化物を成形した後、 乾燥、 焼成 することによって除去される。 また、 成形、 乾燥または焼成された担体あるい は触媒を、 熱水、 酸または金属塩の水溶液、 水蒸気などで処理することによつ て触媒担体の細孔径分布を調整する方法も提案されている。 しかしながら、 上記方法を用いても、 減圧軽油、 常圧残渣油の処理等の用途 に最適な細孔径分布を有する触媒担体を得ることが困難であり、 さらには得ら れた触媒の触媒活性を長期間維持することができないという問題があつた。 ところで、 アルミナ担体を製造するには、 擬ベーマイ 卜粉末に酸やアルカリ 等の解膠剤を添加して混練し、 ペレツ ト状に成形した後、 乾燥及び焼成する方 法が採用されている。 この方法において、 アルミナ担体の細孔径を調節するた めに、 成形した凝べ一マイ 卜粉末を焼成する際に温度などの焼成条件を変える 方法が知られている。 しかしながら、 担体の最終的な細孔径分布は原料の擬べ —マイ 卜粉末及び混練成形物の細孔径分布によってほぼ決定されるため、 焼成 温度や焼成雰囲気の変更のみでは、 特定の細孔径範囲に属する細孔の細孔容積 を大き〈するような制御は困難である。 焼成以外の工程で細孔径分布を調節可能な工程として、 擬ベーマイ 卜粉末の 混練工程が考えられる。 混練により、 特定の細孔佳の細孔容積が大きな細孔径 分布を得るためには、 擬ベーマイ 卜粉末の 1次粒子、 2次粒子の大きさと粉の 解膠性が重要な因子となる。 擬ベ—マイ 卜粉末によっては、 解膠性が悪く、 酸 やアルカリでは解膠できず、 細孔径分布がブロードなアルミナ担体となってし まうことがある。 このため、 シャープな細孔径分布のアルミナ担体を得るため には解膠性の良い擬べ—マイ 卜粉末を用いる必要がある。 特公平 6— 8 1 7 4号は、 ヒドロキシカルボン酸の存在下でアルミニウム鉱 酸塩水溶液にアルミン酸アル力リ溶液を添加してスラリーを得た後、 さらにァ ルミニゥム鉱酸塩水溶液とアルミン酸ァルカリ溶液を同時に添加して水酸化ァ ルミ二ゥ厶の沈澱を 2段階に分けて生成させる擬ベーマイ 卜の製造方法を開示 している。 この公報では、 得られた擬べ一マイ 卜粉末は解膠性に優れ、 それを 触媒担体用原料として用いることによってシャ一プな細孔怪分布を有するアル ミナ担体を製造することができると報告している。 しかしながら、 特開平 8— 1 0 6 2 7号に示されているように、 解膠性が良好な擬べ一マイ 卜粉末から調 製した細孔径分布のシャープな担体は水安定性が低いため、 触媒金属溶液を含 浸させる工程で強度低下が生じるという新たな問題が生じる。 本発明の目的は、 細孔怪 6 0 ~ 1 2 0オングス卜口一厶、 特にこの範囲内の 特定の細孔 ί圣範囲の細孔容積が大きくなるような、 シャープな細孔径分布を有 し且つ触媒金属塩溶液に含浸する時に強度低下が少ないアルミナ触媒担体を製 造するための擬ベーマイ ト粉末を提供することにある。 また、 本発明の更なる 目的は、 かかる擬べ—マイ 卜粉末を原料粉末として用いて特定の沸点範囲の石 油留分の脱硫及び/または脱窒素等の水素化精製処理に好適な水素化精製用触 媒担体を提供することにある。 発明の開示
本発明者は、 擬ベーマイ 卜粉末の細孔 ί圣分布について検討した結果、 細孔容 積が大きいがしかし細孔径分布がブロードである擬ベーマイ 卜粉末を原料粉と して用いることにより、 所望の石油留分の沸点範囲に対応したシャープな細孔 怪分布を有する水素化脱硫用触媒担体を容易に製造することができることを見 出した。 この発見は、 シャープな細孔径分布の担体を得るためにシャープな細 孔径分布を持つ擬べ—マイ 卜粉未を用いるという当業界の常識を覆すものであ り、 今後の触媒担体の製造技術として極めて有用となるであろう。 本発明の第 1の態様に従えば、 アルミニウム塩溶液とアルミン酸アル力リ溶 液を中和反応させることによって触媒担体用擬ベーマイ 卜粉末を製造する方法 において、 上記中和反応における反応温度を 55~71°C、 好まし〈は、 57 〜70°C、 p Hを 8. 5-9. 5、 溶液送液時間を 6〜28分間、 好まし〈は、 7から 25分間の範囲の下で凝べ一マイ 卜を沈澱させることを特徴とする触媒 担体用擬ベーマイ 卜粉末の製造方法が提供される。 本発明の方法を用いること により、 i ) 窒素吸着法により測定して細孔径 20〜600オングストローム の範囲にて細孔容積が 0. 8〜1 . 8cc/gとなるような大きな細孔容積を有 し、 ii) 細孔容積の細孔直 ί圣に対する変化率の最大値が 0. 01 8cc/9 · 才 ングス卜ローム以下であるようなブロードな細孔 ί圣分布を有する凝べ一マイ 卜 粉を容易に製造することができる。 これらの特徴 i )及び ii) を有する擬ベー マイ 卜粉を原料粉として用いれば、 細孔 ί圣 60〜1 20オングス卜ローム、 特 にこの範囲内の特定の細孔径範囲、 例えば、 細孔径 60〜90オングストロー ムまたは細孔径 85〜1 20オングス卜ロームに属する細孔の細孔容積が大き い細孔佳分布を有する水素化精製用の触媒担体を極めて容易に製造することが できる。 本発明の製造方法において、 上記アルミニゥム塩溶液及びァルミン酸アル力 リ溶液として、 硫酸アルミニウム溶液及びアルミン酸ナ卜リゥムをそれぞれ用 いるのが好ましい。 上記送液時間は、 6〜28分間、 より詳細には、 約 57°C では 1 2〜25分間、 約 65°Cでは 1 0〜20分間、 約 70°Cでは 7〜1 5分 間であることが好ましい。 なお、 本明細書において 「送液時間」 とは、 アルミ 二ゥム塩溶液及びアルミン酸アル力リ溶液を反応槽に送液開始する時から送液 終了までの時間を意味する。 本発明の第 2の態様に従えば、 水素化精製用触媒担体の製造原料である擬べ —マイ 卜粉末において、 窒素吸着法により測定して、 細孔径 20〜600オン グスト口—厶に渡る細孔の細孔容積が 0. 75〜1 . 8cc/gの範囲にあり、 細孔容積の細孔直径に対する変化率の最大値が 0. 0 1 8cc/g ·オングス卜 ローム以下であることを特徴とする触媒担体用擬ベーマイ 卜粉末が提供される c 上述したように、 この性状の擬ベーマイ 卜粉末を原料粉として用いることによ り、 細孔径 60〜1 20オングストロームにおける細孔容積が大きい細孔怪分 布を有し且つ水安定性に優れた水素化精製用の触媒担体を極めて容易に製造す ることができる。 本明細書における 「細孔径分布」 は、 窒素 ( N2) 吸着法で測定し、 B J H 法により求めたものである。 窒素吸着法は、 多孔質体の細孔容積を、 細孔中に 窒素を吸着させることによつて測定する方法であり、 当業界ではよく知られた 方法である。 吸着時に細孔容積を求める方式と離脱時に細孔容積を求める方式 があるが、 後者の方が一般的であり、 本明細書において窒素吸着法でという場 合には、 窒素が離脱する時に測定された結果を意味するものとする。
B J H法 は、 窒素吸着法を用いて (液体) 窒素を多孔質体に吸着させると きあるいは離脱させるときに適用した窒素の相対圧力の下で、 細孔内に吸着さ れた窒素吸着量から吸着等温線または脱離等温線を求め、 これから細孔分布な どを求める手法である。この手法もまた当業界では知られており、例えば、 E. P. Barrett, し G. Joyner, P. P. Halenda著、 Journal of the American Chemical Society, vol.73 p.373 ( 1951 )に詳細に開示されている。 本国際出願で指定さ れた指定国の法令で許されるならば、 当該文献の開示を援用して本文の記載の —部とする。
B J H法では、 試料である多孔質体に、 窒素の相対圧力 P/P o= (窒素ガ スの蒸気圧) / (冷却温度での窒素ガスの飽和蒸気圧)を種々の圧力で適用し、 各相対圧力で決定される多孔質体の細孔径における窒素吸着容積を算出する。 種々の細孔佳における窒素吸着容積、 即ち、 細孔 ί圣分布を正確に求めるために は、 所定の細孔径の範囲内でサンプリングされる細孔径、 即ち、 夕ーゲッ 卜と なる複数の相対圧力の値が等間隔であり且つ多い方がよい。 本明細書において
B J H法を用いて細孔 ί圣分布を求める場合には、 細孔径 20〜1 00オングス 卜ロームの範囲内で 8点以上、 好ましくはほぼ等しい間隔でサンプリングする こととする。 このように規定することにより細孔径分布、 特に細孔容積に対す る細孔直径に対する変化率は比較的正確に求めることができる。 本発明の実施例では、相対圧力 0. 9902, 0 980 2 , 0 9751 ,
0. 9665, 0. 9596, 0. 9549 , 0 9491 0 941 6, 0. 931 4, 0. 9263, 0. 9205 , 0 91 36 0 9054, 0. 8956, 0. 8835, 0. 8684, 0 8593 0 8490, 0. 8371 , 0. 8233 , 0. 8070, 0 7876 0 7642, 0. 7354, 0. 6903, 0. 6532, 0 5929 0 461 8, 0. 3359, 0. 2000, 0. 1 200, 0 0550をターゲッ 卜とし て、 離脱側の測定で細孔径分布を求めている。 かかる相対圧力の範囲で、 細孔 径の範囲としては 20〜600オングス卜ロームの範囲を測定する。 かかる細 孔径分布を有する擬べ—マイ 卜粉末を、 混練、 成型及び焼成することにより水 素化精製用触媒に好適なシャープな細孔 ί圣分布を有する触媒担体を製造するこ とができる。 本発明の第 3の態様に従えば、 上記本発明の擬ベーマイ 卜粉末を用いて製造 された水素化精製用アルミナ触媒担体が提供される。 この水素化精製用アルミ ナ触媒担体は、 石油留分中の 200〜360°Cの沸点を持つ留分、 例えば、 減 圧軽油の脱硫及び脱窒素を目的とする触媒担体として用いるためには、 容積平 均細孔佳が、 例えば、 60〜1 20オングストロームであり、 細孔径 20〜6 00オングストロームの細孔の細孔容積が 0. 3〜1 . Occ/gであり、 細孔 佳 60〜90オングストロームにおける細孔の細孔容積が 0. 3〜0. 7cc/ gであることが望ましい。または、 50%留出温度が 450°C以上の石油留分、 例えば、 常圧残渣油の脱硫のための触媒担体に好適な触媒担体として用いるた めに、 例えば、 平均細孔佳が 60〜1 20オングストロームであり、 細孔怪 2 0〜6 0 0オングストローム以下の細孔の細孔容積が 0 . 3〜1 . O c c/ gで あり、 細孔径 8 5〜1 2 0オングストロームの範囲の細孔容積が 0 · 3〜0 . 7 c c/ gであることが望ましい。 図面の簡単な説明
図 1は、 実施例 1〜3において製造した擬べ一マイ 卜の細孔径 2 0〜6 0 0 オングス卜ロームにおける細孔容積及び細孔容積の細孔直径に対する変化率の 最大値を中和反応条件とともに示した表(表 1 )である。
図 2は、 実施例 4〜6及び参考例 1 ~ 4において製造した凝べ一マイ 卜の細 孔径 2 0〜6 0 0オングス卜ロームにおける細孔容積及び細孔容積の細孔直径 に対する変化率の最大値を中和反応条件とともに示した表(表 2 )であり、 反応 温度は 5 7 °Cの場合を示す。
図 3は、 実施例 7 ~ 9及び参考例 5 , 6において製造した擬ベーマイ 卜の細 孔径 2 0〜6 0 0オングス卜ロームにおける細孔容積及び細孔容積の細孔直径 に対する変化率の最大値を中和反応条件とともに示した表(表 3 )であり、 反応 温度は 6 5 °Cの場合を示す。
図 4は、 実施例 1 0〜1 2及び参考例 7 , 8において製造した擬ベーマイ 卜 の細孔径 2 0〜6 0 0オングストロ—ムにおける細孔容積及び細孔容積の細孔 直径に対する変化率の最大値を中和反応条件とともに示した表(表 4 )であり、 反応温度は 7 0 °Cの場合を示す。
図 5は、 参考例 9 ~ 1 2において製造した擬べ—マイ 卜の細孔径 2 0〜6 0 0オングス卜ロームにおける細孔容積及び細孔容積の細孔直径に対する変化率 の最大値を中和反応条件とともに示した表(表 5 )である。
図 6は、 実施例 1 ~ 3の擬ベーマイ 卜を用いて製造したアルミナ担体の細孔 径 2 0〜6 0 0オングス卜ロームにおける細孔容積及び細孔径 8 5〜1 2 0才 ングス卜ロームにおける細孔容積並びに水安定性の試験結果を示した表(表 6 ) である。
図 7は、 実施例 4〜6及び参考例〗〜 4の擬ベーマイ トを用いて製造したァ ルミナ担体の細孔怪 2 0〜6 0 0オングストロームにおける細孔容積及び細孔 ί圣 6 0〜9 0オングス卜ロームにおける細孔容積並びに水安定性の試験結果を 示した表 (表 7 )である。
図 8は、 実施例 7〜9及び参考例 5 , 6の擬ベーマイ 卜を用いて製造したァ ルミナ担体の細孔 ί圣 2 0〜 6 0 0オングストロームにおける細孔容積及び細孔 径 6 0〜9 0オングス卜ロームにおける細孔容積並びに水安定性の試験結果を 示した表(表 8 )である。
図 9は、 実施例 1 0〜1 2及び参考例 7 , 8の擬ベ一マイ 卜を用いて製造し たアルミナ担体の細孔径 2 0〜6 0 0オングストロ一ムにおける細孔容積及び 細孔径 6 0 - 9 0オングス卜ロームにおける細孔容積並びに水安定性の試験結 果を示した表(表 9 )である。
図 1 0は、 参考例 9〜1 2の凝べ一マイ 卜を用いて製造したアルミナ担体の 細孔径 2 0〜6 0 0オングス卜ロームにおける細孔容積及び細孔怪 6 0〜9 0 オングストロームにおける細孔容積並びに水安定性の試験結果を示した表(表 1 0 )である。
図 1 1は、 実施例 4及び参考例 1 , 3で得られた擬ベーマイ 卜粉末の細孔径 分布を示すグラフである。
図 1 2は、 原料となる擬べ—マイ 卜を調製する際の反応温度と送液時間 (沈 殿生成時間) の変化に対して得られたアルミナ担体の特性を評価したグラフで あ ο 発明を実施するための最良の形態
本発明の擬ベーマイ 卜粉末は、 アルミニウム塩溶液とアルミン酸アルカリ溶 液との中和反応により製造することができる。 アルミニウム塩は、 硫酸アルミ 二ゥム、 塩化アルミニウム、 硝酸アルミニウム等の種々の任意のアルミニウム 塩を用いることができる。 このうち、 硫酸アルミニウム及び塩化アルミニウム は安価であるために好ましい。 アルミニウム塩は、 単独で用いても、 2種以上 のアルミニウム塩を組み合わせて用いてもよい。 アルミン酸アルカリは、 アル ミン酸ナ卜リゥム、 アルミン酸力リゥム等の任意のアルミン酸アル力リを用い ることができ、 入手の容易さ及び安価であることからアルミン酸ナトリゥムが 好ましい。 アルミン酸アルカリについても、 単独で用いてもあるいは 2種以上 のアルミン酸アル力リを組み合わせて用いてもよい。 沈殿を形成する中和反応の条件は、 反応槽内の中和溶液の溫度 (反応温度) が 55〜7 1 °Cであり、 p Hが 8. 5〜9. 5であるように調整することが好 ましい。 中和溶液の温度が 5 5 °C未満では沈澱した粒子が強固に凝集してしま い、 熟成及び乾燥工程を経て得られた粉体の細孔容積が小さくなるため好まし くない。 また、 反応槽内の溶液温度が 7 1 °Cを超えると粒子径の大きなバイャ ライ ト相が折出し、 比表面積が小さくなるため好ましくない。 p Hが 8. 5未 満であると、 得られる凝べ一マイ トの細孔容積が小さ〈なり、 p Hが 9. 5を 超えると比表面積の小さなバイャライ 卜相が発生するため好ましくない。また、 中和沈殿槽に供給する反応物の濃度は、 形成された固形物 (沈殿)の濃度 (最終 濃度) が 1 ~ 5モルの範囲内に維持されるように調節するのが好ましい。 中和による沈殿形成時には、 常に同一 p Hにおいて沈殿を生成させるという 理由からアルミニウム塩溶液及びアルミン酸アル力リ溶液の両者を同時に添加 することが望ましい。 送液時間は、 6〜28分間が好ましい。 6分未満である と、 得られる凝べ一マイ 卜粉末の細孔容積が 0. 75cc/g未满となり、 得ら れる担体の細孔容積が小さくなる。 また、 送液時間が 28分を超えると、 B J H法により求めた細孔容積の細孔直径に対する変化率の最大値が 0. 0 1 8cc /g ·オングストロ一ムを超えてベ一マイ 卜の細孔径分布に望まし〈ないシャ —プなピークを発生させてしまう。 より好ましくは、 7~25分間である。 さ らに好ましくは、 約 57°Cでは約 1 2〜25分間、 約 65°Cでは 1 0~20分 間、 約 70。Cでは 7~1 3分間である。 沈澱形成後に、 中和溶液を熟成するのが望ましい。 この熟成工程で凝べ一マ ィ 卜の結晶性が向上する。 熟成時間は、 特に限定しないが、 2時間以内が適当 である。 熟成時間が長すぎると、 凝べ一マイ 卜粒子が成長しすぎて擬べ一マイ 卜の細孔容積が小さくなる。 熟成が終了した後、 濾過により擬べ—マイ 卜と液 体を分離する。 分離後、 水を用いて擬ベーマイ ト粒子表面に吸着している副生 成物である硫酸ナ卜リゥ厶または塩化ナ卜リゥ厶等を洗浄して除去した後、 ス プレードライヤー等の乾燥装置を用いて乾燥する。 乾燥温度は特に限定しない が、 乾燥温度が高すぎると得られた擬ベーマイ 卜がァーアルミナへ相転移する ため好ましくない。 このようにして製造された擬ベ—マイ 卜粉は、 窒素吸着法で測定した細孔容 積、例えば、細孔径 2 0〜6 0 0オングス卜ロームにおける細孔の細孔容積が、 0 . 7 5〜1 . 8 c c/ gの範囲にあり、 細孔容積の細孔直 ί圣に対する変化率の 最大値が 0 . 0 1 8 c c/ g · オングス卜ローム以下である。 上記細孔径分布を有する擬ベーマイ 卜粉末を、 後述するように原料として用 いてアルミナ担体を製造することにより、 アルミナ触媒担体の容積平均細孔径 を 6 0〜1 2 0オングス卜ロームの範囲内で容易に制御することができ、 特定 の範囲の細孔容積が大きい (シャープな) 細孔径分布のアルミナ触媒担体を容 易に得ることができ、 さらにアルミナ触媒担体の触媒金属塩溶液含浸時におけ る強度低下を抑制することができる。 以下に、 得られた擬ベ一マイ 卜粉末を用いてアルミナ触媒担体を製造する操 作を説明する。 得られた擬べ一マイ 卜を二一ダ一等を用いて混練する。 通常、 混練時には解膠剤として酸あるいはアル力リを加えその後、 成型可能な水分量 とするために水を添加して混練を行う。 かかる酸性溶液及びアル力リ性溶液と して、 アルミナ原料粉を解膠する能力のあるものが用いられる。 酸性溶液とし て、 例えば、 硝酸、 硫酸、 塩酸等の無機酸や、 酢酸、 クェン酸、 しゅう酸等の 有機酸を使用することができる。 特に、 硝酸及び有機酸は、 後の焼成工程にお いて全て蒸発し残留物を残さないために好ましい。 また、 アルカリ性溶液とし て、 アンモニア、 水酸化テトラプロピルアンモニゥム等の水酸化第 4級アンモ 二ゥム、 水酸化ナ卜リゥム、 水酸化力リゥム、 アルミン酸ナトリウム等を使用 することができる。 このうち、 アンモニア及び水酸化第 4級アンモニゥムは、 後の焼成工程において蒸発するために特に好ましい。 本発明の擬べ—マイ 卜を用いると、 触媒担体の細孔径 6 0〜1 2 0オングス 卜ロームの範囲にシャープな細孔分布を形成できる。 この理由について、 発明 者は次のように考えている。 例えば、 従来技術で説明したような解膠性が十分 でない擬ベーマイ 卜であって、 4 0オングス卜ローム付近のピークが高い擬べ —マイ 卜を混練すると、 混練前に比べて、 その 4 0オングストローム付近のピ —クはそのまま残り、 2 0 0オングストローム以上の大きさの細孔が減り、 6 0〜1 2 0オングストロームの範囲にもう一つのピークが現れる。 このような 細孔径分布を有する混練物を焼成するとバイモーダルまたはブロードな細孔径 分布の担体となる。 一方、 本発明の擬べ一マイ 卜粉でも、 やはり混練により、 2 0 0オングストローム以上の細孔径の細孔が減り、 6 0 ~ 1 2 0オングスト ロームの範囲にシャープなピークが現れる。 しかし、 4 0オングストローム付 近のピークが元々低いため、 混練により生じた 6 0〜1 2 0オングス卜ローム の範囲のピークのみが主なピークとして存在する。 上記混練された擬ベーマイ 卜は、 一般に、 成型器により適当な大きさ及び形 状に成形される。 次いで、 成形体は乾燥器にて、 例えば、 8 0〜1 5 0 °Cの温 度で数十分から一昼夜乾燥された後、 焼成炉で、 例えば、 4 0 0〜1 0 0 0 °C の温度で焼成される。 こうして、 特定の範囲の細孔 ί圣の細孔容積が大きいシャ -プな細孔径分布を有するアルミナ触媒担体を得ることができる。 アルミナ触 媒担体の平均細孔の調整は、 混練時に添加する解膠剤の種類や濃度あるいは混 練時間によつて任意に制御することができる。 以下に本発明の擬ベーマイ 卜粉末の製造方法の実施例を説明するが、 本発明 はそれらに限定されるものではない。
〔擬ベーマイ 卜粉末の製造〕
実施例 1 内容積 1 50リツ トルの中和沈殿槽に 75リッ トルの水を加えた後、 水温が 57°Cになるように加熱した。 次いで、 中和沈殿槽に、 57eCに加熱した 1 M 濃度のアルミン酸ナ卜リゥ厶水溶液を約 1. 8リツ トル/分の送液速度で送液 するともに 57 °Cに加熱した 0 · 5 M濃度の硫酸ァルミニゥム水溶液を送液し た。 硫酸アルミニウム水溶液の送液速度は、 混合溶液の p Hが 9. 0で一定と なるように微調節した。 両溶液の送液の間、 沈澱生成が起こり、 沈澱生成時の 溶液の温度を 57 °Cに維持した。 アルミン酸ナ卜リゥム水溶液及び硫酸アルミ ニゥム水溶液の送液を送液開始から 1 7分で終了し、 温度を 57°Cに維持した まま撹拌して 1時間熟成させた。 熟成後、 得られたスラリーを濾過し、 洗浄し て固形分を得た。 固形分を、 スプレードライヤーにて入口/出口温度 200°C /1 00°Cで乾燥して粉末を得た。 乾燥した粉末を X線回折により解析した結 果、 擬ベーマイ 卜であることが確認された。 こうして得られた擬ベーマイ 卜粉末の各細孔怪範囲の細孔容積を窒素吸着法 により測定した。 この際、相対圧 0. 9902, 0. 9802, 0. 975 1,
0. 9665 0. 9596 , 0. 9549, 0. 9491, 0. 941 6,
0. 931 4 0. 9263, 0. 9205, 0. 91 36, 0. 9054,
0. 8956 0. 8835 , 0. 8684, 0. 8593, 0. 8490,
0. 8371 0. 8233, 0. 8070, 0. 7876, 0. 7642 ,
0. 7354 0. 6903 , 0. 6532, 0. 5929 , 0. 461 8,
0. 3359 0. 2000, 0. 1 200, 0 0550をターゲッ 卜とし て、 窒素を吸着させる際ではなく、 脱離させる際の測定結果を用いて細孔径分 布を求めた。 得られた結果を表 1に示す。 表 1には、 細孔径 20〜600オングス卜ロームにおける細孔の細孔容積及 び B J H法により求めた細孔容積 (V) の細孔直径 (D) に対する変化率 d V /d Dの最大値を、 沈澱生成時の溶液温度及び p H並びにアルミン酸ナ卜リウ ム水溶液及び硫酸ァルミニゥ厶水溶液の沈殿生成時間とともに示した。 なお、 表中、 「沈殿生成時間」 は、 反応液の送液時間を意味する。 実施例 2
反応 (沈殿生成) 時の溶液温度を 65°Cに調節した以外は、 実施例 1 と同様 の条件にて擬ベーマイ 卜粉末を得た。 得られた擬ベーマイ 卜粉末の細孔佳 20 〜600オングス卜ロームの細孔の細孔容積及び B J H法により求めた細孔容 積の細孔直径に対する変化率 dV/d Dの最大値を表 1に示す。 実施例 3
反応 (沈殿生成) 時の溶液温度を 70°Cに調節し、 送液速度を 3. 0リッ ト ル /分になるように変えて送液を 1 0分間で終了した以外は、 実施例 1 と同様 の p H 9. 0の条件にて凝べ—マイ 卜粉末を得た。 得られた擬べ一マイ 卜粉末 の細孔径 20〜600オングス卜ロームの細孔の細孔容積及び B J H法により 求めた細孔容積の細孔直径に対する変化率の最大値を表 1に示す。 実施例 4〜 6及び参考例 1〜 4
反応時の溶液温度を 57°Cに調節し、 送液速度を 0. 8〜6. 0リッ トル/ 分になるように変えて送液時間をそれぞれ 5分間 (参考例 1 )、 1 0分間 (参 考例 2)、 1 5分間 (実施例 4)、 20分間 (実施例 5)、 25分間 (実施例 6)、 30分間 (参考例 3 )、 35分間 (参考例 4) で終了した以外は、 実施例 1 と 同様の p H 9. 0条件で擬ベーマイ 卜粉末を得た。 実施例 1 と同様にして、 細孔径 20〜600オングス卜ロームの細孔の卜— タルの細孔容積及び細孔容積の細孔直径に対する変化率を B J H法により求め た。さらに、送液時間の変化に対する擬べ一マイ 卜粉末の細孔佳分布の関係を、 実施例 4並びに参考例 1及び 3の結果について、 図 1 1のグラフに示した。 グ ラフより、 送液時間が 30分間である場合には、 細孔怪約 40〜60オングス 卜ロームに存在する、 細孔容積の細孔直怪に対する変化率のピークが極めてシ ヤープであり、 送液時間が 1 5分間である場合には、 細孔容積の細孔直 ί圣に対 する変化率の最大値が 0. 01 8 ( c c/g · Α) 以下であることがわかる。 また、 実施例 4~6及び参考例 1〜4で得られた擬べ一マイ 卜粉末の細孔径 20〜600オングス卜ロームにおける細孔容積の細孔直怪に対する変化率の 最大値を、 反応条件とともに表 2に示す。 実施例 7〜 9及び参考例 5〜 6
反応時の溶液温度を 6 5°Cに調節し、 送液速度を 1 . 2〜6. 0リッ トル/ 分になるように送液時間を 5分間 (参考例 5 )、 1 0分間 (実施例 7)、 1 5分 間 (実施例 8)、 20分間 (実施例 9 )、 25分間 (参考例 6 ) の 5種類の時間 で終了した以外は、 実施例 1 と同様の p H 9. 0の条件にて擬ベ—マイ ト粉末 を得た。 各沈澱生成時間で得られた擬べ一マイ 卜粉末の細孔径 20〜600才 ングス卜ロームの細孔の細孔容積及び B J H法により求めた細孔容積の細孔直 径に対する変化率の最大値をそれぞれ表 3に示す。 実施例 1 0〜1 2及び参考例 7〜8
反応時の溶液温度を 70°Cに調節し、 送液時間を 5分間 (参考例 7 )、 7分 間 (実施例 1 0 )、 1 0分間 (実施例 1 1 )、 1 5分間 (実施例 1 2 )、 20分 間 (参考例 8) の 5種類で終了するように、 アルミン酸ナトリウム水溶液の送 液速度を変更 ( 1 . 5〜6. 0リッ トル/分の範囲) した以外は実施例 1 と同 様に、 混合溶液の p Hが 9. 0—定となるように調節して擬べ一マイ 卜粉未を 得た。 各実施例、 参考例で得られた凝べ一マイ 卜粉末の細孔径 20〜600才 ングス卜ロームに渡る細孔の細孔容積及び B J H法により求めた細孔容積の細 孔直佳に対する変化率の最大値をそれぞれ表 4に示す。 参考例 9
反応時の溶液温度を 53°Cに調節し、 送液速度を 1 . 5リツ トル/分になる ように変更して送液を終了した以外は、実施例 1 と同様に混合溶液の p Hが 9. 0—定となるように調節して擬ベーマイ 卜粉末を得た。 この凝べ一マイ 卜粉末 の細孔径 20〜600オングス卜ロームの範囲の細孔容積及び B J H法により 求めた細孔容積の細孔直径に対する変化率の最大値をそれぞれ表 5に示す。 参考例 1 0
反応時の溶液温度を 7 2 °Cに調節し、 送液速度を 3 . 0リツ トル/分になる ように変更して送液を終了した以外は、実施例 1 と同様に混合溶液の p Hが 9 . 0—定となるように調節して擬ベーマイ 卜粉末を得た。 この擬ベーマイ 卜粉末 の 2 0〜6 0 0オングス卜ロームの範囲の細孔容積及び B J H法により求めた 細孔容積の細孔直径に対する変化率の最大値をそれぞれ表 5に示す。 参考例 1 1〜 1 2
送液速度を 1 . 5リッ トル/分、 混合溶液の p Hを 8 . 0または 9 . 7で一 定となるように調節した以外は、 実施例 1 と同様にして凝べ一マイ 卜粉末を得 た。 各参考例で得られた擬ベーマイ 卜粉未の 2 0〜6 0オングス卜ロームの範 囲の細孔容積及び B J H法により求めた細孔容積の細孔直径に対する変化率の 最大値をそれぞれ表 5に示す。 表 1、 2及び図 1 1のグラフから明らかなように、 5 7 °Cにおいて送液時間 が 3 0分間以上では、 2 0〜6 0 0オングス卜ロームの範囲の細孔容積が小さ く、 細孔容積の細孔直径に対する変化率の最大値が大き〈なってしまう (参考 例 3、 4 )。 一方、 送液時間が 5分間以下では細孔径 2 0 ~ 6 0 0オングスト ロームの範囲の細孔容積が極めて小さい粉となる (参考例 1 )。 また、 表 1及び 3から明らかなように、 溶液温度が 6 5 °Cにおいて (実施例 7〜 9及び参考例 5 , 6 )、 送液時間が 2 5分間以上では、 細孔 ί圣 2 0〜6 0 0オングス卜ロームの範囲の細孔容積が小さく、 細孔容積の細孔に対する変化 率の最大値が大きくなつてしまう (参考例 6 )。 一方、 送液時間が 5分間以下 では細孔径 2 0〜6 0 0オングス卜ロームの範囲の細孔容積が小さい粉となる (参考例 5 )。 また、 表 1及び 4から明らかなように、 溶液温度が 70°Cにおいて (実施例 1 0〜1 2及び参考例 7, 8 )、 送液時間が 20分間以上 (参考例 8 ) では、 細孔 ί圣 20〜600オングス卜ロームの範囲の細孔容積が小さく、 細孔容積の 細孔に対する変化率の最大値が大き〈なってしまう。 一方、 送液時間が 5分間 以下 (参考例 7 ) では細孔怪 20~600オングストロームの範囲の細孔容積 が小さい粉となる。
上記例において、 細孔径 20〜600オングス卜ロームにおける細孔の細孔 容積が 0. 75〜1 . Scc/gの範囲にあり且つ d v/d Dの最大値が 0. 0 1 8cc/g ·オングストローム以下の擬べ一マイ 卜粉が得られた例を実施例と して表わし、 そうでない場合には参考例として表わした。
〔アルミナ担体の作製〕
実施例 1〜1 2及び参考例 1〜1 2で得られた擬ベーマイ 卜粉を、 それぞれ ニーダ一中で混練した。 硝酸を解膠剤として添加して混練し、 固形分濃度約 5
0%のドウを得た。 これを双腕式押出機で押し出し成形した後、 1 30°Cで乾 燥し、 600°Cで 1時間焼成してアルミナ担体を得た。 なお、 実施例 1〜3で得られた擬べ—マイ ト粉は、 減圧軽油の脱硫及び脱窒 素を目的とする触媒担体を製造するために用いた。 すなわち、 これらの擬ベー マイ 卜の混練工程において、 解膠剤及び混練時間を調整して、 得られる担体の 細孔径 85~1 20オングス卜ロームの範囲の細孔容積が大き〈なるようにし た。 一方、 実施例 4〜9及び参考例〗〜 1 2で得られた凝べ一マイ ト粉は、 常 圧残渣油の脱硫のための触媒担体を製造するために用いた。 すなわち、 これら の擬ベーマイ 卜の混練工程において、 解膠剤及び混練時間を調整して得られる 担体の細孔佳 60〜90オングス卜ロームの範囲の細孔容積が大き〈なるよう にした。 得られたアルミナ担体の特定の細孔佳範囲( 20〜 600オングストローム、 60〜90オングス卜口一厶及び 85〜 1 20オングス卜ローム) の細孔容積 をマイクロメリティックス社製 A S A P 2 4 0 0にて窒素吸着法により測定 した。 測定結果を表 6〜1 0に示す。 また、 得られたアルミナ担体に触媒金属溶液を含浸させる工程での強度低下 を評価するために、 長さ 5 m m以上、 直径約 0 . 7 9 m m ( 1 / 3 2ィンチ) の担体 3 0個を水に浸漬させて、割れなかつた担体の数を数えた(水安定性)。 この評価結果を表 6〜1 0に示す。 実施例 1〜1 2の擬ベーマイ 卜粉末で製造 したアルミナ担体では割れが一つも発生しなかったが、参考例 1、 2、 5、 7、 9、 1 1の擬ベ一マイ ト粉で製造したアルミナ担体では割れが約半分の数の担 体で発生した。 なお、表中、 「中央細孔径」 とは、 容積平均細孔径を意味する。 また、 図 1 2に、 原料となる凝べ一マイ 卜を調製する際の反応温度と送液時 間 (表中、 沈殿生成時間) の変化に対する、 得られたアルミナ担体の特性を評 価したグラフを示す。 グラフ中、 o印はアルミナ担体の細孔径 6 0〜9 0オン グス卜ロームまたは細孔径 8 5 ~ 1 2 0オングストロームにおいてシャープな ピークが存在する細孔径分布を示し且つ水安定が良好な担体を示し、 X印は細 孔径分布及び水安定性のいずれかまたは両方が満足できなかった担体を示す。 このグラフより、 水素化精製用触媒担体の製造原料となる擬ベーマイ 卜の中和 反応における好適な送液時間は、 中和反応温度により若干変化することがわか る。 そして、 グラフ中、 実線で囲んだエリア内で、 送液時間及び中和反応温度 を選択すれば、 水素化精製用触媒担体の製造に極めて良好な擬ベーマイ 卜原料 粉末が得られることがわかる。 以上のことより、 実施例 1〜3で得られた擬ベーマイ 卜粉から製造したアル ミナ担体は、 8 5〜1 2 0オングストロームの範囲の細孔径の細孔容積が大き 〈且つその範囲内にシャープなピークを持つ細孔径分布を示すため、 常圧残渣 油の脱硫 ·脱窒素触媒に好適な細孔構造を有していることがわかる。 実施例 4 〜9で得られた擬ベーマイ 卜粉から製造したアルミナ担体は、 6 0〜9 0オン グス卜ロームの範囲の細孔径の細孔容積が大きく且つその細孔径範囲内にシャ ープなピークが存在する細孔径分布を有するため、 減圧軽油の脱硫 ·脱窒素触 媒に好適な細孔構造を有していることがわかる。 また、 実施例 1〜9の擬ベー マイ 卜粉から製造したアルミナ担体は、 水安定性が高く触媒金属溶液含浸時に おける強度低下が少ない。 産業上の利用可能性
本発明の製造方法で得られた凝べ一マイ 卜粉末は、 シャープな細孔径分布で あり且つ水安定性に優れた水素化精製用触媒担体を製造するのに極めて好適な 原料粉末となる。 例えば、 減圧軽油のような石油留分中の 2 0 0〜3 6 CTCの 沸点を持つ留分の脱硫及び脱窒素を目的とする触媒担体や、 常圧残渣油のよう な 5 0 %留出温度が 4 5 0 °C以上の石油留分の脱硫を目的とする触媒担体に好 適な材料となる。 本発明の擬ベーマイ 卜粉末から得られた水素化精製用触媒ァ ルミナ触媒担体は、 細孔径及び細孔佳分布が水素化脱硫及び脱窒素等の水素化 精製反応用に最適であるために、 長期間に渡って触媒活性を維持することがで きる。

Claims

請求の範囲
1 . アルミニウム塩溶液とアルミン酸アルカリ溶液を中和反応させることに よつて触媒担体用凝べ一マイ ト粉末を製造する方法において、
上記中和反応における反応温度 55〜7 1 °C、 p H 8„ 5〜9. 5、 アルミ 二ゥム塩溶液及びアルミン酸アル力リ溶液の送液時間 6〜 28分間にて擬ベー マイ トを沈澱させることを特徴とする触媒担体用擬ベーマイ 卜粉末の製造方法。
2. 上記反応温度が 57〜70°Cであり、 上記送液時間が 7〜 25分間であ ることを特徴とする請求項 1に記載の方法。
3. 上記アルミニウム塩溶液が硫酸アルミニウム溶液であり、 上記アルミン 酸アル力リ溶液がアルミン酸ナ卜リゥムであることを特徴とする請求項 1に記 載の方法。
4. 上記凝べ—マイ 卜粉末の窒素吸着法により測定して、 細孔 20〜60 0オングストロームにおける細孔の細孔容積が 0. 75〜1 . 8cc/gの範囲 にあることを特徴とする請求項 1 から 3のいずれか 1項に記載の方法。
5. 請求項 1に記載の方法で製造された触媒担体用凝べ一マイ 卜粉末。
6. 触媒担体の製造原料である擬べ—マイ 卜粉末において、
窒素吸着法により測定して、 細孔径 20〜600オングストロームにおける 細孔の細孔容積が 0. 7 5〜1 . 8cc/gの範囲にあり、 細孔容積の細孔直径 に対する変化率の最大値が 0. 01 8cc/g 'オングストローム以下であるこ とを特徴とする触媒担体用擬ベ一マイ 卜粉末。
7. 細孔容積の細孔直径に対する変化率の最大値が、 B J H法を用いて計算 された値であることを特徴とする請求項 6に記載の触媒担体用擬べ—マイ ト粉 o
8. アルミニウム塩溶液とアルミン酸アル力リ溶液との中和反応において、 中和反応温度 5 5〜7 1 °C、 p H 8. 5〜9. 5、 上記溶液の送液時間 6〜 2 8分間にて得られた請求項 6または 7に記載の触媒担体用擬ベーマイ 卜粉末。
9. 請求項 6に記載の擬べ—マイ 卜粉末を用いて製造された水素化精製用触 媒のためのアルミナ触媒担体。
1 0. 細孔径 20〜600オングストロームにおける細孔の細孔容積が 0. 5〜1 . Occ/gであり、 細孔径 60〜90オングス卜ロームの細孔の細孔容 積が 0. 3〜0. 7cc/gである請求項 9に記載のアルミナ触媒担体。
1 1 . 細孔怪 20〜600オングストロームの細孔の細孔容積が 0 · 5〜1 . Occ/gであり、細孔怪 85〜1 20オングス卜ロームの細孔の細孔容積が 0 · 3〜0. 7cc7gである請求項 1 0に記載のアルミナ触媒担体。
PCT/JP1998/003174 1997-07-15 1998-07-15 Poudre de pseudo-boehmite pour support catalytique et son procede de fabrication WO1999003783A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/254,658 US6174511B1 (en) 1997-07-15 1998-07-15 Pseudoboehmite powder for catalyst carrier and process for preparing the same
EP98932528A EP0950638B1 (en) 1997-07-15 1998-07-15 Pseudoboehmite powder for catalyst carrier and process for preparing the same
JP50690699A JP3788629B2 (ja) 1997-07-15 1998-07-15 触媒担体用凝ベーマイト粉末及びその製造方法
DK98932528.7T DK0950638T3 (da) 1997-07-15 1998-07-15 Pseudo-boehmitpulver til katalysatorbærer og fremgangsmåde til fremstilling heraf

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20391497 1997-07-15
JP9/203914 1997-07-15

Publications (1)

Publication Number Publication Date
WO1999003783A1 true WO1999003783A1 (fr) 1999-01-28

Family

ID=16481794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003174 WO1999003783A1 (fr) 1997-07-15 1998-07-15 Poudre de pseudo-boehmite pour support catalytique et son procede de fabrication

Country Status (7)

Country Link
US (1) US6174511B1 (ja)
EP (1) EP0950638B1 (ja)
JP (1) JP3788629B2 (ja)
KR (1) KR100294192B1 (ja)
CN (1) CN1092146C (ja)
DK (1) DK0950638T3 (ja)
WO (1) WO1999003783A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002297A3 (de) * 1999-07-06 2001-03-29 Rwe Dea Ag Verfahren zur herstellung von tonerdehydraten durch fällung von aluminiumsalzen in gegenwart von kristallisationskeimen
US6919294B2 (en) 2002-02-06 2005-07-19 Japan Energy Corporation Method for preparing hydrogenation purification catalyst
EP1447381A3 (de) * 1999-05-14 2008-04-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanoporöse Al2O3-Produkte und Verfahren zu ihrer Herstellung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462304C (zh) * 2005-12-28 2009-02-18 财团法人工业技术研究院 特定晶型的氢氧化铝晶粒的制备方法
CN100363261C (zh) * 2006-06-22 2008-01-23 武汉理工大学 一种大孔容、高比表面拟薄水铝石的制备方法
US8685883B2 (en) * 2008-04-30 2014-04-01 Dow Technology Investments Llc Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same
CN101746789B (zh) * 2008-12-15 2011-12-21 中国石油化工股份有限公司 拟薄水铝石及其制备方法和由该拟薄水铝石制得的氧化铝
FR2940967B1 (fr) * 2009-01-12 2012-07-20 Inst Francais Du Petrole Preparation d'un solide a base d'oxyde de zinc utilisable pour la purification d'un gaz ou d'un liquide
CN102259900B (zh) * 2010-05-24 2014-10-29 中国石油化工股份有限公司 一种水合氧化铝及其制备方法
CN102120597A (zh) * 2011-01-14 2011-07-13 北京工商大学 一种高纯拟薄水铝石的制备方法
KR101235123B1 (ko) * 2011-07-15 2013-02-20 주식회사제오빌더 다공성 알루미나의 제조방법
KR101944038B1 (ko) * 2012-03-06 2019-01-31 스미또모 가가꾸 가부시끼가이샤 수산화알루미늄 분말 및 그 제조 방법
CN103769104B (zh) * 2012-10-20 2016-03-02 中国石油化工股份有限公司 镍系选择性加氢催化剂、其制备方法及应用
CA2956954C (en) * 2014-08-08 2022-11-15 Sasol Performance Chemicals Gmbh Precipitated alumina and method of preparation
CN104148118B (zh) * 2014-08-12 2016-05-11 福州大学 一种利用水反应性卤化物制备改性氧化铝载体的方法
FR3053264B1 (fr) * 2016-06-30 2022-07-29 Eramet Procede de preparation d'un materiau adsorbant et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
CN110124659B (zh) * 2019-06-20 2021-03-23 中自环保科技股份有限公司 一种铈锆铝基复合材料、cGPF催化剂及其制备方法
CN115259187B (zh) * 2022-07-25 2024-01-16 河津市炬华铝业有限公司 一种高比表面积大孔拟薄水铝石粉体及其制备方法
CN116143153A (zh) * 2023-02-01 2023-05-23 中铝山东有限公司 一种高结晶度大晶粒大孔容拟薄水铝石及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082697A (en) 1974-08-12 1978-04-04 Chevron Research Company Catalyst carrier, its method of preparation and a reforming catalyst supported on the carrier
JPS58190823A (ja) * 1982-04-26 1983-11-07 Chiyoda Chem Eng & Constr Co Ltd アルミナ担体の製造方法
US4500424A (en) 1983-04-07 1985-02-19 Union Oil Company Of California Desulfurization catalyst and process
JPH08268716A (ja) * 1995-03-30 1996-10-15 Japan Energy Corp 擬ベ−マイト粉の粒径制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL233239A (ja) * 1957-11-15
DE2302724A1 (de) * 1972-01-19 1973-08-09 Grace W R & Co Kontinuierliches verfahren zur herstellung von aluminiumoxyd
US3864461A (en) * 1972-08-29 1975-02-04 Laporte Industries Ltd Process for the production of alumina
CA1094533A (en) * 1976-08-23 1981-01-27 Paul W. Tamm Reforming catalyst and a hydrocarbon catalytic reforming process using the catalyst
US4371513A (en) * 1977-03-25 1983-02-01 W. R. Grace & Co. Alumina compositions
JPS5527830A (en) * 1978-08-15 1980-02-28 Chiyoda Chem Eng & Constr Co Ltd Production of alumina carrier
US4301037A (en) * 1980-04-01 1981-11-17 W. R. Grace & Co. Extruded alumina catalyst support having controlled distribution of pore sizes
US4313923A (en) * 1980-12-29 1982-02-02 Filtrol Corporation Method of producing pseudoboehmites
JPS6034733A (ja) * 1983-08-04 1985-02-22 Nikki Universal Co Ltd アルミナ触媒担体の製造法
DE3801270A1 (de) * 1988-01-19 1989-07-27 Degussa Zirkondotierter pseudoboehmit, verfahren zu seiner herstellung und anwendung
JPH068174A (ja) 1992-06-29 1994-01-18 Sumitomo Electric Ind Ltd マニピュレータアームの非常停止制御方法
JPH0810627A (ja) 1994-06-30 1996-01-16 Japan Energy Corp 触媒担体の含浸方法
JPH08268715A (ja) * 1995-03-30 1996-10-15 Japan Energy Corp 高純度擬ベ−マイト粉の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082697A (en) 1974-08-12 1978-04-04 Chevron Research Company Catalyst carrier, its method of preparation and a reforming catalyst supported on the carrier
JPS58190823A (ja) * 1982-04-26 1983-11-07 Chiyoda Chem Eng & Constr Co Ltd アルミナ担体の製造方法
US4500424A (en) 1983-04-07 1985-02-19 Union Oil Company Of California Desulfurization catalyst and process
JPH08268716A (ja) * 1995-03-30 1996-10-15 Japan Energy Corp 擬ベ−マイト粉の粒径制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0950638A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447381A3 (de) * 1999-05-14 2008-04-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanoporöse Al2O3-Produkte und Verfahren zu ihrer Herstellung
WO2001002297A3 (de) * 1999-07-06 2001-03-29 Rwe Dea Ag Verfahren zur herstellung von tonerdehydraten durch fällung von aluminiumsalzen in gegenwart von kristallisationskeimen
EP1359123A3 (de) * 1999-07-06 2004-01-28 SASOL Germany GmbH Verfahren zur Herstellung von Tonerdehydraten durch Fällung von Aluminiumsalzen in Gegenwart von Kristallisationskeimen
US6919294B2 (en) 2002-02-06 2005-07-19 Japan Energy Corporation Method for preparing hydrogenation purification catalyst

Also Published As

Publication number Publication date
KR100294192B1 (ko) 2001-06-15
EP0950638B1 (en) 2012-10-17
EP0950638A1 (en) 1999-10-20
EP0950638A4 (en) 2001-05-09
US6174511B1 (en) 2001-01-16
CN1092146C (zh) 2002-10-09
CN1236350A (zh) 1999-11-24
JP3788629B2 (ja) 2006-06-21
DK0950638T3 (da) 2013-02-04
KR20000068567A (ko) 2000-11-25

Similar Documents

Publication Publication Date Title
WO1999003783A1 (fr) Poudre de pseudo-boehmite pour support catalytique et son procede de fabrication
JP5227134B2 (ja) 水素化精製触媒の製造方法
EP2969185B1 (en) Novel resid hydrotreating catalyst
JP2002204959A (ja) 水素化処理用触媒並びに水素化処理方法
US4784750A (en) Catalytic cracking process
JP3838660B2 (ja) 低マクロ細孔率の残油転化触媒
Kumar Porous nanocomposites as catalyst supports:> Part I.‘second phase stabilization’, thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites
JP2949346B2 (ja) ヒドロゲルからの水素化処理用触媒の製造方法
WO1997012670A1 (fr) Procede de preparation d'un support d'oxyde d'aluminium
EP0237240A2 (en) Process for the production of hydrogenating catalysts
CN1769384A (zh) 一种重馏分油加氢处理催化剂及其制备方法
JP2822044B2 (ja) ヒドロゲルからの水素化処理用触媒の製造方法
US5110783A (en) Hydrotreating catalyst and method for preparation thereof
CN116037136B (zh) 一种含硼加氢脱氮催化剂及其制备方法
US7390358B2 (en) Modified kaolin compositions and methods for making same
CN111821990B (zh) 一种渣油加氢保护剂载体、催化剂及其制备方法
CN113562751A (zh) 改性拟薄水铝石及其制备方法和改性氧化铝及加氢催化剂
CN113559889A (zh) 改性含磷拟薄水铝石及其制备方法和改性含磷氧化铝及加氢催化剂
JPH0626673B2 (ja) 水素化脱硫・水素化分解能を有する触媒
JP2023150709A (ja) 硫化カルボニルまたは二硫化炭素を加水分解するための触媒担体の製造方法、触媒担体および当該触媒担体を含む触媒
CN117899901A (zh) 一种渣油加氢脱金属催化剂及其制备方法
CN118663244A (zh) 一种加氢处理催化剂及其制备方法和应用
CN120001426A (zh) 氧化铝复合材料及其制备方法和应用以及加氢催化剂和加氢精制方法
CN116037140A (zh) 一种重油加氢脱金属催化剂及其制备方法
CN118847073A (zh) 一种氧化铝载体、加氢催化剂及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801104.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997002185

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998932528

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09254658

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998932528

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997002185

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997002185

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载