+

WO1999000378A1 - PROCESSES FOR PREPARING 2-(φ-ALKOXYCARBONYLALKANOYL)-4-BUTANOLIDES, φ-HYDROXY-(φ-3)-KETO FATTY ESTERS, AND DERIVATIVES THEREOF - Google Patents

PROCESSES FOR PREPARING 2-(φ-ALKOXYCARBONYLALKANOYL)-4-BUTANOLIDES, φ-HYDROXY-(φ-3)-KETO FATTY ESTERS, AND DERIVATIVES THEREOF Download PDF

Info

Publication number
WO1999000378A1
WO1999000378A1 PCT/JP1998/002930 JP9802930W WO9900378A1 WO 1999000378 A1 WO1999000378 A1 WO 1999000378A1 JP 9802930 W JP9802930 W JP 9802930W WO 9900378 A1 WO9900378 A1 WO 9900378A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
alkali metal
metal salt
hydroxy
represented
Prior art date
Application number
PCT/JP1998/002930
Other languages
English (en)
French (fr)
Inventor
Hideaki Takaoka
Sigeru Wada
Nobuhiko Ito
Akio Hasebe
Shinzo Imamura
Hideo Muraoka
Original Assignee
Soda Aromatic Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP18902297A external-priority patent/JPH1121270A/ja
Priority claimed from JP18902197A external-priority patent/JP4706887B2/ja
Priority claimed from JP05582798A external-priority patent/JP4853691B2/ja
Application filed by Soda Aromatic Co., Ltd. filed Critical Soda Aromatic Co., Ltd.
Priority to DE69835508T priority Critical patent/DE69835508T2/de
Priority to US09/242,805 priority patent/US6291688B1/en
Priority to EP98929758A priority patent/EP0970952B1/en
Publication of WO1999000378A1 publication Critical patent/WO1999000378A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/32Decarboxylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/716Esters of keto-carboxylic acids or aldehydo-carboxylic acids

Definitions

  • the present invention is useful as various synthetic raw materials or intermediates. In particular, in the perfumery industry, it is obtained as an intermediate in the production process of ⁇ -hydroxy fatty acid, which is an important intermediate of macrocyclic lactone-based perfume.
  • the present invention relates to a method for producing ( ⁇ -alkoxyalkanol) 4-butanolide and derivatives thereof, and a novel method for producing ⁇ -hydroxy ( ⁇ -3) -keto fatty acid esters and derivatives thereof.
  • the present invention provides a method for producing an ⁇ -hydroxy fatty acid which is an important intermediate of the above-mentioned macrocyclic lactone-based fragrance, wherein the metal salt of 2-( ⁇ -alkoxyalkanol) -14-butanolide and
  • the present invention relates to a method for separating and purifying a dicarboxylic acid ester which is not reacted with a derivative thereof.
  • the present invention provides an ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid and a salt thereof, a dicarboxylic acid and a carboxylic acid thereof in the production of ⁇ -hydroxy fatty acid which is an important intermediate of the above-mentioned macrocyclic lactone-based flavor.
  • the present invention relates to a method for separating and recovering salt, and ⁇ , ⁇ -dihydroxy- ⁇ 5, ( ⁇ -3) -alkanedione.
  • n is an integer of 7 to 13 and M represents an alkali metal
  • ⁇ -hydroxy ( ⁇ -3) an alkali metal salt of a keto fatty acid and a general formula (10)
  • ⁇ -hydroxy ( ⁇ -3) -keto fatty acids are useful as various synthetic raw materials or intermediates, and in particular, macrocyclic lactones in the perfumery industry. It is an important intermediate of fragrance.
  • 2- ( ⁇ -Alkoxycarbonylalkanoyl) -4-butanolides are useful as various synthetic raw materials or intermediates.
  • macrocyclic lactones such as cyclopentyldecanolide and cyclohexadelidenolide are useful. It is effectively used as an intermediate in the production of the above-mentioned ⁇ -hydroxy fatty acid, which is an important intermediate of fragrance.
  • this one ( ⁇ -cyanoalkanoyl) Starting materials are generally difficult to obtain and relatively expensive ⁇ -cyanoundecanoic acid ester, or ammonia is used when the ⁇ -nitrile group is finally converted to a carboxyl group.
  • this method was not satisfactory enough as an industrial production method because of the fact that the production of the product became complicated, and at the same time had a bad influence on the aroma of the target product.
  • R ⁇ C (CH 2 ) n COOR where n is an integer of 7 to 13 and R is an alkyl group
  • 7 ′′ A method using ptyrrolactone as a starting material has been proposed in International Patent Application Publication No. WO 97 / 06-156. This method uses an excess amount of dicarboxylic acid ester with respect to argyrolactone. Mix at room temperature in the presence of a condensing agent consisting of a base, heat and stir at normal pressure, and react while removing generated methanol.
  • the dicarboxylic acid ester in order to increase the selectivity of the raw material based on the dicarboxylic acid ester represented by the above general formula, is used in an amount of at least twice the molar amount of the charged lactone.
  • the unreacted dicarboxylic acid ester is recovered from the reaction mixture in order to use an excess amount and reuse it for the next reaction.
  • the condensation reaction solution is once oxidized and a solvent such as ethyl acetate is used.
  • a solvent such as ethyl acetate
  • the resulting reaction mixture is subjected to simple distillation to obtain unreacted dicarboxylic acid ester in the distillate and condensate in the distillation residue 2- ( ⁇ -alkoxycarbonylalkanol) —4—
  • the method of dividing into butanolides is used.
  • Japanese Patent Application Laid-Open No. Hei 4-134407 describes a method for separating and recovering ⁇ -hydroxy fatty acid or an ester thereof, and ⁇ , diol and dicarboxylic acid or a mixture of three kinds of the ester thereof.
  • a compound having a carbonyl group in the molecule there is no mention of a compound having a carbonyl group in the molecule.
  • the present inventors have proposed that a large amount of an alkaline base in the method of International Patent Application Publication No. WO 97-06156 is used, and that a large amount of heat and energy are difficult to separate from the reaction water.
  • Intensive research has been conducted on a method for solving the problem of requiring a number, and as an intermediate in the production of ⁇ -hydroxy fatty acid, the above-mentioned problem can be solved through a novel compound ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester.
  • the inventors have found that the point is eliminated, and have reached the present invention.
  • An object of the present invention is to improve the above-mentioned conventional technology and to use a dicarbonate ester, which is an easily available and inexpensive raw material, to obtain a high yield, good selectivity, and industrially advantageous 2- ( ⁇ —Alkoxycarbon alkanoyl) — It is an object of the present invention to provide a method for producing 4-butanolite and its derivatives such as alkali metal salts.
  • the present inventors have found that when separating a reaction product and an unreacted dicarboxylic acid ester from a condensation reaction solution prepared from carboxylactone and an excess amount of dicarboxylic acid ester in the presence of a base, Extraction with an active solvent and water or an aqueous alkali solution, or solid-liquid separation with an inert solvent, yields the condensation product 2- ( ⁇ -alkoxycarbanolalkanol) — 4-butanolite
  • the present inventors have found a method for efficiently separating and purifying a metal salt or a derivative thereof from an unreacted ester, and have reached the present invention.
  • Yet another object of the present invention is to provide an important intermediate for macrocyclic lactone fragrance, ⁇ -
  • the present invention provides a novel compound ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester which can be advantageously used as an intermediate in the industrial production of hydroxy fatty acid, and further provides the ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid
  • An object of the present invention is to provide a method for producing an ester and its derivative in a high yield.
  • Still another object of the present invention is to provide an industrial method for producing ⁇ -hydroxy fatty acids, which are important intermediates of macrocyclic lactone-based fragrances, by using ⁇ -hydroxy- ( ⁇ -3) -keto fatty acids and their salts and by-products. It is an object of the present invention to provide a method for selectively separating and recovering dicarboxylic acids and salts thereof, and ⁇ -dihydroxy- ⁇ 5, ( ⁇ -3) -alkanedione. An object of the present invention is to achieve the above-mentioned object, and a method for producing 2- ( ⁇ -alkoxylalkanol) -14-butanolide and its metal salt according to the present invention is as follows. —Ptirolactone and general formula (1)
  • ROOC (CH 2 ) nCOOR (1) (where n is an integer of 7 to 13 and R is an alkyl group) are subjected to a condensation reaction with a dicarboxylic acid ester represented by the general formula (2)
  • n is an integer of 7 to 13 and R is an alkyl group
  • 2- ( ⁇ -alkoxycarbonylalkanol) 1-4-butanolite or a general formula (3)
  • the length of the general formula (1) is an alkyl group having 1 to 6 carbon atoms
  • the condensation reaction is performed while distilling off alcohol under reduced pressure
  • the condensation reaction is performed under reduced pressure. It is included in a preferred embodiment that the step is performed by changing the degree in two or more steps.
  • one of the separation and purification methods is a method for preparing a 2- (2-)-dihydroxylactone represented by the above-mentioned general formula (3) from a condensation reaction solution of an ester lactylactone and a dicarboxylic acid ester shown by the above-mentioned general formula (1).
  • Another one of the separation and purification methods of the present invention is a method for preparing a 2-(-) compound represented by the above-mentioned general formula (3) from a condensation reaction solution of carboxylactone and a dicarboxylic acid ester represented by the above-mentioned general formula (1).
  • R is an alkyl group
  • M is an alkali metal.
  • ⁇ -Hydroxy- ( ⁇ -2) -carboxy- ( ⁇ -3) This is a separation and purification method characterized in that when separating a salt and an unreacted dicarboxylic acid ester, extraction is performed using water or an aqueous solution of alkali.
  • the compound represented by the general formulas (3), (4), (5) and (6) can be extracted by using a solvent inert to water or an alkaline aqueous solution.
  • ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester is produced.
  • the method for producing the ⁇ -hydroxy ( ⁇ -3) -keto fatty acid ester of the present invention is represented by the general formula (3)
  • is an integer of 7 to 13
  • R is an alkyl group
  • is an alkali metal
  • 2- ( ⁇ -alkoxyalkanol) an alkali metal salt of 1-4-butanolide in the presence of a weak acid ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester can also be obtained by heating and heating to cause hydrolysis and decarboxylation.
  • R in (7) is preferably an alkyl group having 1 to 6 carbon atoms.
  • n is an integer of 7 to 13 and M represents an alkali metal
  • ⁇ -hydroxy- ( ⁇ -3) an alkali metal salt of a keto fatty acid and a general formula (8)
  • n is an integer of 73, and ⁇ represents an alkali metal
  • formula (8) an alkali metal salt of a keto fatty acid
  • is an integer of 713, and ⁇ represents an alkali metal
  • represents an alkali metal
  • ⁇ -hydroxy- ( ⁇ -3) Selective crystallization of an alkali metal salt of a keto fatty acid, which is separated into a cake and a filtrate by solid-liquid separation, yielding the ⁇ -hydroxy- ( ⁇ - 3)
  • the alkali metal salt of a keto fatty acid and the alkali metal salt of a long-chain dicarboxylic acid represented by the general formula (8) are separated and recovered.
  • the objective of the present invention is also achieved by a combination of these methods.
  • n is an integer of 7 to 13 and R is an alkyl group.
  • n is an integer of 7 to 13 and R is an alkyl group
  • one of the features of the present invention resides in that adibutyrolactone and an alkali metal alcoholate are added to a dicarboxylic acid ester during heating and stirring to cause a condensation reaction.
  • the alkali metal alcoholate may be mixed and added (dropped), or may be added individually.
  • This reaction is preferably carried out while distilling the alcohol out of the system under reduced pressure. Further, in the present invention, as a second step following the above, the selectivity and the yield can be improved by further increasing the degree of vacuum and heating and stirring to continuously react while removing the remaining alcohol outside the system. It is preferable for smoothing.
  • R of the dicarboxylic acid ester represented by ROOC (CH 2 ) n COOR (wherein n is an integer of 7 to 13 and R is an alkyl group) of the general formula (1) used in the present invention is particularly preferably used.
  • alkyl groups having 1 to 6 carbon atoms are particularly preferably used.
  • Specific examples of this R include methyl, ethyl, propyl, butyl, isoptyl, ⁇ And a hexyl group. Especially, a methyl group is preferable.
  • Preferred examples of the dicarboxylic acid ester represented by the general formula (1) include 1,12-dodecanoic acid dimethyl ester and 1,13-tridecanoic acid dimethyl ester (brassyl dimethyl ester).
  • the condensation reaction is carried out in the presence of an alkali metal alcoholate.
  • an alkali metal alcoholate a general formula R ′ RM (where R ′ is an alkyl group having 1 to 4 carbon atoms) , M is an alkali metal).
  • alcoholic metal alcohol examples include sodium methylate, sodium etherate, sodium propylate, sodium butylate, potassium methylate, potassium ethylate, potassium propylate and potassium butylate. And the like.
  • the use amount of these alcohols is not particularly limited, but it is preferably 0.1 to 5 equivalents, more preferably 0.5 to 3 equivalents, to the peptide lactone.
  • the amount of the alkali metal alcohol used is small, the yield is low, and when the amount used exceeds a certain level, the yield is saturated, and conversely, the selectivity may be reduced.
  • the amount of the dicarboxylic acid ester represented by the general formula (1) is preferably an excess molar amount with respect to the carboxylactone, specifically, more preferably 2 times or more.
  • the selectivity is particularly improved.
  • the unreacted dicarboxylic acid ester when unreacted dicarboxylic acid ester remains, it is preferable to recover the unreacted dicarboxylic acid ester from the reaction mixture and recycle it for the condensation reaction for efficient reaction.
  • the unreacted dicarboxylic acid ester can be easily recovered from the reaction mixture by extraction with water or an aqueous alkali solution or by solid-liquid separation. Combined with recycling, a more efficient reaction is realized.
  • the amount is preferably reduced in order to efficiently remove the alcohol.
  • the condensation reaction takes place under pressure.
  • the reduced pressure condition is preferably 50 to 760 mmHg, and more preferably 100 to 60 mmHg.
  • the decompression can be performed in two or more stages.
  • the reaction is carried out by reducing the pressure to about 500 to 70 O mmHg, which is sufficient for evaporating the alcohol generated in the first step, and the pressure is further raised to about 50 to 30 OmmHg in the second step. Can react.
  • the heating temperature conditions for the condensation reaction are not particularly limited, but suitable conditions are set in relation to the reduced pressure, preferably 30 to 200, and more preferably 50 to 150 ° C. preferable.
  • a solvent does not need to be particularly used, but the reaction can be carried out by adding a solvent used for general ester condensation as long as the solvent does not reduce the activity of the metal alcohol.
  • the reaction system of the present invention can be carried out in any of a batch system, a continuous system, and a multistage system.
  • the alkali metal salt of 2- ( ⁇ -alkoxycarbonylalkanoyl) -14-butanolide obtained by the present invention can easily and easily produce ⁇ -hydroxy fatty acid, which is an important intermediate of macrocyclic lactone-based fragrance, as described later. Derived in yield.
  • reaction product of the condensation reaction of the dicarboxylic acid ester represented by the general formula (1) with the aptyrrolactone according to the present invention is a compound of the type) 3-ketoester, and the reaction solution usually contains the compound of the general formula (3)
  • n is an integer of 7 to 13
  • R is an alkyl group
  • M is an alkali metal
  • the alkali metal salt represented by the general formula (3) was found to have extremely low solubility in organic solvents such as n-hexane. Also, When this salt is put into an aqueous solution of alcohol, it is easily dissolved, and the arptyrolactone part and the terminal ester part are rapidly hydrolyzed, resulting in the general formula (4)
  • the inventors of the present invention have conducted intensive studies focusing on the solubility of alkali metal salts of 2- ( ⁇ -alkoxycarbonylalkanoyl) -4-butanolide in organic solvents and water, and as a result, 2— ( ⁇ — (Alkoxycarbonylalkanoyl)
  • 2— ( ⁇ — (Alkoxycarbonylalkanoyl) A purification method for obtaining an alkali metal salt of 4-butanolide and a derivative thereof and an unreacted dicarboxylic acid ester easily and at a high yield was also found, and the present invention was completed. did.
  • the present invention is a method of separating the alkali metal salt represented by the general formula (3) and the unreacted dicarboxylic acid ester represented by the general formula (1) by solid-liquid separation such as filtration (hereinafter, referred to as solid-liquid separation). Separation method).
  • the unreacted dicarboxylic acid ester dissolves, but the alkali or 2- ( ⁇ - Alkoxycarbon alkanoyl) — Add an organic solvent that is inert to the metal salt of the alcohol to the condensation reaction solution to sufficiently dissolve the unreacted dicarboxylic acid ester and form a suspension with the salt. I do.
  • This suspension is separated into a solution part and a solid part by a method known per se such as filtration or centrifugation. The solid portion is thoroughly washed with a solvent to remove unreacted dicarboxylic acid ester. After mixing and concentrating the solution and the washing solution, they are recycled and reused in the next condensation reaction.
  • the solid portion can be used as it is, or can be acidified to be used as 2- ( ⁇ -alkoxycarbonylalkanoyl) -14-butanol. Further, it can be used for hydrolysis and decarboxylation by being introduced into an aqueous alkali solution.
  • the present invention also relates to a method of extracting and separating 2- ( ⁇ -alkoxycarbonylalkanoyl) -4-butanol salt into an aqueous layer and unreacted dicarboxylic acid ester into an organic layer, respectively (hereinafter, referred to as separation). This is called the alkali extraction method).
  • the alkali metal salt of the general formula (3), the compound of the general formula (6), and the alkali metal salt of the general formula (4) may be added depending on the addition amount of the alkali metal hydroxide.
  • an alkali metal salt of the general formula (5), which is partially decarboxylated is extracted. This was clarified by examining the composition of the crystal obtained by acidifying the aqueous layer obtained by the above operation and then extracting.
  • the crystal includes a compound of the general formula (2), a long-chain dicarboxylic acid, a compound of the general formula (12)
  • 2- ( ⁇ -alkoxycarbonylalkanol) of general formula (2) —4-butanolide and 2- ( ⁇ -carboxyalkanol of general formula (12) are contained in the crystal.
  • the 14-node it is considered as follows. That is, it is presumed that when the alkali metal salt represented by the general formula (3) is dissolved in an alkaline aqueous solution, the arptyrolactone portion is rapidly hydrolyzed to produce the compound represented by the general formula (6). You.
  • the generation of the ⁇ -hydroxy ( ⁇ -3) -keto fatty acid is based on the occurrence of the decarboxylation reaction of i3-keto acid by using an alkali metal hydroxide in an amount more than required for hydrolysis.
  • the aqueous layer thus obtained can be used as it is in the hydrolysis and decarboxylation reactions in the next step. .
  • the solvent used in the present invention is not particularly limited as long as it is inert to an alkali or a salt of 2- ( ⁇ -alkoxycarbonylalkanoyl) -4-butanol.
  • Specific examples include organic solvents such as pentane, hexane, heptane, octane, cyclohexane, benzene, toluene, xylene, getyl ether, and isopropyl ether.
  • the alkali extraction method can be carried out without using a solvent, but is preferably used.
  • the amount of the solvent used is preferably 0 to 10 times, more preferably 0.5 to 5 times the weight of the condensation reaction solution.
  • the dissolution temperature in the solvent and the temperature at the time of alkali extraction are not particularly limited as long as the organic layer is not solidified. Range.
  • the alkaline base used in the alkali extraction method is not particularly limited as long as it can extract 2- ( ⁇ -alkoxycarbonylalkanoyl) -4-butanolite, an alkali metal salt and a derivative thereof.
  • alkali metal hydroxides such as lithium, sodium hydroxide and potassium hydroxide, alkaline metal carbonates such as sodium carbonate and carbonated lithium, and alkaline earth metal hydroxides such as barium hydroxide. it can.
  • the concentration of the alkaline solution is not particularly limited, but is preferably in the range of 0.5 to 50%, more preferably in the range of 1 to 15%.
  • the amount used is also not limited, but is preferably 0.1 to 10 times, more preferably 0.5 to 2 times the weight of the condensation reaction solution.
  • the purification method of the present invention can be carried out by either a batch method or a continuous method.
  • the present inventors have found that by adding a weak acid such as phosphoric acid to the alkali metal salt of 2- ( ⁇ -alkoxycarbonylalkanoyl) -14-butanolide obtained above and heating the mixture, the yield is improved.
  • a weak acid such as phosphoric acid
  • the ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid esters represented by the above general formula (7) the ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid esters having ⁇ of 10 or 11 are novel compounds. It is.
  • ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester can be obtained.
  • the 2- ( ⁇ -alkoxycarbonylalkanoyl) _4-butanol metal salt represented by the general formula (3) is hydrolyzed by heating it in the presence of a weak acid. Decarboxylation reaction By doing so, an ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester represented by the general formula (7) can be produced.
  • the kind of the weak acid used in the hydrolysis and decarboxylation reaction of the present invention is not particularly limited, and specific examples include phosphoric acid, pyrophosphoric acid, and carbonic acid, and sodium dihydrogen phosphate is also used. It is possible.
  • the amount of the weak acid used is not particularly limited, but is preferably 0.5 to 3 equivalents, preferably 0.5 to 1 equivalent, per mole of the alkali metal salt of 2- ( ⁇ -alkoxycarbonylalkanoyl) -4-butanolite. Equivalent amounts are used.
  • the amount of water used in the reaction of the present invention is not particularly limited, it is preferably 2 to 20 times that of the alkali metal salt of 2- ( ⁇ -alkoxycarbonylalkanoyl) -4-butanol. Used in proportion.
  • a water-soluble organic solvent may or may not be used in the hydrolysis and decarboxylation reaction of the present invention.
  • Specific examples of the water-soluble organic solvent include methanol, ethanol, ethylene glycol, triethylene glycol, dioxane, and tetrahydrofuran. , 1,2-dimethoxyethane and the like.
  • the use amount of these water-soluble organic solvents is preferably in the range of 0.05 to 3 parts by weight per 1 part by weight of water.
  • Such a reaction according to the present invention is a heating reaction.
  • heating is performed in the presence of a weak acid such as phosphoric acid, and the temperature of this reaction is preferably in the range of 80 to 110.
  • the reaction time is appropriately selected depending on the reaction temperature, the charged raw materials and the like, but is generally about 1 to 20 hours.
  • the reaction can be performed either in a batch system or a continuous system.
  • the reaction product can be isolated and purified by unit operations known per se, such as liquid separation, extraction, washing and recrystallization.
  • the ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester represented by the general formula (7) obtained according to the present invention can be easily and at high yield to ⁇ -hydroxy fatty acid which is an important intermediate of a macrocyclic lactone-based flavor. Well derived industrially advantageous.
  • the ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester when the ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester is heated in an aqueous solution of an alkali metal hydroxide or with a water-soluble organic solvent / water mixed solvent, its —COOR group is hydrolyzed.
  • the formula (5) is an alkali metal salt of ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid.
  • the conventional Wo lf f- Ki shner reduction As a result, the —CO— group is reduced to a —CH 2— group by ketone reduction to ⁇ -hydroxy fatty acid.
  • the ⁇ -hydroxyketo fatty acid ester itself is useful as a raw material for synthesis and as an intermediate.
  • a mixture containing an alkali metal salt of ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid represented by the general formula (5) and an alkali metal salt of a long-chain dicarboxylic acid represented by the general formula (8) is used as a mineral ore.
  • the general formula (10) is precipitated and solid-liquid separated to obtain the ⁇ -hydroxy- ( ⁇ -3) -keto represented by the general formula (10).
  • the fatty acid and the alkali metal salt of the long-chain dicarboxylic acid represented by the general formula (8) are separated and recovered.
  • an alkali metal salt of ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid represented by the general formula (5) and an alkali metal salt of a long-chain dicarboxylic acid represented by the general formula (8) are represented by the general formula (9).
  • the general formula (9) is selectively crystallized, and the aqueous solution after removing this as a cake by solid-liquid separation is further treated at a predetermined temperature to obtain the compound of the general formula (5).
  • the general formula (11) is crystallized and separated into a solid and a liquid, whereby the alkali metal of the long-chain dicarboxylic acid represented by the general formula (8) is obtained.
  • Examples of such a method include separating and recovering a salt.
  • ⁇ , ⁇ -dihydroxy-1 ⁇ of the general formula (9) is obtained from the reaction mixture.
  • the organic solvent used for the extraction and separation of (, ⁇ -3) -alkanedione is not particularly limited as long as it is inert under basic conditions and insoluble in water. Specific examples include benzene, toluene, xylene, tetralin, decalin, pentane, hexane, heptane, octane, cyclohexane, isopropyl ether and dibutyl ether. Among them, toluene is particularly preferably used.
  • the amount of the organic solvent to be used is not particularly limited. Weight times.
  • the extraction temperature of the compound represented by the general formula (9) is not particularly limited. However, the higher the temperature, the better the extraction efficiency. 10: particularly preferably in the range of 60 to 90.
  • the organic layer may contain the compound of the general formula (5), most can be recovered by back-extraction using warm water.
  • the crystallization temperature of the compound of the general formula (9) is susceptible to the composition of the reaction mixture, in particular, the moisture content, but the compound of the general formula (9) crystallizes and the compound of the general formula (5)
  • the temperature is not particularly limited as long as the temperature at which the salt of (8) is dissolved. However, from the viewpoint of operational problems, it is preferable that the value be in the range of 20 to 80: particularly 0 to 40.
  • the water content of the reaction mixture is easily affected by the composition of the reaction mixture and the temperature, but the compound of the general formula (9) crystallizes and There is no particular limitation on the water content in which the salt of (8) is dissolved. However, 50 to 99% by weight, particularly 70 to 90% by weight is preferable due to operational problems.
  • the obtained cake may contain salts of the general formulas (5) and (8), but after washing with water or the like, the general formula in the cake is obtained.
  • the purity of the compound of the formula (9) can be increased, and the salts of the general formulas (5) and (8) can be recovered as an aqueous solution.
  • the type of the extraction step is a batch type, a multi-stage type, and Any type such as a continuous type may be used.
  • the crystallization temperature of the compound of the general formula (5) is susceptible to the composition of the reaction mixture, in particular, the moisture content, but the crystal of the compound of the general formula (5) is formed, and
  • the temperature is not particularly limited as long as the compound (2) is dissolved. However, due to operational problems, the temperature is preferably from 20 to 80 ° C, particularly preferably from 0 to 40.
  • the water content of the reaction mixture is easily affected by the composition and temperature of the reaction mixture, but crystals of the compound of the general formula (5) are formed and the compound of the general formula (8) is dissolved.
  • the moisture content is within the above range.
  • 50 to 99% by weight, particularly 70 to 90% by weight is preferable due to operational problems.
  • a usual method such as centrifugal sedimentation, centrifugal dehydration and filtration can be used.
  • the compound of the general formula (8) may be mixed in the obtained cake, washing with water or the like further increases the degree of the compound of the general formula (5) in the cake.
  • the compound of general formula (8) can be recovered as an aqueous solution.
  • the cake obtained in the production of macrocyclic lactone can be used as it is in the next reduction reaction or after it has been acidified once.
  • the reduction reaction can be performed by a method known per se, such as a Wolff-Kishner reduction or a Clemmensen reduction.
  • the mineral acid used to acidify the alkali metal salts of the general formulas (5) and (8) is not particularly limited, but sulfuric acid and hydrochloric acid are often used.
  • the fatty acid obtained after acidification can be obtained by solid-liquid separation such as centrifugal sedimentation, centrifugal dehydration and filtration, or benzene, toluene, xylene, pentane, hexane, heptane, and octane.
  • Extraction means using an organic solvent such as hexane, cyclohexane, dimethyl ether, isopropyl ether, ethyl acetate, dichloromethane, chloroform, carbon tetrachloride and dichloroethane can be used.
  • the pH when the general formula (10) is collected from the mixture of the general formulas (5) and (8) using a mineral acid is preferably 5 to 7, particularly preferably 5.5 to 6. 5 is preferred.
  • p H is preferably from 3 to 5, and particularly preferably from 3.5 to 4.5. Lowering the pH below this has no problem with respect to the recovery rate and purity of the general formula (11), but is not preferred because the amount of mineral acid used increases and the cost of auxiliary materials increases.
  • 1,12-Dodecaneic acid dimethyl ester (105.00 g, 406.4 mmo 1) was charged into the reactor, and the mixture was heated and stirred at 105 under a reduced pressure of 6001111111.
  • the methanol was distilled off while dropping into 1,12-dodecanoic acid dimethyl ester for 30 minutes. After performing the reaction for 30 minutes as it was, the pressure was reduced to 20 OmmHg, and the reaction was further performed for 120 minutes.
  • 1,12-Dodecanoic acid dimethyl ester (105.00 g, 406.4 mmo 1) was charged into the reactor, and heated and stirred at 105 under reduced pressure of 60 OmmHg.
  • 1,1,2-dodecanoic acid dimethyl ester The methanol was distilled off while dropping in for 30 minutes. After the reaction as it was for 30 minutes, the pressure was reduced to 20 OmmHg, and the reaction was further performed for 240 minutes.
  • 1,12-Dodecaneic acid dimethyl ester (105.00 g, 406.4 mmo 1) was charged into a reactor, and heated and stirred at 105 ° C. under a reduced pressure of 50 OmmHg.
  • Methanol was distilled off while dropping into 1,12-dodecaneic acid dimethyl ester for 30 minutes. After the reaction as it was for 30 minutes, the pressure was reduced to 10 OmmHg and the reaction was further performed for 120 minutes.
  • 1,12-Dodecaneic acid dimethyl ester (105.00 g, 406.4 mmol), abutyrolactone (8.75 g, 101.6 mmol) and 28% by weight sodium methoxide-methanol solution (19. 60 g, 101.6 mmol) were mixed at 50, and the temperature was raised to 110 over 45 minutes while distilling off methanol. After the reaction as it was for 30 minutes, the pressure was reduced to 63 OmmHg and the reaction was performed for 30 minutes.
  • 1,12-Dodecanniic acid dimethyl ester (105.00 g, 406.4 mmol), arbutyrolactone (8.75 g, 101.6 mmol 1) and 28% by weight sodium methoxide-methanol solution (19.60 g) , 110.6 mmo 1) and 11.6 g of the condensation reaction solution (partial acidification and quantification confirmed that it contained 25.7 1 g of the condensed product and 80.70 g of unreacted ester) was heated and stirred at 50.
  • 565 g of n-hexane was added, and the mixture was stirred while cooling to 2 O, whereby a suspension of a pale yellow precipitate and a clear supernatant liquid was obtained. This was separated into a precipitate and a supernatant by a pressure filter. The cake was thoroughly washed with n-hexane.
  • 1,12-Dodecaneic acid dimethyl ester 64.73 g, 207.2 mmo 1
  • abutyrolactone (4.46 g, 51.8 mmo 1)
  • 28% by weight sodium methoxide-methanol solution 9 99 g, 51.8 mmol
  • a condensation reaction solution consisting of 12.25 g of condensate and 42.6 lg of unreacted ester as a result of partial acidification and quantification
  • the aqueous layer was immediately dropped into dilute sulfuric acid to be acidified, and then extracted with ethyl acetate and washed with water. After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain crystals.
  • 1,12-Dodecaneic acid dimethyl ester (105.00 g, 406.4 mmo 1), abutyrolactone (8.75 g, 101.6 mmo 1) and 28% by weight sodium methoxide-methanol solution (19. 60 g, 101.6 mmo 1), the condensation reaction solution (confirmed to contain 25.49 g of condensate and 80.82 g of unreacted ester as a result of partial acidification and quantification)
  • the mixture was heated and stirred. To this was added 104.4 g of n-hexane and stirred for 2 minutes. To this, 107.5 g of a 5% -KOH aqueous solution was added, and the mixture was stirred as it was for 120 minutes.
  • 1,12-Dodecanninic acid dimethyl ester (105.00 g, 406.4 mmol), aptyrrolactone (8.75 g, 101.6 mmol) and 28% by weight sodium methoxide-methanol solution (19.60 g) g, 101.6 mmo 1). 8 g and the unreacted ester (confirmed to contain 80.67 g) were poured into dilute hydrochloric acid and extracted with ethyl acetate. The organic layer is washed with water, dried over anhydrous magnesium sulfate, and then the solvent is distilled off. The resulting oily residue is distilled under reduced pressure (oil bath temperature: 170-180, 0.5-0.2 mmHg) to remove excess oil.
  • 1,12-Dodecanniic acid dimethyl ester (105.00 g, 406.4.4 mmo 1), aptyrrolactone (8.75 g, 101.6 mmo 1) and 28% by weight sodium methoxide-methanol solution (19.6 g, 101.6 mmo 1) from the condensation reaction solution (13.2 g) (Partial acidification and quantification revealed that it contained 25.65 g of the condensed product and 80.84 g of unreacted ester) Was heated and stirred at 5 Ot :. To this, 550 g of n-hexane was added and stirred while cooling to 20 to form a suspension. This was separated into a precipitate and a supernatant by a pressure filter. The filtration residue was sufficiently washed with n-hexane.
  • 1,12-Dodecanniic acid dimethyl ester (105.00 g, 406.4 mmo 1) and carboxylactone (8.75 g, 101.6 mmo 1) and 28% by weight sodium methoxide-methanol solution (19.60 g, 101.6 mmo 1) and 13.2 g of condensation reaction solution (partially acidified and quantified.
  • 25.65 g of condensate, 80.% of unreacted ester) 84 g was heated and stirred at 50 ° C.
  • 550 g of n-hexane was added and stirred while cooling to 2 O: to form a suspension. This was separated into a precipitate and a supernatant by a pressure filter.
  • the filtration residue was sufficiently washed with n-hexane. 35.55 g of the obtained filtration residue was dropped into 49.8 g (50.8 mm 01) of a 10% aqueous phosphoric acid solution. Further, anhydrous disodium hydrogen phosphate (1. 3.63 g, 96. Ommol), water (350 g) and 1,4-dioxane (250 g) were charged into the reactor, and the reaction was carried out at 100 for 5 hours. Upon the reaction, the reaction solution was separated into two layers. The organic layer was separated, and the aqueous layer was extracted using toluene. After the organic layer and the toluene extract were mixed and washed with water, the solvent was distilled off to obtain 26.56 g of crystals.
  • 1,12-Dodecanenilic acid dimethyl ester (105.00 406.4 mol 1), arbutyrolactone (8.75 g, 101.6 mmo 1) and 28 wt% sodium methoxide-methanol solution (19.60 g, The condensation reaction solution prepared from 101.6 mmo 1) was heated and stirred at 50. To this, 104.4 g of n-hexane was added and stirred for 2 minutes. To this, 73.87 g of a 5.5% -Na ⁇ H aqueous solution was further added, and the mixture was stirred for 120 minutes as it was. After allowing to stand for 5 minutes, the layers were separated and separated into an organic layer and an aqueous layer. Add 10.00 g of 41% —Na ⁇ H aqueous solution to the aqueous layer After refluxing for 2 hours, the mixture was cooled to 80 to obtain 126.52 g of a reaction mixture.
  • Example 12 Purification of 5-hydroxy-12-ketopene decanoic acid
  • the reaction mixture obtained in Reference Example 3 was extracted with the same weight of toluene for 20 minutes while keeping the temperature at 80. .
  • the aqueous layer obtained by repeating this operation five times was subjected to crystallization treatment in a constant temperature bath for 2 hours.
  • the precipitated crystals were separated into a cake portion and a filtrate using a centrifugal filter. After each was acidified using dilute sulfuric acid, it was extracted with ethyl acetate. After the organic layer was washed with saturated saline, the solvent was distilled off to obtain a crystal.
  • Table 3 shows the results of quantitative analysis of each by HPLC.
  • Example 13 Purification of 15-hydroxy-12-ketopene decanoic acid by pH adjustment
  • the reaction mixture obtained as in the above Reference Example 3 was extracted with the same weight of toluene for 20 minutes while keeping the temperature at 80.
  • the aqueous layer obtained by repeating this operation five times was crystallized for 2 hours in a constant temperature bath at 20 ° C.
  • the precipitated crystals were separated into a cake portion and a filtrate using a centrifugal filter.
  • Table 4 shows the results of quantitative analysis of each by HPLC.
  • 2- ( ⁇ -alkoxycarbonylalkanoyl) -14-butanolide and its metal salt are obtained in a high yield by using a dicarboxylic acid ester which is an easily available and inexpensive raw material. It can be obtained by an industrially advantageous production method with good selectivity. .
  • an alkali metal salt of 2- ( ⁇ -alkoxycarbonylalkanoyl) -4-butanolide is industrially advantageously obtained from a condensation reaction solution obtained by a reaction between a dicarboxylic acid ester and aptyrolactone. And its derivatives and unreacted esters can be easily separated and purified in high yield.
  • a novel compound ⁇ -hydroxy- ( ⁇ -3) -keto fatty acid ester can be industrially advantageously obtained in high yield.
  • ⁇ -hydroxy ( ⁇ -3) -keto fatty acid ester in the production of ⁇ -hydroxy fatty acid, which is an important intermediate of macrocyclic lactone-based fragrances, a large amount of alkaline base can be obtained as in the conventional method. No need to use water, and it is easy to separate from reaction water Therefore, the number of steps can be significantly reduced, and a production method useful for promoting industrialization is provided.
  • ⁇ -hydroxy- which is an important intermediate of macrocyclic lactone-based fragrances used particularly in the fragrance industry, Hi, ⁇ -dihydroxy- ⁇ , ( ⁇ -3) -alkanedione, ⁇ -hydroxy- ( ⁇ -3) -keto fatty acids and their salts, which have been difficult in the production of ( ⁇ -3) -keto fatty acids.
  • Dicarboxylic acid and salts thereof can be separated and recovered efficiently with good selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明細書
2— (ω—アルコキシ力ルポ二ルアルカノィル) —4—ブ夕ノリッド、 ω—ヒ ドロキシー (ω— 3 ) —ケト脂肪酸エステルおよびそれらの誘導体の製造法
技術分野
本発明は、 各種の合成原料ないし中間体として有用であり、 特に香料工業分野 において、 大環状ラクトン系香料の重要中間体である ω—ヒドロキシ脂肪酸の製 造過程における中間体として得られる、 2— (ω—アルコキシ力ルポ二ルアルカ ノィル) — 4—ブタノリツドとその誘導体の製造法、 および新規な ω—ヒドロキ シ— (ω— 3 ) —ケト脂肪酸エステル、 およびその誘導体の製造法に関するもの である。
また、 本発明は、 上記の大環状ラクトン系香料の重要中間体である ω—ヒドロ キシ脂肪酸の製造において、 2 — ( ω—アルコキシ力ルポ二ルアルカノィル) 一 4—ブタノリッドのアル力リ金属塩およびその誘導体と未反応のジカルボン酸ェ ステルの分離精製法に関するものである。
さらに、 本発明は、 上記の大環状ラクトン系香料の重要中間体である ω—ヒド ロキシ脂肪酸の製造における、 ω—ヒドロキシ— (ω— 3 ) —ケト脂肪酸およて その塩、 ジカルボン酸およびその塩、 ならびに α , ω—ジヒドロキシ— <5, (ω — 3 ) —アルカンジオンの分離回収方法に関するものである。
従来の技術
一般式 (5 )
0
Figure imgf000003_0001
(式中、 nは 7〜1 3の整数、 Mはアルカリ金属を表す) で示される ω—ヒドロ キシー (ω— 3 ) —ケト脂肪酸のアルカリ金属塩と、 一般式 ( 1 0 )
Figure imgf000004_0001
(ただし、 nは 7〜 1 3の整数) で示される ω—ヒドロキシー (ω— 3 ) —ケト 脂肪酸は、 各種合成原料ないし中間体として有用であり、 特に香料工業分野にお ける大環状ラクトン系香料の重要中間体である。
2— ( ω—アルコキシカルボ二ルアルカノィル) —4—ブタノリツドは、 各種 の合成原料ないし中間体として有用であり、 特に香料工業分野において、 シクロ ペン夕デカノリッドゃシクロへキサデ力ノリッドなどの大環状ラクトン系香料の 重要な中間体である、 上記の ω—ヒドロキシ脂肪酸の製造における中間体として 有効に使用されている。
従来、 ω—ヒドロキシ脂肪酸の合成法としては、 ω—シァノウンデカン酸エス テルとァ—プチロラクトンとを出発物質とする方法が、 日本特開平 5— 8 6 0 1 3号公報で提案されていて、 公知である。
しかしながらこの方法は、 原料入手が一般的に困難とされており、 しかも比較 的高価とされている 1 1—シァノウンデカン酸メチルを原料とすること、 ω—位 の二トリル基を最終的にはカルボキシル基にする際にアンモニアが生成し処理が 煩雑になると同時に、 目的物の香気にも悪影響を及ぼす等の理由から、 工業的な 製造法としてはなお十分満足できるものではなかった。
また、 ω—ヒドロキシ脂肪酸の合成法として、 α— ( ω—シァノアルカノィル ) —ァ—プチロラクトンを出発物質とする方法が、 日本特開平 3— 1 1 0 3 6号 公報および特開平 5— 8 6 0 1 3号公報で提案されている。 この方法の利点の一 つとして、 α— ( ω—シァノアルカノィル) 一ァ一プチロラクトンを、 アルカリ 金属水酸化物の存在下に加水分解および脱炭酸反応して得られる中間体 ω—ヒド 口キシケトニトリルが油溶性であるため、 反応に大量に使用される水や、 反応副 生成物として生じるアルカリ金属炭酸塩の分離が容易なことが挙げられる。
しかしながら、 このひ一 (ω—シァノアルカノィル) 一ァ一プチロラクトンの 出発原料は一般的に入手が困難で、 しかも比較的高価とされている ω—シァノウ ンデカン酸エステルを原料とするとか、 ω—位の二トリル基を最終的にカルボキ シル基にする際にアンモニアが生成し処理が煩雑になると同時に、 目的物の香気 にも悪影響を及ぼす等の理由から、 工業的な製造法としてはなお十分満足できる ものではなかった。
また、 入手が極めて容易でありかつ安価な、 一般式 R〇〇C ( C H 2 ) n C O O R (ただし、 n = 7〜1 3の整数、 Rはアルキル基) で示されるジカルボン酸 エステルと 7"—プチロラクトンとを出発原料とする方法が、 国際特許出願公開 W 〇 9 7— 0 6 1 5 6号公報で提案されている。 この方法は、 ァ—プチロラクトン に対して過剰量のジカルボン酸エステルを塩基からなる縮合剤の存在下に室温で 混合し、 常圧で加熱撹拌して、 生成したメタノールを除きながら反応させて 2—
( ω—アルコキシカルボ二ルアルカノィル) —4—ブタノリッドを取得するもの であり、 この方法も優れた方法ではある。
しかしながら、 未だ選択率と収率が十分満足すべきものではなく、 また、 中間 体の 2— ( ω—アルコキシカルボ二ルアルカノィル) —4—ブタノリツドの加水 分解および脱炭酸反応時に、 大量に過剰量のアルカリ性塩基の水溶液を添加しな ければならない。 したがって、 次の工程である Wo l f f- Ki shner 還元時に大量の水 を蒸留によって取り除かなければならないことが問題点として挙げられる。
さらに、 この方法においては、 原料の上記一般式で示されるジカルボン酸エステ ル基準の選択率を上げることを目的として、 ジカルボン酸エステルをァ—プチ口 ラクトンの仕込み量に対して 2倍モル以上の過剰量使用し、 これを次の反応に再 利用するため、 反応混合物から未反応のジカルボン酸エステルを回収するもので ある。
この反応において、 未反応のジカルボン酸エステルと 2— (ω—アルコキシ力 ルポ二ルアルカノィル) — 4—ブ夕ノリッドとの分離には、 縮合反応液を一旦酸 性化し、 酢酸ェチルなどの溶媒を用いて抽出した後、 洗浄および溶媒回収後、 得 られた反応混合物を単蒸留することで、 留出部に未反応ジカルボン酸エステルと 蒸留残部に縮合物である 2— ( ω—アルコキシカルボ二ルアルカノィル) —4— ブタノリッドとに分ける方法が用いられている。 しかしながら、 この方法は抽出操作や単蒸留という多くの工数を有する煩雑な 工程を必要とする上に、 蒸留時に 2— ( ω—アルコキシカルボ二ルアルカノィル ) —4—ブタノリツドが分解されるという問題点をかかえており、 また、 次のェ 程でアルカリ加水分解 ·脱炭酸反応、 また Wo l f f-Ki shner 還元を行なう際に、 一 旦酸性化して得られた 2— ( ω—アルコキシカルボ二ルアルカノィル) 一 4—ブ タノリツドに、 再度アル力リを添加するという繁雑な工程を必要とする。
また、 日本特開平 4一 1 3 4 0 4 7号公報には、 ω—ヒドロキシ脂肪酸もしく はそのエステル、 ひ, ω—ジオールおよびジカルボン酸もしくはそのエステルの 三種の混合物の分離回収法が記載されているが、 分子内にカルボ二ル基を有する ような化合物については何等触れられていない。
発明の開示
本発明者等は、 国際特許出願公開 WO 9 7 - 0 6 1 5 6号公報の方法のアル力 リ性塩基を大量に使用することや、 反応水との分離が困難で多くの熱量およびェ 数を必要とするという問題点を解決する方法について鋭意研究し、 ω—ヒドロキ シ脂肪酸の製造における中間体として、 新規化合物 ω—ヒドロキシー (ω— 3 ) ーケト脂肪酸エステルを経由することにより、 上記問題点が解消されることを見 いだし本発明に到達した。
本発明の目的は、 上記従来技術を改良し、 入手容易で安価な原料であるジカル ボン酸エステルを用いて、 高い収率でかつ選択率の良好な、 そして工業的に有利 な 2— (ω—アルコキシカルボ二ルアルカノィル) — 4—ブタノリツドおよびそ のアルカリ金属塩等誘導体の製造法を提供することにある。
また本発明者等は、 塩基の存在下に、 ァ—プチロラクトンと過剰量のジカルポ ン酸エステルとから調製される縮合反応液から、 反応生成物と未反応ジカルボン 酸エステルとを分離するに際し、 不活性な溶媒と水またはアルカリ水溶液を用い て抽出したり、 あるいは不活性な溶媒を用いて固液分離することで、 縮合反応物 の 2— ( ω—アルコキシカルボ二ルアルカノィル) — 4—ブタノリツドのアル力 リ金属塩およびその誘導体と未反応エステルとを効率的に分離精製する方法を見 出し、 本発明に到達した。
本発明のさらに他の目的は、 大環状ラクトン系香料の重要な中間体である ω— ヒドロキシ脂肪酸の工業的製造において、 中間体として有利に利用できる新規化 合物である ω—ヒドロキシー (ω— 3) —ケト脂肪酸エステルを提供し、 さらに この ω—ヒドロキシー (ω— 3) —ケト脂肪酸エステルとその誘導体を、 高収率 で製造する方法を提供することにある。
本発明のさらに他の目的は、 大環状ラクトン系香料の重要な中間体である ω ヒドロキシ脂肪酸の工業的製造において、 ω—ヒドロキシ— (ω— 3) —ケト脂 肪酸とその塩、 副生成物であるジカルボン酸とその塩、 およびひ, ω—ジヒドロ キシ— <5, (ω— 3) —アルカンジオン、 をそれぞれを選択性よく分離回収する 方法を提供することにある。 本発明は、 上記目的を達成せんとするものであって、 本発明の 2— (ω—アル コキシ力ルポ二ルアルカノィル) 一 4—ブ夕ノリッドおよびそのアル力リ金属塩 の製造法は、 ァ—プチロラクトンと、 一般式 (1)
ROOC (CH2) nCOOR (1) (式中、 nは 7〜13の整数、 Rはアルキル基) で示されるジカルボン酸エステ ルを縮合反応せしめ、 一般式 (2)
Figure imgf000007_0001
(式中、 nは 7〜13の整数、 Rはアルキル基) で示される 2— (ω—アルコキ シカルボ二ルアルカノィル) 一 4—ブタノリツド、 または一般式 (3)
Θ /CO(CH2)nCOOR
θ
M
(3) (式中、 nは 7〜 1 3、 Rはアルキル基、 Mはアルカリ金属) で示される 2— ( ω—アルコキシカルボ二ルアルカノィル) —4ーブ夕ノリッドのアルカリ金属塩 を製造するに際し、 前記一般式 (1 ) で示されるジカルボン酸エステルを加熱撹 拌し、 これにァ一プチロラクトンとアルカリ金属アルコラ一トを添加することに より縮合反応せしめることを特徴とする製造法である。
ここでは、 前記一般式 (1 ) の尺が、 炭素数 1〜6のアルキル基であること、 前記縮合反応を、 減圧下にアルコールを留去しながら行なうこと、 および前記縮 合反応を、 減圧度を 2段以上に変化させて行なうことが好ましい態様として含ま れる。
次いで、 前記工程で製造された一般式 (3 ) で示される 2— ( ω—アルコキシ カルボ二ルアルカノィル) — 4—ブ夕ノリッドのアルカリ金属塩と、 未反応のジ カルボン酸エステルとを分離精製するが、 本発明において、 かかる分離精製法の 一つは、 ァ—プチロラクトンと前記一般式 (1 ) で示されるジカルボン酸エステ ルとの縮合反応液から、 前記一般式 (3 ) で示される 2 — (ω—アルコキシカル ボニルアルカノィル) —4—ブタノリツドのアルカリ金属塩と、 未反応ジカルボ ン酸エステルとを分離するに際し、 その 2— ( ω—アルコキシカルボ二ルアルカ ノィル) — 4—ブタノリツドのアル力リ金属塩に不活性な溶媒を用いて固液分離 することを特徴とする分離精製法である。
また、 本発明の分離精製法の他の一つは、 ァ—プチロラクトンと前記一般式 ( 1 ) で示されるジカルボン酸エステルとの縮合反応液から、 前記一般式 (3 ) で示される 2— ( ω—アルコキシカルボ二ルアルカノィル) —4ーブタノリツド のアルカリ金属塩、 およびその誘導体である一般式 (4 )
0
、(CH2)nC〇OM ( 4 )
COOM
(式中、 nは 7〜 1 3、 Mはアルカリ金属) で示される ω—ヒドロキシ— (ω 2) —カルボキシー (ω— 3) —ケト脂肪酸のアルカリ金属塩、 および一般式 (5)
Figure imgf000009_0001
(式中、 n= 7〜13、 Mはアルカリ金属) で示される ω—ヒドロキシ— (ω 3) —ケト脂肪酸のアルカリ金属塩、 ならびに一般式 (6)
Figure imgf000009_0002
COOM
(式中、 nは 7〜13、 Rはアルキル基、 Mはアルカリ金属) で示される ω—ヒ ドロキシ— (ω— 2) —カルボキシ— (ω— 3) —ケト脂肪酸エステルのアル力 リ金属塩と、 未反応ジカルボン酸エステルとを分離するに際し、 水またはアル力 リ水溶液を用いて抽出することを特徴とする分離精製法である。 ここでは、 前記 一般式 (3) 、 (4) 、 (5) および (6) で示される化合物に不活性な溶媒と 水またはアルカリ水溶液を併用して抽出することができる。
また、 本発明では、 一般式 (7)
0
(7) c
(CH2)nC〇OR
(式中、 nは 7〜 1 3の整数、 Rはアルキル基) で示される ω—ヒドロキシ— ( ω— 3) —ケト脂肪酸エステルが製造される。 本発明の ω—ヒドロキシー (ω— 3) —ケト脂肪酸エステルの製造法は、 一般 式 (3)
Figure imgf000010_0001
(式中、 nは 7〜 13の整数、 Rはアルキル基、 Mはアルカリ金属) で示される 2— (ω—アルコキシ力ルポ二ルアルカノィル) — 4—ブタノリツドのアルカリ 金属塩のァ—プチロラクトン部を、 選択的に加水分解 ·脱炭酸反応せしめること を特徴とする方法である。 また、 本発明においては、 一般式 (3)
Figure imgf000010_0002
(式中、 ηは 7〜 13の整数、 Rはアルキル基、 Μはアルカリ金属) で示される 2 - (ω—アルコキシ力ルポ二ルアルカノィル) 一 4—ブタノリツドのアルカリ 金属塩を、 弱酸の存在下に加熱して加水分解 ·脱炭酸反応せしめることによって も ω—ヒドロキシ— (ω— 3) —ケト脂肪酸エステルを得ることができる。
本発明で得られる、 一般式 (7)
0
C,
、(CH2)nC〇〇R (7) (式中、 nは 10または 1 1、 Rはアルキル基) で示される ω—ヒドロキシー ( ω- 3) ーケト脂肪酸エステルは新規化合物である。 ここでは、 前記一般式
(7) の Rは、 炭素数 1〜6のアルキル基であることが好ましい。
本発明では、 縮合反応液から分離された一般式 (3) 、 (4) 、 (5) および
(6) を含む混合物に、 必要量のアルカリを添加して、 加水分解、 脱炭酸処理し た後、 一般式 (5)
ο
(5)
' CH2)nCOOM
(式中、 nは 7〜 13の整数、 Mはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩と、 一般式 (8)
Figure imgf000011_0001
(式中、 ηは 7〜 13の整数、 Μはアルカリ金属を表す) で示される長鎖ジカル ボン酸のアルカリ金属塩、 および縮合反応時に生成する副生成物に由来する一般 式 (9)
Figure imgf000011_0002
(ただし、 ηは 7〜1 3) で示される α, ω—ジヒドロキシ— (ω— 3) ― アルカンジオンの三種を含む混合物から、 有機溶媒により上記一般式 (9) で示 されるひ, ω—ジヒドロキシ— δ, (ω— 3) —アルカンジオンを抽出するか、 あるいは該混合物から、 上記一般式 (9) で示される α, ω—ジヒドロキシ— <5 , (ω— 3) —アルカンジオンを選択的に晶析させることにより、 上記一般式 ( 9) で示されるひ, ω—ジヒドロキシ— δ, (ω- 3) —アルカンジオンを分離 回収できる。
本発明では、 一般式 (5)
0
Figure imgf000012_0001
(式中、 nは 7 3の整数、 Μはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) ケト脂肪酸のアルカリ金属塩と、 一般式 (8)
Figure imgf000012_0002
(式中、 ηは 7 13の整数、 Μはアルカリ金属を表す) で示される長鎖ジカル ボン酸のアルカリ金属塩を含む混合物から、 前記一般式 (5) で示される ω—ヒ ドロキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩を選択的に晶析させ、 これ を固液分離によりケークと濾液に分離することにより、 上記一般式 (5) で示さ れる ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩と上記一般式 ( 8) で示される長鎖ジカルボン酸のアルカリ金属塩が分離回収される。
一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアルカリ 金属塩を含む混合物を、 鉱酸により ρΗ=5 7に調整することにより、 一般式
(10)
Figure imgf000012_0003
(式中、 nは〜 1 3の整数) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪 酸と、 一般式 (8) で示される長鎖ジカルボン酸のアルカリ金属塩を分離回収す ることができる。
一般式 (8) で示される長鎖ジカルボン酸のアルカリ金属塩を含む濾液を、 さ らに鉱酸により ρΗ=3〜 5に調整することにより、 一般式 (1 1)
Figure imgf000013_0001
(式中、 ηは〜 1 3の整数) で示される長鎖ジカルボン酸を分離回収することが できる。
また、 これらの手法の組合せによっても、 本発明の目標は達成される。
発明を実施するための最良の形態
本発明においては、 まず、 ァ一プチロラクトンと、 一般式 (1)
ROOC (CH2) nCOOR (1)
(式中、 nは 7〜 13の整数、 Rはアルキル基) で示されるジカルボン酸エステ ルを縮合反応せしめ、 一般式 (2)
Figure imgf000013_0002
(式中、 nは 7〜 13の整数、 Rはアルキル基) で示される 2— (ω—アルコキ シカルボ二ルアルカノィル) —4—ブ夕ノリッド、 または一般式 (3)
(3)
Figure imgf000013_0003
(式中、 nは?〜 1 3、 Rはアルキル基、 Mはアルカリ金属) で示される 2— ( ω—アルコキシカルボ二ルアルカノィル) —4—ブ夕ノリッドのアルカリ金属塩 を製造する。
塩基性縮合剤の存在下におけるジカルボン酸エステルとァ—プチロラクトンの 縮合反応は複雑であり、 そのため原料の仕込み方法や、 生成するメタノールの除 き方等 00反応方法の違いにより選択率、 収率が大きく影響することが推測される 。 そこで本発明者等は、 上記アルコールの生成に関連する反応機構に着目し鋭意 研究した結果、 下記のように選択率および収率ともに良好に 2— ( ω—アルコキ シカルボ二ルアルカノィル) — 4—ブタノリッドおよびそのアル力リ金属塩が得 られることを見出した。
すなわち、 まず第一段階において生成するアルコールの蒸発には十分な条件で 減圧しながら加熱撹拌中のジカルボン酸エステル中に、 ァ—プチロラクトンとァ ルカリ金属アルコラ一トを滴下し、 アルコールを系外に留出しながら反応させ、 次に、 第二段階としてさらに減圧度を上げて加熱撹拌することにより、 残存する アルコールを系外に除きながら反応させる。 このようにすることにより、 選択率 および収率ともに良好に 2— (ω—アルコキシカルボ二ルアルカノィル) —4一 ブタノリッドおよびそのアルカリ金属塩が得られることを見出した。
このように、 本発明の特徴の一つは、 加熱攪拌中のジカルボン酸エステル中に 、 ァープチロラクトンとアルカリ金属アルコラ一トを添加し縮合反応させること にあり、 この場合、 ァ—プチロラクトンとアルカリ金属アルコラ一トは混合して 添加 (滴下) してもよく、 個別に添加してもよい。
この反応は、 減圧下にアルコールを系外に留出しながら反応せしめることが好 ましい。 また、 本発明では、 上記に続き第二段階として、 さらに減圧度を上げて 加熱撹拌し残存しているアルコールを系外に除去しながら継続して反応させるこ とが選択率および収率を良好ならしめる上で好ましい。
本発明において使用される一般式 (1 ) の R O O C ( C H 2 ) n C O O R (式 中、 nは 7〜 1 3の整数、 Rはアルキル基) で示されるジカルボン酸エステルの Rは、 使用する便利さから炭素数 1〜 6のアルキル基が特に好んで使用される。 この Rの具体例としては、 メチル、 ェチル、 プロピル、 ブチル、 イソプチル、 ぺ ンチル、 へキシル基等が挙げられる。 とりわけ、 メチル基が好ましい。
一般式 (1 ) で示される好ましいジカルボン酸エステルとしては、 具体的には 1, 1 2 —ドデカンニ酸ジメチルエステルや 1 , 1 3 —トリデカンニ酸ジメチル エステル (ブラシル酸ジメチルエステル) などが挙げられる。
また本発明では、 アル力リ金属アルコラートの存在下に縮合反応が行なわれる が、 アルカリ金属アルコラ一トとしては、 一般式 R '〇M (式中、 R 'は炭素数 1〜4のアルキル基、 Mはアルカリ金属) で示されるアルカリ金属アルコラート が好ましい。
ここでいうアル力リ金属アルコラ一卜の具体例としては、 ナトリウムメチラ一 ト、 ナトリウムエヂラート、 ナトリウムプロピラート、 ナトリウムプチラート、 カリウムメチラート、 カリウムェチラート、 カリウムプロピラートおよび力リウ ムブチラートなどが挙げられる。
本発明においてこれらアル力リ金属アルコラ一トの使用量は特に限定されない が、 ァ—プチロラクトンに対して好ましくは 0 . 1〜5当量、 より好ましくは 0 . 5〜3当量用いられる。 アルカリ金属アルコラ一卜の使用量が少ないと収率が 低く、 また使用量が一定以上になると収率が飽和し、 逆に選択率の低下をまねく ことがある。
また本発明において、 一般式 (1 ) で示されるジカルボン酸エステルの使用量 は、 ァ—プチロラクトンに対して過剰モルであることが好ましく、 具体的には 2 倍モル以上が特に好ましい。 ジカルボン酸エステルが 2倍モル以上であると、 と りわけ選択率が向上するからである。
本発明の実施において、 未反応のジカルボン酸エステルが残存する場合には、 反応混合物から未反応のジカルボン酸エステルを回収し、 縮合反応に循環再使用 することが効率的な反応のために好ましい。 本発明においては、 反応混合物から の未反応ジカルボン酸エステルの回収を、 水またはアルカリ水溶液を用いて抽出 するかもしくは固液分離することで容易に行なうことができるため、 ジカルボン 酸エステルの過剰使用と循環再利用とが相俟って、 より効率的な反応が実現され る。
本発明の縮合反応において、 効率的にアルコールを除去するため好ましくは減 圧下に縮合反応が行なわれる。 減圧条件としては、 好ましくは 5 0〜 7 6 0 mm H g、 特に 1 0 0〜6 0 O mmH gの範囲が好ましい。 また減圧は 2段以上に分 けて行なうことができる。 例えば、 第一段階として生成したアルコールの蒸発に 十分な 5 0 0〜7 0 O mmH g程度に減圧して反応させ、 第二段階としてさらに 減圧度を 5 0〜3 0 O mmH g程度に上げ反応させることができる。
ここにおいて、 縮合反応の加熱温度条件は特に限定されないが減圧との関係に おいて好適な条件が設定され、 3 0〜2 0 0 が好ましく、 特には 5 0〜 1 5 0 °Cの範囲が好ましい。
本発明において溶媒は特に使用する必要はないが、 アル力リ金属アルコラ一ト の活性を低下させない溶媒であれば一般のエステル縮合に使用される溶媒を添加 して反応を行なうこともできる。
本発明の反応形式は、 バッチ式、 連続式、 多段式のいずれでも行なうことがで さる。
本発明によって得られる 2— ( ω—アルコキシカルボ二ルアルカノィル) 一 4 —ブタノリツドのアルカリ金属塩は、 後述するように、 大環状ラクトン系香料の 重要中間体である ω—ヒドロキシ脂肪酸に容易にかつ高収率で誘導される。
本発明の一般式 (1 ) で示されるジカルボン酸エステルとァ—プチロラクトン の縮合反応の生成反応物は、 )3—ケトエステルタイプの化合物で、 この反応液中 には、 通常一般式 (3 )
Figure imgf000016_0001
(式中、 nは 7〜 1 3の整数、 Rはアルキル基、 Mはアルカリ金属) のようなァ ルカリ塩の状態で存在する。 この一般式 (3 ) で示されるアルカリ金属塩は、 n 一へキサンなどの有機溶媒に対して極めて溶解度が低いことが判明した。 また、 この塩をアル力リ水溶液中に投入すると容易に溶解し、 速やかにァープチロラク トン部ならびに末端エステル部が加水分解されて一般式 (4 )
0 ヽ (CH2)nCOOM ( 4 )
COOM
(式中、 nは 7〜 1 3の整数、 Mはアルカリ金属) のようなジカルボン酸のアル カリ金属塩を生じ、 またアル力リ金属水酸化物の添加量によっては一部が脱炭酸 反応して、 一般式 (5 ) o
Figure imgf000017_0001
のようなアルカリ金属塩となることが判明した。
一方、 本発明の縮合反応において使用される過剰量の一般式 (1 ) で示される ジカルボン酸エステルは、 反応液中にそのまま未反応の形で残存する。 この化合 物は、 n—へキサンなどの有機溶媒に対して極めてよく溶解する。
そこで本発明者らは、 2— ( ω—アルコキシカルボ二ルアルカノィル) —4— ブ夕ノリッドのアルカリ金属塩の有機溶媒や水に対する溶解性に着目して鋭意研 究した結果、 2— ( ω—アルコキシカルボ二ルアルカノィル) 一 4—ブタノリツ ドのアルカリ金属塩およびその誘導体と未反応ジカルボン酸エステルとを簡便に してそしてまた高い収率でそれぞれ分離して取得する精製方法を見出し、 本発明 を完成した。
本発明では、 一般式 (3 ) で示されるアルカリ金属塩と、 一般式 (1 ) で示さ れる未反応ジカルボン酸エステルとを濾過等の固液分離により分別する方法であ る (以下、 固液分離法と称す) 。
すなわち、 未反応ジカルボン酸エステルは溶解するが、 アルカリや 2— (ω— アルコキシカルボ二ルアルカノィル) — 4ーブ夕ノリッドのアル力リ金属塩に不 活性な有機溶媒を縮合反応液に添加して、 未反応ジカルボン酸エステルを十分に 溶解し、 塩との懸濁液とする。 この懸濁液を濾過や遠心分離のようにそれ自体は 公知の方法によって、 溶液部分と固体部分とに分離する。 固体部分は溶媒により 十分に洗浄を行ない、 未反応ジカルボン酸エステルを除く。 溶液部分と洗浄液は 混合して濃縮した後、 次の縮合反応にそのまま循環再使用する。
一方、 固体部分はそのまま使用しても、 酸性化して 2— ( ω—アルコキシカル ボニルアルカノィル) 一 4—ブ夕ノリッドとしても使用できる。 また、 アルカリ 水溶液に投入して加水分解 ·脱炭酸反応に使用することもできる。
本発明では、 また、 2— ( ω—アルコキシカルボ二ルアルカノィル) —4—ブ 夕ノリッドの塩を水層に、 また未反応ジカルボン酸エステルを有機層にそれぞれ 抽出し分離する方法である (以下、 アルカリ抽出法と称す) 。
すなわち、 縮合反応液に水またはアルカリ水溶液を添加して、 2— ( ω—アル コキシ力ルポ二ルアルカノィル) 一 4—ブ夕ノリッドのアルカリ金属塩を溶解さ せ、 この混合液を分液により分離し、 未反応ジカルボン酸エステルを有機層とし て回収し、 水洗した後に次の縮合反応に循環再使用する。
—方、 水層には、 一般式 (3 ) のアルカリ金属塩、 一般式 (6 ) の化合物、 ァ ルカリ金属水酸化物の添加量によっては一般式 (4 ) のアルカリ金属塩、 さらに アルカリ金属水酸化物の添加量によっては一部が脱炭酸反応した一般式 (5 ) の アルカリ金属塩が抽出される。 このことは、 上記操作により得られた水層を酸性 化した後、 抽出して得られた結晶物の組成を調べることにより明らかとなった。 この結晶物には、 一般式 (2 ) の化合物、 長鎖ジカルボン酸、 一般式 (1 2 )
Figure imgf000018_0001
(ただし、 n = 7〜1 3 ) で示される 2 — (ω—
4ーブタノリッド、 および一般式 (1 0 )
Figure imgf000019_0001
(ただし、 n = 7〜13) で示される ω—ヒドロキシー (ω— 3) —ケト脂肪酸 が主成分として含まれることが分かった。
本発明においては、 結晶物中に一般式 (2) の 2— (ω—アルコキシカルボ二 ルアルカノィル) —4—ブ夕ノリッド、 および一般式 (12) の 2— (ω—カル ボキシアルカノィル) 一 4ーブ夕ノリッドが含まれることに関して、 以下のよう に考えられる。 すなわち、 一般式 (3) で示されるアルカリ金属塩をアルカリ水 溶液中に溶解すると、 ァープチロラクトン部が速やかに加水分解されて、 一般式 (6) で示される化合物が生成すると推測される。
これを酸性化すると、 一般式 (13)
Η
Figure imgf000019_0002
(nは 7〜13) のような化合物が生成するが、 このものは容易に脱水してラク トン環を形成するため、 一般式 (2) の化合物が得られる。 また、 アルカリの添 加量によっては、 一般式 (6) の末端エステル部も加水分解されて一般式 (4) のジカルボン酸のアルカリ金属塩を生じると推測される。
また、 この一般式 (4) の化合物を酸性化すると、 一般式 (14)
II
(CH2)nCOOH (14)
COOH ( nは 7〜 1 3 ) のようなジカルボン酸が生成するが、 このものは容易に脱水し てラクトン環を形成するため、 一般式 (1 2 ) の 2 _ ( ω—カルボキシゥンデカ ノィル) 一 4—ブ夕ノリッドが得られる。
また、 上記 ω—ヒドロキシー (ω— 3 ) —ケト脂肪酸の生成は、 アルカリ金属 水酸化物を加水分解の必要量以上に用いることにより、 i3—ケト酸の脱炭酸反応 が起こることによる。
このようにして得られた水層は、 次工程の加水分解および脱炭酸反応にそのま ま利用することができる。 .
本発明において使用される溶媒は、 アルカリや 2— ( ω—アルコキシカルボ二 ルアルカノィル) — 4—ブ夕ノリッドの塩に不活性なものであれば特に限定され ない。 具体例としてはペンタン、 へキサン、 ヘプタン、 オクタン、 シクロへキサ ン、 ベンゼン、 トルエン、 キシレン、 ジェチルエーテル、 イソプロピルエーテル などの有機溶媒が挙げられる。
また、 アルカリ抽出法においては溶媒を用いなくても実施可能であるが、 用い た方が好ましい。 溶媒の使用量は縮合反応液に対して好ましくは 0〜1 0重量倍 、 より好ましくは 0 . 5 ~ 5倍である。 溶媒への溶解温度およびアルカリ抽出時 の温度は、 有機層が固化しない温度であれば特に限定はないが、 通常 0 t:〜 1 0 0 °Cの範囲、 好ましくは 2 0〜 5 0での範囲である。
本発明において、 アルカリ抽出法で用いられるアルカリ性塩基としては、 2— ( ω—アルコキシカルボ二ルアルカノィル) —4—ブタノリツド、 そのアルカリ 金属塩および誘導体を抽出できるものであれば特に限定されないが、 水酸化リチ ゥム、 水酸化ナトリウムおよび水酸化カリウムなどのアルカリ金属水酸化物、 炭 酸ナトリゥムおよび炭酸力リゥムなどのアル力リ金属炭酸塩、 水酸化バリウムな どのアルカリ土類金属水酸化物などが使用できる。
アルカリ溶液の濃度については特に限定はないが、 好ましくは 0 . 5〜5 0 % の範囲、 より好ましくは 1〜 1 5 %の範囲である。 また、 使用量についても限定 はないが、 縮合反応液に対して好ましくは 0 . 1〜1 0重量倍、 より好ましくは 0 . 5〜 2倍である。 また、 本発明の精製形式はバッチ式、 連続式のいずれでも 行なうことができる。 さらに本発明者等は、 上記で得られた、 2— (ω—アルコキシカルボニルアル カノィル) 一 4—ブタノリツドのアルカリ金属塩に、 リン酸等の弱酸を添加して 加熱することにより、 収率よく一般式 (7)
Figure imgf000021_0001
(式中、 nは 7〜13の整数、 Rはアルキル基) で示される ω—ヒドロキシー ( ω- 3) —ケ卜脂肪酸エステルが得られることを見いだした。 しかもこの一般式
(7) で示される化合物は油溶性であるため、 反応溶液とは分液により容易に分 離が可能であることを見いだし本発明を完成した。 この ω—ヒドロキシケト脂肪 酸エステルは、 香料工業分野において大環状ラクトン系香料の重要な中間体であ る ω—ヒドロキシ脂肪酸の製造における中間体として有用である。
上記一般式 (7) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸エステ ルのうち、 ηが 10または 1 1の ω—ヒドロキシ— (ω— 3) —ケト脂肪酸エス テルは新規化合物である。
すなわち、 本発明では、 上記で得られた、 2— (ω—アルコキシカルボニルァ ルカノィル) 一4—ブタノリッドのアルカリ金属塩のァ—プチロラクトン部を、 選択的に加水分解 ·脱炭酸反応せしめることにより、 一般式 (7)
0
(7)
(CH2)nCOOR
(式中、 nは 7〜1 3の整数、 Rはアルキル基) で示される ω—ヒドロキシー ( ω— 3) —ケト脂肪酸エステルを得ることができる。 また、 本発明では、 上記一 般式 (3) で示される 2— (ω—アルコキシカルボ二ルアルカノィル) _4ーブ 夕ノリッドのアル力リ金属塩を、 弱酸の存在下に加熱して加水分解 ·脱炭酸反応 せしめることによって、 一般式 (7 ) で示される ω—ヒドロキシ— (ω— 3 ) - ケト脂肪酸エステルを製造することができる。
本発明の加水分解、 脱炭酸反応において使用される弱酸の種類については特に 限定されないが、 具体例としては、 リン酸、 ピロリン酸および炭酸などが挙げら れ、 またリン酸二水素ナトリウムなども使用可能である。 また、 弱酸の使用量に ついては特に制限されないが、 2— (ω—アルコキシカルボ二ルアルカノィル) —4—ブタノリツドのアルカリ金属塩 1モルに対して 0 . 5〜3当量、 好ましく は 0 . 5〜 1等量が用いられる。
また、 本発明の反応において用いられる水量には特に制限はないが、 2— ( ω —アルコキシカルボ二ルアルカノィル) ー4—ブ夕ノリッドのアルカリ金属塩に 対して、 好ましくは 2〜2 0倍の割合で用いられる。
本発明の加水分解、 脱炭酸反応において水溶性有機溶媒は使用してもしなくて もよいが、 水溶性有機溶媒の具体例としては、 メタノール、 エタノール、 ジェチ レングリコール、 トリエチレングリコール、 ジォキサン、 テトラヒドロフラン、 1 , 2—ジメトキシェタンなどが挙げられる。 これらの水溶性有機溶媒の使用量 は、 水 1重量部に対して 0 . 0 5〜3重量部の範囲であることが好ましい。
本発明のかかる反応は加熱反応である。 本発明では、 リン酸等の弱酸の存在下 で加熱されるが、 この反応の温度は 8 0〜1 1 0 の範囲が好ましい。 また反応 時間は、 反応温度および仕込み原料等によって適宜選択されるが、 一般的に 1〜 2 0時間程度である。 反応はバッチ式および連続式のいずれでも行なうことがで きる。 反応生成物の単離と精製は、 分液、 抽出、 洗浄および再結晶等のそれ自 体公知の単位操作により行なうことができる。
本発明によって得られる前記一般式 (7 ) で示される ω—ヒドロキシ— (ω— 3 ) —ケト脂肪酸エステルは、 大環状ラクトン系香料の重要中間体である ω—ヒ ドロキシ脂肪酸に容易かつ収率よく工業的に有利に誘導される。
すなわち、 ω—ヒドロキシ— (ω— 3 ) —ケト脂肪酸エステルは、 アルカリ金 属水酸化物の水溶液中または水溶性有機溶媒/水混合溶媒で加熱することにより 、 その— C O O R基は加水分解されて、 一般式 (5 ) の ω—ヒドロキシ— (ω— 3 ) —ケト脂肪酸のアルカリ金属塩になる。 次いで、 定法の Wo l f f- Ki shner 還元 により— CO—基は— CH 2—基にケトン還元され、 ω—ヒドロキシ脂肪酸に誘導 される。 このように、 ω—ヒドロキシケト脂肪酸エステルは、 それ自体、 合成 原料および中間体として有用であり、 特に香料工業分野においてはシクロペン夕 デカノリッドゃシクロへキサデ力ノリッドなどの大環状ラクトン系香料の重要な 中間体である ω—ヒドロキシ脂肪酸の製造における中間体として有用である。 本発明では、 さらに、 上記ジカルボン酸エステルとァープチロラクトンの縮合 反応物を、 上述の方法により塩基性条件で抽出、 加水分解、 脱炭酸反応した反応 混合物中に存在する縮合反応の副生生物が加水分解 ·脱炭酸して生じる一般式 (9)
Figure imgf000023_0001
(式中、 ηは 7〜13の整数) で示される化合物を有機溶媒によって抽出分離す るかまたは晶析分離する。 さらに、 残った水溶液を所定の温度で処理するこどに よって ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩を選択的に晶 析させ、 固液分離によりケ一クと濾液とに分離することによって、 一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩と一般式
(8),で示されるジカルボン酸のアルカリ金属塩を分離回収する。 または、 得ら れたケ一クと濾液それぞれを鉱酸で処理することで、 一般式 (10)
Figure imgf000023_0002
(ただし、 η = 7〜1 3) で示される ω—ヒドロキシ (ω— 3) -ケト脂肪酸 と一般式 (1 1)
Figure imgf000024_0001
(ただし、 n = 7〜1 3) で示されるジカルボン酸それぞれを分離回収する。 あるいは、 一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸 のアルカリ金属塩と、 一般式 (8) で示される長鎖ジカルボン酸のアルカリ金属 塩を含む混合物を、 鉱酸により ΡΗ=5〜7に調整することで、 一般式 (10) を析 Ιΰさせて固液分離することにより、 一般式 (10) で示される ω—ヒドロキ シ— (ω— 3) —ケト脂肪酸と一般式 (8) で示される長鎖ジカルボン酸のアル カリ金属塩を分離回収する。 また、 必要に応じて、 さらにその濾液を鉱酸により ρΗ= 3〜 5に調整することで、 一般式 (1 1) で示される化合物を析出させて 固液分離することにより、 一般式 (1 1) で示される長鎖ジカルボン酸を分離回 収する。
例えば、 一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸の アルカリ金属塩と一般式 (8) で示される長鎖ジカルボン酸のアルカリ金属塩と 一般式 (9) で示される α, ω—ジヒドロキシー δ, (ω- 3) —アルカンジォ ンを含む混合物から、 一般式 (9) で示される化合物を抽出除去するか、 あるい は混合液を所定の温度で処理することで一般式 (9) を選択的に晶析させ、 これ を固液分離によりケ一クとして除去した後の水溶液を、 さらに所定温度で処理す ることにより、 一般式 (5) の化合物を選択的に晶析させ、 固液分離によりケ一 クと濾液とに分離した後に、 少量の一般式 (5) の化合物を含む場合は、 その濾 液から鉱酸により ρΗ==5〜 7に調整することで一般式 (1 0) の化合物を晶析 させて固液分離することにより、 一般式 (1 0) で示される ω—ヒドロキシ— ( ω— 3) —ケト脂肪酸と一般式 (8) で示される長鎖ジカルボン酸のアルカリ金 属塩を分離回収する。 また、 さらにその濾液を ρΗ= 3〜 5に調整することで一 般式 (1 1) を晶析させて固液分離することにより、 一般式 (8) で示される長 鎖ジカルボン酸のアルカリ金属塩を分離回収するなどの手法が挙げられる。
本発明において、 反応混合物中から一般式 (9) の α, ω—ジヒドロキシ一 δ , ( ω - 3 ) 一アルカンジオンの抽出分離に用いられる有機溶媒は、 塩基性条件 に不活性で水に不溶なものであれば特に限定されない。 具体例としては、 ベンゼ ン、 トルエン、 キシレン、 テトラリン、 デカリン、 ペンタン、 へキサン、 ヘプ夕 ン、 オクタン、 シクロへキサン、 イソプロピルエーテルよび、 ジブチルエーテル などが挙げられる。 なかでもトルエンが特に好ましく用いられるれる。
本発明において、 有機溶媒の使用量に特に限定はないが、 操作上、 副資材費な どの点から、 反応混合物に対して好ましくは 0 . 5〜2 0重量倍、 特に好ましく は 1〜1 0重量倍である。
本発明において、 一般式 (9 ) の化合物の抽出温度は特に限定はされないが、 温度が高い方が抽出効率がよい反面、 抽出に用いられる有機溶媒と水の沸点の問 題から 5 0〜 1 1 0 :、 特に 6 0〜 9 0 の範囲が好ましい。 なお、 有機層に一 般式 (5 ) の化合物が含まれることもあるが、 温水を用いて逆抽出することで、 ほとんどが回収可能である。
本発明において、 一般式 (9 ) の化合物の晶析温度は、 反応混合物の組成、 特 に水分率に影響を受けやすいが、 一般式 (9 ) の化合物が結晶化し、 かつ一般式 ( 5 ) および (8 ) の塩が溶解している温度であれば特に限定はされない。 ただ し、 操作上の問題から— 2 0〜8 0 :、 特には 0〜4 0 が好ましい。
一般式 (9 ) の化合物の晶析において、 反応混合物の水分率は反応混合物の組 成、 および温度に影響を受けやすいが、 一般式 (9 ) の化合物が結晶化し、 かつ 一般式 (5 ) および (8 ) の塩が溶解している水分率であれば特に限定はされな い。 ただし、 操作上の問題から 5 0〜9 9重量%、 特には 7 0〜9 0重量%が好 ましい。
本発明において生成した一般式 (9 ) の結晶の固液分離の方法は、 遠心沈降、 遠心脱水および濾過等の通常の方法を使用することができる。 なお、 得られたケ ーク中には、 一般式 (5 ) および一般式 (8 ) の塩が混入することもあるが、 水 などで洗浄することにより、 更にケ一ク中.の一般式 (9 ) の化合物の純度を高め 、 かつ一般式 (5 ) および一般式 (8 ) の塩を水溶液として回収することができ る。
また、 本発明において、 抽出工程の形式についてはバッチ式、 多段槽式および 連続式などいずれでもよい。
次に、 一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のァ ルカリ金属塩の晶析条件について説明する。
本発明において、 一般式 (5) の化合物の晶析温度は、 反応混合物の組成、 特 に水分率に影響を受けやすいが、 一般式 (5) の化合物の結晶が生成し、 かつ一 般式 (2) の化合物が溶解している温度であれば特に限定はされない。 ただし、 操作上の問題から— 20〜80°C、 特には 0〜40 が好ましい。
本発明において、 反応混合物の水分率は反応混合物の組成、 および温度に影響 を受けやすいが、 一般式 (5) の化合物の結晶が生成し、 かつ一般式 (8) の化 合物が溶解している水分率であれば特に限定されない。 ただし、 操作上の問題か ら 50〜99重量%、 特に 70〜90重量%が好ましい。
本発明において生成した結晶の固液分離の方法は、 遠心沈降、 遠心脱水および 濾過等の通常の方法が使用できる。 なお、 得られたケ一ク中には一般式 (8) の 化合物が混入することもあるが、 水などで洗浄することにより、 更にケーク中の 一般式 (5) の化合物の £度を高め、 かつ一般式 (8) の化合物を水溶液として 回収することができる。 - 大環状ラクトンの製造において得られたケークは、 次の還元反応にはそのまま でも、 あるいは一旦酸性化してからでも利用できる。 還元反応は、 Wolff-Kishne r 還元や Clemmensen還元など、 それ自体は公知の方法で行なうことができる。 一般式 (5) および一般式 (8) のアルカリ金属塩を酸性化するために使用さ れる鉱酸は特に限定はないが、 硫酸や塩酸がよく用いられる。 酸性化した後の脂 肪酸の取得には、 その形状にもよるが、 遠心沈降、 遠心脱水および濾過等の固液 分離や、 ベンゼン、 トルエン、 キシレン、 ペンタン、 へキサン、 ヘプタン、 ォク タン、 シクロへキサン、 ジェチルェ一テル、 イソプロピルエーテル、 酢酸ェチル 、 ジクロロメタン、 クロ口ホルム、 四塩化炭素およびジクロロェタン等の有機溶 媒を用いた抽出手段を用いることができる。
本発明において、 一般式 (5) および一般式 (8) の混合物から、 鉱酸を用い て一般式 (1 0) を採取する際の pHは 5〜7が好ましく、 特に 5. 5〜6. 5 が好ましい。 さらに、 一般式 (8) を酸性化し一般式 (1 1) を採取する際の p Hは、 3〜5が好ましく、 特には 3. 5〜4. 5が好ましい。 これより pHを下 げることは、 一般式 (1 1) の回収率、 純度に関して問題はないが、 鉱酸使用量 が増大し、 副原料費が増大するので好ましくない。
実施例
次に、 本発明を実施例により詳細に説明する。 もっとも、 下記の実施例は例示 のために示すものであって、 いかなる意味においても限定的に解釈してはならな い。
(実施例 1 )
1 , 12—ドデカンニ酸ジメチルエステル (1 05. 00 g、 406. 4mm o 1 ) を反応装置に仕込み、 6001111111 の減圧状態で1 05でに加熱撹拌し た。 ァ—プチロラクトン (8. 75 g、 10 1. 6mmo 1 ) と 28重量%ナト リゥムメトキサイド—メタノール溶液 (19. 60 g、 10 1. 6mmo 1 ) と を室温で混ぜたものを、 加熱している 1, 12—ドデカンニ酸ジメチルエステル 中に 30分間で滴下しながらメタノールを留去した。 そのまま 30分間反応を行 なった後、 20 OmmHgに減圧してさらに 120分間反応させた。
次に、 これを常圧に戻した後、 冷却して希塩酸中に注ぎ酢酸ェチルで抽出した 。 有機層は水洗し、 無水硫酸マグネシウムで乾燥した後、 溶媒を留去した。 残り の油状物を減圧蒸留 (油浴温度 1 70〜180/0. 5〜0. 2mmHg) して 過剰の 1, 12—ドデカンニ酸ジメチルエステルを留去した。 留分 81. 9 gと 蒸留残渣 25. l gが得られた。
蒸留残渣部分について、 ガスクロマトグラフィーにより分析した結果、 88. 6重量%の一般式 (2) で示される化合物 (n= 10、 R = Me) が含まれるこ とが分かった。 収率は 80. 2 %であり、 選択率は 83. 2 %であった。
(実施例 2)
1, 12—ドデカンニ酸ジメチルエステル ( 1 05. 00 g、 406. 4 mm o 1 ) を反応装置に仕込み、 60 OmmHgの減圧状態で 1 05でに加熱撹拌し た。 ァ—プチロラクトン (8. 75 g、 10 1. 6mmo 1 ) と 28重量%ナト リゥムメトキサイド—メタノール溶液 (19. 60 g、 10 1. 6mmo 1 ) と を室温で混ぜたものを、 加熱している 1, 1 2—ドデカンニ酸ジメチルエステル 中に 30分間で滴下しながらメタノールを留去した。 そのまま 30分間反応を行 なった後、 20 OmmHgに減圧してさらに 240分間反応させた。
次に、 これを常圧に戻した後、 冷却して希塩酸中に注ぎ酢酸ェチルで抽出した 。 有機層は水洗し、 無水硫酸マグネシウムで乾燥した後、 溶媒を留去した。 残り の油状物を減圧蒸留 (油浴温度 1 70〜180°CZO. 5〜0. 2mmHg) し て過剰の 1, 12—ドデカンニ酸ジメチルエステルを留去した。 留分 82. 2 g と蒸留残渣 26. 5 gを得た。 残渣部分を調べた結果、 88. 1 %の一般式 (2 ) の化合物 (n= 10、 R = Me) が含まれていることが分かった。 収率は 81 . 4 %であり、 選択率は 87. 9%であった。
(実施例 3)
1, 12—ドデカンニ酸ジメチルエステル ( 105. 00 g、 406. 4 mm o 1 ) を反応装置に仕込み、 50 OmmHgの減圧状態で 105°Cに加熱撹拌し た。 ァ—プチロラクトン (8. 75 g、 10 1. 6mmo l ) と 28重量%ナト リゥムメトキサイドーメタノール溶液 (19. 60 g、 10 1. 6mmo 1 ) と を室温で混ぜたものを、 加熱している 1, 12—ドデカンニ酸ジメチルエステル 中に 30分間で滴下しながらメタノールを留去した。 そのまま 30分間反応を行 なった後、 10 OmmHgに減圧してさらに 120分間反応させた。
これを常圧に戻した後、 冷却して希塩酸中に注ぎ酢酸ェチルで抽出した。 有機 層は水洗し、 無水硫酸マグネシウムで乾燥した後、 溶媒を留去した。 残りの油状 物を減圧蒸留 (油浴温度 1 70〜180でノ0. 5〜0. 2mmHg) して過剰 の 1 , 12—ドデカンニ酸ジメチルエステルを留去した。 留分 81. 4 gと蒸留 残渣 27. 2 gを得た。 残渣部分を調べた結果、 88. 3%の一般式 (2) の化 合物 (n= 1 0、 R = Me) が含まれていることが分かった。 収率は 8 1. 6 % であり、 選択率は 86. 0 %であった。
(比較例 1)
1, 12—ドデカンニ酸ジメチルエステル (105. 00 g、 406. 4mm o l ) とァ一ブチロラクトン (8. 75 g、 10 1. 6 mm o 1 ) と 28重量% ナトリウムメトキサイド—メタノール溶液 ( 19. 60 g、 101. 6 mm o l ) を 50 で混ぜ、 メタノールを留去しながら 45分間で 1 10でに昇温した。 そのまま 30分間反応を行なった後、 63 OmmHgに減圧して 30分間反応さ せた。
これを常圧に戻し更に 30分間反応した後、 冷却して希塩酸中に注ぎ酢酸ェチ ルで抽出した。 有機層は水洗し、 無水硫酸マグネシウムで乾燥した後、 溶媒を留 去した。 残りの油状物を減圧蒸留 (油浴温度 170〜 180t:Z0. 5〜0. 2 mmHg) して過剰の 1, 12—ドデカンニ酸ジメチルエステルを留去した。 留 分 8 1. 5 gと蒸留残渣 2 5. 6 gを得た。 残渣部分を調べた結果、 85. 1 % の一般式 1の化合物 (n= 10、 R=Me) を含むことが分かった。 収率は 79 . 0 %であり、 選択率は 79. 0%であった。
(実施例 4) (固液分離法)
1, 12—ドデカンニ酸ジメチルエステル (105. 00 g、 406. 4mm o l ) とァーブチロラクトン (8. 75 g、 10 1. 6mmo 1 ) と 28重量% ナトリウムメトキサイド—メタノール溶液 (19. 60 g、 1 01. 6mmo 1 ) とから調製した縮合反応液 1 16. 2 g (一部分を酸性化し定量した結果、 縮 合物 25. 7 1 g、 未反応エステル 80. 70 gを含むことを確認) を、 50 で加熱撹拌した。 これに n—へキサン 565 gを添加して 2 O まで冷却しなが ら撹拌すると、 薄い黄色をした沈殿物と透明な上澄み液との懸濁液となった。 こ れを加圧濾過器により沈殿物と上澄み液とに分離した。 ケークは n—へキサンで 十分に洗浄した。
濾液と洗浄液を混合し、 n—へキサンを留去したところ、 濃縮物 80. 94 g が得られた。 濃縮物をガスクロマトグラフィーを用いて定量分析したところ、 一 般式 (1) の化合物 (n= l 0、 R=Me) が 99. 2%で含まれることが分か つた。 これの回収率 99. 5%であった。
さらに得られたケーク 35. 35 gのうち、 1. 00 gを酸性化した後、 酢酸 ェチルで抽出した。 有機層は水洗した後、 無水硫酸ナトリウムで乾燥し溶媒を留 去したところ、 0. 92 gの結晶が得られた。 この結晶をガスクロマトグラフィ 一で定量分析したところ、 一般式 (2) の化合物 (n= 10、 R = Me) 0. 7 3 g、 一般式 (1) の化合物 (n = 10、 R=Me) 0. 0 1 gが含まれること が分かった。 一般式 (2) の化合物の回収率は 1 00重量%、 一般式 (1) のジ カルボン酸エステルの残存率は 0. 4重量%であった。
(実施例 5)
1, 12—ドデカンニ酸ジメチルエステル (64. 73 g、 207. 2 mm o 1 ) とァ一ブチロラクトン (4. 46 g、 5 1. 8mmo 1 ) と 28重量%ナト リウムメトキサイド一メタノール溶液 (9. 99 g、 5 1. 8mmo l ) とから 調製した縮合反応液 (一部分を酸性化し定量した結果、 縮合物 12. 25 g、 未 反応エステル 42. 6 l gを含むことを確認) を、 50°Cで加熱撹拌した。 これ に n—へキサン 50. 0 gを添加して 2分間撹拌した。 これに、 水 50. 0 g添 加して、 そのまま 30分間撹拌した。 有機層は水洗し、 濃縮したところ、 一般式 (1) の化合物 (n= 10、 R=Me) を 94. 1 %の濃度で含む結晶物を 44 . 3 1 g得た。 回収率は 97. 9%であった。
さらに、 水層を直ちに希硫酸中に投下して酸性化後、 酢酸ェチルで抽出し水洗 した。 無水硫酸ナトリウムで乾燥後、 溶媒を留去して結晶を得た。 この結晶をガ スクロマトグラフィーで定量分析したところ、 一般式 (2) の化合物 (n== 10 、 R=Me) を 7 1 %の濃度で含む結晶物を 13. 1 1 g得た。 回収率は 78. 2 %であった。
(実施例 6) (アルカリ抽出法)
1, 12—ドデカンニ酸ジメチルエステル ( 105. 00 g、 406. 4 mm o 1 ) とァ一ブチロラクトン (8. 75 g、 10 1. 6mmo 1) と 28重量% ナトリウムメトキサイド—メタノール溶液 (19. 60 g、 101. 6mmo 1 ) とから調製した縮合反応液 (一部分を酸性化し定量した結果、 縮合物 25. 4 9 g, 未反応エステル 80. 82 gを含むことを確認) を、 50でで加熱撹拌し た。 これに n—へキサン 1 04. 4 gを添加して 2分間撹拌した。 これに 5%— KOH水溶液を 107. 5 g添加して、 そのまま 120分間撹拌した。 5分間静 置した後、 分液して有機層と水層とに分けた。 有機層は水洗し、 濃縮したところ 、 一般式 (1) の化合物 (n= 10、 R=Me) を 98. 8 %の濃度 (定量値) で含む結晶物を 80. 9 gを得た。 回収率は 98. 9%であった。
さらに水層を直ちに希硫酸中に投入して酸性化後、 酢酸ェチルで抽出し、 水洗 した。 無水硫酸ナトリウムで乾燥後、 溶媒を留去して結晶を得た。 この結晶をガ スクロマトグラフィーで定量分析したところ、 一般式 (1 0) の化合物 (n= l
0) を 23. 1 %含んでいることが判明した。 また 1. 00 gの結晶をシリカゲ ルクロマトグラフィーにより分割して得た無色結晶 0. 6 1 を 11 、 NMRに より解析したところ、 一般式 (12) の化合物 (n= l 0) であることが分かつ た。
(実施例 7) (アルカリ抽出法)
1, 12—ドデカンニ酸ジメチルエステル ( 105. 00 g、 406. 4 mm
0 1 ) とァ一プチロラクトン (8. 75 g, 10 1. 6mmo 1) と 28重量% ナトリウムメトキサイド—メタノール溶液 ( 19. 60 g、 101. 6mmo 1 ) とから調製した縮合反応液 (一部分を酸性化し定量した結果、 縮合物 25. 5 8 g、 未反応エステル 80. 56 gを含むことを確認) を、 50 で加熱撹拌し た。 これにシクロへキサン 139. 7 gを添加して 2分間撹拌した。 これに 5% — KOH水溶液を 143. 9 g添加して、 そのまま 10分間撹拌した。 5分間静 置した後、 分液して有機層と水層とに分けた。 有機層は水洗し、 濃縮したところ 、 一般式 (1) の化合物 (n= 1 0、 R=Me) を 98. 9%の濃度 (定量値) で含む結晶物を 8 1. 62 gを得た。 回収率は 100. 0%であった。
(参考例 1 )
実施例 3で得られた水層に 49 %—KOH水溶液 23. 3 gを添加した後、 2 時間環流した。 次に、 希硫酸で酸性化した後、 酢酸ェチルで抽出した。 有機層を 水洗して無水硫酸ナトリウムで乾燥し、 溶媒を留去して結晶クルード 27. 50 gを得た。 これをガスクロマトグラフィーにより定量分析した結果、 80. 2重 量%の一般式 (1 0) の化合物 (n= l 0) が含まれることが分かった。 縮合反 応液中の一般式 (2) の化合物 (n = 10、 R = Me) からの収率は 99. 0 % であった。
(比較例 2)
1, 12—ドデカンニ酸ジメチルエステル ( 105. 00 g、 406. 4 mm o l ) とァ一プチロラクトン (8. 75 g、 10 1. 6mmo l ) と 28重量% ナトリウムメトキサイド—メタノール溶液 (19. 60 g、 101. 6mmo 1 ) とから調製した縮合反応液 (一部分を酸性化し定量した結果、 縮合物 25. 6 8 g、 未反応エステル 80. 6 7 gを含むことを確認) を、 希塩酸中の注ぎ酢酸 ェチルで抽出した。 有機層は水洗し、 無水硫酸マグネシウムで乾燥した後、 溶媒 を留去して得られた油状残渣を減圧蒸留 (油浴温度 1 70〜 1 80 0. 5〜 0. 2mmHg) して過剰の 1, 1 2—ドデカンニ酸ジメチルエステルを留去し 、 留分 802 gと蒸留残 3 1. 55 gを得た。 留分をガスクロマトグラフィーを 用いて定量分析したところ、 一般式 (1) の化合物 (n= l 0、 R=Me) を 9 8. 3 %で含むことが分かった。 回収率は 98%であった。
また、 蒸留残 2. 00 gを酸性化した後、 酢酸ェチルで抽出した。 有機層は水 洗した後、 無水硫酸ナトリウムで乾燥し、 溶媒を留去し、 1. 88 gの結晶が得 られた。 この結晶をガスクロマトグラフィーで定量分析したところ、 一般式 (5 ) の化合物 (n= 10、 R = Me) を 84. 0重量%の濃度で含むことが分かつ た。 精製収率は 97. 00 %であった。
次に、 蒸留残 2. 00 gと水酸化ナトリウム (1. 75 g、 13. 7mmo 1 ) と水 40 gとメタノール 20 gを混ぜ、 4時間加熱環流した。 冷却して酸性化 した後、 酢酸ェチルで抽出した。 有機層は水洗後に、 無水硫酸ナトリウムで乾燥 し、 溶媒を留去して、 結晶クル一ド 1. 57 gを得た。 これをガスクロマトダラ フィ一により定量分析した結果 86. 6重量%の一般式 (10) の化合物 (n = 10) が含まれることが分かった。 収率は 95mo 1 % (対一般式 (2) の化合 物) であった。
(実施例 8)
1, 12—ドデカンニ酸ジメチルエステル ( 105. 00 g、 406.. 4mm o 1 ) とァ一プチロラクトン (8. 75 g、 101. 6mmo 1 ) と 28重量% ナトリウムメトキサイド—メタノール溶液 ( 19. 60 g、 101. 6mmo 1 ) とから調製した縮合反応液 1 1 3. 2 g (一部分を酸性化し定量した結果、 縮 合物 25. 65 g、 未反応エステル 80. 84 gが含まれていることを確認) を 5 Ot:で加熱撹拌した。 これに、 n—へキサン 550 gを添加して、 20 まで 冷却しながら撹拌し懸濁液とした。 これを加圧濾過器により沈殿物と上澄み液と に分離した。 濾過残渣は n—へキサンで十分に洗浄した。
得られた濾過残渣 35. 55 gを 10 %リン酸水溶液 49. 8 g (50. 8 m mo 1 ) 中に投下した。 更に水 (3 50 g) と 1 , 4—ジォキサン (2 5 0 g) 追加して、 1 0 O :で 5時間反応したところ、 反応液は 2層に分離した。 有機層 は分液し、 水層はトルエンを用いて抽出した。 その有機層とトルエン抽出物を混 合して水洗浄した後、 溶媒を留去して、 26. 6 0 gの結晶物を得た。 この結晶 物を単離、 精製し分析した結果、 次のとおり、 一般式 (7) の化合物に該当する 1 5—ヒドロキシ一 1 2—ケト一ペン夕デカン酸メチルエステルであることを同 定した。
^- MR (600MHz, TMS、 CDC )
1.28(12H, m, CH2- 4〜9), 1.57 (2H, tt, J=7.3, 7.2, CH2-10), 1.61 (2H, tt, J-7.3, 7.0, CH2- 3), 1.84 (2H, tt, J=6.7, 6.3, CH2 - 14), 2.30 (2H, t, J=7.5, CH2 - 2), 2.43 (2H, t, J = 7.5, CH2-II), 2.56 (2H, t, J=6.9, CH2- 13), 3.65 (2H, t, J=6.1, CH2-15), 3.67 (3H, s, CH3)
13 C-NMR (150MHz, CDCh)
23.86 (CH2-10), 24.92 (CH2 - 3), 26.50 (CH2- 14), 29.09〜29.36 (CH2- 4〜9), 34.08(CH2-2), 39.48 (CH2-13), 42.92 (CH2-11), 51.40(CH3), 62.33 (CH2-0H) 174.30 (C (=0)0), 211.76(C=0)
また、 ガスクロマトグラフィーにより分析した結果 79. 3 %の一般式 (7) の化合物 (n= 1 0、 R = Me) が含まれることが分かった。 収率は 72. 6 % (対ァ—プチロラクトン) であった。
(実施例 9 ) '
1, 1 2—ドデカンニ酸ジメチルエステル (1 05. 00 g、 406. 4mm o 1 ) とァ—プチロラクトン (8. 7 5 g、 1 0 1. 6mmo 1 ) と 28重量% ナトリウムメトキサイド一メタノール溶液 ( 1 9. 60 g、 1 0 1. 6mmo 1 ) とから調製した縮合反応液 1 1 3. 2 g (一部分を酸性化し定量した結果、 縮 合物 25. 6 5 g, 未反応エステル 80. 84 gが含まれていることを確認) を 、 5 0°Cで加熱撹拌した。 これに、 n—へキサン 55 0 gを添加して 2 O :まで 冷却しながら撹拌し懸濁液とした。 これを加圧濾過器により沈殿物と上澄み液と に分離した。 濾過残渣は n—へキサンで十分に洗浄した。 得られた濾過残渣 3 5 . 5 5 gを 1 0%リン酸水溶液 49. 8 g (50. 8 mm 0 1 ) 中に投下した。 更に無水リン酸水素ニナトリウム ( 1 3. 63 g、 96. Ommo l ) と水 (3 50 g) と 1, 4—ジォキサン (2 50 g) を反応装置に仕込み、 1 00でで 5 時間反応させたところ、 反応液は 2層に分離した。 有機層は分液し、 水層はトル ェンを用いて抽出した。 その有機層とトルエン抽出物を混合して水洗浄した後、 溶媒を留去して、 26. 56 gの結晶物を得た。
これをガスクロマトグラフィーにより分析した結果 80. 2 %の一般式 (7) の化合物 (n= 1 0、 R = Me) が含まれることが分かった。 収率は 73. 3 % (対ァ—プチロラクトン) であった。
(参考例 2 )
一般式 (7) の化合物 (n= 10、 R=Me) (10. 1 g, 35mmo 1 ) と水酸化ナトリウム (2. 80 g、 0. 070mo l ) と水 (25. 2 g) を混 ぜ、 4時間加熱環流した。 これに、 ジエチレングリコール 6 Om lを添加し更に 留去を続けた。 1時間後に 85 %水加ヒドラジン 10. 3m lを加え 1 10 で 40分間撹拌した。 その後、 昇温して系内が 195〜200 になってから 16 時間加熱撹拌した。 この間に留去される部分はすべて系外に抜き取った。 次いで 冷却し、 希硫酸で酸性にした後、 クロ口ホルムで抽出した。 クロ口ホルム層は水 洗し、 無水硫酸マグネシウムで乾燥した後、 溶媒を留去して 8. 92 gの結晶の 反応混合物を得た。
反応混合物をトリメチルシリル化してガスクロマトグラフィーにより分析した 結果、 97. 2%の一般式 (5) の化合物 (n= 10) を含むことが分かった。 一般式 (1) の化合物 (n= 10、 R = Me) からの収率は 96%であった。
(参考例 3 ) 反応混合物の調製
1, 12—ドデカンニ酸ジメチルエステル (105. 00 406. 4mo 1 ) とァ一ブチロラクトン (8. 75 g、 101. 6mmo 1 ) と 28 w t %ナ トリウムメトキサイド一メタノール溶液 (1 9. 60 g、 1 0 1. 6mmo 1 ) とから調製した縮合反応液を、 50でで加熱撹拌した。 これに n—へキサン 10 4. 4 gを添加して 2分間撹拌した。 これにさらに 5. 5%— Na〇H水溶液を 73. 87 g添加して、 そのまま 1 20分間撹拌した。 5分間静置した後、 分液 して有機層と水層とに分けた。 水層に 41 %— N a〇H水溶液 19. 00 gを添 加し、 2時間環流したのち、 8 0でまで冷却し、 反応混合物 1 2 6 . 5 2 gを得 た。
(実施例 1 0 ) 1 , 1 8—ジヒドロキシ一 4 , 1 5 —ォク夕デカンジオンの 抽出回収
上記参考例で得られた反応混合物の一部を、 8 0 に保温しながら同重量のト ルェンを用いて 2 0分間抽出した。 この操作を 5回繰り返して得た有機層と水層 を、 それぞれ希硫酸で酸性化した後、 酢酸ェチルで抽出した。 有機層を飽和食塩 水で洗浄した後、 溶媒を留去して結晶物を得た。 それぞれを H P L Cで定量分析 した結果を表 1に示す。
(表 1 )
1 ,18-·ン *ヒ *口キシ 4,15-才クタ Γカンシ'オンの抽出转果
Figure imgf000035_0001
(実施例 1 1 ) 1 5 —ヒドロキシ— 1 2—ケトペン夕デカン酸の精製
上記参考例 3で得られた反応混合物の水分率を 8 4 %に調整した後、 4 0 "C恒 温槽で 2時間晶析処理を行なった。 析出した結晶物を、 遠心濾過器を用いてケ一 ク部分と濾液とに分離した。 ケ一クは 4 0でで水を添加してリスラリー化した後 、 遠心濾過器を用いてケーク部分と濾液とに分離し、 濾液は先の濾液と混合した 。 それぞれを希硫酸を用いて酸性化した後、 酢酸ェチルで抻出した。 有機層を飽 和食塩水で洗浄した後、 溶媒を留去して結晶物を得た。 それぞれを H P L Cで定 量分析した結果を表 2に示す。 (表 2 )
1,18- ヒド口キン- 4,15-才クタテ*カンシ'オンの抽出結果
Figure imgf000036_0001
(実施例 1 2 ) 5 -ヒドロキシ— 1 2—ケトペン夕デカン酸の精製 上記参考例 3で得られた反応混合物を 8 0 に保温しながら、 同重量のトルェ ンを用いて 2 0分間抽出した。 この操作を 5回繰り返して得た水層を 2 0 恒温 槽で 2時間晶析処理を行なった。 析出した結晶物を遠心濾過器を用いてケーク部 分と濾液とに分離した。 それぞれを希硫酸を用いて酸性化した後、 酢酸ェチルで 抽出した。 有機層を飽和食塩水で洗浄した後、 溶媒を留去して結晶物を得た。 そ れぞれを H P L Cで定量分析した結果を表 3に示す。
(表 3 )
15-ヒド πキシ -12-ケ Kンタ 酸の精製桔果
Figure imgf000036_0002
なお、 表 3の結果から、 硫酸処理する前に晶析分離した結晶物には、 1 5—ヒ ドロキシー 1 2—ケトペンタデカン酸に対応するナトリウム塩が 7 . 2 8 g含ま れ、 濾液にはドデカン二酸に対応するナトリウム塩が 1 . 2 5 g含まれているこ とが明らかとなった。
(実施例 1 3 ) p H調整による 1 5 —ヒドロキシー 1 2 —ケトペン夕デカン 酸の精製 上記参考例 3のようにして得た反応混合物を 8 0 に保温しながら、 同重量の トルエンを用いて 2 0分間抽出した。 この操作を 5回繰り返して得た水層を 2 0 °C恒温槽で 2時間晶析処理を行なった。 析出した結晶物を遠心濾過器を用いてケ ーク部分と濾液とに分離した。 得られた濾液を硫酸を用いて P H = 6 . 5とし、 析出した結晶物を遠心濾過器を用いてケ一ク部分と濾液とに分離した。 濾液はさ らに硫酸を用いて p H == 3 . 0とし、 析出した結晶物を遠心濾過器を用いてケー クを得た。 それぞれを H P L Cで定量分析した結果を表 4に示す。
(表 4 ) による 15 に口キ'ン -12-ケト ンタ Tカン酸の精製桔果
Figure imgf000037_0001
産業上の利用可能性
本発明によれば、 2— ( ω—アルコキシカルボ二ルアルカノィル) 一 4—ブタ ノリッドおよびそのアル力リ金属塩を、 入手容易で安価な原料であるジカルボン 酸エステルを用いて、 高い収率でかつ選択率の良好な、 工業的にも有利な製造方 法で得ることができる。 .
本発明によれば、 ジカルボン酸エステルとァ—プチロラクトンとの反応によつ て得られた縮合反応液から、 工業的に有利に、 2— ( ω—アルコキシカルボニル アルカノィル) —4ーブタノリッドのアルカリ金属塩およびその誘導体と未反応 エステルとに簡便にまた高い収率で分離精製することができる。
さらに本発明によれば、 高収率で工業的に有利に新規化合物 ω—ヒドロキシー ( ω - 3 ) —ケト脂肪酸エステルを得ることができる。 そして、 この ω—ヒドロ キシー (ω— 3 ) —ケト脂肪酸エステルを、 大環状ラクトン系香料の重要な中間 体である ω—ヒドロキシ脂肪酸の製造において用いることにより、 従来法のよう に大量のアルカリ性塩基を使用する必要がなく、 しかも反応水との分離も容易な ため、 工数の大幅な削減が可能となり工業化の推進に役立つ製造法が提供される さらに本発明によれば、 特に香料工業分野で用いられる大環状ラクトン系香料 の重要中間体である ω—ヒドロキシ— (ω— 3 ) —ケト脂肪酸の製造において、 従来困難であった、 ひ, ω—ジヒドロキシ— δ, (ω— 3 ) —アルカンジオン、 ω—ヒドロキシ— (ω— 3 ) —ケト脂肪酸およびその塩、 ジカルボン酸およびそ の塩のそれぞれを、 選択性よく効率的に分離回収することができる。

Claims

請求の範囲
1. ァ—プチロラクトンと、 一般式 (1)
ROOC (CH2) nCOOR (1)
(式中、 nは 7〜13の整数、 Rはアルキル基) で示されるジカルボン酸エステ ルを縮合反応せしめ、 一般式 (2)
Figure imgf000039_0001
(式中、 nは 7〜13の整数、 Rはアルキル基) で示される 2— (ω—アルコキ シカルポ二ルアルカノィル) —4—ブ夕ノリッド、 または一般式 (3)
Figure imgf000039_0002
(式中、 nは 7〜13、 Rはアルキル基、 Mはアルカリ金属) で示される 2— ( ω—アルコキシカルボ二ルアルカノィル) 一 4—ブ夕ノリッドのアル力リ金属塩 を製造するに際し、 前記一般式 (1) で示されるジカルボン酸エステルを加熱撹 拌し、 これにァープチロラクトンとアルカリ金属アルコラ一トを添加することに より縮合反応せしめることを特徴とする 2 - (ω—アルコキシカルボ二ルアルカ ノィル) 一 4—ブタノリツドおよびそのアルカリ金属塩の製造法。 ·
2. 前記一般式 (1) の尺が、 炭素数 1〜6のアルキル基であることを特徴と する請求項 1記載の 2— (ω—アルコキシカルボ二ルアルカノィル) —4ーブタ ノリッドおよびそのアル力リ金属塩の製造法。
3. 前記縮合反応を、 減圧下にアルコールを留去しながら行なうことを特徴と する請求項 1または 2記載の 2— (ω—アルコキシカルボ二ルアルカノィル) ― 4ーブ夕ノリッドおよびそのアル力リ金属塩の製造法。
4. 前記縮合反応を、 減圧度を 2段以上に変化させて行なうことを特徴とする 請求項 1〜 3のいずれかに記載の 2— (ω—アルコキシカルボ二ルアルカノィル ) —4—ブタノリツドおよびそのアルカリ金属塩の製造法。
5. ァープチロラクトンと一般式 (1)
ROOC (CH2 ) n COOR (1) (式中、 nは 7〜13、 Rはアルキル基) で示されるジカルボン酸エステルとの 縮合反応液から、 一般式 (3)
Figure imgf000040_0001
(式中、 ηは 7〜1 3、 Rはアルキル基、 Μはアルカリ金属) で示される 2— ( ω—アルコキシ力ルポ二ルアルカノィル) 一 4—ブタノリツドのアルカリ金属塩 と未反応ジカルボン酸エステルとを分離するに際し、 該 2— (ω—アルコキシ力 ルポ二ルアルカノィル) — 4—ブタノリッドのアル力リ金属塩に不活性な溶媒を 用いて固液分離することを特徴とする 2 - (ω—アルコキシカルボ二ルアルカノ ィル) — 4—ブタノリッドのアル力リ金属塩とジカルボン酸エステルとの分離精 製法。
6. ァ—プチロラクトンと、 一般式 (1)
ROOC (CH2 ) n COOR (1)
(式中、 nは?〜 13、 Rはアルキル基) で示されるジカルボン酸エステルとの 縮合反応液から、 一般式 (3)
Figure imgf000041_0001
(式中、 nは 7〜 13、 Rはアルキル基、 Mはアルカリ金属) で示される 2— ( ω—アルコキシカルボ二ルアルカノィル) ― 4—ブタノリッドのアル力リ金属塩 、 およびその誘導体である一般式 (4)
0 CH2)nCOOM (4)
COOM
(式中、 nは?〜 13、 Mはアルカリ金属) で示される ω—ヒドロキシー (ω— 2) —力ルポキシー (ω— 3) —ケト脂肪酸のアルカリ金属塩、 および一般式 ( 5)
0
Figure imgf000041_0002
(式中、 n=7〜 13、 Mはアルカリ金属) で示される ω—ヒドロキシ— (ω 3) —ケト脂肪酸のアルカリ金属塩、 ならびに一般式 (6)
Figure imgf000041_0003
COOM (式中、 nは 7〜13、 Rはアルキル基) で示される ω—ヒドロキシー (ω— 2 ) 一カルボキシー (ω— 3) —ケト脂肪酸エステルと、 未反応ジカルボン酸エス テルとを分離するに際し、 水またはアル力リ水溶液を用いて抽出することを特徴 とする 2— (ω—アルコキシ力ルポ二ルアルカノィル) —4—ブ夕ノリツドのァ ルカリ金属塩およびその誘導体とジカルボン酸エステルとの分離精製法。
7. 前記一般式 (3) 、 (4) 、 (5) および (6) で示される化合物に不活 性な溶媒と水またはアル力リ水溶液を併用して抽出することを特徴とする請求項 6記載の 2— (ω—アルコキシカルボ二ルアルカノィル) —4—ブタノリツドの アルカリ金属塩およびその誘導体とジカルボン酸エステルとの分離精製法。
8. 一般式 (3)
Figure imgf000042_0001
(式中、 nは 7〜13の整数、 Rはアルキル基、 Mはアルカリ金属) で示される 2— (ω—アルコキシカルボ二ルアルカノィル) ー4—ブ夕ノリッドのアルカリ 金属塩のァープチロラクトン部を、 選択的に加水分解 ·脱炭酸反応せしめること を特徴とする一般式 (7)
(7)
(CH2)nCOOR
(式中、 nは 7〜13の整数、 Rはアルキル基) で示される ω—ヒドロキシ ω— 3) —ケト脂肪酸エステルの製造方法。
9. -般式 (3)
Figure imgf000043_0001
(式中、 nは 7〜 13の整数、 Rはアルキル基、 Mはアルカリ金属) で示される 2 - (ω—アルコキシ力ルポ二ルアルカノィル) —4—ブタノリツドのアルカリ 金属塩を、 弱酸の存在下に加熱して加水分解 ·脱炭酸反応せしめることを特徴と する一般式 (7)
0
C (7.)
(CH2)nCOOR
(式中、 nは 7〜 13の整数、 Rはアルキル基) で示される ω—ヒドロキシー ( ω— 3) —ケト脂肪酸エステルの製造方法。
10. 前記一般式 (3) および一般式 (7) の ηが 10または 1 1であること を特徵とする請求項 8または 9記載の ω—ヒドロキシー (ω— 3) —ケ卜脂肪酸 エステルの製造方法。
1 1. 一般式 ( 7 )
Figure imgf000043_0002
(式中、 nは 10または 1 1、 Rはアルキル基) で示される ω—ヒドロキシ— ( ω- 3) ーケト脂肪酸エステル。
12. 前記一般式 (7) の尺が、 炭素数 1〜6のアルキル基であることを特徴 とする請求項 1 1記載の ω—ヒドロキシー (ω— 3) —ケト脂肪酸エステル。
13. 一般式 (5)
0
Figure imgf000044_0001
(式中、 nは 7〜 13の整数、 Mはアルカリ金属を表す) で示される ω—ヒドロ キシー (ω— 3) —ケト脂肪酸のアルカリ金属塩と、 一般式 (8)
Figure imgf000044_0002
(式中、 ηは 7〜13の整数、 Μはアルカリ金属を表す) で示される長鎖ジカル ボン酸のアルカリ金属塩を含む混合物から、 前記一般式 (5) で示される ω—ヒ ドロキシー (ω— 3) —ケト脂肪酸のアルカリ金属塩を選択的に晶析させ、 これ を固液分離によりケークと濾液に分離することを特徴とする一般式 (5) で示さ れる ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩と一般式 (8) で示される長鎖ジカルボン酸のアルカリ金属塩の分離回収方法。
14. 一般式 (5)
0
Figure imgf000044_0003
(式中、 nは 7〜 13の整数、 Mはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩と、 一般式 (8)
Figure imgf000045_0001
(式中、 nは?〜 13の整数、 Mはアルカリ金属を表す) で示される長鎖ジカル ボン酸のアルカリ金属塩と、 一般式 (9)
Figure imgf000045_0002
(ただし、 nは 7〜13) で示されるひ, ω—ジヒドロキシー <5, (ω— 3) - アルカンジオンの三種を含む混合物から、 有機溶媒により前記一般式 (9) で示 される α, ω—ジヒドロキシ— δ, (ω- 3) —アルカンジオンを抽出するか、 あるいは該混合物から、 一般式 (9) で示されるひ, ω—ジヒドロキシ— δ, ( ω— 3) —アルカンジオンを選択的に晶析させることを特徴とする一般式 (9) で示されるひ, ω—ジヒドロキシー 6, (ω- 3) —アルカンジオンの分離回収 方法。
1 5. 一般式 (5)
Figure imgf000045_0003
(式中、 nは 7〜 13の整数、 Mはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩と、 一般式 (8)
Figure imgf000046_0001
(式中、 nは 7〜 13の整数、 Mはアルカリ金属を表す) で示される長鎖ジカル ボン酸のアルカリ金属塩を含む混合物を、 鉱酸により pH= 5〜7に調整するこ とを特徴とする、 一般式 ( 10)
Figure imgf000046_0002
(式中、 nは 7〜 13の整数を表す) で示される ω—ヒドロキシ— (ω— 3) - ケト脂肪酸と一般式 (8) で示される長鎖ジカルボン酸のアルカリ金属塩の分離 回収方法。
16. 請求項 1 3で得られたケークと濾液を、 それぞれ鉱酸で処理することを 特徵とする、 一般式 (10) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪 酸と一般式 (1 1)
Figure imgf000046_0003
(式中、 nは 7〜13の整数) で示される長鎖ジカルボン酸の分離回収方法。
17. 請求項 1 5において一般式 (8) で示される長鎖ジカルボン酸のアル力 リ金属塩を含む濾液を鉱酸により p H= 3〜 5に調整することを特徴とする一般 式 (1 1)
Figure imgf000047_0001
(式中、 nは 7〜13の整数) で示される長鎖ジカルボン酸の分離回収方法。
18. 請求項 14で得られた一般式 (5) で示される ω—ヒドロキシ— (ω— 3) ーケト脂肪酸のアルカリ金属塩と一般式 (8) で示される長鎖ジカルボン酸 のアルカリ金属塩分の混合物から、 一般式 (5) で示される ω—ヒドロキシー ( ω— 3) —ケト脂肪酸のアルカリ金属塩化合物を選択的に晶析させ、 それを固液 分離によりケークと濾液とに分離することを特徴とする一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩と一般式 (8) で示 される長鎖ジカルボン酸のアルカリ金属塩の分離回収方法。
19. 請求項 18で分離されたケ一クと濾液を、 それぞれ鉱酸で処理すること を特徴とする一般式 (10)
Figure imgf000047_0002
(式中、 ηは 7〜13の整数、 Μはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) —ケト脂肪酸と一般式 (1 1)
Figure imgf000047_0003
(式中、 ηは 7〜 1 3の整数) で示される長鎖ジカルボン酸の分離回収方法。
20. 請求項 14で分離された一般式 (5) で示される ω—ヒドロキシー (ω — 3) —ケト脂肪酸のアルカリ金属塩と一般式 (8) で示される長鎖ジカルボン 酸のアルカリ金属塩の混合物を、 鉱酸により pH=5〜7に調整することを特徴 とする一般式 (1 0)
Figure imgf000048_0001
(式中、 nは 7〜 13の整数、 Mはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) —ケト脂肪酸と一般式 (8) で示される長鎖ジカルボン酸のァ ルカリ金属塩の分離回収方法。
21. 請求項 20で一般式 (8) で示される長鎖ジカルボン酸のアルカリ金属 塩を含む濾液を鉱酸により、 Ρ Η= 3〜 5に調整することを特徵とする一般式 (1 1)
Ο 0
(1 1)
(式中、 nは 7〜13の整数) で示される長鎖ジカルボン酸の分離回収方法。
22. 請求項 13で分離された少量の一般式 (5) で示される ω—ヒドロキシ - (ω— 3) —ケト脂肪酸のアルカリ金属塩を含む濾液を、 鉱酸により ρΗ=5 〜7に調整することを特徴とする一般式 (10)
Figure imgf000048_0002
(式中、 ηは 7〜 13の整数、 Μはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) —ケト脂肪酸と一般式 (8) で示される長鎖ジカルボン酸のァ ルカリ金属塩の分離回収方法。
23. 請求項 22で分離された一般式 (8) で示される長鎖ジカルボン酸のァ ルカリ金属塩を含む濾液をさらに鉱酸により p H = 3〜 5に調整することを特徴 とする、 一般式 (1 1) -
Figure imgf000049_0001
(式中、 nは 7〜13の整数) で示される長鎖ジカルボン酸の分離回収方法。
24. 請求項 18で分離された少量の一般式 (5) で示される ω—ヒドロキシ - (ω- 3) —ケト脂肪酸のアルカリ金属塩を含む濾液を、 鉱酸により ρΗ=5 〜7に調整することを特徴とする一般式 (1 0)
Figure imgf000049_0002
(式中、 ηは 7〜1 3の整数、 Μはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) —ケト脂肪酸と一般式 (8) で示される長鎖ジカルボン酸のァ ルカリ金属塩の分離回収方法。
25. 請求項 24で分離された一般式 (8) で示される長鎖ジカルボン酸のァ ルカリ金属塩を含む濾液を鉱酸により ρ Η= 3〜 5に調整することを特徴とする 一般式 (1 1)
Figure imgf000049_0003
(式中、 nは 7〜 1 3の整数) で示される長鎖ジカルボン酸の分離回収方法 t
26. 次の A〜Fの工程からなる ω—ヒドロキシ— (ω— 3) —ケト脂肪酸の 製造法。
Α. ァープチロラクトンと、 一般式 (1)
ROOC (CH2) n COOR (1) (式中、 nは 7〜 13の整数、 Rはアルキル基) で示されるジカルボン酸エステ ルを縮合反応せしめ、
B. 得られた縮合反応液から、 一般式 (3)
Figure imgf000050_0001
(式中、 nは 7〜 13、 Rはアルキル基、 Mはアルカリ金属) で示される 2— ( ω—アルコキシカルボ二ルアルカノィル) —4ーブタノリツドのアルカリ金属塩 、 およびその誘導体である一般式 (4)
Figure imgf000050_0002
COOM
(式中、 nは?〜 13、 Mはアルカリ金属) で示される ω—ヒドロキシ— (ω— 2) —カルボキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩、 および一般式 ( 5)
0
Figure imgf000050_0003
(式中、 n= 7〜1 3、 Mはアルカリ金属) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩、 ならびに一般式 (6)
(CH2)nCOOR ( 6 )
Figure imgf000051_0001
COOM
(式中、 nは 7〜13、 Rはアルキル基) で示される ω—ヒドロキシ— (ω— 2 ) —カルボキシー (ω— 3) —ケト脂肪酸エステルと、 未反応ジカルボン酸エス テルとを、 水またはアルカリ水溶液を用いて抽出して分離せしめ、
C. 必要に応じ、 次いで、 前記 Β工程で抽出された混合物に、 アルカリを加えて 加水分解 '脱炭酸反応せしめ、 一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアルカリ金属塩と、 一般式 (1) のジカルボン酸エステルを 加水分解して生じる一般式 (8)
Figure imgf000051_0002
(式中、 ηは?〜 13の整数、 Μはアルカリ金属を表す) で示される長鎖ジカル ボン酸のアルカリ金属塩、 および縮合反応の副生成物が加水分解 ·脱炭酸して生 じる一般式 (9)
Figure imgf000051_0003
(ただし、 ηは 7〜: 1 3) で示される α, ω—ジヒドロキシ— δ, (ω— 3) - アルカンジオンの三種を含む混合物とし、
D. 前記 Βまたは C工程で得られた混合物から、 有機溶媒により前記一般式 (9 ) で示されるひ, ω—ジヒドロキシ— δ, (ω- 3) —アルカンジオンを抽出す るか、 あるいは該混合物から、 一般式 (9) で示される α, ω—ジヒドロキシー (5, (ω— 3) —アルカンジオンを選択的に晶析させ、 次いで、
Ε. 一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケト脂肪酸のアル力 リ金属塩と一般式 (8) で示される長鎖ジカルボン酸のアルカリ金属塩分の混合 物から、 一般式 (5) で示される ω—ヒドロキシー (ω— 3) —ケト脂肪酸のァ ルカリ金属塩化合物を選択的に晶析させ、 それを固液分離によりケ一クと濾液と に分離せしめ、
F. 分離された少量の一般式 (5) で示される ω—ヒドロキシ— (ω— 3) —ケ ト脂肪酸のアルカリ金属塩を含む濾液を、 鉱酸により ρΗ= 5〜7に調整して、 一般式 (10)
Figure imgf000052_0001
(式中、 ηは 7〜 13の整数、 Μはアルカリ金属を表す) で示される ω—ヒドロ キシ— (ω— 3) —ケト脂肪酸と一般式 (8) で示される長鎖ジカルボン酸のァ ルカリ金属塩を分離回収し、 そして、 分離された一般式 (8) で示される長鎖ジ カルボン酸のアル力リ金属塩を含む濾液を鉱酸により ρ Η= 3〜 5に調整して、 —般式 (1 1)
Figure imgf000052_0002
(式中、 ηは 7〜 1 3の整数) で示される長鎖ジカルボン酸を分離回収する,
PCT/JP1998/002930 1997-06-30 1998-06-30 PROCESSES FOR PREPARING 2-(φ-ALKOXYCARBONYLALKANOYL)-4-BUTANOLIDES, φ-HYDROXY-(φ-3)-KETO FATTY ESTERS, AND DERIVATIVES THEREOF WO1999000378A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69835508T DE69835508T2 (de) 1997-06-30 1998-06-30 Verfahren zur herstellung von 2-(omega-alkoxycarbonylalkanoyl)-4-butanoliden,omega-hydroxy-(omega-3)-keto-fettsäureestern und ihrer derivate
US09/242,805 US6291688B1 (en) 1997-06-30 1998-06-30 Processes for preparing 2-(omega-alkoxycarbonylalkanoyl)-4- butanolides omega-hydroxy-(omega-3)-keto fatty esters, and derivatives thereof
EP98929758A EP0970952B1 (en) 1997-06-30 1998-06-30 Processes for preparing 2-omega-alkoxycarbonylalkanoyl)-4-butanolides, omega-hydroxy-omega-3)-keto fatty esters, and derivatives thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP18902297A JPH1121270A (ja) 1997-06-30 1997-06-30 ω−ヒドロキシ−(ω−3)−ケト脂肪酸エステルおよびその製造法
JP9/189022 1997-06-30
JP9/189021 1997-06-30
JP18902197A JP4706887B2 (ja) 1997-06-30 1997-06-30 2−(ω−アルコキシカルボニルアルカノイル)−4−ブタノリッドの製造法
JP21575297 1997-07-25
JP9/215752 1997-07-25
JP05582798A JP4853691B2 (ja) 1998-02-20 1998-02-20 α,ω−ジヒドロキシ−δ,(ω−3)−アルカンジオン、ω−ヒドロキシ−(ω−3)−ケト脂肪酸およびその塩、ジカルボン酸およびその塩の分離回収方法
JP10/55827 1998-02-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/242,805 A-371-Of-International US6291688B1 (en) 1997-06-30 1998-06-30 Processes for preparing 2-(omega-alkoxycarbonylalkanoyl)-4- butanolides omega-hydroxy-(omega-3)-keto fatty esters, and derivatives thereof
US09/894,014 Division US6475133B2 (en) 1997-06-30 2001-06-28 Methods for making 2-(ω-alkoxycarbonylalkanoyl)-4-butanolide, ester of omega-hydroxy-(ω-3)-ketoaliphatic acid, and derivatives thereof

Publications (1)

Publication Number Publication Date
WO1999000378A1 true WO1999000378A1 (en) 1999-01-07

Family

ID=27463253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002930 WO1999000378A1 (en) 1997-06-30 1998-06-30 PROCESSES FOR PREPARING 2-(φ-ALKOXYCARBONYLALKANOYL)-4-BUTANOLIDES, φ-HYDROXY-(φ-3)-KETO FATTY ESTERS, AND DERIVATIVES THEREOF

Country Status (5)

Country Link
US (1) US6291688B1 (ja)
EP (1) EP0970952B1 (ja)
CN (1) CN100341865C (ja)
DE (1) DE69835508T2 (ja)
WO (1) WO1999000378A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475133B2 (en) 1997-06-30 2002-11-05 Soda Aromatic Co., Ltd. Methods for making 2-(ω-alkoxycarbonylalkanoyl)-4-butanolide, ester of omega-hydroxy-(ω-3)-ketoaliphatic acid, and derivatives thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311036A (ja) * 1989-06-06 1991-01-18 Ube Ind Ltd ω―ヒドロキシ―(ω―3)―ケト脂肪酸の製法
WO1997006156A1 (fr) * 1995-08-04 1997-02-20 Toray Industries, Inc. PROCESSUS DE PRODUCTION DE 2-(φ-ALCOXYCARBONYLALCANOYL)-4-BUTANOLIDE ET D'ACIDE CARBOXYLIQUE φ-HYDROXY A CHAINE LONGUE
US5693828A (en) * 1996-05-09 1997-12-02 International Flavors & Fragrances Inc. Process for preparing lactones and intermediates therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311036A (ja) * 1989-06-06 1991-01-18 Ube Ind Ltd ω―ヒドロキシ―(ω―3)―ケト脂肪酸の製法
WO1997006156A1 (fr) * 1995-08-04 1997-02-20 Toray Industries, Inc. PROCESSUS DE PRODUCTION DE 2-(φ-ALCOXYCARBONYLALCANOYL)-4-BUTANOLIDE ET D'ACIDE CARBOXYLIQUE φ-HYDROXY A CHAINE LONGUE
US5693828A (en) * 1996-05-09 1997-12-02 International Flavors & Fragrances Inc. Process for preparing lactones and intermediates therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0970952A4 *

Also Published As

Publication number Publication date
DE69835508T2 (de) 2007-02-08
EP0970952A4 (en) 2003-03-19
US6291688B1 (en) 2001-09-18
DE69835508D1 (de) 2006-09-21
CN100341865C (zh) 2007-10-10
EP0970952B1 (en) 2006-08-09
EP0970952A1 (en) 2000-01-12
CN1229406A (zh) 1999-09-22

Similar Documents

Publication Publication Date Title
WO1994010122A1 (en) Process for the preparation of carboxylic acids and esters thereof by oxidative cleavage of unsaturated fatty acids and esters thereof
JPH051776B2 (ja)
WO1999000378A1 (en) PROCESSES FOR PREPARING 2-(φ-ALKOXYCARBONYLALKANOYL)-4-BUTANOLIDES, φ-HYDROXY-(φ-3)-KETO FATTY ESTERS, AND DERIVATIVES THEREOF
EP2419394A1 (en) Process for the preparation of 2,4,6-octatriene-1-oic acid and 2,4,6-octatriene-1-ol
EP1167365B1 (en) Method of producing sesamol formic acid ester and sesamol
US6528668B2 (en) Methods for making 2-(ω-alkoxycarbonylalkanoyl)-4-butanolide, ester of ω-hydroxy-(ω-3)-ketoaliphatic acid, and derivatives thereof
JP4110494B2 (ja) 2−(ω−アルコキシカルボニルアルカノイル)−4−ブタノリッドのアルカリ金属塩およびその誘導体とジカルボン酸エステルとの分離精製法
JPH04226936A (ja) 2,2−ジメチル−5−(2,5−ジメチルフェノキシ)ペンタン酸の製造方法、その製造中間体、および製造中間体の製造方法
JP4120271B2 (ja) [4−(ヒドロキシメチル)シクロヘキシル]メチルアクリレートの製造法
US4360468A (en) Preparation of 13-oxabicyclo[10.3.0]pentadecane
JP4853691B2 (ja) α,ω−ジヒドロキシ−δ,(ω−3)−アルカンジオン、ω−ヒドロキシ−(ω−3)−ケト脂肪酸およびその塩、ジカルボン酸およびその塩の分離回収方法
JP2756373B2 (ja) 1,1,1−トリフルオロ−3−ニトロ−2−プロペンの製造方法
JP2854266B2 (ja) 3‐置換2‐ヒドロキシ‐3‐ホルミル‐プロピオン酸エステル及び該化合物の製法
JP3265142B2 (ja) 4−アルキル安息香酸類の製造方法
JP4081619B2 (ja) 光学活性な5−ヒドロキシ−2−デセン酸の製造方法および光学活性なマソイヤラクトンの製造方法
JP3357147B2 (ja) 5−フェニルペンタン酸の製造方法
JPS5819665B2 (ja) サクシニルコハクサンジエステルノ セイゾウホウ
JP2020138907A (ja) 2,15−ヘキサデカンジオンの精製方法および3−メチルシクロペンタデセノン類の製造方法
JP2002167381A (ja) (±)−6−ヒドロキシ−2,5,7,8−テトラメチルクロマン−2−カルボン酸の光学分割法
JPH0524913B2 (ja)
JP2002138087A (ja) セサモールギ酸エステル及びセサモールの製造方法
JPS63243055A (ja) 大環状2−ヒドロキシケトンの製造方法
BE489416A (ja)
JPH08104666A (ja) 4−イソプロピルシクロヘキサンカルボン酸エステル誘導体の製法
JPS6364416B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800882.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09242805

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1999 242805

Country of ref document: US

Date of ref document: 19990319

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998929758

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998929758

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998929758

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载