+

WO1999067596A1 - Appareil electronique a mesureur d'azimut et procede de mesure d'azimut dans ledit appareil - Google Patents

Appareil electronique a mesureur d'azimut et procede de mesure d'azimut dans ledit appareil Download PDF

Info

Publication number
WO1999067596A1
WO1999067596A1 PCT/JP1999/003295 JP9903295W WO9967596A1 WO 1999067596 A1 WO1999067596 A1 WO 1999067596A1 JP 9903295 W JP9903295 W JP 9903295W WO 9967596 A1 WO9967596 A1 WO 9967596A1
Authority
WO
WIPO (PCT)
Prior art keywords
azimuth
electronic device
compass
magnetic
sensor
Prior art date
Application number
PCT/JP1999/003295
Other languages
English (en)
French (fr)
Inventor
Norio Miyauchi
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to EP99957196A priority Critical patent/EP1024345B1/en
Priority to DE69929163T priority patent/DE69929163T2/de
Publication of WO1999067596A1 publication Critical patent/WO1999067596A1/ja
Priority to US09/489,928 priority patent/US6385133B1/en
Priority to HK01101735A priority patent/HK1030809A1/xx

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/02Detectors of external physical values, e.g. temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • G01C17/30Earth-inductor compasses

Definitions

  • the present invention is directed to an electronic device with an azimuth meter having an azimuth sensor for electrically detecting terrestrial magnetism and a battery for driving each driving unit.
  • the present invention relates to an electronic device with an azimuth meter that can be realized and an azimuth measuring method in the electronic device.
  • FIG. 12 shows an overview of a commercially available digital electronic wristwatch equipped with a compass as an example of such electronic equipment.
  • the digital electronic wrist watch 130 with a compass can be used to measure the direction, the direction measurement button 13 2, the magnetic north mark 13 4 pointing to magnetic north, and the direction of the electronic wrist watch 13 2 o'clock at 12 o'clock.
  • a direction register ring 1336 rotatable with respect to the liquid crystal display panel 13 1.
  • the 16-azimuth display section 135 displays the azimuth of the electronic wristwatch 130 at 12 o'clock (NNE in the example of FIG. 12). Rotate the bearing register 1 36 to set N (north bearing) 1 36 a to the magnetic north mark 1 34 to find the bearing in any direction.
  • the driving body such as a step motor changes the magnetic field in a complicated manner due to the rotation of the rotor made of permanent magnets. If there are multiple step motors, the magnetic field becomes more complicated and correction becomes difficult, and accurate azimuth There is a problem that measurement is not possible. If the azimuth instruction is displayed on a liquid crystal display as shown in Fig. 12, it is not necessary to provide a step mode for moving the azimuth hand, but there is a problem that the liquid crystal display is difficult to see due to the problem of the viewing angle.
  • an electronic device with an azimuth meter having an azimuth sensor for electrically detecting terrestrial magnetism accurate azimuth measurement can be performed even when one or a plurality of magnetic members for generating a magnetic field are present
  • An easy-to-read electronic device with an azimuth meter and a compass that can reduce the size of electronic devices with an azimuth meter by relaxing the restrictions on the position of magnetized members that generate strong magnetism such as magnetized batteries and step motors It is an object of the present invention to provide a direction measurement method for an attached electronic device.
  • the present invention relates to an electronic device with an azimuth meter provided with an azimuth sensor for electrically detecting terrestrial magnetism, wherein a magnetic-resistant plate for shielding a magnetic field around a magnetic member provided inside the electronic device with an azimuth meter is provided. , It is possible to perform accurate azimuth measurement.
  • Magnetic member means a member that has magnetism by magnetism in addition to a member that is magnetized by magnetism in addition to a magnet member that is magnetized by external magnetism, and includes a battery and a driver such as a motor that has a magnet. It is a concept.
  • an electronic device with an azimuth meter including: a direction sensor for electrically detecting terrestrial magnetism; and a driving body having a rota of permanent magnets and a coil for driving the roa.
  • An azimuth sensor for measuring the azimuth when the driving body is stationary, a rotor rotation start timing detecting means for detecting the rotation start timing of the mouth, A magnetic field estimating means for estimating a stationary time of the rotor and a direction of a magnetic field generated from the rotor from a rotation start signal detected by the rotor rotation start timing detecting means and a direction of a driving current flowing through the coil;
  • the method of the present invention has an azimuth sensor for electrically detecting terrestrial magnetism and a battery for driving each of the driving units, and the driving unit drives a rotor that is a permanent magnet and the whole of the opening.
  • Direction measuring method for an electronic device with a direction measuring device including a driving body having a coil for measuring the direction by driving a direction sensor when the driving body is at rest, and starting rotation of the mouth-to-mouth.
  • the present invention provides an electronic device with an azimuth meter including: a direction sensor for electrically detecting terrestrial magnetism; and a driving body having a low-voltage permanent magnet and a coil for driving the port.
  • An azimuth sensor for measuring an azimuth when the driving body is stationary; a rotor rotation start timing detecting unit for detecting a rotation start timing of the rotor; a rotation start signal detected by the rotor rotation start timing detection unit
  • the method of the present invention has an azimuth sensor for electrically detecting terrestrial magnetism and a battery for driving each of the driving units, and the driving unit drives a rotor that is a permanent magnet and the whole of the opening.
  • Direction measuring method for an electronic device with a direction measuring device including a driving body having a coil for measuring the direction by driving a direction sensor when the driving body is at rest, and starting rotation of the mouth-to-mouth.
  • the present invention comprises a direction sensor for electrically detecting geomagnetism and a permanent magnet.
  • the method of the present invention comprises: an azimuth sensor for electrically detecting terrestrial magnetism; a battery for driving each drive unit; a rotor having a magnet in the drive unit; and a coil for driving the rotor.
  • An azimuth measuring method for an electronic timepiece with a compass including a driving body having a means for returning a time hand or a function hand driven by the driving body to a predetermined position, wherein the driving body is stationary.
  • FIG. 1 is a view showing an electronic wristwatch with a compass according to a first embodiment of the present invention; (a) is a plan view thereof, and (b) is a cross-sectional view taken along the line I-I of (a).
  • FIG. 2 is a view showing a second embodiment of the present invention, in which (a) is a plan view of an analog electronic wristwatch with a compass, and (b) is a cross-sectional view in the II-II direction of (a). .
  • FIG. 3 is a block diagram of an electronic wristwatch according to a third embodiment of the present invention.
  • FIG. 4 is an azimuth measurement display flowchart illustrating an azimuth measurement display method in the electronic wristwatch of the embodiment of FIG.
  • FIG. 5 is a block diagram of an electronic wristwatch according to a fourth embodiment of the present invention.
  • FIG. 6 is an azimuth measurement display flowchart illustrating an azimuth measurement display method in the electronic wristwatch of the fourth embodiment.
  • FIG. 7 is a block diagram of an electronic wristwatch according to a fifth embodiment of the present invention.
  • FIG. 8 is an azimuth measurement display flowchart illustrating an azimuth measurement display method in the electronic wristwatch of the embodiment of FIG.
  • FIG. 9 shows still another embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of the configuration of the step mode.
  • Fig. 11 is a graph showing the time change of the rotation angle after a pulse current is applied. is there.
  • FIG. 12 is a diagram showing an overview of a digital electronic wristwatch with a compass, according to an example of an electronic device.
  • FIG. 1 shows an electronic wristwatch with a compass according to a first embodiment of the present invention, wherein (a) is a plan view of the electronic wristwatch with a compass as viewed from the back, and (b) is the I-I direction of (a). It is sectional drawing.
  • an electronic wristwatch 1 with an azimuth meter includes a timepiece module 5 having a direction sensor 2 and a button-type battery 3, a timepiece case 5a accommodating the timepiece module 5, and A windshield 8 fitted into the watch case 5a, a back cover 9 attached to the back of the watch case 5a and opened and closed when the battery 3 is replaced, and operated to perform azimuth measurement, etc. It has various buttons 15, 16 and 17.
  • the azimuth sensor 2 is a known sensor that electrically detects terrestrial magnetism.
  • a thin fluxgate type disclosed in Japanese Patent Application Laid-Open No. Hei 9-43332 as “a weak magnetic sensor and a method for manufacturing the same”. It is a magnetic sensor.
  • an anti-magnetic plate 10 for shielding magnetism is arranged around the battery 3.
  • the anti-magnetic plate 10 will be described.
  • the anti-magnetic plate 10 is attached to the back cover 9 so as to surround the battery 3 with an adhesive or the like so that the back cover 9 of the watch is affected by an external magnetic field.
  • the battery 3 is preferably a button type, and it is more preferable to provide the antimagnetic plate 10 in close contact with the upper and lower surfaces thereof. If the anti-magnetic plate 10 is attached to the back cover 9, if the back cover 9 is removed when replacing the battery, the anti-magnetic plate 10 will be removed together with the back cover 9 from around the battery 3. Also, there is an advantage that the anti-magnetic plate 10 does not interfere.
  • the anti-magnetic plate 10 is preferably formed of a material having high magnetic permeability such as PC permalloy.
  • PC Permalloy the holding force is very small in 1 0- 2 C e order one, PC Permalloy's own magnetism is very small and has high magnetic permeability. Therefore, it is possible to prevent the battery 3 from being magnetized by an external magnetic field. Further, even if the battery 3 is magnetized, the magnetic field generated therefrom is cut off to reduce the influence on the geomagnetism near the direction sensor 2. Therefore, as shown in FIG. 1 (a), even if the battery 3 is arranged close to the direction sensor 2, the direction measurement of the direction sensor 2 is not hindered. According to the above description, the battery 3 can be arranged at an arbitrary position on the circuit board 12, so that the circuit board 12 can be reduced in size and the timepiece module can be reduced in size.
  • the present invention can be applied not only to analog electronic devices but also to digital electronic devices.
  • FIG. 2 is a view showing a second embodiment of the present invention, in which (a) is a plan view of an analog electronic wristwatch with a compass as viewed from the back side, and (b) is a cross-sectional view in the II-II direction of (a). It is.
  • the analog electronic wristwatch 20 with a compass has a position sensor 2 as a compass, a coil 4a, and a rotatable mouth connected to a handwheel (not shown).
  • the direction sensor 2 is arranged as far away from the battery 3 as possible.
  • the distance between the center of the magnetic core 2a of the direction sensor 2 and the center of the battery 3 is the distance L1 between the center of the magnetic core 2a and the center of the mouth 4b of the step motor 4. It is preferable to arrange them so as to be larger.
  • the watch case 6a has an overhang portion 26 formed on the opposite side of the battery storage portion for storing the battery 3, and the direction sensor 2 is positioned and fixed inside the overhang portion 26 by a positioning pin 2b. Is done.
  • step motor 4 for normal hand movement one or more step motors for driving an additional mechanism such as a stopwatch may be provided in the watch case 6a. Also in this case, the direction sensor 2 is arranged as far away from the battery 3 as possible. Step motor 4 for hand operation and the above-mentioned step motor for additional mechanism At least one, preferably more than all, should be arranged.
  • an analog electronic wristwatch 20 with a compass having a total of three step motors was used to carry out various experiments in which the distance relationship between the direction sensor 2 and the step motor / battery 3 was varied.
  • the distance LL 22.5. mm
  • the battery 3 is set farther away from the direction sensor 2 than the step motor 3 when the electronic wristwatch 20 is exposed to an external magnetic field (generally, about 30 G, geomagnetism is about 0.3 G).
  • the battery 3 made of a soft magnetic material having a large coercive force is magnetized weaker than the step motor, and the magnetic field generated from the magnetized battery 3 has a greater effect on the direction sensor 2 than the step motor. is there.
  • the battery 3 is preferably a button-type battery rather than a coin-type battery.
  • the button-type battery avoids planar approach than the coin-type battery and can prevent the azimuth measurement from being disabled.
  • the electronic wristwatch 20 of this embodiment has a magnetically permeable plate 11 a for reducing the influence of the magnetic field of the mouth 4 b of the step motor 4 in addition to the magnetically permeable plate 10 of the first embodiment. are doing.
  • the anti-magnetic plate 11a is disposed between the step module 4 and the direction sensor 2, and supports the circuit board 12a of the timepiece module 6.
  • the anti-magnetic plate 11a prevents the step motor 4 from being magnetized by an external magnetic field, and shields the magnetized step motor 4 and the rotor 4b so that the magnetic field does not affect the direction sensor 2.
  • the anti-magnetic plate 11 a is more transparent than the anti-magnetic plate 10 provided on the battery 3 so that the magnetic flux of the rotor 4 b of the step motor 4 is not strongly bowed and the drive of the step motor 4 is not hindered. It is preferable to use a material having a low magnetic susceptibility, for example, a stainless steel of austenitic type.
  • the anti-magnetic plates 10 and 11a are provided or the step —
  • the purpose of the present invention is to achieve accurate azimuth measurement by the azimuth sensor 2 by mechanical means of devising the arrangement of the evening 4 and the battery 3, but in the following embodiment, The azimuth measurement is intended to be accurately performed by the correction.
  • FIG. 3 is a block diagram of an electronic wristwatch according to a third embodiment of the present invention.
  • the analog electronic wristwatch 30 with compass has a compass 50, a clock circuit (electronic circuit) 40, a step mode 37 for displaying time, and this step mode 37.
  • a clock train consisting of a second hand 35a, a minute hand 35b, and an hour hand 35c driven via the train wheel 39, a step motor 36 for magnetic north display, and a wheel train with this step motor 36 It has an azimuth hand 3 4 driven via 38, an azimuth measurement button 32 operated at the time of azimuth measurement, and an azimuth registration ring 33.
  • the step motor 37 has a mouth 37a composed of a two-pole permanent magnet, and a two-pole station 37a provided around the mouth 37a.
  • This is a planar stepping motor having a motor 71 and a coil 373 provided in the stator 371, and is generally called a label type motor.
  • Rho 37a has two mouth stop positions 37 4 and 37 5.
  • the rotor 37 a reverses and the N pole stops at the stop position 3 7 4 Or stop towards 3 7 5
  • step mode 36 The same applies to step mode 36.
  • the direction meter 50 includes a direction sensor 51, an exciting unit 53 for exciting the direction sensor 51, and a detection unit for outputting direction data EX and EY based on the direction outputs DX and DY output by the direction sensor 51. Consists of 5 2.
  • the clock circuit 40 includes a driver 46 for driving a time display step mode 37, a time display pulse generating means 43 for outputting a time display pulse H to the dryno 46, and a time display pulse generating means 4
  • Time north direction function control means 41 that sends signal F to 3 and outputs pulse H to driver 46, and magnetic north that generates magnetic north display pulse N for displaying magnetic north based on the detection result of direction sensor 51
  • the magnetic north display pulse generating means 4 4 derives magnetic north by the signal M from the time azimuth function control means 41 and the azimuth data EX, EY output by the detecting means 52 of the compass 50. Outputs pulse N to driver 45. Further, a zero return signal L is input to the magnetic north display pulse generating means 44 from the zero return signal generating means 49.
  • the driver 46 having the rotor rotation start timing detecting means for detecting the rotation start timing based on the signal I from the time azimuth function control means 41 transmits the rotation start time of the rotor 37 a and the direction of the drive current. Is output to the magnetic field prediction means 42a.
  • the rotor magnetic field prediction means 42a predicts the stationary time and stationary position of the rotor 37a based on the signal J.
  • the offset values X and Y and the sensitivity ratio (X / Y) are stored in the memory means 41a in advance when the electronic wristwatch is manufactured.
  • FIG. 11 is a graph showing a temporal change of a rotor rotation angle after a pulse current flows.
  • the low pole 37a starts rotating from the state where the north pole is at the mouth stop position 374, and rotates 180 degrees to move the north pole to the low stop position 375. It takes a certain amount of time to reach a stable standstill after reaching.
  • the pulse current flows every second and the mouth 37a rotates 180 degrees every second. In the example shown in the graph of FIG. 11, it takes about 0.1 second from the start of rotation of the rotor 37a to the stable stop.
  • the direction measurement by the direction sensor 51 is performed in a
  • two sets of correction values are used, one for the case where the north pole faces the mouth stop position 3 7 4 and the case where the north pole faces the low stop position 3 7 5. Correction can be performed.
  • the azimuth data of the azimuth sensor 51 is EX and EY when the mouth 37a is stably stationary without correction. Then, the values of the azimuth data EX and EY at the magnetic field 0 are set as offset values X and Y.
  • the offset values X and Y include the offset values X 1 and Y 1 due to the rotor leakage magnetism and the unique offset values X 2 and Y 2 of the direction sensor 51.
  • the offset values X and Y are constant when the N pole of the lowway 37a is stably stationary at the lowway stop position 374.
  • the offset values X and Y are constant even when the mouth 375a is inverted and the N pole faces the mouth STOP position 375 and stably stands still. Therefore, the sensitivity ratio (X / Y) is constant when Rho 37a is stably stationary.
  • the offset values X and Y are subtracted from the azimuth data EX and EY of the azimuth sensor 51, and the sensitivity ratio (X / Y) is corrected. It is possible to correct the 51 inherent deviation. Next, a method of calculating the offset values X and Y will be described.
  • the magnetic north display step mode 36 is driven to return the direction hand 34 to zero.
  • the rotor 36a of the magnetic north display step motor 36 stops at the position where the compass hand 34 returns to zero.
  • the stationary position of the rotor 37a of the time display step motor 37 is predicted based on the signal J output by the driver 46.
  • the time azimuth function control means 4 1 The compass 50 is driven by the signal B from.
  • the direction data EX and EY are input to the time direction function control means 41 from a direction meter 50. From the azimuth data EX and EY, the offset values X and Y are obtained as in the following equation.
  • EX (X) is the azimuth data when a magnetic field is applied to the X axis
  • EX (-X) is the azimuth data when a magnetic field is applied to the X axis
  • EY (Y) is Y
  • EY (-Y) is the azimuth data when the magnetic field is applied to one Y axis.
  • the sensitivity ratio (X / Y) in a state where the N pole of the rotor 37a is stably stationary at the mouth stop position 374 toward the mouth is determined.
  • EY (Y) EY (Y) —Offset value Y (Equation 4)
  • Sensitivity ratio (XZY) EX (X) / EY (Y)
  • Equations 3 and 4 the result of subtracting the offset values X and ⁇ from EX (X) and EY ( ⁇ ) is defined as EX (X) and EY ( ⁇ ).
  • the time display stepper 37 is driven based on the signal F, and the mouth 37a is inverted.
  • the low magnetic field predicting means 42 a predicts the stationary position of the low 37 a from the signal J output from the driver 46, and outputs a signal K to the time direction function control means 41. Then, the offset values X and Y and the sensitivity ratio (X / Y) are obtained in the same manner as above at the predicted rest position.
  • the two stop positions 374, 375 of the time display step motor 37a and the magnetic north display were obtained for each row stop position 374, 375 obtained as described above.
  • the two sets of offset values X and Y and the sensitivity ratio (XZY) corresponding to the combination with the rest position of 36a at the time of return to zero at 36 are stored in the memory means 41 by the time direction function control means 41. Stored in a.
  • the azimuth measurement is started when the azimuth measurement button 32 is pressed (step 2) from the time display state (step 1) of the analog electronic wrist watch 30 with a azimuth meter.
  • the time azimuth function control means 41 outputs the azimuth hand zero return confirmation signal A to the magnetic north indication pulse generation means 44.
  • the return-to-zero signal generation means 49 outputs a return-to-zero signal L via a wheel train 38 to which the azimuth hand 34 is attached.
  • the rotor magnetic field predicting means 4 2a includes the mouth from the time azimuth function control means 41. Based on the evening magnetic field predicting signal I, the driver 46 drives the time display step motor 37 to rotate the mouth 3 7a.
  • the signal J for the start time and the direction of the drive current is input. From the signal J, the rotor stationary position (for example, the rotor stationary position A in FIG. 11) and the rotor stationary time are predicted. For example, if the rotation time of the roller 37a changes as shown in Fig. 1 within one second, the rotation start time of the roller 37a changes from 0.1 second to 1 second.
  • the time at which an arbitrary time is added is the low evening still time.
  • the time azimuth function control means 41 outputs the azimuth sensor excitation signal B to the azimuth meter 50.
  • the azimuth sensor 50 is excited (step 6), and the azimuth meter 50 starts azimuth measurement.
  • the detecting means 52 performs two azimuth data EX and EY corresponding to the respective output voltages DX and DY in two directions of the X and Y axes in the X—Y plane for measuring the azimuth of the azimuth sensor 51.
  • the magnetic north display pulse generating means 44 outputs all offsets X, Y (time display) output from the time azimuth function control means 41 from the azimuth data EX, EY corresponding to the two azimuth sensor output voltages DX, DY, respectively.
  • M) consisting of the mouth-to-mouth leakage magnetic field offset values X1 and Y1 from the step motor 37 for magnetic north display and the step motor 36 for magnetic north display, and the unique offset values X2 and Y2 of the azimuth sensor 51) Subtract as in the formula to obtain the corrected azimuth data EX and EY.
  • Equations 5 and 6 the result of subtracting the offset values X and Y from EX and EY is defined again as EX and EY.
  • Equations 7 and 8 EX and EY are multiplied by the sensitivity ratio (XZY), and the result is defined again as EX and EY.
  • the azimuth angle data (0) is calculated from the corrected two azimuth data data EX and EY as follows (step 8).
  • the magnetic north azimuth display step mode 36 is driven.
  • the rotor 36a of the magnetic north display step motor 36 causes the compass hand 34 to display magnetic north through the wheel train 38 (step 9).
  • the azimuth can be measured without stopping the second hand in the analog electronic wristwatch equipped with a azimuth meter, and the magnetic north measured by the azimuth hand can be displayed.
  • the analog electronic wristwatch with the azimuth meter can be made easy to see and use.
  • FIG. 5 is a block diagram of an electronic wristwatch according to a fourth embodiment of the present invention.
  • the difference between this embodiment and the third embodiment of the present invention shown in FIG. 3 is that, in the third embodiment, the low-frequency magnetic field prediction means is based on the signal J output from the driver 46 of the clock circuit 40.
  • the low-station stationary prediction unit 4 2b predicts the stationary time and stationary position of the mouth 37a. This is the point that only the stationary time of Ryuyu 37a is predicted.
  • the other parts are the same as in the third embodiment, and a detailed description will be omitted.
  • the time display step watch 37 moves the second hand 35a, the minute hand 35b, and the hour hand 35c. As shown in Fig. 10, there are two rest positions for the mouth 37a of the time display step 37. Therefore, in the present embodiment, the count N is 2. In other words, the azimuth measurement is performed twice when the rotor 37a is stationary while the rotor 37a is rotating two steps and stationary.
  • the average of the azimuth data EX and EY offset values that is, the ratio of the offset value X average and the offset value Y average to the sensitivity average, corresponding to the two stationary positions 37a and 37a of the time display step motor 37, That is, the sensitivity average ratio (X / Y) is stored in the memory means 41a.
  • the azimuth data X average and E Y average corrected by the offset value X average and the offset value Y average are obtained.
  • EX average 2 EX average 1 offset value X average (number 10)
  • EX average EX average (number 12)
  • the azimuth angle data (] 3) is calculated from the corrected two azimuth data EX average and EY average as follows (step 8).
  • the average of the sensitivity ratios may be used instead of the average of the sensitivity ratios. In this way, for example, when there are a large number of step modes, there is no need to detect or predict the direction of the magnetic poles in each step mode. This is advantageous because the measurement azimuth can be corrected by the value.
  • FIG. 7 is a block diagram of an electronic wristwatch according to a fifth embodiment of the present invention.
  • the analog electronic wristwatch 70 with a compass Circuit (Electronic circuit) 80, a single step motor 76 for time display and magnetic north display, and a second hand also serving as an azimuth hand driven by a wheel train 78 by this step motor 76 It has a clock hand consisting of 75 a, a minute hand 75 b, and an hour hand 75 c, an azimuth measurement button 72 operated for azimuth measurement, and an azimuth registration ring 73. Since the configuration of the compass 90 is the same as that of the third embodiment, the description is omitted.
  • compass Circuit Electronic circuit
  • the clock circuit 80 of this embodiment differs from the clock circuit 40 of the previous embodiment in that it does not have the low-frequency magnetic field prediction means 42 a.
  • the driver for stepping motor drive is also a single driver 86 only. Instead, the time azimuth display switching means for switching the connection between the magnetic north display pulse generating means 84 and the driver 86 and the time display pulse generating means 83 and the driver 86 by the signal I from the time azimuth function control means 81 Has 8 2
  • the time azimuth function control means 8 1 When the time azimuth function control means 8 1 outputs the switching signal I to the time azimuth display switching means 8 2, the time azimuth display switching means 8 2 disconnects the connection between the time display pulse generating means 8 3 and the driver 8 6. Switch to the connection between display pulse generator 84 and driver 83.
  • the time direction function control means 81 sends the second hand zero return signal A to the magnetic north display pulse generation means 84, and the driver 83 outputs a drive signal to the step mode 76 to rotate the second hand 75a.
  • the zero return signal generating means 89 When the second hand 75a comes to the zero position, the zero return signal generating means 89 outputs a signal L to the magnetic north indication pulse generating means 84 according to the detection signal from the train wheel 78 to drive the stepper motor 76. Stop. As a result, the second hand 75 a returns to zero.
  • the azimuth is measured using the second hand 75a as the azimuth hand, but the excitation and correction of the azimuth hand are the same as in the third embodiment.
  • step 2 ' when the azimuth measurement button 72 is pressed (step 2 ') from the time display state of the analog electronic wristwatch 70 with a compass (step 1'), the azimuth measurement is started.
  • connection state of the driver 83 is switched by the time direction display switching means 82, : Rotate the mouth 76 a of the data 76 to return the second hand 75 a to zero
  • the time direction function control means 81 outputs the direction sensor excitation signal B to the direction meter 90.
  • the direction sensor 91 is excited (step 4 '), and the direction meter 90 measures the direction (step 5').
  • Detecting means 92 outputs azimuth data EX and EY to magnetic north indication pulse generating means 84.
  • the magnetic north display pulse generating means 84 corrects the azimuth data EX and EY from the azimuth data EX and EY and the signal M based on the offset value and the sensitivity ratio stored in the memory means 81a (step S1). 6 '). Note that the procedure of the correction is the same as that of the third embodiment, and a description thereof will be omitted.
  • a magnetic north display pulse G is created based on the corrected azimuth data EX and EY, and the magnetic north display pulse G is output to the driver 83.
  • the drive is driven based on the north display pulse G, and the second hand 75 a is displayed with magnetic north through the train wheel 78 (step 7 ′).
  • the time direction function control means 81 When the direction measurement button 72 is pressed again (step 9 ') within the magnetic north display time t (step 8'), the time direction function control means 81 outputs the second hand zero return signal A to the magnetic north display pulse generation means 84. Then, the magnetic north display pulse generating means 84 outputs the zero return pulse G to the driver 86. The step motor 76 returns the second hand 75 a to zero via the train wheel 78.
  • the time azimuth function control means 81 outputs a switching signal I to the time azimuth display switching means 82 based on the zero return signal L from the zero return signal generation means to return the magnetic north display to the time display (step 1). 0 ').
  • the time direction function control means 81 When the magnetic north display time exceeds t (step 8 '), the time direction function control means 81 outputs the second hand zero return signal A to the magnetic north display pulse generating means 84, and the magnetic north display pulse generating means 84 outputs zero. Outputs return pulse G to driver 86. In the step mode 76, the second hand 75a is returned to zero via the train wheel 78.
  • the time azimuth function control means 81 outputs a switching signal I to the time azimuth display switching means 82 based on the zero return signal L from the zero return signal generating means, and returns the magnetic north display to the time display (step Ten ' ). -The azimuth measurement is completed as described above (step 11 ').
  • the second hand 75 a serves as an azimuth hand before and after the azimuth measurement display. Although it returned to zero, the direction and time can be displayed without returning to zero.
  • FIG. 9 shows still another embodiment.
  • the azimuth sensor 103 is oriented so that the zero return axis (the direction of 12:00) of the orientation hand 101 and the X axis of the orientation sensor 103 are at an angle 106c. It may be installed in the analog electronic wristwatch 100 with a meter.
  • the magnetic north indication pulse generating means 4 4 corrects the azimuth data EX and EY by an angle of 106 c (in this case, the azimuth calculated from the azimuth data EX and EY).
  • the angle of return 106 is subtracted from), the zero return axis 102 can be set to zero azimuth, and the azimuth hand 101 can correctly indicate magnetic north.
  • the direction sensor can be arranged in an arbitrary direction on the analog electronic wristwatch with a compass, so that the layout design of the direction sensor on the analog electronic wristwatch with a compass can be facilitated.
  • a magnetic field from a magnetized member typified by a driving body such as a battery or a motor can be effectively shielded by its arrangement and a magnetic-resistant plate. Can be done accurately.
  • the position of the battery can be selected relatively freely, and the circuit board can be mounted. It is possible to reduce the size of the electronic device with a compass by downsizing.
  • the present invention can be widely applied to electronic devices to which a direction sensor for detecting the direction of terrestrial magnetism by electrical means is attached, and is not limited to electronic watches and table clocks, but also to radios, portable televisions, portable communication devices, and the like. It is possible to apply.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Electromechanical Clocks (AREA)
  • Electric Clocks (AREA)

Description

明 細 書 方位計付電子機器及びこの電子機器における方位計測方法 技術分野
この発明は、 地磁気を電気的に検出する方位センサと各駆動部を駆動させるた めの電池とを有する方位計付電子機器において、 正確な方位計測を可能にすると ともに方位計付電子機器の小型化を図ることのできる方位計付電子機器及びこの 電子機器における方位計測方法に関する。 背景技術
近年、 簡単に方位を計測することのできる電子機器が出現するようになった。 このような電子機器の一例として、 市販されている方位計付デジタル電子腕時計 の概観を第 1 2図に示す。
方位計付デジタル電子腕時計 1 3 0は、 方位を計測する際に操作する方位計測 ボタン 1 3 2と、 磁北を指し示す磁北マーク 1 3 4及び電子腕時計 1 3 0の 1 2 時を向けた方向が 1 6方位の中のどの方向に該当するのかを表示する 1 6方位表 示部 1 3 5とを有する液晶表示板 1 3 1と、 地磁気から電気的に方位を計測する 方位センサ 1 3 3と、 液晶表示板 1 3 1に対して回転自在な方位レジスタリング 1 3 6とを備えている。
方位計測ボタン 1 3 2を押すと、 磁北が方位センサ 1 3 3によって計測され、 約 1秒後に磁北が液晶表示板 1 3 1上で磁北マーク 1 3 4によって指し示される。 また、 1 6方位表示部 1 3 5には、 電子腕時計 1 3 0の 1 2時方向の方位 (第 1 2図の例では N N E) が表示される。 方位レジスタリング 1 3 6を回転させて N (北の方位) 1 3 6 aを磁北マーク 1 3 4に合わせると、 任意方向の方位を知る ことができる。
しかしながら、 電池とこの電池によって駆動される一つ又は複数の駆動部を有 する方位計付電子機器にあっては、 電池及びステツプモータなどの駆動体から発 生する磁界が方位センサの周囲の地磁気を乱し、 正確な方位計測を困難にすると いう問題がある。 このような問題を解決するために、 電池の配置位置を工夫した提案もなされて いるが、 電池の配置位置が制限されるうえ、 電池と方位センサとをできるだけ遠 ざけるために回路基板が大きくなり、 電子機器を小型化することができないとい う問題もある。
さらに、 ステップモータ等の駆動体は永久磁石でできたロー夕が回転するため に磁界が複雑に変化し、 ステップモータが複数になるとさらに磁界が複雑になつ て補正が困難になり、 正確な方位計測ができないという問題がある。 方位指示を 図 1 2に示すような液晶ディスプレイに表示するようにすれば、 方位針を動かす ためのステップモ一夕を設ける必要なくなるが、 視野角の問題から液晶ディスプ レイは見にくいという問題がある。
本発明は、 地磁気を電気的に検出する方位センサを有する方位計付電子機器に おいて、 磁界を発生させる帯磁性部材がーつあるいは複数存在しても正確な方位 計測を行うことができ、 かつ、 帯磁した電池やステップモータなど強力な磁気を 発生する帯磁性部材の配置位置の制限を緩和して方位計付電子機器の小型化を図 ることのできる見やすい方位計付電子機器及び方位計付電子機器における方位計 測方法を提供することを目的とする。 発明の開示 '
本発明は、 地磁気を電気的に検出する方位センサを備えた方位計付電子機器に おいて、 前記方位計付電子機器の内部に設けられた帯磁性部材の周囲に、 磁界を 遮蔽する耐磁板を設けることによって正確な方位計測を行うことを可能にする。
「帯磁性部材」 は、 外部磁気によって帯磁しゃすい部材のほか、 外部磁気によ つて帯磁した部材及び磁石などを有する部材を意味し、 電池や、 磁石を有するモ —夕などの駆動体を含む概念である。
また、 帯磁性部材の配置位置の制限を緩和することが可能で、 方位針による見 やすい方位計付電子機器を得ることができる。
また、 本発明は、 地磁気を電気的に検出する方位センサと、 永久磁石からなる ロー夕とこのロー夕を駆動するためのコィルとを有する駆動体とを備えた方位計 付電子機器において、 前記駆動体が静止しているときに方位を計測する方位セン ザと、 前記口一夕の回転開始時期を検出するロータ回転開始時期検出手段と、 こ のロータ回転開始時期検出手段が検出した回転開始信号と前記コイルに流れる駆 動電流の方向とから前記ロータの静止時期及び前記ロータから生じる磁界の向き を予測するロー夕磁界予測手段と、 この予測結果に応じて前記計測結果の補正を 行う補正手段とを設けることによって、 口一夕の回転にともなう磁極の変化に応 じて補正を行うことが可能になり、 常に正確な方位計測結果を得ることができる ようになる。
さらに、 本発明の方法は、 地磁気を電気的に検出する方位センサと各駆動部を 駆動させるための電池とを有し、 前記駆動部に永久磁石かたなるロータとこの口 一夕を駆動するためのコイルとを有する駆動体を含む方位計付電子機器の方位計 測方法において、 前記駆動体が静止しているときに方位センサを駆動して方位を 計測し、 前記口一夕の回転開始時期と前記コィルに流れる駆動電流の方向とから 前記ロータの静止時期及び前記ロータから生じる磁界の向きを予測し、 この予測 結果に応じて前記計測結果の補正を行うことによって、 口一夕の回転にともなう 磁極の変化に応じて補正を行うことが可能になり、 常に正確な方位計測結果を得 ることができるようになる。
また、 本発明は、 地磁気を電気的に検出する方位センサと、 永久磁石からなる ロー夕とこの口一夕を駆動するためのコイルとを有する駆動体とを備えた方位計 付電子機器において、 前記駆動体が静止しているときに方位を計測する方位セン ザと、 前記ロータの回転開始時期を検出するロータ回転開始時期検出手段と、 こ のロータ回転開始時期検出手段が検出した回転開始信号から前記ロータの静止時 期を予測するロー夕静止予測手段と、 前記計測結果の補正を行う補正手段とを設 けることによって、 常に正確な方位計測結果を得ることができるようになる。 さらに、 本発明の方法は、 地磁気を電気的に検出する方位センサと各駆動部を 駆動させるための電池とを有し、 前記駆動部に永久磁石かたなるロータとこの口 一夕を駆動するためのコイルとを有する駆動体を含む方位計付電子機器の方位計 測方法において、 前記駆動体が静止しているときに方位センサを駆動して方位を 計測し、 前記口一夕の回転開始時期から前記ロータの静止時期を予測し、 前記計 測結果の補正を行うことによって、 常に正確な方位計測結果を得ることができる ようになる。
また、 本発明は、 地磁気を電気的に検出する方位センサと、 永久磁石からなる ロー夕とこの口一夕を駆動するためのコイルとを有する駆動体とを備えた方位計 付電子時計において、 前記駆動体が静止しているときに方位を計測する方位セン ザと、 前記駆動体により駆動される時刻針又は機能針を所定位置に復帰させる手 段と、 前記計測結果の補正を行う補正手段とを設けることによって、 常に正確な 方位計測結果を得ることができるようになる。
さらに本発明の方法は、 地磁気を電気的に検出する方位センサと、 各駆動部を 駆動させるための電池とを有し、 前記駆動部に磁石を有するロータとこのロータ を駆動させるためのコイルとを有する駆動体を含む方位計付電子時計の方位計測 方法において、 前記駆動体により駆動される時刻針又は機能針を所定位置に復帰 させる手段を有し、 前記駆動体が静止しているときに方位センサを駆動して方位 を計測し前記計測結果の補正を行うことによって常に正確な方位計測結果を得る ことができるようになる。 図面の簡単な説明
第 1図は、 本発明の第 1の実施形態の方位計付電子腕時計を図示し; ( a ) は その平面図、 (b ) は (a ) の I 一 I方向断面図である。
第 2図は、 本発明の第 2の実施形態を示す図で、 (a ) は方位計付アナログ電 子腕時計の平面図、 (b ) は (a ) の I I- I I方向断面図である。
第 3図は、 本発明の第 3の実施形態による電子腕時計のプロック図である。 第 4図は、 第 3図の実施形態の電子腕時計における方位計測表示方法を説明す る方位計測表示フローチヤ一トである。
第 5図は、 本発明の第 4の実施形態による電子腕時計のプロック図である。 第 6図は、 第 4の実施形態の電子腕時計における方位計測表示方法を説明する 方位計測表示フローチャートである。
第 7図は、 本発明の第 5の実施形態による電子腕時計のプロック図である。 第 8図は、 第 7図の実施形態の電子腕時計における方位計測表示方法を説明す る方位計測表示フローチヤ一トである。
第 9図は、 本発明のさらに他の実施形態である。
第 1 0図は、 ステップモー夕の構成の説明図である。
第 1 1図は、 パルス電流を流した後のロー夕回転角の時間変化を示すグラフで ある。
第 1 2図は、 電子機器の一例にかかり、 方位計付デジタル電子腕時計の概観を 示す図である。 発明を実施するための最良の形態
以下、 本発明の好適な実施形態を、 図面を参照して詳細に説明する。 なお、 以 下の説明では、 方位計付電子機器として方位計付電子腕時計を例に挙げて説明す る。
第 1図は本発明の第 1の実施形態の方位計付電子腕時計を示し、 (a ) は方位 計付電子腕時計を裏側から見た平面図、 (b ) は (a ) の I 一 I方向断面図であ る。
第 1図からわかるように、本発明の方位計付電子腕時計 1は、方位センサ 2と、 ボタン型の電池 3とを有する時計モジュール 5と、 この時計モジュール 5を収納 する時計ケース 5 aと、 この時計ケース 5 aに嵌め込まれた風防ガラス 8と、 時 計ケース 5 aの裏面に取り付けられ、電池 3を交換する際に開閉される裏蓋 9と、 方位計測を行う際などに操作される各種のポタン 1 5 , 1 6, 1 7を有する。 方位センサ 2は、 地磁気を電気的に検出する公知のもので、 例えば、 特開平 9 一 4 3 3 2 2号公報に 「微弱磁気センサー及びその製造方法」 として開示されて いる薄型のフラックスゲート型磁気センサーである。
帯磁した電池 3が発生する磁界による方位センサ 2の方位計測への影響を抑制 するために、 電池 3の周囲には磁気を遮蔽する耐磁板 1 0が配置される。 以下、 この耐磁板 1 0について説明する。
時計の裏蓋 9側は、 外部磁界の影響を間近に受けるために、 耐磁板 1 0は電池 3を取り囲むように裏蓋 9に接着などで取り付けるのが好ましい。 電池 3はボタ ン形のものが好ましく、 この上下両面に耐磁板 1 0を密着させて設けるのがさら に好ましい。 裏蓋 9に耐磁板 1 0を取り付けるようにすれば、 電池交換の際に裏 蓋 9を取り外すと裏蓋 9とともに耐磁板 1 0も電池 3の周囲から取り外されるの で、 電池交換の際にも耐磁板 1 0が邪魔にならないという利点がある。
耐磁板 1 0は、 P Cパーマロイなどのような透磁率の高い材料から形成するの が好ましい。 P Cパーマロイは、 保持力が 1 0— 2 C eオーダ一で非常に小さく、 P Cパーマロイ自身の帯磁は非常に小さく透磁率が高い。 そのため、 外部磁界に よって電池 3が帯磁するのを防止することができる。 また、 電池 3が帯磁したと しても、 そこから発生する磁界を遮断して、 方位センサ 2の近傍の地磁気に与え る影響を小さくする。 したがって、 第 1図 (a ) に示すように、 電池 3を方位セ ンサ 2に接近させて配置しても、 方位センサ 2の方位計測は妨げられない。 以上の説明により、 電池 3を回路基板 1 2上の任意の位置に配置することがで きるので、 回路基板 1 2を小型化することができ、 時計モジュールを小型化する ことも可能になる。
なお、 本発明はアナログ式の電子機器に限らず、 デジタル式の電子機器にも適 用が可能である。
第 2図は本発明の第 2の実施形態を示す図で、 (a ) は方位計付アナログ電子 腕時計を裏側から見た平面図、 (b ) は (a ) の I I- I I方向断面図である。
第 2図に示すように、 方位計付アナログ電子腕時計 2 0は、 方位計としての方 位センサ 2と、 コイル 4 aと運針用輪列 (図示せず) に連結された回転自在な口 —夕 4 bとからなるステップモー夕 4と、 ボタン型電池 3とを有する時計モジュ ール 6と、 この時計モジュール 6を収納する時計ケース 6 aと、 時計ケース 6 a の表面に嵌め込まれる風防ガラス 8と、 時計ケース 6 aの裏面に着脱自在に取り 付けられ、 ボタン型電池 3を交換する際等に時計ケース 6 aから取り外される裏 蓋 9と、 時刻設定などをするためのリューズ 2 5とを有している。
方位センサ 2は、 電池 3からできるだけ遠ざけて配置する。 すなわち、 方位セ ンサ 2の磁気コア 2 aの中心と電池 3の中心との距離ししが、 磁気コア 2 aの中 心とステップモー夕 4の口一夕 4 bの中心との距離 L 1よりも大きくなるように 配置するのが好ましい。
時計ケース 6 aには、 電池 3を収納する電池収納部の反対側に張り出し部 2 6 が形成され、 方位センサ 2はこの張り出し部 2 6の内部に位置決めピン 2 bによ つて位置決めして固定される。
通常の運針用のステップモータ 4の他に、 ストップウォッチなどの付加機構を 駆動するためのステップモー夕が時計ケース 6 a内に一つ又は複数個設けられる 場合がある。 この場合にも、 方位センサ 2は電池 3からできるだけ遠ざけて配置 する。 運針用のステップモー夕 4及び付加機構用の前記ステップモー夕のうちの 少なくとも一つ、 好ましくは全てよりも遠ざけて配置するとよい。
例えば、 合計 3個のステップモー夕を有する方位計付アナログ電子腕時計 2 0 で方位センサ 2と前記ステップモータ、 電池 3の距離関係を種々変えて実験を行 つた結果、 距離 L L = 2 2 . 5 mm, 前記ステップモー夕のうち方位センサ 2に最 も近い前記ステップモー夕との距離 L 1 = 8 . 7龍のとき、 最適な結果が得られ た。
このように、 電池 3をステップモー夕 3よりも方位センサ 2よりも遠ざけるの は、 電子腕時計 2 0を外部磁界 (通常、 3 0 G程度、 地磁気は 0 . 3 G程度) に 曝したとき、 保持力の大きい軟磁性材料で形成される電池 3の方がステップモー 夕よりも帯磁しゃすく、 帯磁した電池 3から発生する磁界が方位センサ 2に与え る影響が、 ステップモータよりも大きいからである。
また、 電池 3はコイン形電池よりもポタン形電池の方が好ましい。 ボタン形電 池の方が、 コイン形電池よりも平面的接近を避けて、 方位計測が不能になること を防止できる。
以上により、 電池 3とステップモ一夕 4の帯磁による方位計測の不能は避ける ことができるが、 さらに耐磁板を設けることによりステツプモータ 4の永久磁石 からなるロータ 4 bと帯磁した電池 3が発生する磁界の影響をさらに小さくする ことができる。 この実施形態の電子腕時計 2 0は、 第 1の実施形態の耐磁板 1 0 の他に、 ステップモー夕 4の口一夕 4 bの磁界の影響を小さくするための耐磁板 1 1 aを有している。
この耐磁板 1 1 aは、 第 2図に示すように、 ステップモ一夕 4と方位センサ 2 との間に配置され、 時計モジュール 6の回路基板 1 2 aを支持している。 耐磁板 1 1 aはステップモータ 4が外部磁界により帯磁しないようにするとともに、 帯 磁したステップモー夕 4及びロータ 4 bの磁界が方位センサ 2に影響を与えない ように遮蔽する。 耐磁板 1 1 aは、 ステップモータ 4のロータ 4 bの磁束を強く 弓 Iき寄せてステップモー夕 4の駆動を阻害することが無いように、 電池 3に設け た耐磁板 1 0よりも透磁率の低い材料、 例えばォ一ステナイト系のステンレス材 で形成するのが好ましい。
次に本発明の電子腕時計の第 3の実施形態を説明する。
上記第 1及び第 2の実施形態では、 耐磁板 1 0, 1 1 aを設けたりステツプモ —夕 4及び電池 3の配置を工夫するという機械的な手段によって方位センサ 2に よる方位計測を正確に行うという本発明の目的を達成しているが、 以下の実施形 態では、 電気的な補正によって方位計測を正確に行おうとするものである。
第 3図は本発明の第 3の実施形態による電子腕時計のプロック図である。
第 3図に示すように、 方位計付アナログ電子腕時計 3 0は、 方位計 5 0と時計 回路 (電子回路) 4 0と時刻表示用のステップモー夕 3 7と、 このステップモー 夕 3 7により輪列 3 9を介して駆動される秒針 3 5 a、 分針 3 5 b、 時針 3 5 c からなる時計針と、 磁北表示用のステップモー夕 3 6と、 このステップモ一夕 3 6により輪列 3 8を介して駆動される方位針 3 4と、 方位計測の際に操作される 方位計測ボタン 3 2と、 方位レジス夕リング 3 3とを有している。
ステップモー夕 3 7は、 第 1 0図に示すように、 2極の永久磁石からなる口一 夕 3 7 aと、 口一夕 3 7 aの周囲に設けられた 2極のステ一夕 3 7 1と、 このス テータ 3 7 1に設けられたコイル 3 7 3とを有する平面形のステップモータで、 一般にラベタイプと称されるものである。
ロー夕 3 7 aは 2つの口一夕停止位置 3 7 4 , 3 7 5を有する。 コイル 3 7 3 に流すパルス電流の向きを変えてコイル 3 7 3の発生する磁界の向きを切り換え ると、 これにともなってロー夕 3 7 aが反転して、 N極を停止位置 3 7 4又は 3 7 5に向けて停止する。 なお、 ステップモー夕 3 6についても同様である。
方位計 5 0は、 方位センサ 5 1と、 この方位センサ 5 1を励磁する励磁手段 5 3と方位センサ 5 1が出力した方位出力 D X, D Yに基づいて方位データ E X, E Yを出力する検出手段 5 2から構成される。
時計回路 4 0は、 時刻表示用ステップモー夕 3 7を駆動するドライバ 4 6と、 このドライノ 4 6に時刻表示パルス Hを出力する時刻表示パルス発生手段 4 3と、 この時刻表示パルス発生手段 4 3に信号 Fを送信してパルス Hをドライバ 4 6に 出力させる時刻方位機能コントロール手段 4 1と、 方位センサ 5 1の検出結果に 基づいて磁北を表示させるための磁北表示パルス Nを発生する磁北表示パルス発 生手段 4 4と、 輪列 3 8に接続され、 方位針 3 4の零復帰を確認して零復帰信号 Lを出力する零復帰信号発生手段 4 9とを有する。
磁北表示パルス発生手段 4 4は、 時刻方位機能コントロール手段 4 1からの信 号 Mと方位計 5 0の検出手段 5 2が出力する方位データ E X, E Yにより、 磁北 パルス Nをドライバ 4 5に出力する。 また、 磁北表示パルス発生手段 4 4には零 復帰信号発生手段 4 9から零復帰信号 Lが入力される。
また、 時刻方位機能コントロール手段 4 1からの信号 Iに基づき、 前記回転開 始時期を検出するロータ回転開始時期検出手段を有するドライバ 4 6は、 ロータ 3 7 aの回転開始時刻と駆動電流の方向を示す信号 Jをロー夕磁界予測手段 4 2 aに出力する。 ロータ磁界予測手段 4 2 aは、 この信号 Jに基づいてロー夕 3 7 aの静止時刻と静止位置とを予測する。
さらに、 ロー夕漏洩磁界によるオフセット値 X 1, Y 1と、 方位センサ 5 1が 有している固有のオフセット値 X 2 , Y 2とからなるオフセット値 X, Yと、 方 位センサ 5 1の感度 X, Yの比である感度比 (XZY) とは、 メモリ手段 4 l a に記憶される。
時刻表示用ステップモ一夕 3 7の口一夕 3 7 aには 2つの静止位置 3 7 4 , 3 7 5があり、 磁北表示用ステップモ一夕 3 6のロー夕 3 6 aには零復帰時におけ る一つの静止位置があるため、 磁極の組み合わせは二組ある。 そのため、 オフセ ット値 X, Yと、 感度比 (X/Y) との組み合わせは、 ステップモー夕 3 6 , 3 7の二つの磁極の組み合わせに応じて二組用意される。
なお、 オフセット値 X, Yと感度比 (Xノ Y) とは、 電子腕時計の製造時に予 めメモリ手段 4 1 aに記憶される。
第 1 1図はパルス電流を流した後のロータ回転角の時間変化を示すグラフであ る。 ロー夕 3 7 aは、 例えば N極が口一夕停止位置 3 7 4に位置している状態か ら回転を開始し、 1 8 0度回転して N極がロー夕停止位置 3 7 5に達してから安 定的に静止するまで、 一定の時間を要する。 電子腕時計では、 パルス電流は 1秒 ごとに流され、 口一夕 3 7 aは 1秒ごとに 1 8 0度回転する。 第 1 1図のグラフ に示す例では、 ロータ 3 7 aが回転を開始してから安定的に停止するまで、約 0 . 1秒を要している。
口一夕 3 7 aの回転にともなって口一夕 3 7 aの永久磁石の磁極方向が変化す るので、 方位センサ 5 1の周囲の地磁気を乱す漏洩磁界も、 口一夕 3 7 aの回転 にともなって変化する。 この漏洩磁界は、 ロー夕 3 7 aが完全に静止すれば、 安 定する。
そこで、 方位センサ 5 1による方位計測をロー夕 3 7 aが安定的に静止した状 態で行うようにすれば、 口一夕停止位置 3 7 4に N極が向いている場合と、 ロー 夕停止位置 3 7 5に N極が向いている場合とで、 二組の補正値で補正を行うこと が可能になる。
これを具体的に説明する。
補正を行わない状態で口一夕 3 7 aが安定的に静止しているときに、 方位セン サ 5 1の方位データが E X, E Yであると仮定する。 そして、 この方位データ E X, E Yの磁界 0における値をオフセット値 X, Yとする。 このオフセット値 X, Yには、 ロータ漏洩磁気によるオフセット値 X 1 , Y 1と、 方位センサ 5 1が有 する固有のオフセット値 X 2 , Y 2とが含まれる。
ロー夕 3 7 aの N極がロー夕停止位置 3 7 4を向いて安定的に静止している状 態ではオフセット値 X, Yは一定である。 また、 口一夕 3 7 aが反転して、 N極 が口一夕停止位置 3 7 5を向いて安定的に静止している状態でもオフセット値 X, Yは一定である。 したがって、 ロー夕 3 7 aが安定的に静止している状態では、 感度比 (X/Y) も一定である。
そこで、 方位センサ 5 1の方位データ E X, E Yからオフセット値 X, Yを差 し引き、 さらに感度比 (X/Y) の補正をすることによって、 地磁気に対する口 一夕漏洩磁界の影響と方位センサ 5 1の固有のずれとを補正することができる。 次にオフセット値 X, Yの算定方法について説明する。
まず、 時刻方位機能コントロール手段からの信号 Aに基づき、 磁北表示用ステ ップモー夕 3 6を駆動させて、 方位針 3 4を零復帰させる。 磁北表示用ステップ モー夕 3 6のロータ 3 6 aは、 方位針 3 4が零復帰した位置で静止する。
次に、 ドライバ 4 6が出力する信号 Jに基づいて時刻表示用ステップモー夕 3 7のロータ 3 7 aの静止位置を予測する。
このとき、 図示しない地磁気シミュレーション装置を使用して方位センサ 5 1 の X軸、 一 X軸、 Y軸、 一 Y軸方向に地磁気相当の磁界を順次印加しながら、 時 刻方位機能コントロール手段 4 1からの信号 Bによって方位計 5 0を駆動させる。 時刻方位機能コントロール手段 4 1には、 方位計 5 0から方位データ E X, E Y が入力される。 この方位データ E X, E Yから次式のようにオフセット値 X, Y を求める。
オフセット値 X= ( E X (X) + E X (- X) ) / 2 · · ' (数 1 ) オフセット値 Y= (EY (Y) +ΕΥ (— Υ)) /2 · · · (数 2)
ここで、 EX (X) は X軸に磁界を印加したときの方位デ一夕で、 EX (-X) は一 X軸に磁界を印加したときの方位デ一夕、 EY (Y) は Y軸に磁界を印加し たときの方位データ、 EY (-Y) は一 Y軸に磁界を印加したときの方位デ一夕 である。
次に感度比 (XZY) を求める方法を説明する。
次式のように方位デ一夕 EX, EYを補正し、 補正された方位デ一夕 EX, E Yから感度比 (X/Y) を求める。
まず、 ロータ 37 aの N極が口一夕停止位置 374に向いて安定的に静止して いる状態での感度比 (X/Y). を求める。
EX (X) =EX (X) —オフセット値 X (数 3)
EY (Y) =EY (Y) —オフセット値 Y (数 4)
感度比 (XZY) =EX (X) /EY (Y)
なお、 数式 3及び数式 4では、 EX (X), EY (Υ) からオフセット値 X, Υを差し引いた結果を改めて EX (X), EY (Υ) と定義している。
次に、 信号 Fに基づいて時刻表示用ステップモ一夕 37を駆動し、 口一夕 37 aを反転させる。 ロー夕磁界予測手段 42 aはドライバ 46が出力する信号 Jか らロ一夕 37 aの静止位置を予測し、 信号 Kを時刻方位機能コントロール手段 4 1に出力する。 そして予測された静止位置において上記と同様にしてオフセット 値 X, Yと感度比 (X/Y) を求める。
以上のようにして、 各ロー夕停止位置 374, 375ごとに求められた、 時刻 表示用ステップモー夕 37の口一夕 37 aの 2個の静止位置 374, 375と磁 北表示用ステップモー夕 36の零復帰時の口一夕 36 aの静止位置との組み合わ せに対応した二組のオフセット値 X, Yと感度比 (XZY) が、 時刻方位機能コ ントロ一ル手段 41によってメモリ手段 41 aに記憶される。
この実施形態では、 ロータ静止位置が、 磁北表示用ステップモー夕 36の口一 夕 36 aにおいて一つ、 時刻表示用ステップモー夕 37のロー夕 37 aにおいて 二つ (374, 375) あるので、 磁極の組み合わせは全部で二つである。 そこ で、 磁極の組み合わせ数 (この実施形態の場合は二つ) に応じたオフセット値と 感度比の平均を求め、 これを補正に用いて補正するようにするとよい。 この場合、 前記組み合わせにおける計測結果の平均を補正するする。
このようにすれば、 例えばステップモ一夕が多数存在する場合などに、 各ステ ップモ一夕の磁極がどの方向を向いているかを検出又は予測する必要なく、 単一 又は少数の補正値で計測方位の補正を行うことができるので有利である。
次に、 第 4図の方位計測表示フローチャートを使って、 第 3図の実施形態の電 子腕時計における方位計測表示方法を説明する。
まず、 方位計付アナログ電子腕時計 3 0の時刻表示状態(ステップ 1)から方位 計測ボタン 3 2を押す(ステツプ 2 )と方位計測が開始される。
時刻方位機能コントロール手段 4 1は、 磁北表示パルス発生手段 4 4に方位針 零復帰確認信号 Aを出力する。 零復帰信号発生手段 4 9は、 方位針 3 4が取り付 けられた輪列 3 8を介して零復帰信号 Lを出力する。
磁北表示パルス発生手段 4 4は、 零復帰信号発生手段 4 9が出力する零復帰信 号 Lが方位針 3 4の零復帰に対応しているかどうかを確認する(ステップ 3 )。 零 復帰信号 Lが零復帰状態を示していなければ、 零復帰信号 Lが零復帰状態を示す ようにドライバ 4 5に零復帰パルス Gを出力し、 磁北表示用ステップモ一夕 3 6 を駆動して、 方位針 3 4を零復帰させる (ステップ 4 )。
ロータ磁界予測手段 4 2 aには、 時刻方位機能コントロール手段 4 1からの口 —夕磁界予測信号 Iに基づき、 ドライバ 4 6から時刻表示用ステップモー夕 3 7 の口一夕 3 7 aの回転開始時間と駆動電流の方向の信号 Jが入力される。 この信 号 Jから、 ロータ静止位置 (例えば、 第 1 1図におけるロータ静止位置 A)とロー 夕静止時刻を予測する。 例えば、 ロー夕 3 7 aが 1秒の間に第 1 1図に示すよう なロー夕回転角時間変化をする場合、 口一夕 3 7 aの回転開始時刻に、 0 . 1秒 から 1秒の間の任意の時間を加えた時刻がロー夕静止時刻である。
そして、 口一夕 3 7 aの静止位置とその時刻信号 Kを、 時刻方位機能コント口 —ル手段 4 1に出力する(ステップ 5 )。
その時刻に、 時刻方位機能コントロール手段 4 1は方位計 5 0に方位センサ励 磁信号 Bを出力する。 これにより方位センサ 5 0が励磁され (ステップ 6 )、 方位 計 5 0は方位計測を開始する。 検出手段 5 2は、 方位センサ 5 1の方位計測を行 う X— Y平面内の X, Y軸 2方向の、 それぞれの出力電圧 D X, D Yに対応した 2個の方位データ E X, E Yを、 前記磁北表示パルス発生手段 4 4に出力する(ス テツプ 7 )。
磁北表示パルス発生手段 44は、 該 2個の方位センサ出力電圧 DX, DYに対 応した方位デ一夕 EX, EYから、 それぞれ時刻方位機能コントロール手段 41 が出力する全オフセット X, Y (時刻表示用ステップモータ 37及び磁北表示用 ステップモータ 36からの口一夕漏洩磁界オフセット値 X 1, Y 1と、 方位セン サ 5 1の有する固有のオフセット値 X2, Y2とからなる) の信号 Mを次式のよ うに差し引き、 補正された方位データ EX, EYを求める。
EX = EX_オフセット値 X (数 5)
E Y = EY—オフセット値 Y (数 6)
なお、 数式 5及び数式 6では、 EX, EYからオフセット値 X, Yを差し引い た結果を改めて EX, EYと定義している。
さらに、 次式のように感度比 (XZY) を方位センサ出力電圧 DYに対応した EYに掛けて、 補正された方位データ EX, EYを求める。
EX=EX (数 7)
EY=EYX感度比(XZY) (数 8)
なお、 数式 7及び数式 8において、 EX, EYに感度比(XZY)をかけて、 そ の結果を改めて EX, EYと定義している。
補正された 2つ方位デ一夕 E X, E Yから方位角デ一夕( 0 )を次式のように して算出する(ステップ 8)。
Θ =arctan(E Y/EX) · · · (数 9)
この方位角データから磁北表示パルス Nを作成し、 該磁北表示用パルス Nをド ライバ 45に出力すると、 磁北方位表示用ステップモー夕 36が駆動される。 磁 北表示用ステップモ一夕 36のロータ 36 aは、 輪列 38を介して方位針 34に 磁北表示をさせる (ステップ 9)。
磁北表示時間が予め設定された時間 t以内(ステップ 10)に、 方位計測ポタン 10が再度プッシュされる(ステップ 1 1)と、 時刻方位機能コントロール手段 4 1は磁針零復帰信号 Aを磁北表示パルス発生手段 44に出力し、 該磁北表示パル ス発生手段 44は零復帰パルス Gをドライバ 43に出力する。 これによつて、 磁 北表示用ステツプモータ 36が駆動され、 輪列 4を介して方位針 34を零復帰さ せる(ステップ 12)。 磁北表示時間が前記 tを超える(ステツプ 1 0 )と、 前記時刻方位機能コントロ ール手段 4 1は、方位針零復帰信号 Aを磁北表示パルス発生手段 4 4に出力する。 磁北表示パルス発生手段 4 4は、 零復帰パルス Gをドライバ 4 5に出力し、 磁 北表示用ステップモータ 3 6が駆動されて輪列 4を介して方位針 3 4を零復帰さ せる(ステップ 1 2 )。
以上により方位計測が終了する(ステップ 1 3 )。
上記の本発明の方位計測方法により、 方位計付アナログ電子腕時計において秒 針を止めることなく方位を計測して、 方位針により計測した磁北を表示すること ができる。 このように、方位計測と磁北表示時に時刻の表示が妨げられないので、 方位計付アナログ電子腕時計を見やすく使いやすいものにすることができる。
第 5図は本発明の第 4の実施形態による電子腕時計のプロック図である。 この実施形態において第 3図に示す本発明の第 3の実施形態と異なるところは、 第 3の実施形態では時計回路 4 0のドライバ 4 6が出力する信号 Jに基づいて、 ロー夕磁界予測手段 4 2 aが口一夕 3 7 aの静止時刻と静止位置とを予測するの に対し、 この実施形態では、 ドライバ 4 6の出力する信号 Jに基づいて、 ロー夕 静止予測手段 4 2 bがロー夕 3 7 aの静止時刻のみを予測している点である。 こ れ以外の部分については、 第 3の実施形態と同じであるので、 詳しい説明は省略 する。
次に、 第 6図の方位計測表示フローチャートを使って、 第 5図の実施形態の電 子腕時計における方位計測表示方法を説明する。
第 6図の方位計測表示フ口一チャートに対しても第 4の方位計測表示フ口一チ ャ一卜と異なった点についてのみ説明する。
本発明の第 4の実施形態においては、 前記ロー夕静止予測手段 4 2 bによって 口一夕静止時刻は予測するが、 ロー夕静止位置を予測しないために、 図 6に示す カウント Nまで各ロー夕静止位置に対して方位計測を行う (ステップ 7 a )。 磁 北表示用ステップモー夕 3 6のロータ 3 6 aは、 方位針 3 4が零復帰した位置で 静止している (ステップ 3 )。
一方、 時刻表示用ステップモー夕 3 7は、 秒針 3 5 a, 分針 3 5 b, 時針 3 5 cを運針している。 時刻表示用ステップモ一夕 3 7の口一夕 3 7 aの静止位置は 図 1 0で説明したように 2個ある。 そこで本実施形態においては、 前記カウント Nは 2となる。 つまり、 ロータ 37 aが 2ステップ回転、 静止する間のロー夕 3 7 aの静止時に方位計測を 2回行う。
次に、 方位計測結果の説明を行う。
まず、 時刻表示用ステップモ一夕 37の口一夕 37 aの 2個の静止位置に対応 する 2組の方位データ EX, EYを平均し、 方位デ一夕 EX平均、 EY平均を求 める。
時刻表示用ステップモータ 37のロー夕 37 aの 2個の静止位置に対応する、 方位データ EX、 EYのオフセット値の平均、 つまりオフセット値 X平均とオフ セット値 Y平均と感度の平均の比、 つまり感度平均比(X/Y)をメモリー手段 4 1 aに記憶する。
前述の数式 5から数式 8で説明したように、 オフセット値 X平均とオフセット 値 Y平均によつて補正された方位デ一夕 E X平均、 E Y平均を求める。
EX平均二 EX平均一オフセット値 X平均 (数 10)
EY平均 =EX平均一オフセット値 Y平均 (数 11)
さらに、 感度平均比 (XZY)によって補正された方位データ EX平均、 EY 平均を求める。
EX平均=EX平均 (数 12)
£丫平均=£¥平均ズ感度平均比( 丫) (数 13)
補正された 2つの方位デ一夕 E X平均、 E Y平均から方位角データ( ]3 )を次式 のようにして算出する(ステップ 8)。
l3=arctan (EY平均 ZEX平均) (数 14)
以下のステツプは第 4図の方位計測表示フローチャートと同一なので説明を省略 する。
ここで、 感度の平均の比を求める替わりに、 感度比の平均を求めても近似的に 等しいので、 数式 13において感度比の平均を使用してもよい。このようにすれ ば、 例えはステップモー夕が多数存在する場合などに、 各ステップモー夕のロー 夕の磁極がどの方向を向いているかを検出又は予測する必要なく、 単一または少 数の補正値で計測方位の補正を行うことができるので有利である。
第 7図は本発明の第 5の実施形態による電子腕時計のプロック図である。 第 7図に示すように、 方位計付アナログ電子腕時計 70は、 方位計 90と時計 回路 (電子回路) 8 0と時刻表示用と磁北表示用を兼ねる単一のステップモー夕 7 6と、 このステップモー夕 7 6により輪列 7 8を介して駆動される、 方位針を 兼ねる秒針 7 5 a、 分針 7 5 b、 時針 7 5 cからなる時計針と、 方位計測の際に 操作される方位計測ボタン 7 2と、 方位レジス夕リング 7 3とを有している。 なお、 方位計 9 0の構成は第 3の実施形態のものと同一であるので、 説明は省 略する。
この実施形態の時計回路 8 0は、 第 3図と第 7図を比較するとわかるように、 先の実施形態の時計回路 4 0と異なり、 ロー夕磁界予測手段 4 2 aを有しておら ず、 ステップモー夕駆動用のドライバも単一のドライバ 8 6のみである。 その代 わり、 時刻方位機能コントロール手段 8 1からの信号 Iにより、 磁北表示パルス 発生手段 8 4及びドライバ 8 6と時刻表示パルス発生手段 8 3及びドライバ 8 6 との接続を切り換える時刻方位表示切換手段 8 2を有している。
以下、 第 3図に示した時計回路 4 0と共通の部分については第 3の実施形態の 説明を援用し、 相違する部分について詳しく説明する。
時刻方位機能コントロール手段 8 1が時刻方位表示切換手段 8 2に切換信号 I を出力すると、 時刻方位表示切換手段 8 2は、 時刻表示パルス発生手段 8 3とド ライバ 8 6との接続を、 磁北表示パルス発生手段 8 4とドライバ 8 3との接続に 切り換える。 時刻方位機能コントロール手段 8 1は、 磁北表示パルス発生手段 8 4に秒針零復帰信号 Aを送信し、 ドライバ 8 3がステップモー夕 7 6に駆動信号 を出力して、 秒針 7 5 aを回転させる。 秒針 7 5 aが零位置に来ると、 輪列 7 8 からの検出信号によって零復帰信号発生手段 8 9が信号 Lを磁北表示パルス発生 手段 8 4に出力し、 ステップモ一夕 7 6の駆動を停止させる。 これによつて、 秒 針 7 5 aが零復帰する。
以下、 秒針 7 5 aを方位針として方位の計測が行われるが、 方位針の励磁や補 正については第 3の実施形態と同様である。
次に、 第 8図の方位計測表示フローチャートを使って、 第 7図の実施形態の電 子腕時計における方位計測表示方法を説明する。
まず、 方位計付アナログ電子腕時計 7 0の時刻表示状態(ステップ 1 ' )から 方位計測用ボタン 7 2を押す (ステップ 2 ' )と方位計測が開始される。
時刻方位表示切換手段 8 2によってドライバ 8 3の接続状態が切り換えられ、 :―タ 7 6の口一夕 7 6 aを回転駆動して、 秒針 7 5 aを零復帰させる
(ステップ 3 ' )。
. 時刻方位機能コントロール手段 8 1は方位計 9 0に方位センサ励磁信号 Bを 出力する。 方位センサ 9 1が励磁され(ステップ 4 ' )、 方位計 9 0が方位計測 を行う(ステップ 5 ' )。 .検出手段 9 2が方位データ E X, E Yを磁北表示パル ス発生手段 8 4に出力する。
磁北表示パルス発生手段 8 4は、 方位データ E X, E Yと信号 Mから該方位デ 一夕 E X, E Yを、 メモリ手段 8 1 aに記憶されたオフセット値と感度比に基づ いて補正する(ステップ 6 ' )。 なお、 補正の手順は第 3の実施形態と同じであ るので説明を省略する。
補正された方位データ E X, E Yに基づいて磁北表示パルス Gを作成し、 この 磁北表示用パルス Gをドライバ 8 3に出力する。 これにより、 ステップモ一夕 7 6力 兹北表示パルス Gに基づいて駆動され、 輪列 7 8を介して秒針 7 5 aに磁北 を表示させる(ステップ 7 ' )。
磁北表示時間が t 以内(ステップ 8 ' )に再度方位計測ポタン 7 2が押される(ス テツプ 9 ' )と、 時刻方位機能コントロール手段 8 1は秒針零復帰信号 Aを磁北 表示パルス発生手段 8 4に出力し、 磁北方表示パルス発生手段 8 4は零復帰パル ス Gをドライバ 8 6に出力する。 ステップモー夕 7 6は輪列 7 8を介して秒針 7 5 aを零復帰させる。 時刻方位機能コントロール手段 8 1は、 零復帰信号発生手 段からの零復帰信号 Lに基づいて時刻方位表示切換手段 8 2に切換信号 Iを出力 し、 磁北表示を時刻表示に復帰させる(ステップ 1 0 ' )。
磁北表示時間が t を超える(ステップ 8 ' )と、 時刻方位機能コントロール手 段 8 1は秒針零復帰信号 Aを磁北表示パルス発生手段 8 4に出力し、 該磁北表示 パルス発生手段 8 4は零復帰パルス Gをドライバ 8 6に出力する。 ステップモー 夕 7 6は輪列 7 8を介して秒針 7 5 aを零復帰させる。 時刻方位機能コントロー ル手段 8 1は、 零復帰信号発生手段からの零復帰信号 Lに基づいて時刻方位表示 切換手段 8 2に切換信号 Iを出力し、 磁北表示を時刻表示に復帰させる(ステツ プ 1 0 ' )。 - 以上により方位計測が終了する(ステップ 1 1 ' )。
なお、 本実施形態においては、 秒針 7 5 aは方位針として方位計測表示の前後 に零復帰したが、 零復帰せずに方位表示、 時刻表示は可能である。 第 9図にさらに他の実施形態を示す。 この実施形態では、 方位針 1 0 1の零復 帰軸 ( 1 2時方向) 1 0 2と方位センサ 1 0 3の X軸が角度 1 0 6 cなすように、 方位センサ 1 0 3を方位計付アナログ電子腕時計 1 0 0に設置してもよい。
磁北表示パルス発生手段 4 4 (第 3図参照) が方位データ E X, E Yに対して 角度 1 0 6 cの補正をすることによって(この場合、 方位デ一夕 E X, E Yから 算出された方位角から角度 1 0 6 cを差し引く)、 零復帰軸 1 0 2を方位角零に することが可能であり、 方位針 1 0 1は正しく磁北を指示することができる。 上記の発明により、 方位センサを方位計付アナログ電子腕時計に任意の方向に 配置できるので、 方位センサの方位計付アナログ電子腕時計への配置設計が容易 になる。
なお、 本発明は上記の実施形態により何ら限定されるものではない。 上記の実 施形態は、 本発明の適用範囲で種々に変更することが可能である。
本発明によれば、 電池やモータなどの駆動体に代表される帯磁性部材からの磁 界をその配置と耐磁板とによつて有効に遮蔽することができるので、 方位センサ —の方位計測を正確に行うことができる。
また、 外部磁界による電池の帯磁を防止し、 帯磁した電池の磁気の影響を小さ くすることができるので、 電池の配置位置を比較的自由に選択することが可能に なり、 かつ、 回路基板の小型化を図って方位計付電子機器の小型化を図ることが 可能になる。
さらに、 ステップモ一夕などの駆動体の発生する漏洩磁界の方位検出出力への 影響を補正できるので、 駆動体による方位針を使って方位を指示するようにして も正確な計測が可能で、 見易く使い易い、 方位精度のよい方位計付アナログ電子 機器を実現できる。 産業上の利用可能性
本発明は、 電気的手段により地磁気の方向を検出する方位センサを取り付ける ことのある電子機器に広く適用することができ、電子腕時計や置き時計に限らず、 ラジオや携帯テレビ、 携帯通信機器などにも適用することが可能である。

Claims

請 求 の 範 囲
1 . 地磁気を電気的に検出する方位センサを備えた方位計付電子機器において、 前記方位計付電子機器の内部に設けられた帯磁性部材の周囲に、 磁界を遮蔽す る耐磁板を設けたこと、
を特徴とする方位計付電子機器。
2 . 前記帯磁性部材には電池を含むことを特徴とする請求の範囲第 1項に記載の 方位計付電子機器。
3 . 前記電池の上面及び下面に前記耐磁板を設けたことを特徴とする請求の範囲 第 2項に記載の方位計付電子機器。
4 . 前記耐磁板は、 外部磁気が前記電池を帯磁させない高透磁率の材料から形成 されていることを特徴とする請求の範囲第 2項又は第 3項に記載の方位計付電子
5 . 前記耐磁板を前記電池に密着させて設けたことを特徴とする請求の範囲第 2 項〜第 4項のいずれかに記載の方位計付電子機器。
6 . 前記耐磁板は、 前記電池を出し入れするために前記方位計付電子機器の表面 に着脱自在に設けられた蓋体に取り付けられることを特徴とする請求の範囲第 2 項〜第 5項のいずれかに記載の方位計付電子機器。
7 . 前記電池はポタン形の電池であることを特徴とする請求の範囲第 2項〜第 6 項のいずれかに記載の方位計付電子機器。
8 . 前記帯磁性部材には磁石を内蔵する駆動体力 S含まれ、 この駆動体と前記方位 センサとの間に耐磁板を設けたことを特徴とする請求の範囲第 1項〜第 7項のい ずれかに記載の方位計付電子機器。
9 . 前記駆動体と前記方位センサの間に、 前記磁石の磁気を遮蔽するとともに前 記駆動体の動作を妨げない低透磁率の材料からなる耐磁板を設けたこと、
を特徴とする請求の範囲第 8項に記載の方位計付電子機器。
1 0 . 前記耐磁板は、 前記帯磁性部材と前記方位センサとの間に設けられ、 前記 帯磁性部材を取り付ける回路基板を支持する回路支持板として構成されているこ とを特徴とする請求の範囲第 1項〜第 9項のいずれかに記載の方位計付電子機器。
1 1 . 前記方位センサと前記電池との距離が、 前記方位センサの最も近くに配置 される前記駆動体と前記方位センサとの間の距離よりも大きくなるように、 前記 方位センサを配置したことを特徴とする請求の範囲第 8項〜第 1 0項のいずれか に記載の方位計付電子機器。
1 2 . 電池と、 地磁気を電気的に検出する方位センサと、 磁石からなるロー夕と この口一夕を駆動させるためのコイルとを有する駆動体とを備えた方位計付電子 機器において、
前記方位センサは駆動体が静止しているときに方位を計測するとともに、 . 前記ロー夕の回転開始時期を検出するロー夕回転開始時期検出手段と、
このロー夕回転開始時期検出手段が検出した回転開始信号から前記ロー夕の静 止時期を予測するロータ静止予測手段と、
この予測結果に応じて前記計測結果の補正を行う補正手段と、
を有することを特徴とする方位計付電子機器。
1 3 .請求の範囲第 1項〜第 7項のいずれかに記載の方位計付電子機器において、 前記方位計付電子機器は磁石からなる口一夕とこの口一夕を駆動させるための コイルとを有する駆動体とを備え、
前記駆動体が静止しているときに方位を計測する方位センサと、
前記ロータの回転開始時期を検出するロー夕回転開始時期検出手段と、 この口一夕回転開始時期検出手段が検出した回転開始信号から前記ロータの静 止時期を予測する口一夕静止予測手段と、 この予測結果に応じて前記計測結果の補正を行う補正手段と、 を有することを特徴とする方位計付電子機器。
1 4. 請求の範囲第 8項〜第 1 1項のいずれかに記載の方位計付電子機器におい て、
前記駆動体が静止しているときに方位を計測する方位センサと、
前記口一夕の回転開始時期を検出する口一夕回転開始時期検出手段と、 このロータ回転開始時期検出手段が検出した回転開始信号から前記ロータの静 止時期を予測するロー夕静止予測手段と、
この予測結果に応じて前記計測結果の補正を行う補正手段と、
を有することを特徴とする方位計付電子機器。
1 5 . 前記ロー夕静止予測手段に代えて、 前記口一夕回転開始時期検出手段が検 出した回転開始信号と前記コイルに流れる駆動電流の方向とから、 前記ロータの 静止時期を予測し、 前記口一夕から生じる磁界の向きを予測するロー夕磁界予測 手段を設けたことを特徴とする請求の範囲第 1 2項〜第 1 4項のいずれかに記載 の方位計付電子機器。
1 6 . 前記補正手段は、 前記駆動体のロータ静止位置の中から任意の静止位置を 選択し、 選択された前記停止位置ごとに前記方位センサの方位データと地磁気の 方向とのずれを補正するためのオフセット値と感度比とを求め、 前記オフセット 値及び前記感度比をメモリ手段に格納し、 前記オフセット値と前記感度比とで前 記ロー夕静止位置に対応させて前記方位センサによる計測結果を補正することを 特徴とする請求の範囲第 1 2項〜第 1 5項のいずれかに記載の方位計付電子機器。
1 7 . 前記方位計付電子機器は複数の前記駆動体を有し、 前記補正手段は、 各駆 動体の前記ロー夕の静止位置における磁極の組み合わせに応じて前記オフセット 値及び前記感度比を求め、 得られた前記オフセット値及び前記感度比をメモリ手 段に格納し、 前記オフセット値と前記感度比とで前記口一夕の静止位置に対応さ せて前記計測結果を補正することを特徴とする請求の範囲第 1 2項〜第 1 5項の いずれかに記載の方位計付電子機器。
1 8 . 前記補正手段は、 前記磁極の組み合わせに応じて前記オフセット値及び前 記感度を求め、 各前記オフセッ卜値及び前記感度を前記磁極の組み合わせ数に応 じて平均し、 前記オフセット値の平均値と前記感度の平均値の比をメモリ手段に 格納し、 前記オフセット値の平均値と前記感度の平均値の比を用いて前記組み合 わせにおける計測結果の平均値を補正することを特徴とする請求の範囲第 1 2項 〜第 1 5項のいずれかに記載の方位計付電子機器。
1 9 . 前記磁極の組み合わせに応じて前記オフセット値及び前記感度比を求め、 各前記ォフセット値及び前記感度比を前記磁極の組み合わせ数に応じて平均し、 この平均値を用いて前記組み合わせにおける計測結果の平均を補正すること を特徴とする請求の範囲第 1 2項〜第 1 5項のいずれかに記載の方位計付電子機 器。
2 0 . 前記方位センサの方位針の零復帰軸を方位角零にするために、 前記方位セ ンサの X軸又は Y軸を基準に計測された方位角と、 前記 X軸と方位針の零復帰軸 のなす角との和又は差を演算によって求める演算手段を設けたことを特徴とする 請求の範囲第 1 2項〜第 1 9項のいずれかに記載の方位計付電子機器。
2 1 . 地磁気を電気的に検出する方位センサと、 各駆動部を駆動させるための電 池とを有し、 前記駆動部に磁石からなるロータとこの口一夕を駆動させるコイル とを有する駆動体を含む方位計付電子機器の方位計測方法において、
前記駆動体が静止しているときに方位センサを駆動して方位を計測し、 前記ロー夕の回転開始時期から前記ロータの静止時期を予測し、
前記計測結果の補正を行うこと、
を特徴とする方位計付電子機器の方位計測方法。
2 2 . 地磁気を電気的に検出する方位センサと、 各駆動部を駆動させるための電 池とを有し、 前記駆動部に磁石からなる口一夕とこのロー夕を駆動させるコイル とを有する駆動体を含む方位計付電子機器の方位計測方法において、
前記駆動体が静止しているときに方位センサを駆動して方位を計測し、 前記口一夕の回転開始時期と前記コィルに流れる駆動電流の方向とから前記口 一夕の静止時期及び前記ロー夕から生じる磁界の向きを予測し、
前記計測結果の補正を行うこと、
を特徴とする方位計付電子機器の方位計測方法。
2 3 . 前記駆動体のロータが静止する位置の中から所定の静止位置を選択し、 選 択された前記静止位置のオフセット値と感度比とを求め、 得られた前記オフセッ ト値及び前記感度比をメモリ手段に格納し、 前記オフセット値と前記感度比とで 前記ロー夕の静止位置に対応させて前記計測結果を補正することを特徴とする請 求の範囲第 2 1項又は第 2 2項に記載の方位計付電子機器の方位計測方法。
2 4. 前記方位計付電子機器が複数の前記駆動体を有する場合に、 各駆動体の前 記口一夕静止位置における磁極の組み合わせに応じて前記ォフセット値及び前記 感度比を求め、得られた前記オフセット値及び前記感度比をメモリ手段に格納し、 前記オフセット値と前記感度比とで前記口一夕の静止位置に対応させて前記計測 結果を補正することを特徴とする請求の範囲第 2 2項に記載の方位計付電子機器 の方位計測方法。
2 5 . 前記磁極の組み合わせに応じて前記オフセット値及び前記感度を求め、 各前記オフセット値及び前記感度を前記磁極の組み合わせ数に応じて平均し、 前記オフセット値の平均値と前記感度の平均値の比をメモリ手段に格納し、 メモリ手段に格納した前記オフセット値の平均値と前記感度の平均値の比を用 いて前記組み合わせにおける計測結果の平均を補正することを特徴とする請求の 範囲第 2 1項又は第 2 2項に記載の方位計付電子機器の方位計測方法。
2 6 . 前記磁極の組み合わせに応じて前記オフセット値及び前記感度比を求め、 各前記オフセット値及び前記感度比を前記磁極の組み合わせ数に応じて平均し、 この平均値を用いて前記組み合わせにおける計測結果の平均を補正すること を特徴とする請求の範囲第 2 1項又は第 2 2項に記載の方位計付電子機器の方位 計測方法。
2 7 . 前記方位センサの方位針の零復帰軸を方位角零にするために、 前記方位セ ンサの X軸及び Y軸を基準に計測された方位角と、 前記 X軸と方位針の零復帰軸 のなす角との和又は差を演算によって求めることを特徴とする請求の範囲第 2 1 項〜第 2 6項のいずれかに記載の方位計付電子機器の方位計測方法。
2 8 . 請求の範囲第 1項〜第 2 0項のいずれかに記載の方位計付電子機器におい て、
前記方位計付電子機器は時計で、 前記駆動体により駆動される時刻針又は機能 針を有し、 前記時刻針又は機能針を所定位置に復帰させる手段を設けたこと を特徴とする方位計付電子機器。
2 9 . 請求の範囲第 2 1項〜第 2 7項のいずれかに記載の方位計付電子機器の方 位計測方法において、
前記方位計付電子機器は時計で、 前記駆動体により駆動される時刻針又は機能 針を有し、
前記時刻針又は機能針を所定の位置に復帰させ、 前記方位センサの方位計測結 果を補正すること、
を特徴とする方位計付電子機器の方位計測方法。
PCT/JP1999/003295 1998-06-22 1999-06-21 Appareil electronique a mesureur d'azimut et procede de mesure d'azimut dans ledit appareil WO1999067596A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99957196A EP1024345B1 (en) 1998-06-22 1999-06-21 Electronic apparatus with azimuth meter and azimuth measuring method in this electronic apparatus
DE69929163T DE69929163T2 (de) 1998-06-22 1999-06-21 Elektronische vorrichtung mit azimutmesser und azimutmessverfahren in dieser elektronischen vorrichtung
US09/489,928 US6385133B1 (en) 1998-06-22 2000-01-24 Electronic apparatus with azimuth meter and azimuth measuring method in this electronic apparatus
HK01101735A HK1030809A1 (en) 1998-06-22 2001-03-12 Electronic apparatus with azimuth meter and azimuth measuring emthod in this electronic apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17437498 1998-06-22
JP10/174374 1998-06-22
JP10/241337 1998-08-27
JP24133798 1998-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/489,928 Continuation US6385133B1 (en) 1998-06-22 2000-01-24 Electronic apparatus with azimuth meter and azimuth measuring method in this electronic apparatus

Publications (1)

Publication Number Publication Date
WO1999067596A1 true WO1999067596A1 (fr) 1999-12-29

Family

ID=26496008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003295 WO1999067596A1 (fr) 1998-06-22 1999-06-21 Appareil electronique a mesureur d'azimut et procede de mesure d'azimut dans ledit appareil

Country Status (6)

Country Link
US (1) US6385133B1 (ja)
EP (1) EP1024345B1 (ja)
CN (1) CN1299097C (ja)
DE (1) DE69929163T2 (ja)
HK (1) HK1030809A1 (ja)
WO (1) WO1999067596A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126240A1 (en) * 2000-02-16 2001-08-22 Seiko Instruments Inc. Electronic instrument having a magnetic sensor
JP2003090726A (ja) * 2001-07-10 2003-03-28 Yamaha Corp 方位測定機能を有する携帯型電子装置、同携帯型電子装置に好適な磁気センサ、及び同携帯型電子装置における方位測定方法
EP1178284A3 (en) * 2000-08-01 2003-05-28 Seiko Instruments Inc. Method and system for adjusting an electronic azimuth meter
JP2010197123A (ja) * 2009-02-24 2010-09-09 Casio Computer Co Ltd 電子式方位計および方位補正制御方法
JP2011047841A (ja) * 2009-08-28 2011-03-10 Casio Computer Co Ltd 電子式方位計、電子式方位計の調整方法および製造方法
US8537247B2 (en) 2010-10-21 2013-09-17 Casio Computer Co., Ltd. Photographing device which measures azimuth during photographing
WO2016009529A1 (ja) * 2014-07-17 2016-01-21 株式会社 東芝 電子機器および制御方法
JP2017026370A (ja) * 2015-07-17 2017-02-02 セイコーエプソン株式会社 電子機器
JP2018159677A (ja) * 2017-03-23 2018-10-11 セイコーエプソン株式会社 電子時計
JP2019039886A (ja) * 2017-08-29 2019-03-14 カシオ計算機株式会社 ムーブメントおよび時計
JP2019049436A (ja) * 2017-09-08 2019-03-28 シチズン時計株式会社 電子時計のムーブメント及び電子時計
CN111125610A (zh) * 2019-12-26 2020-05-08 华北电力大学 一种磁场屏蔽效能预测方法及系统
JP2020101397A (ja) * 2018-12-20 2020-07-02 カシオ計算機株式会社 電子機器および時計

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525269A (zh) * 1998-12-23 2004-09-01 �����ɷ� 具有罗盘功能的电子表
JP3536852B2 (ja) * 2002-03-27 2004-06-14 セイコーエプソン株式会社 電子時計
US6992481B2 (en) 2003-05-29 2006-01-31 Timex Group B. V. Method for compensating for predictable generated signals in an electronic device
KR100561849B1 (ko) * 2003-11-13 2006-03-16 삼성전자주식회사 이동체의 방위각 보정방법 및 장치
CH697492B1 (de) * 2004-04-17 2008-11-14 Vectronix Ag Verfahren zum Schätzen der Genauigkeit azimutaler Ausrichtungen, Verfahren zum Bereitstellen einer azimutalen Ausrichtung eines tragbaren Zielgeräts und eines geschätzten Wertes deren Genauigkeit und tragbares Zielgerät.
US20070203651A1 (en) * 2004-10-22 2007-08-30 Baker Hughes Incorporated Magnetic measurements while rotating
ATE507511T1 (de) * 2006-12-22 2011-05-15 Eta Sa Mft Horlogere Suisse Elektronische uhr mit anzeige der richtung eines vorprogrammierten geografischen orts
US20080163504A1 (en) * 2007-01-05 2008-07-10 Smith John E Apparatus and methods for locating and identifying remote objects
JP5094976B2 (ja) * 2007-09-10 2012-12-12 ソフィサ 調節バルブの位置特定および設定の読み取りを機械的に行うための装置および方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137587U (ja) * 1983-03-03 1984-09-13 株式会社サンショ− コンパス兼用液晶腕時計
JPS6148389U (ja) * 1984-08-31 1986-04-01
JPH0669881U (ja) * 1993-03-12 1994-09-30 シチズン時計株式会社 方位計付き携帯時計
JPH10170664A (ja) * 1996-12-10 1998-06-26 Seiko Epson Corp 磁界計測機能付き電子時計

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US466810A (en) * 1892-01-12 Half to isaac l
US3902252A (en) * 1974-01-02 1975-09-02 Safe Flight Instrument Magnetic field directional sensor
US4365197A (en) * 1978-03-31 1982-12-21 Pyatt Lawrence A Identification of pipe material in wells
FR2475908A2 (fr) * 1980-02-18 1981-08-21 Montana Sport Perfectionnements a la machine a corder les raquettes
FR2515838A1 (fr) * 1981-10-30 1983-05-06 Omega Brandt & Freres Sa Louis Piece d'horlogerie comportant un dispositif d'orientation
JPS59137587A (ja) 1983-01-25 1984-08-07 ライオン株式会社 脱墨剤
JPS6148389A (ja) 1984-08-13 1986-03-10 帆苅 正男 氷造形物による屋内遊覧施設
GB2180082B (en) * 1985-09-03 1988-08-17 Citizen Watch Co Ltd Electronic equipment with geomagnetic direction sensor
US4910459A (en) * 1987-12-26 1990-03-20 Tdk Corporation Magnetic tile sensor with a non-magnetic case having a flange and a cover cold welded thereon
JP2680150B2 (ja) * 1989-12-27 1997-11-19 株式会社トキメック 電子磁気コンパス
JP2935047B2 (ja) * 1990-03-13 1999-08-16 カシオ計算機株式会社 電子コンパス
US5216816A (en) * 1990-03-20 1993-06-08 Casio Computer Co., Ltd. Compass
JPH0669881A (ja) 1992-08-19 1994-03-11 Uniden Corp コードレス電話装置のid番号登録装置
CH687288B5 (fr) * 1994-11-21 1997-05-15 Asulab Sa Montre comprenant un dispositif de detection de la direction du nord magnetique terrestre.
CH688949B5 (fr) * 1995-01-04 1998-12-31 Asulab Sa Montre comprenant un dispositif d'indication d'un lieu géographique prédéterminé.
CH688460B5 (fr) * 1995-05-17 1998-04-15 Asulab Sa Dispositif servant à indiquer la direction d'un lieu géographique déterminé.
US6229965B1 (en) * 1997-04-03 2001-05-08 Canon Kabushiki Kaisha Apparatus such as camera adapted for film having magnetic recording part
CH691089A5 (fr) * 1997-05-14 2001-04-12 Asulab Sa Pièce d'horlogerie associée à une boussole et à un viseur.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137587U (ja) * 1983-03-03 1984-09-13 株式会社サンショ− コンパス兼用液晶腕時計
JPS6148389U (ja) * 1984-08-31 1986-04-01
JPH0669881U (ja) * 1993-03-12 1994-09-30 シチズン時計株式会社 方位計付き携帯時計
JPH10170664A (ja) * 1996-12-10 1998-06-26 Seiko Epson Corp 磁界計測機能付き電子時計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1024345A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126240A1 (en) * 2000-02-16 2001-08-22 Seiko Instruments Inc. Electronic instrument having a magnetic sensor
US6640454B2 (en) 2000-02-16 2003-11-04 Seiko Instruments Inc. Electronic instrument having a magnetic sensor
US6860022B2 (en) * 2000-02-16 2005-03-01 Seiko Instruments Inc. Electronic instrument having a magnetic sensor
EP1178284A3 (en) * 2000-08-01 2003-05-28 Seiko Instruments Inc. Method and system for adjusting an electronic azimuth meter
US6662459B2 (en) 2000-08-01 2003-12-16 Seiko Instruments Inc. Electronic azimuth meter and timepiece
JP2003090726A (ja) * 2001-07-10 2003-03-28 Yamaha Corp 方位測定機能を有する携帯型電子装置、同携帯型電子装置に好適な磁気センサ、及び同携帯型電子装置における方位測定方法
JP2010197123A (ja) * 2009-02-24 2010-09-09 Casio Computer Co Ltd 電子式方位計および方位補正制御方法
JP2011047841A (ja) * 2009-08-28 2011-03-10 Casio Computer Co Ltd 電子式方位計、電子式方位計の調整方法および製造方法
US8537247B2 (en) 2010-10-21 2013-09-17 Casio Computer Co., Ltd. Photographing device which measures azimuth during photographing
WO2016009529A1 (ja) * 2014-07-17 2016-01-21 株式会社 東芝 電子機器および制御方法
JP2017026370A (ja) * 2015-07-17 2017-02-02 セイコーエプソン株式会社 電子機器
JP2018159677A (ja) * 2017-03-23 2018-10-11 セイコーエプソン株式会社 電子時計
JP2019039886A (ja) * 2017-08-29 2019-03-14 カシオ計算機株式会社 ムーブメントおよび時計
JP2019049436A (ja) * 2017-09-08 2019-03-28 シチズン時計株式会社 電子時計のムーブメント及び電子時計
JP2020101397A (ja) * 2018-12-20 2020-07-02 カシオ計算機株式会社 電子機器および時計
CN111125610A (zh) * 2019-12-26 2020-05-08 华北电力大学 一种磁场屏蔽效能预测方法及系统
CN111125610B (zh) * 2019-12-26 2022-02-15 华北电力大学 一种磁场屏蔽效能预测方法及系统

Also Published As

Publication number Publication date
EP1024345A1 (en) 2000-08-02
US6385133B1 (en) 2002-05-07
CN1272916A (zh) 2000-11-08
EP1024345A4 (en) 2001-09-12
DE69929163D1 (de) 2006-02-02
HK1030809A1 (en) 2001-05-18
EP1024345B1 (en) 2005-12-28
DE69929163T2 (de) 2006-08-31
CN1299097C (zh) 2007-02-07

Similar Documents

Publication Publication Date Title
WO1999067596A1 (fr) Appareil electronique a mesureur d'azimut et procede de mesure d'azimut dans ledit appareil
US4668100A (en) Electronic equipment with geomagnetic direction sensor
US8040287B2 (en) Radio wave receiving device with magnetic drive unit and antenna structure and electronic apparatus using the radio wave receiving device
JP4614901B2 (ja) コンパス(羅針盤)機能を有する時計
US7948830B2 (en) Electronic device and display control method
CN101206455B (zh) 指针式显示装置
US10969225B2 (en) Electronic timepiece
JP2008157954A (ja) 所定の場所の方向を指示する機能を有する電子時計
KR102099514B1 (ko) 전기기계식 시계용 프리젠테이션 케이스 및 이를 포함하는 어셈블리
CN101154765B (zh) 电子仪器和电子钟表
JPH08220256A (ja) 地磁気の北の方向を検出する配置を有する時計装置
JPS58131584A (ja) 電子時計
WO2005003867A1 (ja) 時刻修正システム、時刻修正指示装置、指針式時計、および時刻修正方法
JP2004093557A (ja) 時刻修正システム、時刻修正指示装置、指針式時計、および時刻修正方法
JP6780292B2 (ja) 電子時計
JP2007212354A (ja) 時計の針位置検出装置及びこれを備えた時計
US20240319675A1 (en) Pointer display apparatus and pointer operation control method
EP1634128B1 (en) Method for compensating disturbances due to a plurality of step motors in an electronic compass
US20180275612A1 (en) Electronic timepiece
JP2008180673A (ja) 方位センサおよび電子機器
JP3596201B2 (ja) 磁界計測機能付き電子時計
JP6133647B2 (ja) 方位計測機能付き電子機器
JPH10170663A (ja) 磁界検出装置、およびそれを用いた磁界計測機能付き時計
TW432259B (en) Electronic watch with a compass function
JP7192750B2 (ja) 指針駆動装置、電子時計、指針駆動方法およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800993.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09489928

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999957196

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999957196

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999957196

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载