WO1999067324A1 - Compositions de resine thermodurcissable utilisees comme resines de remplissage - Google Patents
Compositions de resine thermodurcissable utilisees comme resines de remplissage Download PDFInfo
- Publication number
- WO1999067324A1 WO1999067324A1 PCT/US1999/013625 US9913625W WO9967324A1 WO 1999067324 A1 WO1999067324 A1 WO 1999067324A1 US 9913625 W US9913625 W US 9913625W WO 9967324 A1 WO9967324 A1 WO 9967324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- acrylate
- composition according
- component
- epoxy resin
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 34
- 229920001187 thermosetting polymer Polymers 0.000 title claims abstract description 31
- 239000000565 sealant Substances 0.000 title claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 79
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 55
- 239000003822 epoxy resin Substances 0.000 claims abstract description 54
- 239000004065 semiconductor Substances 0.000 claims abstract description 41
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 27
- 230000003197 catalytic effect Effects 0.000 claims abstract description 18
- 239000011256 inorganic filler Substances 0.000 claims abstract description 12
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 12
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 59
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 16
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- -1 alkyl glycidyl ethers Chemical class 0.000 claims description 14
- 239000000178 monomer Substances 0.000 claims description 13
- 229920000728 polyester Polymers 0.000 claims description 13
- 239000004593 Epoxy Substances 0.000 claims description 12
- 239000003085 diluting agent Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 150000008064 anhydrides Chemical class 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 125000001931 aliphatic group Chemical group 0.000 claims description 7
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 7
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 150000002978 peroxides Chemical class 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- WGOQVOGFDLVJAW-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCOC(N)=O WGOQVOGFDLVJAW-UHFFFAOYSA-N 0.000 claims description 4
- 230000009477 glass transition Effects 0.000 claims description 4
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 claims description 4
- 229920003986 novolac Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 150000004756 silanes Chemical class 0.000 claims description 4
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 229940106691 bisphenol a Drugs 0.000 claims description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 3
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 claims description 3
- 150000003254 radicals Chemical class 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 claims description 3
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 claims description 2
- SPTHWAJJMLCAQF-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene;hydrogen peroxide Chemical compound OO.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-N 0.000 claims description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 claims description 2
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 claims description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 claims description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 claims description 2
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 claims description 2
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- 150000007513 acids Chemical class 0.000 claims description 2
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims description 2
- 150000001414 amino alcohols Chemical class 0.000 claims description 2
- 150000004982 aromatic amines Chemical class 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 2
- 229930003836 cresol Natural products 0.000 claims description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 claims description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 2
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 claims description 2
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 150000003457 sulfones Chemical class 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 claims description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 2
- SEAZOECJMOZWTD-UHFFFAOYSA-N trimethoxy(oxiran-2-ylmethyl)silane Chemical compound CO[Si](OC)(OC)CC1CO1 SEAZOECJMOZWTD-UHFFFAOYSA-N 0.000 claims description 2
- UMXTYRKIKUIMNC-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 UMXTYRKIKUIMNC-UHFFFAOYSA-N 0.000 claims 1
- 239000012766 organic filler Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 24
- 238000013007 heat curing Methods 0.000 abstract description 4
- 230000035939 shock Effects 0.000 abstract description 4
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 238000001723 curing Methods 0.000 description 9
- 229920003319 Araldite® Polymers 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000004377 microelectronic Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 5
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N ethyl trimethyl methane Natural products CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- MUTGBJKUEZFXGO-UHFFFAOYSA-N hexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21 MUTGBJKUEZFXGO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- SOOZEQGBHHIHEF-UHFFFAOYSA-N methyltetrahydrophthalic anhydride Chemical compound C1C=CCC2C(=O)OC(=O)C21C SOOZEQGBHHIHEF-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- ISHFYECQSXFODS-UHFFFAOYSA-M 1,2-dimethyl-3-propylimidazol-1-ium;iodide Chemical compound [I-].CCCN1C=C[N+](C)=C1C ISHFYECQSXFODS-UHFFFAOYSA-M 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- SEULWJSKCVACTH-UHFFFAOYSA-N 1-phenylimidazole Chemical compound C1=NC=CN1C1=CC=CC=C1 SEULWJSKCVACTH-UHFFFAOYSA-N 0.000 description 1
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- 125000004204 2-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 1
- MKBBSFGKFMQPPC-UHFFFAOYSA-N 2-propyl-1h-imidazole Chemical compound CCCC1=NC=CN1 MKBBSFGKFMQPPC-UHFFFAOYSA-N 0.000 description 1
- 125000004208 3-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C([H])C(*)=C1[H] 0.000 description 1
- 229940086681 4-aminobenzoate Drugs 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000013175 Crataegus laevigata Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 108091092920 SmY RNA Proteins 0.000 description 1
- 241001237710 Smyrna Species 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 239000011353 cycloaliphatic epoxy resin Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical class O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229940096522 trimethylolpropane triacrylate Drugs 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/10—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
Definitions
- thermosetting resin compositions useful as underfill sealants for mounting on a circuit board a semiconductor chip on a carrier substrate particularly for those mounting steps involving flip chip (“FC”) technology, and more particularly those mounting steps involving stud bump bonding ( "SBB” ) technology.
- underfill sealant a sealing resin
- DCA direct chip attachment
- CSP chip scale package
- BGA ball grid array
- curable resin compositions generally are known.
- Loctite Corporation presently offers for sale adhesive products intended to be useful to bond a chip package to a circuit board (such as those products available under the trademark "CHIPBONDER” , for instance, “CHIPBONDER” 348, 368, 3607 and the like) or as an underfill sealant (such as Loctite product No. 3150) .
- a contact resistance between the stud bump on the chip and the circuit board contacts is important parameter for many resin compositions presently used as underfill sealants, particularly for SBB processing, in microelectronics applications.
- a high contact resistance may result in electrical disconnection. Such an event is undesirable because it tends to cause intermittent operation of the microelectronic device, causing a failure of the device.
- the contact resistance itself tends to increase as the local operating temperature increases, and it may be linked to the coefficient of thermal expansion of an underfill sealant.
- an appropriate physical property of an underfill sealant in that regard would be shrinkage in volume after curing when a thermal compression or lamination step has occurred during the microelectronic device fabrication process. Such a property is believed to reduce contact resistance. While acrylate-based adhesives are known generally to shrink in volume to some extent when cured, such materials would typically be undesirable for microelectronic underfill applications because of their range of coefficients of thermal expansion when cured, which are ordinarily impractical for such applications.
- thermosetting resin composition useful as an underfilling sealant composition which (1) is capable of shrinking when cured, (2) rapidly fills the underfill space in a semiconductor device, such as a FC assembly which includes a semiconductor chip mounted on a carrier substrate, (3) enables the semiconductor to be securely connected to a circuit board by short-time heat curing and with good productivity, and (4) demonstrates excellent heat shock properties (or thermal cycle properties) .
- thermosetting resin compositions of this invention which are used as underfill sealants between such a semiconductor device and a circuit board to which the semiconductor device is electrically connected, include broadly (a) an epoxy resin component; (b) a (meth) acrylate resin component; (c) an inorganic filler component and (d) a polymerization catalytic component.
- semiconductor devices such as FC assemblies, may be (1) assembled, for instance using SBB techniques, rapidly and without production line down time because of improved cure speed and extended useful working life, and (2) securely connected to a circuit board by short-time heat curing of the composition, with the resulting mounted structure (at least in part due to the cured composition) demonstrating excellent heat shock properties (or thermal cycle properties) .
- compositions of this invention may also be used for microelectronic applications beyond sealing underfill, such as with glob top, die attachment and other applications for thermosetting compositions in which rapid cure time and an extended useful working life are desirable.
- FIG. 1 depicts a flow diagram of the assembly of a mounted structure in cross-sectional view with which the thermosetting resin composition of the present invention is used as an underfill sealant.
- the composition includes of these components about 5 to about 25 parts of the epoxy resin component by weight of the total composition, about 15 to about 25 parts of the (meth) acrylate component by weight of the total composition, about 50 to about 70 parts of the inorganic filler component by weight of the total composition and about 0.01 to about 5 parts of the polymerization catalytic component by weight of the total composition.
- the epoxy resin component of the present invention may include any common epoxy resin, such as a multifunctional epoxy resin.
- the multifunctional epoxy resin should be included in an amount within the range of about 20 parts to about 100 parts by weight of the total of the epoxy resin component.
- the amount thereof should be in the range of from about 1 to 40 parts, such as about 5 to about 30 parts by weight of the total of the epoxy resin component .
- multifunctional epoxy resin examples include bisphenol-A-type epoxy resin, bisphenol-F-type epoxy resin (such as RE-404-S from Nippon Kayaku, Japan) , phenol novolac-type epoxy resin, and cresol novolac-type epoxy resin.
- epoxy compounds include polyepoxy compounds based on aromatic amines and epichlorohydrin, such as
- N,N,N' ,N' -tetraglycidyl-4 4 ' diaminodiphenyl methane; N-diglycidyl-4-aminophenyl glycidyl ether; and N,N,N' ,N' -tetraglycidyl-1, 3-propylene bis-4-aminobenzoate .
- epoxy resins suitable for use herein also include polyglycidyl derivatives of phenolic compounds, such as those available commercially under the tradename "EPON”, such as “EPON” 828, “EPON” 1001, “EPON” 1009, and “EPON” 1031, from Shell Chemical Co.; DER 331, DER 332, DER 334, and DER 542 from Dow Chemical Co.; and BREN-S from Nippon Kayaku.
- EPON polyglycidyl derivatives of phenolic compounds
- EPON such as “EPON” 828, "EPON” 1001, "EPON” 1009, and "EPON” 1031
- DER 331, DER 332, DER 334, and DER 542 from Dow Chemical Co.
- BREN-S from Nippon Kayaku.
- epoxy resins include polyepoxides prepared from polyols and the like and polyglycidyl derivatives of phenol-formaldehyde novolacs, the latter of which are available commercially under the tradename "DEN”, such as "DEN” 431, "DEN” 438, and "DEN” 439 from Dow Chemical. Cresol analogs are also available commercially under the tradename "ARALDITE”, such as “ARALDITE” ECN 1235, “ARALDITE” ECN 1273, and "ARALDITE” ECN 1299 from Ciba-Geigy Corporation,
- SU-8 is a bisphenol-A-type epoxy novolac available from Interez, Inc.
- Polyglycidyl adducts of amines, aminoalcohols and polycarboxylic acids are also useful in this invention, commercially available resins of which include GLYAMINE 135, GLYAMINE 125, and GLYAMINE 115 from F.I.C. Corporation; ARALDITE MY-720, ARALDITE 0500, and ARALDITE 0510 from Ciba-Geigy and PGA-X and PGA-C from the Sherwin-Williams Co.
- epoxy resin component should be an epoxy monomer capable of forming a high glass transition temperature polymeric network.
- epoxy monomers are ERL-4221 from Union Carbide Corporation, Danbury, Connecticut, and "ARALDITE" ECN-1871 from Ciba-Geigy.
- (meth) acrylate component of the compositions of the present invention may be used a wide variety of (meth) acrylate monomers.
- (meth) acrylate is intended to refer to both acrylate and methacrylate .
- Additional (meth) acrylate monomers suitable for use herein include polyethylene glycol di (meth) acrylates, tetrahydrofuran (meth) acrylates and di (meth) acrylates, hydroxypropyl (meth) acrylate ("HPMA”), hexanediol di (meth) acrylate, trimethylol propane tri (meth) acrylate (“TMPTA”), diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, di- (pentamethylene glycol) di (meth) acrylate, tetraethylene diglycol diacrylate, diglycerol tetra (meth) acrylate, tetramethylene di (meth) acrylate, ethylene di (meth) acrylate, neopentyl glycol diacrylate, trimethylo
- (meth) acrylate monomers may also be used, such as reaction products of diglycidylether of bisphenol A with (meth) acrylic acid forming a (meth) acrylate ester corresponding to the structure shown below:
- R 2 may be selected from hydrogen, alkyl groups having from 1 to about 4 carbon atoms, hydroxyalkyl groups having from 1 to about 4 carbon atoms or
- R 3 may be selected from hydrogen, halogen, and alkyl groups of from 1 to about 4 carbon atoms;
- R 4 may be selected from ⁇ ydrogen, hydroxy and
- R 3 m is an integer equal to at least 1, e.g., from 1 to about 8 or higher, for instance, from 1 to about 4; v is 0 or 1; and n is an integer equal to at least 1, e.g., l to about 20 or more.
- Higher- functionalized (meth) acrylates such as penta, hexa, septa and the like, may also be used.
- higher functionalized (meth) acrylates include pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and polyester (meth) acrylates [e.g.
- EBECRYL tetra and hexa (meth) acrylate
- EBECRYL 264 [aliphatic urethane triacrylate diluted 15% with hexanediol di (meth) acrylate (“HDODA”), for providing non-yellowing, fast curing coatings with excellent arasion and stain resistance, toughness and flexibility]
- EBECRYL 265 [aliphatic urethane triacrylate diluted 25% with tripropylene glycol diacrylate (“TRGDA”)]
- 1290 hexafunctional aliphatic urethane acrylate containing an acrylated polyol diluent
- EBECRYL 8301 (hexafunctional aliphatic urethane acrylate containing an acrylated polyol diluent, for providing fast cure with excellent hardness, solvent and abrasion resistance)
- EBECRYL 220 (multi-functional aromatic urethane acrylate containing an acrylated polyol diluent, which provides extremely fast cure with excellent hardness and solvent resistance properties
- (meth) acrylate component which material is of a dual functionality (e.g. , partially-acrylated epoxy resins) .
- examples of such materials include those which are available from Sartomer under the trade designation SR-379, UCB under the trade designation "EBECRYL” 3605 and from Loctite Corporation, Rocky Hill, Connecticut under the trade designation EQM-672.
- the inorganic filler component may often include reinforcing silicas, such as fused silicas, and may be untreated or treated so as to alter the chemical nature of their surface. Virtually any reinforcing fused silica may be used. Particularly desirable ones have a low ion concentration and are relatively small in particle size (e.g. , on the order of about 2 microns) , such as the silica commercially available from Admatechs, Japan under the trade designation S0-E5.
- the inorganic filler component includes those constructed of or containing aluminum oxide, silicon nitride, aluminum nitride and silica-coated aluminum nitride.
- the polymerization catalytic component should include materials capable of catalyzing the polymerization of the epoxy resin component and the (meth) ' acrylate component portions, and any optional polymerizable components, of the inventive compositions.
- the materials included in the polymerization catalytic component are designed to catalyze polymerization of the composition, as a whole.
- an imidizole In order to catalyze polymerization of an epoxy resin as contemplated in the epoxy resin component, an imidizole would be an appropriate material to include. And polymerization catalysts with respect to the (meth) acrylate monomer as contemplated in the (meth) acrylate component may be achieved through the addition of peroxides, or other free radical generating materials, such as azo compounds [e.g. , azo bis-isobutyronitrile (AIBN) ] .
- azo compounds e.g. , azo bis-isobutyronitrile (AIBN)
- the polymerization catalytic component of the present invention Of the about 0.01 to about 5 parts by weight of the polymerization catalytic component of the present invention, about 90 to about 50 percent thereof should be allocated to catalyze the polymerization of the epoxy resin component and about 10 to about 50 thereof should be allocated to catalyze polymerization of the (meth) acrylate componen .
- the imidizole component of the polymerization catalytic component may be chosen from imidizole, isoimidizole, and substituted imidizoles -- such as alkyl-substituted imidizoles (e.g. , 2-methyl imidizole, 2-ethyl-4-methylimidizole, 2 , 4-dimethylimidizole, butylimidizole, 2 -heptadecenyl-4-methylimidizole, 2 -methylimidizole , 2 -undecenylimidizole , 1-vinyl-2 -methylimidizole, 2-n-heptadecylimidizole, 2-undecylimidizole, 2-heptadecylimidizole, 2 -ethyl 4-methylimidizole, l-benzyl-2-methylimidizole, 1-propyl-2 -methylimidizole , 1-cyanoethyl-2 -methyli
- each alkyl substituent contains up to about 17 carbon atoms and desirably up to about 6 carbon atoms
- aryl- substituted imidizoles e.g.
- Examples of commercial imidizoles are available from Air Products, Allentown, Pennsylvania under the trade designation “CUREZOL” 1B2MZ and from Synthron, Inc., Morganton, North Carolina under the trade designation “ACTIRON” NXJ-60.
- Peroxides suitable for use in the polymerization catalytic component to catalyze the (meth) acrylate component of the compositions of this invention include t-butyl perbenzoate (commercially available from Elf Atochem, Philadelphia, Pennsylvania) , dicumyl peroxide (commercially available from Aztec Peroxides, Inc., Houston, Texas under the trade designation DCP-R) , hydroperoxides such as isopropyl cumene hydroperoxide (commercially available from Nippon Oils and Fats Co., Japan).
- compositions of the present invention may include a reactive co-monomer component for either or both of the epoxy resin and the (meth) acrylate monomer, such as a reactive diluent and/or an anhydride.
- a reactive co-monomer component for either or both of the epoxy resin and the (meth) acrylate monomer such as a reactive diluent and/or an anhydride.
- Appropriate reactive diluents for use herein may include monofunctional or certain multifunctional epoxy resins.
- the reactive diluent should have a viscosity which is lower than that of the epoxy resin component . Ordinarily, the reactive diluent should have a viscosity less than about 250 cps .
- such resin should be employed in an amount of up to about 50 parts based on the total of the epoxy resin component .
- the monofunctional epoxy resin should have an epoxy group with an alkyl group of about 6 to about 28 carbon atoms, examples of which include C 6 -C 28 alkyl glycidyl ethers, C 6 -C 28 fatty acid glycidyl esters and
- monofunctional epoxy resin reactive diluents include those from Pacific Epoxy Polymers, Richmond, Michigan, under the trade designations PEP-6770 (gycidyl ester of neodecandoic acid) , PEP-6740 (phenyl glycidyl ether) and PEP-6741 (butyl glycidyl ether) .
- reactive diluents include those from Pacific Epoxy Polymers, under the trade designations PEP-6752 (trimethylolpropane triglycidyl ether) and PEP-6760 (diglycidyl aniline) .
- anhydrides for use herein include mono- and poly-anhydrides, such as hexahydrophthalic anhydride (“HHPA”) and methyl hexahydrophthalic anhydride (“MHHPA”) (commercially available from Lindau Chemicals, Inc., Columbia, South Carolina, used individually or as a combination, which combination is available under the trade designation "LINDRIDE” 62C) and 5- (2, 5-dioxotetrahydrol) -3-methyl-3-cyclohexene-l, 2-dicar
- HHPA hexahydrophthalic anhydride
- MHHPA methyl hexahydrophthalic anhydride
- boxylic anhydride (commercially available from ChrisKev
- composition may also include a flowability agent, such as a silane and/or titanate.
- a flowability agent such as a silane and/or titanate.
- silanes for use herein include octyl trimethoxy silane (commercially available from OSI Specialities Co., Danbury, Connecticut under the trade designation A-137) , glycidyl trimethoxysilane (commercially available from OSI under the trade designation A-187) , methacryloxy propyl trimethoxy silane (commercially available from OSI under the trade designation A-174) .
- titanates for use herein include titanium IV tetrakis
- thermosetting resin composition of the present invention may further contain other additives, such as defoaming agents, leveling agents, dyes, and pigments.
- thermosetting resin compositions of the present invention may be of the one-pack type, in which all the ingredients are mixed together, or of the two-pack type in which the epoxy resin component, (meth) acrylate component, inorganic filler component, and other optional components are included in one part and the polymerization catalytic component is stored separately in a second part, and mixed together only prior to use.
- thermosetting resin compositions according to the present invention penetrate and flow readily into the space between the semiconductor chip and the circuit board, or at least show a reduction in viscosity under heated or use conditions thus penetrating and flowing easily.
- thermosetting resin compositions of this invention by selecting the types and proportions of the various components so that the gel times will be tailored to a specified period of time (such as 15 seconds, or 1 or 2 minutes) at a temperature of about 150°C.
- the inventive compositions should show no or substantially no increase of viscosity after a period of time of about six hours. With such a gel time, the compositions penetrate into the space between the semiconductor chip and the circuit board (e.g. , of 25 to 200 ⁇ m) relatively rapidly, and allow for a greater number of assemblies to be filled without observing a viscosity increase in the composition thereby rendering it less effective for application.
- FIG. 1 shows a mounted structure (i.e. , a FC package prepared with SBB technology) in which a thermosetting resin composition of the present invention has been applied and cured.
- the FC package 4 is formed by connecting a semiconductor chip (a bare chip) 2 to a carrier substrate 1 (e.g. , a circuit board) and sealing the space therebetween suitably with a thermosetting resin composition 3.
- the semiconductor chip 2 is passed over a substrate bearing a conductive adhesive paste (such as a metal-filled epoxy) to form a layer thereof on the studs 11 of the semiconductor chip 2.
- the layer is ordinarily formed by a printing mechanism.
- the conductive adhesive paste may be applied on either the carrier substrate or the semiconductor chip. Alternatively, this connection may also be made by an anisotropically conductive adhesive.
- the semiconductor chip 2 is positioned over the carrier substrate 1 in such a manner so that the studs 11 (often made of gold) of the semiconductor chip 2 are in alignment with the bumps 12 (often made of gold or gold-plated copper) on the carrier substrate 1, which are now coated with a layer of conductive adhesive paste 10.
- the conductive adhesive paste may be cured by a variety of ways, though ordinarily a heat cure mechanism is employed.
- Carrier substrates may be constructed from ceramic substrates of A1 2 0 3 , SiN 3 and mullite (Al 2 0 3 -Si0 2 ) ; substrates or tapes of heat-resistant resins, such as polyimides; glass-reinforced epoxy; ABS and phenolic substrates which are also used commonly as circuit boards; and the like. Any electrical connection of the semiconductor chip to the carrier substrate may be used, such as connection by a high-melting solder or electrically (or anisotropically) conductive adhesive and the like. In order to facilitate connections, particularly in SBB technology, the electrodes may be formed as wire bond bumps.
- the resulting structure is ordinarily subjected to a continuity test or the like. After passing such test, the semiconductor chip may be fixed thereto with a thermosetting resin composition, as described below. In this way, in the event of a failure, the semiconductor chip may be removed before it is fixed to the carrier substrate with the thermosetting resin composition.
- thermosetting resin composition in accordance with this invention is applied to the periphery of the electronically-connected semiconductor chip.
- the composition penetrates by capillary action into the space between the carrier substrate and the semiconductor chip.
- thermosetting resin composition is then thermally cured by the application of heat.
- the thermosetting resin composition shows a significant reduction in viscosity and hence an increase in fluidity, so that it more easily penetrates into the space between the carrier substrate and the semiconductor chip.
- the thermosetting resin composition is allowed to penetrate fully into the entire space between the carrier substrate and the semiconductor chip.
- thermosetting resin compositions of the present invention demonstrate excellent adhesive force, heat resistance and electric properties, and acceptable mechanical properties, such as flex-cracking resistance, chemical resistance, moisture resistance and the like, for the applications for which they are used herein.
- thermosetting resin composition applied should be suitably adjusted so as to fill almost completely the space between the carrier substrate and the semiconductor chip, which amount of course may vary depending on application.
- Thermosetting resin compositions of the present invention may ordinarily be cured by heating to a temperature in the range of about 120 to about 180°C for 1 o
- composition of the present invention can be used in relatively moderate temperatures and short-time curing conditions, and hence achieve very good productivity.
- compositions in accordance with the present invention were prepared and evaluated for performance.
- Thermosetting resin compositions in accordance with the present invention were prepared by mixing together with stirring for a period of time of about 10 minutes at room temperature in an open vessel the following components in the order noted: 1. an epoxy resin component including
- an inorganic filler component including 65 parts of fused silica (commercially available from Admatechs under the trade designation SO-E5) ;
- a polymerization catalytic component including 0.06 parts of imidizole (commercially available from Air Products under the trade designation "CUREZOL” 1B2MZ) , and
- compositions include:
- anhydride component comprised of a mixture in an 85:15 ratio of "HHPA” and “MHHPA” anhydrides (commercially available from Lindau under the trade designation “LINDRIDE” 62C) , and a cycloaliphatic dianhydride (commercially available from ChrisKev under the trade designation B-4400) ;
- a flowability agent including the combination of the following silanes: 0.27 parts of octyl trimethoxy silane (commercially available from OSI under the trade designation A-137) ; and 0.27 parts of a titanate, titanium IV tetrakis
- compositions have a variety of properties in both the uncured and cured state which are measurable and useful parameters for the end user in choosing a particular formulation for a desired need.
- the flow rate and viscosity are of interest; in reaching the cured state, the reaction exotherm, as well as peak temperature and onset temperature are of interest .
- the flow rate allows the end user to determine the rapidity with which the adhesive may be applied during a fabrication process, such as a circuit assembly operation. It may be measured by passing the composition through a 25 ⁇ m gap between glass slides aligned perpendicular to one another, using metal shims as spacers. The time required for the composition to flow between the slides is then measured at lengths of about 0.25 to 1 inches. Values in seconds for the flow rates of the compositions set forth above are presented as an average of three measurements below in Table 2.
- the value to which reference is ordinarily made is the time necessary to flow 0.5", in this case about 22 to about 24 seconds.
- the viscosity is a property related to the flow rate, and is helpful for the end user in making appropriate decisions with respect to a particular formulation for a desired application. Viscosity here is measured using a Brookfield viscometer.
- the reaction exotherm or enthalpy, assists in determining the effectiveness of a (co) polymerization reaction.
- the reaction exotherm here is measured by differential scanning calorimetry ("DSC").
- T PEAK peak temperature
- T 0NSET onset temperature
- composition While the composition was used upon formation, it may be stored for a period of time of up to about 3 to about 6 months at a temperature of about -40 °C without experiencing viscosity increase.
- composition was transferred to a 10 ml syringe made of non-reactive plastic .
- the composition When used, the composition may be dispensed through a 12G needle connected to the syringe into the junction between the carrier substrate and semiconductor chip in a previously- formed assembly. As such, the composition acts as an encapsulant for the electrical connection. After such dispensing, the assembly was transferred to an oven while the temperature was maintained at about 165°C. The composition cured initially after about 1 minute, and thereafter cured completely after about 15 minutes at that temperature. In the cured state, a variety of properties are useful depending on the end use for which the composition is destined.
- the glass transition temperature (“Tg”) which is measured by DSC and by thermal mechanical analysis (“TMA”), provides information on the hardness and strength of the cured reaction product (or, network) , and its behavior with respect to changes in temperature -- that is, a higher Tg should afford a material that is better able to withstand elevated temperatures.
- TMA thermal mechanical analysis
- CTE coefficient of thermal expansion
- Two CTEs are measured: one is measured below the Tg [CTE ( ⁇ l) ] and the other is measured above the Tg [CTE ( ⁇ 2)] .
- the CTE of a composition destined for use with a chip and circuit board should be about 30 ppm/°C or about 30 ⁇ m/m°C, below the Tg. See below Table 4.
- Sample No. 5 was observed to experience a slow viscosity increase at room temperature . After a period of time of 5 hours, the viscosity increase was observed to be about 12%.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU46886/99A AU4688699A (en) | 1998-06-22 | 1999-06-17 | Thermosetting resin compositions useful as underfill sealants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9014098P | 1998-06-22 | 1998-06-22 | |
US60/090,140 | 1998-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999067324A1 true WO1999067324A1 (fr) | 1999-12-29 |
Family
ID=22221497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/013625 WO1999067324A1 (fr) | 1998-06-22 | 1999-06-17 | Compositions de resine thermodurcissable utilisees comme resines de remplissage |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU4688699A (fr) |
WO (1) | WO1999067324A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6548575B2 (en) | 2000-12-13 | 2003-04-15 | National Starch And Chemical Investment Holding Corporation | High temperature underfilling material with low exotherm during use |
US6833629B2 (en) | 2001-12-14 | 2004-12-21 | National Starch And Chemical Investment Holding Corporation | Dual cure B-stageable underfill for wafer level |
EP1701361A1 (fr) | 2005-03-07 | 2006-09-13 | National Starch and Chemical Investment Holding Corporation | Adhesif conducteur à faible contrainte |
EP2416633A1 (fr) * | 2010-08-04 | 2012-02-08 | AT & S Austria Technologie & Systemtechnik Aktiengesellschaft | Procédé de fixation et/ou d'intégration d'un composant électronique et colle pour l'utilisation dans un tel procédé |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4917466A (en) * | 1987-08-13 | 1990-04-17 | Shin-Etsu Polymer Co., Ltd. | Method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby |
US5596023A (en) * | 1992-11-18 | 1997-01-21 | Sharp Kabushiki Kaisha | Sealing material for liquid crystal display panel, and liquid crystal display panel using it |
US5784197A (en) * | 1996-04-01 | 1998-07-21 | Minnesota Mining And Manufacturing Company | Ultra-flexible retroreflective sheeting with coated back surface |
US5784779A (en) * | 1995-05-20 | 1998-07-28 | Robert Bosch Gmbh | Method for joining an electrical connection of a non-packaged IC component with a conductive strip on a substrate |
US5864178A (en) * | 1995-01-12 | 1999-01-26 | Kabushiki Kaisha Toshiba | Semiconductor device with improved encapsulating resin |
US5898041A (en) * | 1995-03-01 | 1999-04-27 | Matsushita Electric Industrial Co., Ltd. | Production process of liquid crystal display panel, seal material for liquid crystal cell and liquid crystal display |
-
1999
- 1999-06-17 WO PCT/US1999/013625 patent/WO1999067324A1/fr active Application Filing
- 1999-06-17 AU AU46886/99A patent/AU4688699A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4917466A (en) * | 1987-08-13 | 1990-04-17 | Shin-Etsu Polymer Co., Ltd. | Method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby |
US5596023A (en) * | 1992-11-18 | 1997-01-21 | Sharp Kabushiki Kaisha | Sealing material for liquid crystal display panel, and liquid crystal display panel using it |
US5864178A (en) * | 1995-01-12 | 1999-01-26 | Kabushiki Kaisha Toshiba | Semiconductor device with improved encapsulating resin |
US5898041A (en) * | 1995-03-01 | 1999-04-27 | Matsushita Electric Industrial Co., Ltd. | Production process of liquid crystal display panel, seal material for liquid crystal cell and liquid crystal display |
US5784779A (en) * | 1995-05-20 | 1998-07-28 | Robert Bosch Gmbh | Method for joining an electrical connection of a non-packaged IC component with a conductive strip on a substrate |
US5784197A (en) * | 1996-04-01 | 1998-07-21 | Minnesota Mining And Manufacturing Company | Ultra-flexible retroreflective sheeting with coated back surface |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6548575B2 (en) | 2000-12-13 | 2003-04-15 | National Starch And Chemical Investment Holding Corporation | High temperature underfilling material with low exotherm during use |
US6833629B2 (en) | 2001-12-14 | 2004-12-21 | National Starch And Chemical Investment Holding Corporation | Dual cure B-stageable underfill for wafer level |
EP1461829B2 (fr) † | 2001-12-14 | 2014-04-02 | Henkel AG & Co. KGaA | Matiere de remplissage sous-jacent pouvant passer a l'etat b a double traitement thermique pour plaquette |
EP1701361A1 (fr) | 2005-03-07 | 2006-09-13 | National Starch and Chemical Investment Holding Corporation | Adhesif conducteur à faible contrainte |
US7326369B2 (en) | 2005-03-07 | 2008-02-05 | National Starch And Chemical Investment Holding Corporation | Low stress conductive adhesive |
EP2416633A1 (fr) * | 2010-08-04 | 2012-02-08 | AT & S Austria Technologie & Systemtechnik Aktiengesellschaft | Procédé de fixation et/ou d'intégration d'un composant électronique et colle pour l'utilisation dans un tel procédé |
WO2012016258A3 (fr) * | 2010-08-04 | 2012-06-07 | At & S Austria Technologie & Systemtechnik Aktiengesellschaft | Colle pour fixer et/ou encastrer un composant électronique ainsi que procédé et utilisation |
AT13437U1 (de) * | 2010-08-04 | 2013-12-15 | Austria Tech & System Tech | Kleber zur Festlegung und/oder Einbettung eines elektronischen Bauteils sowie Verfahren und Verwendung |
Also Published As
Publication number | Publication date |
---|---|
AU4688699A (en) | 2000-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1558678B1 (fr) | Composition de capsulation de sous-remplissage sans ecoulement epoxy/polyanhydride durcie | |
US6342577B1 (en) | Thermosetting resin compositions useful as underfill sealants | |
US7351784B2 (en) | Chip-packaging composition of resin and cycloaliphatic amine hardener | |
JP2009144169A (ja) | 非フローアンダーフィルカプセル封止材料 | |
TWI480326B (zh) | 用於含低k介電質之半導體裝置中作為底填密封劑之可固化樹脂組合物 | |
US6893736B2 (en) | Thermosetting resin compositions useful as underfill sealants | |
US20030036587A1 (en) | Rheology-controlled epoxy-based compositons | |
JP2004530740A (ja) | フラックス処理用アンダーフィル組成物 | |
JP4481651B2 (ja) | 非フローアンダーフィル組成物 | |
US6492438B1 (en) | Electrically connectable adhesive agent for semiconductor | |
JP2005516090A5 (fr) | ||
WO2000079582A9 (fr) | Composition dont la degradation est regulable, a base de resine epoxy ou carbocyclique d'heteroatome et a base d'un agent de durcissement | |
US8075721B2 (en) | Low exothermic thermosetting resin compositions useful as underfill sealants and having reworkability | |
JPH11288979A (ja) | 半導体装置の製造方法 | |
WO2000056799A1 (fr) | Compositions de resine thermodurcissables remaniables | |
JP6179247B2 (ja) | 電子部品装置の製造方法及び電子部品装置 | |
WO1999067324A1 (fr) | Compositions de resine thermodurcissable utilisees comme resines de remplissage | |
US6627683B1 (en) | Reworkable thermosetting resin compositions and compounds useful therein | |
US20040155364A1 (en) | Reworkable thermosetting resin compositions | |
US7108920B1 (en) | Reworkable compositions incorporating episulfide resins | |
KR100746334B1 (ko) | 열 및 기계적 특성이 개선된 플립칩 접속용 필름 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |