+

WO1999066895A1 - Kosmetische zubereitungen in stiftform - Google Patents

Kosmetische zubereitungen in stiftform Download PDF

Info

Publication number
WO1999066895A1
WO1999066895A1 PCT/EP1999/004122 EP9904122W WO9966895A1 WO 1999066895 A1 WO1999066895 A1 WO 1999066895A1 EP 9904122 W EP9904122 W EP 9904122W WO 9966895 A1 WO9966895 A1 WO 9966895A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
fatty
carbon atoms
contain
alcohol
Prior art date
Application number
PCT/EP1999/004122
Other languages
English (en)
French (fr)
Inventor
Stefan BRÜNING
Achim Ansmann
Susan Lang
Holger Tesmann
Original Assignee
Cognis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh filed Critical Cognis Deutschland Gmbh
Priority to EP99929214A priority Critical patent/EP1089705A1/de
Publication of WO1999066895A1 publication Critical patent/WO1999066895A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • A61K8/0229Sticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/35Ketones, e.g. benzophenone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/365Hydroxycarboxylic acids; Ketocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants

Definitions

  • the invention is in the field of cosmetic stick preparations and relates to anhydrous preparations containing selected mixtures of fatty substances and the use of the mixtures as thickeners, in particular for the production of antiperspirant and deodorant sticks.
  • Cosmetic stick preparations which can be found on the market as antiperspirant or deodorant products, contain primarily soap (sodium stearate), oil bodies and bactericides. They have an alkaline pH of approx. 9. The soapy skin feel associated with these pens is considered a disadvantage by the consumer.
  • a more recent development relates to pens which contain known antiperspirant active ingredients, e.g. Aluminum chlorohydrate (ACH) included. They have to be formulated at an acidic pH of approx. 4 and require special thickener systems such as Polydiols in combination with dibenzylidene sorbitol as well as mixtures of stearyl alcohol and hydrogenated castor oil.
  • ACH Aluminum chlorohydrate
  • the invention relates to cosmetic preparations in stick form, containing
  • the preparations according to the invention not only exhibit a sufficiently high consistency and temperature resistance, but also impart an advantageous feeling on the skin.
  • the preparations are soap-free and therefore allow the incorporation of acidic active ingredients, e.g. Aluminum chlorohydrate.
  • the pens are transparent or pure white and do not leave any annoying residues when used.
  • Linear fatty alcohols are to be understood as primary aliphatic alcohols of the formula (I)
  • R 1 represents an aliphatic alkyl and / or alkenyl radical having 12 to 22 carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol as well as technical oils based on F or the technical high-pressure mixtures based on, for example, in the case of methylene or technical high-pressure mixtures based on methylene or technical high-pressure mixtures based on, for example, technical fats or mixtures based on methylene oils Aldehydes occur.
  • Technical fatty alcohols with 16 to 18 carbon atoms are preferred, such as, for example, cetyl alcohol, stearyl alcohol, cetearyl alcohol and tallow fatty alcohol.
  • 12-hydroxystearic acid is produced by hardening ricinoleic acid or by hardening castor oil and then pressure splitting and can therefore still contain small amounts of unsaturated components (iodine numbers in the range from 0.1 to 5) and partial glycerides (less than 1% by weight).
  • Fat ketones which can be present as component (b2) preferably follow the formula (II),
  • R 2 and R 3 independently of one another represent linear or branched alkyl radicals having 1 to 22 carbon atoms, with the proviso that the total number of carbon atoms is at least 12.
  • the ketones can be prepared by prior art methods, for example by pyrolysis of the corresponding fatty acid magnesium salts.
  • the ketones can be symmetrical or asymmetrical, but the two radicals R 2 and R 3 preferably differ only by one carbon atom and are derived from fatty acids having 6 to 18 carbon atoms.
  • Caprinon, Lauron and Stearon are characterized by particularly advantageous thickening properties.
  • Fat ethers which may be present as component (b3) preferably follow the formula (III),
  • Fat ethers of the type mentioned are usually prepared by acidic condensation of the corresponding fatty alcohols. Fat ethers with particularly advantageous thickening properties are obtained by condensation of fatty alcohols having 16 to 22 carbon atoms, such as, for example, cetyl alcohol, cetearyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, behenyl alcohol and / or erucyl alcohol. The use of distearyl ether is particularly preferred. Thickener
  • the stick formulations can contain the mixtures of components (a) and (b) in amounts of 2 to 25, preferably 5 to 20% by weight, based on the composition.
  • Components (a) and (b) can be present in a weight ratio of 10:90 to 90:10, preferably 25:75 to 75:25 and in particular 40:60 to 60:40.
  • Another object of the invention relates to the use of mixtures containing
  • the preparations can, as further auxiliaries and additives, include mild surfactants, oil bodies, emulsifiers, superfatting agents, pearlescent waxes, stabilizers, consistency agents, thickeners, polymers, silicone compounds, biogenic agents, deodorant agents, preservatives, hydrotropes, solubilizers, UV light protection factors, antioxidants, insect repellents, Contain self-tanners, perfume oils, dyes and the like.
  • Suitable mild, i.e. surfactants that are particularly compatible with the skin are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ether carboxylic acids, alkyl oligoglucosides, fatty acid glucamides or alkyl amide fatty acid proteins, and alkyl amide fatty acid proteins, preferably protein amide fatty acid proteins, or alkyl amide fatty acid proteins, or alkyl amide fatty acid proteins, or alkyl amido fatty acid proteins, preferably protein-based fatty acid proteins or alkyl amide fatty acid proteins, alkyl amide fatty acid proteins, and alkyl amido fatty acid proteins.
  • Guerbet alcohols based on fatty alcohols with 6 to 18, preferably 8 to 10 carbon atoms esters of linear C6-C22 fatty acids with linear C6-C22 fatty alcohols, esters of branched C6-Ci3 carboxylic acids with linear C6-C22- Fatty alcohols, esters of linear C6-C22 fatty acids with branched alcohols, especially 2-ethylhexanol, esters of hydroxycarboxylic acids with linear or branched C6-C22 fatty alcohols, especially dioctyl malates, esters of linear and / or branched fatty acids with polyhydric alcohols (e.g.
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • alkyl mono- and oligoglycosides with 8 to 22 carbon atoms in the alkyl radical and their ethoxylated analogs
  • polyol and especially polyglycerol esters such as e.g. Polyglycerol polyricinoleate, polyglycerol poly-12-hydroxystearate or polyglycerol dimerate. Mixtures of compounds from several of these classes of substances are also suitable;
  • partial esters based on linear, branched, unsaturated or saturated C6 / 22 fatty acids, ricinoleic acid and 12-hydroxystearic acid and glycerin, polyglycerin, pentaerythritol, dipentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside - glucoside) and polyglucosides (eg cellulose);
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols, glycerol mono- and diesters and sorbitan mono- and diesters of fatty acids or with castor oil are known, commercially available products. These are mixtures of homologs, the middle of which Degree of alkoxylation corresponds to the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate with which the addition reaction is carried out.
  • Ci2 / i8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE-PS 2024051 as refatting agents for cosmetic preparations.
  • C ⁇ / i ⁇ alkyl mono- and oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylamino propyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxyl -3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylamino propyl-N, N-dimethylammonium glycinate, for
  • fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine is particularly preferred.
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C ⁇ -alkyl or -acyl group, contain at least one free amino group and at least one -COOH or -SO3H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids, each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and Ci2 / i8-acylsarcosine.
  • quaternary emulsifiers are also suitable, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and, in addition, partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, (for example Carbopole® from Goodrich or Synthalene® from Sigma), polyacrylamides, polyvinyl alcohol and polyvinyl pyrrolidone, surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides, and electrolytes such as sodium chloride and ammonium chloride.
  • polysaccharides in particular xanthan gum, guar gu
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallyl ammonium salts and acrylamides, quaternized vinyl pyrrolidone / vinyl imidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, e.g. Amidomethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyaminopolyamides, e.g.
  • cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products of dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane, cationic guar gum, such as e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers, e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane
  • cationic guar gum such as e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese
  • quaternized ammonium salt polymers e.g
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidoneA / inylacrylate copolymers, vinyl acetate butylmaleate isobornylacrylate copolymers, methylvinylether / maleic anhydride copolymers and their esters, non-crosslinked polyamide-acrylamide and polyols, polyammonyl acrylate and polyols with acrylamides and non-crosslinked polyammonyl acrylate and with polyols Copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypro- pyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, vinyl pyridone / dimethylamino
  • Suitable silicon compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 9_1, 27 (1976).
  • Typical examples of fats are glycerides, waxes include Beeswax, camauba wax, candelilla wax, montan wax, paraffin wax or micro waxes optionally in combination with hydrophilic waxes, e.g. Cetylstearyl alcohol or partial glycerides in question.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate can be used.
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
  • Antiperspirants such as aluminum chlorohydates are suitable as deodorant active ingredients. These are colorless, hygroscopic crystals that easily dissolve in the air and arise when aqueous aluminum chloride solutions are evaporated.
  • Aluminum chlorohydrate is used to manufacture antiperspirant and deodorant preparations and is likely to act by partially occluding the sweat glands through protein and / or polysaccharide precipitation [cf. J.Soc.Cosm.Chem. 24, 281 (1973)].
  • an aluminum chlorohydrate that corresponds to the formula [Al2 (OH) 5CI] * 2.5 H2O and whose use is particularly preferred is commercially available under the brand Locron® from Hoechst AG, Frankfurt / FRG [cf.
  • esterase inhibitors can be added as further deodorant active ingredients. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG). The substances inhibit enzyme activity and thereby reduce odor. The cleavage of the citric acid ester probably releases the free acid, which lowers the pH value on the skin to such an extent that the enzymes are inhibited.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG).
  • esterase inhibitors are dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, adipic acid mono- ethyl esters, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as, for example, citric acid, malic acid, tartaric acid or tartaric acid diethyl ester.
  • Antibacterial agents that influence the bacterial flora and kill sweat-killing bacteria or inhibit their growth can also be contained in the stick preparations.
  • Examples include chitosan, phenoxyethanol and chlorhexidine gluconate.
  • 5-Chloro-2- (2,4-dichlorophen-oxy) phenol which is sold under the Irgasan® brand by Ciba-Geigy, Basel / CH, has also proven to be particularly effective.
  • Montmorillonites, clay minerals, pemules and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 3-benzylidene camphor or 3-benzylidene norcampher and its derivatives e.g. 3- (4-methylbenzylidene) camphor as described in EP-B1 0693471;
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomethyl salicylic acid;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1'-hexyloxy) -1, 3,5-triazine and octyl triazone, as described in EP-A1 0818450;
  • Propane-1,3-dione e.g. 1- (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-1,3-dione;
  • Sulfonic acid derivatives of 3-benzylidene camphor e.g. 4- (2-oxo-3-bornylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) sulfonic acid and their salts.
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1, 3-dione, 4-tert-butyl
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1, 3-dione, 4-tert-butyl
  • typical UV-A filters -4'-methoxydibenzoyl-methane (Parsol 1789), or 1-phenyl-3- (4'-isopropylphenyl) propane-1,3-dione.
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • insoluble light-protection pigments namely finely dispersed metal oxides or salts, such as, for example, titanium dioxide, zinc oxide, iron oxide, aluminum oxide, cerium oxide, zirconium oxide, silicates (talc), barium sulfate and zinc stearate are also suitable for this purpose.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or shape which differs from the spherical shape in some other way. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996).
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-camosine and their derivatives (e.g. anserine) , Carotenoids, carotenes (e.g.
  • Linoleyl, cholesteryl and glyceryl esters and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (e.g.
  • buthioninsulfoximine homocysteine sulfonate, homocysteine sulfate -, Hexa-, Heptathioninsulfoximin
  • very low tolerable doses eg pmol to ⁇ mol / kg
  • metal chelators eg ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin
  • ⁇ -hydroxy acids eg citric acid, lactic acid , Malic acid
  • humic acid bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g.
  • vitamin E acetate
  • vitamin A and Derivatives vitamin A palmitate
  • ZnO, ZnS0 4 selenium and its derivatives (e.g. selenium methionine), stilbenes and their derivatives (e.g. stilbene oxide, trans-stilbene oxide) and the derivatives suitable according to the invention (salts, esters, ethers, Sugar, nucleotides, nucleosides, peptides and lipids) of these active ingredients.
  • stilbenes and their derivatives e.g. stilbene oxide, trans-stilbene oxide
  • the derivatives suitable according to the invention salts, esters, ethers, Sugar, nucleotides, nucleosides, peptides and lipids
  • Hydrotropes such as ethanol, isopropyl alcohol or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides in particular those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Sugar alcohols with 5 to 12 carbon atoms such as sorbitol or mannitol,
  • Aminosugars such as glucamine.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • N, N-diethyl-m-touluamide, 1, 2-pentanediol or Insect repellent 3535 are suitable as insect repellents, and dihydroxyacetone is suitable as a self-tanner.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax). Keep coming
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, benzyl formate, ethylmethyl-phenylglycinate, allylcyclohexylproylateylateylateylateylateylateylateylatepylpropionate.
  • the ethers include, for example, benzylethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the jonones, oc-isomethylionone and methyl cedryl ketone , the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • the aldehydes for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenal
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • perfume oils e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • Bergamot oil dihydromyrenol, lilial, lyral, citronellol, phenylethyl alcohol, ⁇ -hexylcinnamaldehyde, geraniol, benzylacetone,
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40,% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used. Examples
  • Examples 1 to 11, comparative examples V1 and V2. The components according to Table 1 were melted together at about 80 ° C. and stirred until homogeneous. Then poured into a preheated stick mold. The pen hardness was determined in the penetrometer (loading weight: 150 g; cone diameter: 1.9 cm; duration 5 s); the indentation depth is given in mm / 10. The other application properties were determined subjectively as follows:
  • compositions and properties of deodorant sticks (quantities in g)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Cosmetics (AREA)

Abstract

Vorgeschlagen werden kosmetische Zubereitungen in Stiftform, enthaltend (a) lineare Fettalkohole und (b1) 12-Hydroxystearinsäure, (b2) Fettketone und/oder (b3) Fettether. Mischungen der Komponenten (a) und (b) wirken schon in kleinen Mengen stark verdickend und erlauben die Herstellung beispielsweise von Antiperspirant- und Deostiften, die sich durch ein besonders vorteilhaftes Hautgefühl auszeichnen.

Description

Kosmetische Zubereitungen in Stiftform
Gebiet der Erfindung
Die Erfindung liegt auf dem Gebiet der kosmetischen Stiftpräparate und betrifft wasserfreie Zubereitungen, enthaltend ausgewählte Fettstoffgemische sowie die Verwendung der Mischungen als Ver- dickungsmittel insbesondere zur Herstellung von Antiperspirant- und Deostiften.
Stand der Technik
Kosmetische Stiftpräparate, die als Antitranspirant- oder Deodorantprodukte auf dem Markt zu finden sind, enthalten vornehmlich Seife (Natriumstearat), Ölkörper und Bakterizide. Sie weisen einen alkalischen pH-Wert von ca. 9 auf. Als nachteilig wird vom Verbraucher das mit diesen Stiften verbundene seifige Hautgefühl angesehen. Eine neuere Entwicklung betrifft Stifte, die bekannte Antitranspirant- wirkstoffe, wie z.B. Aluminiumchlorhydrat (ACH) enthalten. Sie müssen bei einem sauren pH-Wert von ca. 4 formuliert werden und benötigen dazu besondere Verdickersysteme, wie z.B. Polydiole in Kombination mit Dibenzylidensorbitol sowie Mischungen von Stearylalkohol und hydriertem Ricinusöl. Aufgrund der erforderlichen hohen Einsatzkonzentrationen solcher Verdickungsmittelsysteme besteht der Nachteil, daß auf den behandelten Hartpartien ein fettiger Rückstand verbleibt, der nicht nur aus sensorischen gründen unerwünscht ist, sondern zudem auch das Einziehen der Wirkstoffe erschwert. Eine Übesicht hierzu findet sich in Cosm.Toil. S. 77-84 (1984). Daneben gibt es seit vielen Jahren eine Vielzahl von Antiperspirantstiften auf Basis natürlicher oder synthetischer Wachse auf dem Markt, in denen der Wirkstoff als Puder in die Wachsmatrix eingebracht wird. Hierbei ist von Nachteil, daß auch diese Stifte stark fettend sind und häufig ein weißer Rückstand auf der Haut verbleibt.
In diesem Zusammenhang sei auf die Patentschrift US 5,429,816 (Procter & Gamble) verwiesen, aus der Antipersipirantstifte bekannt sind, die als verdickendes System eine Mischung aus 12-Hydroxy- stearinsäure und N-Acylaminosäureamid und darüber hinaus Isostearylalkohol enthalten. Die Stifte erweisen sich jedoch als zu weich und nicht ausreichend temperaturbeständig. Die komplexe Aufgabe der vorliegenden Erfindung hat daher darin bestanden, Stiftpräparate zur V rfügung zu stellen, die frei von den geschilderten Nachteilen sind. Insbesondere sollten sich die Stifte rückstandsfrei auftragen lassen und auch frei von Seifen sein, so daß saure Wirkstoffe eingearbeitet werden können. Gleichzeitig waren Stifte gewünscht, die sich durch ein verbessertes Hautgefühl, hohe Konsistenz und Temperaturbeständigkeit sowie Transparenz bzw. Weißgrad auszeichnen.
Beschreibung der Erfindung
Gegenstand der Erfindung sind kosmetische Zubereitungen in Stiftform, enthaltend
(a) lineare Fettalkohole und (b1) 12-Hydroxystearinsäure, (b2) Fettketone und/oder (b3) Fettether.
Überraschenderweise wurde gefunden, daß die erfindungsgemäßen Zubereitungen nicht nur eine ausreichend hohe Konsistenz und Temperaturbeständigkeit zeigen, sondern auch ein vorteilhaftes Hautgefühl vermitteln. Die Zubereitungen sind seifenfrei und erlauben daher die Einarbeitung saurer Wirkstoffe, wie z.B. Aluminiumchlorhydrat. Die Stifte sind transparent oder rein weiß und hinterlassen bei der Anwendung keine störenden Rückstände.
lineare Fettalkohole
Unter linearen Fettalkoholen sind primäre aliphatische Alkohole der Formel (I) zu verstehen,
R1OH (I)
in der R1 für einen aliphatischen Alkyl- und/oder Alkenylrest mit 12 bis 22 Kohlenstoffatomen steht. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden anfallen. Bevorzugt sind technische Fettalkohole mit 16 bis 18 Kohlenstoffatomen, wie beispielsweise Cetylalkohol, Stearylalkohol, Cetearylalkohol und Taigfettalkohol. 12-H vdroxystearinsäure
12-Hydroxystearinsäure wird durch Härtung von Ricinolsäure bzw. durch Härtung von Ricinusöl und anschließend Druckspaltung hergestellt und kann daher herstellungsbedingt noch geringe Mengen ungesättigter Anteile (lodzahlen im Bereich von 0,1 bis 5) sowie Partialglyceride (kleiner 1 Gew.-%) enthalten.
Fettketone
Fettketone, die als Komponente (b2) enthalten sein können, folgen vorzugsweise der Formel (II),
R2-CO-R3 (II)
in der R2 und R3 unabhängig voneinander für lineare oder verzweigte Alkylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß die Gesamtzahl der Kohlenstoffatome mindestens 12 beträgt. Die Ketone können nach Verfahrens des Stands der Technik hergestellt werden, beispielsweise durch Pyrolyse der entsprechenden Fettsäure-Magnesiumsalze. Die Ketone können symmetrisch oder unsymmetrisch aufgebaut sein, vorzugsweise unterscheiden sich die beiden Reste R2 und R3 aber nur um ein Kohlenstoffatom und leiten sich von Fettsäuren mit 6 bis 18 Kohlenstoffatomen ab. Dabei zeichnen sich Caprinon, Lauron und Stearon durch besonders vorteilhafte verdickende Eigenschaften aus.
Fettether
Fettether, die als Komponente (b3) enthalten sein können, folgen vorzugsweise der Formel (III),
Figure imgf000005_0001
in der R4 und R5 unabhängig voneinander für lineare oder verzweigte Alkylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß die Gesamtzahl der Kohlenstoffatome mindestens 12 beträgt. Fettether der genannten Art werden üblicherweise durch saure Kondensation der entsprechenden Fettalkohole hergestellt. Fettether mit besonders vorteilhaften verdickenden Eigenschaften werden durch Kondensation von Fettalkoholen mit 16 bis 22 Kohlenstoffatomen, wie beispielsweise Cetylalkohol, Cetearylalkohol, Stearylalkohol, Isostearylaikohol, Oleylalkohol, Behenylalkohol und/oder Eru- cylalkohol erhalten. Besonders bevorzugt ist der Einsatz von Distearylether. Verdickunqsmittel
Die Stiftformulierungen können die Mischungen der Komponenten (a) und (b) in Mengen von 2 bis 25, vorzugsweise 5 bis 20 Gew.-% - bezogen auf die Mittel - enthalten. Die Komponenten (a) und (b) können dabei im Gewichtsverhältnis 10 : 90 bis 90 : 10, vorzugsweise 25 : 75 bis 75 : 25 und insbesondere 40 : 60 bis 60 : 40 enthalten sein.
Gewerbliche Anwendbarkeit
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung von Mischungen enthaltend
(a) lineare Fettalkohole und (b1) 12-Hydroxystearinsäure, (b2) Fettketone und/oder (b3) Fettether
als Verdickungsmittel für die Herstellung von wäßrigen Zubereitungen in Stiftform. Die Zubereitungen können dabei als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Stabilisatoren, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, biogene Wirkstoffe, Deowirkstoffe, Konservierungsmittel, Hydrotrope, Solubilisatoren, UV- Lichtschutzfaktoren, Antioxidantien, Insektenrepellentien, Selbstbräuner, Parfümöle, Farbstoffe und dergleichen enthalten.
Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpoly- glycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen C6-C22- Fettalkoholen, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cβ-Cio- Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C6-Ci8-Fettsäuren, Ester von Cβ- C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoe- säure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalko- holcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22- Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkyl- ether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht.
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
(1) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
(2) Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
(3) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
(4) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxy- lierte Analoga;
(5) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(6) Polyol- und insbesondere Polyglycerinester, wie z.B. Polyglycerinpolyricinoleat, Polyglycerinpoly- 12-hydroxystearat oder Polyglycerindimerat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
(7) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(8) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipenta- erythrit, Zuckeralkohole (z.B. Sorbit), Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Lauryl- glucosid) sowie Polyglucoside (z.B. Cellulose);
(9) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
(10) Wollwachsalkohole;
(11) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
(12) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin sowie (13) Polyalkylenglycole.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE-PS 2024051 als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Cβ/iδ-Alkylmono- und -oligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosac- chariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylamino- propyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammonium- glycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid- Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ -Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H- Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodi- propionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkyl- aminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das Ci2/i8-Acylsarcosin. Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methyl- quaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind. Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxy- fettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Polysaccharide, insbesondere Xanthan-Gum, Guar- Guar, Agar-Agar, Alginate und Tylosen, Carboxymethyl-cellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma), Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quatemierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quatemierte Vinylpyrrolidon/Vinyl-imidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Poly- glycolen und Aminen, quatemierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxy- propyl hydrolyzed collagen (Lamequat®L/Grünau), quatemierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethyl- aminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dime- thyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR-A 2252840 sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1 ,3- propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quatemierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, VinylpyrrolidonA/inylacrylat-Copoiymere, Vinylacetat Butylmaleat Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, un- vernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypro- pylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyroli- don/Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Geeignete Siiiconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 9_1, 27 (1976).
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. Bienenwachs, Camaubawachs, Candelillawachs, Montanwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen, z.B. Cetylstearylalkohol oder Partialglyceriden in Frage. Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. - ricinoleat eingesetzt werden.
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säu- ren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Als Deowirkstoffe kommen z.B. Antiperspirantien wie etwa Aluminiumchlorhydate in Frage. Hierbei handelt es sich um farblose, hygroskopische Kristalle, die an der Luft leicht zerfließen und beim Eindampfen wäßriger Aluminiumchloridlösungen anfallen. Aluminiumchlorhydrat wird zur Herstellung von schweißhemmenden und desodorierenden Zubereitungen eingesetzt und wirkt wahrscheinlich über den partiellen Verschluß der Schweißdrüsen durch Eiweiß- und/oder Polysaccharidfällung [vgl. J.Soc.Cosm.Chem. 24, 281 (1973)]. Unter der Marke Locron® der Hoechst AG, Frankfurt/FRG, befindet beispielsweise sich ein Aluminiumchlorhydrat im Handel, das der Formel [Al2(OH)5CI]*2,5 H2O entspricht und dessen Einsatz besonders bevorzugt ist [vgl. J.Pharm.Pharmacol. 26, 531 (1975)]. Neben den Chlorhydraten können auch Aluminiumhydroxylactate sowie saure Aluminium/Zirkoniumsalze eingesetzt werden. Als weitere Deowirkstoffe können Esteraseinhibitoren zugesetzt werden. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopro- pylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düssel- dorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Wahrscheinlich wird dabei durch die Spaltung des Citronensäureesters die freie Säure freigesetzt, die den pH-Wert auf der Haut soweit absenkt, daß dadurch die Enzyme inhibiert werden. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremono- ethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäi'ren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester. Antibakterielle Wirkstoffe, die die Keimflora beeinflussen und schweißzersetzende Bakterien abtöten bzw. in ihrem Wachstum hemmen, können ebenfalls in den Stiftzubereitungen enthalten sein. Beispiele hierfür sind Chitosan, Phenoxyethanol und Chlorhexidingluconat. Besonders wirkungsvoll hat sich auch 5-Chlor-2-(2,4-dichlorphen-oxy)-phenol erwiesen, das unter der Marke Irgasan® von der Ciba-Geigy, Basel/CH vertrieben wird.
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl- modifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
• 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylben- zyliden)campher wie in der EP-B1 0693471 beschrieben;
• 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
• Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäure- propylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Oc- tocrylene);
• Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylben- zylester, Salicylsäurehomomenthylester;
• Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-meth- oxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
• Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
• Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1 ,3,5-triazin und Octyl Tria- zon, wie in der EP-A1 0818450 beschrieben;
• Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion;
• Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP-B1 0694521 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
• 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
• Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sul- fonsäure und ihre Salze;
• Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenmethyl)benzolsul- fonsäure und 2-Methyl-5-(2-oxo-3-bomyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxydibenzoyl- methan (Parsol 1789), oder 1-Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage, wie beispielsweise Titandioxid, Zinkoxid, Eisenoxid, Aluminiumoxid, Ceroxid, Zirkoniumoxid, Silicate (Talk), Bariumsulfat und Zinkstearat. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Camosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Auro- thioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-
Linoleyl-, Cholesteryl- und Glycerylester ) sowie deren Salze, Dilaurylthiodipropionat, Distearyl- thiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nuk- leoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phy- tinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Foisäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg- Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxy- anisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnS04) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Typische Beispiele sind
• Glycerin;
• Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
• technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
• Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
• Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
• Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
• Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
• Aminozucker, wie beispielsweise Glucamin.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para- bene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Als Insekten-Repellentien kommen N,N-Diethyl-m-touluamid, 1 ,2- Pentandiol oder Insect repellent 3535 in Frage, als Selbstbräuner eignet sich Dihydroxyaceton.
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen
n tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxy- ethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimefhylbenzylcarbinylacetat, Phenylethyl- acetat, Linalylbenzoat, Benzylformiat, Ethylmefhyl-phenylglycinat, Allylcyclohexylpropionat, Styrallylpro- pionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-lso- methylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Gera- niol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiver- öl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydro- myrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton,
Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damas- cone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt- oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode. Beispiele
Beispiele 1 bis 11, Vergleichsbeispiele V1 und V2. Die Komponenten gemäß Tabelle 1 wurden bei ca. 80°C gemeinsam aufgeschmolzen und homogen verrührt. Anschließend erfolgte das Ausgießen in eine vorgewärmte Stiftform. Die Stifthärte wurde im Penetrometer (belastendes Gewicht : 150 g; Konusdurchmesser : 1 ,9 cm; Dauer 5 s) bestimmt; angegeben ist die Eindrintiefe in mm/10. Die weiteren anwendungstechnischen Eigenschaften wurden subjektiv wie folgt bestimmt:
Figure imgf000015_0001
Die Ergebnisse sind in Tabelle 1 zusammengefaßt.
Tabelle 1
Zusammensetzungen und Eigenschaften von Deostiften (Mengenangaben in g)
Figure imgf000015_0002

Claims

Patentansprüche
1. Kosmetische Zubereitungen in Stiftform, enthaltend
(a) lineare Fettalkohole und
(b1) 12-Hydroxystearinsäure,
(b2) Fettketone und/oder
(b3) Fettether.
2. Zubereitungen nach Anspruch 1 , dadurch gekennzeichnet, daß sie als Komponente (a) Fettalkohole der Formel (I) enthalten,
R10H (I)
in der R1 für einen Alkyl- und/oder Alkenylrest mit 12 bis 22 Kohlenstoffatomen steht.
3. Zubereitungen nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß sie Fettalkohole mit 16 bis 18 Kohlenstoffatomen enthalten.
4. Zubereitungen nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Komponente (b2) Fettketone der Formel (II) enthalten,
Figure imgf000016_0001
in der R2 und R3 unabhängig voneinander für lineare oder verzweigte Alkylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß die Gesamtzahl der Kohlenstoffatome mindestens 12 beträgt.
5. Zubereitungen nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie Caprinon, Lauron und/oder Stearon enthalten.
6. Zubereitungen nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als Komponente (b3) Fettether der Formel (III) enthalten,
R4-0-R5 (III)
in der R4 und R5 unabhängig voneinander für lineare oder verzweigte Alkylreste mit 1 bis 22 Kohlenstoffatomen stehen, mit der Maßgabe, daß die Gesamtzahl der Kohlenstoffatome mindestens 12 beträgt.
7. Zubereitungen nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie Distearylether enthalten.
8. Zubereitungen nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie die Mischungen der Komponenten (a) und (b) in Mengen von 2 bis 25 Gew.-% - bezogen auf die Mittel - enthalten.
9. Zubereitungen nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie die Mischungen der Komponenten (a) und (b) im Gewichtsverhältnis 10 : 90 bis 90 : 10 enthalten.
10. Verwendung von Mischungen enthaltend
(a) lineare Fettalkohole und
(b1) 12-Hydroxystearinsäure,
(b2) Fettketone und/oder
(b3) Fettether
als Verdickungsmittel für die Herstellung von kosmetischen Zubereitungen in Stiftform.
PCT/EP1999/004122 1998-06-24 1999-06-15 Kosmetische zubereitungen in stiftform WO1999066895A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99929214A EP1089705A1 (de) 1998-06-24 1999-06-15 Kosmetische zubereitungen in stiftform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998128020 DE19828020B4 (de) 1998-06-24 1998-06-24 Verwendung von Mischungen, enthaltend lineare Fettalkohole, 12-Hydroxystearinsäure, Fettketone und/oder Fettether als Verdickungsmittel für kosmetische Zubereitungen in Stiftform
DE19828020.3 1998-06-24

Publications (1)

Publication Number Publication Date
WO1999066895A1 true WO1999066895A1 (de) 1999-12-29

Family

ID=7871794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/004122 WO1999066895A1 (de) 1998-06-24 1999-06-15 Kosmetische zubereitungen in stiftform

Country Status (3)

Country Link
EP (1) EP1089705A1 (de)
DE (1) DE19828020B4 (de)
WO (1) WO1999066895A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974339A2 (de) * 1998-07-22 2000-01-26 Beiersdorf Aktiengesellschaft Pflegende kosmetische und dermatologische Zubereitungen mit einem Gehalt an Fettalkoholen
EP1299075B1 (de) * 2000-07-10 2005-12-28 Unilever Plc Schweisshemmende zusammensetzungen
EP2931224B1 (de) 2012-12-14 2017-06-28 Henkel AG & Co. KGaA Wasserfreie zusammensetzungen gegen körpergeruch

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133399A1 (de) * 2001-07-13 2003-01-23 Cognis Deutschland Gmbh Zusammensetzung auf Wachsbasis
DE10319373A1 (de) * 2003-04-30 2004-11-18 Beiersdorf Ag Selbstbräuner enthaltende kosmetische Stifte

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425328A (en) * 1981-12-21 1984-01-10 American Cyanamid Company Solid antiperspirant stick composition
US5429816A (en) * 1992-05-12 1995-07-04 Procter & Gamble Antiperspirant gel stick compositions
US5650144A (en) * 1993-06-30 1997-07-22 The Procter & Gamble Co. Antiperspirant gel stick compositions
WO1998017238A1 (de) * 1996-10-19 1998-04-30 Beiersdorf Ag Antitranspirant- und deodorantstifte mit hohem wassergehalt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425328A (en) * 1981-12-21 1984-01-10 American Cyanamid Company Solid antiperspirant stick composition
US5429816A (en) * 1992-05-12 1995-07-04 Procter & Gamble Antiperspirant gel stick compositions
US5650144A (en) * 1993-06-30 1997-07-22 The Procter & Gamble Co. Antiperspirant gel stick compositions
WO1998017238A1 (de) * 1996-10-19 1998-04-30 Beiersdorf Ag Antitranspirant- und deodorantstifte mit hohem wassergehalt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974339A2 (de) * 1998-07-22 2000-01-26 Beiersdorf Aktiengesellschaft Pflegende kosmetische und dermatologische Zubereitungen mit einem Gehalt an Fettalkoholen
EP0974339A3 (de) * 1998-07-22 2003-05-21 Beiersdorf Aktiengesellschaft Pflegende kosmetische und dermatologische Zubereitungen mit einem Gehalt an Fettalkoholen
EP1299075B1 (de) * 2000-07-10 2005-12-28 Unilever Plc Schweisshemmende zusammensetzungen
EP2931224B1 (de) 2012-12-14 2017-06-28 Henkel AG & Co. KGaA Wasserfreie zusammensetzungen gegen körpergeruch

Also Published As

Publication number Publication date
DE19828020A1 (de) 1999-12-30
EP1089705A1 (de) 2001-04-11
DE19828020B4 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
WO1999067016A1 (de) W/o-emulsionsgrundlagen
EP1105085A1 (de) Verwendung von wässrigen wachsdispersionen als konsistenzgeber
WO2000033794A2 (de) Ölbäder
DE19910704B4 (de) Kosmetische Zubereitungen und deren Verwendung
DE19919630A1 (de) Sonnenschutzmittel
EP1112058B1 (de) Verwendung von cyclischen carbonaten als feuchthaltemittel
EP1117377B1 (de) Kosmetische zubereitungen
WO2000027343A2 (de) Kosmetische und/oder pharmazeutische zubereitungen die esterquats und partialglyceride enthalten
DE19828020B4 (de) Verwendung von Mischungen, enthaltend lineare Fettalkohole, 12-Hydroxystearinsäure, Fettketone und/oder Fettether als Verdickungsmittel für kosmetische Zubereitungen in Stiftform
EP1021163B1 (de) Kosmetische mittel
WO1999066898A1 (de) Verwendung von dialkylcarbonaten zur herstellung von abschminkmitteln
WO2001037798A1 (de) Sonnenschutzmittel
EP1131049B1 (de) Verwendung von kationaktiven mischungen
EP0955037B1 (de) Hautpflegemittel
EP1128808B1 (de) Verwendung von kationaktiven mischungen
EP1131046A2 (de) Ölhaltige kosmetische zubereintungen mit einem gehalt an esterquats und fettalkohole
EP0982024A2 (de) Kosmetische und/oder pharmazeutische W/O-Emulsionen
DE19956185A1 (de) Emulsionen
WO2001037791A2 (de) Verwendung von alkyl- und/oder alkenyloligoglykosid-fettsäureestern als pigmentdispergator
WO2000061104A1 (de) Kosmetische zubereitungen
EP0992489A1 (de) Betaine
DE19829787A1 (de) Avivagemittel
EP1244417A1 (de) Verwendung von alkyl- und/oder alkenyloligoglykosid-fettsäureestern zur verbesserung der sensorischen beurteilung von emulsionen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999929214

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999929214

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999929214

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载