WO1999064987A1 - Image processor - Google Patents
Image processor Download PDFInfo
- Publication number
- WO1999064987A1 WO1999064987A1 PCT/JP1999/003043 JP9903043W WO9964987A1 WO 1999064987 A1 WO1999064987 A1 WO 1999064987A1 JP 9903043 W JP9903043 W JP 9903043W WO 9964987 A1 WO9964987 A1 WO 9964987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- interpolation
- image
- image processing
- function
- Prior art date
Links
- 238000005070 sampling Methods 0.000 claims abstract description 97
- 238000004364 calculation method Methods 0.000 claims abstract description 43
- 238000013500 data storage Methods 0.000 claims description 15
- 238000000605 extraction Methods 0.000 claims description 11
- 230000009467 reduction Effects 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 14
- 239000000470 constituent Substances 0.000 description 10
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4007—Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
Definitions
- the present invention relates to an image processing device that performs enlargement or reduction processing of an image composed of a plurality of pixels.
- a case where the value of a function has a limited value other than 0 in a local region and becomes 0 in other regions is referred to as a “finite base” and described. I do. Background art
- FIG. 11 is an explanatory diagram of a conventionally known sampling function called a sinc function.
- the sine function is: (0 () S ( ⁇ ( )-d) one ⁇ )
- the present invention has been made in view of the above points, and an object of the present invention is to provide an image processing apparatus capable of reducing image distortion due to an error and reducing the amount of calculation.
- the image processing apparatus calculates the pixel positions of a plurality of pixels constituting the image after the image processing when a predetermined magnification for performing the enlargement processing or the reduction processing on the original image is specified. Later, interpolation processing for obtaining the pixel value of each of these pixels is performed for each of the two variables that define the two-dimensional space by using a sampling function that is finitely differentiable and has a finite number of values. By using a sampling function having a finite number of values, only the pixel data corresponding to the finite number of sections is subjected to the interpolation calculation, so that the amount of calculation is small and no truncation error is generated. It is possible to obtain a high interpolation accuracy and reduce the distortion of the image obtained by the image processing.
- the pixel position calculation performed for each pixel of the image after image processing is performed by calculating It is desirable to perform the processing in a relative relationship to the pixel position of each pixel.
- the relative positional relationship of each pixel becomes important. That is, the pixel position of each pixel of the image after image processing is calculated based on the relative relationship to the pixel position of each pixel of the original image, and the subsequent interpolation processing becomes possible by using the calculation result.
- the sampling function H (t) to which the present invention is applied is represented by one F (t + 1/2) / 4 + F (, where F (t) is a third-order B-spline function. t) It can be obtained by one F (t-1/2) / 4.
- the third-order B-spline function F (t) described above is (4 t 2 + 12 t + 9) / 4 for — 3 / 2 ⁇ t ⁇ — 1/2, and — l / 2 ⁇ t / 2 can be expressed as 1 2 t 2 + 3/2, and l / 2 ⁇ t ⁇ 3/2 can be expressed as (4 t 2 — 12 t + 9) / 4. Since the above-mentioned sampling function operation can be performed by a piecewise polynomial, the operation content is relatively simple and the operation amount is small. Can be done.
- the pixel value calculating means for performing the interpolation calculation of the pixel value includes the interpolation target pixel extracting means, the first and second sampling function calculating means, the first and the second Two convolution means are provided.
- the interpolation target pixel extracting means extracts a plurality of pixels to be subjected to an interpolation operation existing in a predetermined range around the target pixel.
- the first sampling function operation means and the first convolution operation means perform a convolution operation on one of the two variables using the above-described sampling function.
- the convolution operation is performed on the other of the two variables by the convolution operation means 2 using the above-described sampling function, and the pixel value of the pixel of interest is finally obtained.
- the pixel value of the pixel of interest can be obtained simply by calculating the value of the sampling function separately for each of the two variables and performing a convolution operation on the result, and the amount of processing required for the interpolation process Can be greatly reduced.
- the amount of processing required for the interpolation process can be greatly reduced.
- FIG. 1 is a diagram illustrating a configuration of an image processing apparatus according to an embodiment
- FIG. 2 is a diagram showing an outline of an image enlargement process performed by the image processing apparatus shown in FIG. 1,
- FIG. 3 is a diagram showing a detailed configuration of the pixel value calculation unit
- Fig. 4 is a diagram showing the range of constituent pixels of the original image extracted around the pixel of interest
- Fig. 5 is a diagram showing the relationship between pixels arranged at regular intervals along the X direction and the interpolation position between them.
- Fig. 6 is an explanatory diagram of the sampling function used in the operation in the sampling function operation unit.
- Fig. 7 is the relationship between the pixel value of each pixel arranged in the X direction and the X direction interpolation value at the interpolation position between them.
- FIG. 8 is a diagram showing a specific example of calculating an X-direction interpolation value
- FIG. 9 is a diagram showing the relationship between the X direction interpolation value corresponding to each pixel arranged along the Y direction and the pixel value of the pixel of interest.
- FIG. 10 is a diagram showing an outline of a modification of the image enlarging process performed by the image processing device shown in FIG. 1,
- FIG. 11 is an explanatory diagram of the sinc function. BEST MODE FOR CARRYING OUT THE INVENTION
- Enlarging or reducing an image composed of a plurality of pixels means increasing or decreasing the number of constituent pixels according to a predetermined magnification while maintaining the contour shape of the original image.
- the feature of the present embodiment lies in that the process of increasing or decreasing is performed by an interpolation operation using a predetermined sampling function.
- FIG. 1 is a diagram showing a configuration of an image processing apparatus according to an embodiment to which the present invention is applied.
- the image processing apparatus 1 shown in FIG. 1 includes a pixel data storage unit 10, a pixel position calculation unit 20, a pixel value calculation unit 30, and a pixel data storage unit 40.
- the pixel data storage unit 10 stores pixel data for each pixel constituting the original image.
- the pixel data includes a pixel position and a pixel value of each pixel.
- the pixel position is address information of each pixel constituting the original image, and includes an X address along a horizontal direction and a Y address along a vertical direction.
- the X address and the Y address may be indicated implicitly by an array of pixel values, in addition to the case where the X address and the Y address are explicitly specified as part of the pixel data.
- the pixel value is data indicating the characteristics of each pixel. For example, grayscale data, color data, luminance data, and the like of each pixel include this. Equivalent to.
- the pixel position calculation unit 20 performs the image processing based on the relative magnification to the pixel position of each pixel constituting the original image before the image processing based on this magnification when the image magnification / reduction magnification a is designated.
- the pixel position of each pixel constituting the image obtained by the above is calculated. For example, (1) After virtually shifting the pixel position of each pixel constituting the original image so that the pixel interval becomes a times as large as the pixel interval, the image is adjusted so that the pixel interval becomes the same as the original pixel interval of the original image.
- the pixel position of each pixel that constitutes the image after processing It is possible to calculate each pixel position by changing the interval to 1 / a times.
- the pixel value calculation unit 30 calculates a pixel value of each pixel forming the image after the image processing by performing a predetermined interpolation process based on the pixel value of each pixel forming the original image.
- the pixel data storage unit 40 stores the pixel value of each pixel calculated by the interpolation processing and the pixel position of each pixel as pixel data after image processing.
- the image processing device 1 of the present embodiment has such a configuration, and the operation will be described next. As described above, since a specific procedure of calculating the pixel position performed prior to the interpolation processing can be implemented in a number of modifications, each case will be described separately.
- FIG. 2 is a diagram illustrating an outline of an image enlargement process performed by the image processing apparatus 1 illustrated in FIG. FIG. 2 (a) partially shows the constituent pixels of the original image in which the pixel data is stored in the pixel data storage unit 10, and the marks indicate each pixel.
- the pixel position calculation unit 20 performs a process of changing the pixel position of each pixel constituting the original image according to the specified scaling factor a. For example, when the magnification ratio a is greater than 1 (in the case of the enlargement process), as shown in FIG. 2 (b), the pixel position of each pixel constituting the original image is set to a predetermined enlargement center position (see FIG. 2 In (b), upper left The distance from each pixel position to the position of each pixel is a-times as large as-. In this way, after changing the pixel position of each pixel constituting the original image according to the scaling factor a, the pixel position calculation unit 20 returns to the original position as indicated by a triangle in FIG. 2 (c).
- Each pixel position having the same pixel interval as the pixel interval L is set as each pixel position constituting an image after image processing.
- the pixel positions that make up the image after image processing are the force s set based on the upper left pixel as in the original image, and this reference position can be set arbitrarily. It is not necessary to match any pixel position in the original image.
- the pixel value calculation unit 30 calculates the pixel value of each pixel constituting the image after the image processing by a predetermined interpolation process.
- the pixel values of the pixels arranged at the pixel interval L are calculated by interpolation based on the pixel values of the pixels arranged at the pixel interval aL.
- the pixel position and pixel value of each pixel calculated by the interpolation processing in this manner are stored in the pixel data storage unit 40 as pixel data of each pixel constituting the image after the image processing.
- FIG. 3 is a diagram showing a detailed configuration of the pixel value calculation unit 30.
- the pixel value calculation unit 30 includes an interpolation target pixel extraction unit 32, an X-direction sampling function operation unit 34, an X-direction convolution operation unit 35, and a Y-direction sampling function operation unit 36. , And a Y-direction convolution operation unit 37.
- the interpolation target pixel extraction unit 32 includes, from among a plurality of pixels constituting the original image, a pixel included in a predetermined range around a pixel whose pixel value is to be calculated by the interpolation processing (hereinafter, referred to as a “pixel of interest”). Is extracted and held.
- a pixel of interest a pixel included in a predetermined range around a pixel whose pixel value is to be calculated by the interpolation processing
- a pixel of interest one of the pixels (marked with ⁇ ) constituting the image after image processing shown in FIG. 2 (c) is set as a target pixel, and a plurality of pixels (( Among them, those included in a predetermined range centered on the pixel of interest are selected.
- FIG. 4 is a diagram illustrating a range of constituent pixels of an original image extracted around a target pixel.
- the pixel-to-be-interpolated 32 extracts the pixel of interest in the X and Y directions around the pixel of interest p.
- Pixel position Since the pixel interval of each pixel constituting the original image is set to a L by the position calculating unit 20, the address in the X direction and the Y back from the pixel of interest p is from 1 2a to +
- the constituent pixels of the original image included in the range of 2 a L are extracted.
- each of the 16 pixels extracted in this manner is referred to as an “interpolation target pixel”.
- the X-direction sampling function operation unit 34 calculates the distance along the X direction between each interpolation target pixel extracted by the interpolation target pixel extraction unit 32 and the pixel of interest p, and based on the calculated distance. Compute the value of the sampling function. The value of the sampling function is calculated for each of the 16 interpolation pixels extracted by the interpolation pixel extraction unit 32.
- the X-direction convolution operation unit 35 multiplies the values of the 16 sampling functions calculated by the X-direction sampling function operation unit 34 by the pixel values of the corresponding interpolation target pixels, and calculates the result.
- the convolution operation along the X direction is performed by adding for each series with the same Y coordinate.
- the value obtained by this convolution operation is the interpolated value for each X direction, and as shown by “*” in FIG. 5, based on the pixel value of each interpolation target pixel along the X direction, Interpolated values corresponding to the four pixels A, B, C, and D having the same Y coordinate (hereinafter referred to as “X-direction interpolated values”) are calculated.
- the Y-direction sampling function calculation unit 36 calculates the distance along the Y direction between the pixel corresponding to the X-direction interpolation value calculated in this way and the pixel of interest p, and calculates the calculated distance. Based on, calculate the value of the sampling function corresponding to each X-direction interpolation value. In this way, the value of the sampling function is calculated for each of the four X-direction interpolated values calculated by the X-direction convolution operation unit 35.
- the Y-direction convolution operation unit 37 multiplies each of the four sampling function values calculated by the Y-direction sampling function operation unit 36 by the corresponding X-direction interpolation value, and adds the result. In this way, convolution operation corresponding to four X-direction interpolation values is performed.
- the interpolation value obtained by this convolution operation is the pixel value of the pixel of interest p.
- the above-described pixel data storage unit 10 serves as a first pixel data storage unit
- the pixel position calculation unit 20 serves as a pixel position calculation unit
- the pixel value calculation unit 30 serves as a pixel value calculation unit
- a pixel data storage unit corresponding to each of the second pixel data storage units.
- the interpolation target- The pixel extraction unit 32 is used as the interpolation target pixel extraction unit
- the X-direction sampling function operation unit 34 is used as the first sampling function operation unit
- the X-direction convolution operation unit 35 is used as the first convolution operation unit.
- FIG. 6 is an explanatory diagram of the sampling functions used in the calculations in the X-direction sampling function calculation unit 34 and the Y-direction sampling function calculation unit 36.
- the sampling function H (t) shown in Fig. 6 is a finite function focusing on differentiability.
- the function is differentiable only once in the entire region, and the sampling position t along the horizontal axis is It is a finite function having a finite value other than 0 when +2.
- H (t) _ F (t + 1/2) / 4 + F (t) -F (t-1 / 2) / 4.
- the interpolation processing using the sampling function is performed by using the pixel values of a plurality of pixels discretely present in a two-dimensional space (XY plane) as shown in FIG.
- XY plane two-dimensional space
- interpolation is first performed along the X direction, and the interpolation value for each Y coordinate that has the same X coordinate as the pixel of interest p to be finally obtained is obtained.
- Interpolated value in the X direction is calculated, and then the interpolation process is performed again in the Y direction using the interpolated value in the X direction to finally obtain the interpolated value P which is the pixel value of the pixel of interest P. .
- FIG. 7 is a diagram showing a relationship between pixels to be interpolated arranged at regular intervals in the X direction and an interpolated value in the X direction between them. For example, an X direction interpolated value corresponding to pixel A shown in FIG. The relationship between each pixel value of four surrounding pixels to be interpolated having the same Y coordinate is shown.
- Y coordinate X coordinate Y j + 1 is X i + 1, Xi + 2 , Xi + 3, it its pixel values of Xi +4 P i + 1, j + 1, P i + 2, j + 1 , P i + 3 , j + 1 , P i + 4 + 1, and the X direction interpolation value corresponding to the predetermined position Xa (distance a from Xi + 2 ) between X coordinates Xi + 2 and X i + 3
- finding p j +1 Consider the case of finding p j +1 .
- the value of the sampling function at the interpolation position Xa for each of the surrounding pixels to be interpolated must be obtained, and the convolution operation is performed using this.
- the interpolation value ⁇ "10! Can be requested.
- the pixel values of the other pixels should be considered originally, but they are not neglected in consideration of the amount of calculation and accuracy, etc., and need not be considered theoretically. Does not occur.
- FIG. 8 is a detailed explanatory diagram of the interpolation processing by the X-direction sampling function operation unit 34 and the X-direction convolution operation unit 35.
- the procedure of the interpolation processing as shown in FIG. 8 (A) ⁇ (D) , the pixel value P i +1 of the four interpolation target pixel, j + 1, P i + 2, j + 1, P i +
- H (1 + a) is converted to P i + 1 .
- the value multiplied by j + 1 H (1 + a) ⁇ Pi + 1 , j + 1 is the desired value.
- H (1 + a) is calculated by the X-direction sampling function operation unit 34, and an operation of multiplying it by Pi + 1 + 1 is performed by the X-direction convolution operation unit 35.
- each operation result H (a) -Pi + 2 , j + at the interpolation position Xa H (1 ⁇ a) ⁇ Pi + 3, j + 1 ⁇ H (2 ⁇ a) ⁇ Pi + 4j + 1 is obtained.
- the X-direction convolution operation unit 35 calculates the four operation results H (1 + a) ⁇ Pi + i, j + 1 , H (a) .Pi + 2 , J + 1 , H (1-a) ⁇ P i + 3 , j tens "H (2-a) ⁇ Convolution operation is performed by adding P i + 4 , j +1 to correspond to pixel A shown in Fig. 5. Outputs the X direction interpolation value P j +1 .
- FIG. 9 is a diagram illustrating a relationship between four X-direction interpolated values arranged at regular intervals in the Y-direction and interpolated values therebetween.
- the Y coordinate is Yj10i, Yj + 2, Yj + 3, Yj + 4, and four pixels having the same X coordinate as the pixel of interest p
- the distance between the interpolation position Yb and the pixel position corresponding to the X-direction interpolation value P j +1 is 1 + b when the distance between the pixel positions corresponding to each X-direction interpolation value is normalized to 1.
- each operation result H (b) at the interpolation position Yb.
- P j +2 H (1—b) ⁇ ⁇ ” +3 , ⁇ (2—b) ⁇ P j + 4 .
- the Y-direction convolution operation unit 37 calculates the four operation results ⁇ ⁇ (1 + b) J P J + i, H (b) ⁇ P j + 2 , H (1-b)-P j +3 , H (2 ⁇ b) ⁇ ⁇ J +4 to perform a convolution operation to obtain an interpolation value that is a pixel value corresponding to the pixel of interest p (X, y) shown in FIGS. 4 and 5.
- the pixel values of all the pixels constituting the image after the image processing are calculated by the interpolation processing.
- the image processing apparatus 1 uses a finite number of functions that can be differentiated only once as a sampling function in the entire region. Therefore, each pixel constituting the image obtained by the image processing is used. It is possible to greatly reduce the amount of calculation required when calculating the pixel values of the above by interpolation processing.
- the sampling function used in the present embodiment is of finite level, there is no truncation error that occurs when the number of pixels to be subjected to the interpolation operation is reduced to a finite number, and aliasing distortion occurs. Thus, the interpolation result with less error can be obtained. For this reason, it is possible to reduce distortion generated in the shape, color, and the like of an image obtained by image processing.
- the interval between the pixels constituting the original image is virtually widened according to the magnification of the image processing, and the image after the image processing is processed based on the pixel value of each pixel having the widened interval.
- the pixel values of the constituent pixels were obtained by interpolation processing, the pixel values of the constituent pixels of the image after image processing may be obtained without virtually widening the intervals between the constituent pixels of the original image. Good.
- the number of pixels in the X and Y directions of the enlarged image becomes a times.
- the interval L between pixels constituting the original image is 1 / a
- the multiplied pixel positions may be obtained by calculation, and then the pixel values corresponding to these pixel positions may be obtained by interpolation processing.
- FIG. 10 is a diagram showing an outline of a modified example of the image enlarging process performed by the image processing apparatus 1 shown in FIG. Fig. 10 (a) partially shows the constituent pixels of the original image in which the pixel data is stored in the pixel data storage unit 10, and reference symbols indicate each pixel.
- L be the pixel spacing along the X and Y directions.
- the pixel position calculation unit 20 calculates the pixel position of each pixel constituting the image obtained by the image processing based on the pixel data of each pixel stored in the pixel data storage unit 10.
- the positions where the dotted lines in FIG. 10 (b) intersect are the pixel positions to be calculated, and the pixel positions are calculated such that the adjacent intervals in the X and Y directions are L / a.
- the pixel value calculation unit 30 calculates the pixel value of each pixel corresponding to the pixel position calculated by the pixel position calculation unit 20 (indicated by a triangle in FIG. 10 (c)) into each of the pixels constituting the original image. It is calculated by interpolation using the pixel value of the pixel (marked in Fig. 10 (c)). Note that the interpolation processing itself performed by the pixel value calculation unit 30 is basically the same as the interpolation processing outlined in FIG. 2, and is realized by the configuration shown in FIG.
- any pixel for which a pixel value is to be obtained by an interpolation operation is defined as a target pixel p, and a plurality of pixels included in the original image in each of the X direction and the Y direction with the target pixel P as a center.
- Sixteen pixels included in the range of two pixels before and after from the inside are extracted as pixels to be interpolated.
- the relationship shown in Fig. 4 is directly applied to the relationship between the target pixel p and the 16 interpolation target pixels, and the pixel value of the target pixel p is calculated by a convolution operation using the sampling function shown in Fig. 6. Is done.
- the pixel position of each pixel constituting the image obtained by the image processing is directly calculated, and the pixel value corresponding to this pixel position is calculated by the interpolation process. Accordingly, image processing at a predetermined magnification can be performed. Since this interpolation process is performed using a finite number of functions that can be differentiated only once in the entire area as a sampling function, the amount of computation required to calculate the pixel value of each pixel can be significantly reduced. In addition, since no truncation error occurs, it is possible to prevent an image obtained by the image processing from being distorted or changed in color.
- the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention.
- a case where the original image is enlarged at a predetermined magnification has been described as a specific example of the image processing. The same can be considered for a case of reduction by a magnification.
- the sampling function is a finite-level function that can be differentiated only once in the entire region.
- the number of differentiable times may be set to two or more.
- sampling function H (t) is defined using the third-order B-spline function F (t), but the sampling function H (t) is calculated using a quadratic piecewise polynomial.
- the interpolation processing is first performed along the X direction using the pixel values corresponding to each pixel of the original image arranged two-dimensionally, and thereafter, the interpolation processing is performed.
- the interpolation processing is performed along the Y direction using the X-direction interpolation value to finally obtain the interpolation value P corresponding to the target pixel P
- the order in which the interpolation processing is performed may be changed. That is, first, interpolation processing is performed along the Y direction, and then interpolation processing is performed along the X direction using the Y direction interpolation value obtained by this interpolation processing, and finally corresponds to the pixel point p of interest.
- the interpolation value P to be calculated may be obtained.
- the pixel value of each of these pixels is obtained.
- the interpolation process is performed by convolution using a sampling function that is finitely differentiable and has finite values.
- a sampling function with finite values By using, only the pixel data corresponding to this finite number of sections can be subjected to the interpolation calculation, so that the amount of calculation is small and no truncation error occurs, so that good interpolation accuracy can be obtained. In addition, distortion of an image obtained by image processing can be reduced.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Editing Of Facsimile Originals (AREA)
Abstract
An image processor capable of reducing the distortion of an image due to an error and processing an image with a reduced amount of calculation. When the magnification/reduction ratio of an image is specified, a pixel position calculating unit (20) calculates, according to the specified magnification/reduction ratio, the relative position of each of the pixels constituting the image formed by image processing. A pixel value calculating unit (30) calculates the pixel values of the pixels corresponding to the respective calculated pixel positions by performing predetermined interpolation in the X direction and then in the Y direction by using the pixel values of the pixels of the original image contained in a predetermined area around it. The pixel value calculating unit (30) uses a sampling function differentiatable finite times and having finite values for the interpolation.
Description
明 細 書 画像処理装置 技術分野 Description Image processing equipment Technical field
本発明は、 複数の画素からなる画像の拡大あるいは縮小処理を行う画像処理装 置に関する。 なお、 本明細書においては、 関数の値が局所的な領域で 0以外の有 限の値を有し、 それ以外の領域で 0となる場合を 「有限台」 と称して説明を行う ものとする。 背景技術 The present invention relates to an image processing device that performs enlargement or reduction processing of an image composed of a plurality of pixels. In this specification, a case where the value of a function has a limited value other than 0 in a local region and becomes 0 in other regions is referred to as a “finite base” and described. I do. Background art
従来から、 画像の拡大あるいは縮小を簡単な処理によって行う方法として、 所 定間隔で同じ画素を繰り返したり間引いたりする手法が知られている。 例えば、 Conventionally, as a method of performing enlargement or reduction of an image by simple processing, a method of repeating or thinning out the same pixel at a predetermined interval has been known. For example,
X方向および Y方向のそれそれについて、 5画素毎にこの 5画素目と同じ画素値 を有する画素を挿入することにより、 簡易的に 2 0 %の拡大画像が得られる。 反 対に、 5画素毎に 1画素を削除することにより、 簡易的に 2 5 %の縮小画像が得 られる。 しかし、 このように一定間隔で画素を挿入したり、 間引いたり した場合 には、 拡大後あるいは縮小後の画像が歪むという欠点があり、 画像の拡大や縮小 を高精度に行う場合には、 このような欠点のない補間処理を用いた手法が汎用さ れている。 By inserting a pixel having the same pixel value as that of the fifth pixel every 5 pixels in each of the X direction and the Y direction, a 20% enlarged image can be easily obtained. On the other hand, by deleting one pixel for every five pixels, a reduced image of 25% can be easily obtained. However, when pixels are inserted or thinned out at regular intervals in this way, the image after enlargement or reduction has a disadvantage that the image is distorted. Techniques that use interpolation processing that does not have such disadvantages are widely used.
ところで、 従来から、 予め与えられた離散値間の値を求めるデータ補間方法と して、 標本化関数を用いてデータ補間を行う手法が知られている。 図 1 1は、 従 来から知られている s i n c関数と称される標本化関数の説明図である。 この s i n c関数は、 デイラックのデルタ関数を逆フーリエ変換したときに現れるもの であり、 t = 0の標本点のみで 1になり、 他の全ての標本点では 0となる。 具体 的には、 s i n e関数は、 標本化周波数を: f としたときに、
(0 ( ) S (ί( ) - d) 一 κΤ) By the way, conventionally, as a data interpolation method for obtaining a value between predetermined discrete values, a method of performing data interpolation using a sampling function is known. FIG. 11 is an explanatory diagram of a conventionally known sampling function called a sinc function. This sinc function appears when the Fourier transform of the Dirac delta function is performed, and becomes 1 only at the sample point at t = 0, and becomes 0 at all other sample points. Specifically, the sine function is: (0 () S (ί ( )-d) one κΤ)
によって表される。 この ( 1 ) 式によれば、 s i n c関数による補間は、 sin { rc f ( t - k T ) } / 7r f ( t - k T ) という関数を時間軸方向に k Tづつず らし、 標本値と掛け合わせて加える、 いわゆる畳み込み演算を行うことにより実 現されることが分かる。 Represented by According to this equation (1), interpolation by the sinc function shifts the function sin {rc f (t−k T)} / 7r f (t−k T) by k T in the time axis direction, It can be seen that this is realized by performing a so-called convolution operation by multiplying by.
ところで、 上述した s i n c関数を標本化関数として用いる場合には、 理論的 には—∞から +∞までの画素値に対応した各標本化関数の値を畳み込みによって 加算することにより、 正確な補間値を得ることができる。 しかし、 実際に各種の プロセッサ等によって上述した補間演算を行おうとすると、 演算量を少なくする ために所定の有限区間で処理を打ち切ることになるために、 打ち切りによる誤差 が生じ、 しかも、 少ない画素値を用いて補間演算を行った場合には充分な精度が 得られず、 拡大あるいは縮小した後の画像に歪みが生じるという問題があった。 発明の開示 By the way, when the above-mentioned sinc function is used as a sampling function, the value of each sampling function corresponding to the pixel value from -∞ to + ∞ is theoretically added by convolution to obtain an accurate interpolation value. Can be obtained. However, when the above-described interpolation calculation is actually performed by various processors, the processing is terminated in a predetermined finite interval in order to reduce the amount of calculation, so that an error due to the truncation occurs, and furthermore, a small number of pixel values is generated. When the interpolation operation is performed by using, there is a problem that sufficient accuracy cannot be obtained, and distortion occurs in an image after being enlarged or reduced. Disclosure of the invention
本発明は、 このような点に鑑みて創作されたものであり、 その目的は、 誤差に よる画像の歪みが少なく、 しかも演算量を低減することができる画像処理装置を 提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide an image processing apparatus capable of reducing image distortion due to an error and reducing the amount of calculation.
本発明の画像処理装置は、 原画像に対して拡大処理あるいは縮小処理を行う場 合の所定の倍率が指定されたときに、 画像処理後の画像を構成する複数の画素の 画素位置を算出した後に、 これらの各画素の画素値を求める補間処理を、 有限回 微分可能であって有限台の値を有する標本化関数を用いて二次元空間を規定する 二変数のそれぞれについて行っている。 有限台の値を有する標本化関数を用いる ことにより、 この有限台の区間に対応する画素データのみが補間演算の対象とな るため、 演算量が少なく、 しかも打ち切り誤差が全く生じないため、 良好な補間 精度を得ることができ、 画像処理によって得られる画像の歪みを少なくすること ができる。 The image processing apparatus according to the present invention calculates the pixel positions of a plurality of pixels constituting the image after the image processing when a predetermined magnification for performing the enlargement processing or the reduction processing on the original image is specified. Later, interpolation processing for obtaining the pixel value of each of these pixels is performed for each of the two variables that define the two-dimensional space by using a sampling function that is finitely differentiable and has a finite number of values. By using a sampling function having a finite number of values, only the pixel data corresponding to the finite number of sections is subjected to the interpolation calculation, so that the amount of calculation is small and no truncation error is generated. It is possible to obtain a high interpolation accuracy and reduce the distortion of the image obtained by the image processing.
また、 画像処理後の画像の各画素について行われる画素位置算出は、 原画像の
各画素の画素位置に対する相対的な関係において行うことが望ましい。 一般に、 原画像の各画素の画素値を用いて、 画像処理後の画像の各画素の画素値を補間演 算によって求めようとすると、 各画素の相対的な位置関係が重要となる。 すなわ ち、 原画像の各画素の画素位置に対する相対的な関係において画像処理後の画像 の各画素の画素位置を算出し、 この算出結果を用いることによってその後の補間 処理が可能になる。 The pixel position calculation performed for each pixel of the image after image processing is performed by calculating It is desirable to perform the processing in a relative relationship to the pixel position of each pixel. Generally, if the pixel value of each pixel of the image after image processing is to be obtained by interpolation using the pixel value of each pixel of the original image, the relative positional relationship of each pixel becomes important. That is, the pixel position of each pixel of the image after image processing is calculated based on the relative relationship to the pixel position of each pixel of the original image, and the subsequent interpolation processing becomes possible by using the calculation result.
また、 上述した標本化関数としては、 有限台の区間の全域にわたって 1回だけ 微分可能な関数を用いることが好ましい。 自然界に存在する各種の信号は、 滑ら かに変化しているため微分可能性が必要であると考えられるが、 その微分可能回 数は必ずしも無限回である必要はなく、 むしろ 1回だけ微分可能であれば充分に 自然現象を近似できると考えられる。 As the above-mentioned sampling function, it is preferable to use a function that can be differentiated only once over the entire area of a finite range. Various signals existing in the natural world are considered to need to be differentiable because they change smoothly, but the number of differentiable times does not have to be infinite, but rather only once. Then, it is thought that natural phenomena can be sufficiently approximated.
このように、 有限回微分可能であって有限台な標本化関数を用いることにより 数々の利点があるが、 従来はこのような条件を満たす標本化関数が存在しないと 考えられていた。 ところが、 本発明者の研究によって、 上述した条件を満たす関 数が見いだされた。 As described above, there are many advantages to using a sampling function that is finitely differentiable and finite, but in the past it was thought that there was no sampling function that satisfied such conditions. However, the research by the present inventors has found a function satisfying the above conditions.
具体的には、 本発明が適用される標本化関数 H ( t ) は、 3階 Bスプライン関 数を F ( t ) としたときに、 一 F (t + 1/2) /4 + F ( t ) 一 F (t— 1/ 2 ) / 4で求めることができる。 この標本化関数 H ( t ) は、 全域で 1回だけ微 分可能であって、 t =± 2において値が 0に収束する有限台の関数であり、 上述 した 2つの条件を満たす。 このような関数 H (t) を用いて、 各画素の中間位置 に対応した画素の画素値を求める補間演算を行うことにより、 演算量が少なく、 しかも精度の高い補間演算を行うことができる。 したがって、 画像処理を高速化 することができ、 しかも画像処理によって得られる画像の歪みを低減することが できる。 More specifically, the sampling function H (t) to which the present invention is applied is represented by one F (t + 1/2) / 4 + F (, where F (t) is a third-order B-spline function. t) It can be obtained by one F (t-1/2) / 4. This sampling function H (t) is a finite function that can be differentiated only once in the entire region and whose value converges to 0 at t = ± 2, and satisfies the above two conditions. By using such a function H (t) to perform an interpolation operation for obtaining a pixel value of a pixel corresponding to an intermediate position of each pixel, an interpolation operation with a small amount of operation and high accuracy can be performed. Therefore, the speed of the image processing can be increased, and the distortion of the image obtained by the image processing can be reduced.
また、 上述した 3階 Bスプライン関数 F (t) は、 — 3/2≤t<— 1/2に ついては (4 t2 + 12 t + 9) /4で、 — l/2^tく 1/2については一 2 t 2 + 3/2で、 l/2≤t<3/2については (4 t2 — 12 t + 9) /4で 表すことができ、 このような二次関数による区分多項式によって上述した標本化 関数の演算を行うことができるため、 その演算内容が比較的簡単で演算量を少な
くすることができる。 The third-order B-spline function F (t) described above is (4 t 2 + 12 t + 9) / 4 for — 3 / 2≤t <— 1/2, and — l / 2 ^ t / 2 can be expressed as 1 2 t 2 + 3/2, and l / 2≤t <3/2 can be expressed as (4 t 2 — 12 t + 9) / 4. Since the above-mentioned sampling function operation can be performed by a piecewise polynomial, the operation content is relatively simple and the operation amount is small. Can be done.
また、 上述したように Bスプライン関数を用いて標本化関数を表すのではな く、 二次の区分多項式で表現することもできる。 具体的には、 一 2≤t<— 3/ 2については (一 t2 - 4 t - 4 ) /4で、 一 3/2≤ t <— 1については (3 t 2 + 8 t + 5) /4で、 一 l≤t<一 1/2については (5 t2 + 12 t + 7) /4で、 一 1/2 ^ t < 1/2については (― 7 t 2 + 4) /4で、 1/2 ≤ 1:く 1については ( 5 t 2 - 12 t + 7 ) /4で、 1 ^ tく 3/2については ( 3 t 2 — 8 t + 5) /4で、 3/2 t 2については (一 t2 + 4 t - 4 ) / 4で定義される標本化関数を用いることにより、 上述した補間処理を行うこと ができる。 As described above, instead of using a B-spline function to represent a sampling function, it can be represented by a quadratic piecewise polynomial. Specifically, (1 t 2-4 t-4) / 4 for one 2≤t <-3/2, and (3 t 2 + 8 t + 5 for one 3 / 2≤ t <-1 ) / 4, (5 t 2 + 12 t + 7) / 4 for 1 l≤t <1 1/2 and (-7 t 2 + 4) for 1 1/2 ^ t <1/2 / at 4, 1/2 ≤ 1: clause for one - at (5 t 2 12 t + 7 ) / 4, for 1 ^ t rather than 3/2 - in (3 t 2 8 t + 5 ) / 4 , 3/2 t 2, the above-described interpolation processing can be performed by using the sampling function defined by (1 t 2 +4 t −4) / 4.
また、 本発明において画素値の補間演算を行う画素値算出手段は、 上述した補 間演算を行うために、 補間対象画素抽出手段、 第 1および第 2の標本化関数演算 手段、 第 1および第 2の畳み込み演算手段を備えている。 補間対象画素抽出手段 によって、 着目画素の周辺の所定範囲に存在する補間演算の対象となる複数の画 素が抽出される。 そして、 まず第 1の標本化関数演算手段と第 1の畳み込み演算 手段によって、 二変数の一方について上述した標本化関数を用いて畳み込み演算 を行い、 次に第 2の標本化関数演算手段と第 2の畳み込み演算手段によって二変 数の他方について上述した標本化関数を用いて畳み込み演算を行い、 最終的に着 目画素の画素値が得られる。 このように、 二変数のそれぞれについて別々に標本 化関数の値を計算し、 この結果に対して畳み込み演算を行うだけで、 着目画素の 画素値を求めることができ、 補間処理に必要な処理量を大幅に減らすことができ る。 しかも上述したように有限台の標本化関数を用いることにより打ち切り誤差 がなくなるため、 画像処理された画像の歪みを防止することができる。 図面の簡単な説明 Further, in the present invention, the pixel value calculating means for performing the interpolation calculation of the pixel value includes the interpolation target pixel extracting means, the first and second sampling function calculating means, the first and the second Two convolution means are provided. The interpolation target pixel extracting means extracts a plurality of pixels to be subjected to an interpolation operation existing in a predetermined range around the target pixel. First, the first sampling function operation means and the first convolution operation means perform a convolution operation on one of the two variables using the above-described sampling function. The convolution operation is performed on the other of the two variables by the convolution operation means 2 using the above-described sampling function, and the pixel value of the pixel of interest is finally obtained. In this way, the pixel value of the pixel of interest can be obtained simply by calculating the value of the sampling function separately for each of the two variables and performing a convolution operation on the result, and the amount of processing required for the interpolation process Can be greatly reduced. In addition, as described above, since a truncation error is eliminated by using a finite number of sampling functions, it is possible to prevent distortion of the processed image. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 一実施形態の画像処理装置の構成を示す図、 FIG. 1 is a diagram illustrating a configuration of an image processing apparatus according to an embodiment;
図 2は、 図 1に示した画像処理装置によって行われる画像の拡大処理の概要を 示す図、 FIG. 2 is a diagram showing an outline of an image enlargement process performed by the image processing apparatus shown in FIG. 1,
図 3は、 画素値算出部の詳細な構成を示す図、
図 4は、 着目画素の周辺で抽出される原画像の構成画素の範囲を示す図、 一 図 5は、 X方向に沿って一定間隔で並んだ画素とその間の補間位置との関係を 示す図、 FIG. 3 is a diagram showing a detailed configuration of the pixel value calculation unit, Fig. 4 is a diagram showing the range of constituent pixels of the original image extracted around the pixel of interest. Fig. 5 is a diagram showing the relationship between pixels arranged at regular intervals along the X direction and the interpolation position between them. ,
図 6は、 標本化関数演算部における演算で用いられる標本化関数の説明図、 図 7は、 X方向に沿って並んだ各画素の画素値とその間の補間位置における X 方向補間値との関係を示す図、 Fig. 6 is an explanatory diagram of the sampling function used in the operation in the sampling function operation unit. Fig. 7 is the relationship between the pixel value of each pixel arranged in the X direction and the X direction interpolation value at the interpolation position between them. Figure showing
図 8は、 X方向補間値を計算する具体例を示す図、 FIG. 8 is a diagram showing a specific example of calculating an X-direction interpolation value,
図 9は、 Y方向に沿って並んだ各画素に対応する X方向補間値と着目画素の画 素値との関係を示す図、 FIG. 9 is a diagram showing the relationship between the X direction interpolation value corresponding to each pixel arranged along the Y direction and the pixel value of the pixel of interest.
図 1 0は、 図 1に示した画像処理装置によって行われる画像の拡大処理の変形 例の概要を示す図、 FIG. 10 is a diagram showing an outline of a modification of the image enlarging process performed by the image processing device shown in FIG. 1,
図 1 1は、 s i n c関数の説明図である。 発明を実施するための最良の形態 FIG. 11 is an explanatory diagram of the sinc function. BEST MODE FOR CARRYING OUT THE INVENTION
複数の画素によって構成された画像を拡大あるいは縮小するということは、 原 画像の輪郭形状を維持した状態で構成画素数を所定の倍率にしたがって増加ある いは減少させることであり、 この画素数を増減する処理を所定の標本化関数を用 いた補間演算によって行うことに本実施形態の特徴がある。 以下、 一実施形態の 画像処理装置について、 図面を参照しながら詳細に説明する。 Enlarging or reducing an image composed of a plurality of pixels means increasing or decreasing the number of constituent pixels according to a predetermined magnification while maintaining the contour shape of the original image. The feature of the present embodiment lies in that the process of increasing or decreasing is performed by an interpolation operation using a predetermined sampling function. Hereinafter, an image processing apparatus according to an embodiment will be described in detail with reference to the drawings.
図 1は、 本発明を適用した一実施形態の画像処理装置の構成を示す図である。 図 1に示す画像処理装置 1は、 画素データ格納部 1 0、 画素位置算出部 2 0、 画 素値算出部 3 0、 画素データ格納部 4 0を含んで構成されている。 FIG. 1 is a diagram showing a configuration of an image processing apparatus according to an embodiment to which the present invention is applied. The image processing apparatus 1 shown in FIG. 1 includes a pixel data storage unit 10, a pixel position calculation unit 20, a pixel value calculation unit 30, and a pixel data storage unit 40.
画素データ格納部 1 0は、 原画像を構成する各画素毎の画素データを格納す る。 画素データには、 各画素の画素位置と画素値が含まれている。 画素位置は、 原画像を構成する各画素のァドレス情報であり、 水平方向に沿った Xァドレスと 垂直方向に沿った Yアドレスとを含んでいる。 なお、 これらの Xアドレスと Yァ ドレスは、 画素データの一部として明示的に指定される場合の他に、 画素値の配 列等によって暗示的に示される場合がある。 また、 画素値は、 各画素の特徴を示 すデータであり、 例えば各画素の濃淡データ、 色データ、 輝度データ等がこれに
相当する。 The pixel data storage unit 10 stores pixel data for each pixel constituting the original image. The pixel data includes a pixel position and a pixel value of each pixel. The pixel position is address information of each pixel constituting the original image, and includes an X address along a horizontal direction and a Y address along a vertical direction. The X address and the Y address may be indicated implicitly by an array of pixel values, in addition to the case where the X address and the Y address are explicitly specified as part of the pixel data. The pixel value is data indicating the characteristics of each pixel. For example, grayscale data, color data, luminance data, and the like of each pixel include this. Equivalent to.
画素位置算出部 2 0は、 画像の拡大縮小倍率 aが指定されたときに、 この倍率 に基づいて、 画像処理前の原画像を構成する各画素の画素位置に対する相対的な 関係において、 画像処理によって得られる画像を構成する各画素の画素位置を算 出する。 例えば、 ( 1 ) 原画像を構成する各画素の画素位置を画素間隔が a倍と なるように仮想的に移動させた後に、 原画像の本来の画素間隔と同じ画素間隔と なるように、 画像処理後の画像を構成する各画素の画素位置を算出する場合や、 ( 2 ) 原画像を構成する各画素の画素位置は変更せずに、 画像処理後の画像を構 成する各画素の画素間隔を 1 / a倍に変更して各画素位置を算出する場合等が考 えられる。 The pixel position calculation unit 20 performs the image processing based on the relative magnification to the pixel position of each pixel constituting the original image before the image processing based on this magnification when the image magnification / reduction magnification a is designated. The pixel position of each pixel constituting the image obtained by the above is calculated. For example, (1) After virtually shifting the pixel position of each pixel constituting the original image so that the pixel interval becomes a times as large as the pixel interval, the image is adjusted so that the pixel interval becomes the same as the original pixel interval of the original image. When calculating the pixel position of each pixel that constitutes the image after processing, or (2) without changing the pixel position of each pixel that constitutes the original image, the pixel position of each pixel that constitutes the image after image processing It is possible to calculate each pixel position by changing the interval to 1 / a times.
画素値算出部 3 0は、 原画像を構成する各画素の画素値に基づいた所定の補間 処理を行うことによって、 画像処理後の画像を構成する各画素の画素値を算出す る。 画素データ格納部 4 0は、 補間処理によって算出された各画素の画素値と、 これらの各画素の画素位置とを画像処理後の画素データとして格納する。 The pixel value calculation unit 30 calculates a pixel value of each pixel forming the image after the image processing by performing a predetermined interpolation process based on the pixel value of each pixel forming the original image. The pixel data storage unit 40 stores the pixel value of each pixel calculated by the interpolation processing and the pixel position of each pixel as pixel data after image processing.
本実施形態の画像処理装置 1はこのような構成を有しており、 次にその動作を 説明する。 上述したように、 補間処理に先だって行われる画素位置算出の具体的 な手順には何通りかの変形実施が考えられるため、 それぞれについて場合を分け て説明する。 The image processing device 1 of the present embodiment has such a configuration, and the operation will be described next. As described above, since a specific procedure of calculating the pixel position performed prior to the interpolation processing can be implemented in a number of modifications, each case will be described separately.
( 1 ) 原画像を構成する各画素の画素位置を画素間隔が a倍となるように仮想 的に移動させた後に、 原画像の本来の画素間隔と同じ画素間隔となるように、 画 像処理後の画像を構成する各画素の画素位置を算出する場合 (1) After virtually shifting the pixel position of each pixel constituting the original image so that the pixel interval becomes a times, the image processing is performed so that the pixel interval becomes the same as the original pixel interval of the original image. When calculating the pixel position of each pixel constituting the subsequent image
図 2は、 図 1に示した画像処理装置 1によって行われる画像の拡大処理の概要 を示す図である。 図 2 ( a ) は、 画素データ格納部 1 0に画素デ一夕が格納され た原画像の構成画素を部分的に示しており、 暴印が各画素を示している。 X方向 および Y方向のそれぞれに沿った画素間隔を Lとする。 FIG. 2 is a diagram illustrating an outline of an image enlargement process performed by the image processing apparatus 1 illustrated in FIG. FIG. 2 (a) partially shows the constituent pixels of the original image in which the pixel data is stored in the pixel data storage unit 10, and the marks indicate each pixel. Let L be the pixel interval along each of the X and Y directions.
まず、 画素位置算出部 2 0は、 指定された拡大縮小倍率 aに応じて、 原画像を 構成する各画素の画素位置を変更する処理を行う。 例えば拡大縮小倍率 aが 1よ り大きい場合 (拡大処理の場合) を考えると、 図 2 ( b ) に示すように、 原画像 を構成する各画素の画素位置を、 所定の拡大中心位置 (図 2 ( b ) では左上に位
置する画素を拡大中心位置としている) から各画素位置までの距離が a倍になる-. ように変更される。 このように、 拡大縮小倍率 aに応じて、 原画像を構成する各 画素の画素位置を変更した後に、 画素位置算出部 2 0は、 図 2 ( c ) に〇印で示 したような本来の画素間隔 Lと同じ画素間隔を有する各画素位置を、 画像処理後 の画像を構成する各画素位置として設定する。 なお、 図 2 ( c ) では、 画像処理 後の画像を構成する画素位置を、 原画像と同様に、 左上の画素を基準として設定 した力 s、 この基準位置は任意に設定可能であり、 必ずしも原画像に含まれるいず れかの画素位置に一致させる必要はない。 First, the pixel position calculation unit 20 performs a process of changing the pixel position of each pixel constituting the original image according to the specified scaling factor a. For example, when the magnification ratio a is greater than 1 (in the case of the enlargement process), as shown in FIG. 2 (b), the pixel position of each pixel constituting the original image is set to a predetermined enlargement center position (see FIG. 2 In (b), upper left The distance from each pixel position to the position of each pixel is a-times as large as-. In this way, after changing the pixel position of each pixel constituting the original image according to the scaling factor a, the pixel position calculation unit 20 returns to the original position as indicated by a triangle in FIG. 2 (c). Each pixel position having the same pixel interval as the pixel interval L is set as each pixel position constituting an image after image processing. In Fig. 2 (c), the pixel positions that make up the image after image processing are the force s set based on the upper left pixel as in the original image, and this reference position can be set arbitrarily. It is not necessary to match any pixel position in the original image.
画素値算出部 3 0は、 画像処理後の画像を構成する各画素の画素値を所定の補 間処理によって算出する。 図 2 ( c ) において、 画素間隔 a Lで配置された各画 素の画素値に基づいて、 画素間隔 Lで配置された各画素の画素値が補間処理によ つて算出される。 このようにして補間処理によって算出された各画素の画素位置 と画素値が、 画像処理後の画像を構成する各画素の画素データとして画素データ 格納部 4 0に格納される。 The pixel value calculation unit 30 calculates the pixel value of each pixel constituting the image after the image processing by a predetermined interpolation process. In FIG. 2 (c), the pixel values of the pixels arranged at the pixel interval L are calculated by interpolation based on the pixel values of the pixels arranged at the pixel interval aL. The pixel position and pixel value of each pixel calculated by the interpolation processing in this manner are stored in the pixel data storage unit 40 as pixel data of each pixel constituting the image after the image processing.
次に、 上述した画像処理装置 1に含まれる画素値算出部 3 0の詳細な構成を説 明する。 図 3は、 画素値算出部 3 0の詳細な構成を示す図である。 図 3に示すよ うに、 画素値算出部 3 0は、 補間対象画素抽出部 3 2、 X方向標本化関数演算部 3 4、 X方向畳み込み演算部 3 5、 Y方向標本化関数演算部 3 6、 Y方向畳み込 み演算部 3 7を含んで構成されている。 Next, a detailed configuration of the pixel value calculation unit 30 included in the above-described image processing apparatus 1 will be described. FIG. 3 is a diagram showing a detailed configuration of the pixel value calculation unit 30. As shown in FIG. 3, the pixel value calculation unit 30 includes an interpolation target pixel extraction unit 32, an X-direction sampling function operation unit 34, an X-direction convolution operation unit 35, and a Y-direction sampling function operation unit 36. , And a Y-direction convolution operation unit 37.
補間対象画素抽出部 3 2は、 原画像を構成する複数の画素の中から、 補間処理 によって画素値を算出する画素 (以後、 「着目画素」 と称する) の周辺の所定範 囲に含まれるものを抽出して保持する。 この抽出処理においては、 図 2 ( c ) に 示した画像処理後の画像を構成する各画素 (〇印) の中からいずれか一つが着目 画素に設定され、 原画像を構成する複数の画素 (攀印) の中からこの着目画素を 中心にした所定範囲に含まれるものが選択される。 The interpolation target pixel extraction unit 32 includes, from among a plurality of pixels constituting the original image, a pixel included in a predetermined range around a pixel whose pixel value is to be calculated by the interpolation processing (hereinafter, referred to as a “pixel of interest”). Is extracted and held. In this extraction process, one of the pixels (marked with 〇) constituting the image after image processing shown in FIG. 2 (c) is set as a target pixel, and a plurality of pixels (( Among them, those included in a predetermined range centered on the pixel of interest are selected.
図 4は、 着目画素の周辺で抽出される原画像の構成画素の範囲を示す図であ る。 図 4に示すように、 1つの着目画素を p、 その座標を (X , y ) とすると、 補間対象画素抽出部 3 2は、 この着目画素 pを中心にして X方向および Y方向の それそれについて、 前後 2画素分ずつの範囲に含まれる画素を抽出する。 画素位
置算出部 2 0によって、 原画像を構成する各画素の画素間隔が a Lに設定されて一. いるため、 着目画素 pを中心にして X方向および Y後方のァドレスが一 2 a か ら + 2 a Lの範囲に含まれる原画像の構成画素が抽出される。 したがって、 図 4 の点線の矩形領域に含まれる合計 1 6個の原画像の構成画素が補間対象画素抽出 部 3 2によって抽出される。 以後、 このようにして抽出された 1 6個の画素のそ れそれを 「補間対象画素」 と称する。 FIG. 4 is a diagram illustrating a range of constituent pixels of an original image extracted around a target pixel. As shown in FIG. 4, assuming that one pixel of interest is p and its coordinates are (X, y), the pixel-to-be-interpolated 32 extracts the pixel of interest in the X and Y directions around the pixel of interest p. For, the pixels included in the range of two pixels before and after are extracted. Pixel position Since the pixel interval of each pixel constituting the original image is set to a L by the position calculating unit 20, the address in the X direction and the Y back from the pixel of interest p is from 1 2a to + The constituent pixels of the original image included in the range of 2 a L are extracted. Therefore, a total of 16 constituent pixels of the original image included in the rectangular area indicated by the dotted line in FIG. 4 are extracted by the interpolation target pixel extracting unit 32. Hereinafter, each of the 16 pixels extracted in this manner is referred to as an “interpolation target pixel”.
X方向標本化関数演算部 3 4は、 補間対象画素抽出部 3 2によって抽出された 各補間対象画素と着目画素 pとの X方向に沿った距離を計算するとともに、 この 計算した距離に基づいて標本化関数の値を計算する。 補間対象画素抽出部 3 2に よって抽出された 1 6個の補間対象画素のそれぞれについて標本化関数の値が計 算される。 The X-direction sampling function operation unit 34 calculates the distance along the X direction between each interpolation target pixel extracted by the interpolation target pixel extraction unit 32 and the pixel of interest p, and based on the calculated distance. Compute the value of the sampling function. The value of the sampling function is calculated for each of the 16 interpolation pixels extracted by the interpolation pixel extraction unit 32.
X方向畳み込み演算部 3 5は、 X方向標本化関数演算部 3 4によって計算され た 1 6個の標本化関数の値に、 それぞれに対応する補間対象画素の画素値を乗算 し、 その結果を Y座標が同一の系列毎に加算することにより、 X方向に沿った畳 み込み演算を行う。 この畳み込み演算によって得られる値が、 X方向毎の補間値 であり、 図 5に 「*」 で示したように、 X方向に沿った各補間対象画素の画素値 に基づいて、 着目画素 pと同一の Y座標を有する 4個の画素 A、 B、 C、 Dのそ れそれに対応する補間値 (以後、 「X方向補間値」 と称する) が算出される。 また、 Y方向標本化関数演算部 3 6は、 このようにして算出された X方向補間 値に対応する画素と着目画素 pとの Y方向に沿った距離を計算するとともに、 こ の計算した距離に基づいて各 X方向補間値に対応した標本化関数の値を計算す る。 このようにして、 X方向畳み込み演算部 3 5によって計算された 4個の X方 向補間値のそれそれについて標本化関数の値が計算される。 The X-direction convolution operation unit 35 multiplies the values of the 16 sampling functions calculated by the X-direction sampling function operation unit 34 by the pixel values of the corresponding interpolation target pixels, and calculates the result. The convolution operation along the X direction is performed by adding for each series with the same Y coordinate. The value obtained by this convolution operation is the interpolated value for each X direction, and as shown by “*” in FIG. 5, based on the pixel value of each interpolation target pixel along the X direction, Interpolated values corresponding to the four pixels A, B, C, and D having the same Y coordinate (hereinafter referred to as “X-direction interpolated values”) are calculated. The Y-direction sampling function calculation unit 36 calculates the distance along the Y direction between the pixel corresponding to the X-direction interpolation value calculated in this way and the pixel of interest p, and calculates the calculated distance. Based on, calculate the value of the sampling function corresponding to each X-direction interpolation value. In this way, the value of the sampling function is calculated for each of the four X-direction interpolated values calculated by the X-direction convolution operation unit 35.
Y方向畳み込み演算部 3 7は、 Y方向標本化関数演算部 3 6によって計算され た 4個の標本化関数の値のそれぞれに、 対応する X方向補間値を乗算し、 その結 果を加算することにより 4個の X方向補間値に対応する畳み込み演算を行う。 こ の畳み込み演算によって得られる補間値が、 着目画素 pの画素値となる。 The Y-direction convolution operation unit 37 multiplies each of the four sampling function values calculated by the Y-direction sampling function operation unit 36 by the corresponding X-direction interpolation value, and adds the result. In this way, convolution operation corresponding to four X-direction interpolation values is performed. The interpolation value obtained by this convolution operation is the pixel value of the pixel of interest p.
上述した画素データ格納部 1 0が第 1の画素データ格納手段に、 画素位置算出 部 2 0が画素位置算出手段に、 画素値算出部 3 0が画素値算出手段に、 画素デ一
夕格納部 40が第 2の画素データ格納手段にそれぞれ対応する。 また、 補間対象-. 画素抽出部 32が補間対象画素抽出手段に、 X方向標本化関数演算部 34が第 1 の標本化関数演算手段に、 X方向畳み込み演算部 35が第 1の畳み込み演算手段 に、 Y方向標本化関数演算部 36が第 2の標本化関数演算手段に、 Y方向畳み込 み演算部 37が第 2の畳み込み演算手段にそれぞれ対応する。 また、 X方向補間 値が第 1の補間値に、 着目画素 pの画素値が第 2の補間値にそれそれ対応する。 次に、 上述した画素値算出部 30によって行われる補間処理の詳細を説明す る。 図 6は、 X方向標本化関数演算部 34および Y方向標本化関数演算部 36に おける演算で用いられる標本化関数の説明図である。 図 6に示す標本化関数 H (t) は、 微分可能性に着目した有限台の関数であり、 例えば全域において 1回 だけ微分可能であって、 横軸に沿った標本位置 tが— 2から + 2のときに 0以外 の有限な値を有する有限台の関数である。 また、 H (t) は標本化関数であるた め、 t = 0の標本点でのみ 1になり、 t=± l , ± 2の標本点において 0になる という特徴を有する。 The above-described pixel data storage unit 10 serves as a first pixel data storage unit, the pixel position calculation unit 20 serves as a pixel position calculation unit, the pixel value calculation unit 30 serves as a pixel value calculation unit, and a pixel data storage unit. The evening storage unit 40 corresponds to each of the second pixel data storage units. Also, the interpolation target-. The pixel extraction unit 32 is used as the interpolation target pixel extraction unit, the X-direction sampling function operation unit 34 is used as the first sampling function operation unit, and the X-direction convolution operation unit 35 is used as the first convolution operation unit. In addition, the Y-direction sampling function calculator 36 corresponds to the second sampling function calculator, and the Y-direction convolution calculator 37 corresponds to the second convolution calculator. The X-direction interpolation value corresponds to the first interpolation value, and the pixel value of the pixel of interest p corresponds to the second interpolation value. Next, details of the interpolation processing performed by the above-described pixel value calculation unit 30 will be described. FIG. 6 is an explanatory diagram of the sampling functions used in the calculations in the X-direction sampling function calculation unit 34 and the Y-direction sampling function calculation unit 36. The sampling function H (t) shown in Fig. 6 is a finite function focusing on differentiability. For example, the function is differentiable only once in the entire region, and the sampling position t along the horizontal axis is It is a finite function having a finite value other than 0 when +2. In addition, since H (t) is a sampling function, it has the characteristic that it becomes 1 only at the sample point of t = 0, and becomes 0 at the sample points of t = ± l, ± 2.
上述した各種の条件 (標本化関数、 1回だけ微分可能、 有限台) を満たす関数 H ( t ) が存在することが本発明者の研究により確かめられている。 具体的に は、 このような標本化関数 H (t) は、 3階 Bスプライン関数を F ( t ) とした ときに、 It has been confirmed by the inventor's research that there exists a function H (t) that satisfies the above-described various conditions (sampling function, one-time differentiable, finite table). Specifically, such a sampling function H (t) is expressed as follows, where F (t) is the third-order B-spline function.
H ( t ) =_F (t + 1/2) /4 + F (t) -F ( t - 1/2 ) /4 で定義することができる。 H (t) = _ F (t + 1/2) / 4 + F (t) -F (t-1 / 2) / 4.
ここで、 3階 Bスプライン関数 F ( t ) は、 Where the third-order B-spline function F (t) is
( 4 t 2 + 12 t + 9 ) /4 -3/2≤ t <- 1/2 (4 t 2 + 12 t + 9) / 4 -3 / 2≤ t <-1/2
一 2 t 2 +3/2 - 1/2≤ t < 1/2 1 2 t 2 +3/2-1 / 2≤ t <1/2
( 4 t 2 - 12 t + 9 ) /4 l/2≤t<3/2 (4 t 2 - 12 t + 9) / 4 l / 2≤t <3/2
で表される。 It is represented by
上述した標本化関数 H (t) は、 二次の区分多項式であり、 3階 Bスプライン 関数 F (t) を用いているため、 全域で 1回だけの微分可能性が保証される有限 台の関数となっている。 また、 t=± l, ±2において 0となる。 The sampling function H (t) described above is a quadratic piecewise polynomial, and uses a third-order B-spline function F (t). Function. Also, it becomes 0 at t = ± l, ± 2.
このように、 上述した関数 H ( t ) は、 標本化関数であって、 全域において 1
回だけ微分可能であり、 しかも t =± 2において 0に収束する有限台の関数であ る。 したがって、 この標本化関数 H (t) を用いて各補間対象画素の画素値に基 づく重ね合わせを行うことにより、 原画像の各画素の間に存在する各画素の画素 値を 1回だけ微分可能な関数を用いて補間することができる。 Thus, the function H (t) described above is a sampling function, and 1 It is a finite function that is differentiable only once and converges to 0 at t = ± 2. Therefore, by performing superposition based on the pixel value of each interpolation target pixel using this sampling function H (t), the pixel value of each pixel existing between each pixel of the original image is differentiated only once. Interpolation can be performed using possible functions.
また、 上述したように、 この標本化関数を用いた補間処理を図 4に示したよう な二次元空間 (X— Y平面) 上に離散的に存在する複数の画素の画素値を用いた 補間処理に拡張する場合には、 図 5に示すように、 まず X方向に沿って補間処理 を行って、 最終的に求めたい着目画素 pと同一の X座標を有する各 Y座標毎の補 間値 (X方向補間値) を求め、 その後この X方向補間値を用いて Y方向に沿って 再度補間処理を行って最終的に着目画素 Pの画素値である補間値 Pを得るように すればよい。 As described above, the interpolation processing using the sampling function is performed by using the pixel values of a plurality of pixels discretely present in a two-dimensional space (XY plane) as shown in FIG. To extend the processing, as shown in Fig. 5, interpolation is first performed along the X direction, and the interpolation value for each Y coordinate that has the same X coordinate as the pixel of interest p to be finally obtained is obtained. (Interpolated value in the X direction) is calculated, and then the interpolation process is performed again in the Y direction using the interpolated value in the X direction to finally obtain the interpolated value P which is the pixel value of the pixel of interest P. .
図 7は、 X方向に一定間隔で並んだ補間対象画素とその間の X方向補間値との 関係を示す図であり、 例えば図 5に示す画素 Aに対応する X方向補間値とこの画 素 Aと同一の Y座標を有する周辺の 4個の補間対象画素の各画素値との関係が示 されている。 Y座標が Yj + 1 で X座標が Xi + 1 、 Xi + 2 、 Xi + 3 、 Xi+4 のそれ それの画素値を Pi + 1 , j + 1、 P i + 2 , j + 1、 P i + 3 , j + 1、 P i + 4 + 1とし、 X座標 Xi + 2 と Xi + 3 の間の所定位置 Xa (Xi + 2 から距離 a) に対応した X方向補間 値 pj + 1 を求める場合を考える。 FIG. 7 is a diagram showing a relationship between pixels to be interpolated arranged at regular intervals in the X direction and an interpolated value in the X direction between them. For example, an X direction interpolated value corresponding to pixel A shown in FIG. The relationship between each pixel value of four surrounding pixels to be interpolated having the same Y coordinate is shown. Y coordinate X coordinate Y j + 1 is X i + 1, Xi + 2 , Xi + 3, it its pixel values of Xi +4 P i + 1, j + 1, P i + 2, j + 1 , P i + 3 , j + 1 , P i + 4 + 1, and the X direction interpolation value corresponding to the predetermined position Xa (distance a from Xi + 2 ) between X coordinates Xi + 2 and X i + 3 Consider the case of finding p j +1 .
一般に、 補間値 Pj + 1 を標本化関数を用いて求めるには、 周辺の補間対象画素 のそれそれについて補間位置 X aにおける標本化関数の値を求め、 これを用いて 畳み込み演算を行うことにより、 補間値 Ρ」十! を求めることができる。 s i ne 関数は、 t =±∞の標本点で 0に収束する関数であるため、 補間値 Pj + 1 を正確 に求めようとすると、 X = ±∞までの各 X座標の各画素に対応して補間位置 Xa での s i nc関数の値を計算し、 これを用いて畳み込み演算を行う必要があつ た。 In general, in order to obtain the interpolation value P j + 1 using the sampling function, the value of the sampling function at the interpolation position Xa for each of the surrounding pixels to be interpolated must be obtained, and the convolution operation is performed using this. By the interpolation value Ρ "10! Can be requested. The si ne function is a function that converges to 0 at the sample point of t = ± ∞, so if you try to find the interpolation value P j + 1 accurately, it will correspond to each pixel of each X coordinate up to X = ± ∞ Then, it was necessary to calculate the value of the sinc function at the interpolation position Xa, and use this to perform the convolution operation.
ところが、 本実施形態で用いる標本化関数 H (t) は、 t =± 2の標本点で 0 に収束するため、 t =± 2までの画素データ、 すなわち補間位置を挟んで前後 2 画素ずつを考慮に入れればよい。 したがって、 図 7に示す X方向補間値 Ρ」 + 1 を 求めるには、 X座標が Xi + 1 、 Xi + 2 、 Xi + 3 、 Xi+4 の 4つの画素の各画素値
P i +l , j + ls Pi + 2 , j + 1、 P i + 3 , j + K P i+4 , j +1のみを考慮すればよいことに-. なり、 演算量を大幅に削減することができる。 しかも、 それ以外の画素の画素値 については、 本来考慮すべきであるが演算量や精度等を考慮して無視していると いうわけではなく、 理論的に考慮する必要がないため、 打ち切り誤差は発生しな い。 However, the sampling function H (t) used in the present embodiment converges to 0 at t = ± 2 sampling points, so that pixel data up to t = ± 2, that is, two pixels before and after the interpolation position, Just take it into account. Therefore, in order to obtain the X direction interpolation value Ρ ” +1 shown in FIG. 7, each pixel value of the four pixels whose X coordinate is Xi + 1 , Xi + 2, Xi + 3, and Xi + 4 P i + l, j + ls Pi + 2, j + 1 , P i + 3, j + KP i + 4, j +1 Only need to be considered-. be able to. In addition, the pixel values of the other pixels should be considered originally, but they are not neglected in consideration of the amount of calculation and accuracy, etc., and need not be considered theoretically. Does not occur.
図 8は、 X方向標本化関数演算部 34および X方向畳み込み演算部 35による 補間処理の詳細な説明図である。 補間処理の手順としては、 図 8 (A) 〜 (D) に示すように、 4つの補間対象画素の画素値 P i +1 , j + 1、 Pi + 2 , j + 1、 P i + 3 , j +1、 P i + 4 + 1のそれぞれに、 図 6に示した標本化関数 H ( t ) の t = 0 (中心 位置) におけるピーク高さを一致させ、 このときの補間位置 Xaにおけるそれそ れの標本化関数の値を求める。 FIG. 8 is a detailed explanatory diagram of the interpolation processing by the X-direction sampling function operation unit 34 and the X-direction convolution operation unit 35. The procedure of the interpolation processing, as shown in FIG. 8 (A) ~ (D) , the pixel value P i +1 of the four interpolation target pixel, j + 1, P i + 2, j + 1, P i + The peak height at t = 0 (center position) of the sampling function H (t) shown in Fig. 6 is matched to each of 3 , j + 1 and P i + 4 + 1 , and the interpolation position Xa Find the value of each sampling function at.
例えば、 図 8 (A) に示す画素位置 Xi + 1 における補間対象画素の画素値 Pi + 1 . j +1について具体的に説明する。 補間位置 Xaと画素位置 Xi + 1 との距離は、 各画素位置間の距離を正規化して 1とすると、 1 +aとなる。 したがって、 画素 位置 Xi + 1 に標本化関数 H ( t ) の中心位置を合わせたときの補間位置 Xaにお ける標本化関数の値は H ( 1 +a) となる。 実際には、 画素値 Pi + 1 + 1に一致 するように標本化関数 H (t ) の中心位置のピーク高さを合わせるため、 上述し た H ( 1 +a) を Pi + 1 , j +1倍した値 H ( 1 +a) · Pi + 1 , j +1が求めたい値と なる。 図 3に示した構成においては、 X方向標本化関数演算部 34によって H ( 1 +a) が計算され、 X方向畳み込み演算部 35によってこれを Pi + 1 + 1倍 する演算が行われる。 For example, it will be described in detail pixel value P i + 1. J +1 of the interpolation target pixel at the pixel position X i + 1 shown in FIG. 8 (A). The distance between the interpolation position Xa and the pixel position Xi + 1 is 1 + a when the distance between each pixel position is normalized to be 1. Therefore, when the center position of the sampling function H (t) is adjusted to the pixel position Xi + 1 , the value of the sampling function at the interpolation position Xa is H (1 + a). Actually, in order to adjust the peak height at the center position of the sampling function H (t) so that it coincides with the pixel value P i + 1 + 1 , the above-mentioned H (1 + a) is converted to P i + 1 , The value multiplied by j + 1 H (1 + a) · Pi + 1 , j + 1 is the desired value. In the configuration shown in FIG. 3, H (1 + a) is calculated by the X-direction sampling function operation unit 34, and an operation of multiplying it by Pi + 1 + 1 is performed by the X-direction convolution operation unit 35.
同様にして、 図 8 (B) 〜 (D) に示すように、 他の 3つの補間対象画素に対 応して、 補間位置 X aにおける各演算結果 H (a) - Pi + 2 , j + H ( 1 - a) - P i + 3 , j +1ヽ H ( 2 - a) - P i + 4 j +1が得られる。 Similarly, as shown in FIGS. 8 (B) to (D), corresponding to the other three interpolation target pixels, each operation result H (a) -Pi + 2 , j + at the interpolation position Xa H (1−a) −Pi + 3, j + 1ヽ H (2−a) −Pi + 4j + 1 is obtained.
X方向畳み込み演算部 35は、 このようにして得られた 4つの演算結果 H ( 1 + a) · P i +i , j + 1、 H (a) . Pi + 2 , J + 1、 H ( 1 - a) ■ P i + 3 , j十" H (2 -a) · P i + 4 , j +1を加算することにより畳み込み演算を行って、 図 5に示 した画素 Aに対応する X方向補間値 Pj + 1 を出力する。 The X-direction convolution operation unit 35 calculates the four operation results H (1 + a) · Pi + i, j + 1 , H (a) .Pi + 2 , J + 1 , H (1-a) ■ P i + 3 , j tens "H (2-a) · Convolution operation is performed by adding P i + 4 , j +1 to correspond to pixel A shown in Fig. 5. Outputs the X direction interpolation value P j +1 .
また、 図 5に示した他の画素 B〜Dのそれぞれについて同様の補間演算が行わ
れ、 他の 3つの X方向補間値 P j + 2 、 P j + 3 、 P J +4 が X方向畳み込み演算部 3. 5から出力される。 The same interpolation calculation is performed for each of the other pixels B to D shown in FIG. Then, the other three X-direction interpolation values P j +2 , P j +3 , and P J +4 are output from the X-direction convolution unit 3.5.
次に、 このようにして X方向畳み込み演算部 35から出力された 4つの X方向 補間値を用いることにより、 Y方向に沿った補間処理が行われ、 着目画素 pに対 応する補間値 (画素値) が求められる。 Next, by using the four X-direction interpolation values output from the X-direction convolution operation unit 35 in this way, interpolation processing along the Y direction is performed, and the interpolation value (pixel value) corresponding to the pixel of interest p Value) is required.
図 9は、 Y方向に一定間隔で並んだ 4つの X方向補間値とその間の補間値との 関係を示す図である。 上述したように、 本実施形態で用いる標本化関数 H (t ) は、 t =± 2の標本点で 0に収束するため、 着目画素 pを挟んで上下 2個ずつ合 計 4個の X方向補間値を考慮に入れればよい。 したがって、 図 9に示す補間値 P を求めるには、 Y座標が Yj十 i 、 Yj + 2 、 Yj+3 、 Yj+4 であって、 着目画素 p と同じ X座標を有する 4つの画素の画素値である X方向補間値 P + 1 、 Pj + 2 、 P j+3 、 P j+4 のみを考慮すればよい。 FIG. 9 is a diagram illustrating a relationship between four X-direction interpolated values arranged at regular intervals in the Y-direction and interpolated values therebetween. As described above, the sampling function H (t) used in the present embodiment converges to 0 at a sampling point of t = ± 2. What is necessary is just to consider an interpolation value. Accordingly, in order to obtain the interpolation value P shown in FIG. 9, the Y coordinate is Yj10i, Yj + 2, Yj + 3, Yj + 4, and four pixels having the same X coordinate as the pixel of interest p Only the X-direction interpolation values P + 1 , Pj + 2 , Pj + 3, and Pj + 4 that are the values need to be considered.
補間位置 Ybと X方向補間値 P j +1 に対応する画素位置との距離は、 各 X方向 補間値に対応する画素位置間の距離を正規化して 1とすると、 1 +bとなる。 し たがって、 X方向補間値 Ρ」 + 1 に対応する画素位置に標本化関数 H ( t ) の中心 位置を合わせたときに、 補間位置 Ybにおける標本化関数の値は H ( 1 +b) と なる。 実際には、 X方向補間値 Pj + 1 に一致するように標本化関数 H ( t ) の中 心位置のピーク高さを合わせるため、 上述した H ( 1 +b) を Ρ」 + 1 倍した値 H ( 1 +b) - P j-, ι が求めたい値となる。 図 3に示した構成においては、 Y方向 標本化関数演算部 36によって H ( 1 +b) が計算され、 Y方向畳み込み演算部 37によってこれを Pj + 1 倍する演算が行われる。 The distance between the interpolation position Yb and the pixel position corresponding to the X-direction interpolation value P j +1 is 1 + b when the distance between the pixel positions corresponding to each X-direction interpolation value is normalized to 1. Therefore, when the center position of the sampling function H (t) is adjusted to the pixel position corresponding to the X-direction interpolation value Ρ '' + 1 , the value of the sampling function at the interpolation position Yb is H (1 + b) And Actually, to adjust the peak height of the center position of the sampling function H (t) so that it matches the X-direction interpolation value Pj + 1 , the above-mentioned H (1 + b) is multiplied by Ρ " + 1 Value H (1 + b)-P j-, ι is the desired value. In the configuration shown in FIG. 3, H (1 + b) is calculated by the Y-direction sampling function operation unit 36, and an operation of multiplying it by Pj + 1 is performed by the Y-direction convolution operation unit 37.
同様にして、 他の 3つの X方向補間値 P j + 2 、 Pj + 3 、 P j + 4 に対応して、 補 間位置 Ybにおける各演算結果 H (b) . Pj + 2 、 H ( 1— b) · Ρ」 + 3 、 Η (2— b) · Pj+4 が得られる。 Similarly, corresponding to the other three X-direction interpolation values P j +2 , P j +3 , and P j +4 , each operation result H (b) at the interpolation position Yb. P j +2 , H (1—b) · Ρ ” +3 , Η (2—b) · P j + 4 .
Y方向畳み込み演算部 37は、 このようにして得られた 4つの演算結果 Η ( 1 + b) · PJ + i , H (b) · P j + 2 , H ( 1 -b) - Pj + 3 、 H (2—b) · Ρ J +4 を加算することにより畳み込み演算を行って、 図 4および図 5に示した着目 画素 p (X , y) に対応する画素値である補間値 Pを出力する。 同様にして、 画 像処理後の画像を構成する全ての画素の画素値が補間処理によって算出される。
このように、 本実施形態の画像処理装置 1は、 標本化関数として全域で 1回だ-. け微分可能な有限台の関数を用いているため、 画像処理によって得られる画像を 構成する各画素の画素値を補間処理によって算出する際に必要な演算量を大幅に 減らすことができる。 The Y-direction convolution operation unit 37 calculates the four operation results こ の (1 + b) J P J + i, H (b) · P j + 2 , H (1-b)-P j +3 , H (2−b) · Ρ J +4 to perform a convolution operation to obtain an interpolation value that is a pixel value corresponding to the pixel of interest p (X, y) shown in FIGS. 4 and 5. Outputs P. Similarly, the pixel values of all the pixels constituting the image after the image processing are calculated by the interpolation processing. As described above, the image processing apparatus 1 according to the present embodiment uses a finite number of functions that can be differentiated only once as a sampling function in the entire region. Therefore, each pixel constituting the image obtained by the image processing is used. It is possible to greatly reduce the amount of calculation required when calculating the pixel values of the above by interpolation processing.
特に、 画像処理後の各画素の画素値を算出する際に、 合計 1 6個の補間対象画 素の画素値のみを考慮すればよいために演算量を減らすことができることに加 え、 標本化関数が簡単な二次の区分多項式によって表現されているため、 簡単な 積和演算により標本化関数の値を求めることができ、 この点からもさらに演算量 を減らすことができる。 In particular, when calculating the pixel value of each pixel after image processing, only the pixel values of a total of 16 pixels to be interpolated need to be considered, so that the amount of calculation can be reduced, and sampling can be performed. Since the function is represented by a simple quadratic piecewise polynomial, the value of the sampling function can be obtained by a simple multiply-accumulate operation, and the amount of operation can be further reduced from this point.
また、 本実施形態で用いた標本化関数は有限台であるため、 従来であれば補間 演算の対象とする画素の数を有限個に減らしたときに生じる打ち切り誤差がな く、 折り返し歪みの発生を防止して、 誤差の少ない補間結果を得ることができ る。 このため、 画像処理によって得られる画像の形状や色合い等に生じる歪みを 低減することができる。 In addition, since the sampling function used in the present embodiment is of finite level, there is no truncation error that occurs when the number of pixels to be subjected to the interpolation operation is reduced to a finite number, and aliasing distortion occurs. Thus, the interpolation result with less error can be obtained. For this reason, it is possible to reduce distortion generated in the shape, color, and the like of an image obtained by image processing.
( 2 ) 原画像を構成する各画素の画素位置は変更せずに、 画像処理後の画像を 構成する各画素の画素間隔を 1 / a倍に変更して各画素位置を算出する場合 (2) When calculating the pixel position by changing the pixel interval of each pixel constituting the image after image processing to 1 / a times without changing the pixel position of each pixel constituting the original image
上述した実施形態の説明では、 画像処理の倍率に応じて原画像を構成する各画 素の間隔を仮想的に広げ、 この間隔を広げた各画素の画素値に基づいて画像処理 後の画像を構成する各画素の画素値を補間処理によって求めたが、 原画像を構成 する各画素の間隔を仮想的に広げることなく画像処理後の画像を構成する各画素 の画素値を求めるようにしてもよい。 In the description of the above-described embodiment, the interval between the pixels constituting the original image is virtually widened according to the magnification of the image processing, and the image after the image processing is processed based on the pixel value of each pixel having the widened interval. Although the pixel values of the constituent pixels were obtained by interpolation processing, the pixel values of the constituent pixels of the image after image processing may be obtained without virtually widening the intervals between the constituent pixels of the original image. Good.
例えば、 原画像を a倍に拡大する場合には、 拡大画像の X方向および Y方向の それそれの画素数が a倍になる。 ある原画像を a倍に拡大して X方向および Y方 向のそれぞれの画素数が a倍となった拡大画像を得るには、 まず原画像を構成す る各画素の間隔 Lを 1 / a倍した画素位置を計算によって求め、 次にこれらの画 素位置に対応する画素値を補間処理によって求めればよい。 For example, when the original image is enlarged by a times, the number of pixels in the X and Y directions of the enlarged image becomes a times. To obtain a magnified image in which the number of pixels in each of the X and Y directions is a times larger by enlarging a certain original image by a times, first, the interval L between pixels constituting the original image is 1 / a The multiplied pixel positions may be obtained by calculation, and then the pixel values corresponding to these pixel positions may be obtained by interpolation processing.
以下、 画像処理によって得られる画像を構成する各画素の画素値を補間処理に よって算出する変形例について説明する。 図 1 0は、 図 1に示した画像処理装置 1によって行われる画像の拡大処理の変形例の概要を示す図である。 図 1 0
( a ) は、 画素デ一夕格納部 1 0に画素データが格納された原画像の構成画素を- 部分的に示しており、 參印が各画素を示している。 X方向および Y方向のそれそ れに沿った画素間隔を Lとする。 Hereinafter, a description will be given of a modification in which the pixel value of each pixel constituting the image obtained by the image processing is calculated by the interpolation processing. FIG. 10 is a diagram showing an outline of a modified example of the image enlarging process performed by the image processing apparatus 1 shown in FIG. Fig. 10 (a) partially shows the constituent pixels of the original image in which the pixel data is stored in the pixel data storage unit 10, and reference symbols indicate each pixel. Let L be the pixel spacing along the X and Y directions.
まず、 画素位置算出部 2 0は、 画素データ格納部 1 0に格納された各画素の画 素データに基づいて、 画像処理によって得られる画像を構成する各画素の画素位 置を算出する。 図 1 0 ( b ) の点線が交差する位置が算出対象となる画素位置で あり、 X方向および Y方向のそれぞれの隣接間隔が L / aとなるような画素位置 が算出される。 First, the pixel position calculation unit 20 calculates the pixel position of each pixel constituting the image obtained by the image processing based on the pixel data of each pixel stored in the pixel data storage unit 10. The positions where the dotted lines in FIG. 10 (b) intersect are the pixel positions to be calculated, and the pixel positions are calculated such that the adjacent intervals in the X and Y directions are L / a.
次に、 画素値算出部 3 0は、 画素位置算出部 2 0によって算出された画素位置 に対応する各画素の画素値 (図 1 0 ( c ) の〇印) を、 原画像を構成する各画素 (図 1 0 ( c ) のき印) の画素値を用いて補間処理によって算出する。 なお、 画 素値算出部 3 0によって行われる補間処理自体は、 図 2に概要を示した補間処理 と基本的に同じであり、 図 3に示した構成によって実現される。 すなわち、 補間 演算によって画素値を求めようとするいずれかの画素を着目画素 pとし、 この着 目画素 Pを中心にして X方向および Y方向のそれぞれについて、 原画像に含まれ る複数の画素の中から前後 2画素分ずつの範囲に含まれる 1 6個の画素が補間対 象画素として抽出される。 これらの着目画素 pと 1 6個の補間対象画素の関係 は、 図 4に示した関係がそのまま適用され、 着目画素 pの画素値が図 6に示した 標本化関数を用いた畳み込み演算によって算出される。 Next, the pixel value calculation unit 30 calculates the pixel value of each pixel corresponding to the pixel position calculated by the pixel position calculation unit 20 (indicated by a triangle in FIG. 10 (c)) into each of the pixels constituting the original image. It is calculated by interpolation using the pixel value of the pixel (marked in Fig. 10 (c)). Note that the interpolation processing itself performed by the pixel value calculation unit 30 is basically the same as the interpolation processing outlined in FIG. 2, and is realized by the configuration shown in FIG. That is, any pixel for which a pixel value is to be obtained by an interpolation operation is defined as a target pixel p, and a plurality of pixels included in the original image in each of the X direction and the Y direction with the target pixel P as a center. Sixteen pixels included in the range of two pixels before and after from the inside are extracted as pixels to be interpolated. The relationship shown in Fig. 4 is directly applied to the relationship between the target pixel p and the 16 interpolation target pixels, and the pixel value of the target pixel p is calculated by a convolution operation using the sampling function shown in Fig. 6. Is done.
このように、 原画像の画素間隔を変えずに、 画像処理によって得られる画像を 構成する各画素の画素位置を直接計算によって求め、 この画素位置に対応する画 素値を補間処理によって算出することによつても所定倍率の画像処理を行うこと ができる。 この補間処理は、 標本化関数として全域で 1回だけ微分可能な有限台 の関数を用いて行われるため、 各画素の画素値を算出する際に必要な演算量を大 幅に減らすことができ、 しかも打ち切り誤差が生じないため画像処理によって得 られる画像に歪みや色の変化等が生じることを防止することができる。 Thus, without changing the pixel interval of the original image, the pixel position of each pixel constituting the image obtained by the image processing is directly calculated, and the pixel value corresponding to this pixel position is calculated by the interpolation process. Accordingly, image processing at a predetermined magnification can be performed. Since this interpolation process is performed using a finite number of functions that can be differentiated only once in the entire area as a sampling function, the amount of computation required to calculate the pixel value of each pixel can be significantly reduced. In addition, since no truncation error occurs, it is possible to prevent an image obtained by the image processing from being distorted or changed in color.
なお、 本発明は上記実施形態に限定されるものではなく、 本発明の要旨の範囲 内で種々の変形実施が可能である。 例えば、 上述した実施形態では、 画像処理の 具体例として原画像を所定の倍率で拡大する場合を説明したが、 原画像を所定の
倍率で縮小する場合も同様に考えることができる。 The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention. For example, in the above-described embodiment, a case where the original image is enlarged at a predetermined magnification has been described as a specific example of the image processing. The same can be considered for a case of reduction by a magnification.
また、 上述した実施形態では、 標本化関数を全域で 1回だけ微分可能な有限台 の関数としたが、 微分可能回数を 2回以上に設定してもよい。 また、 図 5に示す ように、 本実施形態の標本化関数は、 t =± 2で 0に収束するようにしたが、 t =± 3以上で 0に収束するようにしてもよい。 Further, in the above-described embodiment, the sampling function is a finite-level function that can be differentiated only once in the entire region. However, the number of differentiable times may be set to two or more. Further, as shown in FIG. 5, the sampling function of the present embodiment converges to 0 at t = ± 2, but may converge to 0 at t = ± 3 or more.
また、 上述した実施形態では、 3階 Bスプライン関数 F ( t ) を用いて標本化 関数 H ( t ) を定義したが、 二次の区分多項式を用いて標本化関数 H (t) を、 In the embodiment described above, the sampling function H (t) is defined using the third-order B-spline function F (t), but the sampling function H (t) is calculated using a quadratic piecewise polynomial.
(一 t 2 - 4 t - 4 ) - 2≤t <- 3/2 (One t 2-4 t-4)-2≤t <-3/2
( 3 t 2 + 8 t + 5 ) /4 - 3/2≤t <- l (3 t 2 + 8 t + 5) / 4-3 / 2≤t <-l
( 5 t 2 + 1 2 t + 7 ) /4 - 1≤ t <- 1 /2 (5 t 2 + 1 2 t + 7) / 4-1≤ t <-1/2
(- 7 t 2 +4) /4 - l/2≤t < l/2 (-7 t 2 +4) / 4-l / 2≤t <l / 2
( 5 t 2 - 1 2 t + 7 ) /4 1 /2≤ t < 1 (5 t 2 - 1 2 t + 7) / 4 1 / 2≤ t <1
( 3 t 2 - 8 t + 5 ) /4 1≤ t < 3/2 (3 t 2 - 8 t + 5) / 4 1≤ t <3/2
(一 t 2 + 4 t - 4 ) 3/2≤ t≤ 2 (One t 2 + 4 t-4) 3 / 2≤ t≤ 2
と等価的に表すこともできる。 Can be equivalently expressed as
また、 上述した実施形態では、 二次元上に配置された原画像の各画素に対応す る画素値を用いて、 最初に X方向に沿って補間処理を行い、 その後この補間処理 によって得られた X方向補間値を用いて Y方向に沿って補間処理を行って、 最終 的に着目画素 Pに対応する補間値 Pを求めるようにしたが、 補間処理を行う順番 を入れ替えるようにしてもよい。 すなわち、 最初に Y方向に沿って補間処理を行 い、 その後この補間処理によって得られた Y方向補間値を用いて X方向に沿って 補間処理を行って、 最終的に着目画素点 pに対応する補間値 Pを求めるようにし てもよい。 産業上の利用可能性 In the above-described embodiment, the interpolation processing is first performed along the X direction using the pixel values corresponding to each pixel of the original image arranged two-dimensionally, and thereafter, the interpolation processing is performed. Although the interpolation processing is performed along the Y direction using the X-direction interpolation value to finally obtain the interpolation value P corresponding to the target pixel P, the order in which the interpolation processing is performed may be changed. That is, first, interpolation processing is performed along the Y direction, and then interpolation processing is performed along the X direction using the Y direction interpolation value obtained by this interpolation processing, and finally corresponds to the pixel point p of interest. Alternatively, the interpolation value P to be calculated may be obtained. Industrial applicability
上述したように、 本発明によれば、 所定の倍率が指定されたときに、 画像処理 後の画像を構成する複数の画素の画素位置を算出した後に、 これらの各画素の画 素値を求める補間処理を、 有限回微分可能であって有限台の値を有する標本化関 数を用いた畳み込み演算によって行っている。 有限台の値を有する標本化関数を
用いることにより、 この有限台の区間に対応する画素データのみが補間演算の対-. 象となるため、 演算量が少なく、 しかも打ち切り誤差が全く生じないため、 良好 な補間精度を得ることができ、 画像処理によって得られる画像の歪みを少なくす ることができる。
As described above, according to the present invention, when a predetermined magnification is designated, after calculating the pixel positions of a plurality of pixels constituting an image after image processing, the pixel value of each of these pixels is obtained. The interpolation process is performed by convolution using a sampling function that is finitely differentiable and has finite values. A sampling function with finite values By using, only the pixel data corresponding to this finite number of sections can be subjected to the interpolation calculation, so that the amount of calculation is small and no truncation error occurs, so that good interpolation accuracy can be obtained. In addition, distortion of an image obtained by image processing can be reduced.
Claims
1. 二変数で規定される二次元空間上に等間隔に配置された複数の画素によって 構成される原画像について、 前記複数の画素の画素位置と画素値を含む第 1の画 素データを格納する第 1の画素データ格納手段と、 1. For an original image composed of a plurality of pixels arranged at equal intervals in a two-dimensional space defined by two variables, first pixel data including pixel positions and pixel values of the plurality of pixels is stored. First pixel data storage means for performing
画像処理の所定の倍率が指定されたときに、 この倍率に基づいて、 前記画像処 理によって得られる画像を構成する各画素の画素位置を算出する画素位置算出手 段と、 A pixel position calculating means for calculating a pixel position of each pixel constituting an image obtained by the image processing based on the predetermined magnification when a predetermined magnification of the image processing is designated;
前記画像処理によって得られる画像の各画素の画素値を、 前記画素位置算出手 段によって算出された画素位置と前記第 1の画素データ格納手段に格納された前 記第 1の画素データとに基づいて、 有限回微分可能であって有限台の値を有する 標本化関数を用いた畳み込み演算を前記二変数のそれぞれについて別々に行うこ とによって算出する画素値算出手段と、 The pixel value of each pixel of the image obtained by the image processing is calculated based on the pixel position calculated by the pixel position calculation means and the first pixel data stored in the first pixel data storage unit. A pixel value calculating means for calculating by separately performing a convolution operation using a sampling function having finitely differentiable and finite values for each of the two variables;
前記画素値算出手段によって算出された各画素の画素値を、 それぞれの画素位 置とともに第 2の画素データとして格納する第 2の画素データ格納手段と、 を備えることを特徴とする画像処理装置。 An image processing apparatus comprising: a second pixel data storage unit that stores, as second pixel data, a pixel value of each pixel calculated by the pixel value calculation unit together with a pixel position.
2. 前記画素位置算出手段は、 前記原画像を構成する各画素の画素位置に対する 相対的な関係において、 前記画像処理によって得られる画像を構成する各画素の 画素位置を算出することを特徴とする請求の範囲第 1項記載の画像処理装置。 2. The pixel position calculating means calculates a pixel position of each pixel forming an image obtained by the image processing in a relative relationship with respect to a pixel position of each pixel forming the original image. The image processing device according to claim 1.
3. 前記標本化関数は、 全域が 1回だけ微分可能な関数であることを特徴とする 請求の範囲第 1項記載の画像処理装置。 3. The image processing apparatus according to claim 1, wherein the sampling function is a function whose entire region can be differentiated only once.
4. 前記標本化関数は、 3階 Bスプライン関数を F (t) としたときに、 4. When the sampling function is F (t) with the third-order B-spline function,
H ( t ) =-F (t + 1/2) /4 + F (t) - F (t - 1/2) /4 で定義されることを特徴とする請求の範囲第 1項記載の画像処理装置。 The image according to claim 1, wherein H (t) =-F (t + 1/2) / 4 + F (t) -F (t-1 / 2) / 4. Processing equipment.
5. 前記 3階 Bスプライン関数 F ( t ) は、 5. The third-order B-spline function F (t) is
— 3/2^tく一 1/2については (4 t2 + 12 t + 9 ) /4で、 — 1 /2≤ t < 1 /2については一 2 t 2 +3/2で、 — For (3/2 ^ t) 1/2, (4 t 2 + 12 t + 9) / 4, for — 1 / 2≤ t <1/2, for 1 2 t 2 +3/2,
l/2^tく 3/2については (4 t2 - 12 t + 9 ) / 4で表されること を特徴とする請求の範囲第 4項記載の画像処理装置。 l / 2 ^ for t rather 3/2 (4 t 2 - 12 t + 9) / 4 by being represented by the image processing apparatus of the fourth Claims claims, wherein.
6. 前記標本化関数は、
一 2≤ t <— 3/2については (一 t 2 - 4 t - 4 ) /4で、 一 3/2≤ t <— 1については ( 3 t 2 + 8 t + 5 ) /4で、 6. The sampling function is: For 1 2≤ t <— 3/2, (1 t 2-4 t-4) / 4, for 1 3 / 2≤ t <— 1, (3 t 2 + 8 t + 5) / 4,
一 1 ^ tく一 1/2については ( 5 t 2 + 1 2 t + 7 ) /4で、 For 1 1 ^ t 1 1/2, (5 t 2 + 1 2 t + 7) / 4
— l/2≤tく 1/2については (一 7 t 2 +4) /4で、 — For l / 2≤t く 1/2, (one 7 t 2 +4) / 4,
l/2≤t < lについては (5 t 2 - 1 2 t + 7 ) /4で、 For l / 2≤t <l - at (5 t 2 1 2 t + 7) / 4,
1 tく 3/2については ( 3 t 2 — 8 t + 5 ) /4で、 For 1 t <3/2, (3 t 2 — 8 t + 5) / 4,
3/2≤t ^ 2については (一 t 2 + 4 t - ) /4で定義されることを特 徴とする請求の範囲第 1項記載の画像処理装置。 2. The image processing apparatus according to claim 1, wherein 3 / 2≤t ^ 2 is defined by (1 t 2 +4 t-) / 4.
7. 前記画素値算出手段は、 7. The pixel value calculation means,
前記画像処理によって得られる画像を構成する複数の画素のいずれかを着目画 素として、 前記原画像を構成する複数の画素の中から前記二次元空間上で前記着 目画素の周辺の所定範囲に存在する複数の画素を抽出する補間対象画素抽出手段 と、 Any one of a plurality of pixels constituting the image obtained by the image processing is taken as a pixel of interest, and a plurality of pixels constituting the original image are selected from the plurality of pixels constituting the original image in a predetermined range around the focused pixel in the two-dimensional space. Interpolation target pixel extraction means for extracting a plurality of existing pixels;
前記補間対象画素抽出手段によって抽出された複数の画素のそれぞれについ て、 前記二次元空間を規定する前記二変数の一方に対応する方向に沿って、 前記 着目画素までの距離を t 1として前記標本化関数 H ( t 1 ) を計算する第 1の標 本化関数演算手段と、 For each of the plurality of pixels extracted by the interpolation target pixel extraction unit, the distance to the pixel of interest is t 1 along a direction corresponding to one of the two variables defining the two-dimensional space, and the sample is A first standardization function calculating means for calculating a generalization function H (t1),
前記第 1の標本化関数演算手段によって計算された複数の標本化関数の値を用 いて、 前記二変数の一方に沿った畳み込み演算を行うことにより、 前記二変数の 一方に沿った複数の系列毎に第 1の補間値を求める第 1の畳み込み演算手段と、 前記第 1の畳み込み演算手段によって抽出された複数の前記第 1の補間値のそ れそれについて、 前記二変数の他方に対応する方向に沿って、 前記着目画素まで の距離を t 2として前記標本化関数 H ( t 2) を計算する第 2の標本化関数演算 手段と、 A plurality of sequences along one of the two variables is obtained by performing a convolution operation along one of the two variables using the values of the plurality of sampling functions calculated by the first sampling function operation means. A first convolution operation means for obtaining a first interpolation value for each of the plurality of first interpolation values extracted by the first convolution operation means, each of which corresponds to the other of the two variables A second sampling function calculating means for calculating the sampling function H (t 2) along a direction with a distance to the pixel of interest as t 2,
前記第 2の標本化関数演算手段によって計算された複数の標本化関数の値を用 いて、 前記二変数の他方に沿った畳み込み演算を行うことにより、 前記着目画素 に対応する第 2の補間値を求める第 2の畳み込み演算手段と、 By performing a convolution operation along the other of the two variables using the values of the plurality of sampling functions calculated by the second sampling function operation means, a second interpolation value corresponding to the target pixel is obtained. A second convolution operation means for obtaining
を備えることを特徴とする請求の範囲第 4項記載の画像処理装置。 5. The image processing device according to claim 4, comprising:
8. 前記画素値算出手段は、
前記画像処理によって得られる画像を構成する複数の画素のいずれかを着目画-. 素として、 前記原画像を構成する複数の画素の中から前記二次元空間上で前記着 目画素の周辺の所定範囲に存在する複数の画素を抽出する補間対象画素抽出手段 と、 8. The pixel value calculating means includes: Any one of a plurality of pixels constituting the image obtained by the image processing is regarded as a pixel of interest, and a predetermined area around the focused pixel in the two-dimensional space is selected from among the plurality of pixels constituting the original image. Interpolation target pixel extraction means for extracting a plurality of pixels existing in the range,
前記補間対象画素抽出手段によって抽出された複数の画素のそれぞれについ て、 前記二次元空間を規定する前記二変数の一方に対応する方向に沿って、 前記 着目画素までの距離を t 1として前記標本化関数 H ( t 1 ) を計算する第 1の標 本化関数演算手段と、 For each of the plurality of pixels extracted by the interpolation target pixel extraction unit, the distance to the pixel of interest is t 1 along a direction corresponding to one of the two variables defining the two-dimensional space, and the sample is A first standardization function calculating means for calculating a generalization function H (t1),
前記第 1の標本化関数演算手段によって計算された複数の標本化関数の値を用 いて、 前記二変数の一方に沿った畳み込み演算を行うことにより、 前記二変数の 一方に沿った複数の系列毎に第 1の補間値を求める第 1の畳み込み演算手段と、 前記第 1の畳み込み演算手段によって抽出された複数の前記第 1の補間値のそ れそれについて、 前記二変数の他方に対応する方向に沿って、 前記着目画素まで の距離を t 2として前記標本化関数 H ( t 2 ) を計算する第 2の標本化関数演算 手段と、 A plurality of sequences along one of the two variables is obtained by performing a convolution operation along one of the two variables using the values of the plurality of sampling functions calculated by the first sampling function operation means. A first convolution operation means for obtaining a first interpolation value for each of the plurality of first interpolation values extracted by the first convolution operation means, each of which corresponds to the other of the two variables A second sampling function calculating means for calculating the sampling function H (t 2) along a direction with a distance to the pixel of interest as t 2,
前記第 2の標本化関数演算手段によって計算された複数の標本化関数の値を用 いて、 前記二変数の他方に沿った畳み込み演算を行うことにより、 前記着目画素 に対応する第 2の補間値を求める第 2の畳み込み演算手段と、 By performing a convolution operation along the other of the two variables using the values of the plurality of sampling functions calculated by the second sampling function operation means, a second interpolation value corresponding to the target pixel is obtained. A second convolution operation means for obtaining
を備えることを特徴とする請求の範囲第 6項記載の画像処理装置。
7. The image processing device according to claim 6, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10/178123 | 1998-06-10 | ||
JP10178123A JPH11353473A (en) | 1998-06-10 | 1998-06-10 | Image processor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999064987A1 true WO1999064987A1 (en) | 1999-12-16 |
Family
ID=16043063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/003043 WO1999064987A1 (en) | 1998-06-10 | 1999-06-08 | Image processor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH11353473A (en) |
TW (1) | TW510999B (en) |
WO (1) | WO1999064987A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6584237B1 (en) | 1999-08-23 | 2003-06-24 | Pentax Corporation | Method and apparatus for expanding image data |
US6633675B1 (en) | 1999-08-23 | 2003-10-14 | Pentax Corporation | Method and apparatus for compressing and expanding image data |
US6661924B1 (en) | 1999-09-10 | 2003-12-09 | Pentax Corporation | Method and apparatus for compressing and expanding image data |
US20120068094A1 (en) * | 2009-05-21 | 2012-03-22 | Kenneth Michael Terrell | Apparatus and Method for Remotely Operating Manual Valves |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4442392B2 (en) | 2004-11-05 | 2010-03-31 | カシオ計算機株式会社 | Image processing apparatus and image processing method |
JP4832487B2 (en) * | 2008-09-04 | 2011-12-07 | 独立行政法人科学技術振興機構 | Image processing apparatus, method, and program |
JP4823290B2 (en) * | 2008-10-06 | 2011-11-24 | 独立行政法人科学技術振興機構 | Image editing device |
WO2010058735A1 (en) * | 2008-11-21 | 2010-05-27 | 独立行政法人科学技術振興機構 | Image processing device and method |
JP4693895B2 (en) * | 2008-12-05 | 2011-06-01 | 独立行政法人科学技術振興機構 | Image processing apparatus and method |
JP4650958B2 (en) * | 2008-11-21 | 2011-03-16 | 独立行政法人科学技術振興機構 | Image processing apparatus, method, and program |
JP4744593B2 (en) * | 2008-12-26 | 2011-08-10 | 独立行政法人科学技術振興機構 | Image processing apparatus, method, and program |
JP6403401B2 (en) | 2014-03-05 | 2018-10-10 | キヤノン株式会社 | Image processing apparatus, image processing method, and program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04330858A (en) * | 1991-05-02 | 1992-11-18 | Toppan Printing Co Ltd | Digital picture enlarging and reducing method and device |
JPH04354068A (en) * | 1991-05-31 | 1992-12-08 | Konica Corp | Method and device for interpolating picture data |
-
1998
- 1998-06-10 JP JP10178123A patent/JPH11353473A/en active Pending
-
1999
- 1999-06-08 WO PCT/JP1999/003043 patent/WO1999064987A1/en active Application Filing
- 1999-06-10 TW TW88109733A patent/TW510999B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04330858A (en) * | 1991-05-02 | 1992-11-18 | Toppan Printing Co Ltd | Digital picture enlarging and reducing method and device |
JPH04354068A (en) * | 1991-05-31 | 1992-12-08 | Konica Corp | Method and device for interpolating picture data |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6584237B1 (en) | 1999-08-23 | 2003-06-24 | Pentax Corporation | Method and apparatus for expanding image data |
US6633675B1 (en) | 1999-08-23 | 2003-10-14 | Pentax Corporation | Method and apparatus for compressing and expanding image data |
US6661924B1 (en) | 1999-09-10 | 2003-12-09 | Pentax Corporation | Method and apparatus for compressing and expanding image data |
US20120068094A1 (en) * | 2009-05-21 | 2012-03-22 | Kenneth Michael Terrell | Apparatus and Method for Remotely Operating Manual Valves |
Also Published As
Publication number | Publication date |
---|---|
JPH11353473A (en) | 1999-12-24 |
TW510999B (en) | 2002-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gribbon et al. | A novel approach to real-time bilinear interpolation | |
WO1999064987A1 (en) | Image processor | |
CN103034973B (en) | Based on the adaptive image scaling method of bicubic interpolation | |
CN103745439B (en) | Image magnification method and device | |
JPH07302336A (en) | Method and apparatus for making feature of image ambiguous | |
CN109087279B (en) | Method for rapidly acquiring object deformation based on digital image diffraction | |
JP2008512767A (en) | General two-dimensional spatial transformation expression system and method | |
CN111968033A (en) | Image scaling processing method and device | |
CN111402366B (en) | Text rendering method and device, electronic equipment and storage medium | |
JP2000182039A5 (en) | ||
JP2005326977A (en) | Image magnification device and program | |
Amanatiadis et al. | Design and implementation of a fuzzy area-based image-scaling technique | |
Gour et al. | Hardware accelerator for real-time image resizing | |
CN112561802A (en) | Interpolation method of continuous sequence images, interpolation model training method and system thereof | |
TWI406187B (en) | Fast and high quality image/video interpolation method and apparatus | |
WO1999064989A1 (en) | Image processor | |
CN107146208A (en) | Restoration Method of Local Deformation of Incomplete Model Based on Thin Plate Spline Basis Function Optimization | |
CN110264401A (en) | Continuous type image magnification method, device and storage medium based on radial basis function | |
WO1999064988A1 (en) | Two-dimensional data interpolating system | |
CN116092106A (en) | Seal identification method, device, electronic equipment and storage medium | |
WO2000075865A1 (en) | Image processing method | |
CN113470140B (en) | Dynamic reversing trajectory realization method and device, computer equipment and storage medium | |
CN101789120A (en) | Image interpolation method based on cosine polynomial | |
Hajizadeh et al. | Improvement of image zooming using least directional differences based on linear and cubic interpolation | |
CN119172491B (en) | Cutout methods, equipment, media and products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |