+

WO1999061591A1 - GENE D'ENDO-β-N-ACETYLGLUCOSAMINIDASE - Google Patents

GENE D'ENDO-β-N-ACETYLGLUCOSAMINIDASE Download PDF

Info

Publication number
WO1999061591A1
WO1999061591A1 PCT/JP1999/002644 JP9902644W WO9961591A1 WO 1999061591 A1 WO1999061591 A1 WO 1999061591A1 JP 9902644 W JP9902644 W JP 9902644W WO 9961591 A1 WO9961591 A1 WO 9961591A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
amino acid
seq
protein
acid sequence
Prior art date
Application number
PCT/JP1999/002644
Other languages
English (en)
French (fr)
Inventor
Kazuo Kobayashi
Makoto Takeuchi
Akihiko Iwamatsu
Kenji Yamamoto
Hidehiko Kumagai
Satoshi Yoshida
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to DE69939823T priority Critical patent/DE69939823D1/de
Priority to US09/700,993 priority patent/US6815191B1/en
Priority to EP99921196A priority patent/EP1081221B1/en
Priority to AU38499/99A priority patent/AU3849999A/en
Publication of WO1999061591A1 publication Critical patent/WO1999061591A1/ja
Priority to HK03101684.6A priority patent/HK1049682B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01096Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase (3.2.1.96)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)

Definitions

  • the present invention relates to a novel end-] 3-N-acetyl-dalcosaminidase gene.
  • the gene relates to a gene derived from the genus Mucor.
  • the present invention relates to a recombinant plasmid containing the gene, an organism transformed with the plasmid, and a method for producing a novel end-] 3-N-acetyl-dalcosaminidase using the transformant. It is. Background art
  • Glycoproteins are widely found in animal and plant tissues, cell membranes and walls of eukaryotic microorganisms.
  • sugar chains of glycoproteins play important roles in mechanisms such as cell differentiation, carcinogenesis, and intercellular recognition.
  • Research is underway on the correlation of Various glycosidases have been used to cleave sugar chains from glycoproteins or to identify the structure of sugar chains as a means to achieve that purpose.
  • endo-i3-N-acetylglucosaminidase acts on asparagine-linked sugar chains (N-linked sugar chains and N-type sugar chains) present in glycoproteins to form dia-linked sugar chains. It has the action of cleaving cetyl chitobiose to release sugar chains.
  • 3-N-Acetyldarcosaminidase is thought to be important for the analysis of the structure and function of glycoprotein sugar chains because it can release the sugar chains of glycoproteins from the protein portions.
  • Asparagine-linked sugar chains are classified into high mannose type (mannan type sugar chain), hybrid type and complex type based on their structures.
  • Endo H (AL Tarentino and F. Maley, Biol. Chem., 249, 811 (1974)), Endo F, which are conventionally known endo-J3-N-acetyldarcosaminidases, (K. Takegawa, et al., Eur. J. Biochem., 202, 175 (1991)), EndoA (K. Takegawa, et al., Appl. Environ. Microbiol., 55, 3107 (1989)) and the like.
  • these enzymes only act on glycans of a specific structure and do not act on glycoproteins in the presence of denaturants:
  • Mucor hi emalis-derived endo-; 3 -'- acetyldarcosa minidase has the ability to cleave not only high mannose type (mannan type sugar chain) and hybrid type but also complex type to three-branched complex sugar chain. It is also known that if it is a desialic type, it has the ability to cleave up to four-branched complex sugar chains and can release sugar chains from glycoproteins without denaturing the protein (S. Kadowaki, et al., Agric. Biol.
  • endo- ⁇ -acetylacetyl glucosaminidase for sugar conversion are: 1) its ability to cleave both mannan type and complex type as its substrate specificity; 2) the reverse reaction of the degradation reaction It is required to have a transglycosylation reaction ability. Therefore, it can be said that endo- / 3-N-acetyldarcosaminidase derived from Mucor hiemal is an enzyme suitable for performing the above conversion.
  • the present inventors have proposed a sugar chain conversion technology using an end
  • the conventional breeding method using Rhizobia cells aims to improve enzyme productivity.
  • the conventional breeding method was mainly limited to a method of selecting from a mutant obtained by ultraviolet rays or a mutagenic agent, so that it was difficult to isolate a stable mutant.
  • mold generally produces a variety of proteolytic enzymes, which is not preferable for producing enzymes for sugar conversion. Therefore, in order to eliminate these problems, multiple purification steps must be taken, which complicates the operation and reduces the yield of the enzyme.
  • culturing a microorganism belonging to the genus Mucor, which is a type of hair mold, and purifying the enzyme from the culture supernatant does not eliminate the contamination with proteases, and the enzyme productivity of the cells is reduced. It was difficult to prepare in large quantities due to its low cost, and its practical value was low.
  • the present invention relates to an endo- ⁇ -acetyl-darcosaminidase, an endo-
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, based on the partial amino acid sequence information of end-3-N-acetyldarcosaminidase derived from Mucor hiemal is described above, We succeeded in obtaining the gene encoding the enzyme from the cDNA library prepared from the producing bacterium, Mucor hiemal is, and succeeded in expressing it in yeast. Reached.
  • the present invention is the following recombinant protein (a) or (b).
  • a protein comprising an amino acid sequence in which at least one amino acid is deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 3, and which has an endo-i3-N-acetyldarcosaminidase activity
  • the present invention provides an endo-) 3-N- encoding the following protein (a) or (b): Acetyl dalcosaminidase gene and a DNA that hybridizes with the gene under stringent conditions and encodes a protein having end-] 3-N-acetyl dalcosaminidase activity. Is a gene.
  • a protein comprising an amino acid sequence represented by SEQ ID NO: 3 in which at least one amino acid is deleted, substituted, inserted or added, and which has endo-jS-N-acetylacetylsaminidase activity
  • the present invention is a gene containing the following DNA (c) or (d).
  • Examples of the above genes include those derived from microorganisms belonging to the genus Mucor (eg, Mucor 'hemalis).
  • the present invention is a recombinant vector containing the gene.
  • the present invention is a transformant containing the recombinant vector.
  • the present invention provides a method for producing an end-N-acetyl-dalcosaminidase, which comprises culturing the transformant and collecting endo-] 3- N -acetyl-dalcosaminidase from the resulting culture.
  • Manufacturing method c
  • the present invention provides a method for culturing a bacterium that produces end-J3-N-acetyl-dalcosaminidase, purifying end-]-N-acetyl-dalcosaminidase from the resulting culture, and then purifying the enzyme.
  • a degenerate probe is designed based on the partial amino acid sequence, the gene encoding the enzyme is cloned by performing PCR, and the enzyme is encoded from a cDNA library of a bacterium producing end- / 3-N-acetylacetylchocominidase. Cloning a gene to be cloned.
  • the present invention is characterized in that a recombinant vector is obtained by incorporating the cloned gene into a vector, and a transformant is obtained by introducing the recombinant vector into a host cell. . Furthermore, the present invention provides a method for culturing the transformant in a large amount, whereby end-0-N-acetylglucosaminida is obtained. —It is characterized by producing ze.
  • a bacterium belonging to the genus Mucor preferably Mucor hiemalis, more preferably, Biotechnology, National Institute of Advanced Industrial Science and Technology Mucor hiemalis (accession number FE RM BP-4991) deposited at the Technical Research Institute (1-3 1-3 Tsukuba East, Ibaraki Prefecture) is listed.
  • the medium composition used for culturing these strains may be any that is used for culturing ordinary microorganisms.
  • carbon sources include dalcoses, sucrose, mannose, galactose, maltose, Carbohydrates such as soluble starch and dextrin
  • nitrogen sources include yeast extract and tryptone.
  • the inorganic salts in addition to the inorganic salts contained in the above-mentioned nitrogen source, salts such as various sodium salts, potassium salts, calcium salts, magnesium salts, and phosphate salts are used, and in some cases, vitamins and the like are added. You can. After culturing, sterilize the culture medium in the usual manner, inoculate the strain, and shake or culture under agitation at 20-30 ° C and pH 5-7 for 2-4 days.
  • the temperature is 25 to 30 C C
  • the pH is 6
  • galactose is used as a carbon source
  • yeast extract and tryptone are used as a nitrogen source
  • the concentrations of both the carbon source and the nitrogen source are 2 to 3 %
  • the ratio of the carbon source to the nitrogen source is 2: 3, and it is more preferable to culture the cells under good aeration conditions for 3 to 4 days.
  • the amount of enzyme production is maximized, and a known method [S. Kadowaki, et al., Agric. Biol. Chem., 54, 97 (1990); glucose 0.5%, yeast Extract 1%, Peptone 1%] can obtain about 10 times the enzyme productivity.
  • a jermenter in order to secure aeration conditions when culturing microorganisms, it is preferable to use a jermenter:
  • End-N-acetyldarcosaminidase produced by the above strains has the following activities Is characterized by the following. That is, it is characterized by an activity of acting on an asparagine-linked sugar chain present in a glycoprotein to cleave the diacetyl-chitobiose moiety present in the sugar chain and releasing the sugar chain.
  • the purification of endo-iS-N-acetyldarcosaminidase can be performed by appropriately combining known separation and purification methods. For example, salt precipitation; methods that use differences in solubility, such as solvent precipitation; methods that use differences in molecular weight, such as dialysis, ultrafiltration, gel filtration, and SDS-polyacrylic electrophoresis; Methods that use the difference in charge, such as chromatography, methods that use differences in hydrophobicity, such as hydrophobic chromatography and reverse phase chromatography, and that use differences in isoelectric points, such as isoelectric focusing Method and the like.
  • salt precipitation methods that use differences in solubility, such as solvent precipitation
  • methods that use differences in molecular weight such as dialysis, ultrafiltration, gel filtration, and SDS-polyacrylic electrophoresis
  • Methods that use the difference in charge such as chromatography, methods that use differences in hydrophobicity, such as hydrophobic chromatography and reverse phase chromatography
  • a culture method improved from a known method (S. Kadowaki, et al., Agric. Biol. Chew., 54, 97 (1990)) is employed, and a multi-stage purification step is performed.
  • 3- 3-acetylacetylchondase can be purified efficiently, and a sufficient amount of protein to obtain the amino acid sequence necessary for obtaining the gene can be obtained.
  • the resulting enzyme is composed of a single gene product with a molecular weight of about 85,000 as a result of enzyme purification and gene analysis described below, and undergoes limited post-translational degradation of the gene to at least a molecular weight of about 60,000. It was found to be composed of two or more subunits containing 14,000 peptides.
  • end-3-N-acetylglucosaminidase obtained from Mucor hi emalis is composed of at least two or more peptides.
  • the target gene when isolating a gene encoding a specific protein, the partial amino acid sequence of the protein is determined, and the target gene is extracted from the gene library using the mixed oligonucleotide consisting of the degenerate codon as a probe. It is possible to isolate. After obtaining a partial fragment by PCR as performed in the present invention, the target gene can be isolated from a gene library using the fragment as a probe.
  • End- - ⁇ -Acetyldarcosaminidase has more than two types of Since it is a single hetero-oligomer consisting of Bunite, each Subunit may be independently encoded by a different gene. Also, even if the endo- / 3-N-acetyl-dalcosaminidase is derived from one gene, how the regions coding for the two subunits are located in the structural gene, etc. However, its structure is not clear.
  • the inventors determined the partial amino acid sequences of the two subunits, obtained a partial fragment by PCR, succeeded in cloning cDNA using the fragment as a probe, and analyzed the gene structure. They revealed that the two subunits are encoded by the same gene. That is, a novel endo- / 3-N-acetyl darcosaminidase is produced as a single polypeptide from a gene encoding the enzyme, and is partially degraded to produce two or more subunits. Has been revealed.
  • the gene of the present invention is cloned, for example, as follows.
  • FIG. 1 a specific example of a DNA fragment containing a gene encoding a novel end-j3-N-acetyldarcosaminidase is shown in FIG.
  • the DNA fragment represented by the restriction map shown in Fig. 1 is exemplified.
  • This fragment is deposited with the microorganism belonging to the genus Mucor, preferably a strain of Mucor hiemalis, and more preferably with the Research Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology under the accession number FE RMBP-4991. From a cDNA library prepared from the Mucor hiemalis strain, and using genetic engineering techniques (Molecular Cloning: A Laboratory Manual (Sambrook ⁇ aniatis et al., Cold Spring Harbor Laboratory Press (1989)).
  • Preparation of mRNA can be performed by a usual method. For example, after culturing Mucor hiemalis, which is the source of mRNA, treat it with a commercially available kit (IS0GEN (Futatsu Gene)) to obtain total RNA, and then obtain a commercially available purification kit (mRNA Purification Kit (Pharmacia Biotech)). Can be used for purification. In the preparation of mRNA, it is preferable to shorten the culture time in order to suppress degradation of mRNA.
  • a double-stranded cDNA is synthesized from the single-stranded cDNA.
  • the obtained double-stranded cDNA is inserted into an appropriate cloning vector to prepare a recombination vector.
  • a cDNA library can be obtained by transforming Escherichia coli or the like using the obtained recombinant vector and selecting transformants using tetracycline resistance and ampicillin resistance as indices.
  • E. coli can be transformed according to the method of Hanahan [Hanahan, D .: J. Mol. Biol. 166: 557-580 (1983)].
  • plasmid When plasmid is used as a vector, it is necessary to contain a drug resistance gene such as tetracycline or ampicillin.
  • a cloning vector other than plasmid, for example, phage can also be used.
  • a strain having the target DNA is selected (screened) from the transformants obtained as described above.
  • a screening method for example, a method of synthesizing a sense primer and an antisense primer corresponding to the amino acid sequence of endo-] 3-N-acetyl-darcosaminidase and performing a polymerase chain reaction (PCR) using the primers is exemplified. I can do it.
  • type I DNA includes genomic DNA or cDNA synthesized from the mRNA by reverse transcription reaction
  • primers include, for example, for the sense strand, an amino acid sequence: PSLQLQPDDK (SEQ ID NO: 4) 5′-CarTTRCARCCNGAYGAYAA-3 ′ (SEQ ID NO: 5) synthesized based on the above and 5′-CCHACNGAYCARAAYATYAA-3 ′ (SEQ ID NO: 7) synthesized based on the amino acid sequence SYRNPEIYPTDQNIK (SEQ ID NO: 6) it can.
  • 3′-GGDTGNCTRG TYTTRTARTT- ⁇ ′ (SEQ ID NO: 8) synthesized based on SYRNPEIYPTDQNIK (SEQ ID NO: 6) and 3′-TTYCCDGTYGCDAARTTRGT-5 ′ (sequence based on GQRFNHRESHDVETEI (SEQ ID NO: 9) Number 10) can be used.
  • the present invention is not limited to these primers.
  • the amplified DNA fragment thus obtained is labeled with 32 P, 3 ⁇ or biotin, etc. to obtain a probe, which is then denatured and fixed in a cDNA library of a transformant. Screening can be performed by soybeans and searching for the obtained positive strains.
  • the nucleotide sequence of the obtained clone is determined.
  • the nucleotide sequence can be determined by a known method such as the Maxam-Gilbert chemical modification method or the dideoxy method.
  • an automatic nucleotide sequencer for example, 377A DNA Sequencer manufactured by PERKIN-ELMER is used. Is used to perform sequencing.
  • SEQ ID NO: 1 shows the entire sequence of the end-
  • a preferred specific example of the gene of the present invention is a nucleotide sequence from the 71st to the 2305th nucleotide of the nucleotide sequence shown in SEQ ID NO: 1 (SEQ ID NO: 2).
  • the gene of the present invention has a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 3 or an amino acid sequence having an equivalent sequence described below, and also encodes the same polypeptide that differs only in degenerate codons. And degenerate isomers.
  • the nucleotide sequence encoding the amino acid sequence having an equivalent sequence can be prepared by using a site-directed mutagenesis method or the like. That is, a mutagenesis kit (for example, Mutant-K (manufactured by TAKARA), Mutant-G) using a known method such as the Kunkel method or the Gapped duplex method or a method analogous thereto, for example, using a site-directed mutagenesis method. (TAKARA))) or using the TAKARA LA PCR in vitro Mutagenesis series kit.
  • a mutagenesis kit for example, Mutant-K (manufactured by TAKARA), Mutant-G) using a known method such as the Kunkel method or the Gapped duplex method or a method analogous thereto, for example, using a site-directed mutagenesis method. (TAKARA))
  • TAKARA LA in vitro Mutagenesis series kit.
  • end — ⁇ - acetyl dalcosaminidase gene has SEQ ID NO: 1 or
  • the DNA also hybridizes with the DNA under stringent conditions and encodes a protein having end-] 3- ⁇ -acetyldarcosaminidase activity.
  • the stringent conditions refer to, for example, conditions where the sodium concentration is 50 to 300 mM, preferably 150 mM, and the temperature is 50 to 68 ° C, preferably 65 ° C.
  • nucleotide sequence of the end-3-N-acetyldarcosaminidase gene (SEQ ID NO: 1) is determined, the nucleotide sequence of a DNA fragment (oven reading frame) having a sequence from No. 71 to No. 2305 of the nucleotide sequence Is determined (SEQ ID NO: 2), and thereafter, by chemical synthesis or at the 5 ′ and 3 ′ end nucleotide sequences of the open reading frame (SEQ ID NO: 2) (eg, 5′-ATGCCTTCACTTCAATTGCA ACC-3 ′ (sequence No.
  • the endo-i3-N-acetylase is synthesized by PCR using genomic DNA as a primer or by hybridizing with a DNA fragment having the nucleotide sequence of the endo-j3-N-acetylcetyldarcosaminidase gene as a probe.
  • a glucosaminidase gene can be obtained.
  • E. coli E. coli DH10B (name: DH10BpZL-Endo), (FERM BP-6335 on April 28, 1998) at 1-3-1 Higashi, Tsukuba City, Ibaraki Prefecture.
  • a preferred specific example of the recombinant novel end-) 3-N-acetylda'-recosaminidase is a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 3 or an equivalent sequence thereof.
  • the “equivalent sequence” refers to an amino acid sequence shown in SEQ ID NO: 3 in which at least one amino acid has been inserted, substituted or deleted, or added to both ends, And a sequence which still retains the above-mentioned novel end-] 3-N-acetyl-dalcosaminidase activity.
  • Retention of the novel end- ⁇ - ⁇ -acetylglucosaminidase activity in the equivalent sequence means that in an actual use mode utilizing the activity, the polypeptide is substantially identical to a polypeptide having all the sequences shown in SEQ ID NO: 3 under the same conditions. It means that the activity is maintained to the extent that similar utilization is possible. With reference to the sequence shown in SEQ ID NO: 3, it is clear that such an equivalent sequence can be selected and produced by a person skilled in the art without any particular difficulty.
  • a polypeptide having an amino acid sequence (having the amino acid sequence shown in SEQ ID NO: 3 in which the first methionine is deleted) is also included in the protein of the present invention.
  • the partial amino acid sequence analysis and the gene structure analysis according to the present invention show that at least the precursor polypeptide has at least the histidine at position 51 of the amino acid sequence shown in SEQ ID NO: 3, and the amino acid of aspartic acid at position 627 of aspartic acid. Cleavage at the C-terminus revealed that more than one subunit of the natural form had occurred.
  • the present invention provides a DNA molecule containing the gene of the present invention, particularly an expression vector.
  • This DNA molecule can be obtained by incorporating into the vector molecule a DNA fragment encoding the novel endo-N-acetylacetylglucosaminidase according to the invention. Therefore, a DNA molecule containing the gene fragment encoding the novel endo-3- ⁇ -acetylglycosaminidase of the present invention in a state capable of replicating in a host cell and expressing the gene, particularly expression
  • the novel end-j3-N-acetyldarcosaminidase of the present invention can be produced in the host cell.
  • the vector used in the present invention can be appropriately selected from viruses, plasmids, cosmid vectors, and the like, while taking into account the type of host cell used.
  • the host cell is Escherichia coli, the ⁇ phage-based cell phage, the ⁇ ⁇ R system (pBR322, pBR325, etc.), the pUC system (pUC118, pUC119, etc.) Plasmid (such as pUBllO), in the case of yeast, YEp, YCp-based vectors (eg, YEpl3, YEp24, YCp50, etc.), or pG-3-Not used in Examples described later.
  • a virus or an animal virus such as vaccinia virus, or an insect virus vector such as vaccinia virus can also be used.
  • the purified DNA is digested with an appropriate restriction enzyme, and then a restriction enzyme site of an appropriate vector-DNA or a multiple cloning site.
  • the method used is to insert it into a cell and ligate it to a vector:
  • the vector of the present invention preferably contains a transformant selection marker.
  • a selection marker a drug resistance marker and an auxotrophic gene can be used.
  • the DNA molecule as the expression vector of the present invention may contain a DNA sequence necessary for the expression of a novel endo- ⁇ -acetyl-darcosaminidase gene, such as a promoter, a transcription initiation signal, a ribosome binding site, and a translation termination signal. And those having a transcription control signal such as a transcription termination signal and a translation control signal are preferable.
  • the transformant of the present invention can be obtained by introducing the recombinant vector of the present invention into a host so that the target gene can be expressed.
  • the host is not particularly limited as long as it can express the gene of the present invention.
  • bacteria belonging to the genus Escherichia such as Escherichia coli
  • Bacillus such as Bacillus subtilis
  • the genus Pseudomonas such as Pseudomonas putida.
  • yeasts such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida boidinii, Pichia pastoris, and the like.
  • Examples of the host cell include Escherichia coli, Bacillus subtilis, and yeast, as well as animal cells such as COS cells and CH0 cells, and insect cells such as Sf9 and Sf21.
  • the recombinant vector of the present invention is capable of autonomously replicating in the bacterium, and comprises a promoter, a ribosome binding sequence, the gene of the present invention, and a transcription termination sequence. Is preferred. In addition, a gene that controls a promoter may be included.
  • Escherichia coli examples include Escherichia coli K12, DH1, DH5a, and JM109.
  • Bacillus subtilis examples include Bacillus subtilis MI114 and 207-21. Protein in Bacillus subtilis It is known that there is a strain that secretes E. coli out of the cells. Also known are strains that secrete little protease, and it is also preferable to use such a strain as a host.
  • the promoter include not only a promoter that can function in a host contained in the inserted fragment but also a promoter such as ratatose operon (lac) and tryptophan operon (trp) in Escherichia coli.
  • the method for introducing the recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria.
  • a method using calcium ion [Cohen, S.N. et al .: Proc. Natl. Acad. Sci., USA, 69: 2110-2114 (1972)], an electoral poration method, and the like.
  • yeast When yeast is used as a host, for example, Saccharomyces cerevisiae N synsaccharomyces pombe, Candida utilis can be used, etc.
  • the promoter can be expressed in yeast.
  • the promoter is not particularly limited as long as it is a promoter such as alcohol dehydrogenase (ADH), acid phosphatase (PH0), galactose gene (GAL), and darisel aldehyde dephosphate trihydrogenase gene (GAPDH).
  • ADH alcohol dehydrogenase
  • PH0 acid phosphatase
  • GAL galactose gene
  • GAPDH darisel aldehyde dephosphate trihydrogenase gene
  • Heat shock protein promoter MFa1 promoter, PGK promoter, GAP promoter, A0X1 promoter and the like can be preferably used.
  • the method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • the electroporation method [Becker, DM et al .: Methods. Enzymol., 194: 182-187] (1990)]
  • Spheroplast method [Hinnen, A. et al .: Proc. Natl. Acad. Sci., USA, 75: 1929-1933 (1978)]
  • lithium acetate method [Itoh, H .: J. Bacterid., 153: 163-168 (1983)].
  • monkey cells such as COS-7, Vero, Chinese hamster-ovary cells (CH0 cells), mouse L cells, rat GH3, and human FL cells are used.
  • a promoter an SRct promoter, an SV40 promoter, an LTR promoter, a CMV promoter, or the like may be used, or an early gene promoter of a human cytomegalovirus may be used.
  • Examples of a method for introducing a recombinant vector into animal cells include an electroporation method, a calcium phosphate method, a ribofusion method, and the like.
  • an electroporation method When insect cells are used as hosts, Sf9 cells, Sf21 cells, and the like are used.
  • a method for introducing a recombinant vector into insect cells for example, a calcium phosphate method, a lipofection method, an electroporation method and the like are used.
  • the protein of the present invention has an amino acid sequence encoded by the gene of the present invention, or has an amino acid sequence in which at least one amino acid in the amino acid sequence has the mutation, and -i3 -N-Acetylglucosaminidase has an activity.
  • the protein of the present invention can be obtained by culturing the transformant and collecting from the culture.
  • culture means any of a culture supernatant, a cultured cell or a cultured bacterial cell, and a crushed cell or bacterial cell.
  • the method for culturing the transformant of the present invention is performed according to a usual method used for culturing a host.
  • the medium for culturing the transformants obtained using microorganisms such as Escherichia coli and yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like, which can be used by the microorganisms, so that the cultivation of the transformants is efficient.
  • a natural medium or a synthetic medium may be used as long as the medium can be performed in a controlled manner.
  • Examples of the carbon source include carbohydrates such as glucose, fructose, sucrose, and starch; organic acids such as acetic acid and propionic acid; and alcohols such as ethanol and propanol.
  • Nitrogen sources include ammonia, ammonium salts of inorganic or organic acids such as ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, and other nitrogen-containing compounds, as well as peptone, meat extract, and colonica. First class is used.
  • potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used as the inorganic substances.
  • Cultivation is usually performed under aerobic conditions such as shaking culture or aeration and stirring culture at 37 ° C for 12-72. Do time. During the culture period, the pH is maintained between 4 and 7.5. The pH is adjusted using an inorganic or organic acid, an alkaline solution, or the like.
  • antibiotics such as ampicillin-tetracycline may be added to the medium as needed.
  • an inducer may be added to the medium as necessary.
  • an inducer may be added to the medium as necessary.
  • IPTG isopropyl-] 3-D-thiogalatatoside
  • IAA indole acetic acid
  • a medium for culturing a transformant obtained using animal cells as a host commonly used RPMI 1640 medium, DMEM medium, or a medium obtained by adding fetal calf serum or the like to such a medium is used.
  • the cultivation is carried out 5% C0 2 presence, 2-10 days at 37 ° C.
  • an antibiotic such as dynamycin or penicillin may be added to the medium as needed.
  • the protein of the present invention After culturing, when the protein of the present invention is produced in cells or cells, the protein of the present invention is extracted by disrupting the cells or cells.
  • the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like.
  • 3-N-acetyl-dalcosaminidase can be carried out by appropriately combining known separation and purification methods.
  • Methods utilizing differences in solubility such as salt precipitation, solvent precipitation, methods utilizing differences in molecular weight such as dialysis, ultrafiltration, gel filtration and SDS-polyacryl electrophoresis, ion exchange chromatography Method that utilizes the difference in charge, such as the method of utilizing the difference in hydrophobicity, such as hydrophobic chromatography and reverse phase chromatography, and method that utilizes the difference in the isoelectric point, such as isoelectric focusing. And the like.
  • FIG. 1 is an electrophoretic photograph showing the results of purification of end-3-N-acetylglycosaminidase.
  • FIG. 2 is a restriction map of pZL-Endo including the full length of the novel end-
  • FIG. 3 is a view showing the entire nucleotide sequence of the fragment inserted into the SalI-NotI site of pZL-Endo, including the full length of the novel end-] 3-N-acetyl-dalcosaminidase gene.
  • FIG. 4 is a diagram showing the entire nucleotide sequence of the fragment inserted into the SalI-NotI site of pZL-Endo, including the full length of the novel end- ⁇ - ⁇ -acetyl-dalcosaminidase gene (see FIG. 3). (Continued)
  • FIG. 5 is a diagram showing the amino acid sequence deduced from the novel end-] 3-N-acetyldarcosaminidase gene and the nucleotide sequence of DNA encoding the amino acid.
  • FIG. 6 is a diagram showing the amino acid sequence deduced from the novel end-J3-N-acetyldarcosaminidase gene and the nucleotide sequence of DNA encoding the amino acid (continuation of FIG. 5).
  • FIG. 7 is a diagram showing the amino acid sequence deduced from the novel end-] 3 acetyltyl glucosaminidase gene and the nucleotide sequence of DNA encoding the amino acid (continuation of FIG. 6).
  • FIG. 8 is a diagram showing the structure of pGEndo-SC, an expression vector for Saccharomyces cerevisiae containing the novel end-j3-N-acetyldarcosaminidase gene.
  • FIG. 9 is a photograph of a chromatograph showing the expression of a novel end-jS-N-acetyldarcosaminidase gene into an introduced enzyme.
  • Endo / 3-N-acetyldarcosaminidase activity basically followed the method described in S. Kadowaki, et al., Agric. Biol. Chew., 54, 97 (1990). That is, the reaction was carried out at 37 ° C in a potassium phosphate buffer (PH6.0) using dansylated hydroxy-transferring glycopeptide (DNS-GP) as a substrate and thin layer chromatography under the following conditions. (TLC) or by HPLC.
  • the activity was defined as the unit amount of the enzyme which produces 1 imol of dansylated asparagyl acetylacetylcosamine per minute under the conditions of the above-mentioned HPLC measurement.
  • Reagents were added to the active fraction so that the final concentration would be 50 mM potassium phosphate (pH 7.0) containing 1 M ammonium sulfate and 5 mM EDTA, and hydrophobic chromatography (Toso—) equilibrated with the same buffer. Phenyl-TOYOPEARL 650S 200ml). The column is washed with the same buffer, and then eluted with a linear gradient of 1 M to 0 M using ammonium sulfate 60 Om1 containing 1 mM EDTA to elute the end-] 3-N-acetyldarcosaminidase did.
  • the obtained eluate was concentrated to 5 ml with an ultrafiltration membrane (molecular weight cut: 13000), and then 0.1 mM potassium phosphate buffer solution containing 0.1 M sodium chloride and 1 mM EDTA (pH 7. Washed and desalted at 0). Next, the mixture was loaded on a gel filtration chromatograph (Pharmacia Sephacryl S300) equilibrated with the same buffer, and end-j3 acetyl darcosaminidase was eluted with the same buffer.
  • the active fraction was concentrated using an ultrafiltration membrane (molecular weight: 13000), and then washed and desalted with 1 OmM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA.
  • 1 OmM potassium phosphate buffer pH 7.0
  • the mixture was passed through a hydroxyapatite mouth matography (TSK-gel HA1000, Tosoh Corporation) equilibrated with the same buffer.
  • TSK-gel HA1000 hydroxyapatite mouth matography
  • the column was washed with the same buffer, and then, using 30 ml of potassium phosphate (pH 7.0) containing 1 mM EDTA, a linear gradient of 0 M to 0.3 M was used. Saminidase was eluted.
  • the active fraction was concentrated with an ultrafiltration membrane (molecular weight cut: 13000), and subsequently washed and desalted with iminodiacetic acid in a 25-m bis-Tris buffer adjusted to pH 7.1.
  • the cells were passed through isoelectric focusing mouth chromatography (Pharmacia onoP) equilibrated with the same buffer. Wash the column with the same buffer, then wash in 5 Om1 iminodiacetic acid. Endo-] 3-N-Acetyldarcosaminidase was eluted with 10% polybuffer 74 (Pharmacia) adjusted to pH 3.9.
  • the active fraction was concentrated using an ultrafiltration membrane (molecular weight cut: 13000), and then washed and desalted with 1 OmM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA. Next, the solution was passed through ion exchange chromatography (Pharmacia MonoQ) equilibrated with the same buffer. The column was washed with the same buffer, and then end- ⁇ - ⁇ -acetylglucosamide was eluted with a linear gradient of 30 ml of 0 M to 0.3 M salt. The active fraction was concentrated with an ultrafiltration membrane (molecular weight: 13000), washed with 50 mM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA, and desalted. An enzyme sample was used. In addition, each column chromatography was performed using Pharmacia FPLC.
  • the protein amount was measured using a BioRad protein assay kit or by absorbance (280 nm).
  • the molecular weight and isoelectric point of the protein were measured by SDS-PAGE (15-25% gradient), gel filtration chromatography, IEF-PAGE and the like.
  • Partial amino acid sequence analysis was performed by the method of Iwamatsu (Biochemistry 63, 139-143 (1991)).
  • the purified enzyme was suspended in an electrophoresis buffer (10% glycerol, 2.5% SDS, 2% 2-mercaptoethanol, 62 mM Tris-HCl buffer (pH 6.8)) and subjected to SDS polyacrylamide electrophoresis. Was served.
  • electrophoresis the enzyme is electrophoretically separated from the gel. 7 (; 111? 0? Membrane) ((? 1 ⁇ 08101:) Applied Biosystems)
  • the electroblotting device was a Sarto Blot II s type (Sartorius). Performed at 160 mA for 1 hour.
  • the membrane of the transcribed portion of the enzyme was cut off, and a part thereof was directly analyzed by a gas phase protein sequencer to determine the N-terminal amino acid sequence.
  • the remaining membrane is approximately 300 M 1 of a reducing buffer (8 M guanidine hydrochloride, 0.5 M Tris-HCl buffer (pH 8.5), 0.3% EDTA, 2% acetonitrile)
  • a reducing buffer 8 M guanidine hydrochloride, 0.5 M Tris-HCl buffer (pH 8.5), 0.3% EDTA, 2% acetonitrile
  • DTT dithiothreitol
  • a solution prepared by dissolving 3.Omg of monoodoacetic acid in 10 ⁇ l of 0.5N sodium hydroxide solution was added thereto, and the mixture was stirred for 20 minutes under light shielding.
  • the PVDF membrane was taken out, thoroughly washed with 2% acetonitrile, immersed in 100 mM acetic acid containing 0.5% polyvinylpyrrolidone-40, and allowed to stand for 30 minutes. After that, the PVDF membrane was thoroughly washed with water, and the membrane cut into 1 mm square was immersed in a digestion buffer (8% acetonitrile, 90 mM Tris-HCl buffer (pH 9.0)).
  • elution solvent for the peptide use A solvent (0.05% trifluoroacetic acid) and B solvent (2-propanol / acetonitrinole 7: 3 containing 0.02% trifluoroacetic acid). The elution was carried out with a 50% linear concentration gradient at a flow rate of 0.25 mL / min for 40 minutes.
  • pl4-AP-l K
  • EGYISSSGSIDLSL SEQ ID NO: 22
  • amino acids represented by lowercase letters in alphabetic letters mean amino acids that are uncertain in the amino acid sequence.
  • the achromopactor protease I used for the partial amino acid sequence specifically cuts the carboxyl group side of the lysine residue.
  • PCR primers were designed based on the partial amino acid sequences P60-AP-5, p60-AP-6, and p60-AP-11. The sequence is shown below. All symbols used are based on IUPAC-UB.
  • Genomic DNA was prepared from the cells of the Mucor hiemal is culture by the phenol method, and genomic PCR (94 ° C for 30 seconds, 55. C for 1 minute, 72 ° C for 1 minute, 30 cycles) was performed. A band that specifically amplifies was confirmed.
  • the primer combination of p60-AP-5F and p60-AP-11R is 1.7 kb
  • the primer of p60-AP-5F and p60-AP-6R .. Is 0 2 kb PCR fragment in combination Buraima with 11R obtained - 1 5 kb, P 60- AP-6F and p60-AP in combination.
  • This fragment was subcloned into pCR-Script Amp using the pCR-Script cloning kit (Strategene). Analysis by restriction enzyme digestion revealed that amplified fragments of p60-AP-5F and p60-AP-11R were amplified of p60-AP-5F and P60-AP-6R, and of p60-AP-6F and p60-AP-11R. Since it was estimated to contain a fragment, the nucleotide sequence of the amplified fragment of p60-AP-5F and p60-AP-11R was used to determine the nucleotide sequence of the PRISM Ready Reaction kit from Applied Biosystems and PRISM 377 DNA seek. This was performed using a sensor. Gene analysis was performed using Hitachi Software Engineering DNASIS or the like.
  • the amplified fragment of p60-AP-5F and p60-AP-11R contained other determined partial amino acid sequences. Therefore, since this DNA fragment was found to be a part of the p60 gene, a new DNA primer was created based on the sequence inside the PCR amplified fragment, and the mRNA obtained in Example 5 was type III. Using the Access RT-PCR System (Promega), RT-PCR was performed (the conditions were the same as for genomic PCR). The sequence of the newly prepared DNA primer is as follows.
  • the gene of the present invention encodes p60 in the 5 'region and pi4 in the 3' region:
  • the N-terminal signal sequence was not found in the amino acid sequence.
  • the enzyme of the present invention is affected by the action of a proteolytic enzyme that is thought to be caused by bacterial lysis.
  • the saccharo complementing the TRP1 gene including the endo-] 3-N-acetyl-dalcosaminidase gene and the GAPDH gene promoter-PGK terminator. Mrs. Constructed an expression vector for incorporation of Cerepice 3
  • Example 3 In order to obtain an open reading frame encoding 744 amino acids confirmed in Example 3, it is based on the DNA sequence corresponding to the N-terminal and C-terminal amino acid sequences with Not I sites added at both ends. A DNA primer was synthesized, and PCR was performed using pZL-Endo as a type III to obtain an amplified fragment. The sense and antisense primer sequences are described below.
  • New end-j3 -N-Acetyl darcosaminidase gene is a gene derived from Chinese ryegrass and is considered to be suitable for expression in yeast.Saccharomyces cerepiche glyceraldehyde triphosphate dehydrogenase Expression promoter for Saccharomyces cerevisiae using the trpl gene as a selectable marker, including the (GAPDH) gene promoter, the 3-phosphodaricerate kinase (PGK) gene terminator, and the tributophan synthesis gene TRP1 gene. It was prepared based on the expression vector pG-3 (Methods in Enzymology Vol. 194 p. 389).
  • pG-3 was digested with BamHI, blunt-ended by Klenow treatment, and a NotI linker was added to create pG-3-Not: pBlue-Endo-Not described above was digested with NotI, and The 3 kb insert was separated and purified by agarose gel electrophoresis, and inserted into NotI site of pG-3-Not to construct pGEndo-SC (Fig. 8)-
  • Example 8 Expression of a novel end-i3-N-acetyldarcosaminidase at Saccharomyces cerevisiae Using pe P 4 gene disruption strain of the yeast Saccharomyces' Serepishe YPH 5 0 0 strain (Strategene) as hosts.
  • pe P 4 gene disruption strain was created Sikorski, RS and Hieter, by the method of P (Genetics 122, Volume 19-27 (1989)).
  • the above strain was transformed with 1 g of pGEndo-SC. Transformation was performed by the lithium acetate method (see W0 / 95/32289). Transformants were cultured on a medium plate containing no tributophan (0.67% yeast nitrogen-based, 0.5% casamino acid, 1% glucose). ).
  • the activity of the novel end-i3-N-acetyldarcosaminidase in the cells was confirmed.
  • YPD medium 1% yeast extract, 2% polypeptide, 2% glucose
  • 1500 g for 5 minutes at 4 ° C The culture was centrifuged to separate the cells from the culture supernatant, and the cells were washed with distilled water.
  • 100 ⁇ l of a mixture of 50 mM potassium phosphate buffer (pH 6.0) and 5 mM EDTA was added to the cells and suspended well. Further, 5 O mg of glass beads was added, and the mixture was vigorously stirred and centrifuged, and the supernatant was used as a cell extract.
  • the cell extract of pGEndo-SC was concentrated 10-fold, desalted and used as a crude enzyme, reacted with DNS-GP, and the peak corresponding to DNS-Asn-GlcNAc was analyzed using HPLC under the above conditions. I took it out.
  • the collected sample was concentrated by an evaporator, and mass spectrum analysis was performed. As a result, it was confirmed that the analysis results of the collected samples were consistent with the analysis results of DNS-Asn-GlcNAc. Therefore, the gene product encoded by the insert fragment of pGEndo-SC was found to be novel end-
  • Table 3 shows the activity (production amount) of the novel end-) 3-N-acetyl-glucosaminidase per 1 mL of medium. This activity was 48 times the value of Mucor hiemal is. Table 3 Activity of a novel endo-iS-N-acetildano 1 recosaminidase
  • an endo-i3_N-acetyl-dalcosaminidase, an endo-i3-N-acetyldarcosaminidase gene, a recombinant vector containing the gene, a transformant containing the recombinant vector, End-) 3-N-Acetyl darcosaminidase production method is provided:
  • end- N- acetyldarcosaminidase By introducing a vector containing the gene of the present invention into a host and expressing the gene, end- N- acetyldarcosaminidase can be efficiently and mass-produced.
  • the enzyme of the present invention is an industrially important enzyme for sugar chain analysis, analysis, and sugar chain modification, and the transformant obtained by the present invention produces the enzyme in a considerable amount. They can greatly contribute to the industry using enzymes. Sequence listing free text
  • SEQ ID NO: 4 Partial amino acid sequence of endo-] 3-N-acetyldarcosaminidase.
  • SEQ ID NO: 5 Oligonucleotide designed based on partial amino acid sequence of end-jS-N-acetyldarcosaminidase.
  • SEQ ID NO: 7 Oligonucleotide designed from partial amino acid sequence of endo-] S-N-acetyldarcosaminidase.
  • SEQ ID NO: 7 n represents a, g, c or t (location 6)-SEQ ID NO: 8: End-an oligonucleotide designed from the partial amino acid sequence of j3-N-acetyldarcosaminidase.
  • SEQ ID NO: 8 n represents a, g, c or t (location: 15)
  • SEQ ID NO: 9 Partial amino acid sequence of endo-] 3-N-acetyldarcosaminidase.
  • SEQ ID NO: 10 Oligonucleotide designed from partial amino acid sequence of endo-i3-N-acetyldarcosaminidase.
  • SEQ ID NO: 11 Oligonucleotide sequence of 5 ′ terminal region of endo-
  • SEQ ID NO: 12 Oligonucleotide sequence of 3 ′ terminal region of endo- ⁇ -acetyl-darcosaminidase gene.
  • SEQ ID NO: 13 Endo-]-An oligonucleotide designed from the gene sequence of 3- ⁇ -acetyldarcosaminidase.
  • SEQ ID NO: 14 oligonucleotide designed based on the gene sequence of endo-) 3- ⁇ -acetyldarcosaminidase.
  • SEQ ID NO: 15 Oligonucleotide designed from endo-iS-N-acetyldarcosaminidase gene sequence.
  • SEQ ID NO: 16 oligonucleotide designed from gene sequence of endo- / 3-N-acetyl-dalcosaminidase.
  • SEQ ID NO: 20: Xaa represents Met or Ser (location 2) c
  • SEQ ID NO: 21: Xaa represents Gly or Met (location 2):
  • SEQ ID NO: 21: Xaa represents Gin or Ala (location 3):
  • SEQ ID NO: 21: Xaa represents Arg or Leu (location 4)
  • SEQ ID NO: 21: Xaa represents Asn or Pro (location: 6).
  • SEQ ID NO: 21: Xaa represents Arg or Leu (location 8)- SEQ ID NO: 21: Xaa represents Glu or Leu (location 9)-SEQ ID NO: 21: Xaa represents Ser or Leu (location 10).
  • SEQ ID NO: 21: Xaa represents His or Thr (location: 11)
  • SEQ ID NO: 28 carboxymethyl cysteine (location: 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書 ェンド- ] 3 - N-ァセチルダルコサミニダーゼ遺伝子 技術分野
本発明は新規ェンド - ]3 - N-ァセチルダルコサミニダーゼ遺伝子に関するもの である。 詳しくは該遺伝子が Mucor属由来の遺伝子に関するものである。 更に本 発明は、 該遺伝子を含む組換えプラスミ ド、 該プラスミ ドにより形質転換された 生物、 該形質転換体を用いた新規ェンド - ]3 - N-ァセチルダルコサミニダーゼの製 造法に関するものである。 背景技術
糖タンパク質は動植物の組織、 真核微生物の細胞膜、 壁などに広く存在してい る。
近年、 糖タンパク質の糖鎖が、 細胞の分化、 癌化、 細胞間の認識などの機構に 重要な役割を果たしていることが明らかになりつつあり、 その機構解明のため糖 鎖の構造と機能との相関について研究が進められている。 その目的達成のための 手段として、 糖タンパク質から糖鎖を切り出す際、 あるいは糖鎖の構造の同定の 際に様々なグリコシダーゼが用いられている。 その中でも、 エンド- i3 - N-ァセチ ルグルコサミニダーゼは、 糖タンパク質に存在するァスパラギン結合型糖鎖 (N - 結合型糖鎖、 N 型糖鎖) に作用して、 糖鎖中に存在するジァセチルキトビオース 部分を切断し糖鎖を遊離する作用を有する。
ェンド- ] 3 - N-ァセチルダルコサミニダーゼは、 糖タンパク質の糖鎖部分をタン パク質部分より遊離することができるため、 糖タンパク質糖鎖の構造、 機能の解 折に重要であると考えられる。
ァスパラギン結合型糖鎖は、 その構造から高マンノース型 (マンナン型糖鎖) 、 ハイプリッド型及びコンプレックス型に分類される。
従来知られているエンド- J3 -N -ァセチルダルコサミニダ一ゼとしては、 Endo H (A. L. Tarentino and F. Maley, Biol. Chem. , 249, 811 (1974) ) 、 Endo F (K. Takegawa, et al . , Eur. j. Biochem. , 202, 175 ( 1991) ) 、 EndoA (K. Takegawa, et al . , Appl. Environ. Microbiol. , 55, 3107 (1989) ) 等が挙げられるが、 こ れらの酵素は特定の構造の糖鎖に対してのみ作用し、 また糖タンパク質に対して は変性剤の存在下でなければ作用しない:
ムコール . ヒェマリス(Mucor hi emal i s)由来のエンド- ; 3 - '-ァセチルダルコサ ミニダーゼは、 高マンノース型 (マンナン型糖鎖) 、 ハイプリッド型のみならず、 コンプレックス型についても三分岐複合糖鎖まで切断能があり、 また脱シアル型 であれば四分岐複合糖鎖まで切断能があり、 さらに、 タンパク質を変性処理する ことなく、糖タンパク質から糖鎖を遊離することができることが知られている(S. Kadowaki , et al . , Agric. Biol. Chew. , 54, 97 (1990) ) 従って、 ムコーノレ ' ヒエマリス由来のェンド- - N-ァセチルダルコサミニダーゼは、 糖タンパク質の 糖鎖及びタンパク質の機能的、 生理的役割を研究する上で有用であるといえる。 一方、 酵母由来のマンナン型糖鎖からヒ ト適応型糖鎖に変換することは物質生 産の面では非常に意義があることである。 その変換方法としては、 酵母の糖鎖生 合成系を遺伝子操作により改変するという in vivoでの変換とともに、 トランス ダリコシレーション反応を利用した i n vi troでの変換が考えられる。糖変換を目 的とするエンド- -Ν-ァセチルダルコサミニダーゼの特性として、 1 ) 基質特異 性としてマンナン型、 複合型の両方に対して切断能力を持つこと、 2 ) 分解反応 の逆反応である トランスグリ コシレーション反応を行う能力を持つことが要求さ れる。 従って、 Mucor hiemal i s由来のエンド - /3 - N-ァセチルダルコサミニダーゼ は上記変換を行うためにふさわしレ、酵素であるといえる。
なお、 本発明者らは、 酵母型糖鎖をヒ ト適応型に変えることができる Mucor hiemal i s 由来のェンド - |3 - N-ァセチルダルコサミニダーゼを用いた糖鎖変換技 術を提案している (特開平 7-59587号公報) 。
以上の様な糖鎖変換を行うためには大量かつ精製度の高い酵素標品が必要と なる。 この場合、 力ビの菌体を用いた従来の育種法により酵素生産性の向上を目 指すことも考えられる。 しカゝし、 従来の育種方法は、 主として、 紫外線や変異誘 発剤によって得られる変異株から選択する方法に限られていたため、 安定な変異 体を単離するのが困難であった。 また、 従来法による育種の場合、 好まざる形質 変化を伴うことも多い。 更に、 一般的にカビは様々なタンパク質分解酵素を生成 するため、 糖変換を目的とした酵素を生産するには好ましいものではない。 従つ て、これらの問題点を除去するには多段の精製ステップを踏まねばならないため、 作業が繁雑となり、かつ酵素の収量も少ない。例えば、毛カビの一種である Mucor 属に属する微生物を培養し、 その培養上清より酵素の精製を行っても、 プロテア ーゼの混入を除くことができず、 かつ菌体の酵素生産性が低いため大量調製をす ることが困難であり、 実用上の価値は少なかった。
以上のことから、 ェンド - |3 -Ν -ァセチルグルコサミニダ一ゼを大量生産するた めには、 該酵素の遺伝子を取得し、 遺伝子工学的にそれを生産することが望まれ ている。 さらに、 遺伝子を取得出来れば、 蛋白工学の技術を用いて、 耐熱性、 耐 ρΗ性の向上、 反応速度が増大された酵素を得ることも期待できる。 しかしながら 遺伝子クローニングを試みられているが現在までにその報告はない。
発明の開示
本発明は、 エンド- -Ν-ァセチルダルコサミニダーゼ、 エンド - |3 -Ν-ァセチル ダルコサミニダーゼ遺伝子、 該遺伝子を含有する組換えベクター、 該組換えべク タ一を含む形質転換体及びェンド- β -Ν-ァセチルグルコサミニダーゼの製造方法 を提供することを目的とする。
本発明者らは、 上記課題を解決するため鋭意研究を重ねた結果、 上記 Mucor hiemal i s 由来ェンド- 3 -N-ァセチルダルコサミニダーゼの部分ァミノ酸配列情 報をもとに、 当該酵素の生産菌であるムコール . ヒェマリス(Mucor hiemal i s)か ら調製した cDNA ライブラリーより当該酵素をコードする遺伝子を取得すること に成功し、 さらに酵母での発現にも成功し、 本発明を完成するに至った。
すなわち、 本発明は、 以下の(a)又は(b)の組換えタンパク質である。
(a) 配列番号 3に示されるアミノ酸配列を含むタンパク質
(b) 配列番号 3に示されるアミノ酸配列において少なくとも 1個のアミノ酸が 欠失、 置換、 挿入若しくは付加されたアミノ酸配列を含み、 かつエンド - i3 -N -ァ セチルダルコサミニダーゼ活性を有するタンパク質
さらに、 本発明は、 以下の(a)又は(b)のタンパク質をコードするエンド- )3 -N - ァセチルダルコサミニダーゼ遺伝子、 及び該遺伝子とス ト リンジェン卜な条件下 でハイブリダイズし、 かつェンド - ]3 - N-ァセチルダルコサミニダーゼ活性を有す るタンパク質をコ一ドする DNAを含む遺伝子である。
(a) 配列番号 3に示されるアミノ酸配列を含むタンパク質
(b) 配列番号 3に示されるアミノ酸配列において少なく とも 1個のァミノ酸が 欠失、 置換、 挿入若しくは付加されたアミノ酸配列を含み、 かつエンド- jS - N -ァ セチルグルコサミニダーゼ活性を有するタンパク質
さらに、 本発明は、 以下の(c)又は(d)の DNAを含む遺伝子である。
(c) 配列番号 2に示される塩基配列からなる DNA
(d) 配列番号 2に示される塩基配列からなる DNAとス トリンジェントな条件下 でハイブリダイズし、 かつェンド - - N-ァセチルダルコサミニダーゼ活性を有す るタンパク質をコードする DNA
上記遺伝子としては、 ムコール属に属する微生物 (例えばムコール ' ヒェマリ ス) 由来のものが挙げられる。
さらに、 本発明は、 前記遺伝子を含有する組換えべクタ一である。
さらに、 本発明は、 前記組換えベクターを含む形質転換体である。
さらに、 本発明は、 前記形質転換体を培養し、 得られる培養物からエンド - ]3 - Nーァセチルダルコサミニダーゼを採取することを特徴とするェンド— — N-ァセチ ルダルコサミニダーゼの製造方法である c
以下、 本発明を詳細に説明する。
本発明は、 ェンド - J3 -N-ァセチルダルコサミニダーゼを生産する菌を培養し、 得られる培養物からェンド - ]3 - N -ァセチルダルコサミニダ一ゼを精製した後、 該 酵素の部分アミノ酸配列から縮重プローブを設計し、 PCR を行うことにより該酵 素をコードする遺伝子をクローニングし、 さらにェンド - /3 -N -ァセチルダルコサ ミニダーゼを生産する菌の cDNA ライブラリーより該酵素をコードする遺伝子を クロ一ニングすることを特徴とする。 また、 本発明は、 クローニングされた遺伝 子をべクタ一に組込んで組換えベクターを得るとともに、 該組換えべクタ一を宿 主細胞に導入して形質転換体を得ることを特徴とする。 さ に、 本発明は、 前記 形質転換体を培養することにより、 大量にェンド - 0 - N -ァセチルグルコサミニダ —ゼを生産することを特徴とする。
1. ェンド- 3-N-ァセチルダルコサミニダーゼを生産する菌の培養
ェンド -]3- N -ァセチルダルコサミニダ一ゼを生産する菌としては、 ムコール属 (Mucor 属)に属する菌体、 好ましくはムコール · ヒエマリス(Mucor hiemalis), より好ましくは工業技術院生命工学技術研究所 (茨城県つくば巿東 1丁目 1番 3 号) に寄託されている Mucor hiemalis (受託番号 F E RM B P- 4 9 9 1 )が挙 げられる。
これらの菌株の培養に用いる培地組成は通常の微生物の培養に用いられるも のであればどのようなものでもよい- 炭素源としては、 例えばダルコ一ス、 シユークロース、 マンノース、 ガラク ト —ス、 マルトース、 可溶性デンプン、 デキストリン等の糖質、 窒素源としては酵 母エキス、 トリプトン等が挙げられる。 無機塩としては上記の窒素源に含有する 無機塩の他に、 各種ナトリゥム塩、 力リゥム塩、 カルシウム塩、 マグネシウム塩、 リン酸塩等の塩類が用いられ、場合によってはビタミン類などを添加してもよレ、。 培養は培地を通常の方法で滅菌し、 菌株を接種後、 20〜30°C、 pH5〜 7で 2〜 4日間振とう又は通気撹拌培養を行う。
本発明においては、 温度が 2 5〜 3 0CC、 pHが 6、 炭素源としてガラク ト一ス、 窒素源として酵母エキス、 トリプトンを用い、.炭素源、 窒素源の濃度がともに 2 〜3%、 炭素源と窒素源との比が 2 : 3で 3〜4日間、 良好な通気条件で培養す ることがより好ましい。 このような培養条件で培養した場合は、 酵素の生産量が 最大となり、 公知の方法 〔S. Kadowaki, et al. , Agric. Biol. Chem. , 54, 97 (1990) ;グルコース 0.5%、 酵母エキス 1 %、 ペプトン 1 %〕 と比較して約 1 0 倍の酵素生産性を得ることができる。
なお、 本発明においては、 微生物を培養する際に通気条件を確保するため、 ジ ヤーファーメンターを用いることが好ましい:
2. ェンド- j3-N-ァセチルダルコサミニダーゼの精製
上記菌株が生産するェンド- - N-ァセチルダルコサミニダーゼは、 以下の活性 の保持を特徴とするものである。 すなわち、 糖タンパク質に存在するァスパラギ ン結合型糖鎖に作用して、 糖鎖中に存在するジァセチルキトビオース部分を切断 し、 糖鎖を遊離する活性で特徴付けられる。
エンド- iS - N-ァセチルダルコサミニダ一ゼの精製は、 公知の分離、 精製方法を 適当に組み合わせて行なうことができる。 例えば塩沈殿、 ;容媒沈殿のような溶解 性の差を利用する方法、 透析、 限外濾過、 ゲル濾過および S D S -ポリアクリル電 気泳動のような分子量の差を利用する方法、 イオン交換タ マトグラフィーのよ うな電荷の差を利用する方法、 疎水クロマトグラフィー、 逆相クロマトグラフィ 一のような疎水性の差を利用する方法、 さらに等電点電気泳動のような等電点の 差を利用する方法等が挙げられる。
本発明においては、 前述の通り公知の方法(S. Kadowaki , et al . , Agric. Bi ol. Chew. , 54, 97 ( 1990) )を改良した培養法を採用し、 かつ多段の精製ステップを 経ることによりェンド - |3 -Ν-ァセチルダルコサミニダーゼを効率よく精製するこ とができ、 遺伝子を取得するために必要なァミノ酸配列を得る十分量のタンパク 質を得ることができる。 得られる酵素は、 酵素精製の結果、 及び後述の遺伝子解 析の結果、分子量約 85, 000で単一の遺伝子産物によって構成され、遺伝子の翻訳 後の限定分解を経て少なくとも分子量約 60, 000及び 14, 000のペプチドを含む 2 つ以上のサブュニットから構成されることを見出した。
3 . 新規ェンド- β -Ν-ァセチルダルコサミニダーゼ遺伝子のクローニング
Mucor hi emal i sより得られるェンド- 3 -N-ァセチルグルコサミニダーゼは少な く とも 2つ以上のぺプチドょり構成されていることがわかった。
一般に、 ある特定のタンパク質をコードする遺伝子を単離する場合、 タンパク 質の部分ァミノ酸配列を決定し、 その縮重コ ドンからなる混合オリゴヌクレオチ ドをプローブとして、 遺伝子ライブラリーから目的の遺伝子を単離することが可 能である。 また、 本発明において実施したような PCRによる部分断片の取得後、 その断片をプローブとして遺伝子ライブラリーから目的の遺伝子を単離すること も可能である。
しかしながら、 エンド - -Ν-ァセチルダルコサミニダ一ゼは、 2種類以上のサ ブュニットからなるヘテロオリゴマ一分子であるため、 それぞれのサブュニッ ト がそれぞれ異なる遺伝子に独立してコードされる可能性がある。 また、 エンド - /3 - N-ァセチルダルコサミニダーゼがひとつの遺伝子から由来するにしても 2つ のサブュニットをコ一ドする領域が構造遺伝子のなかでどのような位置関係とな つているかなど、 その構造については明らかではない。
そこで、 発明者らは 2つのサブユニッ トの部分アミノ酸配列を決定し、 さらに PCRによる部分断片の取得の後、該断片をプローブとした cDNAのクローニングに 成功し、 遺伝子構造を解析することによって、 これら 2つのサブユニットが同一 の遺伝子にコードされることを明らかにした。 すなわち、 新規エンド- /3-N -ァセ チルダルコサミニダ一ゼは、 該酵素をコードする遺伝子から 1つのポリペプチド として生成され、 部分分解を受けることにより 2つ以上のサブュニッ トへとプロ セスされていることが明らかにされた。
本発明の遺伝子は、 例えば以下のようにしてクローニングされる。
(1) ェンド- j3-N-ァセチルグルコサミニダーゼ遺伝子のクローニング 本発明において、 新規ェンド - j3- N-ァセチルダルコサミニダーゼをコードして いる遺伝子を含む DN A断片の具体例としては、 図 2に示される制限酵素地図で 表される DNA断片が挙げられる。 この断片は、 Mucor 属に属する菌体、 好まし くは Mucor hiemalis株、 より好ましくは工業技術院生命工学技術研究所に受託番 号 F E RM B P- 4 9 9 1の番号のもとに寄託されている Mucor hiemalis株よ り調製される mRNAを铸型とした cDNAライブラリ一から遺伝子工学的な手法を用 レヽて単 sすることカ できる (Molecular Cloning: A Laboratory Manual (Sambrook^ aniatis ら、 Cold Spring Harbour Laboratory Press (1989) )などに記載の方法 を参照) 。
mRNAの調製は、 通常の手法により行うことができる。 例えば、 mRNAの供給源で ある Mucor hiemalisを培養した後、 市販のキッ ト (IS0GEN (二ツボンジーン社) ) で処理して全 RNAを得、 市販の精製キッ ト (mRNA Purification Kit (Pharmacia Biotech) ) を用いて精製することができる。 なお、 mRNAの調製には mRNAの分解 を抑制する意味で培養時間を短くすることが好ましい。
このようにして得られた mRNAを铸型として、 オリゴ dTブライマー及び逆転写 酵素を用いて一本鎖 cDNAを合成した後、該一本鎖 cDNAから二本鎖 cDNAを合成す る。得られた二本鎖 cDNAを適当なクローニングベクターに組み込んで組換えべク ターを作製する。 得られる組換えべクタ一を用いて大腸菌等を形質転換し、 テト ラサイクリン耐性、 アンピシリン耐性を指標として形質転換体を選択することに より、 cDNAのライブラリーを得ることができる。
ここで、大腸菌の形質転換は、 Hanahanの方法 [Hanahan, D.: J. Mol. Biol . 166: 557 - 580 (1983) ] などに従って行うことができる。 なお、 ベクターとしてプラスミ ドを用いる場合はテトラサイク リン、 アンピシリン等の薬剤耐性遺伝子を含有す ることが必要である: また、 プラスミ ド以外のクローニングベクター、 例えばえ ファージ等を用いることもできる。
上記のようにして得られる形質転換体から目的の DNA を有する株を選択(スク リ一ニング)する。 スクリーニング方法としては、 例えば、 エンド - ]3 - N-ァセチル ダルコサミニダ一ゼのァミノ酸配列に対応するセンスプライマー及びアンチセン スプライマーを合成し、これを用いてポリメラーゼ連鎖反応(PCR)を行う方法が挙 げられる。 例えば、 铸型 DNAとしては、 ゲノム DNA、 又は前記 mRNAから逆転写反 応により合成された cDNAが挙げられ、プライマーとしては、例えばセンス鎖につ いてはアミ ノ酸配列 : PSLQLQPDDK (配列番号 4 ) に基づいて合成した 5' - CARTTRCARCCNGAYGAYAA-3' (配列番号 5 )及びアミノ酸配列: SYRNPEIYPTDQNIK (配 列番号 6 ) に基づいて合成した 5' -CCHACNGAYCARAAYATYAA- 3' (配列番号 7 )を用 いることができる。 また、 アンチセンス鎖についてはアミノ酸配列:
SYRNPEIYPTDQNIK (配列番号 6 ) に基づいて合成 し た 3' -GGDTGNCTRG TYTTRTARTT-δ' (配列番号 8 )及びァミノ酸配列: GQRFNHRESHDVETEI (配列番号 9 ) に基づいて合成した 3' -TTYCCDGTYGCDAARTTRGT -5' (配列番号 10)を用いることが できる。但し、本発明においてはこれらのプライマーに限定されるものではない。 このようにして得られた DNA増幅断片を、 32P、 3¾又はピオチン等で標識してブ ローブとし、これを形質転換体の cDNAライブラリーを変性固定した二トロセル口 —スフィルタ一とハイプリダイズさせ、 得られたポジティブ株を検索することに よりスクリ一ニングすることができる。
(2) 塩基配列の決定 得られたクローンについて塩基配列の決定を行う。塩基配列の決定はマキサム - ギルバートの化学修飾法、 又はジデォキシ法等の公知手法により行うことができ るが、 通常は自動塩基配列決定機 (例えば PERKIN- ELMER社製 377A DNAシークェ ンサ一等) を用いて配列決定が行われる。
配列番号 1にェンド - |3 - N-ァセチルダルコサミニダーゼ遺伝子の全配列を示 す。 このうち、 本発明の遺伝子の好ましい具体例としては、 配列番号 1に示され る塩基配列の 71番目から 2305番目までの塩基配列(配列番号 2 ) が挙げられる。 また、 本発明の遺伝子は、 配列番号 3に示されるアミノ酸配列又は後述する等価 配列を有するアミノ酸配列をコードする塩基配列をもつもののほか、 縮重コドン においてのみ異なる同一のポリべプチドをコ一ドする縮重異性体をも包含するも のである。
なお、 等価配列を有するアミノ酸配列をコードする塩基配列は、 部位特異的突 然変異誘発法などを利用して調製することができる。 すなわち、 Kunkel法若しく は Gapped duplex法等の公知手法又はこれに準ずる方法により、 例えば部位特異 的突然変異誘発法を利用した変異導入用キット (例えば Mutant- K (TAKARA社製) 、 Mutant - G (TAKARA社製) )などを用いて、 あるいは、 TAKARA社の LA PCR in vi tro Mutagenesi s シリーズキッ トを用いて変異が導入される。
また、 ェンド— —Ν -ァセチルダルコサミニダ一ゼ遺伝子には、 配列番号 1又は
2に示される塩基配列からなる DNAのほか、 該 DNA とストリンジヱントな条件下 でハイブリダイズし、 かつェンド - ]3 - Ν-ァセチルダルコサミニダーゼ活性を有す るタンパク質をコードする DNAも含まれる: ストリンジェン卜な条件とは、 例え ば、 ナトリウム濃度が 50〜300mM、 好ましくは 150mMであり、 温度が 50〜68°C、 好ましくは 65°Cでの条件をいう。
一旦ェンド- 3 -N-ァセチルダルコサミニダーゼ遺伝子の塩基配列 (配列番号 1 ) が確定すると、 該塩基配列の 71番から 2305番までの配列を有する D N A断 片 (オーブンリーディングフレーム) の塩基配列が定まっていることから (配列 番号 2 ) 、 その後は化学合成によって、 又は当該オープンリーディングフレーム (配列番号 2 ) の 5'および 3'末端の塩基配列 (例えば 5' -ATGCCTTCACTTCAATTGCA ACC-3' (配列番号 1 1 ) 及び 5' - CTAGTTTAATGACAAATCTATGC - 3' (配列番号 12) )をフ: ライマーとし、 ゲノム DNAを鎵型とした PCRによって、 あるいはエンド- j3 - N -ァ セチルダルコサミニダーゼ遺伝子の塩基配列を有する DNA断片をプローブとして ハイブリダィズさせることによって、 エンド- i3 -N -ァセチ 'レグルコサミニダーゼ 遺伝子を得ることができる。
なお、 本発明の遺伝子を含有するアラスミ ド pZL - Endo 後述する実施例 3参 照) は、 大腸菌 E. col i DH10Bに導入され(名称: DH10BpZL-Endo)、 工業技術院生 命工学工業技術研究所 (茨城県つくば市東 1丁目 1番 3号) に、 平成 10年 4月 28 日付で FERM BP- 6335として寄託されている。
本発明において、 組換え新規ェンド- )3 - N-ァセチルダ'レコサミニダ一ゼの好 ましい具体例としては、 配列番号 3に示されるアミノ酸配列、 またはその等価配 列を含んでなるポリペプチドが挙げられる: ここで、 「等価配列」 とは、 配列番 号 3に示されるアミノ酸配列において、 少なく とも 1個のアミノ酸の挿入、 置換 若しくは欠失又は両末端への付加がなされたものであって、 且つ上記した新規ェ ンド - ]3 - N-ァセチルダルコサミニダーゼ活性を依然として保持する配列をいう。 その等価配列における新規ェンド- β - Ν-ァセチルグルコサミニダーゼ活性の保持 とは、 その活性を利用した実際の使用態様において、 配列番号 3に示される配列 を全て有するポリべプチドと同一の条件でほぼ同様の利用が可能な程度の活性が 維持されていることをいうものとする。 このような等価配列は、 配列番号 3に示 されている配列を参照すれば、 当業者であれば格別の困難なしに選択し、 製造可 能であることは明らかである。 例えば、 配列番号 3に示されるアミノ酸配列の少 なく とも 1個、 好ましくは 1〜10個、 さらに好ましくは 1〜 5個のァミノ酸が欠 失してもよく、 配列番号 3に示されるアミノ酸配列に少なくとも 1個、 好ましく は 1〜10個、 さらに好ましくは 1〜 5個のァミノ酸が付加又は挿入してもよく、 あるいは、 配列番号 3に示されるアミノ酸配列の少なく とも 1個、 好ましくは 1 〜10個、 さらに好ましくは 1〜 5個のアミノ酸が他のァミノ酸に置換してもよい = 従って、 配列表の配列番号 3に示されるアミノ酸配列において 2番から 7 4 4番 までに示されるアミノ酸配列を有するポリぺプチド(配列番号 3に示されるアミ ノ酸配列の第 1番目のメチォニンが欠失したもの) も本発明のタンパク質に含ま れる。 ここで、 本発明による部分アミノ酸配列分析、 および遺伝子構造解析によって 前駆体ポリペプチドが少なく とも配列番号 3に示されるアミノ酸配列の 5 1 0番 目のヒスチジン、 及び 6 2 7番目ァスパラギン酸のアミノ酸の C末端側で切断さ れることにより、 天然体の 2つ以上のサブュニッ トが生じたものであることが明 らかにされた。
2 . 組換えベクター及び形質転換体の作製
本発明においては、 本発明の遺伝子を含んだ D N A分子、 特に発現ベクターが 提供される。 この D N A分子は、 ベクター分子に本発明による新規エンド - - N - ァセチルダルコサミニダーゼをコ一ドする D N A断片を組み込むことによって得 ることができる。 従って、 本発明の新規エンド- 3 -Ν-ァセチルグルコサミニダ一 ゼをコ一ドする遺伝子断片を、 宿主細胞内で複製可能でかつ同遺伝子が発現可能 な状態で含む D N A分子、 特に発現ベクターの形態として宿主細胞の形質転換を 行なえば、 宿主細胞において本発明の新規ェンド- j3 -N-ァセチルダルコサミニダ 一ゼを産生させることができる。
この発明による D N A分子の作成は前掲の Molecular Cloning : A Laboratory Manualに記載の方法に準じて行なうことができる。
(1) 組換えべクタ一の作製
本発明において利用されるベクターは、 使用する宿主細. の種類を勘案しなが ら、 ウィルス、 プラスミ ド、 コスミ ドベクターなどから適宜選択できる。
例えば、 宿主細胞が大腸菌の場合は λファージ系のバタ リオファージ、 ρ Β R系 (pBR322, pBR325等)、 p U C系(pUC118, pUC119等) (つプラスミ ド、 枯草菌 の場合は p U B系のプラスミ ド (pUBl lO 等)、 酵母の場合は Y E p、 Y C p系の ベクター(例えば YEpl3, YEp24, YCp50等 、 あるいは後記する実施例で使用され る pG - 3- Notが挙げられる。 さらに、 レトロウイルス又はワクシニアウィルスなど の動物ウィルス、 バキュ口ウィルスなどの昆虫ウィルスべクターを用いることも できる。
ベクターに本発明の遺伝子を挿入するには、 まず、 精製された DNAを適当な制 限酵素で切断し、適当なベクタ一 DNAの制限酵素部位又はマルチクローニングサ ィ トに挿入してベクターに連結する方法などが採用される:
本発明の遺伝子は、 その遺伝子の機能が発揮されるようにベクターに組み込ま れることが必要である。 そこで、 本発明のベクターには、 形質転換体の選択マ一 カーを含むのが好ましく、 選択マ一カーとしては薬剤耐性マーカー、 栄養要求マ 一力一遺伝子を使用することができる。
さらに、 本発明の発現ベクターとしての DNA分子は、 新規エンド- -Ν-ァセ チルダルコサミニダ一ゼ遺伝子の発現に必要な D N A配列、例えばプロモーター、 転写開始信号、 リボゾーム結合部位、 翻訳停止シグナル、 転写終結シグナルなど の転写調節信号、 翻訳調節信号などを有しているものが好ましい
(2) 形質転換体の作製
本発明の形質転換体は、 本発明の組換えベクターを、 目的遺伝子が発現し得る ように宿主中に導入することにより得ることができる。 ここで、 宿主としては、 本発明の遺伝子を発現できるものであれば特に限定されるものではない。例えば、 エッシェリ ヒァ ' コリ(Escherichia coli) 等のエッシェリ ヒァ属、 バチルス 'ズ ブチリ ス (Bacillus subtilis)等のバチルス属、 シュ一 ドモナス ♦ プチダ (Pseudomonas putida)等のシユードモナス属に属する細菌が挙げられ、 サッカロ ミセス ·セレビシェ(Saccharomyces cerevisiae) , シゾサッカロミセス · ボンべ (Schizosaccharomyces pombe) キャンディタ · ホインニイ (Candida boidinii) ピキア ·パストリス(Pichia pastoris)等の酵母が挙げられる。
宿主細胞としては、 大腸菌、 枯草菌、 酵母以外に、 COS 細胞、 CH0 細胞等の動 物細胞が挙げられ、 あるいは Sf9、 Sf21等の昆虫細胞が挙げられる。
大腸菌等の細菌を宿主とする場合は、 本発明の組換えベクターが該細菌中で自 律複製可能であると同時に、 プロモーター、 リボゾーム結合配列、 本発明の遺伝 子、 転写終結配列により構成されていることが好ましい。 また、 プロモーターを 制御する遺伝子が含まれていてもよい。
大腸菌としては、 例えばエツシヱリヒア ' コリ(Escherichia coli)K12、 DH1、 DH5a、 JM109 などが挙げられ、 枯草菌としては、 例えばバチルス · ズブチリス (Bacillus subtilis)MI 114、 207-21 などが挙げられる。 枯草菌にはタンパク質 を菌体外へ分泌する株が存在することが知られている。 またプロテア一ゼを殆ど 分泌しない株も知られており、このような株を宿主として用いることも好ましい。 プロモーターとしては、 挿入断片に含まれる宿主中でも機能することができる プロモータ一はもちろんのこと、 大腸菌においてはラタ トースォペロン (lac) 、 トリプトファンオペロン (trp) 等のプロモーターが挙げられる。
細菌への組換えベクターの導入方法としては、 細菌に DNAを導入する方法であ れば特に限定されるものではなレ、。例えばカルシウムイオンを用いる方法 [Cohen, S.N. et al. : Proc. Natl. Acad. Sci. , USA, 69: 2110-2114 (1972)]、 エレク ト 口ポレーション法等が挙げられる。
酵母を宿主とする場合は、 例えばサッカロミセス 'セレピシェ(Saccharomyces cerevisiae) N シンサッカロミセス · ホンへ (Schizosaccharomyces pombe 、 カン ジダ ' ウティリス(Candida utilis)などが用いられる。 この場合、 プロモーター としては酵母中で発現できるものであれば特に限定されず、 例えばアルコールデ ヒ ドロゲナーゼ(ADH)、酸性フォスファタ一ゼ(PH0)、ガラク トース遺伝子(GAL)、 ダリセルアルデビド 3リン酸脱水素酵素遺伝子 (GAPDH) 等のプロモーター、 ヒー トショ ックタンパク質プロモーター、 MFa 1プロモーター、 PGKプロモーター、 GAP プロモータ一、 A0X1プロモーター等を好ましく用いることができる。
酵母への組換えベクターの導入方法としては、 酵母に DNAを導入する方法であ れば特に限定されず、 例えばエレク トロポレーシヨン法 [Becker, D. M. et al. : Methods. Enzymol. , 194: 182-187 (1990)]、 スフエロプラスト法 [Hinnen, A. et al. : Proc. Natl. Acad. Sci. , USA, 75 : 1929-1933 (1978)]、 酢酸リチウム法 [Itoh, H. : J. Bacterid. , 153 : 163-168 (1983) ]等が挙げられる。
動物細胞を宿主とする場合は、 サル細胞 COS - 7、 Vero、 チャイニーズハムスタ —卵巣細胞 (CH0細胞) 、 マウス L細胞、 ラッ ト GH3、 ヒ ト FL細胞などが用いら れる。 プロモータ一として SRctプロモータ一、 SV40プロモータ一、 LTRプロモー ター、 CMV プロモーター等が用いられ、 また、 ヒ トサイ トメガロウィルスの初期 遺伝子プロモーター等を用いてもよい。
動物細胞への組換えベクターの導入方法としては、 例えばエレク トロポレーシ ヨン法、 リン酸カルシウム法、 リボフヱクシヨン法等が挙げられる。 昆虫細胞を宿主とする場合は、 Sf9細胞、 Sf21細胞などが用いられる。
昆虫細胞への組換えベクターの導入方法としては、 例えばリン酸カルシウム法、 リポフエクション法、 エレク トロポレーション法などが用いられる。
4 . 本発明のタンバク質の生産
本発明のタンパク質は、 本発明の遺伝子によりコードされるアミノ酸配列を有 するもの、 または該ァミノ酸配列において少なく とも 1個のァミノ酸に前記変異 が導入されたァミノ酸配列を有し、 かつェンド - i3 -N -ァセチルグルコサミニダ一 ゼ活性を有するものである。
本発明のタンパク質は、 前記形質転換体を培養し、 その培養物から採取するこ とにより得ることができる。 「培養物」 とは、 培養上清、 あるいは培養細胞若し くは培養菌体又は細胞若しくは菌体の破砕物のいずれをも意味するものである。 本発明の形質転換体を培養する方法は、 宿主の培養に用いられる通常の方法に 従って行われる。
大腸菌や酵母菌等の微生物を宿主として得られた形質転換体を培養する培地と しては、 微生物が資化し得る炭素源、 窒素源、 無機塩類等を含有し、 形質転換体 の培養を効率的に行うことができる培地であれば、 天然培地、 合成培地のいずれ を用いてもよい。
炭素源としては、 グルコース、 フラク トース、 スクロース、 デンプン等の炭水 化物、 酢酸、 プロピオン酸等の有機酸、 エタノール、 プロパノール等のアルコー ル類が用いられる。
窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸ァ ンモニゥム、 リン酸アンモニゥム等の無機酸若しくは有機酸のアンモニゥム塩又 はその他の含窒素化合物のほか、 ペプトン、 肉エキス、 コ一ンスティ一プリカ一 等が用いられる。
無機物としては、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネシ ゥム、 硫酸マグネシウム、 塩化ナトリゥム、 硫酸第一鉄、 硫酸マンガン、 硫酸銅、 炭酸カルシウム等が用いられる。
培養は、 通常、 振盪咅養又は通気攪拌培養などの好気的条件下、 37°Cで 12〜72 時間行う。 培養期間中、 pHは 4〜7. 5に保持する。 pHの調整は、 無機又は有機酸、 アル力リ溶液等を用いて行う。
培養中は必要に応じてアンピシリンゃテトラサイクリン等の抗生物質を培地に 添加してもよレ、。
プロモーターとして誘導性のプロモータ一を用いた発現べクタ一で形質転換し た微生物を培養する場合は、 必要に応じてィンデューサーを培地に添加してもよ い。 例えば、 Lac プロモーターを用いた発現ベクターで形質転換した微生物を培 養するときにはイソプロピル- ]3 - D-チォガラタ トシド(IPTG)等を、 trp プロモー ターを用いた発現ベクターで形質転換した微生物を培養するときにはィンドール 酢酸( IAA)等を培地に添加してもよい。
動物細胞を宿主として得られた形質転換体を培養する培地としては、 一般に使 用されている RPMI 1640培地、 DMEM培地又はこれらの培地に牛胎児血清等を添加 した培地等が用いられる。
培養は、 通常、 5 %C02存在下、 37°Cで 2〜10日行う。 培養中は必要に応じて力 ナマイシン、 ぺニシリン等の抗生物質を培地に添加してもよい。
培養後、 本発明のタンパク質が菌体内又は細胞内に生産される場合には、 菌体 又は細胞を破砕することにより本発明のタンパク質を抽出する。 また、 本発明の タンパク質が菌体外又は細胞外に生産される場合には、 培養液をそのまま使用す るか、 遠心分離等により菌体又は細胞を除去する。
組換え新規ェンド- |3 -N-ァセチルダルコサミニダーゼの精製は、 公知の分離、 精製方法を適当に組み合わせて行なうことができる。 例えば塩沈殿、 溶媒沈殿の ような溶解性の差を利用する方法、 透析、 限外濾過、 ゲル濾過および S D S -ポリ ァクリル電気泳動のような分子量の差を利用する方法、 イオン交換クロマトグラ フィ一のような電荷の差を利用する方法、 疎水クロマトグラフィー、 逆相クロマ トグラフィーのような疎水性の差を利用する方法、 さらに等電点電気泳動のよう な等電点の差を利用する方法等が挙げられる。
本発明においては、 後記する実施例に示すように、 サッカロミセス 'セレビシ ェを宿主として GAPDHプロモーターの支配下にこの遺伝子を発現させたところ、 細胞抽出液中に高い酵素活性が認められた: このことにより、 組換え体において 本発明の遺伝子を発現することによって活性型の新規ェンド - ]3 - N-ァセチルグル コサミニダーゼを大量に生産可能であることが示された。 図面の簡単な説明
図 1は、 ェンド- 3 -N-ァセチルグルコサミニダーゼの精製結果を示す電気泳動 写真である。
図 2は、 新規ェンド- |3 - N-ァセチルダルコサミニダーゼ遺伝子の全長を含む pZL-Endoの制限酵素地図である。
図 3は、 新規ェンド- ] 3 -N-ァセチルダルコサミニダーゼ遺伝子の全長を含む pZL- Endoの Sal I- Not I部位に挿入された断片の全塩基配列を示した図である。 図 4は、 新規ェンド- -Ν-ァセチルダルコサミニダーゼ遺伝子の全長を含む pZL- Endoの Sal I -Not I部位に揷入された断片の全塩基配列を示した図である(図 3の続き) 。
図 5は、 新規ェンド- ] 3 -N -ァセチルダルコサミニダーゼ遺伝子から推定される アミノ酸配列、および該アミノ酸をコードする D N Aの塩基配列を表す図である。 図 6は、 新規ェンド- J3 -N -ァセチルダルコサミニダーゼ遺伝子から推定される ァミノ酸配列、 および該ァミノ酸をコードする D N Aの塩基配列を表す図である (図 5の続き) 。
図 7は、 新規ェンド- ]3 ァセチルダルコサミニダーゼ遺伝子から推定される アミノ酸配列、 および該アミノ酸をコードする D N Aの塩基配列を表す図である (図 6の続き) 。
図 8は、 新規ェンド - j3 - N-ァセチルダルコサミニダーゼ遺伝子を含むサッカロ ミセス ·セレピシェ用の発現べクタ一 pGEndo- SCの構造を表す図である。
図 9は、 新規ェンド - jS -N-ァセチルダルコサミニダーゼ遺伝子が導入された酵 母での該酵素の発現を示すクロマトグラフの写真である。 発明を実施するための最良の形態
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明は、 これ ら実施例にその技術的範囲が限定されるものではない。 なお、 操作手順は特に記 載しなレヽ限り Molecular Cloning: A Laboratory Manual (Sambrook Maniatis ら、 Cold Spring Harbour Laboratory Press (1989) )に記載の方法に従った。
〔実施例 1〕 酵素活性の測定
エンド- /3-N-ァセチルダルコサミニダーゼ活性は基本的に、 S. Kadowaki, et al., Agric. Biol. Chew. , 54, 97 (1990) に示された方法に従った。 すなわち、 ダンシル化されたヒ トァシァロ トランスフエリングリ コペプチド (DNS- GP) を基 質として用い、 PH6.0のリン酸カリウム緩衝液中 37°Cで反応を行い、 以下に示す 条件で薄層クロマトグラフィー(TLC)、 または HPLCにより測定した。
TLCでの分析条件
展開相 : HPTLCシリカゲル 60 (メルク)
溶媒: ブタノール:酢酸:水 = 2 : 1 : 1
検出:萆光法による検出
HPLCでの分析条件
カラム : TSK- gel 0DS80TM (東ソ一)
移動相: 2 5 mMホゥ酸ナトリウム緩衝液 pH 7. 5 + 1 1 %ァセ トニトリル カラム温度 : 5 0°C
流速: 0. 5 ml/分
検出器:蛍光検出器
活性の定義は上記 HPLCによる測定で条件下で、 1分間に 1 imolのダンシル化 ァスパラギルァセチルダルコサミンを生成する酵素量を 1ュニットと定義した。
〔実施例 2〕 Mucor hiemalisの培養
5 0 Oml 容坂ロフラスコに 1 0 Oml 培地 (ガラク ト一ス 2 %、 酵母エキス 3%) を仕込み、 スラント 3〜 5分の 1本分の Mucor hiemalis胞子を接種し、 2 8°Cで 2日間培養を行った。 mRNAの調製にはこの培養液を吸引ろ過して分離した 菌体を用いた。
また酵素の調製については、 上記培養液を培養後 3リットル容ジャーファーメ ンターに 2 リ ッ トルの培地を仕込んだものに移し替え、 2 8°C、 回転数 3 00〜 40 0rpm、 通気量 2 リッ トル/分の条件で 4日間培養を行った。 JP /
〔実施例 3〕 新規ェンド -3- N-ァセチルグルコサミニダ一ゼの精製
実施例 2で得られた培養液 4リットル分 (3リツ トル容ジャーフアーメンター 培養 2回分) を吸引ろ過して菌体を分離し、 限外ろ過 (分子量 1 3000カット) にて 200ml まで濃縮したものを粗酵素液とした。 これを 5mM EDTAを含む 1 OmMリン酸カリゥム緩衝液(pH 7.0) にて平衡化したイオン交換クロマト グラフィ一 (フアルマシア社 Q Sepharose FF、 500ml) に通した。 カラムを同 緩衝液にて洗浄し、 引き続き 90 Om 1の 0M〜0. 3 M食塩の線状勾配でェン ド - )3- N-ァセチルダルコサミニダ一ゼを溶離した。 活性画分に最終濃度が 1 M硫 酸アンモニゥム、 5mM EDTAを含む 50 mMリン酸カリ ウム (pH 7.0) と なるように試薬を加え、 同緩衝液にて平衡化した疎水クロマトグラフィー (東ソ —社 Phenyl-TOYOPEARL 650S 200m l ) に通した。 カラムを同緩衝液にて洗浄 し、 次に 1 mMの EDTAを含む硫酸アンモニゥム 60 Om 1を用いて、 1 M〜 0Mの線状勾配でェンド- ]3- N-ァセチルダルコサミニダーゼを溶離した。
得られた溶離液を限外濾過膜 (分子量カツト 1 3000) にて 5 mlまで濃縮し、 引き続き 0. 1 5M [の食塩、 1 mMの EDTAを含む 1 OmMリン酸カリウム緩 衝液 (pH 7. 0) にて洗浄、 脱塩した。 次に同緩衝液にて平衡化したゲル濾過ク 口マトグラフィー (フアルマシア社 Sephacryl S300) に載せ、 同緩衝液にてェン ド - j3 ァセチルダルコサミニダーゼを溶出した。
活性画分を限外濾過膜 (分子量力ッ ト 1 3000) にて濃縮し、 引き続き 1 m Mの EDTAを含む 1 OmMリン酸カリゥム緩衝液 (pH 7.0) にて洗浄、 脱塩 した。次に同緩衝液にて平衡化したヒ ドロキシァパタイ トク口マトグラフィ一(東 ソ一社 TSK- gel HA1000) に通した。 カラムを同緩衝液にて洗浄し、 次いで 1 mM の EDTAを含むリン酸カリウム (pH 7.0) 30m lを用いて、 0M〜0. 3 Mの線状勾配でェンド -j3-N-ァセチルダルコサミニダーゼを溶離した。
活性画分を限外濾過膜 (分子量カット 1 3000) にて濃縮し、 引き続きイミ ノジ酢酸にて pH7. 1に調製された 25m ビス-トリス緩衝液で洗浄、脱塩した。 次に同緩衝液にて平衡化した等電点ク口マ トグラフィ一 (フアルマシア社 onoP) に通した。 カラムを同緩衝液で洗浄し、 次いで 5 Om 1のイミノジ酢酸に て pH3. 9に調製された 1 0%ポリバッファー 74 (フアルマシア社) でエンド- ]3- N-ァセチルダルコサミニダーゼを溶離した。
活性画分を限外濾過膜 (分子量カツト 1 3000) にて濃縮し、 引き続き l m Mの EDTAを含む 1 OmMリン酸カリゥム緩衝液 (p H 7.0) で洗浄、 脱塩し た。 次に同緩衝液にて平衡化したイオン交換クロマトグラフィー (フアルマシア 社 MonoQ) に通した。 カラムを同緩衝液にて洗浄し、 次いで 30m 1の 0M〜0. 3 M食塩の線状勾配でェンド- β -Ν-ァセチルグルコサミ二ダ一ゼを溶離した。 活性画分を限外濾過膜 (分子量力ッ ト 1 3000) にて濃縮し、 引き続き 1 m Mの E D T Aを含む 50 mi リン酸カリゥム锾衝液 ( p H 7.0 ) で洗浄、 脱塩し たものを酵素サンプルとした。 なお、 各カラムクロマトグラフィーはフアルマシ ァ社 FPLCを用いて行った。
タンパク質量はバイオラッ ド社プロテインアツセィキッ トを用いて、 または吸 光度 ( 2 8 0 nm) により測定した。 タンパク質の分子量、 等電点は SDS- PAGE (15- 25%グラジェント) 、 ゲル濾過クロマトグラフィー、 IEF- PAGE等により 測定した。
Native- SDSPAGE、 IEF- SDSPAGE による 2次元電気泳動、 及び上記クロマトグラ フィ一における各画分の活性と SDS- PAGE分析の結果から、 SDS- PAGE上で少なく とも 6 OkDa (p60と称する)、 及び 1 4 kDa(pl4)のバンドが検出された (図 1 ) 。
〔実施例 4〕 新規エンド -|3-Ν-ァセチルダルコサミニダ一ゼの部分アミノ酸 配列の決定
部分アミノ酸配列分析は岩松 (生化学 63、 139〜143(1991))の方法により行な つた。 精製酵素を泳動用緩衝液 ( 1 0 %グリセロール、 2.5 % S D S、 2% 2 -メルカプトエタノール、 62 mMトリス塩酸緩衝液 (pH6.8) ) に懸濁させ て、 SD Sポリアクリルアミ ド電気泳動に供した。 泳動後、 エレク トロブロッテ イングにより当該酵素をゲルより
Figure imgf000021_0001
7(;111の? 0 ?膜((?1~08101:)ァプラィ ド バイオシステムズ) へ転写した。 エレク トロブロッテイング装置としてはザルト ブロット I I s型 (ザルトリウス社) を用い、 エレク トロプロッティングを 1 6 0 mAで 1時間行なった。 転写後、 当該酵素の転写された部分の膜を切り取り、 その一部を直接気相プロ ティンシークェンサ一で分析し、 N末端アミノ酸配列を決定した。 また残りの膜 は約 3 0 0 M 1 の還元用緩衝液(8 M グァニジン塩酸、 0. 5M トリス塩酸緩 衝液 (p H 8. 5 ) 、 0. 3 % E D TA、 2 %ァセ トニトリル) に浸し、 1 m gの ジチオスレィ トール (D T T) を加え、 アルゴン下で 2 5 :C、 約 1時間の還元を 行なった。 これに 3. Omgのモノョード酢酸を 0. 5 N水酸化ナトリゥム液 1 0 μ 1に溶かしたものを加え、遮光下で 2 0分攪拌した。 P VD F膜をとりだし、 2 % ァセトニトリルで充分洗浄した後、 0. 5 %ポリビニルピロリ ドン- 4 0を含む 1 O O mM酢酸に浸し、 3 0分間静置した。 こののち、 P VD F膜を水で充分洗浄 し、 1 mm四方に切断した膜を消化用緩衝液 (8 %ァセトニトリル、 9 0 mMト リス塩酸緩衝液 (p H 9. 0 ) ) に浸し、 ァクロモバクタ一ァロテアーゼ I (和光 純薬) を l pmol加え、 室温で 1 5時間消化した。 その消化物を C 1 8カラム (和 光純薬 Wakosil AR II C18 300A 2.0X150mm ) を用いた逆相高速液体クロマト グラフィー (日立 し 6200) により分離し、 各サブユニットについて 7種類のぺプ チド断片を得た。
ペプチドの溶出溶媒としては A溶媒 (0. 0 5 %トリフルォロ酢酸) 、 B溶媒 ( 0. 0 2 %トリフルォロ酢酸を含む 2 -プロパノール/ァセトニトリノレ 7 : 3 ) を用い、 溶出は、 B溶媒に関し 2〜5 0 %の直線濃度勾配で、 0. 2 5mL/min の 流速のもと 4 0分間溶出させることにより行なった。
新規ェンド— —χーァセチルダルコサミニダーゼ候補タンパク質から得られた 断片化ぺプチドについてァミノ酸配列分析を行なった。 ρ6 0由来の断片を ρ 6 0 - A P、 p i 4由来の断片を p i 4- A Pと命名した。 得られた断片化べプチドにつ いてのアミノ酸配列決定試験を、気相プロティンシークェンサ一 P P S O- l 0型 (島津製作所) を用いマニュアルに従って自動ェドマン分解法により行なった。 得られた部分アミノ酸配列を表 1に記す。 表 1 ェンド- /3 -N-ァセチルダルコサミニダーゼ候補タンパクの
部分アミノ酸配列 p60
p60-AP-5 PSLQLQPDDK (配列番号 17)
ρθΟ-ΑΡ-6 (K) SYRNPEIYPtDQNIK (配列番号 18)
p60-AP-8 (K) FNVSSVALQPRVK (配列番号 19)
ρθΟ-ΑΡ-9 (K) MDRLFLCGgK (配列番号 20)
S
p60-AP-l l (K) GQRFNHREShDVETEI (配列番号 21)
raal li lt
pl4
pl4-AP-l (K) EGYISSSGSIDLSL (配列番号 22)
表 1に記載のアミノ酸配列において、 アルファべッ トの小文字で表されたアミ ノ酸は、 アミノ酸配列上、 不確定なアミノ酸を意味する。
部分ァミノ酸配列に用いたァクロモパクタープロテア一ゼ Iはリジン残基の カルボキシル基側を特異的に切断する為、 以下の配列に N末端側に括弧書きで K
(リジン) を記す。 p60 - AP - 5は N末端アミノ酸配列であることが判明したため、 括弧書きの K (リジン) を除いた。
p 6 0及び p i 4のァクロモパクタープロテアーゼ I消化物については、 C 1 8 カラム (ジーエルサイエンス Inertsi l ODS- 3 0. 5x40mm) を用いた逆相高速液体 クロマトグラフィー(日立 L 6200)をオンライン化した質量分析機(P E Sciex API-Ill) で質量分析も合わせて行なった。 分析結果を表 2に示す。
表 2 60kDaペプチド (p 6 0 ) 及び 14kDaペプチド(pl4)の
p 6 0
実測 理論値 誤差 対応シークェンス ¾列脅号
AP-l 950.50 950.47 +0.03 (K)NIQGNNYK 23
AP-2 1160.50 1160.56 -0.06 ( )YSDYPPPPP 24
AP-3 733.25 733.41 -0.16 (K)LSLDASK 25
AP-4 1838.50 1837.91 +0.59 ( )SYRNPEIYPTDQNIK 18
AP-5 1141.00 1140.59 +0.41 ( )PSLQLQPDDK · · · · P60 N末端 17
1157.50 1556.75 +0.75 (K)NTDGIFLNYWWK 26
AP-6 1774.75 1774.94 -0.19 ( )GB'SL YIYRTLLMK 27
AP-7 701.50 701.39 +0.11 ( )LTVAB'H · · ■ · ρ60 C末端 28
1544.50 1543.79 +0.71 (K)PQLLLTHDMAGGYK 29
1621.00 1620.73 +0.27 ( )SMNELRDWTPDEK 30
AP-8 1444.75 1444.83 -0.08 (K)FNVSSVALQPRVK 19
AP-9 945.75 945.58 +0.17 (K)LAPVSFAL 31
2655.00 2655.33 -0.33 ( K ) GQRFNHRESHDVETE ISIPLYK 32
AP-10: 2206.75 2206.11 +0.64 (K)ITSSLDB*DHGAFLGGTSLIIK 33
AP-11: 2335.00 2335.16 -0.16 (K)NELFFKNTDGIFLNYWK 34 pl4
実測値 理論値 対応シークェンス 配列番号
AP-l 888.75 888.45 +0.30 (K)IVIEAVNK 35
AP-2 1392.50 1392.76 -0.26 ( )SSRIIQDLFWK · · · · pl4 N末端 36
AP-3 1541.50 1541.73 -0.23 (K)EGYISSSGSIDLSLN · . pl4 C末端 22
1608.50 1608.84 -0.34 (K)TDSSRIIQDLFWK 37
* βはシスティン、 カルボキシメチルを表す。 表 2中、 質量 (ΜτΗ + ) において実測値が 701· 50を有十る断片は ρ60- ΑΡ-7、 実測値が 1541.50を有する断片は ρ14- ΑΡ- 3の分子量にほほ'一致し、その C末端の アミノ酸が Κ (リジン) でないことが分かった。 ァクロモパクタープロテア一ゼ Iで消化した断片は、 その酵素の基質特異性により、 サブ二ニッ ト自身の C末端 断片以外の断片は Κ (リジン) が C末端アミノ酸残基となることから、 この断片 化ペプチドが ρ 60及び pi 4のサブュニットの C末端断片であると推定した。 決定された p6 0及び p 1 4の部分ァミノ酸配列をタンパク質データベース BLASTPを用いてホモロジ一検索を行ったところ、得られた配列は新規であること が示された。以上の詰果から p6 0及び pi 4をェンド- -ァセチルダルコサミ 二ダ一ゼ候補とし、 遺伝子クローニングを行った。 〔実施例 5〕 Mucor hiemal i s 株 cDNAライブラリーの作製
まず実施例 2で得られた菌体 5 gより IS0GEN (二ツボンジーン社) を用いてト ータノレ RNA を抽出した。 抽出したトータル RNA から mR 'A Purification Kit (Pharmacia Biotech) を用いて mRNA を精製した。 mRNA より SuperScriptTM Lambda System for cDNA Synthesi s and λ Cloningキッ r (GIBCO BRし) を用レヽ て cDNAを合成し、 Sal Iアダプターを接続した後、 え ZipLoxTMSal I- Not I Arms (GIBCO BRL)に接続(ライゲーション)した。 Gigapack III Gold Packaging Extract (Stratagene) を用いてパッケージングを行い、 E. col i Y1090株に感染させ cDNA ライブラリーを完成させた。
〔実施例 6〕新規ェンド- N-ァセチルダルコサミニダ一ゼ cDNAのクローニ ング
部分アミノ酸配列 P60-AP - 5、 p60-AP- 6、 p60- AP- 11をもとに P C Rプライマー を設計した。 以下にその配列を示す。 使用している記号は全て IUPAC- IUBに基づ ぐ。
ρθΟ-ΑΡ-5
P60-AP-5F 5' CARTTRCARCCNGAYGAYAA 3' (センスプライマー) (配列番号 5 ) ρβΟ-ΑΡ-6
P60-AP-6F 5' CCHACNGAYCARAAYATYAA 3' (センスプライマ一) (配列番号 7 ) p60-AP-6R 3' GGDTGNCTRGTYTTRTARTT 5' (アンチセンスプライマー) (配列 番号 8 )
p60- AP- 11
p60- AP-l lR 3' TTYCCDGTYGCDAARTTRGT 5' マー) (配列 番号 10)
Mucor hiemal is培養菌体よりフエノール法によりゲノム DNAを調製し、 ゲノム PCR ( 9 4 °C 3 0秒、 5 5。C 1分、 7 2 °C 1分、 3 0サイクル) を行ったところ、 特異的に増幅するバンドが確認された。 p 6 0については p60- AP-5Fと p60- AP-11R とのプライマーの組み合わせで 1 . 7 kb、 p60-AP-5Fと p60 - AP-6Rとのプライマー の組み合わせで 1 . 5 kb、 P60-AP-6F と p60-AP - 11R とのブライマーの組み合わせ で 0 . 2 kbの PCR断片が得られた。 この断片について pCR-Scriptクローニングキ ッ ト (Strategene) を用いて pCR- Script Ampにサブクローニングを行なった。 制 限酵素消化による解析で p60-AP- 5F と p60-AP - 11R との増幅断片が p60 - AP-5F と P60-AP - 6R、 及び p60- AP - 6Fと p60 - AP- 11Rとの増幅断片を含んでいることが推定 されたので、 p60 - AP - 5Fと p60 - AP-11Rとの増幅断片の塩基配列をアプライ ドバイ ォシステムズ社 PRISM Ready React ionキット、 及び同社 PRISM 3 7 7 DNAシーク ェンサ一を用いて行った。 遺伝子解析は日立ソフ トウエアエンジニアリング DNASIS等を用いて行った。
その結果、 p60- AP- 5Fと p60 - AP - 1 1Rとの増幅断片は、 決定された他の部分アミ ノ酸配列を含んでいた。 よってこの DNA断片は p 6 0遺伝子の一部であることが 判明したので、 更に PCR増幅断片の内側の配列を元に新たに DNAプライマーを作 成し、 実施例 5で得た mRNAを铸型とし、 Access RT- PCR System (Promega) を用 いて RT- PCR (条件はゲノム PCRに同じ) を行った。 新たに作成した DNAプライマ 一の配列は以下のとおりである。
P60-AP-5NF δ' CACTTAAGTCTATGAATGAG 3' (センスプライマー) (配列番号 13)
P60-AP-6NR 3' CGATAGCTTTAGGTCTCTAA 5' (アンチセンスプライマー) (配列 番号 14)
その結果、約 1 . 2 k bの断片が増幅された。増幅された断片の塩基配列を決定 したところィントロンを含まない断片が得られたので、 この断片をプローブとし て cDNAのクローニンク.を行った。 アローブは Megaprime DNA label l ing systems (Amersham) を用レ、 Q - 32P dCTP (1 lOTBq/mmol)でラベルを行った。
実施例 5で得られた cDNA ライブラリーからの遺伝子全長の取得はプラークハ イブリダィゼーシヨンにより行った。 その結果、 2 0万個プラークから 5個のポ ジティブクローンが得られた。 そのうち 4個のクローンについて 2次スクリー二 ングを実施してシングルプラークを得た。 更にプラークから得られたファージ液 を E. col i DH10B株に感染させ、 ファージから pZLl由来のブラスミ ドを回収した c これらのクローンについて制限酵素解析を行い、 上流領域を最も長く含むクロー ンについて塩基配列の解析を行なった。 なお、 このプラスミ ドを pZL- Endoと命名 する (図 2 ) 。
挿入されていた約 2 . 3 k bの Sal I- Not I断片について塩基配列の決定を行な つた e すなわち、 pBluescript I I KS+ (Strategene)、 または pUC118 (宝酒造)に 細分化した断片をサブクローニングし、 さらにェキソヌクレアーゼ IIIおよびマ ングビーンヌクレア一ゼを用いた連続した欠失変異体を作製することにより、 種々の変異欠失をもつプラスミ ドを作製し、 DNAシークェンサ一を用いて 2370bp からなる Sal I- Not I 断片の配列を決定した (図 3〜4、 配列番号 1 ) 。
予想される構造遺伝子の領域の解析を行なったところ、 744 個から構成される アミノ酸配列(推定分子量 8 5 kDa) をコードするオープンリーディングフレーム が存在し (図 5〜7、 配列番号 2) , このアミノ酸配列は決定した p 6 0、 及び p 1 4の部分アミノ酸配列の全てを含んでいることがわかった。 P60 - AP - 5の N末端 側のとなりのアミノ酸がリジンではなくメチォニンであったことから、 このメチ ォニンをコ一ドする ATGが翻訳のスタートコドンであることを確認した。よって、 本発明の酵素の N末端はプロリンであることが明らかにされた。
一方、 質量分析の結果と同様に、 P14-AP - 3が本発明の遺伝子によりコードされ るタンパク質の C末端であることがわかった。 また質量分析の結果とも併せ p i 4の N末端の少なく とも一種は、 配列番号 2に示しているアミノ酸配列の 6 2 8 番目のセリンであると推定した。
以上のことから、 本発明の遺伝子は 5 ' 領域に p 6 0、 3 ' 領域に p i 4をコード することがわかった: アミノ酸配列から N末端シグナル配列は見い出されなかつ たため、 本発明の酵素は細胞内タンパク質であると考えられるが、 図 1において 複数のバンドが存在することから、 本発明の酵素は、 菌体の溶菌が原因と思われ るタンパク質分解酵素の作用を受けていると考えられた。
〔実施例 7〕 エンド- ]3 - N -ァセチルダルコサミニダーゼ遺伝子の発現べクタ 一の構築
本実施例では、 エンド - ]3 - N-ァセチルダルコサミニダ一ゼ遺伝子、 及び GAPDH 遺伝子プロモータ一- PGKタ一ミネーターを含む、 TRP1遺伝子を相補するサッカロ ミセス .セレピシェ組み込み用発現べクタ一の構築を行った 3
実施例 3で確認した 744アミノ酸をコ一ドしているオープンリーディングフレ ームを得るために、 両端に Not Iサイ トを付加した N末端、 C末端のアミノ酸配 列に相当する DNA配列に基づく DNAプライマーを合成し、 pZL-Endoを铸型として P C Rを行ない増幅断片を得た。 以下にセンス、 アンチセンスのブライマー配列 を記す。
Endo-Not-F (センスプライマー)
5' GGGGCGGCCGCTTTTATTTTACATAAATATGCCTTCACTTC 3' (配列番号 15)
Endo-Not-R (アンチセンスプライマ一)
5' CCCGCGGCCGCCTAGTTTAATGACAAATCTATGCTACC 3' (配列番号 16) 増幅された断片をァガロースゲル電気泳動にて分離後、 Prep- A- Gene DNA Purification System (Bio-Rad) を用いて回収、 精製した。 更にこの断片を Not I で消化後、 精製し、 pBluescript II KS+の Not Iに揷入し、 pBlue- Endo- Notを作 製した。
新規ェンド - j3 -N-ァセチルダルコサミニダーゼ遺伝子は力ビ由来の遺伝子であ ることから酵母での発現が適していると考え、 サッカロミセス ·セレピシェのグ リセルアルデヒ ド 3リン酸デヒ ドロゲナ一ゼ (GAPDH) 遺伝子のプロモーター、 3 -ホスホダリセリン酸キナーゼ (PGK) 遺伝子ターミネータ一、 及びトリブトファ ン合成遺伝子 TRP1遺伝子を含む、 trpl遺伝子を選択マーカーとするサッカロミ セス · セ レピシェ用の発現プラス ミ ドを、 発現ベク ター pG-3 ( Methods in Enzymology Vol. 194 p. 389) をベースに作製した。 pG- 3を BamH Iで消化し、 ク レノゥ処理により平滑末端とし、 Not I リンカーを付加して pG - 3- Notを作製した: 前述の pBlue-Endo- Notを Not Iで消化し、 約 2 . 3 kbの挿入断片をァガロース ゲル電気泳動により分離精製し、これを pG- 3- Notの Not I部位に挿入し、 pGEndo-SC を構築した (図 8 ) -
〔実施例 8〕 新規ェンド- i3 -N-ァセチルダルコサミニダーゼのサッカロミセ ス ·セレピシェでの発-現 宿主として酵母サッカロミセス 'セレピシェ YPH 5 0 0株 (Strategene) の peP4 遺伝子破壊株を用いた。 peP4 遺伝子破壊株については Sikorski, R. S.と Hieter, Pの方法 (Genetics 122巻 19-27 (1989) ) により作成した。 1 gの pGEndo-SC を用いて上記株を形質転換した。 形質転換は酢酸リ チウム法 (W0/95/32289号参照) により行い、 形質転換体はトリブトファンを含まない培地 プレート (酵母ニトロゲンベース 0 . 6 7 %、 カザミノ酸 0 . 5 %、 グルコース 1 %) にて選択した。
得られた形質転換について、 菌体内の新規ェンド- i3 - N-ァセチルダルコサミニ ダーゼの活性確認を行なった。 5 m Lの YPD培地 (酵母エキス 1 %、 ポリぺプト ン 2 %、 グルコース 2 %) 中、 3 0 °Cで 2日間培養した菌について、 1 5 0 0 g、 5分間、 4 °Cで遠心を行い培養上清と菌体を分離し、 菌体は蒸留水で洗浄した。 菌体に、 50mMリン酸カリウムバッファ一(pH 6. 0)と 5mM EDTAとの混合液を 1 0 0 μ リツ トル加えよく懸濁した。 更に 5 O mgのグラスビーズを加え、 激しく攪拌 した後遠心し、 上清を細胞抽出液とした。
活性測定は、 基質として DNS-GPを用いて TLCまたは HPLCで行った。 TLCでの 結果を図 9に示す。 Mucor hiemali s培養上清より精製した酵素と反応させたサン プルと同様に、 pGEndo- SC 生成物であるダンシル化ァスパラギルァセチルグルコ サミン(DNS-Asn - GlcNAc)と一致するピークが得られた。 一方、 ネガティブコント ロールである、 pG- 3- Not で形質転換した株の培養上清を用いたものからは DNS - Asn - GlcNAcに対応するピークは検出されなかった。そこで pGEndo- SCの細胞抽出 液を 1 0倍濃縮し、 脱塩を行ったものを粗酵素として、 DNS - GP と反応させ、 DNS-Asn-GlcNAcに対応するピークを上記条件の HPLCを用いて分取した。 分取し たサンプルをエバボレーターで濃縮し、マススぺク トル分析を行った。その結果、 分取したサンプルの分析結果が DNS-Asn - GlcNAc の分析結果と一致することを確 認した。 従って、 pGEndo- SC の挿入断片にコードされている遺伝子産物は、 新規 ェンド- |3 -Ν-ァセチルダルコサミニダ一ゼであることが分かった。
表 3に培地 1 m Lあたりの本新規ェンド- ) 3 - N-ァセチルグルコサミニダーゼ の活性 (生産量) を示す。 この活性は Mucor hiemal i sの値の 48倍であった。 表 3 新規エンド- iS -N-ァセチルダノ 1レコサミニダーゼの活性
活性 (ュニッ 卜/リットノレ)
M. hiemali s培 上清 0 . 9 ェンド - ァセチルダルコサミニダ -ゼ 4 3 . 2
遺伝子 入 S. cerevi siae 液注)
注)培養液を集菌後、 菌体をガラスビーズで破砕しその遠心分離後の上清の 活性を測定し、 その値から培養液当たりの活性を算出した。
本明細書は本願の優先権の基礎である日本国特許出願第平 10-141717号の明細 書および/または図面に記載される内容を包含する。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 産業上の利用可能性
本発明により、 エンド- i3 _N-ァセチルダルコサミニダーゼ、 エンド- i3 - N-ァセ チルダルコサミニダ一ゼ遺伝子、 該遺伝子を含有する組換えベクター、 該組換え ベクターを含む形質転換体及びェンド- ) 3 - N -ァセチルダルコサミニダーゼの製造 方法が提供される:
本発明の遺伝子を含有するべクタ一を宿主に導入し、 遺伝子を発現させること によってェンド— —N—ァセチルダルコサミニダーゼを効率的、 大量に生産するこ とができる。
本発明の酵素は、 糖鎖の分析、 解析、 及び糖鎖の改変を行う上で産業上重要な 酵素であり、 本発明によって得られた形質転換体は本酵素を著量に生産し、 これ ら酵素を用いる産業界に大いに貢献することができる。 配列表フリーテキス ト
配列番号 4 :エンド- ]3 -N-ァセチルダルコサミニダ一ゼの部分アミノ酸配列。 配列番号 5 : ェンド - jS -N-ァセチルダルコサミニダーゼの部分アミノ酸配列か ら設計したォリ ゴヌクレオチド。 配列番号 5 : nは a、 g、 c又は tを表す (存在位置 1 2 ) , 配列番号 6 :エンド- J3 -N-ァセチルダルコサミニダーゼの部分アミノ酸配列。 配列番号 7 :エンド- ]S - N-ァセチルダルコサミニダーゼの部分アミノ酸配列か ら設計したオリゴヌクレオチド。
配列番号 7 : nは a、 g、 c又は tを表す (存在位置 6 ) - 配列番号 8 :ェンド - j3 - N-ァセチルダルコサミニダーゼの部分アミノ酸配列か ら設計したオリゴヌクレオチド。
配列番号 8 : nは a、 g、 c又は tを表す (存在位置 1 5 ) 一
配列番号 9 :エンド - ]3 - N-ァセチルダルコサミニダーゼの部分アミノ酸配列。 配列番号 1 0 :エンド- i3 -N-ァセチルダルコサミニダ一ゼの部分アミノ酸配列 から設計したオリゴヌクレオチド。
配列番号 1 1 :エンド- |3 -Ν-ァセチルダルコサミニダーゼ遺伝子の 5'末端領域 のオリゴヌクレオチド配列。
配列番号 1 2 :エンド- -Ν-ァセチルダルコサミニダーゼ遺伝子の 3'末端領域 のオリゴヌクレオチド配列。
配列番号 1 3 :エンド- ]3 -Ν-ァセチルダルコサミニダーゼ遺伝子配列から設計 したオリゴヌクレオチド。
配列番号 1 4 :エンド- ) 3 -Ν-ァセチルダルコサミニダーゼ遺伝子配列から設計 したオリゴヌクレオチド。
配列番号 1 5 :エンド- iS -N-ァセチルダルコサミニダーゼ遺伝子配列から設計 したオリゴヌクレオチド。
配列番号 1 6 :エンド- /3 -N-ァセチルダルコサミニダーゼ遺伝子配列から設計 したオリゴヌクレオチド。
配列番号 2 0 : Xaaは Met又は Serを表す (存在位置 2 ) c
配列番号 2 1 : Xaaは Gly又は Metを表す (存在位置 2 ) :
配列番号 2 1 : Xaaは Gin又は Alaを表す (存在位置 3 ) :
配列番号 2 1 : Xaaは Arg又は Leuを表す (存在位置 4 ) -一
配列番号 2 1 : Xaaは Asn又は Proを表す (存在位置 6 ) 。
配列番号 2 1 : Xaaは Arg又は Leuを表す (存在位置 8 ) -- 配列番号 2 1 : Xaaは Glu又は Leuを表す (存在位置 9 ) -- 配列番号 2 1 : Xaaは Ser又は Leuを表す (存在位置 1 0) 。 配列番号 2 1 : Xaaは His又は Thrを表す (存在位置 1 1 ) つ 配列番号 2 7 : カルボキシメチルシスティン (存在位置 3) 。 配列番号 2 8 : カルボキシメチルシスティン (存在位置 6) 。 配列番号 3 3 : カルボキシメチルシスティン (存在位置 8) 。

Claims

請 求 の 範 囲 以下の(a)又は(b)の組換えタンパク質。
(a) 配列番号 3に示されるアミノ酸配列を含むタンパク質
(b) 配列番号 3に示されるアミノ酸配列において少なくとも 1個のァミノ酸が 欠失、 置換、 挿入若しくは付加されたアミノ酸配列を含み、 かつエンド- -Ν - ァセチルダルコサミニダ一ゼ活性を有するタンパク質
. 以下の(a)又は(b)のタンパク質をコ一ドするェンド - )3 - N-ァセチルダルコサ ミニダ一ゼ遺伝子。
(a) 配列番号 3に示されるアミノ酸配列を含むタンパク質
(b) 配列番号 3に示されるアミノ酸配列において少なく とも 1個のアミノ酸が 欠失、 置換、 揷入若しくは付加されたアミノ酸配列を含み、 かつエンド - J3 -N - ァセチルダルコサミニダ一ゼ活性を有するタンパク質
. 以下の(c)又は(d)の DNAを含む遺伝子。
(c) 配列番号 2に示される塩基配列からなる DNA
(d) 配列番号 2に示される塩基配列からなる DNAとストリンジェントな条件下 でハイブリダイズし、 かつェンド- 3 - N-ァセチルダルコサミニダーゼ活性を有 するタンパク質をコ一ドする DNA
. 請求項 2記載の遺伝子とストリンジェントな条件下でハイブリダィズし、 か っェンド- i3 -N-ァセチルダルコサミニダーゼ活性を有するタンパク質をコ一 ドする DNAを含む遺伝子。
. 遺伝子が、 ムコール属に属する微生物由来のものである請求項 2〜4のいず れか 1項に記載の遺伝子。
. ムコール属に属する微生物がムコール · ヒェマリスである請求項 5記載の遺 伝子。
. 請求項 2〜 6のいずれか 1項に記載の遺伝子を含有する組換えべクタ一。. 請求項 7記載の組換えベクターを含む形質転換体。
. 請求項 8記載の形質転換体を培養し、 得られる培養物からエン ド- ]3 - N-ァセ チルダルコサミニダ一ゼを採取することを特徴とするェンド- ) 3 -N -ァセチル ダルコサミニダ一ゼの製造方法 c
PCT/JP1999/002644 1998-05-22 1999-05-20 GENE D'ENDO-β-N-ACETYLGLUCOSAMINIDASE WO1999061591A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69939823T DE69939823D1 (en) 1998-05-22 1999-05-20 Endo-beta-n-acetylglukosaminidase
US09/700,993 US6815191B1 (en) 1998-05-22 1999-05-20 Endo-β-N-acetylglucosaminidase gene
EP99921196A EP1081221B1 (en) 1998-05-22 1999-05-20 Endo-beta-n-acetylglucosaminidase gene
AU38499/99A AU3849999A (en) 1998-05-22 1999-05-20 Endo-beta-n-acetylglucosaminidase gene
HK03101684.6A HK1049682B (zh) 1998-05-22 2003-03-07 內切-β-N-乙酰葡糖胺糖苷酶基因

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/141717 1998-05-22
JP14171798A JP4160652B2 (ja) 1998-05-22 1998-05-22 エンド−β−N−アセチルグルコサミニダーゼ遺伝子

Publications (1)

Publication Number Publication Date
WO1999061591A1 true WO1999061591A1 (fr) 1999-12-02

Family

ID=15298569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002644 WO1999061591A1 (fr) 1998-05-22 1999-05-20 GENE D'ENDO-β-N-ACETYLGLUCOSAMINIDASE

Country Status (10)

Country Link
US (1) US6815191B1 (ja)
EP (1) EP1081221B1 (ja)
JP (1) JP4160652B2 (ja)
KR (1) KR100673049B1 (ja)
CN (1) CN1175104C (ja)
AU (1) AU3849999A (ja)
DE (1) DE69939823D1 (ja)
HK (1) HK1049682B (ja)
TW (1) TWI245800B (ja)
WO (1) WO1999061591A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140315246A1 (en) * 2011-10-03 2014-10-23 National Institute Of Advanced Industrial Science And Technology Composite sugar chain hydrolase
CN105400807A (zh) * 2015-12-23 2016-03-16 太原理工大学 基于基因沉默技术的舞毒蛾β-N-乙酰葡萄糖胺糖苷酶基因
WO2016076440A1 (ja) * 2014-11-14 2016-05-19 東京化成工業株式会社 糖ペプチド又は糖蛋白質の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0514971A (pt) * 2004-11-10 2008-07-01 Univ Gent enzimas endo-n-acetil-beta-d-glicosaminidade de fungos filamentosos
WO2009092014A1 (en) 2008-01-18 2009-07-23 Gagnon Peter S Enhanced purification of antibodies and antibody fragments by apatite chromatography
CA2733362C (en) * 2008-08-08 2016-10-18 Universiteit Gent Cells producing glycoproteins having altered glycosylation patterns and methods and use thereof
EP2524215B1 (en) 2010-01-15 2018-12-26 Bio-Rad Laboratories, Inc. Surface neutralization of apatite
US8895707B2 (en) 2010-08-18 2014-11-25 Bio-Rad Laboratories, Inc. Elution of proteins from hydroxyapatite resins without resin deterioration
JP5881744B2 (ja) 2011-02-02 2016-03-09 バイオ−ラッド ラボラトリーズ インコーポレーティッド アルカリ溶液でのアパタイトの表面中和方法
EP2814835B1 (en) 2012-02-14 2019-04-10 The Regents Of The University Of California Enzymes and methods for cleaving n-glycans from glycoproteins
CN104507952B (zh) 2012-05-30 2018-08-10 生物辐射实验室股份有限公司 基于磷灰石的色谱树脂的原位恢复
WO2015200282A1 (en) 2014-06-23 2015-12-30 Bio-Rad Laboratories, Inc. Apatite pretreatment
CN105407917B (zh) 2014-06-23 2021-07-06 生物辐射实验室股份有限公司 磷灰石原位恢复
CN105483102B (zh) * 2016-01-14 2018-09-25 云南师范大学 耐产物抑制的β-N-乙酰葡糖胺酶HJ5nag及其制备方法
TWI777992B (zh) * 2016-12-02 2022-09-21 日商第一三共股份有限公司 新穎內-β-N-乙醯基胺基葡萄糖苷酶

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699177B2 (ja) 1988-06-06 1998-01-19 寳酒造株式会社 エンド−β−N−アセチルグルコサミニダーゼ
JP3532593B2 (ja) 1993-08-24 2004-05-31 麒麟麦酒株式会社 糖質又は複合糖質の製造方法
CA2187386C (en) 1995-10-27 2007-01-23 Kaoru Takegawa Gene encoding endo-.beta.-n-acetylglucosaminidase a
ES2235259T3 (es) 1996-12-12 2005-07-01 Kirin Beer Kabushiki Kaisha Beta-1-4 n-acetilglucosaminiltransferasa y gen que la codifica.
JPH1189574A (ja) 1997-09-17 1999-04-06 Daiwa Kasei Kk β−N−アセチルガラクトサミニダーゼ遺伝子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KADOWAKI S, ET AL.: "PURIFICATION AND CHARACTERIZATION OF A NOVEL FUNGAL ENDO-BETA-N- ACETYLGLUCOSAMINIDASE ACTING ON COMPLEX OLIGOSACCHARIDES OF GLYCOPROTEINS", AGRICULTURAL AND BIOLOGICAL CHEMISTRY, AGRICULTURAL CHEMICAL SOCIETY OF JAPAN, JP, vol. 54, no. 01, 1 January 1990 (1990-01-01), JP, pages 97 - 106, XP002937440, ISSN: 0002-1369 *
SAMBROOK J., FRITSCH E. F., MANIATIS T.: "MOLECULAR CLONING. LABORATORY MANUAL.", 1 January 1987, NEW YORK, COLD SPRING HARBOUR PRESS., US, article SAMBROOK J. ET AL.: "Molecular Cloning. A laboratory manual.", pages: 16.05/16.06. - 16.6, XP002091112, 016613 *
See also references of EP1081221A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140315246A1 (en) * 2011-10-03 2014-10-23 National Institute Of Advanced Industrial Science And Technology Composite sugar chain hydrolase
US9371519B2 (en) * 2011-10-03 2016-06-21 National Institute Of Advanced Industrial Science And Technology Complex type sugar chain hydrolase
WO2016076440A1 (ja) * 2014-11-14 2016-05-19 東京化成工業株式会社 糖ペプチド又は糖蛋白質の製造方法
JPWO2016076440A1 (ja) * 2014-11-14 2017-11-24 東京化成工業株式会社 糖ペプチド又は糖蛋白質の製造方法
CN105400807A (zh) * 2015-12-23 2016-03-16 太原理工大学 基于基因沉默技术的舞毒蛾β-N-乙酰葡萄糖胺糖苷酶基因
CN105400807B (zh) * 2015-12-23 2019-02-12 太原理工大学 基于基因沉默技术的舞毒蛾β-N-乙酰葡萄糖胺糖苷酶基因

Also Published As

Publication number Publication date
KR20010071288A (ko) 2001-07-28
JPH11332568A (ja) 1999-12-07
KR100673049B1 (ko) 2007-01-22
TWI245800B (en) 2005-12-21
HK1049682B (zh) 2005-06-03
EP1081221B1 (en) 2008-10-29
CN1376195A (zh) 2002-10-23
EP1081221A4 (en) 2002-10-30
AU3849999A (en) 1999-12-13
JP4160652B2 (ja) 2008-10-01
CN1175104C (zh) 2004-11-10
HK1049682A1 (en) 2003-05-23
EP1081221A1 (en) 2001-03-07
US6815191B1 (en) 2004-11-09
DE69939823D1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
VIDAL‐CROS et al. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea: purification, cDNA cloning and sequencing
CA2360376C (en) Novel carbonyl reductase, gene thereof and method of using the same
KR101200571B1 (ko) 테라박터 속 유래의 신규한 진세노시드 글리코시다제 및 이의 용도
WO1999061591A1 (fr) GENE D'ENDO-β-N-ACETYLGLUCOSAMINIDASE
JP5224572B2 (ja) デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法
JP2003520580A (ja) バニリンを生産するための酵素および遺伝子
AU2003221082B2 (en) Novel carbonyl reductase, gene encoding it and process for producing optically active alcohols using the same
KR101083974B1 (ko) 캔디다 유틸리스 기원의 글루타티온 신테타제 암호화 유전자
AU784466B2 (en) Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide
CA2368953A1 (en) Proteins related to gaba metabolism
EP1197557A1 (en) Gene encoding cyclic lipopeptide acylase and expression of the same
JP3887600B2 (ja) D−ミオ−イノシトール1−エピメラーゼをコードするdna
US5190875A (en) Peptide amidase and the use thereof
JP3658323B2 (ja) トレハロースシンターゼ蛋白質、遺伝子、プラスミド、微生物、及びトレハロースの製造方法
KR100455054B1 (ko) 페니실륨 크리소제눔 유래의 페닐아세틸-CoA 리가제
JP3549551B2 (ja) S.セレビシエのリボフラビンシンテターゼ活性をコードするdna化合物および組換えdna発現ベクター
CA2407059C (en) Novel (r)-2-hydroxy-3-phenylpropionic acid (d-phenyllactic acid) dehydrogenase and gene encoding the same
CN115279908B (zh) 具有对l-薄荷醇的酯化活性和/或对l-薄荷醇酯的水解活性的多肽
EP1673442B1 (en) Transgenic organisms with lower growth temperature
CA2432079A1 (en) Process for producing coenzyme q10
JPWO2008013262A1 (ja) L−ロイシンヒドロキシラーゼおよび該酵素をコードするdna
JPH09505989A (ja) 菌類からのα‐1,4‐グルカンリアーゼ、その精製、遺伝子クローニングおよび微生物での発現
JP3878293B2 (ja) ショ糖脂肪酸エステラーゼ
JP3330670B2 (ja) アルケンモノオキシゲナーゼ、これをコードする遺伝子及び形質転換微生物並びにアルケンのエポキシ化方法
JP2002262887A (ja) グルタミナーゼおよびグルタミナーゼ遺伝子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99808731.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007012943

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999921196

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999921196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09700993

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007012943

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007012943

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载