WO1999061225A1 - Flexible polyolefins masking film - Google Patents
Flexible polyolefins masking film Download PDFInfo
- Publication number
- WO1999061225A1 WO1999061225A1 PCT/US1999/011763 US9911763W WO9961225A1 WO 1999061225 A1 WO1999061225 A1 WO 1999061225A1 US 9911763 W US9911763 W US 9911763W WO 9961225 A1 WO9961225 A1 WO 9961225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- masking film
- substrate
- film
- smooth surface
- masking
- Prior art date
Links
- 230000000873 masking effect Effects 0.000 title claims abstract description 129
- 229920000098 polyolefin Polymers 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 230000008569 process Effects 0.000 claims abstract description 13
- 238000005452 bending Methods 0.000 claims abstract description 8
- 238000003856 thermoforming Methods 0.000 claims abstract description 8
- 229920001577 copolymer Polymers 0.000 claims description 21
- 239000004417 polycarbonate Substances 0.000 claims description 16
- 229920000515 polycarbonate Polymers 0.000 claims description 12
- 229920001519 homopolymer Polymers 0.000 claims description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 9
- 229920000728 polyester Polymers 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 5
- 229920001778 nylon Polymers 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 3
- 150000008064 anhydrides Chemical class 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229920000306 polymethylpentene Polymers 0.000 claims description 3
- 239000011116 polymethylpentene Substances 0.000 claims description 3
- 229920006324 polyoxymethylene Polymers 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 2
- 150000003440 styrenes Chemical class 0.000 claims description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims 1
- 229920006132 styrene block copolymer Polymers 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 19
- 239000000853 adhesive Substances 0.000 abstract description 17
- 230000001070 adhesive effect Effects 0.000 abstract description 17
- 238000003851 corona treatment Methods 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 22
- 125000000485 6-formamidopenicilloyl group Chemical group C(=O)(O)[C@@H]1N[C@H](SC1(C)C)[C@@H](C(=O)*)NC=O 0.000 description 16
- 238000000576 coating method Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000012792 core layer Substances 0.000 description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 8
- 229920001169 thermoplastic Polymers 0.000 description 7
- 239000004416 thermosoftening plastic Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000004712 Metallocene polyethylene (PE-MC) Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920006397 acrylic thermoplastic Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- HLWRUJAIJJEZDL-UHFFFAOYSA-M sodium;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetate Chemical compound [Na+].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC([O-])=O HLWRUJAIJJEZDL-UHFFFAOYSA-M 0.000 description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/0017—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
- B29D7/01—Films or sheets
Definitions
- the present invention relates to masking films and, more specifically, to a masking film which removably adheres to rigid, relatively smooth-surfaced substrates under a variety of conditions without the need for corona treatment or an adhesive.
- Masking films are used in numerous applications as a protective coating or covering for surfaces, particularly smooth surfaces, such as acrylics, glass, polished or painted metals, glazed ceramics, and other smooth, relatively rigid surfaces.
- the masking film is applied to the surface to be protected and acts as a physical barrier to prevent scratching, scuffing and marring of the surface. Protection provided by masking films is particularly useful while these surfaces are being printed, transported, or otherwise handled prior to use.
- Corona treated films are films exposed to an electrostatic discharge to increase the adhesion level of the film. This is accomplished through the production of surface oxidation of the film via the electrostatic discharge, increasing the attraction between the nonpolar surface of the film and the polar surface of the material to be protected.
- Such corona treated films are typically non-embossed and rely on a very narrow window of corona treatment to facilitate enhanced adhesion.
- disadvantages exist with this technique. For example, where too little corona treatment occurs, the masking film will not adhere to the surface to be protected.
- corona treated polyethylene films commonly have numerous large gels and carbon specks associated with them which can produce dimples in, or otherwise mar, the surface to be protected.
- Gels are defined as unmelted polyethylene particles which range from a barely visible size up to larger than a pencil point.
- Disadvantages are also associated with masking films using an adhesive coated paper.
- moisture from atmospheric humidity or elsewhere can permeate the masking material and loosen or completely separate the masking material from the substrate surface to be protected.
- the tendency for moisture to adversely affect the performance of this type of masking film is increased where heat is required to activate the adhesive coating.
- the masking material remains firmly adhered to the surface to be protected until its removal is desired, such removal can require the use of a solvent to remove trace amounts of the adhesive coating.
- the adhesive residue left behind on the surface is of particular concern where the surface being protected is to be used in a context where sanitary conditions are desired, such as in food industry applications.
- an adhesive coating also requires the additional steps of applying the adhesive coating to the preformed film, as well as the expense of using, activating and storing one or more adhesives to be used as a coating. Finally, where heat- activated adhesive coatings are used, the time and expense of providing the proper amount of heat to the process to facilitate proper adhesion further complicates the process.
- these improved OSM films avoid the numerous problems associated with the use of corona treatment and adhesives and are stable over time, even when exposed to moisture and ultraviolet light.
- the level of adhesion produced by these improved masking films can vary with temperature and other conditions associated with the production and use of such improved films. At times, such conditions can result in a masking film exhibiting either too much or not enough adhesion level for the desired application. In other applications, it can result in the need for heaters to raise the temperature of the sheet so that proper application and adequate adhesion level are achieved.
- a masking film capable of providing an adequate level of protection to merely relatively smooth surfaces by providing a functional, adjustable and controlled level of adhesion between the masking film and the surface to be protected without the use of corona treatment or an adhesive and their associated disadvantages and under a variety of production and application conditions, and a method for producing same.
- a masking film which adheres to and provides protection for a relatively smooth surface without the need for an adhesive layer or corona treatment.
- the improved film is preferably of the one side matted type so that blocking and wrinkling of the film are substantially minimized, if not completely eliminated.
- the adhesion produced is not as dependent upon the smoothness of the surface to be protected.
- the level of adhesion produced by the improved OSM film is adjustable so as to accommodate a variety of production and application conditions.
- the improved masking film of the present invention will provide a functional level of adhesion to uncoated polycarbonates, acrylics, polyvinyl chlorides and polyesters at room or ambient temperature.
- the improved masking film of the present invention can provide an adequate level of adhesion to the substrate of interest.
- the improved masking film of the present invention also remains removably attached to a substrate surface even after the application of post- production heat loading processes, including, but not limited to, therrnoforming, drape-forming and heat-bending.
- the improved masking film of the present invention comprises a film preferentially having a smooth side, a rough side and, optionally, one or more core layers interposed between the smooth side and the rough side.
- the monolayer is preferably extruded and the multiple layers are preferably coextruded.
- the smooth side comprises at least one layer of a thermoplastic film. In use, the smooth side is applied to the relatively smooth surface to be protected.
- the rough side is also comprised of at least one layer of a thermoplastic film.
- the rough side is preferably matte embossed, but can be roughened via any suitable means. The rough side prevents the film from contacting as much surface area of itself, or any other surface, preventing blocking and wrinkling of the film.
- At least one core layer may be interposed between the smooth side and the rough side of the improved masking film and, if present, is also comprised of a thermoplastic film.
- the smooth side and rough side are opposing sides of the single layer of the film.
- the level of adhesion produced between the smooth side of the masking film of the present invention and the surface to be protected is adjustable via the introduction of certain polymers and co-polymers associated with the smooth side of the film.
- the controlled combination of such polymers and co-polymers has the affect of adjusting the level of adhesion produced between the smooth side of the masking film and the surface to be protected by the masking film.
- the identity and quantities of these polymers are dictated by the conditions (e.g. , temperature) under which the masking film will be applied and ultimately used.
- the masking film of the present invention can be produced so as to provide a functional and controlled level of adhesion to acrylics at room temperature without subsequent laminating or welding during heat-loading processes, such as thermobending or thermoforming.
- the level of adhesion can be adjusted to provide adequate levels of adhesion with substrates at a higher temperature.
- a one, two or multilayered masking film is produced including the polymer and co-polymer additives capable of adjusting the level of adhesion produced by the film.
- These films can be blown or cast. Monolayer or coextrusion of multiple layers may be employed.
- the layer including the smooth side of the improved masking film of the present invention may be laminated to the layer including the rough side, if desired. The blending of polymer and co-polymer additives of the smooth side of the masking film is controlled to produce desired tackiness of the resulting masking film.
- the improved masking film is produced by preselecting the one or more primary components comprising the first skin of the improved masking film of the present invention. It is the surface of this first skin layer which will ultimately intimately contact and adhere with the surface of the substrate to be protected. Once selected, the relative percentages of the one or more components is also predetermined so as to produce a functional and controlled level of adhesion force produced under a given set of the substrate's production conditions and environment.
- the remaining skin and core layers are formed of a thermoplastic.
- the skin and core layers are preferably coextruded to form the improved masking film of the present invention. Due to the preselection of the components and their relative amounts, the resulting masking film is tailored to perform in the given production environments under the given conditions.
- a first layer having at least one smooth surface and a second layer having at least one rough surface and, optionally, at least one core layer are coextruded to form an improved masking film.
- Each of the layers is comprised of a thermoplastic film.
- Preferred films include as at least a primary component blend of flexible polyolefins ("FPOs"), such as REXflex FPO products available from Rexene Company/Huntsman Chemical.
- FPOs are products based upon polypropylene having a controlled level of crystallinity, preferably ranging from about 40% to about 90%. Both homopolymers and copolymers of FPOs exist and are contemplated by this invention.
- thermoplastic films making up the layers of the improved masking film of the present invention also may include films of: polyolefins (homopolymers and copolymers), polyvinyl alcohol, polyvinyl chloride, nylon, polyester, polystyrene, polymethylpentene, polyoximethylene, and the like, or blends thereof. Acid modified copolymers, anhydride modified copolymers and acid/acrylate modified copolymers are also useful.
- the first layer includes a surface having a measure of smoothness within an operational range of about 0 Ra to 60 Ra. While films the range of about 0 Ra to about 10 Ra are preferred, films in the range of about 10 Ra to about 30 Ra are also desirable. Note that the range of roughness for the substrate to which the film is applied is usually between 0 Ra and 150 Ra. Of course, smoother substrates will generally allow the masking film to adhere more readily.
- the relatively rough surface of the second layer generally possesses a measure of roughness between 65 Ra and
- smoothness and roughness will be defined as the arithmetic average height (Ra) of the micropeaks and microvalleys of a surface to the center line of such surface as measured by a profilometer. Smoothness and roughness defined in this manner is typically expressed with units of microinches (10 "6 inches). All testing of surface textures (relative smoothness and roughness) were conducted in accordance with ANSI/ASME Test Method B46.1-1985, the entire content of which is incorporated herein by reference.
- the present invention contemplates having virtually any level of relative smoothness and roughness that will prevent much of the blocking and wrinkling associated with traditional masking films. Matte embossing by extruding into a pair of nip rollers in which one roll is a polished chrome casting roll and the other roll is rubberized is a preferred technique for imparting a sufficient level of smoothness/ roughness to each side of the film. The extruded film engages the pair of nip rollers in a molten state.
- the polished chrome casting roll will help impart the characteristics of the smooth surface of the film and the rubberized roll will help impart the characteristics of the rough surface of the film.
- matte embossing has been described as a preferred technique by which the second layer is provided with roughness, it should be noted that the roughing of the surface of the second layer may be accomplished via any suitable method or means, if desired. It is noted that although the preferred embodiment includes at least a first layer and a second layer, the relatively smooth side and the relatively rough side of the improved masking film of the present invention can be formed on opposite sides of a single layer of thermoplastic material, if desired. In such an embodiment, no core layers would be present.
- fillers may be added to the relatively rough layer to provide certain desired characteristics, including, for illustrative purposes only, roughness, abrasion resistance, printability, writeability, opacity and color.
- Such fillers include, for illustrative purposes only, calcium carbonate (abrasion resistance), mica (printability), titanium dioxide (color and opacity) and silicon dioxide (roughness).
- the degree of relative roughness desired in the roughened side of the film can be imparted via any suitable means known in the art, including, without limitation, air impingement, air jets, water jets, and combinations thereof.
- the multiple layers of the improved masking film of the present invention are coextruded using any coextrusion process known in the art.
- coextrusion allows for the relatively simple and easy manufacture of a multilayered masking film composed of distinct layers, each performing specific functions.
- coextrusion of the improved multilayered masking film of the present invention is preferred, it is again noted that the improved masking film can be monolayered or multilayered and that, regardless of form, the improved masking film can be produced using other suitable methods, if desired.
- the relatively smooth surface of the first layer of the improved masking film of the present invention is brought into intimate contact with a relatively smooth surface to be protected.
- Preferred substrates for such surfaces include, by way of illustration only, polycarbonate, acrylic (PMMA), polyvinyl chloride, polyethylene terephthalate, polyethylene terephthalate glycol, glass, ceramic and metal.
- the smooth, adhesiveless masking film surface clings to the substrate via the natural blocking adhesion found in applying one very smooth surface to another. It is applicants belief that these surfaces are held together by physical interactions which may be attributable to the surface tension, Van der Waals interaction, polarity, and/or molecular diffusivity of the adhesiveless masking film of the present invention.
- any one or more of a number of conventional application methods can be used to bring the smooth side of the first layer of the improved masking film into intimate contact with the smooth surface of the substrate to be protected by the masking film.
- the improved masking film will be applied to the surface to be protected via a nip roll or similar system through which the multilayered film and the substrate surface to be protected are passed simultaneously. If desired, the resulting article can be passed through compression rolls or the like for further processing. Any other suitable method for combining the multilayer film with the substrate surface to be protected can be used, if desired
- the primary polymer associated with the smooth side of the first layer to affect the adhesion level produced is a homopolymer or copolymer form of FPO, or blends thereof, such as REXFlex FPO products available from Rexene Corp /Huntsman Chemical Secondary polymers such as polyolefins (homopolymers or copolymers), metallocene catalyzed polyolefins (e.g., mPE), styrenes, butylenes, polyvinyl alcohols, nylons, polyesters, polyvinyl chlorides, polymethylpentene, polyoximethylene, and copolymers or mixtures thereof, are blended at varying ratios with the primary polymer (e.g , FPO) to control the level of adhesion of the film
- each of the example masking films presented are coextruded with three layers
- the smooth layer of each film is designated by the letter “S”, the roughened layer by the letter “R”, and the core layer by the letter “C”
- various commercial polymers are designated herein by generic polymer abbreviations
- the primary polymer components used in the "S" layer include REXFlex W102 homopolymer (medium crystallinity), REXFlex W107 homopolymer (high crystallinity), and REXFlex W201 copolymer (low crystallinity) all of which are available from Rexene Corp /Huntsman Chemical Additional polymer components used throughout include: 964 Low Density Polyethylene (LDPE) from Eastman Chemicals, 2247A Linear Low Density Polyethylene (LLDPE) from Dow, PL 1850 Metallocene Polyethylene (mPE) from Dow, EG8200 Metallocene Polyethylene
- Table 1 the force required to peel several example films produced with W102 FPO applied to a polycarbonate substrate are shown.
- the substrate temperature indicates the temperate of the substrate when the masking film was applied.
- Table 2 illustrates the peel force results collected from several example film blends of W 102 and W201 FPOs applied to polycarbonate.
- Table 3 shows the results of further heat treatment of example films introduced in Tables 1 and 2.
- Table 4 additional example films applied to polycarbonate are presented. These films differ from those shown in Tables 1-3 by the inclusion of a tackifier blend which in combination with the FPO used yields desirable post drying properties.
- Tables 5-7 present similar test results for the example films when applied to an acrylic substrate.
- Table 8 illustrates the results achieved by several alternative film examples which appear to be particularly suited to acrylic substrates.
- test data appearing in the accompanying Tables were produced and gathered according to the following test procedures.
- the smooth side of a coextruded film was made by blending various percentages of a FPO homopolymer and a secondary polymer.
- the masking film was placed on an acrylic or polycarbonate sheet at room temperature (about 73 °F) and nip rolled to remove any air. It was then tested for peel force, expressed in units of g/in.
- the unmasked sheet was heated in an oven for ten minutes at the specified application temperature and was then masked, nipped, and cooled to room temperature prior to testing.
- a one inch strip of the masking film was used in a 180° peel test. The peel test was conducted according to a modified version of ASTM Standard D3330-90, which is incorporated herein by reference.
- An Instron tensile testing machine was used to measure the force required to peel 4-6 inches length of a one inch wide strip of masking film from the acrylic sheet. All of the samples tested above were further tested for performance subsequent to undergoing a heat-loading process, such as thermoforming, drape- forming and heat-bending. In the heat-bending procedure, the sample sheet was heated to its softening point using a conventional "strip heater". The softening point was visually inspected by recording the temperature at which the sheet becomes pliable. The temperature of such bending was at or above 100°C for acrylic and
- the sheet samples were heated to or above their glass transition temperature and then forced via vacuum into a desired shape using a vacuum mold. All of the samples performed well under these heat-loading tests in that the improved masking films of the present invention were peeled from the surface after such heat-loading treatment without destruction of the masking film.
- the level of adhesion produced between the improved masking film of the present invention and the substrate surface to be protected is also adjusted.
- the improved masking film of the present invention it is possible to: (a) apply the film to the substrate over a broader range of temperatures to obtain a desired adhesion level by selecting the appropriate blend of materials and percentages thereof; and (b) use the improved masking film of the present invention on substrates subject to post-production heat- loading processes (e.g., thermoforming, drape-forming and heat-bending) without destruction of the film upon subsequent removal thereof.
- the improved masking film of the present invention is thus capable of providing a controlled, adjustable and adequate level of protection to smooth surfaces of substrates by providing a controlled level of adhesion between the masking film and the surface to be protected without the use of corona treatment or an adhesive and their associated disadvantages and under a variety of production and application conditions.
- the unique advantages of the improved masking film of the present invention allow the film to be modified to meet the desired application and processing environment.
- the above- identified improved masking film is produced employing the steps of: preselecting one or more primary polymers (e.g., FPOs) of the at least one first skin layer of the film; preselecting one or more additional elements of the at least one first skin layer of the film; predetermining the relative percentages of each constituent element selected; coextruding the at least one first layer with the at least one second layer and the at least one core layer to form a multilayered masking film.
- the resulting masking film is tailor made to perform (i.e., produce a desired level of adhesion) under a given set of production conditions and environment.
- This decreased adhesion post drying is a highly desirable characteristic within the masking film industry as it is a common practice to dry polycarbonate substrates to remove water prior to thermoforming. Further testing showed that the films with FPO and tackifiers also had either about the same or lower levels of adhesion to both acrylic and polycarbonate substrates after drying for 48 hours at 140°F. Again, this reduction in film adhesion may be desirable as it would allow the masking film to be readily removed form the substrate after shipping and storage. For example, masked sheets may be transported by trucks or stored in warehouses which are not always climate controlled.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002337821A CA2337821A1 (en) | 1998-05-27 | 1999-05-27 | Flexible polyolefins masking film |
AU41009/99A AU4100999A (en) | 1998-05-27 | 1999-05-27 | Flexible polyolefins masking film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8689798P | 1998-05-27 | 1998-05-27 | |
US60/086,897 | 1998-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999061225A1 true WO1999061225A1 (en) | 1999-12-02 |
Family
ID=22201613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/011763 WO1999061225A1 (en) | 1998-05-27 | 1999-05-27 | Flexible polyolefins masking film |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU4100999A (en) |
CA (1) | CA2337821A1 (en) |
WO (1) | WO1999061225A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2868728A1 (en) * | 2004-04-08 | 2005-10-14 | Arkema Sa | METHOD OF PROTECTING THERMOPLASTIC PLATES |
EP1095708A4 (en) * | 1999-04-14 | 2006-08-30 | Nagoya Oilchemical | Masking material |
EP1110619A4 (en) * | 1998-09-07 | 2006-08-30 | Nagoya Oilchemical | Masking material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4934934A (en) * | 1972-08-04 | 1974-03-30 | ||
EP0448872A2 (en) * | 1990-03-26 | 1991-10-02 | Tredegar Industries, Inc. | One-side matte polyolefin-based film for pressure-sensitive labels |
EP0475306A1 (en) * | 1990-09-07 | 1992-03-18 | Rexene Products Company | Process for the production of amorphous elastomeric propylene homopolymers |
US5723546A (en) * | 1997-03-24 | 1998-03-03 | Rexene Corporation | Low- and high-molecular weight amorphous polyalphaolefin polymer blends having high melt viscosity, and products thereof |
-
1999
- 1999-05-27 AU AU41009/99A patent/AU4100999A/en not_active Abandoned
- 1999-05-27 WO PCT/US1999/011763 patent/WO1999061225A1/en active Application Filing
- 1999-05-27 CA CA002337821A patent/CA2337821A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4934934A (en) * | 1972-08-04 | 1974-03-30 | ||
EP0448872A2 (en) * | 1990-03-26 | 1991-10-02 | Tredegar Industries, Inc. | One-side matte polyolefin-based film for pressure-sensitive labels |
EP0475306A1 (en) * | 1990-09-07 | 1992-03-18 | Rexene Products Company | Process for the production of amorphous elastomeric propylene homopolymers |
US5723546A (en) * | 1997-03-24 | 1998-03-03 | Rexene Corporation | Low- and high-molecular weight amorphous polyalphaolefin polymer blends having high melt viscosity, and products thereof |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Section Ch Week 7446, Derwent World Patents Index; Class A17, AN 74-79849V, XP002113209 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1110619A4 (en) * | 1998-09-07 | 2006-08-30 | Nagoya Oilchemical | Masking material |
EP1095708A4 (en) * | 1999-04-14 | 2006-08-30 | Nagoya Oilchemical | Masking material |
FR2868728A1 (en) * | 2004-04-08 | 2005-10-14 | Arkema Sa | METHOD OF PROTECTING THERMOPLASTIC PLATES |
WO2005102692A1 (en) * | 2004-04-08 | 2005-11-03 | Arkema France | Method for the protection of thermoplastic plates |
Also Published As
Publication number | Publication date |
---|---|
CA2337821A1 (en) | 1999-12-02 |
AU4100999A (en) | 1999-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6040046A (en) | Masking film and method for producing same | |
US4569712A (en) | Process for producing support for use in formation of polyurethan films | |
JP7548346B2 (en) | Method for producing biaxially oriented polypropylene film | |
EP1311386B1 (en) | Cloth-like polymeric films | |
US4248762A (en) | Pressure sensitive products with decorative appearance | |
US7794849B2 (en) | Thermoplastic film structures with a low melting point outer layer | |
US5100709A (en) | Multilayer film coating for rigid, smooth surfaces | |
EP1097805B1 (en) | Stretched film of thermoplastic resin | |
US20070036945A1 (en) | Masking film for textured surfaces | |
US20240417523A1 (en) | Composition and films comprising polylactic acid polymer and copolymer comprising long chain alkyl moiety | |
JP4516214B2 (en) | Transparent label | |
JPH0373341A (en) | Film for thermocompression-bonded printed laminate | |
US6387484B1 (en) | Flexible polyolefins masking film | |
AU2928599A (en) | Multi-layer polymer films | |
US6326081B1 (en) | Masking film and method for producing same | |
JPH02269132A (en) | Slip agent coated thermoplastic film | |
WO1999061225A1 (en) | Flexible polyolefins masking film | |
CA2349255C (en) | Improved masking film and method for producing same | |
JP4365549B2 (en) | Easy peelable multilayer resin stretched film | |
EP0593080B1 (en) | A print-laminated product | |
JP3645640B2 (en) | Laminated body | |
MXPA01004436A (en) | Improved masking film and method for producing same | |
US20040209100A1 (en) | Protective masking film | |
JP4317371B2 (en) | Cooling control method in production of embossed resin film coated metal sheet | |
JP4133404B2 (en) | Embossing control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2337821 Country of ref document: CA Ref country code: CA Ref document number: 2337821 Kind code of ref document: A Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |