+

WO1999058967A1 - Procede et dispositif d'affichage d'un signal produit par une sonde de mesure - Google Patents

Procede et dispositif d'affichage d'un signal produit par une sonde de mesure Download PDF

Info

Publication number
WO1999058967A1
WO1999058967A1 PCT/JP1999/002419 JP9902419W WO9958967A1 WO 1999058967 A1 WO1999058967 A1 WO 1999058967A1 JP 9902419 W JP9902419 W JP 9902419W WO 9958967 A1 WO9958967 A1 WO 9958967A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
level
color
display
probe
Prior art date
Application number
PCT/JP1999/002419
Other languages
English (en)
French (fr)
Inventor
Hajime Takada
Ryouichi Sugimoto
Ikuo Yarita
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to JP54456399A priority Critical patent/JP3620799B2/ja
Priority to US09/446,916 priority patent/US6777931B1/en
Priority to AU36300/99A priority patent/AU759780B2/en
Priority to EP99918363A priority patent/EP0995991A4/en
Priority to KR1020007000215A priority patent/KR100364618B1/ko
Priority to CA002297199A priority patent/CA2297199C/en
Publication of WO1999058967A1 publication Critical patent/WO1999058967A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/9026Arrangements for scanning by moving the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes

Definitions

  • the present invention relates to a method and apparatus for displaying a measurement, which is suitable for use when a measurement probe is scanned with respect to a measurement target, detects a measurement amount that changes according to the position of the measurement target with a measurement probe, and is used for two-dimensional display. And a method and apparatus for displaying a surface flaw detection result for displaying a defect signal obtained from a surface flaw detection probe.
  • the present invention relates to a method and apparatus for displaying a surface flaw detection result, which is suitable for displaying a flaw detection result of a defect such as a crack existing immediately below the surface of a metal cylindrical body such as a rolling roll or a roller.
  • the surface flaw detection probe scans in the axial direction of the cylinder to detect flaws on the entire surface of the cylinder.
  • the trajectory drawn by the surface flaw detection probe on the surface of the cylindrical body has a spiral shape with a pitch P determined by the rotational speed of the cylindrical body and the feed speed of the probe, as shown in Fig. 1. Name.
  • the surface flaw detection probe when displaying a defect signal obtained from such a surface flaw detection probe, as shown in FIG. 6 of JP-A-5-142215, for example, the surface flaw detection probe is rolled with a rolling rule. Spiral scan is performed on the defect signal and the defect signal is compared with a predetermined threshold while detecting the defect.
  • a predetermined threshold for example, a black line is displayed and the defect signal is larger than the predetermined threshold.
  • the defect display method disclosed in Japanese Patent Laid-Open No. 5-142215 has a problem that even if there is a minute defect signal, nothing is displayed if the threshold value is not reached.
  • the threshold value is determined in consideration of the size of a defect to be detected, the level of a detection signal generated from a healthy portion of the rolling roll, and the level of external electric noise, but is actually generated on the surface of the rolling roll.
  • the size and shape of surface defects vary widely, and the level of defect signals varies greatly. Even if a defect is large and harmful, only a small defect signal may be obtained depending on the shape.
  • the threshold value is set to a minute level so that even a minute defect signal can be detected, detection omission is eliminated, but a detection signal generated from a healthy portion of a rolling roll due to a metal structure and a surface roughness is:
  • Each level is slightly different, and extraneous electrical noise varies depending on the operating conditions of the surrounding electrical equipment and changes in the grounding state of the equipment that drives the surface flaw detection probe that detects defects. The defect is displayed on the entire role.
  • the threshold is usually set with a margin with respect to the level of a detection signal generated from a healthy portion of the rolling roll and the level of extraneous electrical noise (hereinafter, these are collectively referred to as a noise level). Even if there is a minute defect signal slightly higher than the noise level, if the threshold value is not reached, nothing is displayed. Disclosure of the invention
  • the present invention has been made to solve the above-mentioned conventional problems.
  • a signal obtained by a measurement probe such as a defect signal obtained by a surface flaw detection probe, a minute defect signal or the like is also displayed. It is an object to display without omission.
  • the present invention provides a method for two-dimensionally displaying a signal obtained from one or a plurality of measurement probes that relatively scan a measurement symmetry, wherein a control range of a level of the signal is provided, and a level outside the control range is provided. And at least two different display colors that can be visually identified in a color space.
  • the above problem was solved by selecting from the color gamuts and further displaying the measurement result by changing the color or shading using the colors in each color gamut according to the level of the signal level. Things.
  • the color space can be represented by, for example, an L * a * b model, an RGB model, or a CMYK model of CIEL (International Commission on Illumination).
  • one of at least two different color gamuts that can be visually identified in the color space is defined as black and white shading (gray scale), or one of the at least two different color gamuts is different. If the two are in a complementary color relationship, it is easy to identify the signal level.
  • a signal having a level outside the control range is displayed in gray scale in accordance with the signal level, and a signal having a level outside the control range is displayed in a color other than the gray scale.
  • the display is performed by changing the color or shading little by little by using the colors in each color gamut according to the height of the image, the signal at the level outside the management range can be easily identified.
  • a signal at a level outside the management range is displayed in a color other than grayscale, and by changing colors or shades little by little using colors in each color gamut according to the level of the signal level. If the signals within the control range are displayed in gray scale in gray scale according to the signal level, the signals at the levels outside the control range can be easily identified. it can.
  • both the signal at the level outside the control range and the signal at the level within the control range use colors that are not grayscale and exist in different color gamuts, and the signal level is high.
  • the control range is defined by an upper limit and a lower limit, and a signal at a level between zero and a lower limit is displayed, a signal at a level between the lower limit and the upper limit is displayed, and a level at or above the upper limit is displayed.
  • each display color can be visually identified in the color space
  • the measurement result is selected from at least three different color gamuts, and the measurement result is displayed by slightly changing the color or shading using the colors in each color gamut according to the level of the signal. be able to.
  • the management range is defined to be equal to or greater than a threshold or equal to or less than a threshold, and each display color is visually observed in a color space by displaying a signal having a level from zero to a threshold and displaying a signal having a level equal to or greater than the threshold. Select from at least two distinct color gamuts that are identifiable, and display the measurement results in different colors or shades using colors in each color gamut according to the level of the signal can do.
  • the signal of the level from the zero to the threshold is displayed in gray scale according to the level of the signal, and the signal of the level equal to or higher than the threshold is a gray scale selected from another color gamut.
  • display can be performed by changing the color or shading little by little using the colors in the color gamut according to the level of the signal level.
  • the signal having a level from zero to a threshold is a color selected from a color gamut other than a gray scale, and a color within the color gamut is used in accordance with the level of the signal to change color or color.
  • the display is performed by changing the shading, and a signal having a level equal to or higher than the threshold can be displayed in a gray scale according to the level of the signal.
  • both the signal of the level from zero to the threshold value and the signal of the level of the threshold value or more are colors selected from a color gamut other than the gray scale, and colors existing in different color gamuts. According to the level of the signal used, the measurement results can be displayed by changing the color or shading little by little using the colors in each color gamut.
  • the signal may be a defect signal obtained from a surface inspection probe.
  • the surface flaw detection probe uses ultrasonic waves transmitted on the surface of an object to detect a defect by capturing a reflected wave from the defect, and a change in the eddy current generated on the surface of the object due to the defect.
  • An eddy current flaw detection probe that detects a defect, or a leakage magnetic flux flaw detection probe that detects a defect by capturing a change in leakage magnetic flux due to the defect can be used.
  • the present invention also provides a single or multiple measurement probe that relatively scans the object to be measured.
  • a display device for two-dimensionally displaying the measured signal, a measurement probe for relatively scanning the object to be measured, a measurement probe position detector, a signal processing device for processing a signal obtained from the measurement probe, and a computer By solving the above, the above-mentioned problem is also solved.
  • the measurement probe may be a surface flaw detection probe such as a surface wave probe, an eddy current flaw detection probe, or a leakage magnetic flux flaw detection probe.
  • the computer displays a signal of a level outside the control range, and displays a signal of a level within the control range. Select from at least two different color gamuts that can be visually identified in the color space, and further change the color or shading using the colors in each color gamut according to the level of the signal level. To display the measurement result.
  • a threshold is set, and a defect signal of a level from zero to the threshold and a defect signal of a level higher than the threshold are displayed as shown in FIGS. 2 to 4.
  • colors belonging to different color gamuts selected from different color gamut A to D that can be visually identified are used.Furthermore, the color in each color gamut is determined according to the level of the defect signal. The defect is displayed by changing the color or shading.
  • Fig. 2 shows an example of selecting different color gamuts in the color space using the CIE L * a * b color model
  • Fig. 3 shows an example of selecting different color gamuts in the color space. This is expressed using an RGB color model.
  • FIG. 4 shows an example of selecting different color gamuts in a color space using a YMCK color model.
  • the color of the color gamut A is a shade of black and white, a so-called gray scale color
  • the colors of the color gamuts B to D are colors other than the gray scale.
  • FIG. 6 shows an example of the flaw detection results displayed on the roll development diagram in this way.
  • Fig. 7 shows the same flaw detection results displayed by the conventional display method.
  • signals above the threshold value are displayed in black, and signals at levels from zero to the threshold value are displayed in white.
  • FIG. 6 it can be seen that a defect with a low signal level, which was not displayed in the conventional display method, is clearly displayed.
  • the reason why the defect is displayed long in the circumferential direction is that the defect is detected several times when approaching the surface acoustic wave probe.
  • a defect signal at a level from zero to the threshold is displayed using a color other than grace scale, for example, from light green to green, and gradually changing color according to the signal level.
  • a defect signal having a level equal to or higher than the threshold value is displayed in a gray scale in accordance with the signal level, for example, by displaying a gray level that changes from gray to black, or as shown in FIG.
  • Both the defect signal of the level and the defect signal of the level equal to or higher than the threshold value are not grayscale and belong to mutually different color gamuts.
  • the former is a light green to green color
  • the latter is the latter.
  • FIGS. 2 to 4 show three types of color models representing the color space
  • the method of expressing the color space by the color model is not limited to these three types, and various other color models are used. Can be used.
  • FIG. 1 is a plan view showing a scanning state of a surface acoustic wave probe on a cylindrical body surface.
  • FIG. 2 is a CIE L * a * b color model for explaining the principle of the present invention. Explanatory diagram showing different color gamuts
  • FIG. 3 is an explanatory diagram showing different color gamuts in the RGB color model
  • FIG. 4 is an explanatory diagram showing different color gamuts in the CMYK color model
  • FIG. 5 is a signal level according to the present invention. And a diagram showing an example of the correspondence between colors and colors.
  • FIG. 6 is a diagram showing an example of a flaw detection result displayed by the method of the present invention.
  • FIG. 7 is a diagram showing an example of a flaw detection result displayed by the conventional method
  • FIG. 8 is a diagram showing another example of the correspondence relationship between signal levels and colors according to the present invention.
  • FIG. 9 is a diagram showing another example of the same.
  • FIG. 10 is a perspective view including a partial block diagram, showing the entire configuration of the first embodiment of the present invention.
  • FIG. 11 is a front view showing details of the holding device of the surface acoustic wave probe in the first embodiment
  • Fig. 12 is a side view showing the probe holder part
  • FIG. 13 is a cross-sectional view showing the same water supply unit
  • FIG. 14 is a roll development view showing a display example of the flaw detection result according to the first embodiment.
  • FIG. 15 is a side view partially including a block diagram, showing a configuration of the second embodiment of the present invention. Is a cross-sectional view of the main part,
  • FIG. 17 is a diagram showing a display example of the measurement results of the thickness of the steel sheet according to the second embodiment.
  • a surface flaw detection probe for detecting a defect uses a supersonic wave (surface wave) transmitted on the surface of an object to detect a defect by detecting an opposite wave of the surface wave from the defect.
  • a supersonic wave surface wave
  • the following describes the case of a surface acoustic wave probe 20 that detects a defect.
  • the probe is an eddy current flaw detection probe or a leakage magnetic flux
  • the method of displaying the position of the defect and the level of the defect signal on the developed view of the rule is similarly applicable. In the present embodiment, as shown in FIG.
  • a roll rotating device (not shown), a rotational position detector 22, a surface acoustic wave probe 20, and an axial direction for detecting the position of the surface acoustic wave probe 20 in the roll axis direction.
  • a position detector 24, an ultrasonic flaw detector 26, a computer 30, a display device 32, a color printer 34, and a holding device 40 for the surface wave probe 20 are provided.
  • the roller rotating device is capable of rotating a rolling roll 110 for inspecting a surface defect in a circumferential direction C thereof.
  • a well-known suitable device may be used, and is not shown in the drawings to avoid complication of the drawing.
  • the rotational position of the rolling roll 110 by the roller rotating device is detected by a rotational position detector 22 and sent to the computer 30.
  • the surface wave probe 20 transmits a surface wave to the surface of the rolling roll 110 by forming a water gap between the surface of the probe and the rolling roll 110 as an object, Surface defects of the rolling roll 110 can be detected.
  • An ultrasonic flaw detector 26 is connected to the surface wave probe 20.
  • the ultrasonic flaw detector 26 amplifies the signal captured by the surface acoustic wave probe 20 to a predetermined level, extracts a defect reflected wave, detects the amplitude of the defect reflected wave, and detects this. Output to computer 30.
  • the surface acoustic wave probe 20 is attached to a holding device 40 whose detailed structure will be described later, and is held so as to be capable of flaw detection scanning so as to keep a constant interval with respect to the rolling roll 110. Therefore, while the rolling roll 110 is rotated by a roll rotating device (not shown), the holding device 40 is scanned in the axial direction of the rolling roll 110 by an appropriate driving device (not shown), so that the surface wave is generated.
  • the probe 20 is helically scanned on the rolling roll 110 to detect the entire surface of the rolling roll 110.
  • the axial position of the rolling roll 110 of the surface acoustic wave probe 20 is detected by the axial position detector 24 and sent to the combi- nation 30.
  • the computer 30 is detected by the rotational position detector 22 during the spiral scan.
  • the signal of the rolling position of the rolling roll 110, the signal of the position of the rolling roll 110 of the surface wave probe 110 in the axial direction detected by the axial position detector 24, and the ultrasonic flaw detector 26 Upon receiving the amplification of the detected defect signal, the display device 32 displays the flaw detection result on a mouth plan.
  • the holding device 40 includes a probe holder 50.
  • the probe holder 50 is provided in a holding mechanism 60 attached to a lower portion of a guide 76 slidable with respect to a fixed structure 70 located above the rolling roll 110.
  • the holding mechanism section 60 is provided with a total of four rollers 62, one pair at the front and rear, and these rollers 62 contact the surface of the rolling roll 110 and rotate when performing flaw detection. Stabilizes flaw detection scanning.
  • the probe holder 50 is mounted between the four rollers 62.
  • the fixed structure part 70 is provided with a motor 72 for supplying power for moving the holding mechanism part 60 up and down along the guide 76, and a mounting space 74 for the motor.
  • a motor 72 for supplying power for moving the holding mechanism part 60 up and down along the guide 76
  • a mounting space 74 for the motor.
  • any suitable means known in the art may be used, and illustration is omitted to avoid complication of the drawings.
  • a scraper for removing the couplant is provided in front of the holding mechanism 60 (right side of the figure) so that the couplant remaining on the surface of the roll 110 does not flow on the surface wave propagation path. 90 are provided.
  • the probe holder 50 has an elastic body such as a spring interposed between the probe holder 50 and the holding mechanism 60. Thereby, it is urged toward the surface of the rolling roll 110 to be supported. More specifically, a probe holder 50 is attached to the tip of a rod-shaped body 66 that is loosely slidably fitted up and down with respect to the holding mechanism section 60, and at an appropriate position around the rod-shaped body 66. A spring (not shown) is provided, and constantly biases the probe holder 50 downward.
  • a spring (not shown) is provided, and constantly biases the probe holder 50 downward.
  • the probe holder 50 is provided with the surface acoustic wave probe 20.
  • the surface acoustic wave probe 2 is provided.
  • a pair of copying rollers 52 projecting toward the rolling roll 110 below the position 0 is provided.
  • a shaft 54 is provided in the probe holder 50 along the horizontal direction, and the copying roller 52 is provided on the shaft 54.
  • the copying roller 52 pivotally supported by the probe holder 50 is always in contact with the surface of the rolling roll 110 under the bias of the spring.
  • the probe holder 50 holds the surface wave probe 20 so that the gap between the surface wave probe 20 and the rolling roll 110 maintains a constant value.
  • a water supply device 80 is provided inside the probe holder 50.
  • the water supply device 80 temporarily stores the water guided from the conduit 82 in the storage portion 84, discharges the water from a discharge port 86 provided at the bottom of the storage portion 84, and outputs the surface wave probe.
  • a water layer without bubbles is formed between 20 and the rolling roll 110. Since the water supply device may be configured using appropriate means known in the art, a detailed description thereof will be omitted.
  • Fig. 14 shows the flaw detector configured as above, using a flaw detector to detect flaws in a rolling roll having minute surface defects.Using the display colors shown in Fig. 9, the flaw detection results are shown on a roll development diagram. It is displayed. This is a defect that could not be displayed by the conventional method, and such a defect with a low signal level can be displayed clearly.
  • FIG. 15 side view
  • FIG. 16 principal sectional view
  • the thickness of the steel sheet 120 conveyed or rolled by the conveyance rollers 122 is measured two-dimensionally by scanning the thickness of the radiation thickness gauge in the width direction on the conveyance or rolling line.
  • the present invention is applied to the display of the result.
  • a radiation generator 71 and a radiation detector 72 (the radiation measurement head 70 combined with the radiation generator 71 and the radiation detector 72) are used.
  • a width position detector 81 of the radiation measurement head 70 a longitudinal position detector 82 that detects the position of the steel plate to be measured in the conveying or rolling direction, a signal processing circuit 73, a computer. It is provided with a scanner 30, a display device 32, a color printer 34, and a scanning device 80 for moving the radiation measurement head 70 in the width direction of the steel plate.
  • the transport roller 122 is capable of transporting the steel plate 120 for which the thickness is to be measured in a certain direction.
  • a well-known suitable device may be used for the transport rollers 122. In order to avoid complication of the drawing, illustration of the driving device and the supporting means is omitted.
  • the longitudinal position of the steel sheet 120 conveyed by the conveying rollers 122 is detected by a longitudinal position detector 82 such as a mouth encoder that measures the distance from the number of rotations of the conveying rollers 122, Sent to the 30th evening.
  • the radiation measurement head 70 detects the amount of radiation attenuated by the steel sheet by detecting the intensity of radiation generated by the radiation generator 71 and passing through the steel sheet by the radiation detector 72. Thus, the thickness of the steel sheet can be detected.
  • a signal processing circuit 73 is connected to the radiation measurement head 70.
  • the signal processing circuit 73 amplifies the signal detected by the radiation detector 72 to a predetermined level, detects the magnitude of the signal, and outputs it to the computer 30.
  • the radiation measurement head 70 is attached to a scanning device 80, and the radiation generator 71 and the radiation detector 72 are held so as to be capable of scanning the steel plate 120 so as to keep a constant interval. ing. Therefore, while the steel sheet 120 is being conveyed, the scanning device 80 is scanned in the width direction of the steel sheet 120 by an appropriate driving device (not shown), so that the radiation measurement head is scanned. The thickness of the entire surface of the steel plate 120 can be measured by zigzag scanning the plate 70 on the steel plate 120. The position in the width direction of the steel plate 120 of the radiation measurement head # 0 is detected by the width direction position detector 81 and sent to the computer 30.
  • the computer 30 includes a signal indicating the position of the radiation measurement head 70 in the width direction of the steel plate 120 detected by the width direction position detector 81 during the zigzag scanning, a longitudinal position detector.
  • a signal indicating the position of the steel plate 120 in the longitudinal direction of the radiation measurement head 70 detected by the sensor 2 and the magnitude of the transmitted radiation detected by the signal processing circuit 73 are received by the display device 32 2
  • a two-dimensional display of the steel plate thickness measurement results is performed.
  • the thickness based on the upper limit value and the lower limit value of the preset control range, the thickness from zero to the lower limit value according to the magnitude of the transmitted radiation detected by the signal processing circuit 73.
  • the thickness from the lower limit to the upper limit, and the thickness above the upper limit use colors belonging to different color gamut B, C, and D as shown in Figures 2 to 4, respectively. According to the thickness, the defect display is performed by using the colors in each color gamut and gradually changing the color or shading. Further, the two-dimensional display result of the steel plate thickness measurement result is sent to a color printer 34 and printed.
  • Fig. 17 shows a two-dimensional measurement of the thickness of a steel plate having a high spot caused by chipping of the roll surface due to external force, using the thickness measuring device configured in this way, and displaying the result. High-spots, which tend to be overlooked, can be clearly displayed by only observing the thickness profile, and the generation cycle can be clearly understood.
  • a minute defect signal or the like which has been neglected in the past can be displayed without omission.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

明 細 書 測定プローブにより得られる信号の表示方法及び装置 技術分野
本発明は、測定対象に対して走査され、測定対象の位置に応じて変化する測定量 を測定プローブによって検出し、 2次元表示する際に用いるのに好適な、測定の表 示方法及び装置に関し、表面探傷プローブから得られた欠陥信号を表示するための 表面探傷結果の表示方法及び装置を包含する。特に、圧延ロールやローラ等の金属 の円柱体の表面や、表面直下に存在する割れ等の欠陥の探傷結果を表示する際に用 いるのに好適な、 表面探傷結果の表示方法及び装置に関する。 背景技術
圧延ロールやローラ等の金属の円柱体の表面や表面直下に存在する割れ等の欠 陥の探傷に際しては、 通常、 図 1に示す如く、 回転する円柱体 1 0 0の表面に表面 探傷プローブ(図示省略) をあてがい、 この表面探傷プローブを円柱体の軸方向に 走査して、 円柱体の全面を探傷している。 このとき、 表面探傷プローブが円柱体表 面に描く軌跡は、 図 1に示した如く、 円柱体の回転速度とプローブの送り速度で決 まるピッチ Pの螺旋状となるので、 以下、 螺旋走査と称する。
このような表面探傷プローブから得られた欠陥信号を表示する際に、従来は、例 えば特開平 5— 1 4 2 2 1 5の図 6に見られるように、表面探傷プローブを圧延口 ールに対して螺旋走査し、 欠陥検出を行いながら、欠陥信号の振幅と所定の閾値を 比較し、 欠陥信号が所定の閾値以下のときには、 例えば黒線を表示し、 欠陥信号が 所定の閾値以上のときには、 黒線を表示しないことにより、 ロールの展開図上に欠 陥を識別して表示している。 しかしながら、 特開平 5— 1 4 2 2 1 5による欠陥の表示方法では、微小な欠陥 信号があっても、 前記閾値に達しない場合には、何も表示されないという問題点が ある。即ち、 前記閾値は、 検出すべき欠陥の大きさ、 圧延ロールの健全部から発生 する検出信号のレベル、及び外来電気ノイズのレベルを勘案して決められるが、実 際に圧延ロール表面に発生する表面欠陥の大きさや形は千差万別であり、欠陥信号 のレベルも大きく変化し、大きく有害な欠陥であっても、 その形によっては微小な 欠陥信号しか得られない場合もある。
一方、 前記閾値を、 微小な欠陥信号まで検出できるよう、 微小なレベルにすれば 検出漏れは無くなるが、金属組織や表面粗さに起因して圧延ロールの健全部から発 生する検出信号は、圧延ロール毎に少しずつ異なり、外来電気ノイズも周囲の電気 機器の動作状況や欠陥を検出する表面探傷プローブを駆動する機器の接地状態の 変化によって変動することから、 これらのレベルが高い場合には、 ロール全面に欠 陥が表示されてしまう。
従って、前記閾値は、圧延ロールの健全部から発生する検出信号のレベルや外来 電気ノイズのレベル (以下、 これらをノイズレベルと総称する) に対して、 余裕を もつて設定するのが通常であり、ノイズレベルより若干高い微小な欠陥信号があつ ても、 前記閾値に達しない場合には、 何も表示されない。 発明の開示
本発明は、前記従来の問題点を解消するべくなされたもので、表面探傷プローブ から得られた欠陥信号のような、測定プローブにより得られた信号を表示する際に、 微小な欠陥信号等も漏れなく表示することを課題とする。
本発明は、測定対称を相対的に走査する単一又は複数の測定プローブから得られ た信号を 2次元表示するための方法において、前記信号のレベルの管理範囲を設け、 前記管理範囲外のレベルの信号の表示と、前記管理範囲内のレベルの信号の表示と で、 各々の表示色を、 色空間において目視で識別可能な、 相異なる少なくとも 2個 の色域から選択し、 更に、 前記信号のレベルの高さに応じて、 各々の色域内の色を 用いて、色又は濃淡を変えて測定結果を表示するようにして、前記課題を解決した ものである。
前記色空間は、 例えば、 C I E L (国際照明委員会) の L * a * bモデル、 R G Bモデル、 又は、 C MY Kモデルで表わすことができる。
特に、 前記色空間において目視で識別可能な、相異なる少なくとも 2個の色域の うち 1つを、 白黒の濃淡 (グレースケール) としたり、 又は、 前記相異なる少なく とも 2個の色域のうち 2つを、補色関係とした場合には、信号のレベルの識別が容 易である。
又、 前記管理範囲外のレベルの信号は、 グレースケールで、 信号のレベルの高さ に応じて濃淡表示を行い、前記管理範囲内のレベルの信号は、 グレースケール以外 の色で、 信号のレベルの高さに応じて、 各々の色域内の色を用いて、 少しずつ色又 は濃淡を変えて表示を行うようにした場合には、管理範囲内外のレベルの信号を、 容易に判別できる。
あるいは、 前記管理範囲外のレベルの信号は、 グレースケール以外の色で、 信号 のレベルの高さに応じて、各々の色域内の色を用いて、 少しずつ色又は濃淡を変え て表示を行い、 前記管理範囲内のレベルの信号は、 グレースケールで、 信号のレべ ルの高さに応じて濃淡表示を行うようにした場合には、管理範囲内外のレベルの信 号を、 容易に判別できる。
あるいは、 前記管理範囲外のレベルの信号、 及び、 前記管理範囲内のレベルの信 号の両者共に、 グレースケールでは無く、 且つ、 互いに異なる色域に存在する色を 用い、 信号のレベルの高さに応じて、 各々の色域内の色を用いて、 少しずつ色又は 濃淡を変えて表示を行うようにした場合は、信号のレベルを全て色で判別できる。 あるいは、前記管理範囲を上限値及び下限値で規定し、 ゼロから下限値までのレ ベルの信号の表示と、 下限値から上限値までの間のレベルの信号の表示と、上限値 以上のレベルの信号の表示とで、各々の表示色を、色空間において目視で識別可能 な、 相異なる少なくとも 3個の色域から選択し、 更に、前記信号のレベルの高さに 応じて、 各々の色域内の色を用いて、少しずつ色又は濃淡を変えて測定結果を表示 することができる。
あるいは、 前記管理範囲を閾値以上、 又は閾値以下で規定し、 ゼロから閾値まで のレベルの信号の表示と、 閾値以上のレベルの信号の表示とで、各々の表示色を、 色空間において目視で識別可能な、相異なる少なくとも 2個の色域から選択し、更 に、 前記信号のレベルの高さに応じて、 各々の色域内の色を用いて、 色又は濃淡を 変えて測定結果を表示することができる。
あるいは、 前記ゼロから閾値までのレベルの信号は、 グレースケールで、 信号の レベルの高さに応じて濃淡表示を行い、前記閾値以上のレベルの信号は、別の色域 から選ばれたグレースケール以外の色で、信号のレベルの高さに応じて、該色域内 の色を用いて、 少しずつ色又は濃淡を変えて表示を行うことができる。
あるいは、前記ゼロから閾値までのレベルの信号は、 グレースケール以外の色域 から選ばれた色で、 信号のレベルの高さに応じて、 該色域内の色を用いて、 少しず つ色又は濃淡を変えて表示を行い、前記閾値以上のレベルの信号は、 グレースケー ルで、 信号のレベルの高さに応じて濃淡表示を行うことができる。
あるいは、 前記ゼロから閾値までのレベルの信号、 及び、 前記閾値以上のレベル の信号の両者共に、 グレースケール以外の色域から選ばれた色で、 且つ、 互いに異 なる色域に存在する色を用い、信号のレベルの高さに応じて、各々の色域内の色を 用いて、 少しずつ色又は濃淡を変えて測定結果を表示することができる。
前記信号は、 表面探傷プロ一ブから得られた欠陥信号とすることができる。 前記表面探傷プローブは、物体の表面を伝わる超音波を利用し、 欠陥からの反射 波をとらえて欠陥を検出する表面波プローブ、物体の表面に発生させた渦電流の、 欠陥による変化をとらえて欠陥を検出する渦流探傷プローブ、 又は、 欠陥による漏 洩磁束変化をとらえて欠陥を検出する漏洩磁束探傷プローブとすることができる。 本発明は、 又、測定対象を相対的に走査する単一又は複数の測定プローブから得 られた信号を 2次元表示するための表示装置において、測定対象を相対的に走査す る測定プローブと、 測定プローブ位置検出器と、測定プローブから得られた信号を 処理する信号処理装置と、 コンピュータと、 を備えることにより、 同じく前記課題 を解決したものである。
前記測定プロ一ブは、 表面波プローブ、 渦流探傷プローブ、 又は、 漏洩磁束探傷 プローブ等の表面探傷プローブとすることができる。
前記コンピュータは、 予め設定された前記信号のレベルの管理範囲に応じて、前 記管理範囲外のレベルの信号の表示と、前記管理範囲内のレベルの信号の表示とで、 各々の表示色を、 色空間において目視で識別可能な、相異なる少なくとも 2個の色 域から選択し、 更に、 前記信号のレベルの高さに応じて、 各々の色域内の色を用い て、 色又は濃淡を変えて測定結果を表示するものとすることができる。
本発明に係る探傷結果等の表示に際しては、 閾値を設け、ゼロから閾値までのレ ベルの欠陥信号の表示と、 閾値以上のレベルの欠陥信号の表示とで、図 2〜4に示 すように、色空間において、 目視で識別可能な相異なる色域 A〜Dから選択された、 相異なる色域に属する色を用い、 更に、 欠陥信号のレベルに応じて、 各々の色域内 の色を用いて、 色又は濃淡を変えて欠陥表示を行う。 図 2は、 色空間における相異 なる色域の選択例を C I Eの L * a * bカラーモデルを用いて表わしたものであ り、図 3は、色空間における相異なる色域の選択例を R G Bカラーモデルを用いて 表わしたものであり、 図 4は、色空間における相異なる色域の選択例を YM C K力 ラーモデルを用いて表わしたものである。 図 2〜4において、 色域 Aの色は、 白黒 の濃淡、 いわゆるグレースケールの色であり、 色域 B〜Dの色は、 グレースケール 以外の色である。
例えば、 図 5に示すように、 ゼロから閾値までのレベルの欠陥信号は、 グレース ケール(図 2〜4の色域 A、 例えば C I Eの L * a * bカラ一モデルでは、 a = 0 且つ b = 0 )で、 信号のレベルに応じて、 例えば白から黒へ変化する濃淡表示を行 い、閾値以上のレベルの欠陥信号は、グレースケール以外の色、例えば黄から赤(図 2〜4の色域 Aではない色域に含まれる色、例えば C I Eの L * a * bカラ一モデ ルでは、 &≠0且っ1)≠0 ) を用いて、 信号のレベルに応じて、 少しずつ色を変え て表示を行う。このようにして探傷結果をロール展開図上に表示した例が図 6であ り、 同じ探傷結果を、 従来の表示方法で表示したものを図 7に示す。 なお、 図 7で は、 特開平 5— 1 4 2 2 1 5号とは逆に、 閾値以上の信号を黒で、 ゼロから閾値ま でのレベルの信号を白で表示した。 これは、表面に人工欠陥及び自然欠陥を有する 圧延ロールを、 表面波プローブによって螺旋走査を行って探傷した結果である。図 6から明らかなように、従来の表示方法では表示されなかつた信号レベルの低い欠 陥が明瞭に表示されていることが分かる。 ここで、欠陥が円周方向に長く表示され ているのは、欠陥が表面波プローブに近付いたとき、複数回にわたり検出されるた めである。
又、 図 8に示すように、 ゼロから閾値までのレベルの欠陥信号は、 グレースケー ル以外の色、 例えば薄緑から緑を用いて、 信号のレベルに応じて、 少しずつ色を変 えて表示し、 閾値以上のレベルの欠陥信号は、 グレースケールで、 信号のレベルに 応じて、 例えばグレーから黒へ変化する濃淡表示を行ったり、 あるいは、 図 9に示 すように、 ゼロから閾値までのレベルの欠陥信号、 及び、 前記閾値以上のレベルの 欠陥信号の両者共に、 グレースケールではなく、 且つ、 互いに異なる色域に属する 色、 例えば図 9では、 前者に、 薄緑から緑の色、 後者に、 黄から赤の色をつけ、 レ ベルに応じて少しずつ異なる色で表示することも可能である。
なお、 図 2〜4では、 色空間を表わす 3種のカラーモデルを示したが、 カラーモ デルによる色空間の表現方法は、 この 3種に限定されるものではなく、他の種々の カラ一モデルを用いることができる。 図面の簡単な説明
図 1は、 表面波プローブの円柱体表面に対する走査状態を示す平面図、 図 2は、 本発明の原理を説明するための、 C I Eの L * a * bカラ一モデルにお ける相異なる色域を示す説明図、
図 3は、 同じく、 R G Bカラ一モデルにおける相異なる色域を示す説明図、 図 4は、 同じく、 C MY Kカラーモデルにおける相異なる色域を示す説明図、 図 5は、 本発明による信号レベルと色の対応関係の一例を示す線図、
図 6は、 本発明の方法により表示した探傷結果の例を示す線図、
図 7は、 従来法により表示した探傷結果の例を示す線図、
図 8は、 本発明による信号レベルと色の対応関係の他の例を示す線図、 図 9は、 同じく更に他の例を示す線図、
図 1 0は、 本発明の第 1実施形態の全体構成を示す、一部プロック図を含む斜視 図、
図 1 1は、 第 1実施形態における表面波プローブの保持装置の詳細を示す正面 図、
図 1 2は、 同じくプローブホルダ部分を示す側面図、
図 1 3は、 同じく給水装置部分を示す断面図、
図 1 4は、 第 1実施形態による探傷結果の表示例を示すロール展開図、 図 1 5は、 本発明の第 2実施形態の構成を示す、 一部ブロック図を含む側面図、 図 1 6は、 同じく要部の断面図、
図 1 7は、 第 2実施形態による鋼板の厚さの測定結果の表示例を示す線図であ る。 発明を実施するための最良の形態
以下図面を参照して、 本発明の実施形態を詳細に説明する。
本発明の第 1実施形態は、 欠陥を検出する表面探傷プローブが、物体の表面を伝 わる超音波(表面波) を利用し、 欠陥からの表面波の反対波を検出することにより 欠陥を検出する表面波プローブ 2 0の場合を説明するが、欠陥を検出するプローブ t 渦流探傷プローブ、 又は、 漏洩磁束探傷プローブであっても、 本発明による欠 陥位置及び欠陥信号レベルの口ール展開図への表示方法は、同様に適用可能である。 本実施形態は、 図 1 0に示す如く、 ロール回転装置 (図示省略)、 回転位置検出 器 2 2、表面波プローブ 2 0、表面波プローブ 2 0のロール軸方向での位置を検出 する軸方向位置検出器 2 4、 超音波探傷器 2 6、 コンピュータ 3 0、 表示装置 3 2、 カラ一プリン夕 3 4及び前記表面波プローブ 2 0の保持装置 4 0を備えている。 前記ローラ回転装置は、表面欠陥の検査を行う圧延ロール 1 1 0を、 その円周方 向 Cに回転させることが可能なものである。 この回転装置は、周知の適当な装置を 用いればよく、 図面の煩雑化を避けるために、 図示は省略している。 このローラ回 転装置による圧延ロール 1 1 0の回転位置は、回転位置検出器 2 2によって検出さ れ、 コンピュータ 3 0に送られる。
前記表面波プローブ 2 0は、該プローブ表面と被検体である圧延ロール 1 1 0と の間に水ギャップが形成されることにより、表面波を圧延ロール 1 1 0の表面に伝 搬させて、 圧延ロール 1 1 0の表面欠陥を検出可能である。
前記表面波プローブ 2 0には超音波探傷器 2 6が接続されている。この超音波探 傷器 2 6は、表面波プローブ 2 0がとらえた信号を所定のレベルに増幅し、欠陥反 射波を抽出した上で、該欠陥反射波の振幅を検出して、 これをコンピュータ 3 0に 出力する。
前記表面波プローブ 2 0は、詳細な構造を後で述べる保持装置 4 0に取り付けら れ、圧延ロール 1 1 0に対し、一定の間隔を保つように探傷走査可能に保持されて いる。従って、 圧延ロール 1 1 0を、 図示しないロール回転装置によって回転させ ながら、 適当な駆動装置(図示省略) によって、 保持装置 4 0を圧延ロール 1 1 0 の軸方向に走査することにより、表面波プローブ 2 0を圧延ロール 1 1 0上で螺旋 走査して、圧延ロール 1 1 0全面の探傷が可能である。表面波プローブ 2 0の圧延 ロール 1 1 0の軸方向での位置は、 軸方向位置検出器 2 4で検出され、 コンビユー 夕 3 0に送られる。
コンピュータ 3 0は、螺旋走査の期間中、 回転位置検出器 2 2によって検出され た圧延ロール 1 1 0の回転位置の信号、軸方向位置検出器 2 4によって検出された 表面波プローブ 2 0の圧延ロール 1 1 0の軸方向での位置の信号、超音波探傷器 2 6によって検出された欠陥信号の増幅を受け、表示装置 3 2に探傷結果の口一ル展 閧図上への表示を行う。 このとき、 本発明により、 予め設定された 1つの閾値を基 に、超音波探傷器 2 6によって検出された欠陥信号の振幅に応じて、ゼロから閾値 までのレベルの欠陥信号の表示と、 閾値以上のレベルの欠陥信号の表示とで、図 2 〜4に示すように、 色空間において異なる色域に属する色を用い、 更に、 欠陥信号 のレベルに応じて、 各々の色域内の色を用いて、色又は濃淡を少しずつ変えて欠陥 表示を行う。 更に、 この探傷結果のロール展開図上への表示結果は、 カラ一プリン 夕 3 4に送られて印刷される。
以下、 図 1 1乃至図 1 3を参照して、前記保持装置 4 0の構成を詳細に説明する。 該保持装置 4 0には、 プローブホルダ 5 0が含まれる。
該プローブホルダ 5 0は、圧延ロール 1 1 0の上方に位置する固定構造部 7 0に 対して摺動可能なガイ ド 7 6の下部に取り付けられた保持機構部 6 0に備えられ ている。 該保持機構部 6 0には、 前後各一対、 計 4個のローラ 6 2が備えられ、 探 傷を行うときには、 これらのローラ 6 2が圧延ロール 1 1 0の表面に当接し、 回転 することにより、 探傷走査を安定させる。 この 4個のローラ 6 2の間に、 前記プロ ーブホルダ 5 0が取り付けられている。
前記固定構造部 7 0には、前記保持機構部 6 0をガイ ド 7 6に沿って昇降させる 動力を供給するためのモータ 7 2と、その取り付けスペース 7 4が備えられている c 該モ一夕 7 2の動力の伝達方法は、従来周知の適当な手段を用いればよく、図面の 煩雑化を避けるため、 図示は省略する。
前記保持機構部 6 0の前方 (図の右方) には、 ロール 1 1 0の表面に残留した接 触媒質が表面波の伝播経路上に流れ込まないように、該接触媒質を取り除くための スクレーバ 9 0が設けられている。
前記プローブホルダ 5 0は、保持機構部 6 0との間にばね等の弾性体を介装する ことにより、 圧延ロール 1 1 0の表面方向に付勢して支持される。詳細には、 保持 機構部 6 0に対して上下に摺動可能に遊嵌する棒状体 6 6の先端にプローブホル ブ 5 0が取り付けられ、該棒状体 6 6の周囲の適当な位置に、 図示しないばねが設 けられ、 常にプローブホルダ 5 0を下方に付勢している。
前記プローブホルダ 5 0には、前記表面波プローブ 2 0が設けられており、該表 面波プローブ 2 0と圧延ロール 1 1 0との間に所定のギャップを形成するため、表 面波プローブ 2 0よりも下方の圧延ロール 1 1 0側に突出する一対の倣いローラ 5 2が設けられている。具体的には、 図 1 2に示すように、 前記プローブホルダ 5 0に水平方向に沿って軸 5 4が設けら、これに前記倣いローラ 5 2が配設されてい る。
このように、 プローブホルダ 5 0に軸支された倣いローラ 5 2が、前記ばねによ る付勢を受けて、 常時圧延ロール 1 1 0の表面に当接する。 この構成によって、 プ ローブホルダ 5 0は、表面波プローブ 2 0と圧延ロール 1 1 0とのギャップが一定 値を維持するように、 前記表面波プローブ 2 0を保持する。
図 1 3に詳細に示すように、前記プローブホルダ 5 0の内部には給水装置 8 0が 備えられている。該給水装置 8 0は、導管 8 2から導かれた水を収容部 8 4に一旦 収容し、 これを該収容部 8 4の底部に設けられた放出口 8 6より放出し、表面波プ ローブ 2 0と圧延ロール 1 1 0との間に、 気泡のない水の層を形成する。給水装置 は、 従来既知の適当な手段を用いて構成すればよいので、 詳しい説明は省略する。 図 1 4は、 このようにして構成された探傷装置を用いて、微小な表面欠陥を有す る圧延ロールを探傷し、 図 9に示した表示色を用い、探傷結果をロール展開図上に 表示したものである。 これは、 従来法では表示できなかった欠陥であり、 このよう な信号レベルの低い欠陥も明瞭に表示できるようになった。
なお、 前記説明においては、 本発明が、 圧延ロールの表面探傷に適用されていた が、 本発明の適用対象はこれに限定されず、圧延ロール以外の円柱体や円柱体以外 の表面探傷の結果の表示にも、 同様に適用できることは明らかである。 又、 図 1 5 (側面図) 及び図 1 6 (要部断面図) は、 本発明の第 2実施形態を示 す。本実施形態は、搬送ローラ 1 2 2により搬送あるいは圧延される鋼板 1 2 0の 厚さを、搬送又は圧延ラインにおいて、放射線厚さ計を幅方向に走査して 2次元に 測定する場合の測定結果の表示に本発明を適用したものである。
本実施形態は、 図 1 5及び図 1 6に示す如く、 放射線発生器 7 1、放射線検出器 7 2 (放射線発生器 7 1及び放射線検出器 7 2を合わせて放射線測定へッド 7 0と 称する)、 放射線測定へッド 7 0の幅方向位置検出器 8 1、 測定対象の鋼板の搬送 又は圧延方向での位置を検出する長手方向位置検出器 8 2、信号処理回路 7 3、 コ ンピュー夕 3 0、 表示装置 3 2、 カラープリン夕 3 4、 及び、 前記放射線測定へッ ド 7 0の鋼板幅方向への走査装置 8 0を備えている。
前記搬送ローラ 1 2 2は、厚さ測定を行う鋼板 1 2 0を、一定の方向へ搬送する ことが可能なものである。 この搬送ローラ 1 2 2は、周知の適当な装置を用いれば よく、 図面の煩雑化を避けるために、駆動装置及び支持手段の図示は省略している。 この搬送ローラ 1 2 2により搬送される鋼板 1 2 0の長手位置は、搬送ローラ 1 2 2の回転数から距離を計測する口一夕リエンコーダ等の長手方向位置検出器 8 2 によって検出され、 コンビユー夕 3 0に送られる。
前記放射線測定へッド 7 0は、放射線発生器 7 1力ら発生し、鋼板を透過した放 射線の強さを放射線検出器 7 2により検出することにより、放射線の鋼板による減 衰量を検出して、 鋼板の厚さを検出可能である。
前記放射線測定へッド 7 0には信号処理回路 7 3が接続されている。この信号処 理回路 7 3は、放射線検出器 7 2により検出した信号を所定のレベルに増幅し、 そ の信号の大きさを検出して、 これをコンピュータ 3 0に出力する。
前記放射線測定へッド 7 0は、走査装置 8 0に取り付けられ、放射線発生器 7 1 及び放射線検出器 7 2が鋼板 1 2 0に対し、一定の間隔を保つように走査可能に保 持されている。 従って、 鋼板 1 2 0の搬送中に、 適当な駆動装置 (図示省略) によ つて、走査装置 8 0を鋼板 1 2 0の幅方向に走査することにより、放射線測定へッ ド 7 0を鋼板 1 2 0上でジグザグ走査して、鋼板 1 2 0全面の厚さ測定が可能であ る。放射線測定へッド Ί 0の鋼板 1 2 0の幅方向での位置は、幅方向位置検出器 8 1で検出され、 コンピュータ 3 0に送られる。
コンピュータ 3 0は、 ジグザグ走査の期間中、幅方向位置検出器 8 1によって検 出された放射線測定へッド 7 0の鋼板 1 2 0の幅方向での位置の信号、長手方向位 置検出器 8 2によって検出された放射線測定へッド 7 0の鋼板 1 2 0の長手方向 での位置の信号、信号処理回路 7 3によって検出された透過放射線の大きさの信号 を受け、 表示装置 3 2に鋼板厚さ測定結果の 2次元表示を行う。 このとき、 本発明 により、 予め設定された管理範囲の上限値及び下限値を基に、信号処理回路 7 3に よって検出された透過放射線の大きさに応じて、ゼロから下限値までの厚さの表示、 下限値から上限値までの厚さの表示、上限値以上の厚さの表示で、各々図 2 ~ 4に 示すように、 異なる色域 B及び C及び Dに属する色を用い、 更に、厚さに応じて、 各々の色域内の色を用いて、色又は濃淡を少しずつ変えて欠陥表示を行う。更に、 この鋼板厚さ測定結果の 2次元表示結果は、カラープリン夕 3 4に送られて印刷さ れる。
図 1 7は、 このようにして構成された厚さ測定装置を用いて、外力によるロール 表面の欠けに起因するハイスポットがある鋼板の厚さを 2次元に測定し、表示した ものである。厚さプロフィル観察のみでは見落としがちなハイスポヅトがわかり易 く表示され、 しかも、 その発生周期まで明瞭にわかる。 産業上の利用可能性
本発明によれば、 従来は無視されていた、 微小な欠陥信号等も、 漏れなく表示す ることが可能となる。

Claims

請 求 の 範 囲
1 .測定対象を相対的に走査する単一又は複数の測定プローブから得られた信号を 2次元表示するための方法において、
前記信号レベルの管理範囲を設け、
前記管理範囲外のレベルの信号の表示と、前記管理範囲内のレベルの信号の表示 とで、 各々の表示色を、 色空間において目視で識別可能な、 相異なる少なくとも 2 個の色域から選択し、
更に、 前記信号レベルの高さに応じて、 各々の色域内の色を用いて、 色又は濃淡 を変えて測定結果を表示することを特徴とする、測定プローブにより得られた信号 の表示方法。
2 . 請求項 1において、 前記色空間が C I E (国際照明委員会) の L * a * bモデ ルで表わされることを特徴とする、測定プローブにより得られた信号の表示方法。
3 .請求項 1において、前記色空間が R G Bモデルで表わされることを特徴とする、 測定プローブにより得られた信号の表示方法。
4 . 請求項 1において、前記色空間が C MY Kモデルで表わされることを特徴とす る、 測定プローブにより得られた信号の表示方法。
5 .請求項 1乃至 4のいずれかにおいて、前記色空間において目視で識別可能な、 相異なる少なくとも 2個の色域のうち 1つが、 白黒の濃淡(グレースケール)であ ることを特徴とする、 測定プローブにより得られた信号の表示方法。
6 .請求項 1乃至 4のいずれかにおいて、前記色空間において目視で識別可能な、 相異なる少なくとも 2個の色域のうち 2つが、補色関係にあることを特徴とする、 測定プローブにより得られた信号の表示方法。
7 . 請求項 5において、
前記管理範囲外のレベルの信号は、 グレースケールで、信号のレベルの高さに応 じて濃淡表示を行い、
前記管理範囲内のレベルの信号は、 グレースケール以外の色で、信号のレベルの 高さに応じて、各々の色域内の色を用いて、 少しずつ色又は濃淡を変えて表示を行 うことを特徴とする、 測定プロ一ブにより得られた信号の表示方法。
8 . 請求項 5において、
前記管理範囲外のレベルの信号は、 グレースケール以外の色で、信号のレベルの 高さに応じて、各々の色域内の色を用いて、少しずつ色又は濃淡を変えて表示を行 い、
前記管理範囲内のレベルの信号は、 グレースケールで、信号のレベルの高さに応 じて濃淡表示を行うことを特徴とする、測定プローブにより得られた信号の表示方 法。
9 . 請求項 1乃至 4のいずれかにおいて、 前記管理範囲外のレベルの信号、 及び、 前記管理範囲内のレベルの信号の両者共に、 グレースケールでは無く、 且つ、 互い に異なる色域に存在する色を用い、信号のレベルの高さに応じて、各々の色域内の 色を用いて、 少しずつ色又は濃淡を変えて表示を行うことを特徴とする、測定プロ ーブにより得られた信号の表示方法。
1 0 . 請求項 1において、 前記管理範囲が上限値及び下限値からなり、
ゼロから下限値までのレベルの信号の表示と、下限値から上限値まで間のレベル の信号の表示と、 上限値以上のレベルの信号の表示とで、 各々の表示色を、 色空間 において目視で識別可能な、 相異なる少なくとも 3個の色域から選択し、
更に、 前記信号のレベルの高さに応じて、 各々の色域内の色を用いて、 少しずつ 色又は濃淡を変えて測定結果を表示することを特徴とする、測定プローブにより得 られた信号の表示方法。
1 1 . 請求項 1において、 前記管理範囲が閾値以上、 又は閾値以下からなり、 ゼロから閾値までのレベルの信号の表示と、閾値以上のレベルの信号の表示とで、 各々の表示色を、色空間において目視で識別可能な、相異なる少なくとも 2個の色 域から選択し、
更に、 信号のレベルの高さに応じて、 各々の色域内の色を用いて、 色又は濃淡を 変えて測定結果を表示することを特徴とする、測定プローブにより得られた信号の 表示方法。
1 2 . 請求項 1 1において、
前記ゼロから閾値までのレベルの信号は、 グレースケールで、信号のレベルの高 さに応じて濃淡表示を行い、
前記閾値以上のレベルの信号は、別の色域から選ばれたグレ一スケール以外の色 で、 信号のレベルの高さに応じて、 該色域内の色を用いて、 少しずつ色又は濃淡を 変えて表示を行うことを特徴とする、測定プローブにより得られた信号の表示方法。
1 3 . 請求項 1 1において、
前記ゼ口から閾値までのレベルの信号は、グレ一スケール以外の別の色域から選 ばれた色で、 信号のレベルの高さに応じて、 該色域内の色を用いて、 少しずつ色又 は濃淡を変えて表示を行い、
前記閾値以上のレベルの信号は、 グレースケールで、信号のレベルの高さに応じ て濃淡表示を行うことを特徴とする、測定プローブにより得られた信号の表示方法。
1 4 . 請求項 1 1において、
前記ゼロから閾値までのレベルの信号、 及び、前記閾値以上のレベルの信号の両 者共に、 グレースケール以外の色域から選ばれた色で、 且つ、 互いに異なる色域に 存在する色を用い、 信号のレベルの高さに応じて、 各々の色域内の色を用いて、 少 しずつ色又は濃淡を変えて表示することを特徴とする、測定プローブにより得られ た信号の表示方法。
1 5 . 請求項 1 1乃至 1 4のいずれかにおいて、 前記信号が、 表面探傷プローブか ら得られた欠陥信号であることを特徴とする、測定プローブにより得られた信号の 表示 ¾法。
1 6 . 請求項 1 5において、 前記表面探傷プローブが、 物体の表面を伝わる超音波 を利用し、欠陥からの反射波をとらえて欠陥を検出する表面波プローブであること を特徴とする、 測定プローブにより得られた信号の表示方法。
1 7 . 請求項 1 5において、 前記表面探傷プローブが、 物体の表面に発生させた渦 電流の、欠陥による変化をとらえて欠陥を検出する渦流探傷プローブであることを 特徴とする、 測定プローブにより得られた信号の表示方法。
1 8 . 請求項 1 5において、 前記表面探傷プローブが、 欠陥による漏洩磁束変化を とらえて欠陥を検出する漏洩磁束探傷プローブであることを特徴とする、測定プロ ーブにより得られた信号の表示方法。
1 9 .測定対象を相対的に走査する単一又は複数の測定プローブから得られた信号 を 2次元表示するための表示装置において、
測定対象を相対的に走査する測定プローブと、
測定プローブ位置検出器と、
測定プローブから得られた信号を処理する信号処理装置と、
コンビユー夕と、
を含むことを特徴とする、 測定プローブにより得られた信号の表示装置。
2 0 .請求項 1 9において、前記測定プローブが表面探傷プローブであることを特 徴とする、 測定プローブにより得られた信号の表示装置。
2 1 . 請求項 2 0において、 前記表面探傷プローブが、 物体の表面を伝わる超音波 を利用し、欠陥からの反射波をとらえて欠陥を検出する表面波プローブであること を特徴とする、 測定プローブにより得られた信号の表示装置。
2 2 . 請求項 2 0において、 前記表面探傷プローブが、 物体の表面に発生させた渦 電流の、欠陥による変化をとらえて欠陥を検出する渦流探傷プローブであることを 特徴とする、 測定プローブにより得られた信号の表示装置。
2 3 . 請求項 2 0において、 前記表面探傷プローブが、 欠陥による漏洩磁束変化を とらえて検出する漏洩磁束探傷プローブであることを特徴とする、測定プ口一ブに より得られた信号の表示装置。
2 4 . 請求項 1 9において、 前記コンビユー夕力
予め設定された前記信号のレベルの管理範囲に応じて、前記管理範囲外のレベル の信号の表示と、 前記管理範囲内のレベルの信号の表示とで、 各々の表示色を、 色 空間において目視で識別可能な、 相異なる少なくとも 2個の色域から選択し、 更に、 前記信号のレベルの高さに応じて、 各々の色域内の色を用いて、 色又は濃 淡を変えて測定結果を表示することを特徴とする、測定プローブにより得られた信 号の表示装置。
PCT/JP1999/002419 1998-05-12 1999-05-11 Procede et dispositif d'affichage d'un signal produit par une sonde de mesure WO1999058967A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54456399A JP3620799B2 (ja) 1998-05-12 1999-05-11 測定プローブにより得られる信号の表示方法及び装置
US09/446,916 US6777931B1 (en) 1998-05-12 1999-05-11 Method of displaying signal obtained by measuring probe and device therefor
AU36300/99A AU759780B2 (en) 1998-05-12 1999-05-11 Method and device for displaying signal generated by measurement probe
EP99918363A EP0995991A4 (en) 1998-05-12 1999-05-11 METHOD AND DEVICE FOR REPRESENTING THE SIGNAL GENERATED BY A MEASURING SAMPLE
KR1020007000215A KR100364618B1 (ko) 1998-05-12 1999-05-11 측정 프로브에 의해 얻어지는 신호의 표시방법 및 장치
CA002297199A CA2297199C (en) 1998-05-12 1999-05-11 Method and device for displaying signal generated by measurement probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/128913 1998-05-12
JP12891398 1998-05-12

Publications (1)

Publication Number Publication Date
WO1999058967A1 true WO1999058967A1 (fr) 1999-11-18

Family

ID=14996473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002419 WO1999058967A1 (fr) 1998-05-12 1999-05-11 Procede et dispositif d'affichage d'un signal produit par une sonde de mesure

Country Status (7)

Country Link
US (1) US6777931B1 (ja)
EP (1) EP0995991A4 (ja)
JP (1) JP3620799B2 (ja)
KR (1) KR100364618B1 (ja)
AU (1) AU759780B2 (ja)
CA (1) CA2297199C (ja)
WO (1) WO1999058967A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417512B1 (ko) * 1999-12-28 2004-02-05 주식회사 포스코 강판의 에지크랙 검출장치 및 그 검출방법
JP2015219020A (ja) * 2014-05-14 2015-12-07 ミナモト通信株式会社 鋼管柱診断装置および鋼管柱診断方法
JP2021139821A (ja) * 2020-03-08 2021-09-16 大同特殊鋼株式会社 丸棒材の超音波探傷方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590996B1 (en) * 2000-02-14 2003-07-08 Digimarc Corporation Color adaptive watermarking
US7618669B2 (en) * 2005-06-01 2009-11-17 Mead Johnson Nutrition Company Low-lactose partially hydrolyzed infant formula
US20070043290A1 (en) * 2005-08-03 2007-02-22 Goepp Julius G Method and apparatus for the detection of a bone fracture
US7617730B2 (en) * 2006-06-28 2009-11-17 The Boeing Company Ultrasonic inspection and repair mode selection
US7757558B2 (en) * 2007-03-19 2010-07-20 The Boeing Company Method and apparatus for inspecting a workpiece with angularly offset ultrasonic signals
US7712369B2 (en) * 2007-11-27 2010-05-11 The Boeing Company Array-based system and method for inspecting a workpiece with backscattered ultrasonic signals
US8143885B2 (en) * 2008-10-30 2012-03-27 Og Technologies, Inc. Surface flaw detection and verification on metal bars by Eddy current testing and imaging system
JP5829930B2 (ja) * 2012-01-27 2015-12-09 日立Geニュークリア・エナジー株式会社 渦電流探傷システム及び渦電流探傷方法
CN107345331B (zh) * 2017-06-20 2019-06-21 浙江理工大学 数码提花机织物多基色分区混色模型的构建及其应用方法
CN107367515B (zh) * 2017-07-14 2019-11-15 华南理工大学 一种超薄柔性ic基板油墨异物检测方法
CN109975395B (zh) * 2017-12-27 2022-09-20 核动力运行研究所 一种涡流检测信号图形成像方法
CN111351836B (zh) * 2018-12-20 2023-09-12 核动力运行研究所 一种阵列探头涡流检测信号图形成像优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111056A (ja) * 1982-12-17 1984-06-27 Shimadzu Corp 渦流探傷装置
JPH0580034A (ja) * 1991-09-19 1993-03-30 Tokimec Inc 超音波探傷装置
JPH0980030A (ja) * 1995-09-11 1997-03-28 Kanto Special Steel Works Ltd 超音波及び渦電流を用いた圧延ロール表面検査方法及び装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030911A (en) 1980-10-19 1991-07-09 Baker Hughes Incorporated Method and apparatus for displaying defects in tubular members on a two-dimensional map in a variety of display modes
US4439730A (en) * 1981-05-08 1984-03-27 Amf Inc. Nondestructive inspection apparatus and method utilizing combined inspection signals obtained from orthogonal magnetic fields
US4644336A (en) * 1984-06-15 1987-02-17 Westinghouse Electric Corp. Color display of related parameters
JPH0737964B2 (ja) 1985-05-14 1995-04-26 オリンパス光学工業株式会社 超音波顕微鏡用画像表示装置
US4990851A (en) * 1987-12-17 1991-02-05 Atlantic Richfield Company Transient electromagnetic method for detecting irregularities on conductive containers
US5006800A (en) * 1989-11-06 1991-04-09 General Electric Company Eddy current imaging apparatus and method using phase difference detection
US5017869A (en) * 1989-12-14 1991-05-21 General Electric Company Swept frequency eddy current system for measuring coating thickness
US5006722A (en) * 1990-03-02 1991-04-09 Intec Corp. Flaw annunciator with a controllable display means for an automatic inspection system
US5345514A (en) * 1991-09-16 1994-09-06 General Electric Company Method for inspecting components having complex geometric shapes
JPH05142215A (ja) 1991-11-22 1993-06-08 Kanto Special Steel Works Ltd 超音波探傷法による円筒物表面探傷装置
US5430376A (en) * 1993-06-09 1995-07-04 General Electric Company Combined thermoelectric and eddy-current method and apparatus for nondestructive testing of metallic of semiconductor coated objects
US5911003A (en) 1996-04-26 1999-06-08 Pressco Technology Inc. Color pattern evaluation system for randomly oriented articles
US5831157A (en) * 1996-09-18 1998-11-03 The Boeing Company Digital bond tester
US6720775B2 (en) * 2001-06-12 2004-04-13 General Electric Company Pulsed eddy current two-dimensional sensor array inspection probe and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111056A (ja) * 1982-12-17 1984-06-27 Shimadzu Corp 渦流探傷装置
JPH0580034A (ja) * 1991-09-19 1993-03-30 Tokimec Inc 超音波探傷装置
JPH0980030A (ja) * 1995-09-11 1997-03-28 Kanto Special Steel Works Ltd 超音波及び渦電流を用いた圧延ロール表面検査方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0995991A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417512B1 (ko) * 1999-12-28 2004-02-05 주식회사 포스코 강판의 에지크랙 검출장치 및 그 검출방법
JP2015219020A (ja) * 2014-05-14 2015-12-07 ミナモト通信株式会社 鋼管柱診断装置および鋼管柱診断方法
JP2021139821A (ja) * 2020-03-08 2021-09-16 大同特殊鋼株式会社 丸棒材の超音波探傷方法

Also Published As

Publication number Publication date
KR20010021657A (ko) 2001-03-15
EP0995991A4 (en) 2001-09-12
AU759780B2 (en) 2003-05-01
JP3620799B2 (ja) 2005-02-16
KR100364618B1 (ko) 2002-12-16
EP0995991A1 (en) 2000-04-26
CA2297199A1 (en) 1999-11-18
US6777931B1 (en) 2004-08-17
CA2297199C (en) 2006-07-18
AU3630099A (en) 1999-11-29

Similar Documents

Publication Publication Date Title
WO1999058967A1 (fr) Procede et dispositif d'affichage d'un signal produit par une sonde de mesure
JP5659540B2 (ja) 鋼板表面欠陥検査方法および装置
TWI779268B (zh) 超音波探傷裝置
JP2007309690A (ja) 探傷方法および探傷装置
US11733207B2 (en) Apparatus and method of detecting defects in boiler tubes
JP2016507060A (ja) 不規則な測定時のsaft法による解析を改良する方法及び装置
JP5558666B2 (ja) 電子走査式アレイ探触子を用いた水浸超音波探傷による丸棒鋼の表面欠陥評価装置及びその方法
JP2006106011A (ja) ハニカム構造体の検査方法及び検査装置
JP2004138417A (ja) 鋼板の疵検査方法およびその装置
JP4023295B2 (ja) 表面検査方法及び表面検査装置
RU2149393C1 (ru) Способ ультразвукового контроля цилиндрических изделий
JP2609647B2 (ja) 超音波探傷装置
JPH0465618A (ja) 肉厚測定装置
JPH05126803A (ja) 自動超音波探傷装置
JP5375239B2 (ja) 画像処理装置、長尺物用検査装置及びコンピュータプログラム
JP2006162393A (ja) 青果類の形状選別装置および形状選別方法
JP4420602B2 (ja) 外観検査装置及び外観検査方法
KR102308070B1 (ko) 경수로 원전 연료용 튜브 초음파탐상 시스템
JPH11211706A (ja) 扇形走査式超音波検査装置
Sollier et al. CODECI, a new system for the inspection of surface breaking flaws based on eddy current array probe and high resolution CCD camera
JPS61266907A (ja) 表面状態検出装置
JP2002122573A (ja) 丸材の欠陥検査方法および装置
JP2004177313A (ja) 超音波検査装置
JP2005195349A (ja) 超音波斜角探傷方法とその装置
JP2007147324A (ja) 表面検査装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 09446916

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 36300/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1999918363

Country of ref document: EP

Ref document number: 1020007000215

Country of ref document: KR

ENP Entry into the national phase

Kind code of ref document: A

Ref document number: 2297199

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999918363

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007000215

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007000215

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 36300/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1999918363

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载