+

WO1999050009A1 - High-strength metal solidified material and acid steel and manufacturing methods thereof - Google Patents

High-strength metal solidified material and acid steel and manufacturing methods thereof Download PDF

Info

Publication number
WO1999050009A1
WO1999050009A1 PCT/JP1999/001566 JP9901566W WO9950009A1 WO 1999050009 A1 WO1999050009 A1 WO 1999050009A1 JP 9901566 W JP9901566 W JP 9901566W WO 9950009 A1 WO9950009 A1 WO 9950009A1
Authority
WO
WIPO (PCT)
Prior art keywords
solidified
less
strength
metal
steel
Prior art date
Application number
PCT/JP1999/001566
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Ootaguchi
Shuji Wanikawa
Yuji Muramatsu
Kaneaki Tsuzaki
Kotobu Nagai
Toru Hayashi
Original Assignee
Japan As Represented By Director General Of National Research Institute For Metals
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By Director General Of National Research Institute For Metals, Kawasaki Steel Corporation filed Critical Japan As Represented By Director General Of National Research Institute For Metals
Priority to EP99910734A priority Critical patent/EP1068915A4/en
Priority to US09/647,100 priority patent/US6332905B1/en
Priority to KR1020007010628A priority patent/KR20010074460A/en
Publication of WO1999050009A1 publication Critical patent/WO1999050009A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • B22F3/156Hot isostatic pressing by a pressure medium in liquid or powder form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention of this application relates to a high-strength solidified metal, oxygen steel, and a method for producing them. More specifically, a high-strength metal solidified metal powder that is easy to manufacture and has tremendous strength and elongation, and, as a type, does not require various additional elements and is lightweight
  • the present invention relates to oxygen steel, which is a high-rigidity steel, and to a method for producing a solidified body by plastic working. Background art
  • Such mechanical alloying and subsequent HIP treatment is considered to be an indispensable means for the production of solidified metal powders. Therefore, it has been said that it is difficult to realize a solidified powder having higher strength and greater elongation than before.
  • the first technical problem to be solved is to perform mechanical alloying and subsequent HIP processing by reconsidering the above-mentioned conventional technical knowledge and common sense. It is an object of the present invention to provide a high-strength metal solidified material that can be economically mass-produced without any problem and has a strength of, for example, 450 Pa or more and a uniform elongation of 5% or more. ing.
  • the invention of this application is a solidified metal raw material powder containing iron or titanium as a main component, and has an average crystal grain size of 5 ⁇ ⁇ or less.
  • a high-strength metal solidified body having a fine structure.
  • the invention of this application relates to the above-mentioned solidified body by plastic working by hydrostatic pressure, particularly flat rolls, groove rolls, extrudes and stamps.
  • High-strength solidified metal solidified by at least one type of plastic working of the page high-strength metallic solidified by plastic working using a sheath material, and Provided is a high-strength metal solidified at a temperature of 800 ° C or lower.
  • the invention of this application has a second problem to be solved, for example, at least 590 MPa without adding additional elements such as Si, ⁇ , Nb, Cu, and Ni.
  • a second problem to be solved for example, at least 590 MPa without adding additional elements such as Si, ⁇ , Nb, Cu, and Ni.
  • the invention of this application solves the above-mentioned problem, and is characterized in that it is a steel material in which an oxide having a diameter of 0.2 m or less is dispersed at a volume ratio of 0.5 to 60%. Providing oxygen steel.
  • the invention of this application provides the oxygen steel having an average ferrite particle size of 5 m or less as a parent phase, any one of the oxygen steels having an oxygen content of 0.05 mass% or more, the tensile strength in (MP a) X uniformly elongation (0/0) force "4 0 0 0 (P a ⁇ %) or more, the force, one diaphragm Jamaica 5 is 0% or more of any of the foregoing We also provide oxygen steel.
  • the invention of this application also provides a method for producing the above-mentioned high-strength solidified metal body and oxygen steel.
  • a metal raw material powder containing iron or titanium as a main component is solidified by plastic working under hydrostatic pressure, and the ultrafine particles having an average crystal grain of 5 m or less are obtained.
  • a method for manufacturing a high-strength metal solidified body which is characterized by manufacturing a metal solidified body having a texture.
  • the plastic working is at least one of flat roll, groove roll, extrusion and swage.
  • the present invention also provides a manufacturing method of performing plastic working using a sheath material and a manufacturing method of performing plastic working at a temperature of 800 ° C. or less.
  • any one of the above-described production methods in which a metal raw material powder is milled, then plastically processed in a sealed state and solidified, and a method in which the raw material powder is a metal powder mainly composed of iron. Oxide with a diameter of 0.2 m or less is obtained by plastic working in the range of 500 ° C to the iron transformation temperature when the oxygen content of the raw material powder is 0.05 mass% or more.
  • the present invention provides a method for producing a net material, which is dispersed at a volume ratio of 0.5 to 60%.
  • the raw material powder mainly composed of iron has a chemical composition of
  • Oxygen 0.05-0.5 ma s s%
  • Chrom 0.1 mAss ° / o or less
  • Figure 1 shows a stress-strain curve
  • FIG. 2 is a diagram showing a metal structure observed by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 3 is a graph showing the relationship between the oxygen concentration, the Young's modulus, the density, and the Young's modulus density.
  • the average particle size of the crystal structure is preferably 5 m or less, and more preferably 3 m or less.
  • the present invention provides a high-strength metal solid body having a strength of 450 Pa or more and a uniform elongation of 5% or more.
  • the content of iron (Fe) or titanium (Ti) should be 50 atomic% or more in the chemical composition, more suitably 800/0 or more.
  • Various kinds of metals, alloys, intermetallic compounds, etc. may be used.
  • the purity does not need to be high, and a powder produced by a normal atomization method or a KIP method (a powder production method for reducing the surface scale of steel) can be used.
  • the average particle size of the powder is preferably 100 m or less, and more preferably ⁇ 30 m or less. If the average particle size of the powder is larger than 1 O Om, it is not preferable because the crystal particle size in the powder becomes coarse.
  • the crystal structure of the solidified product has an average particle size of 5 m or less as described above, and more suitably 3 ⁇ m or less. This is because if the size is larger than 5 jum, the effect of sufficient increase in strength due to the fine structure cannot be obtained.
  • the high-strength metal solidified product of the present invention does not require any mechanical coloring and subsequent HIP treatment, which were conventionally considered to be essential means.
  • Means for solidification that is, a method for producing a solidified metal body will be described.
  • plastic working using hydrostatic pressure is preferably employed. More specifically, one or more of a flat mouth, a groove mouth, an extrusion, and a swage can be used for the plastic working.
  • a flat roll, an orifice, an extrusion, or a swage for the solidification because the abnormal grain growth of the microstructure can be suppressed and a fine microstructure can be obtained by applying hydrostatic pressure.
  • a flat rolls, groove rolls, extrusion, or swaging the pores inside the material are suppressed to a level that does not affect the strength and elongation.
  • the solidification molding is suitably performed at a temperature of 80 ° C. or lower. At this temperature, the plastic working using the above-mentioned hydrostatic pressure is usually suitable for the area reduction of 70% or more, more preferably ⁇ 80%.
  • the reason for setting the temperature for solidification to 800 ° C. or lower is that if the temperature is solidified at a temperature higher than this, the structure will grow abnormally and become coarse, causing a decrease in strength.
  • a sheath material for solidification. It is considered that the sheath material is used in the shape of a tubular material, that is, a pipe, a tube, or the like.
  • the sheath material has effects such as encapsulating and fixing the raw metal powder in a tube, facilitating the application of hydrostatic pressure during solidification and molding, and suppressing abnormal grain growth in the tissue.
  • the sheath thickness relative to the powder diameter be 1 Z 1 ⁇ or more.
  • Si There is no particular limitation on the type of stainless steel. For example, various materials such as SS 400, S ⁇ 490, and S 45 C are applicable.
  • the metal raw material powder may be subjected to a milling process in advance of a solidifying operation by plastic working under hydrostatic pressure.
  • a milling process in advance of a solidifying operation by plastic working under hydrostatic pressure.
  • a new steel material can be manufactured as an example of the high-strength metal solidified body described above.
  • oxide particles having a diameter of 0.2 m or less are dispersed in a volume ratio of 0.5 to 60%.
  • the oxide particles at this time have an effect of refining the matrix structure of the steel. The smaller the oxide diameter, the greater the effect.If the diameter exceeds 0.2 ⁇ m, The effect of suppressing the crystal grain growth of the parent phase is reduced. If the volume fraction of the oxide in the steel structure is not 0.5% or more, the effect of refining the matrix structure is small, while if the volume ratio is 60% or more, the ductility and the ductility of the steel are reduced. And the toughness will be degraded.
  • the size of the oxide particles to be dispersed is 0.2 m or less in diameter, and the total volume ratio of the dispersed oxide in the pot is 0.5 to 6%. 0 0/0.
  • the matrix of the steel has a ferrite structure, and it is desirable in terms of the characteristics of the steel that the average ferrite grain size be 5 or less.
  • the oxygen steel of the present invention as described above, it is necessary to excessively add additional elements such as C, S i, M ⁇ , N b, C u, and N i as in the prior art. However, some of the elements that have been added conventionally do not need to be added at all.
  • the oxygen steel of the present invention for example, a high-strength steel with a minimum elongation of 590 MPa and a uniform elongation of 5% or more can be obtained.
  • the dispersed oxide Since the dispersed oxide has a higher melting point than nitride or carbide, it remains in the weld heat-affected zone without being partially dissolved, and has the effect of preventing the matrix structure of the heat-affected zone from becoming coarse. Therefore, the heat affected zone also shows excellent toughness.
  • the amount of oxygen In order to precipitate a sufficient amount of oxides, the amount of oxygen is about 0.05 mass. Requires / o or more.
  • tensile strength and uniformity are opposite properties, and uniform tensile strength decreases as tensile strength increases.
  • the steel of the present invention has a feature that the uniformity is large together with the strength.
  • the tensile strength (MPa) x the uniformity (%) force ⁇ 400 (P a ⁇ %)
  • MPa tensile strength
  • Oxide particles dispersed in the steel structure can be precipitated during production.
  • the conventional composition of raw materials requires only a small amount of other elements, if necessary, in addition to Fe (iron) as a basic component of steel. Almost no alloying elements need to be added.
  • oxygen
  • C carbon
  • Cr chromium
  • Si silicon
  • M ⁇ manganese
  • the powder composed mainly of iron as a raw material may be obtained by various methods, for example, by an atomizing method or a KIP method (a method of producing powder by reducing the surface scale of steel).
  • the oxides that are deposited and dispersed can be, for example, iron oxides, Ti oxides, Cr oxides, Si oxides.
  • the manufacturing method of the oxide-dispersed steel of the present invention is as follows, as a typical example.
  • the iron powder raw material having the above composition is milled (for example, at room temperature in an argon atmosphere) for, for example, 10 to 20 hours using a planetary ball mill or the like.
  • the milled raw material iron powder is vacuum-sealed, and then reduced at 50 ° C to 800 ° C, for example, preferably at 700 ° C (hold for 1.5 hours).
  • the manufacturing method of the present invention includes milling a metal raw material powder containing iron as a main component, and then solidifying by plastic working by isostatic pressing. It is possible to produce a steel material in which oxides with a diameter of 0.2 m or less are dispersed at a rate of 0.5 to 60% by volume, and the plastic working in this case is performed by flat rolls and grooves. At least one of roll, extrude, and swage may be used, with grooved rolls being preferred.
  • the oxygen content of the metal raw material powder is preferably at least 0.05 mass ⁇ %, and in order to precipitate and disperse oxides, the plasticity should be in the range of 500 ° C to the transformation temperature of iron. Processing is preferred.
  • Control of the oxygen content to 0.05 mass% or more is performed by various means.
  • the raw material powder can be reduced, for example, by reducing it to the required oxygen level.
  • the reduction treatment includes annealing in hydrogen, and the final oxygen amount can be controlled depending on the annealing time and temperature.
  • Step material (S45C) with a wall thickness of 5mm, using a tube with an outer diameter of 040x150mm and an inner diameter of 030mm, enclose the iron powder in this, At a temperature of 700 ° C, plastic working (groove roll shape: ⁇ 40mm- ⁇ 14.3mm) is performed by hydrostatic pressure at the groove mouth and solidified to form a rod-shaped specimen. did. A 4 ⁇ 16 mm tensile test specimen parallel to the test specimen was sampled and subjected to a tensile test. The results are also shown in Table 1. In the solidified body of the embodiment of the present invention, Showed a strength (TS) of more than 450 MPa and a uniform spread of more than 5%, though not subjected to volumizing and HIP treatment.
  • TS strength
  • the average grain size of the crystal structure was as fine as 2.8 m.
  • Example 1 KIP iron powder was subjected to ball milling treatment for 30 hours in advance, and then groove roll processing was performed in the same manner as in Example 1. As shown in Table 1, the obtained solid showed a strength of 60 ° MPa and a uniform elongation of 5 ⁇ 1 ⁇ 2 even though HIP was not performed. The average grain size of the crystal structure was as fine as 2.0 m.
  • the KIP iron powder of Example 1 was subjected to a ball milling treatment for 200 hours and then a HIP treatment. As shown in Table 1, substantially no uniform growth was observed in the properties of the obtained test pieces.
  • the average grain size of the crystal structure was very large.
  • the KIP iron powder of Example 1 was subjected to HIP treatment at 700 ° C. for 1 hour, and further subjected to the same groove roll processing as in Examples 1 and 2.
  • the average particle size of the crystal structure of the obtained solidified product was as large as 55 ⁇ , and the strength was as small as 3966 MPa.
  • Table 2 shows the results of the tensile test. It can be seen that despite having almost no alloying element added, it has greater strength than that of the comparative example and excellent uniform elongation of 7%.
  • FIG. 1 shows stress-strain curves for the steel materials of Example 3 and Comparative Example 4 .
  • the value of tensile strength (MPa) x uniform elongation (%) is 5920 (MPa '%) in Example 3 of the present invention and 2 in Comparative Example 4. It was 9 24 (MPa-%).
  • Example 3 of Comparative Example 4 For those of Example 3 of Comparative Example 4, the tensile strength of 1 2 0 MP a high and a large uniform beauty. In other words, the steel material of Example 3 is clearly superior to Comparative Example 4 in tensile strength and uniform spread.
  • FIG. 2 shows a TEM photograph of Example 3, and it was confirmed that the oxide was uniformly and finely dispersed in the 20 hr planetary milling material.
  • the parent ferrite particle size is very fine, about 0.5 m. This structure existed uniformly over the entire final diameter of ⁇ 10.
  • FIG. 3 is a diagram showing the rigidity, average density and rigidity Z density of the entire steel with respect to the oxygen concentration in the steel material of the present invention.
  • the Young's modulus increases slightly and the density decreases with increasing oxygen concentration. Less. As a result, the Young's modulus density increases.
  • the Young's modulus and the density represent specific stiffness. In other words, a higher value indicates a higher rigidity with a lighter material. High rigidity means that the material is difficult to bend. For this reason, it is possible to supply materials that are light and difficult to bend even with steel.
  • Figure 3 shows the data of the Young's modulus of AI and Ti for comparison. This shows that the oxygen steel of the present invention is superior to AI and Ti.
  • the metal solidified body of the invention of the present application is a high-strength solidified body having a strength of 450 MPa or more and a uniform elongation of 5 o / o or more without employing mechanical lining and subsequent HIP. Provided. Then, a high strength steel material having excellent toughness and weldability can be provided without adding any alloying element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

A high-strength solidified material formed by solidifying metal, such as iron, material powder by plastic working using hydrostatic pressurizing and offered as a high-strength, high-toughness steel product having an average grain size in a crystal structure of not larger than 5 νm and further an ultra-fine structure of not larger than 3 νm, one example being a steel product in which oxides not larger than 0.2 νm in diameter are dispersed at 0.5 to 60 vol.%.

Description

明 細 書 高強度金属固化体と酸素鋼並びにそれらの製造方法 技術分野  Description High-strength solidified metal, oxygen steel, and their manufacturing methods
この出願の発明は、 高強度金属固化体と酸素鋼並びにそれらの製 造方法に関するものである。 さ らに詳し く は、 その製造が容易で、 しかも飛躍的な強度と伸びとを有する金属粉末の高強度金属固化体 と、 その一種と しての、 種々の添加元素を必要と しない、 軽量で高 剛性の鋼である酸素鋼、 並びに塑性加工によ り固化体を製造するそ れらの製造方法に関するものである。 背景技術  The invention of this application relates to a high-strength solidified metal, oxygen steel, and a method for producing them. More specifically, a high-strength metal solidified metal powder that is easy to manufacture and has tremendous strength and elongation, and, as a type, does not require various additional elements and is lightweight The present invention relates to oxygen steel, which is a high-rigidity steel, and to a method for producing a solidified body by plastic working. Background art
従来、 粉末を固化成形し金属材料を製造する場合には、 十分な組 織微細化を行って強度を上昇させるためにボールミルを用いたメカ 二カルァロイ ングを行い、 さ らにポアを消失させるための H I P処 理を施していた。 このような従来の金属粉末からの固化体の製造方 法は多数の工程を経るため、 多く の製造設備、 膨大な製造時間およ びコス 卜が必要となるだけでなく 、 バッチ処理のため一度に大量の 材料を供給するのが困難であった。  Conventionally, when metal materials are manufactured by solidifying and molding powders, mechanical alloying using a ball mill is performed to increase the strength by sufficiently refining the structure, and to eliminate pores. HIP processing. Since such a conventional method for producing a solid from metal powder involves many steps, it requires not only a large number of production facilities, enormous production time and cost, but also a one-time process for batch processing. It was difficult to supply large quantities of materials to the country.
—方、 メカニカルァロイ ングや H I P処理を省略して固化成形し た場合には大量生産は可能となるが、 材料の組織が粗大化して十分 な強度が得られないばかリカ、、 材料内部に粗大ポアが多数存在し、 十分な伸びや靱性が得られなかった。  On the other hand, if solidification molding is performed without mechanical alloying or HIP processing, mass production becomes possible, but the structure of the material becomes coarse and flawed silica cannot provide sufficient strength. There were many coarse pores, and sufficient elongation and toughness could not be obtained.
このよ うなメ カニカルァロイ ングとそれに続く H I P処理は、 金 属粉末の固化体の製造にとって欠かせない手段であると考えられて きたことから、 従来以上に高強度で、 しかも伸びの大きな粉末固化 体を実現することは困難であると されてきた。 Such mechanical alloying and subsequent HIP treatment is considered to be an indispensable means for the production of solidified metal powders. Therefore, it has been said that it is difficult to realize a solidified powder having higher strength and greater elongation than before.
また、 金属粉末の固化体であるかどうかに係わりなしに、 鋼材に おいては、 従来、 T S = 5 9 0 M P a 以上の高強度材を製造する場 合には C, S i , M n , N b , C u , N i 等の添加元素を P c mで 0 . 2 2 m a s s %以上適宜添加し、 焼入、 焼き戻しあるいは制御 圧延や制御冷却によって製造していた。 しかし、 このような方法で 得た鋼材には多種の希少な元素の添加が必要であること、 そして、 これら元素を用いることでリサイクル性に欠けること、 溶接を行う 場合には予熱処理が必要なこ と、 さ らには溶接によ り熱影響部が硬 化するという問題があった。 また、 鋼材断面全体が均一な組織にな リにく いため鋼材内部で材質の不均質な分布があった。 発明の開示  Regardless of whether or not it is a solidified metal powder, in the case of steel, conventionally, when manufacturing high-strength materials with TS = 590 MPa or more, C, S i, M n , Nb, Cu, Ni, etc., were added by 0.22 mass% or more as appropriate in Pcm, and quenching, tempering or controlled rolling or controlled cooling was used. However, it is necessary to add various rare elements to the steel material obtained by such a method, and it is difficult to recycle the steel by using these elements. In addition, there was a problem that the heat-affected zone was hardened by welding. In addition, since the entire cross section of the steel material was difficult to have a uniform structure, there was an uneven distribution of the material inside the steel material. Disclosure of the invention
そこで、 この出願の発明は、 以上のような従来の技術的知見や常 識を再検討することで、 まず第 1 の解決すべき課題と して、 メカ二 カルァロイ ングとそれに続く H I P処理を行う ことなしに、 経済的 に大量生産を可能とすることができ、 しかもたとえば 4 5 0 P a 以上の強度と、 5 %以上の均一伸びを有する高強度金属固化体を提 供することを課題と している。  Therefore, in the invention of this application, the first technical problem to be solved is to perform mechanical alloying and subsequent HIP processing by reconsidering the above-mentioned conventional technical knowledge and common sense. It is an object of the present invention to provide a high-strength metal solidified material that can be economically mass-produced without any problem and has a strength of, for example, 450 Pa or more and a uniform elongation of 5% or more. ing.
この課題を解決するものと して、 この出願の発明は、 鉄またはチ タ ンを主成分とする金属原料粉末の固化体であって、 結晶組織の平 均粒径が 5 ^ ΓΠ以下の超微細組織を有することを特徴とする高強度 金属固化体を提供する。  In order to solve this problem, the invention of this application is a solidified metal raw material powder containing iron or titanium as a main component, and has an average crystal grain size of 5 ^ ΓΠ or less. Provided is a high-strength metal solidified body having a fine structure.
またこの出願の発明は、 上記固化体に関連して、 静水圧加圧によ る塑性加工によ り、 特に、 平ロール、 溝ロール、 押し出 しおよびス ゥェ一ジのうちの少く とも 1 種の塑性加工によ り固化されている高 強度金属固化体や、 シース材を用いて塑性加工されている高強度金 属固化体、 さ らには、 8 0 0 °C以下の温度において固化されている 高強度金属固化体を提供する。 In addition, the invention of this application relates to the above-mentioned solidified body by plastic working by hydrostatic pressure, particularly flat rolls, groove rolls, extrudes and stamps. High-strength solidified metal solidified by at least one type of plastic working of the page, high-strength metallic solidified by plastic working using a sheath material, and Provided is a high-strength metal solidified at a temperature of 800 ° C or lower.
そしてこの出願の発明は、 第 2の解決すべき課題と して、 S i , π , N b , C u , N i 等の添加元素をほとんど添加しなく ても、 たとえば 5 9 0 M P a 以上の強度、 5 %以上の均一伸びを有すると ともに、 優れた靱性を示し、 予熱処理と熱影響部硬化の問題を克服 した優れた溶接性を示し、 しかも リサイクル性に優れた新しい鋼材 を提供することを課題と している。  The invention of this application has a second problem to be solved, for example, at least 590 MPa without adding additional elements such as Si, π, Nb, Cu, and Ni. To provide a new steel material that has excellent toughness, excellent toughness, excellent weldability overcoming the problems of pre-heat treatment and heat-affected zone hardening, and has excellent recyclability. The challenge is to do that.
この出願の発明は、 上記の課題を解決するものと して、 直径 0 . 2 m以下の酸化物が体積率で 0 . 5 〜 6 0 %の割合で分散されて いる鋼材であるこ とを特徴とする酸素鋼を提供する。  The invention of this application solves the above-mentioned problem, and is characterized in that it is a steel material in which an oxide having a diameter of 0.2 m or less is dispersed at a volume ratio of 0.5 to 60%. Providing oxygen steel.
また、 この出願の発明は、 母相である平均フェライ ト粒径が 5 m以下である前記酸素鋼や、 酸素量が 0 . 0 5 m a s s %以上であ る前記いずれかの酸素鋼、 さ らには、 引張強さ (M P a ) X均一伸 び ( 0/0 ) 力《 4 0 0 0 ( P a ■ % ) 以上で、 力、つ絞リカ 5 0 %以上 である前記のいずれかの酸素鋼をも提供する。 Further, the invention of this application provides the oxygen steel having an average ferrite particle size of 5 m or less as a parent phase, any one of the oxygen steels having an oxygen content of 0.05 mass% or more, the tensile strength in (MP a) X uniformly elongation (0/0) force "4 0 0 0 (P a ■%) or more, the force, one diaphragm Rica 5 is 0% or more of any of the foregoing We also provide oxygen steel.
さ らに、 この出願の発明は、 上記の高強度金属固化体並びに酸素 鋼を製造するための方法をも提供する。  Further, the invention of this application also provides a method for producing the above-mentioned high-strength solidified metal body and oxygen steel.
すなわち、 この出願の発明は、 鉄またはチタ ンを主成分とする金 属原料粉末を静水圧加圧による塑性加工によ り固化させて、 結晶組 織の平均粉粒が 5 m以下の超微細組織を有する金属固化体を製造 することを特徴とする高強度金属固化体の製造方法を提供する。  That is, in the invention of this application, a metal raw material powder containing iron or titanium as a main component is solidified by plastic working under hydrostatic pressure, and the ultrafine particles having an average crystal grain of 5 m or less are obtained. Provided is a method for manufacturing a high-strength metal solidified body, which is characterized by manufacturing a metal solidified body having a texture.
そして、 この製造方法に関 して、 塑性加工が、 平ロール、 溝ロー ル、 押し出し、 およびスウェージのうちの少〈 とも 1 種のものであ る製造方法をはじめ、 シース材を用いて塑性加工する製造方法を、 8 0 0 °C以下の温度において塑性加工する製造方法をも提供する。 さ らにまた、 金属原料粉末をミ リ ングし、 次いで封缶した状態で 塑性加工して固化させる前記いずれかの製造方法をはじめ、 原料粉 末が鉄を主成分とする金属粉末である製造方法を、 原料粉末の酸素 量が 0 . 0 5 m a s s %以上であって、 5 0 0 °C〜鉄の変態温度の 範囲で塑性加工することによ り、 直径 0 . 2 m以下の酸化物が体 積率で 0 . 5 〜 6 0 %の割合で分散されている網材を製造する方法 を提供する。 And for this manufacturing method, the plastic working is at least one of flat roll, groove roll, extrusion and swage. In addition to the manufacturing method described above, the present invention also provides a manufacturing method of performing plastic working using a sheath material and a manufacturing method of performing plastic working at a temperature of 800 ° C. or less. In addition, any one of the above-described production methods in which a metal raw material powder is milled, then plastically processed in a sealed state and solidified, and a method in which the raw material powder is a metal powder mainly composed of iron. Oxide with a diameter of 0.2 m or less is obtained by plastic working in the range of 500 ° C to the iron transformation temperature when the oxygen content of the raw material powder is 0.05 mass% or more. The present invention provides a method for producing a net material, which is dispersed at a volume ratio of 0.5 to 60%.
また、 鉄を主成分とする原料粉末が化学組成と して、  The raw material powder mainly composed of iron has a chemical composition of
酸素 : 0 . 0 5 — 0 . 5 m a s s %、  Oxygen: 0.05-0.5 ma s s%,
炭素 : 0 . O l m a s s。/。以下、  Carbon: 0.1 Olmsass. /. Less than,
ク ロム : 0 . 1 m a s s °/o以下、  Chrom: 0.1 mAss ° / o or less,
シリ コ ン : 〇 . 1 m a s s 以下、  Silicon: approx. 1 m s s or less,
マンガン : 0 . 5 m a s s %以下、  Manganese: 0.5 mAss% or less,
の成分を有している前記のいずれかの製造方法も提供する。 図面の簡単な説明  The production method according to any one of the above, further comprising: BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 応力一歪み曲線を示した図である。  Figure 1 shows a stress-strain curve.
図 2は、 透過型電子顕微鏡 ( T E M ) によ り観察された金属組織 を示した図である。  FIG. 2 is a diagram showing a metal structure observed by a transmission electron microscope (TEM).
図 3は、 酸素濃度に対してヤング率、 密度およびヤング率 密度 の関係を示した図である。 発明を実施するための改良の形態  FIG. 3 is a graph showing the relationship between the oxygen concentration, the Young's modulus, the density, and the Young's modulus density. Mode of Improvement for Carrying Out the Invention
この出願の発明は、 上記のとおりの特徴を持つものである力 以 下にその実施の形態について説明する。 The invention of this application has the features as described above. The embodiment will be described below.
まず、 この発明における高強度金属固化体については、 少く とも 次の二つの要件を欠かせないものと している。  First, at least the following two requirements are indispensable for the high-strength metal solidified body in the present invention.
< 1 〉鉄 ( F e ) またはチタ ン ( T i ) を主成分とする金属原料 粉末の固化体である。  <1> A solidified metal raw material powder mainly composed of iron (Fe) or titanium (Ti).
く 2 >結晶組織の平均粒径は 5 m以下、 さ らに好ましく は 3 m以下である。  The average particle size of the crystal structure is preferably 5 m or less, and more preferably 3 m or less.
この要件を満たすこ とによ り、 この発明においては、 強度が 4 5 0 P a以上であって、 均一伸びが 5 %以上の高強度金属固化体が 提供される。  By satisfying this requirement, the present invention provides a high-strength metal solid body having a strength of 450 Pa or more and a uniform elongation of 5% or more.
鉄またはチタ ンを主成分とする金属原料粉末については、 鉄 ( F e ) またはチタ ン ( T i ) が化学組成において 5 0原子%>以上、 よ リ適当には 8 0 0/0以上を占める金属、 合金、 金属間化合物等の各種 のものであってもよい。 そして、 その純度は高純度である必要はな く 、 通常のア トマイズ法や K l P法 (鋼の表面スケールを還元する 粉末製造法) 等によ り製造された粉末を用いることができる。 粉末 の平均粒径と しては 1 0 0 m以下、 よ り好ま し 〈 は 3 0 m以下 のものが適当である。 粉末の平均粒径が 1 O O mを超えて大きい 場合には、 粉末内の結晶粒径が粗大となるために好まし く ない。  For a metal raw material powder containing iron or titanium as a main component, the content of iron (Fe) or titanium (Ti) should be 50 atomic% or more in the chemical composition, more suitably 800/0 or more. Various kinds of metals, alloys, intermetallic compounds, etc. may be used. The purity does not need to be high, and a powder produced by a normal atomization method or a KIP method (a powder production method for reducing the surface scale of steel) can be used. The average particle size of the powder is preferably 100 m or less, and more preferably <30 m or less. If the average particle size of the powder is larger than 1 O Om, it is not preferable because the crystal particle size in the powder becomes coarse.
固化体の結晶組織は、 前記のとおり平均粒径が 5 m以下、 よ リ 適当には 3 u m以下とする。 これは 5 ju mよ リ大きいと組織微細化 による充分な強度上昇の効果が得られないためである。  The crystal structure of the solidified product has an average particle size of 5 m or less as described above, and more suitably 3 μm or less. This is because if the size is larger than 5 jum, the effect of sufficient increase in strength due to the fine structure cannot be obtained.
そして、 この発明の高強度金属固化体において特徴的なことは、 従来、 必須の手段と考えられていたメ 力二カルァロイ ングおよびそ れに続く H I P処理を全く 必要と していないこ とである。 メカ二力 ルァロイングや H I P処理を用いるこ となしに、 この発明の高強度 金属固化体が実現されることである。 What is characteristic of the high-strength metal solidified product of the present invention is that it does not require any mechanical coloring and subsequent HIP treatment, which were conventionally considered to be essential means. . High strength of the present invention without using mechanical strength rolling or HIP processing That is, a solid metal body is realized.
固化のための手段、 つま り、 金属固化体の製造法について説明す れぱ、 この発明においては静水圧加圧を利用 した塑性加工が好適に 採用される。 よ り具体的には、 塑性加工には、 平口一ル、 溝口一ル、 押し出し、 およびスウェージのうちの 1 種以上を用いることができ る。  Means for solidification, that is, a method for producing a solidified metal body will be described. In the present invention, plastic working using hydrostatic pressure is preferably employed. More specifically, one or more of a flat mouth, a groove mouth, an extrusion, and a swage can be used for the plastic working.
固化成形に平ロール、 溝口一ル、 押し出し、 あるいはスウェージ を用いるのが好ましいことは、 静水圧圧下が加わることで組織の異 常粒成長を抑制し微細組織を得るこ とができるためである。 また、 平ロール、 溝ロール、 押し出し、 あるいはスウェージを用いるこ と で、 材料内部のポアが強度や伸びに影響ないレベルまで抑制される これらの固化成形方法はオンライ ン (自動化工程) でできるため大 量生産に有利である。  It is preferable to use a flat roll, an orifice, an extrusion, or a swage for the solidification because the abnormal grain growth of the microstructure can be suppressed and a fine microstructure can be obtained by applying hydrostatic pressure. In addition, by using flat rolls, groove rolls, extrusion, or swaging, the pores inside the material are suppressed to a level that does not affect the strength and elongation. These solidification molding methods can be performed online (automated process) because they can be performed online. It is advantageous for mass production.
固化成形は、 8 0 ◦ °C以下の温度において行うのが適当である。 この温度において、 前記の静水圧を利用した塑性加工は、 通常は、 減面率 7 0 %以上、 よ り好まし 〈 は 8 0 %以上とするのが適当であ る。  The solidification molding is suitably performed at a temperature of 80 ° C. or lower. At this temperature, the plastic working using the above-mentioned hydrostatic pressure is usually suitable for the area reduction of 70% or more, more preferably <80%.
固化のための温度を 8 0 0 °C以下とするのは、 これ以上の温度で 固化すると組織が異常粒成長し粗大化して しまい、 強度低下を引き 起こすためである。  The reason for setting the temperature for solidification to 800 ° C. or lower is that if the temperature is solidified at a temperature higher than this, the structure will grow abnormally and become coarse, causing a decrease in strength.
なお、 固化にはシース材を用いることが好ま しい。 シース材は、 管状材、 つまりパイプ、 チューブ等の形状と して用いることが考慮 される。 シース材は、 原料金属粉末を管内に封入して固定し、 固化 成形時に静水圧圧下を加わり易く し、 組織の異常粒成長を抑制する 等の効果がある。 固化成形時に静水圧圧下をかけるために、 粉末直 径に対するシースの肉厚が 1 Z 1 ◦以上とするのが好ま しい。 シ一 ス材についてはその種類に特に限定はない。 たとえば、 S S 4 0 0 , S Μ 4 9 0 , S 4 5 Cなどの種々の材料が適用可能である。 It is preferable to use a sheath material for solidification. It is considered that the sheath material is used in the shape of a tubular material, that is, a pipe, a tube, or the like. The sheath material has effects such as encapsulating and fixing the raw metal powder in a tube, facilitating the application of hydrostatic pressure during solidification and molding, and suppressing abnormal grain growth in the tissue. In order to apply hydrostatic pressure during solidification molding, it is preferable that the sheath thickness relative to the powder diameter be 1 Z 1 ◦ or more. Si There is no particular limitation on the type of stainless steel. For example, various materials such as SS 400, SΜ490, and S 45 C are applicable.
また、 金属原料粉末は、 静水圧下での塑性加工による固化操作に 先行して、 あらかじめミ リ ング処理してもよい。 たとえば不活性ガ ス雰囲気中でのプラネタ リーボールミ リ ング (室温 ; 1 0時間以上) 回転ボールミ リ ング (室温 ; 5 0時間以上) 等による処理である。 たとえば以上のような高強度金属固化体の例と して、 新しい鋼材を 製造することができる。  Further, the metal raw material powder may be subjected to a milling process in advance of a solidifying operation by plastic working under hydrostatic pressure. For example, treatment by planetary ball milling (at room temperature: 10 hours or more) in an inert gas atmosphere, rotating ball milling (room temperature: 50 hours or more), or the like. For example, a new steel material can be manufactured as an example of the high-strength metal solidified body described above.
たとえば、 前記のとおり、 この発明によ り提供される酸素鋼であ る。  For example, as described above, it is oxygen steel provided by the present invention.
この鋼材は、 直径 0 . 2 m以下の酸化物粒子が体積率で 0 . 5 ~ 6 0 %分散されたものである。 この際の酸化物粒子は、 鋼の母相 組織を微細化する作用を奏するものであって、 酸化物の直径が小さ いほどその効果は大きく 、 直径が 0 . 2 ^ mを超える場合には母相 の結晶粒成長を抑制する効果は小さ く なる。 また、 酸化物の鋼組織 における体積率は 0 . 5 %以上でなければ母相組織を微細化する効 果は小さ く 、 一方、 逆に、 体積率が 6 0 %以上になると鋼の延性お よび靱性が劣化することになる。  In this steel material, oxide particles having a diameter of 0.2 m or less are dispersed in a volume ratio of 0.5 to 60%. The oxide particles at this time have an effect of refining the matrix structure of the steel.The smaller the oxide diameter, the greater the effect.If the diameter exceeds 0.2 ^ m, The effect of suppressing the crystal grain growth of the parent phase is reduced. If the volume fraction of the oxide in the steel structure is not 0.5% or more, the effect of refining the matrix structure is small, while if the volume ratio is 60% or more, the ductility and the ductility of the steel are reduced. And the toughness will be degraded.
このため、 この発明の鋼においては、 分散させる酸化物粒子の大 きさは、 その直径が 0 . 2 m以下であって、 鍋に占める分散酸化 物の全体の体積率は 0 . 5 ~ 6 0 0/0とする。  For this reason, in the steel of the present invention, the size of the oxide particles to be dispersed is 0.2 m or less in diameter, and the total volume ratio of the dispersed oxide in the pot is 0.5 to 6%. 0 0/0.
この酸化物の分散にともなって、 鋼の母相は、 フェライ ト組織で あって、 平均フェライ ト粒径が 5 以下と されていることが鋼の 特性において望ましいものとなる。  Along with the dispersion of the oxide, the matrix of the steel has a ferrite structure, and it is desirable in terms of the characteristics of the steel that the average ferrite grain size be 5 or less.
以上のよ うなこの発明の酸素鋼においては、 従来のよ うに、 C , S i , M π , N b , C u , N i 等の添加元素を過大に添加する必要 はなく 、 従来添加していた元素であっても、 添加することを全く必 要と していないものもある。 この発明の酸素鋼と して、 たとえば 5 9 0 M P a以上、 均一伸び 5 %以上の高強度鋼が得られることにな る。 In the oxygen steel of the present invention as described above, it is necessary to excessively add additional elements such as C, S i, M π, N b, C u, and N i as in the prior art. However, some of the elements that have been added conventionally do not need to be added at all. As the oxygen steel of the present invention, for example, a high-strength steel with a minimum elongation of 590 MPa and a uniform elongation of 5% or more can be obtained.
分散した酸化物は窒化物あるいは炭化物と比較して融点が高いた め、 溶接熱影響部で一部溶解せずに残存し、 熱影響部の母相組織の 粗大化を防止する効果がある。 よって溶接熱影響部も優れた靱性を 示す。 なお、 十分な量の酸化物を析出させるためには酸素量は〇 . 0 5 m a s s。/o以上必要である。  Since the dispersed oxide has a higher melting point than nitride or carbide, it remains in the weld heat-affected zone without being partially dissolved, and has the effect of preventing the matrix structure of the heat-affected zone from becoming coarse. Therefore, the heat affected zone also shows excellent toughness. In order to precipitate a sufficient amount of oxides, the amount of oxygen is about 0.05 mass. Requires / o or more.
酸化物の体積率の増加にともない剛性率が上昇し、 密度が低下す ることになる。 このため、 酸化物の体積率を大きくすることで、 よ リ軽量の高強度鋼が提供されるこ とになる。  As the volume fraction of the oxide increases, the rigidity increases and the density decreases. Therefore, by increasing the volume ratio of the oxide, a lighter-weight, high-strength steel can be provided.
一般的に引張強さ と均一のびは相反する性質であり、 引張強さが 上昇すると均一のぴは低下する。  In general, tensile strength and uniformity are opposite properties, and uniform tensile strength decreases as tensile strength increases.
しかし、 この発明の鋼においては、 強度と ともに均一のびも大き いという特徴を有し、 前記のように、 引張強さ (M P a ) x均一の び (% ) 力《 4 0 0 0 ( P a ■ % ) 以上で、 絞リカ《 5 0 %以上とい う極めて顕著な特性をもつものと してある。  However, the steel of the present invention has a feature that the uniformity is large together with the strength. As described above, the tensile strength (MPa) x the uniformity (%) force << 400 (P a ■%) With the above, it is considered to have extremely remarkable characteristics such as squeezing Rica <50%.
鋼組織に分散される酸化物粒子は、 製造時に析出させることがで きる。  Oxide particles dispersed in the steel structure can be precipitated during production.
原材料の従来の組成については、 鋼の基本成分と しての F e (鉄) 以外に、 必要に応じて、 わずかの他元素の添加でよい。 合金 化元素はほとんど添加しなく てよい。 たとえば、 この発明の鋼の組 成元素については、 m a s s ( % ) と して、 〇 (酸 素) : 0 . 5 以下、 C (炭素) 0 . 0 1 以下、 C r (ク ロム) : 0 . 1 以下、 S i (シリ コン) : 0 . 1 以下、 M π (マンガン) : 0 . 5以下、 よ り具体的に例示すれば、. ◦ : 0. 2 , C : 0. 0 0 2 , C r : 0. 0 5, S i : 0. 0 2, M n : 0. 1 6 ( m a s s %) を目安と することができる。 The conventional composition of raw materials requires only a small amount of other elements, if necessary, in addition to Fe (iron) as a basic component of steel. Almost no alloying elements need to be added. For example, regarding the constituent elements of the steel of the present invention, as mass (%), 〇 (oxygen): 0.5 or less, C (carbon) 0.01 or less, Cr (chromium): 0 0.1 or less, Si (silicon): 0.1 or less, M π (manganese): 0.5 or less, More specifically, for example, ◦: 0.2, C: 0.002, Cr: 0.05, Si: 0.02, Mn: 0.16 (mass% ) Can be used as a guide.
原料の鉄を主成分とする粉末は各種の方法によ り得られたもので あってよ く 、 たとえばア トマイズ法や K I P法 (鋼の表面スケール を還元して粉末製造する方法) 等によ り得られたものであってよい: 析出分散される酸化物は、 その種類はたとえば鉄酸化物、 T i 酸 化物、 C r 酸化物、 S i 酸化物である。  The powder composed mainly of iron as a raw material may be obtained by various methods, for example, by an atomizing method or a KIP method (a method of producing powder by reducing the surface scale of steel). The oxides that are deposited and dispersed can be, for example, iron oxides, Ti oxides, Cr oxides, Si oxides.
そして、 この発明の酸化物分散鋼についてその製造法を代表的な ものと して例示すれば次のとおりのものである。  The manufacturing method of the oxide-dispersed steel of the present invention is as follows, as a typical example.
まず、 たとえば上記組成の鉄粉原料を、 プラネタ リーボールミル 等で、 たとえば 1 0 ~ 2 0時間ミ リ ング (室温、 アルゴン雰囲気 中) する。 次いで、 ミ リ ングされた原料鉄粉を真空封缶し、 その後, 5 0 〇〜 8 0 0 °C、 たとえば好まし く は、 7 0 0 °C ( 1 . 5時間保 持) にて減面率 8 0 <½以上の溝ロール圧延を施す。  First, for example, the iron powder raw material having the above composition is milled (for example, at room temperature in an argon atmosphere) for, for example, 10 to 20 hours using a planetary ball mill or the like. Next, the milled raw material iron powder is vacuum-sealed, and then reduced at 50 ° C to 800 ° C, for example, preferably at 700 ° C (hold for 1.5 hours). Perform groove roll rolling with an area ratio of 80 <½ or more.
もちろん、 以上の代表例に限られることなしに、 この発明の製造 法と しては、 鉄を主成分とする金属原料粉末をミ リ ングし、 次いで 静水圧加圧による塑性加工によ リ固化させて直径 0. 2 m以下の 酸化物が体積率で 0 . 5 ~ 6 0 %の割合で分散されている鋼材を製 造することでよ く 、 この場合の塑性加工は、 平ロール、 溝ロール、 押し出し、 およびスウェージのうちの少なく とも 1 種のものでよい, なかでも溝ロール加工が好ま しい。  Of course, without being limited to the above representative examples, the manufacturing method of the present invention includes milling a metal raw material powder containing iron as a main component, and then solidifying by plastic working by isostatic pressing. It is possible to produce a steel material in which oxides with a diameter of 0.2 m or less are dispersed at a rate of 0.5 to 60% by volume, and the plastic working in this case is performed by flat rolls and grooves. At least one of roll, extrude, and swage may be used, with grooved rolls being preferred.
金属原料粉末の酸素量は、 0. 0 5 m a s s <%以上であることが 好ま しく 、 また、 酸化物の析出分散のためには、 5 0 0 °C〜鉄の変 態温度の範囲で塑性加工することが好ま しい。  The oxygen content of the metal raw material powder is preferably at least 0.05 mass <%, and in order to precipitate and disperse oxides, the plasticity should be in the range of 500 ° C to the transformation temperature of iron. Processing is preferred.
0. 0 5 m a s s %以上への酸素量のコン トロールは、 各種の手 段で可能とされる力 好ま しい範囲と しての 0. 0 5 ~ 0. 5 m a s s %とするには、 たとえば原料粉末を還元処理して所要の酸素量 レベルにまで含有量を減少させるこ と等が考慮される。 この場合の 還元処理には、 水素中での焼鈍等があり、 焼鈍の時間、 温度によ り 最終的な酸素量のコン トロールが可能となる。 Control of the oxygen content to 0.05 mass% or more is performed by various means. In order to achieve the preferred range of 0.05 to 0.5 mass%, the raw material powder can be reduced, for example, by reducing it to the required oxygen level. Are considered. In this case, the reduction treatment includes annealing in hydrogen, and the final oxygen amount can be controlled depending on the annealing time and temperature.
また、 静水圧下での塑性加工に先立ってのミ リ ング処理について は、 回転ボールミル、 プラネタ リ一ボールミル (遊量ボールミル) 等の手段が採用される。 一般的には、 この発明においては、 回転ボ —ルミルの場合には 5 0時間以上、 ブラネタ リーボ一ルミルの場合 には 1 0時間以上の、 室温での処理が適当なものと して示される。 そこで以下実施例を示し、 さ らに詳し く この発明について説明す る。 実 施 例  For the milling process prior to plastic working under hydrostatic pressure, means such as a rotary ball mill and a planetary ball mill (playable ball mill) are adopted. Generally, in the present invention, a treatment at room temperature of 50 hours or more in the case of a rotary ball mill and 10 hours or more in a case of a planetary ball mill is indicated as appropriate. . Therefore, the present invention will be described in more detail with reference to the following examples. Example
実施例 1 Example 1
化学組成と して F e (鉄) 以外に、 C Z O . 0 0 2, M nノ 0. 1 6 , O / 0 . 2 3 5 5 %含有する 1 鉄粉を表 1 に示す各条 件によ リ最終形状 1 2 m m角 X 8 0 0 m mの棒状試験片に加工した すなわち、 K I P鉄粉を、 ボ一ルミ リ ング処理および H I Pを行う ことなしに、 シース材と してビッカース硬さ 2 2 3、 肉厚 5 m mの 鋼材 ( S 4 5 C ) 力、らなる外径 0 4 0 x 1 5 0 m m、 内径 0 3 0 m mの管を用いて、 前記鉄粉をこれに封入し、 7 0 0 °Cの温度で溝口 —ルによ り、 静水圧下での塑性加工 (溝ロール形状寸法 : □ 4 0 m m - □ 1 4. 3 m m ) を行って固化させて棒状試験片と した。 この 試験片ょ リ平行部 4 X 1 6 m mの引張試験片を採取し、 引張試験 を行った。 その結果も表 1 に示した。 この発明の実施例の固化体で は、 ボ一ルミ リ ング、 そして H I P処理を行っていないにも関わら ず、 4 5 0 M P a以上の強度 ( T S ) と 5 %以上の均一のびを示し た。 In addition to Fe (iron) as the chemical composition, 1 iron powder containing CZO.002, Mn0.16, O / 0.2355% by weight was used under the conditions shown in Table 1. The final shape was processed into a rod-shaped test piece of 12 mm square x 800 mm.In other words, KIP iron powder was used as a sheath material and Vickers hardness 2 without ball milling and HIP. 23.Steel material (S45C) with a wall thickness of 5mm, using a tube with an outer diameter of 040x150mm and an inner diameter of 030mm, enclose the iron powder in this, At a temperature of 700 ° C, plastic working (groove roll shape: □ 40mm-□ 14.3mm) is performed by hydrostatic pressure at the groove mouth and solidified to form a rod-shaped specimen. did. A 4 × 16 mm tensile test specimen parallel to the test specimen was sampled and subjected to a tensile test. The results are also shown in Table 1. In the solidified body of the embodiment of the present invention, Showed a strength (TS) of more than 450 MPa and a uniform spread of more than 5%, though not subjected to volumizing and HIP treatment.
結晶組織の平均粒径は 2. 8 mと微細であった。  The average grain size of the crystal structure was as fine as 2.8 m.
実施例 2 Example 2
実施例 1 において、 K I P鉄粉をあらかじめ 3 0時間ボールミ リ ング処理し、 次いで実施例 1 と同様にして溝ロール加工を行った。 表 1 のように、 得られた固化体は、 H I Pを行っていないにもか かわらず、 6 0 ◦ M P aの強度と、 5 <½の均一のびを示した。 また, 結晶組織の平均粒径は 2. 0 mと微細であった。  In Example 1, KIP iron powder was subjected to ball milling treatment for 30 hours in advance, and then groove roll processing was performed in the same manner as in Example 1. As shown in Table 1, the obtained solid showed a strength of 60 ° MPa and a uniform elongation of 5 <½ even though HIP was not performed. The average grain size of the crystal structure was as fine as 2.0 m.
比較例 1 Comparative Example 1
実施例 1 の K I P鉄粉を、 2 0 0時間ボ一ルミ リ ング処理し、 次 いで H I P処理した。 得られた試験片の特性は、 表 1 に示したよう に実質的に均一のびが認められなかった。  The KIP iron powder of Example 1 was subjected to a ball milling treatment for 200 hours and then a HIP treatment. As shown in Table 1, substantially no uniform growth was observed in the properties of the obtained test pieces.
結晶組織の平均粒径はかなリ大きなものにと どまっていた。  The average grain size of the crystal structure was very large.
比較例 2 Comparative Example 2
実施例 1 の K l P鉄粉を 7 0 0 °C、 1 時間 H I P処理し、 さ らに 実施例 1 および 2 と同様の溝ロール加工を施した。  The KIP iron powder of Example 1 was subjected to HIP treatment at 700 ° C. for 1 hour, and further subjected to the same groove roll processing as in Examples 1 and 2.
表 1 に示したように、 得られた固化体の結晶組織の平均粒径は 5 5 μ Γπと大きく 、 強度は 3 9 6 M P a と小さかった。  As shown in Table 1, the average particle size of the crystal structure of the obtained solidified product was as large as 55 μΓπ, and the strength was as small as 3966 MPa.
比較例 3 Comparative Example 3
比較例 2において、 溝ロール加工を行わなかった。 結晶組織の平 均粒径は 2 3 mで、 強度は 3 6 0 M P a と極めて小さかった。 表 1 In Comparative Example 2, the groove roll processing was not performed. The average grain size of the crystal structure was 23 m, and the strength was extremely small at 360 MPa. table 1
Figure imgf000014_0001
表 1 からも明らかなように、 この出願の発明においては、 従来不 可欠とされていたボ—ルミ リ ングによるメカニカルァロイングとこ れに続く H I Pの工程を省略しても、 材料全域にわたって平均粒径 5 m以下、 さ らには 3 / m以下の組織を有する高強度、 高 »性材 料を提供できる。 このため、 従来行われているような元素の過剰添 加を必要とせずに結晶組織の微細化が可能と されることから、 省資 源および省エネルギーにも役立つことになる。
Figure imgf000014_0001
As is evident from Table 1, in the invention of this application, even if the mechanical alloying by ball milling, which was conventionally indispensable, and the subsequent HIP process are omitted, the entire material is covered. A high-strength, high-strength material having an average particle size of 5 m or less and further having a structure of 3 / m or less can be provided. For this reason, the crystal structure can be refined without the need for excessive addition of elements, which has been conventionally performed, which also contributes to resource saving and energy saving.
実施例 3  Example 3
鉄以外の成分と して C 0 . 0 0 2 , M n / 0 . 1 6 , O / 0 . 2 m a s S %を含有する K l P鉄粉を 2 0 h プラネタ リ一ミ リ ング した後に S 4 5 C製の外径 4 0 ^内径 3 0 ψの管材内に充填し、 4 8 〇。Cで 1 5時間真空キャンニングした。 その後炉冷した。 次いで 7 0 0。Cに再加熱して 1 . 5 h保持後、 8 9 <½の減面率で溝ロール 圧下を行った。 After planetary milling of Klp iron powder containing C 0.02, M n /0.16, O / 0.2 mass S % as a component other than iron for 20 h Filled into a tube of S 45 C outer diameter 40 ^ inner diameter 30 ψ, 48 〇. Vacuum canned with C for 15 hours. Thereafter, the furnace was cooled. Then 700. 1. 5 h after holding reheated and C, were subjected to grooved roll reduction by 8 9 <reduction rate of ½.
表 2は引張試験の結果を示したものである。 合金元素をほとんど 添加していないにもかかわらず、 比較例以上の大きな強度を有し、 かつ均一伸びが 7 %と優れているこ とがわかる。  Table 2 shows the results of the tensile test. It can be seen that despite having almost no alloying element added, it has greater strength than that of the comparative example and excellent uniform elongation of 7%.
比較例 4  Comparative Example 4
C / 0 . 0 5 5 , S i / 0 . 2 5 , M n Z 1 . 5 , N b / O . 0 1 〇 N i 0 . 1 0 , C / 0 . 1 0 m a s s %の成分鋼 1 1 0 0。C x 6 0 0 s保持後、 3 0 0。C X 1 2 0 0 a保持し、 空冷して ベイナイ ト鋼と した。 この比較試料を引張試験し、 その結果も表 2 に示した。 C / 0.055, Si / 0.25, MnZ1.5, Nb / O.001 1 Ni0.10, C / 0.10 mass% component steel 1 1 0 0. After holding C x 600 s, 300. CX 12 00 a was maintained and air-cooled to bainite steel. This comparative sample was subjected to a tensile test, and the results are also shown in Table 2.
表 2  Table 2
Figure imgf000015_0001
Figure imgf000015_0001
また、 図 1 には、 実施例 3 と比較例 4の各々の鋼材についての応 力一歪み曲線を示した。 FIG. 1 shows stress-strain curves for the steel materials of Example 3 and Comparative Example 4 .
引張強さ (M P a ) x均一伸び (%) の値を示すと、 この発明の 実施例 3のものにおいては 5 9 2 0 ( M P a ' % ) であり、 比較 例 4のものにおいては 2 9 2 4 ( M P a - % ) であった。  The value of tensile strength (MPa) x uniform elongation (%) is 5920 (MPa '%) in Example 3 of the present invention and 2 in Comparative Example 4. It was 9 24 (MPa-%).
実施例 3のものは比較例 4のものに対して、 引張強さが 1 2 0 M P a高く 、 かつ、 均一のびが大きい。 すなわち、 実施例 3の鋼材は 引張強さ、 均一のびバランスが比較例 4に対して明らかに優れてい ることを示している。 For those of Example 3 of Comparative Example 4, the tensile strength of 1 2 0 MP a high and a large uniform beauty. In other words, the steel material of Example 3 is clearly superior to Comparative Example 4 in tensile strength and uniform spread.
また、 図 2は、 実施例 3のものの T E M写真を示したものである 2 0 h r ブラネタ リ一ミ リ ング材は酸化物が均一微細分散している ことが確認された。 また、 母相フェライ ト粒径は約 0 . 5 mと非 常に微細である。 この組織は最終径 ^ 1 0全域にわたって均一に存 在した。  FIG. 2 shows a TEM photograph of Example 3, and it was confirmed that the oxide was uniformly and finely dispersed in the 20 hr planetary milling material. The parent ferrite particle size is very fine, about 0.5 m. This structure existed uniformly over the entire final diameter of ^ 10.
なお、 図 3は、 この発明の鋼材について、 酸素濃度に対して鋼全 体の剛性率、 平均密度および剛性率 Z密度を示した図である。 酸素濃度の増加にと もないヤング率はわずかに増加し、 密度は減 少する。 これによ りヤング率 密度は増加する。 ここで、 ヤング率 ノ密度は比剛性を表している。 すなわち、 この値が大きければ軽い 材料で剛性が高いことを示す。 剛性が高いという こ とは材料がたわ みにく いことを意味している。 このため、 鋼でも軽く てたわみにく い材料を供給できることになる。 なお図 3 には比較と して A I およ び T i のヤング率ノ密度のデータを示している。 これをみると、 A I や T i よ り もこの発明の酸素鋼が優れていることがわかる。 FIG. 3 is a diagram showing the rigidity, average density and rigidity Z density of the entire steel with respect to the oxygen concentration in the steel material of the present invention. The Young's modulus increases slightly and the density decreases with increasing oxygen concentration. Less. As a result, the Young's modulus density increases. Here, the Young's modulus and the density represent specific stiffness. In other words, a higher value indicates a higher rigidity with a lighter material. High rigidity means that the material is difficult to bend. For this reason, it is possible to supply materials that are light and difficult to bend even with steel. Figure 3 shows the data of the Young's modulus of AI and Ti for comparison. This shows that the oxygen steel of the present invention is superior to AI and Ti.
従来のように合金化元素をほとんど添加しなく とも、 靱性に優れ かつ予熱処理と熱影響部硬化の問題を克服した優れた溶接性を示し しかも高強度な鋼材が提供されることが確認された。  It was confirmed that a steel material with excellent toughness, excellent weldability overcoming the problems of pre-heat treatment and hardening of the heat-affected zone, and high strength was provided even with little addition of alloying elements as in the past. .
合金元素をほとんど添加していないため、 資源の節約、 コス ト低 減が図られる他、 リサイクル性も良好となる。  Since almost no alloying elements are added, resources can be saved, costs can be reduced, and good recyclability can be achieved.
また、 この発明においては、 よ り軽量の高強度の鋼も提供される ことになる。 産業上の利用可能性  Also, in the present invention, a lighter and higher strength steel is provided. Industrial applicability
この出願の発明の金属質固化体については、 メカニカルァロイ ン グとそれに続く H I P という手段を採用することなく 、 強度 4 5 0 M P a以上、 均一伸び 5 o/o以上の高強度固化体と して提供される。 そして、 合金元素をほとんど添加しないで、 靱性、 溶接性に優れ 高強度な鋼材が提供されるこ とになる。  The metal solidified body of the invention of the present application is a high-strength solidified body having a strength of 450 MPa or more and a uniform elongation of 5 o / o or more without employing mechanical lining and subsequent HIP. Provided. Then, a high strength steel material having excellent toughness and weldability can be provided without adding any alloying element.

Claims

求 の 範 囲 Range of request
1 . 鉄またはチタ ンを主成分とする金属原料粉末の固化体であつ て、 結晶組織の平均粒径が 5 m以下の超微細組織を有することを 特徴とする高強度金属固化体。 1. A solidified high-strength metal solidified metal raw material powder mainly composed of iron or titanium, having an ultrafine structure with an average grain size of 5 m or less.
2 . 静水圧加圧による塑性加工によ り固化されている請求項 1 の 高強度金属固化体。  2. The solidified high-strength metal according to claim 1, which is solidified by plastic working by hydrostatic pressure.
3 . 塑性加工が平ロール、 溝ロール、 押し出 し、 およびスウェー ジのうちの少なく とも 1 種のものである請求項 2の高強度金属固化 体。  3. The high-strength metal solid according to claim 2, wherein the plastic working is at least one of a flat roll, a groove roll, an extrusion, and a swage.
4 . シース材を用いて塑性加工されている請求項 2または 3の高 強度金属固化体。  4. The high-strength metal solid according to claim 2 or 3, which is plastically processed using a sheath material.
5 . 8 0 0 °C以下の温度において固化されている請求項 2ないし 4のいずれかの高強度金属固化体。  5. The high-strength solidified metal according to claim 2, which is solidified at a temperature of 580 ° C. or lower.
6 . 直径◦ . 2 m以下の酸化物が体積率で 0 . 5 〜 6 0 %の割 合で分散されている鋼材であるこ とを特徴とする酸素鋼。  6. Oxygen steel characterized by being a steel material in which oxides having a diameter of less than 2 m are dispersed at a volume ratio of 0.5 to 60% by volume.
7 . 母相である平均フェライ ト粒径が 5 m以下である請求項 6 の酸素鋼。  7. The oxygen steel according to claim 6, wherein the average ferrite particle size as a matrix is 5 m or less.
8 . 酸素量が 0 . 0 5 m a s s <¼以上である請求項 6または 7の 酸素鋼。  8. The oxygen steel according to claim 6 or 7, wherein the amount of oxygen is 0.05 mass <s¼ or more.
9 . 引張強さ ( M P a ) X均一延び (% ) 力《 4 0 0 ◦ ( M P a • % ) 以上で、 かつ絞り ( % ) が 5 0 %以上の請求項 6ないし 8の いずれかの酸素鋼。  9. Tensile strength (MPa) X uniform elongation (%) Force << 400 ◦ (MPa •%) or more, and drawing (%) is 50% or more. Oxygen steel.
1 0 . 鉄またはチタ ンを主成分とする金属原料粉末を静水圧加圧 による塑性加工によ リ固化させて、 結晶組織の平均粉粒が 5 m以 下の超微細組織を有する金属固化体を製造するこ とを特徴とする金 属固化体の製造方法。 10. Metal raw material powder mainly composed of iron or titanium is solidified by plastic working under hydrostatic pressure to form a solidified metal having an ultrafine structure with an average grain size of 5 m or less. Characterized by manufacturing A method for producing a solidified genus.
1 1 . 塑性加工が、 平口一ル、 溝ロール、 押し出し、 およびスゥ エージのうちの少なく とも 1 種のものである請求項 1 0の製造方法 < 11. The manufacturing method according to claim 10, wherein the plastic working is at least one of flat mouth, groove roll, extrusion, and swaging.
1 2. シ一ス材を用いて塑性加工する請求項 1 0または 1 1 の製 造方法。 1 2. The method according to claim 10 or 11, wherein plastic working is performed using a sheet material.
1 3 . 8 ◦ 0 °C以下の温度において塑性加工する請求項 1 0ない し 1 2のいずれかの製造方法。  13. The manufacturing method according to claim 10, wherein the plastic working is performed at a temperature of 13.8 ° C. or lower.
1 4. 金属原料粉末をミ リ ングし、 次いで塑性加工して固化させ る請求項 1 0ないし 1 3のいずれかの製造方法。  14. The production method according to any one of claims 10 to 13, wherein the metal raw material powder is milled and then plastically worked and solidified.
1 5. 原料粉末が鉄を主成分とする金属粉末である請求項 1 4の 製造方法。  15. The method according to claim 14, wherein the raw material powder is a metal powder containing iron as a main component.
1 6 . 原料粉末の酸素量が 0 . 0 5 m a s s %以上であって、 5 0 0 °C〜鉄の変態温度の範囲で塑性加工することによ り直径 0 . 2 ^ m以下の酸化物が体積率で 0 . 5 ~ 6 0 %の割合で分散されてい る鋼材を製造する請求項 1 5の製造方法。  16. The oxygen content of the raw material powder is not less than 0.05 mass%, and the oxide having a diameter of 0.2 ^ m or less is obtained by plastic working in the range of 500 ° C to the transformation temperature of iron. 16. The method according to claim 15, for producing a steel material in which is dispersed in a volume ratio of 0.5 to 60%.
1 7. 鉄を主成分とする原料粉末が化学組成と して、  1 7. The raw material powder mainly composed of iron has a chemical composition
酸素 : 0 . 0 5 〜 0 . 5 m a s s 。/o  Oxygen: 0.05-0.5mass. / o
炭素 : 0 . 0 1 m a s s %以下  Carbon: 0.01 m s s s% or less
ク ロム : 0 . 1 m a s s %以下  Krom: 0.1 mAss% or less
シリ コン : 0 . 1 m a s s 以下  Silicon: 0.1 m a s s or less
マンガン : 0 . 5 m a s s %以下  Manganese: 0.5 mAss% or less
の成分を有している請求項 1 6の製造方法。 17. The method according to claim 16, comprising the following components.
PCT/JP1999/001566 1998-03-26 1999-03-26 High-strength metal solidified material and acid steel and manufacturing methods thereof WO1999050009A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99910734A EP1068915A4 (en) 1998-03-26 1999-03-26 HIGH-STRENGTH METAL-BASED SOLIDIFIED MATERIAL, ACID STEEL AND METHODS OF MANUFACTURE THEREOF
US09/647,100 US6332905B1 (en) 1998-03-26 1999-03-26 High-strength metal solidified material and acid steel and manufacturing methods thereof
KR1020007010628A KR20010074460A (en) 1998-03-26 1999-03-26 High-strength metal solidified material and acid steel and manufacturing methods thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7997898 1998-03-26
JP10/79978 1998-03-26
JP21165798 1998-07-27
JP10/211657 1998-07-27

Publications (1)

Publication Number Publication Date
WO1999050009A1 true WO1999050009A1 (en) 1999-10-07

Family

ID=26420956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001566 WO1999050009A1 (en) 1998-03-26 1999-03-26 High-strength metal solidified material and acid steel and manufacturing methods thereof

Country Status (6)

Country Link
US (1) US6332905B1 (en)
EP (1) EP1068915A4 (en)
KR (1) KR20010074460A (en)
CN (1) CN1295506A (en)
TW (1) TW520396B (en)
WO (1) WO1999050009A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538613B2 (en) * 1999-02-25 2004-06-14 独立行政法人物質・材料研究機構 Steel thick wall material with excellent weldability and its manufacturing method
CA2372780C (en) * 2001-05-17 2007-02-13 Kawasaki Steel Corporation Iron-based mixed powder for powder metallurgy and iron-based sintered compact
JP4377901B2 (en) * 2006-10-05 2009-12-02 株式会社ゴーシュー Method and apparatus for manufacturing high-strength processed material
WO2010107372A1 (en) 2009-03-20 2010-09-23 Höganäs Aktiebolag (Publ) Iron vanadium powder alloy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152910A (en) * 1980-04-30 1981-11-26 Mitsubishi Metal Corp Manufacture of very finely powdered iron
JPS5887252A (en) * 1981-11-20 1983-05-25 Kawasaki Steel Corp Alloy steel powder for sintered machine parts with high strength and toughness
JPS58107469A (en) * 1981-12-18 1983-06-27 Kawasaki Steel Corp Preparation of high strength sintered machine parts
JPS60262928A (en) * 1984-06-08 1985-12-26 Hitachi Ltd Method for manufacturing oxide-dispersed heat-resistant alloy
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01219102A (en) * 1988-02-26 1989-09-01 Nippon Steel Corp Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPH04285141A (en) * 1991-03-14 1992-10-09 Kawasaki Steel Corp Manufacture of ferrous sintered body
JPH0925526A (en) * 1995-07-07 1997-01-28 Agency Of Ind Science & Technol Production of oxide grain dispersed metal matrix composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH536672A (en) * 1969-08-27 1973-05-15 Int Nickel Ltd Consolidating hot-worked complex alloy - particles to from metal articles
US3897618A (en) * 1972-03-27 1975-08-05 Int Nickel Co Powder metallurgy forging
US3866303A (en) * 1973-06-27 1975-02-18 Bethlehem Steel Corp Method of making cross-rolled powder metal discs
DE2724524B2 (en) * 1976-06-03 1979-04-05 Kelsey-Hayes Co., Romulus, Mich. (V.St.A.) Container for hot-pressing molded bodies of entangled shape from powder
JPH0686608B2 (en) * 1987-12-14 1994-11-02 川崎製鉄株式会社 Method for producing iron sintered body by metal powder injection molding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152910A (en) * 1980-04-30 1981-11-26 Mitsubishi Metal Corp Manufacture of very finely powdered iron
JPS5887252A (en) * 1981-11-20 1983-05-25 Kawasaki Steel Corp Alloy steel powder for sintered machine parts with high strength and toughness
JPS58107469A (en) * 1981-12-18 1983-06-27 Kawasaki Steel Corp Preparation of high strength sintered machine parts
JPS60262928A (en) * 1984-06-08 1985-12-26 Hitachi Ltd Method for manufacturing oxide-dispersed heat-resistant alloy
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01219102A (en) * 1988-02-26 1989-09-01 Nippon Steel Corp Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPH04285141A (en) * 1991-03-14 1992-10-09 Kawasaki Steel Corp Manufacture of ferrous sintered body
JPH0925526A (en) * 1995-07-07 1997-01-28 Agency Of Ind Science & Technol Production of oxide grain dispersed metal matrix composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1068915A4 *

Also Published As

Publication number Publication date
EP1068915A1 (en) 2001-01-17
US6332905B1 (en) 2001-12-25
CN1295506A (en) 2001-05-16
EP1068915A4 (en) 2004-12-01
TW520396B (en) 2003-02-11
KR20010074460A (en) 2001-08-04

Similar Documents

Publication Publication Date Title
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
RU2324576C2 (en) Nanocristallic metal material with austenic structure possessing high firmness, durability and viscosity, and method of its production
US4576653A (en) Method of making complex boride particle containing alloys
US4365994A (en) Complex boride particle containing alloys
CN100369702C (en) Method of manufacturing metallic products such as sheet by cold working and flash annealing
US4439236A (en) Complex boride particle containing alloys
JP2020111829A (en) Extremely high conductivity low cost steel
US7922841B2 (en) Method for preparing high-temperature nanophase aluminum-alloy sheets and aluminum-alloy sheets prepared thereby
JP2629152B2 (en) Manufacturing method of compressed metal articles
US6162275A (en) Steel and a heat treated tool thereof manufactured by an integrated powder metalurgical process and use of the steel for tools
JP3367269B2 (en) Aluminum alloy and method for producing the same
CN113502441A (en) In-situ authigenic phase-reinforced magnesium-based amorphous composite material and preparation method thereof
JPH0885840A (en) Molybdenum alloy and production thereof
US9493855B2 (en) Class of warm forming advanced high strength steel
US4440572A (en) Metal modified dispersion strengthened copper
US5167728A (en) Controlled grain size for ods iron-base alloys
US5108517A (en) Process for preparing titanium and titanium alloy materials having a fine equiaxed microstructure
JP2000225412A (en) Method for plastically working aluminum alloy and high- strength/high-ductility aluminum alloy worked by the same
WO1999050009A1 (en) High-strength metal solidified material and acid steel and manufacturing methods thereof
Danninger et al. Heat treatment and properties of precipitation hardened carbon-free PM tool steels
EP0149210B1 (en) Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon
JP2003055747A (en) Sintered tool steel and production method therefor
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
US4321091A (en) Method for producing hot forged material from powder
JPH06220566A (en) Low anisotropy molybdenum-based alloy and manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99804517.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007010628

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999910734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09647100

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999910734

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007010628

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020007010628

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999910734

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载