WO1999047687A1 - Immunite antitumorale amelioree - Google Patents
Immunite antitumorale amelioree Download PDFInfo
- Publication number
- WO1999047687A1 WO1999047687A1 PCT/US1999/006037 US9906037W WO9947687A1 WO 1999047687 A1 WO1999047687 A1 WO 1999047687A1 US 9906037 W US9906037 W US 9906037W WO 9947687 A1 WO9947687 A1 WO 9947687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- antigen
- cell
- dcs
- apcs
- Prior art date
Links
- 230000005809 anti-tumor immunity Effects 0.000 title description 3
- 239000000427 antigen Substances 0.000 claims abstract description 101
- 108091007433 antigens Proteins 0.000 claims abstract description 100
- 102000036639 antigens Human genes 0.000 claims abstract description 100
- 238000000034 method Methods 0.000 claims abstract description 86
- 210000000612 antigen-presenting cell Anatomy 0.000 claims abstract description 49
- 230000000735 allogeneic effect Effects 0.000 claims abstract description 31
- 230000028993 immune response Effects 0.000 claims abstract description 24
- 230000001939 inductive effect Effects 0.000 claims abstract description 11
- 210000004443 dendritic cell Anatomy 0.000 claims description 116
- 108090000623 proteins and genes Proteins 0.000 claims description 79
- 239000013598 vector Substances 0.000 claims description 57
- 206010028980 Neoplasm Diseases 0.000 claims description 55
- 230000001177 retroviral effect Effects 0.000 claims description 16
- 239000013603 viral vector Substances 0.000 claims description 11
- 238000012239 gene modification Methods 0.000 claims description 7
- 230000005017 genetic modification Effects 0.000 claims description 7
- 235000013617 genetically modified food Nutrition 0.000 claims description 7
- 239000003981 vehicle Substances 0.000 claims description 7
- 238000001476 gene delivery Methods 0.000 claims description 6
- 239000002502 liposome Substances 0.000 claims description 5
- 210000004027 cell Anatomy 0.000 description 148
- 108090000765 processed proteins & peptides Proteins 0.000 description 37
- 210000001744 T-lymphocyte Anatomy 0.000 description 35
- 102000004169 proteins and genes Human genes 0.000 description 30
- 241000282414 Homo sapiens Species 0.000 description 22
- 230000014509 gene expression Effects 0.000 description 22
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 21
- 108091033319 polynucleotide Proteins 0.000 description 20
- 102000040430 polynucleotide Human genes 0.000 description 20
- 239000002157 polynucleotide Substances 0.000 description 20
- 102000004127 Cytokines Human genes 0.000 description 19
- 108090000695 Cytokines Proteins 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 19
- 241000700605 Viruses Species 0.000 description 19
- 201000011510 cancer Diseases 0.000 description 18
- 238000000338 in vitro Methods 0.000 description 18
- 238000001727 in vivo Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 239000003550 marker Substances 0.000 description 16
- 208000015181 infectious disease Diseases 0.000 description 15
- 241000701161 unidentified adenovirus Species 0.000 description 15
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 13
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 13
- 238000004806 packaging method and process Methods 0.000 description 13
- 102000004196 processed proteins & peptides Human genes 0.000 description 13
- 230000003053 immunization Effects 0.000 description 12
- 238000010361 transduction Methods 0.000 description 12
- 230000026683 transduction Effects 0.000 description 12
- 238000002649 immunization Methods 0.000 description 11
- 210000000130 stem cell Anatomy 0.000 description 11
- 210000004881 tumor cell Anatomy 0.000 description 11
- 230000003612 virological effect Effects 0.000 description 11
- 238000013459 approach Methods 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 210000001185 bone marrow Anatomy 0.000 description 10
- 238000001415 gene therapy Methods 0.000 description 10
- 241001529936 Murinae Species 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 230000004936 stimulating effect Effects 0.000 description 9
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 8
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 8
- 241000713869 Moloney murine leukemia virus Species 0.000 description 8
- 230000000890 antigenic effect Effects 0.000 description 8
- 238000007799 mixed lymphocyte reaction assay Methods 0.000 description 8
- 210000001616 monocyte Anatomy 0.000 description 8
- 150000007523 nucleic acids Chemical group 0.000 description 8
- 210000005259 peripheral blood Anatomy 0.000 description 8
- 239000011886 peripheral blood Substances 0.000 description 8
- 239000013615 primer Substances 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 238000007920 subcutaneous administration Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 108700028369 Alleles Proteins 0.000 description 7
- 108700019146 Transgenes Proteins 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 210000000265 leukocyte Anatomy 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 230000035755 proliferation Effects 0.000 description 7
- -1 1-methylpseudouracil Chemical compound 0.000 description 6
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 6
- 108091054437 MHC class I family Proteins 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 230000027455 binding Effects 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000011740 C57BL/6 mouse Methods 0.000 description 5
- 208000001382 Experimental Melanoma Diseases 0.000 description 5
- 102000013462 Interleukin-12 Human genes 0.000 description 5
- 108010065805 Interleukin-12 Proteins 0.000 description 5
- 102000000646 Interleukin-3 Human genes 0.000 description 5
- 108010002386 Interleukin-3 Proteins 0.000 description 5
- 102100034256 Mucin-1 Human genes 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 230000030741 antigen processing and presentation Effects 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 230000004069 differentiation Effects 0.000 description 5
- 239000012636 effector Substances 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 239000012642 immune effector Substances 0.000 description 5
- 229940121354 immunomodulator Drugs 0.000 description 5
- 229940117681 interleukin-12 Drugs 0.000 description 5
- 229940076264 interleukin-3 Drugs 0.000 description 5
- 210000002540 macrophage Anatomy 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 241001430294 unidentified retrovirus Species 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 102100034353 Integrase Human genes 0.000 description 4
- 102000000588 Interleukin-2 Human genes 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 102000004388 Interleukin-4 Human genes 0.000 description 4
- 108090000978 Interleukin-4 Proteins 0.000 description 4
- 102000004889 Interleukin-6 Human genes 0.000 description 4
- 108090001005 Interleukin-6 Proteins 0.000 description 4
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 4
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 4
- 108091054438 MHC class II family Proteins 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 108010008707 Mucin-1 Proteins 0.000 description 4
- 108700019961 Neoplasm Genes Proteins 0.000 description 4
- 102000048850 Neoplasm Genes Human genes 0.000 description 4
- 102000036693 Thrombopoietin Human genes 0.000 description 4
- 108010041111 Thrombopoietin Proteins 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 108010078428 env Gene Products Proteins 0.000 description 4
- 108700014844 flt3 ligand Proteins 0.000 description 4
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005745 host immune response Effects 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 230000036039 immunity Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000002458 infectious effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229940100601 interleukin-6 Drugs 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 230000035800 maturation Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 241000702421 Dependoparvovirus Species 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 102100027723 Endogenous retrovirus group K member 6 Rec protein Human genes 0.000 description 3
- 101710091045 Envelope protein Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 3
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 3
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 102000043129 MHC class I family Human genes 0.000 description 3
- 102000043131 MHC class II family Human genes 0.000 description 3
- 206010027458 Metastases to lung Diseases 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 229930193140 Neomycin Natural products 0.000 description 3
- 101710188315 Protein X Proteins 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 3
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 3
- 239000003710 calcium ionophore Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000000172 cytosol Anatomy 0.000 description 3
- 230000003394 haemopoietic effect Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229960004927 neomycin Drugs 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 235000002020 sage Nutrition 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- HPZMWTNATZPBIH-UHFFFAOYSA-N 1-methyladenine Chemical compound CN1C=NC2=NC=NC2=C1N HPZMWTNATZPBIH-UHFFFAOYSA-N 0.000 description 2
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 2
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 2
- 102000006306 Antigen Receptors Human genes 0.000 description 2
- 108010083359 Antigen Receptors Proteins 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 101150013553 CD40 gene Proteins 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 241000557626 Corvus corax Species 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 2
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 2
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 2
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 2
- 102000003815 Interleukin-11 Human genes 0.000 description 2
- 108090000177 Interleukin-11 Proteins 0.000 description 2
- 102000004125 Interleukin-1alpha Human genes 0.000 description 2
- 108010082786 Interleukin-1alpha Proteins 0.000 description 2
- 102100020880 Kit ligand Human genes 0.000 description 2
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 2
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 206010064912 Malignant transformation Diseases 0.000 description 2
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 2
- BAQCROVBDNBEEB-UBYUBLNFSA-N Metrizamide Chemical compound CC(=O)N(C)C1=C(I)C(NC(C)=O)=C(I)C(C(=O)N[C@@H]2[C@H]([C@H](O)[C@@H](CO)OC2O)O)=C1I BAQCROVBDNBEEB-UBYUBLNFSA-N 0.000 description 2
- 241000713862 Moloney murine sarcoma virus Species 0.000 description 2
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 2
- 101000796206 Mus musculus L-dopachrome tautomerase Proteins 0.000 description 2
- 101000846102 Mus musculus Short transient receptor potential channel 2 Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 101000884281 Rattus norvegicus Signal transducer CD24 Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- 101710173694 Short transient receptor potential channel 2 Proteins 0.000 description 2
- 241000713880 Spleen focus-forming virus Species 0.000 description 2
- 108010039445 Stem Cell Factor Proteins 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 2
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 2
- 108060008724 Tyrosinase Proteins 0.000 description 2
- 102000003425 Tyrosinase Human genes 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 2
- 108700005077 Viral Genes Proteins 0.000 description 2
- 229960004150 aciclovir Drugs 0.000 description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000002458 cell surface marker Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000002900 effect on cell Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- CJAONIOAQZUHPN-KKLWWLSJSA-N ethyl 12-[[2-[(2r,3r)-3-[2-[(12-ethoxy-12-oxododecyl)-methylamino]-2-oxoethoxy]butan-2-yl]oxyacetyl]-methylamino]dodecanoate Chemical compound CCOC(=O)CCCCCCCCCCCN(C)C(=O)CO[C@H](C)[C@@H](C)OCC(=O)N(C)CCCCCCCCCCCC(=O)OCC CJAONIOAQZUHPN-KKLWWLSJSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 2
- 229960002963 ganciclovir Drugs 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229940074383 interleukin-11 Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 230000036212 malign transformation Effects 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229960000554 metrizamide Drugs 0.000 description 2
- ZAHQPTJLOCWVPG-UHFFFAOYSA-N mitoxantrone dihydrochloride Chemical compound Cl.Cl.O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO ZAHQPTJLOCWVPG-UHFFFAOYSA-N 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- SATCOUWSAZBIJO-UHFFFAOYSA-N 1-methyladenine Natural products N=C1N(C)C=NC2=C1NC=N2 SATCOUWSAZBIJO-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- SVBOROZXXYRWJL-UHFFFAOYSA-N 2-[(4-oxo-2-sulfanylidene-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=S)NC1=O SVBOROZXXYRWJL-UHFFFAOYSA-N 0.000 description 1
- LLWPKTDSDUQBFY-UHFFFAOYSA-N 2-[6-(aminomethyl)-2,4-dioxo-1H-pyrimidin-5-yl]acetic acid Chemical compound C(=O)(O)CC=1C(NC(NC=1CN)=O)=O LLWPKTDSDUQBFY-UHFFFAOYSA-N 0.000 description 1
- KZMAWJRXKGLWGS-UHFFFAOYSA-N 2-chloro-n-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-n-(3-methoxypropyl)acetamide Chemical compound S1C(N(C(=O)CCl)CCCOC)=NC(C=2C=CC(OC)=CC=2)=C1 KZMAWJRXKGLWGS-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 241000701242 Adenoviridae Species 0.000 description 1
- 108010024878 Adenovirus E1A Proteins Proteins 0.000 description 1
- 108010087905 Adenovirus E1B Proteins Proteins 0.000 description 1
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 102100030343 Antigen peptide transporter 2 Human genes 0.000 description 1
- 108700032225 Antioxidant Response Elements Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 101100519158 Arabidopsis thaliana PCR2 gene Proteins 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 229920002567 Chondroitin Polymers 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 1
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 102100030386 Granzyme A Human genes 0.000 description 1
- 102000011786 HLA-A Antigens Human genes 0.000 description 1
- 108010075704 HLA-A Antigens Proteins 0.000 description 1
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 1
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 1
- 108010010378 HLA-DP Antigens Proteins 0.000 description 1
- 102000015789 HLA-DP Antigens Human genes 0.000 description 1
- 108010062347 HLA-DQ Antigens Proteins 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 1
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 description 1
- 101000920686 Homo sapiens Erythropoietin Proteins 0.000 description 1
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101001136981 Homo sapiens Proteasome subunit beta type-9 Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 241001135569 Human adenovirus 5 Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241000341655 Human papillomavirus type 16 Species 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 101150113776 LMP1 gene Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 108010023335 Member 2 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 102100035764 Proteasome subunit beta type-9 Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241001068263 Replication competent viruses Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 101710173693 Short transient receptor potential channel 1 Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 230000017274 T cell anergy Effects 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 101800000849 Tachykinin-associated peptide 2 Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 206010043395 Thalassaemia sickle cell Diseases 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000711975 Vesicular stomatitis virus Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 108700010877 adenoviridae proteins Proteins 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 238000011394 anticancer treatment Methods 0.000 description 1
- 238000002617 apheresis Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- DLGJWSVWTWEWBJ-HGGSSLSASA-N chondroitin Chemical compound CC(O)=N[C@@H]1[C@H](O)O[C@H](CO)[C@H](O)[C@@H]1OC1[C@H](O)[C@H](O)C=C(C(O)=O)O1 DLGJWSVWTWEWBJ-HGGSSLSASA-N 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000010502 episomal replication Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 108010027225 gag-pol Fusion Proteins Proteins 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 102000044890 human EPO Human genes 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 108010028930 invariant chain Proteins 0.000 description 1
- NTHXOOBQLCIOLC-UHFFFAOYSA-N iohexol Chemical compound OCC(O)CN(C(=O)C)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NTHXOOBQLCIOLC-UHFFFAOYSA-N 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000005100 tissue tropism Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/10—Cellular immunotherapy characterised by the cell type used
- A61K40/19—Dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/20—Cellular immunotherapy characterised by the effect or the function of the cells
- A61K40/24—Antigen-presenting cells [APC]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/40—Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
- A61K40/41—Vertebrate antigens
- A61K40/42—Cancer antigens
- A61K40/428—Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5156—Animal cells expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the dose, timing or administration schedule
Definitions
- TECHNICAL FIELD This invention is in the field of molecular immunology and medicine. In particular, methods of inducing an antigen-specific immune response are provided.
- the present invention provides a method of inducing an antigen-specific immune response in a subject by administering to that subject an effective amount of an allogeneic APC.
- method further comprises administering an effective amount of an autologous APC.
- the APCs are administered under conditions that provoke an antigen specific immune response in the subject.
- the autologous APC such as dendritic cells, will present antigen to cytotoxic T lymphocytes and elicit .an antigen- specific response.
- the allogeneic APC most suitably universal APCs (defined below) which also can be dendritic cells, will traffic to the same areas as the autologous cells, but will elicit a strong reaction from alloreactive T lymphocytes resulting in the local release of stimulatory cytokines that amplify the anti-antigen response and promote destruction of the antigen-expressing cells, such as tumor cells.
- FIGURES Figure 1 shows induction of a mixed lymphocyte reaction (MLR) by dendritic cells. Varying numbers of bone-marrowed derived C57BL/6 dendritic cells (DCs) were used to stimulate allogeneic allogeneic BALB/c T lymphocytes.
- MLR mixed lymphocyte reaction
- DCs dendritic cells
- the DCs were either unifected or infected with adenovirus vectors.
- the level of proliferation induced was measured by tritiated thymidine incorporation after 5 days of culture.
- An overall dose-dependent stimulation was observed with incre.asing numbers DCs and the stimulatory activity of Ad-transfected DCs was equal or greater to that of uninfected DCs.
- FIG. 2 shows the results of B16 melamona immunization model.
- Groups of 5 C57BL/6 mice were immunized against the gplOO or TRP-2 melanoma antigen by intraveneous injection of 5 X 10 5 bone marrow-derived dendritic cells (DCs) transfected with adenovirus vector encoding hum.an gplOO (Ad2/hugpl00 DCs) or mouse TRP-2 (Ad2/mTRP-2 DCs).
- Uninfected DCs serve as a negative control.
- Two weeks after immunization the mice were challenged with a subcutaneous injection of 2 X 10 4 B16 melanoma cells and tumor growth was monitored over time. The results indicate that pre-immunization against tumor antigen is effective in inducing anti-tumor immunity.
- Figure 3 shows the results of an experiment with B16 melanoma active treatment model.
- Groups of 5 C57BL/6 mice received a subcutaneous injection of
- MOLECULAR BIOLOGY F. M. Ausubel et al. eds., (1987)); the series METHODS IN ENZYMOLOGY (Academic Press, Inc.); ANTIBODIES: A LABORATORY MANUAL (E. Harlow and D. Lane eds (1988)); PCR2: A PRACTICAL APPROACH (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995)) and ANIMAL CELL CULTURE (R.I. Freshney, ed. (1987)). Definitions
- cancer refers to cells that have undergone a malignant transformation that makes them pathological to the host organism.
- Primary cancer cells that is, cells obtained from near the site of malignant transformation
- the definition of a cancer cell includes not only a primary cancer cell, but any cell derived from a cancer cell ancestor. This includes metastasized cancer cells, and in vitro cultures and cell lines derived from cancer cells.
- a "clinically detectable" tumor is one that is detectable on the basis of tumor mass; e.g., by such procedures as CAT scan, magnetic resonance imaging (MRI), X-ray, ultrasound or palpation. Biochemical or immunologic findings alone may be insufficient to meet this definition.
- genetically modified means containing and/or expressing a foreign gene or nucleic acid sequence which in turn, modifies the genotype or phenotype of the cell or its progeny. In other words, it refers to .any addition, deletion or disruption to a cell's endogenous nucleotides.
- cytokine refers to any one of the numerous factors that exert a variety of effects on cells, for example, inducing growth or proliferation.
- Non-limiting examples of cytokines which may be used alone or in combination in the practice of the present invention include, interleukin-2 (IL-2), stem cell factor (SCF), interleukin 3 (IL-3), interleukin 6 (IL-6), interleukin 12 (IL-12), G-CSF, granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin-1 alpha (IL-l ⁇ ), interleukin-11 (IL-11), MlP-l ⁇ , leukemia inhibitory factor (LIF), c-kit ligand, thrombopoietin (TPO) and flt3 ligand.
- IL-2 interleukin-2
- SCF stem cell factor
- IL-3 interleukin 6
- IL-12 interleukin 12
- G-CSF granulocyte macrophage-colony stimulating factor
- the present invention also includes culture conditions in which one or more cytokine is specifically excluded from the medium.
- Cytokines are commercially available from several vendors such as, for example, Genzyme (Framingham, MA), Genentech (South San Francisco, CA), Amgen (Thousand Oaks, CA), R&D Systems and Immunex (Seattle, WA). It is intended, although not always explicitly stated, that molecules having similar biological activity as wild-type or purified cytokines (e.g., recombinantly produced or muteins thereof) .are intended to be used within the spirit and scope of the invention.
- .antigen-presenting cells includes both intact, whole cells as well as other molecules which are capable of inducing the presentation of one or more antigens, preferably in association with class I MHC molecules.
- suitable APCs include, but are not limited to, whole cells such as macrophages, dendritic cells, B cells; purified MHC class I molecules complexed to ⁇ 2-microglobulin; and foster antigen presenting cells.
- Dendritic cells are potent antigen-presenting cells (APCs). It has been shown that DCs provide all the signals required for T cell activation and proliferation. These signals can be categorized into two types.
- the first type which gives specificity to the immune response, is mediated through interaction between the T-cell receptor/CD3 ("TCR/CD3”) complex .and an antigenic peptide presented by a major histocompatibility complex (“MHC") class I or II protein on the surface of APCs. This interaction is necessary, but not sufficient, for T cell activation to occur.
- MHC major histocompatibility complex
- the first type of signals can result in T cell anergy.
- the second type of signals called co- stimulatory signals, is neither antigen-specific nor MHC-restricted, and can lead to a full proliferation response of T cells and induction of T cell effector functions in the presence of the first type of signals.
- dendritic cell is to include, but not be limited to a pulsed dendritic cell, a foster antigen presenting cell or a dendritic cell hybrid.
- cytokine refers to any one of the numerous factors that exert a variety of effects on cells, for example, inducing growth or proliferation.
- Non-limiting examples of cytokines which may be used alone or in combination in the practice of the present invention include, interleukin-2 (IL-2), stem cell factor (SCF), interleukin 3 (IL-3), interleukin 6 (IL-6), interleukin 12 (IL-12), G-CSF, granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin-1 alpha (IL-l ⁇ ), interleukin ll(IL-ll), MlP-l ⁇ , leukemia inhibitory factor (LIF), c-kit ligand, thrombopoietin (TPO) and flt3 ligand.
- IL-2 interleukin-2
- SCF stem cell factor
- IL-3 interleukin 6
- IL-12 interleukin 12
- G-CSF granulocyte macrophage-colony
- the present invention also includes culture conditions in which one or more cytokines is specifically excluded from the medium.
- Cytokines are commercially available from several vendors such as, for example, Genzyme (Framingham, MA), Genentech (South San Francisco, CA), Amgen (Thousand Oaks, CA), R&D Systems and Immunex (Seattle, WA). It is intended, although not always explicitly stated, that molecules having similar biological activity as wild-type or purified cytokines (e.g., recombinantly produced or biologically equivalent variants thereof) are intended to be used within the spirit and scope of the invention.
- MHC major histocompatibility complex
- HLA complex The proteins encoded by the MHC complex are known as "MHC molecules” and are classified into class I and class II MHC molecules.
- Class I MHC molecules include membrane heterodimeric proteins made up of an chain encoded in the MHC associated noncovalently with ⁇ 2- microglobulin.
- Class I MHC molecules are expressed by nearly all nucleated cells and have been shown to function in antigen presentation to CD8+ T cells.
- Class I molecules include HLA-A, -B, and -C in humans.
- Class I molecules generally bind peptides 8-10 amino acids in length.
- Class II MHC molecules also include membrane heterodimeric proteins consisting of noncovalently associated ⁇ and ⁇ chains.
- Class II MHC are known to participate in antigen presentation to CD4 + T cells and, in humans, include HLA-DP, -DQ, and DR.
- Class II molecules generally bind peptides 12-20 amino acid residues in length.
- MHC restriction refers to a characteristic of T cells that permits them to recognize antigen only after it is processed and the resulting antigenic peptides are displayed
- Host cell is intended to include any individual cell or cell culture which can be or have been recipients for vectors or the incorporation of exogenous nucleic acid molecules, polynucleotides and/or proteins.
- progeny of a single cell it also is intended to include progeny of a single cell, and the progeny may not necessarily be completely identical (in morphology or in genomic or total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation.
- the cells may be procaryotic or eucaryotic, and include but are not limited to bacterial cells, yeast cells, animal cells, and mammalian cells, e.g., murine, rat, simian or hum-an.
- An "antibody” is an immunoglobulin molecule capable of binding an antigen.
- the term encompasses not only intact immunoglobulin molecules, but also anti-idiotypic .antibodies, mutants, fragments, fusion proteins, humanized proteins and modifications of the immunoglobulin molecule that comprise an antigen recognition site of the required specificity.
- antibody complex is the combination of antibody (as defined above) and its binding partner or ligand.
- a native antigen is a polypeptide, protein or a fragment containing an epitope, which induces an immune response in the subject.
- an "effective amount” is an amount sufficient to effect beneficial or desired results.
- An effective .amount can be administered in one or more administrations, applications or dosages.
- the polynucleotides of the present invention may be administered or applied transdermally, orally, subcutaneously, intramuscularly, intravenously or parenterally.
- an effective amount of the polynucleotides is that amount which provokes an antigen-specific immune response in the subject.
- polynucleotide and “nucleic acid molecule” are used interchangeably to refer to polymeric forms of nucleotides of any length.
- the polynucleotides may contain deoxyribonucleotides, ribonucleotides, and/or their analogs. Nucleotides may have any three-dimensional structure, and may perform any function, known or unknown.
- polynucleotide includes single-, double-stranded and triple helical molecules.
- Oligonucleotide refers to polynucleotides of between about 5 and about 100 nucleotides of single- or double-stranded DNA. Oligonucleotides are also known as oligomers or oligos and may be isolated from genes, or chemically synthesized by methods known in the .art. A "primer” refers to .an oligonucleotide, usually single-stranded, that provides a 3'-hydroxyl end for the initiation of enzyme-mediated nucleic acid synthesis.
- polynucleotides a gene or gene fragment, exons, introns, mRNA, tRNA, rRNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers.
- a nucleic acid molecule may also comprise modified nucleic acid molecules, such as methylated nucleic acid molecules and nucleic acid molecule analogs.
- Analogs of purines and pyrimidines are known in the art, and include, but are not limited to, aziridinycytosine, 4-acetylcytosine, 5- fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5- carboxymethyl-aminomethyluracil, inosine, N6-isopentenyladenine, 1- methyladenine, 1-methylpseudouracil, 1-methylguanine, 1 -methylinosine, 2,2- dimethylgu.anine, 2-methyladenine, 2-methylguanine, 3 -methylcytosine, 5- methylcytosine, pseudouracil, 5-pentylnyluracil and 2,6-diaminopurine.
- uracil as a substitute for thymine in a deoxyribonucleic acid is also considered an analogous form of pyrimidine.
- the polynucleotides encode a peptide, a ribozyme or an antisense sequence.
- PCR primers refer to primers used in "polymerase chain reaction” or "PCR,” a method for amplifying a DNA base sequence using a heat-stable polymerase such as Taq polymerase, and two oligonucleotide primers, one complementary to the (+)-str.and at one end of the sequence to be amplified and the other complementary to the (- )-strand at the other end. Because the newly
- PCR also can be used to detect the existence of the defined sequence in a DNA sample.
- protein protein
- oligopeptide polypeptide
- peptide polymers of amino acids of any length.
- the polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids.
- the terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component.
- polypeptides containing one or more analogs of an amino acid including, for example, unnatural amino acids, etc.
- culturing refers to the in vitro propagation of cells or organisms on or in media of various kinds. It is understood that the descendants of a cell grown in culture may not be completely identical (either morphologically, genetically, or phenotypically) to the parent cell. By “expanded” is meant any proliferation or division of cells.
- a "subject” is a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets.
- composition is intended to mean a combination of active agent and another compound or composition, inert (for example, a detectable agent or label) or active, such as an adjuvant.
- a composition of this invention comprises the transduced APC and a pharmaceutically acceptable carrier suitable for administration to the subject.
- pharmaceutical composition is intended to include the combination of an active agent with a carrier, inert or active, making the composition suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.
- the term "pharmaceutically acceptable carrier” encompasses any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents.
- the compositions also can include stabilizers and preservatives.
- stabilizers and adjuvants see Martin, REMINGTON'S PHARM. SCI., 15th Ed. (Mack Publ. Co., Easton (1975)).
- Co-stimulatory molecules are involved in the interaction between receptor-ligand pairs expressed on the surface of antigen presenting cells and T cells. Research accumulated over the past several years has demonstrated convincingly that resting T cells require at least two signals for induction of cytokine gene expression and proliferation (Schwartz R.H. (1990) Science 248:1349-1356 and Jenkins M.K. (1992) Immunol. Today 13:69-73).
- One signal the one that confers specificity, can be produced by interaction of the TCR/CD3 complex with an appropriate MHC/peptide complex. The second signal is not antigen specific and is termed the "co-stimulatory" signal.
- This signal was originally defined as an activity provided by bone-marrow-derived accessory cells such as macrophages and dendritic cells, the so called “professional” APCs.
- bone-marrow-derived accessory cells such as macrophages and dendritic cells
- APCs the so called "professional” APCs.
- HSA heat stable antigen
- Ii-CS chondroitin sulfate-modified MHC invariant chain
- ICM-1 intracellular adhesion molecule 1
- B7-l and B7-2/B70 (Schwartz R.H. (1992) Cell 71:1065-1068).
- One exemplary receptor-ligand pair is the B7 co-stimulatory molecule on the surface of APCs and its counter-receptor CD28 or CTLA-4 on T cells (Freeman et al. (1993) Science 262:909-911 ; Young et al. (1992) J. Clin. Invest. 90:229; and Nabavi et al. (1992) Nature 360:266- 268).
- co-stimulatory molecule encompasses any single molecule or combination of molecules which, when acting together with a peptide/MHC complex bound by a TCR on the surface of a T cell, provides a co- stimulatory effect which achieves activation of the T cell that binds the peptide.
- the term thus encompasses B7, or other co-stimulatory molecule(s) on an antigen-presenting matrix such as an APC, fragments thereof (alone, complexed with another molecule(s), or as part of a fusion protein) which, together with peptide/MHC complex, binds to a cognate ligand and results in activation of the T cell when the TCR on the surface of the T cell specifically binds the peptide.
- Co- stimulatory molecules are commercially available from a variety of sources, including, for example, Beckman Coulter. It is intended, although not always explicitly stated, that molecules having similar biological activity as wild-type or purified co-stimulatory molecules (e.g., recombinantly produced or muteins thereof) are intended to be used within the spirit and scope of the invention.
- modulate an immune response includes inducing (increasing, eliciting) an immune response; and reducing (suppressing) an immune response.
- An immunomodulatory method is one that modulates an immune response in a subject.
- the term "inducing an immune response in a subject” is a term well understood in the art and intends that an increase of at least about 2- fold, more preferably at least about 5-fold, more preferably at least about 10-fold, more preferably at least about 100-fold, even more preferably at least about 500- fold, even more preferably at least about 1000-fold or more in an immune response to an antigen (or epitope) can be detected (measured), after introducing the antigen (or epitope) into the subject, relative to the immune response (if any) before introduction of the antigen (or epitope) into the subject.
- An immune response to an antigen includes, but is not limited to, production of an antigen-specific (or epitope-specific) antibody, and production of an immune cell expressing on its surface a molecule which specifically binds to an antigen (or epitope).
- Methods of determining whether an immune response to a given antigen (or epitope) has been induced are well known in the art.
- antigen-specific antibody can be detected using any of a variety of immunoassays known in the art, including, but not limited to, ELISA, wherein, for example, binding of .an antibody in a sample to an immobilized antigen (or epitope) is detected with a detectably-labeled second antibody (e.g., enzyme-labeled mouse anti-human Ig
- Immune effector cells specific for the antigen can be detected any of a variety of assays known to those skilled in the art, including, but not limited to, FACS, or, in the case of CTLs, 51 Cr-release assays, or 3 H-thymidine uptake assays.
- assays known to those skilled in the art, including, but not limited to, FACS, or, in the case of CTLs, 51 Cr-release assays, or 3 H-thymidine uptake assays.
- the term “comprising” is intended to mean that the compositions and methods include the recited elements, but not excluding others. "Consisting essentially of when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination.
- compositions consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and pharmaceutically acceptable carriers, such as phosphate buffered saline, preservatives, and the like.
- Consisting of shall mean excluding more than trace elements of other ingredients and substantial method steps for administering the compositions of this invention. Embodiments defined by each of these transition terms are within the scope of this invention.
- the present invention provides a method for provoking antigen-specific immune responses, and in particular, immune responses against tumor antigens.
- this invention exploits the fact that alloreactivity (reactivity against foreign MHC antigens) is a universally strong immune reaction leading to the activation of CD4 + and CD8 + T lymphocytes.
- Dendritic cells (DC) which display high densities of MHC class I and class II antigens, are especially potent stimulators of alloreactive T cells which has been confirmed in a mixed lymphocyte reaction (See Figure 1).
- the ability of DCs to elicit potent alloreactivity is harnessed to promote the activation of tumor-specific T lymphocytes which are stimulated concurrently with autologous, MHC- compatible DCs expressing a relevent tumor-associated antigen(s) (T.AA).
- T.AA tumor-associated antigen
- the APC are dendritic cells, which are purified from the same and unrelated subject. Alternatively, more primitive cells of the hematopoietic lineage are isolated and cultured in appropriate growth factors which enrich for a population of dendritic cells. The release of stimulatory
- allogeneic APCs are loaded with with the antigen of interest, i. e. , against which the immune response is to be raised.
- the method of this invention comprises co-administering to a subject allogeneic and autologous antigen presenting cells (APCs), wherein the autologous APC express the antigen against which the immune response is raised.
- APCs autologous antigen presenting cells
- the invention provides a means to amplify the host immune response against an antigen, and in particular, a TAA.
- the APC are purified, autologous APC are purified from the subject and the allogeneic APC are purified from an unrelated subject and expressing the antigen of interest which are then administered intravenously or intradermally.
- these APC are transduced with a polynucleotide that codes for the antigen of interest, e.g., gplOO, MARTI, MUC-1.
- the polynucleotide coding for the antigen may be from the same or similar species, for example the gene coding for the human gplOO can be transduced into the autologous APC.
- the polynucleotides encoding TAAs of this invention can be, in one embodiment, previously characterized tumor-associated antigens such as gplOO
- PSMA prostate membrane specific antigen
- the cells can be transduced with a polynucleotide coding for a yet unidentified antigen which is identified and sequenced using methods described herein.
- the cells are transduced using a "gene delivery vehicle” which is any agent that can carry inserted polynucleotides into a host APC.
- gene delivery vehicles are liposomes, viruses, such as baculovirus, adenovirus, and retrovirus, bacteriophage, cosmid, plasmid, fungal vectors and other recombination vehicles typically used in the art which have been described for expression in a variety of eukaryotic and prokaryotic hosts, and may be used for gene therapy as well as for simple protein expression.
- Polynucleotides are inserted into vector genomes using methods well known in the art.
- insert and vector DNA can be contacted, under suitable conditions, with a restriction enzyme to create complementary ends on each molecule that can pair with each other and be joined together with a ligase.
- synthetic nucleic acid linkers can be ligated to the termini of restricted polynucleotide. These synthetic linkers contain nucleic acid sequences that correspond to a particular restriction site in the vector DNA.
- an oligonucleotide containing a termination codon and an appropriate restriction site can be ligated for insertion into a vector containing, for example, some or all of the following: a selectable marker gene, such as the neomycin gene for selection of stable or transient tr.ansfectants in mammalian cells; enhancer/promoter sequences from the immediate early gene of human CMV for high levels of transcription; transcription termination and RNA processing signals from SV40 for mRNA stability; SV40 polyoma origins of replication and ColEl for proper
- presentation of the antigens such as tumor associated antigens by the APCs elicits a strong immune response resulting in destruction of tumor cells by antigen-specific immune effector cells such as cytotoxic T lymphocytes (CTLs).
- CTLs cytotoxic T lymphocytes
- the induction of the CTL response is one method to assay for a positive response to the therapy and a means to confirm the biological activity of new factors useful in the methods of this invention.
- the presence of a large number of T-cells in tumor has been correlated with a prognostically favorable outcome in some cases
- the antigen can be a previously characterized antigen, e.g., gplOO, MART or MUC-1 , or it can be a yet unidentified antigen.
- Tumor cells that can be used for isolation of TAA can be isolated by any method known in the art. In one embodiment, a biopsy sample is minced and a cell suspension created. Preferably, the tumor cells are separated from other cells (such as immune effector cells, e.g., T cells) using methods well known in the art.
- the use of physical separation techniques include, but are not limited to, those based on differences in physical (density gradient centrifugation .and counter-flow centrifugal elutriation), cell surface (lectin and antibody affinity), and vital staining properties (mitochondria-binding dye rhol23 and DNA-binding dye Hoechst 33342).
- Monoclonal antibodies are another useful reagent for identifying markers associated with particular cell lineages and/or stages of differentiation can be used.
- the antibodies can be attached to a solid support to allow for crude separation.
- the separation techniques employed should maximize the retention of viability of the fraction to be collected.
- Various techniques of different efficacy can be employed to obtain "relatively crude” separations. Such separations are up to 10%, usually not more than about 5%, preferably not more than about 1%, of the total cells present not having the marker can remain with the cell population to be retained.
- the particular technique employed will depend upon efficiency of separation, associated cytotoxicity, ease and speed of performance, and necessity for sophisticated equipment and/or technical skill.
- Any conventional method e.g., subtractive library, comparative Northern and/or Western blot analysis of normal and tumor cells, Serial Analysis Gene
- T-cells Another common strategy in the search for tumor antigens is to isolate tumor-specific T-cells and attempt to identify the antigens recognized by the T- cells.
- specific CTLs have been derived from lymphocytic infiltrates present at the tumor site. Weidmann , et al., supra. These TILs .are unique cell population that can be traced back to sites of disease when they are labeled with indium and adoptively transferred. Alternatively, large libraries of putative antigens can be produced and tested. Using the "phage method" (Scott and Smith (1990) Science 249:386-390; Cwirla, et al. (1990) Proc. Natl. Acad.
- SAGE analysis can be employed to identify the antigens recognized by expanded immune effector cells such as CTLs. Briefly, SAGE analysis begins with providing complementary deoxyribonucleic acid (cDNA) from (1) the antigen-expressing population and (2) cells not expressing that antigen. Both cDNAs can be linked to primer sites. Sequence tags are then created, for example, using the appropriate primers to amplify the DNA. By measuring the differences in these tags between the two cell types, sequences which are aberrantly expressed in the antigen-expressing cell population can be identified.
- cDNA complementary deoxyribonucleic acid
- SolidPHase Epitope REcovery (“SPHERE”, described in PCT WO 97/35035) can be used to identify tumor antigens.
- SPHERE can be used to identify antigens by creating a library
- this invention also provides a screen to identify novel wild-type antigens that can be further modified and used to induce a cellular and a humoral immune response in the subject.
- the antigens gplOO, MART or MUC-1, their biological activity in vitro and in vivo are positive controls.
- the second approach for isolating APCs is to collect the relatively large numbers of precommitted APCs already circulating in the blood.
- Previous techniques for isolating committed APCs from human peripheral blood have involved combinations of physical procedures such as metrizamide gradients and adherence/nonadherence steps (Freudenthal, PS et al. (1990) PNAS 87:7698- 7702); Percoll gradient separations (Mehta-Damani, et al. (1994) J. Immunol. 153:996-1003); and fluorescence activated cell sorting techniques (Thomas, R. et al. (1993) J. Immunol. 151:6840-52).
- CCE countercurrent centrifugal elutriation
- cells are subject to simultaneous centrifugation and a washout stre.am of buffer which is constantly increasing in flow rate.
- the constantly increasing countercurrent flow of buffer leads to fractional cell separations that are largely based on cell size.
- the APC are precommitted or mature dendritic cells which can be isolated from the white blood cell fraction of a
- the white blood cell fraction can be from the peripheral blood of the mammal.
- This method includes the following steps: (a) providing a white blood cell fraction obtained from a mammalian source by methods known in the .art such as leukophoresis; (b) separating the white blood cell fraction of step (a) into four or more subfractions by countercurrent centrifugal elutriation, (c) stimulating conversion of monocytes in one or more fractions from step (b) to dendritic cells by contacting the cells with calcium ionophore or IL-4 and GM-CSF, (d) identifying the dendritic cell-enriched fraction from step (c), and (e) collecting the enriched fraction of step (d), preferably at about 4°C.
- the white blood cell fraction can be treated with calcium ionophore in the presence of other cytokines, such as IL-12, GM-CSF or IL-4.
- the cells of the white blood cell fraction can be washed in buffer and suspended in Ca ++ /Mg ++ free media prior to the separating step.
- the white blood cell fraction can be obtained by leukapheresis.
- the dendritic cells can be identified by the presence of at least one of the following markers: HLA-DR, HLA-DQ, or B7. 2, and the simultaneous absence of the following markers: CD3, CD14, CD16,56,57, and CD 19, 20. Monoclonal antibodies specific to these cell surface markers are commercially available.
- the method requires collecting an enriched collection of white cells and platelets from leukapheresis that is then further fractionated by countercurrent centrifugal elutriation (CCE) (Abrahamsen TG et al. (1991) J. Clin. Apheresis. 6:48-53).
- CCE countercurrent centrifugal elutriation
- Cell samples are placed in a special elutriation rotor.
- the rotor is then spun at a constant speed of, for example, 3000 rpm. Once the rotor has reached the desired speed, pressurized air is used to control the flow rate of cells.
- Cells in the elutriator are subjected to simultaneous centrifugation .and a washout stream of buffer which is constantly increasing in flow rate. This results in fractional cell separations based largely but not exclusively on differences in cell size.
- PBMCs 19 Large numbers of PBMCs (up to lxlO 10 ) can be obtained by leukapheresis and circulating immature DCs or hematopoietic progenitors can be subsequently isolated using several methods including but not limited to: metrizamide gradients (Freudenthal P.S. and Steinman, R.M. (1990) Proc. Natl. Acad. Sci.87:7698-7702); PercoU gradients (Mehta-Damani, et al. (1994) J. Immunol.
- peripheral blood monocytes can also serve as a pool of DC precursors.
- Monocytes can be recovered from PBMC by elutriation, Ficoll and PercoU gradients or through their ability to adhere to plastic. Adherent layers of monocytes are typically cultured in
- GM-CSF + IL-4 or GM-CSF + IL-13 to promote differentiation into immature DCs. Further purification of DCs obtained in this manner can be achieved by depletion of contaminating lymphocytes and monocytes/macrophages with specific .antibodies plus complement or with antibody-coated magnetic beads (Sozzani, et al. (1997) J. Immunol. 9:271-96; Henderson, et al. (1997) J. Immunol.
- CD34 + hematopoietic progenitors using magnetic beads coated with CD34-specific antibodies
- the frequency of circulating progenitor cells can be increased by treating the host with various combinations of cytokines such as Flt-3 ligand (Sudo, et al. (1997) Blood 89:3186-91), IL-3, G-CSF (Siena, et al. (1995)) and GM-CSF (Siena, et al. (1989) Blood 74:1905- ).
- cytokines such as Flt-3 ligand (Sudo, et al. (1997) Blood 89:3186-91), IL-3, G-CSF (Siena, et al. (1995)) and GM-CSF (Siena, et al. (1989) Blood 74:1905- ).
- Treatment of cancer patients with cyclophosphamide also leads to mobilization of CD34 + stem cells into peripheral blood (Siena, et
- a basic approach to deriving DCs from bone marrow consists of bone marrow collection followed by depletion of all non-DC cell types (lymphocytes, granulocytes, monocytes/macrophages) for example with a cocktail of specific antibodies and complement (Inaba, et al. (1992) J. Exp. Med. 176:1693-1702).
- the remaining cells are then cultured in GM-CSF ⁇ IL-4 to promote the growth and differentiation of DCs.
- CD34 + precursor stem cells can be positively selected from bone marrow.
- CD34 + precursor stem cells isolated from blood or bone marrow can be differentiated into DCs by culture in various combinations of cytokines such as GM-CSF, SCF (stem cell factor), TNF- ⁇ and Flt-3 ligand (Siena, et al. (1995);
- DCs are typically identified by their veiled morphology and by the presence of a set of characteristic surface markers (MHC Class I, MHC Class II, B7.1, B7.2, CD13, CD33, CD40, etc.) and the absence of surface markers typical of macrophages (CD14) or lymphocytes (CD3, CD4, CD8).
- Immature DCs isolated directly from blood or derived from blood monocytes or bone marrow can effectively take up and process antigen for presentation to T lymphocytes. However, further maturation is required for the DCs to acquire the ability to effectively prime antigen-specific T cells (Steinman,
- transduced or peptide-pulsed immature DCs could be used directly for immunization with the maturation process occurring in vivo or, alternatively, antigen-presenting DCs could be further matured in vitro prior to administration as desired.
- antigen-presenting DCs could be further matured in vitro prior to administration as desired.
- muteins of the antigen as well as allogeneic and antigens from a different species, of previously characterized antigens are useful in the
- MARTI and gplOO are melanocyte differentiation antigens specifically recognized by HLA-A2 restricted tumor-infiltrating lymphocytes (TILs) derived from patients with melanoma, and appear to be involved in tumor regression (Kawakami, Y., et al. (1994) Proc. Natl. Acad. Sci. USA 91:6458-62; Kawakami, Y., et al. (1994) Proc. Natl. Acad. Sci. USA 91:91:3515-9). Recently, the mouse homologue of human MART-1 has been isolated.
- TILs HLA-A2 restricted tumor-infiltrating lymphocytes
- the full-length open reading frame of the mouse MARTI consists of 342 bp, encoding a protein of 113 amino acid residues with a predicted molecular weight of -13 kDa. Alignment of human and murine MARTI amino acid sequences showed 68.6% identity. The murine homologue of gp 100 has also been identified. The open reading frame consists of 1,878 bp, predicting a protein of 626 amino acid residues which exhibits 75.5% identity to human gplOO.
- genetic modifications of cells employed in the present invention are accomplished by introducing a vector containing a polypeptide or cDNA encoding an antigen.
- a vector containing a polypeptide or cDNA encoding an antigen A variety of different gene tr.ansfer vectors, including viral as well as non-viral systems can be used.
- Viral vectors useful in the genetic modifications of this invention include, but are not limited to adenovirus, adeno- associated virus vectors, retroviral vectors and adeno-retroviral chimeric vectors.
- Adenovirus and adeno-associated virus vectors useful in the genetic modifications of this invention may be produced according to methods already taught in the art. (see, e.g., Karlsson, et al. (1986) EMBO 5:2377; Carter (1992) Current Opinion in Biotechnology 3:533-539; Muzcyzka (1992) Current Top.
- adenoviral vectors based on the human adenovirus 5 (Virology 163:614-617, 1988) .are missing essential early genes from the adenoviral genome (usually E1.A/E1B), and are therefore unable to replicate unless grown in permissive cell lines that provide the missing gene products in trans.
- a transgene of interest can be cloned and expressed in cells infected with the replication deficient adenovirus.
- adeno virus-based gene transfer does not result in integration of the transgene into the host genome (less than 0.1%> adenovirus- mediated transfections result in transgene incorporation into host DNA), and therefore is not stable, adenoviral vectors can be propagated in high titer and transfect non-replicating cells.
- Human 293 cells which are human embryonic kidney cells transformed with adenovirus E 1 A/E 1 B genes, typify useful permissive cell lines .and are commercially available from the ATCC. However, other cell lines which allow replication-deficient adenoviral vectors to propagate therein can be used, including HeLa cells.
- Additional references describing adenovirus vectors and other viral vectors which could be used in the methods of the present invention include the following: Horwitz, M.S., Adenoviridae and Their Replication, in Fields, B., et al. (eds.) VIROLOGY, Vol. 2, Raven Press New York, pp. 1679-1721, 1990); Graham, F., et al., pp. 109-128 in METHODS IN MOLECULAR BIOLOGY, Vol. 7: GENE TRANSFER AND EXPRESSION PROTOCOLS, Murray, E. (ed.), Humana Press, Clifton, N.J. (1991); Miller, N., et al. (1995) FASEB Journal 9:190-199 Schreier, H (1994)
- adenovirus plasmids are also available from commercial sources, including, e.g., Microbix Biosystems of Toronto, Ontario (see, e.g.,
- Microbix Product Information Sheet Plasmids for Adenovirus Vector Construction
- retroviral vectors which are produced recombinantly by procedures already taught in the .art.
- WO 94/29438 describes the construction of retroviral packaging plasmids and packaging cell lines.
- retroviral vectors useful in the methods of this invention are capable of infecting the cells described herein. The techniques used to construct vectors, and transfix and infect cells are widely practiced in the art. Examples of retroviral vectors are those derived from murine, avian or primate retroviruses. Retroviral vectors based on the Moloney murine leukemia virus (MoMLV) are the most commonly used because of the availability of retroviral variants that efficiently
- Suitable vectors include those based on the Gibbon Ape Leukemia Virus (GALV) or HIV.
- GALV Gibbon Ape Leukemia Virus
- the viral gag, pol and env sequences are removed from the virus, creating room for insertion of foreign DNA sequences.
- Genes encoded by the foreign DNA are usually expressed under the control of the strong viral promoter in the LTR.
- Such a construct can be packed into viral particles efficiently if the gag, pol and env functions are provided in trans by a packaging cell line.
- the gag-pol and env proteins produced by the cell assemble with the vector RNA to produce infectious virions that are secreted into the culture medium.
- the virus thus produced can infect .and integrate into the DNA of the target cell, but does not produce infectious viral particles since it is lacking essential packaging sequences.
- the packaging cell line Most of the packaging cell lines currently in use have been transfected with separate plasmids, each containing one of the necessary coding sequences, so that multiple recombination events are necessary before a replication competent virus can be produced.
- the packaging cell line harbors an integrated provirus.
- the provirus has been crippled so that, although it produces all the proteins required to assemble infectious viruses, its own RNA cannot be packaged into virus. Instead, RNA produced from the recombinant virus is packaged. The virus stock released from the packaging cells thus contains only recombinant virus.
- the range of host cells that may be infected by a retro virus or retroviral vector is determined by the viral envelope protein.
- the recombinant virus can be used to infect virtually any other cell type recognized by the env protein provided by the packaging cell, resulting in the integration of the viral genome in the transduced cell and the stable production of the foreign gene product.
- murine ecotropic env of MoMLV allows infection of rodent cells
- amphotropic env allows infection of rodent, avian and some primate cells, including human cells.
- Amphotropic packaging cell lines for use with MoMLV systems are known in the art and commercially available and include, but are not
- VSV-G vesicular stomatitis virus
- a marker gene can be included in the vector for the purpose of monitoring successful transduction and for selection of cells into which the DNA has been integrated, as against cells which have not integrated the DNA construct.
- Various marker genes include, but are not limited to, antibiotic resistance markers, such as resistance to G418 or hygromycin. Less conveniently, negative selection may be used, including, but not limited to, where the marker is the HSV-tk gene, which will make the cells sensitive to agents such as acyclovir and gancyclovir.
- selections could be accomplished by employment of a stable cell surface marker to select for transgene expressing cells by FACS sorting.
- NeoR neomycin /G418 resistance
- the viral vector can be modified to incorporate chimeric envelope proteins or nonviral membrane proteins into retroviral particles to improve particle stability and expand the host range or to permit cell type-specific targeting during infection.
- the production of retroviral vectors that have altered host range is taught, for example, in WO 92/14829 and WO 93/14188.
- Retroviral vectors that can target specific cell types in vivo are also taught, for example, in Kasahara, et al. (1994) Science 266:1373-1376. Kasahara, et al. describe the construction of a
- MoMLV Moloney leukemia virus having a chimeric envelope protein consisting of human erythropoietin (EPO) fused with the viral envelope protein.
- EPO erythropoietin
- This hybrid virus shows tissue tropism for human red blood progenitor cells that bear the receptor for EPO, and is therefore useful in gene therapy of sickle cell anemia and thalassemia.
- Retroviral vectors capable of specifically targeting infection of cells are preferred for in vivo gene therapy.
- the viral constructs can be prepared in a variety of conventional ways. Numerous vectors are now available which provide the desired features, such as long terminal repeats, marker genes, and restriction sites, which may be further modified by techniques known in the art.
- the constructs may encode a signal peptide sequence to ensure that cell surface or secreted proteins encoded by genes are properly processed post-translationally and expressed on the cell surface if appropriate.
- the foreign gene(s) is under the control of a cell specific promoter. Expression of the transferred gene can be controlled in a variety of ways depending on the purpose of gene transfer and the desired effect. Thus, the introduced gene may be put under the control of a promoter that will cause the gene to be expressed constitutively, only under specific physiologic conditions, or in particular cell types.
- the retroviral LTR (long terminal repeat) is active in most hematopoietic cells in vivo .and will generally be relied upon for transcription of the inserted sequences and their constitutive expression (Ohashi, et al. (1992) Proc. Natl. Acad. Sci. 89:11332; Correll, et al. (1992) Blood 80:331).
- Other suitable promoters include the human cytomegalovirus (CMV) immediate early promoter and the U3 region promoter of the Moloney Murine Sarcoma Virus (MMSV),
- Rous Sarcoma Virus (RSV) or Spleen Focus Forming Virus (SFFV).
- RSV Rous Sarcoma Virus
- SFFV Spleen Focus Forming Virus
- promoters examples include Granzyme A for expression in T-cells and NK cells, the CD34 promoter for expression in stem and progenitor cells, the CD8 promoter for expression in cytotoxic T-cells, and the CD1 lb promoter for expression in myeloid cells.
- Inducible promoters may be used for gene expression under certain physiologic conditions.
- an electrophile response element may be used to induce expression of a chemoresistance gene in response to electrophilic molecules.
- the therapeutic benefit may be further increased by targeting the gene product to the appropriate cellular location, for example the nucleus, by attaching the appropriate localizing sequences.
- the vector construct is introduced into a packaging cell line which will generate infectious virions.
- Packaging cell lines capable of generating high titers of replication-defective recombinant viruses are known in the art, see for example, WO 94/29438.
- Viral particles are harvested from the cell supernatant and purified for in vivo infection using methods known in the art such as by filtration of supernatants 48 hours post transfection.
- the viral titer is determined by infection of a constant number of appropriate cells (depending on the retrovirus) with titrations of viral supernatants.
- the transduction efficiency can be assayed 48 hours later by a variety of methods, including Southern blotting.
- Non- viral vectors such as plasmid vectors useful in the genetic modifications of this invention, can be produced according to methods taught in the art. References describing the construction of non- viral vectors include the following: Ledley, FD, Human Gene Therapy 6: 1129-1144, 1995; Miller, N., et al, FASEB Journal 9: 190-199, 1995; Chonn, A, et al, Curr. Opin. in Biotech. 6: 698-
- the efficacy of gene transfer into the cells of the subject can be monitored by any method known in the art.
- a reporter or marker gene can be included in the gene delivery vehicle to facilitate identification of those cells into which the vehicle is successfully incorporated.
- marker genes may prove especially helpful.
- Screening markers or reporter genes are genes that encode a product that can readily be assayed.
- Non-limiting examples of screening markers include genes encoding for green fluorescent protein (GFP) or genes encoding for a modified fluorescent protein.
- the marker gene included in the delivery vehicle is a selectable marker.
- a "positive" selectable marker gene encodes a product that enables only the cells that carry the gene to survive and/or grow under certain conditions. For example, plant and animal cells that express the introduced neomycin resistance (Neo r ) gene are resistant to the compound G418. Cells that do not carry the Neo r gene marker are killed by G418.
- Negative selectable marker genes encode a product that allows cells expressing that product to be selectively killed.
- the conditionally activated cytotoxic agent may also be a selectable marker such as HSV-tk. Cells expressing this gene can be selectively killed using gancyclovir or acyclovir.
- Peptide fragments from antigens must first be bound to peptide binding receptors (major histocompatibility complex class I and class II molecules) that display the antigenic peptides on the surface of the APCs. Palmer E. and
- T lymphocytes produce an antigen receptor that they use to monitor the surface of APCs for the presence of foreign peptides.
- the antigen receptors on CD4 + T cells recognize antigenic peptides bound to MHC class II molecules whereas the receptors on CD8 + T cells react with antigens displayed on class I molecules.
- antigens can be delivered to antigen- presenting cells as protein/peptide or in the form of polynucleotides encoding the protein/peptide ex vivo or in vivo.
- the methods described below focus primarily on DCs which are the most potent, preferred APCs.
- APCs genetically modified APCs. These include: (1) the introduction into the APCs of polynucleotides that express antigen or fragments thereof; (2) infection of APCs with recombinant vectors to induce endogenous expression of antigen; and (3) introduction of tumor antigen into the DC cytosol using liposomes. (See, Boczkowski D. et al. (1996) J. Exp. Med. 184:465; Rouse et al. (1994) J. Virol 68:5685; and Nair et al. (1992) J. Exp. Med. 175:609).
- any method which allows for the introduction and expression of the heterologous or non-self antigen and presentation by the MHC on the surface of the APC is within the scope of this invention.
- Pulsing is accomplished in vitro/ex vivo by exposing APCs to antigenic protein or peptide(s).
- the protein or peptide(s) are added to APCs at a concentration of 1-10 ⁇ m for approximately 3 hours.
- Paglia et al. (1996) J. Exp. Med. 183:317, has shown that APC incubated with whole protein in vitro were recognized by MHC class I-restricted CTLs, and that immunization of animals with these APCs led to the development of antigen-specific CTLs in vivo.
- Protein/peptide antigen can also be delivered to APC in vivo .and presented by the APC.
- Antigen is preferably delivered with adjuvant via the intravenous, subcutaneous, intranasal, intramuscular or intraperitoneal route of delivery. Grant E.P. and Rock K.L. (1992) J. Immunol. 148:13; Norbury, C. C. et al. (1995)
- Antigen Painting Another method which can be used is termed "painting". It has been demonstrated that glycosyl-phosphotidylinositol (GPI)-modified proteins possess the ability to reincorporate themselves back into cell membranes after purification. Hirose et al. (1995) Methods Enzymol 250:582; Medof et al. (1984) J. Exp. Med. 160:1558; Medof (1996) FASEBJ. 10:574; and Huang et al. (1994) Immunity 1:607, have exploited this property in order to create APCs of specific composition for the presentation of antigen to CTLs. Expression vectors for ⁇ 2- microglobulin and the HLA-A2.1 allele were first devised.
- the proteins were expressed in Schneider S2 Drosophila melanogaster cells, known to support GPI- modification. After purification, the proteins could be incubated together with a purified antigenic peptide which resulted in a trimolecular complex capable of efficiently inserting itself into the membranes of autologous cells. In essence, these protein mixtures were used to "paint" the APC surface, conferring the ability to stimulate a CTL clone that was specific for the antigenic peptide. Cell coating was shown to occur rapidly and to be protein concentration dependent. This method of generating APCs bypasses the need for gene transfer into the APC and permits control of antigenic peptide densities at the cell surfaces.
- Foster APCs are derived from the human cell line 174xCEM.T2, referred to as T2, which contains a mutation in its antigen processing pathway that restricts the association of endogenous peptides with cell surface MHC class I molecules (Zweerink et al. (1993) J. Immunol. 150:1763). This is due to a large homozygous deletion in the MHC class II region encompassing the genes TAP1, TAP2, LMP1, and LMP2, which are required for antigen presentation to MHC class 1 -restricted CD8 + CTLs. In effect, only "empty" MHC class I molecules are presented on the surface of these cells. Exogenous peptide added to the culture
- T2 cells bind to these MHC molecules provided that the peptide contains the allele-specific binding motif.
- T2 cells are referred to herein as "foster" APCs. They can be used in conjunction with this invention to present the heterologous, altered or control antigen. Transduction of T2 cells with specific recombinant MHC alleles allows for redirection of the MHC restriction profile. Libraries tailored to the recombinant allele will be preferentially presented by them because the anchor residues will prevent efficient binding to the endogenous allele.
- MHC molecules make the APC more visible to the CTLs.
- a powerful transcriptional promoter e.g., the CMV promoter
- results in a more reactive APC most likely due to a higher concentration of reactive MHC-peptide complexes on the cell surface.
- DCs can be transduced with viral vectors encoding a relevant TAA.
- Viral vectors that can be used include recombinant poxviruses such as vaccinia and fowlpox virus (Bronte, et al. (1997) Proc. Natl. Acad. Sci. 94:3183-88; Kim, et al. (1997) J. Immunother. 20:276-86) and, preferentially, adenovirus (Arthur, et al. (1997) Cancer Gene Ther. 4:17-25; Wan, et al. (1997) Hum. Gene Ther. 8:1355-
- virus vectors e.g. retrovirus
- a retrovirus may also prove suitable for transduction of human DCs (Marin, et al. (1996) J Virol. 70:2957-62).
- In vivo transduction of DCs can potentially be accomplished by administration of Ad vector via different routes including intravenous, intramuscular, intranasal, intraperitoneal or cutaneous delivery.
- the preferred route of administration is cutaneous delivery at multiple sites using a total dose of approximately Ixl0 10 -lxl0 12 i.u.
- Levels of in vivo transduction can be roughly assessed by co-staining with antibodies directed against DC marker(s) and the TAA being expressed.
- the staining procedure can be carried out on biopsy samples from the site of administration or on cells from draining lymph nodes or other organs where DCs may have migrated (Condon, et al. (1996) Nature Med. 2:1122-28; Wan, et al. (1997) Human Gene Therapy 8:1355-1363).
- the amount of TAA being expressed at the site of injection or in other organs where transduced DCs may have migrated can be evaluated by ELISA on tissue homogenates.
- dendritic cells can also be transduced in vitro/ex vivo by non- viral gene delivery methods such as electroporation, calcium phosphate precipitation or cationic lipid/plasmid DNA complexes (Arthur, et al. (1997) Cancer Gene Therapy 4:17-25).
- In vivo transduction of dendritic cells can potentially be accomplished by administration of cationic lipid/plasmid DNA complexes delivered via the intravenous, intramuscular, intranasal, intraperitoneal or cutaneous route of administration.
- Gene gun delivery or injection of naked plasmid DNA into the skin also leads to transduction of DCs (Condon, et al. (1996), supra; Raz, et al. (1994) Proc. Natl. Acad. Sci. 91:9519-23).
- transduction efficiency and levels of transgene expression can be assessed as described above for viral vectors.
- compositions and Methods for Therapeutic Application In the context of cancer gene therapy, the invention consists of amplifying the host immune response against tumor by co-administering allogeneic and
- Autologous DCs provide cognate presentation of a tumor antigen to MHC-compatible T lymphocytes while allogeneic DCs are used to stimulate high frequency alloreactive T lymphocytes and thereby induce local production of stimulatory cytokines that will support and amplify the specific host immune response against tumor.
- the preferred method is isolation of monocytes from peripheral blood followed by in vitro differentiation into immature DCs.
- Immature autologous DCs are transduced with a vector, preferably adenovirus, expressing a relevant TAA(s).
- Allogeneic DCs are derived from a different individual in the same manner or, alternatively, a dendritic cell line as opposed to primary cells could be used as a source of allogeneic DCs. As mentioned above, the allogeneic DCs may or may not have to be transduced as well.
- Allogeneic DCs should be pre-tested and selected for their ability to induce a strong allogeneic reaction on the part of the intended recipient. This can be accomplished by HLA-typing (select allogeneic DCs with the most mismatched HLA alleles) or in a functional mixed lymphocyte reaction (MLR).
- HLA-typing selective allogeneic DCs with the most mismatched HLA alleles
- MLR functional mixed lymphocyte reaction
- lymphocytes or purified T lymphocytes from the patient to be treated are stimulated with inactivated (irradiated or mitomycin C-treated) allogeneic DCs and the proliferative response induced is measured by tritiated thymidine incorporation after 5-6 days of culture. Allogeneic DCs that elicit the highest levels of proliferation are selected for co-administration with transduced autologous DCs.
- Autologous DCs are transduced ex vivo, preferably with an Ad vector encoding a TAA (500 MOI for 24h). At this point, the DCs can be administered or can be further matured by exposure to TNF- ⁇ prior to administration. The former option is preferred. At the time of administration, transduced autologous
- DCs are mixed with allogeneic primary DCs or an allogeneic DC line and the mixture is delivered i.v. or s.c. It is estimated that doses of autologous and allogeneic DCs can range from approximately 5xl0 7 -5xl0 9 each with up to 6 doses being delivered at intervals of approximately 3-6 weeks.
- the protocol is the same as described in example 1 , except that instead of being transduced, autologous DCs are pulsed with protein or peptide epitopes from a given TAA(s) (1-10 ⁇ m protein/peptide for approximately 3 h).
- Autologous DCs are transduced in vivo, preferably by cutaneous administration of a TAA-encoding Ad vector at multiple sites (total dose of Ixl0 10 -lxl0 12 i.u.).
- the allogeneic primary DCS or DC line are either mixed with the virus and administered concurrently or are administered separately, immediately after virus, at the same sites. The former option is preferred. It is estimated that the dose of allogeneic DCs can range from approximately 5x10 7 - 5x10 9 and that treatment can be repeated up to six times at intervals of approximately 3-6 weeks.
- the relative potency of different preparations of allogeneic DCs to stimulate lymphocytes from the patient to be treated can be evaluated in vitro using the well-described mixed lymphocyte reaction (MLR).
- MLR mixed lymphocyte reaction
- the relative ability of transduced autologous DCs ⁇ allogeneic DCs to elicit cytolytic effector cells capable of lysing tumor cells can also be tested in vitro.
- transduced autologous DCs expressing a relevant TAA ⁇ allogeneic DCs are used to stimulate autologous lymphocytes (or purified CD8 + T cells) and, after several rounds of stimulation, the effector cells generated are
- TAA-specific effector cells can be measured by several methods including cytokine production (e.g. TNF- ⁇ , interferon- ⁇ ) upon recognition of TAA-expressing targets or lysis of TAA-expressing target cells as assessed by release of various intracellular labels/markers such as 51 Chromium or lactose dehydrogenase (LDH).
- cytokine production e.g. TNF- ⁇ , interferon- ⁇
- lysis of TAA-expressing target cells as assessed by release of various intracellular labels/markers such as 51 Chromium or lactose dehydrogenase (LDH).
- LDH lactose dehydrogenase
- the efficacy of the planned strategy is best assessed in an animal model.
- the murine B16 melanoma model is one model.
- B16 melanoma cells are injected into syngeneic C57BL/6 mice either s.c. or i.v. to give rise to a local subcutaneous tumor or produce lung metastases, respectively.
- the relative immunizing potential of transduced autologous DCs ⁇ allogeneic DCs can be tested in a pre-immunization or active treatment setting.
- Figure 3 shows the results of one experiment using this model.
- DCs are given approximately 2 weeks before challenge with B16 cells to establish immunity and protect against the development of a s.c. tumor or lung metastases.
- DCs are given 3-4 days after administration of B16 cells to induce host immune responses that will inhibit/prevent ongoing growth of the tumor cells.
- the efficacy of treatment is assessed by measuring tumor size over time (B 16 cells s.c.) or the number of lung metastases (B 16 cells i.v.).
- levels of TAA-specific immunity cytotoxic T lymphocytes, antibodies, NK cell lysis
- the DCs are given at a dose of 5x10 5 each, either s.c. or i.v.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU31027/99A AU3102799A (en) | 1998-03-20 | 1999-03-19 | Enhanced anti-tumor immunity |
JP2000536870A JP2002506886A (ja) | 1998-03-20 | 1999-03-19 | 抗腫瘍免疫亢進 |
EP99912714A EP1064390A4 (fr) | 1998-03-20 | 1999-03-19 | Immunite antitumorale amelioree |
CA002322660A CA2322660A1 (fr) | 1998-03-20 | 1999-03-19 | Immunite antitumorale amelioree |
US09/663,072 US7014848B1 (en) | 1998-03-20 | 2000-09-15 | Enhanced anti-tumor immunity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7890098P | 1998-03-20 | 1998-03-20 | |
US60/078,900 | 1998-03-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/663,072 Continuation US7014848B1 (en) | 1998-03-20 | 2000-09-15 | Enhanced anti-tumor immunity |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999047687A1 true WO1999047687A1 (fr) | 1999-09-23 |
Family
ID=22146898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/006037 WO1999047687A1 (fr) | 1998-03-20 | 1999-03-19 | Immunite antitumorale amelioree |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1064390A4 (fr) |
JP (1) | JP2002506886A (fr) |
AU (1) | AU3102799A (fr) |
CA (1) | CA2322660A1 (fr) |
WO (1) | WO1999047687A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002009745A1 (fr) * | 2000-07-28 | 2002-02-07 | Liponova Gmbh | Medicament destine a l"immunotherapie de tumeurs malignes |
JP2003512305A (ja) * | 1999-09-30 | 2003-04-02 | ユニバーシティ オブ ワシントン | 免疫学的に重要な単純疱疹ウイルス抗原 |
EP1712634A1 (fr) * | 2005-04-13 | 2006-10-18 | Wittycell SAS | Procédé pour la sélection des cellules présentatrices d'antigène efficaces et leur utilisation pour la régulation de l'immunité |
EP1509244B1 (fr) * | 2002-06-06 | 2011-07-27 | Immunicum AB | Nouveau procede et composition servant a produire un vaccin allogenique cellulaire |
US9044447B2 (en) | 2009-04-03 | 2015-06-02 | University Of Washington | Antigenic peptide of HSV-2 and methods for using same |
US9328144B2 (en) | 2009-02-07 | 2016-05-03 | University Of Washington | HSV-1 epitopes and methods for using same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017535284A (ja) * | 2014-11-05 | 2017-11-30 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | 免疫エフェクター細胞の拡大のための遺伝子改変免疫エフェクター細胞及び遺伝子操作細胞 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633234A (en) * | 1993-01-22 | 1997-05-27 | The Johns Hopkins University | Lysosomal targeting of immunogens |
US5856180A (en) * | 1993-05-31 | 1999-01-05 | Biotop S.A.S. Di Rita Cassarin | Immortalization of dendritic cells with V-MYC oncogene |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5985270A (en) * | 1995-09-13 | 1999-11-16 | Fordham University | Adoptive immunotherapy using macrophages sensitized with heat shock protein-epitope complexes |
UY24367A1 (es) * | 1995-11-23 | 2000-10-31 | Boehringer Ingelheim Int | Vacunas contra tumores y procedimiento para su produccion |
-
1999
- 1999-03-19 AU AU31027/99A patent/AU3102799A/en not_active Abandoned
- 1999-03-19 CA CA002322660A patent/CA2322660A1/fr not_active Abandoned
- 1999-03-19 JP JP2000536870A patent/JP2002506886A/ja not_active Withdrawn
- 1999-03-19 WO PCT/US1999/006037 patent/WO1999047687A1/fr not_active Application Discontinuation
- 1999-03-19 EP EP99912714A patent/EP1064390A4/fr not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5633234A (en) * | 1993-01-22 | 1997-05-27 | The Johns Hopkins University | Lysosomal targeting of immunogens |
US5856180A (en) * | 1993-05-31 | 1999-01-05 | Biotop S.A.S. Di Rita Cassarin | Immortalization of dendritic cells with V-MYC oncogene |
Non-Patent Citations (4)
Title |
---|
REEVES M E, ET AL.: "RETROVIRAL TRANSDUCTION OF HUMAN DENDRITIC CELLS WITH A TUMOR-ASSOCIATED ANTIGEN GENE", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 56, 15 December 1996 (1996-12-15), US, pages 5672 - 5677, XP002918916, ISSN: 0008-5472 * |
See also references of EP1064390A4 * |
SPECHT J M, ET AL.: "DENDRITIC CELLS RETROVIRALLY TRANSDUCED WITH A MODEL ANTIGEN GENE ARE THERAPEUTICALLY EFFECTIVE AGAINST ESTABLISHED PULMONARY METASTASES", THE JOURNAL OF EXPERIMENTAL MEDICINE, ROCKEFELLER UNIVERSITY PRESS, US, vol. 186, no. 08, 20 October 1997 (1997-10-20), US, pages 1213 - 1221, XP002918915, ISSN: 0022-1007, DOI: 10.1084/jem.186.8.1213 * |
YOUNG J W, INABA K: "DENDRITIC CELLS AS ADJUVANTS FOR CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX-RESTRICTED ANTITUMOR IMMUNITY", THE JOURNAL OF EXPERIMENTAL MEDICINE, ROCKEFELLER UNIVERSITY PRESS, US, vol. 183, 1 January 1996 (1996-01-01), US, pages 07 - 11, XP002918917, ISSN: 0022-1007, DOI: 10.1084/jem.183.1.7 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003512305A (ja) * | 1999-09-30 | 2003-04-02 | ユニバーシティ オブ ワシントン | 免疫学的に重要な単純疱疹ウイルス抗原 |
WO2002009745A1 (fr) * | 2000-07-28 | 2002-02-07 | Liponova Gmbh | Medicament destine a l"immunotherapie de tumeurs malignes |
EP1509244B1 (fr) * | 2002-06-06 | 2011-07-27 | Immunicum AB | Nouveau procede et composition servant a produire un vaccin allogenique cellulaire |
US8673296B2 (en) | 2002-06-06 | 2014-03-18 | Immunicum Ab | Method and composition for producing a cellular allogeneic vaccine |
EP1712634A1 (fr) * | 2005-04-13 | 2006-10-18 | Wittycell SAS | Procédé pour la sélection des cellules présentatrices d'antigène efficaces et leur utilisation pour la régulation de l'immunité |
WO2006109193A2 (fr) * | 2005-04-13 | 2006-10-19 | Wittycell Sas | Selection de cellules extremement efficaces presentant l'antigene pour la regulation de l'immunite et leurs utilisations |
WO2006109193A3 (fr) * | 2005-04-13 | 2006-11-30 | Wittycell Sas | Selection de cellules extremement efficaces presentant l'antigene pour la regulation de l'immunite et leurs utilisations |
US9328144B2 (en) | 2009-02-07 | 2016-05-03 | University Of Washington | HSV-1 epitopes and methods for using same |
US9044447B2 (en) | 2009-04-03 | 2015-06-02 | University Of Washington | Antigenic peptide of HSV-2 and methods for using same |
US9579376B2 (en) | 2009-04-03 | 2017-02-28 | University Of Washington | Antigenic peptide of HSV-2 and methods for using same |
Also Published As
Publication number | Publication date |
---|---|
EP1064390A1 (fr) | 2001-01-03 |
AU3102799A (en) | 1999-10-11 |
JP2002506886A (ja) | 2002-03-05 |
EP1064390A4 (fr) | 2002-06-12 |
CA2322660A1 (fr) | 1999-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1068296B1 (fr) | Compositions permettant de faire apparaitre une reponse immunitaire a un antigene de telomerase | |
US7601342B2 (en) | Cell fusions and methods of making and using the same | |
US20020041868A1 (en) | Cell fusions and methods of making and using the same | |
EP1064390A1 (fr) | Immunite antitumorale amelioree | |
AU758265B2 (en) | Induction of immunity against tumor self-antigens | |
US7014848B1 (en) | Enhanced anti-tumor immunity | |
AU759765B2 (en) | Compositions and methods for antigen-specific vaccination | |
US20020006412A1 (en) | Preparation and use of particulates composed of adenovirus particles | |
AU755706B2 (en) | Methods to provoke anti-cancer immune responses | |
AU753926B2 (en) | Novel complementing receptor-ligand pairs and adoptive immunotherapy using same | |
EP1063891A2 (fr) | Methodes pour une presentation amelioree de l'antigene sur des cellules presentatrices de l'antigene, et compositions produites selon ces methodes | |
EP1071436A1 (fr) | Hybrides de cellules effectrices immunes | |
EP1071470A1 (fr) | Compositions et methodes pour ameliorer l'apport antigenique in vivo a des cellules presentatrices de l'antigene | |
WO1999046984A1 (fr) | Compositions et methodes pour entreposer des cellules dendritiques congelees | |
AU2003271378B2 (en) | Immune effector cell hybrids | |
AU2007231612B2 (en) | Immune effector cell hybrids | |
AU2007201829A1 (en) | Immune effector cell hybrids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 31027/99 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2322660 Country of ref document: CA Ref country code: CA Ref document number: 2322660 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09663072 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 536870 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999912714 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1999912714 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999912714 Country of ref document: EP |