WO1999047588A1 - Production de microparticules - Google Patents
Production de microparticules Download PDFInfo
- Publication number
- WO1999047588A1 WO1999047588A1 PCT/GB1999/000685 GB9900685W WO9947588A1 WO 1999047588 A1 WO1999047588 A1 WO 1999047588A1 GB 9900685 W GB9900685 W GB 9900685W WO 9947588 A1 WO9947588 A1 WO 9947588A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microparticles
- polymer
- emulsifier
- aqueous
- solvent
- Prior art date
Links
- 239000011859 microparticle Substances 0.000 title claims abstract description 117
- 238000004519 manufacturing process Methods 0.000 title abstract description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims abstract description 78
- 238000000034 method Methods 0.000 claims abstract description 61
- 229920000642 polymer Polymers 0.000 claims abstract description 60
- 239000003995 emulsifying agent Substances 0.000 claims abstract description 44
- 239000013543 active substance Substances 0.000 claims abstract description 31
- 239000002904 solvent Substances 0.000 claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 239000007864 aqueous solution Substances 0.000 claims abstract description 15
- 239000006185 dispersion Substances 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims description 40
- 238000011068 loading method Methods 0.000 claims description 15
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 14
- 239000003125 aqueous solvent Substances 0.000 claims description 12
- 102000004169 proteins and genes Human genes 0.000 claims description 9
- 108090000623 proteins and genes Proteins 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 8
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims description 8
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims description 4
- 239000002736 nonionic surfactant Substances 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 2
- 229920002545 silicone oil Polymers 0.000 abstract description 44
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 74
- 108010000817 Leuprolide Proteins 0.000 description 38
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 37
- 229960004338 leuprorelin Drugs 0.000 description 37
- 238000002156 mixing Methods 0.000 description 30
- 239000000203 mixture Substances 0.000 description 26
- 239000004005 microsphere Substances 0.000 description 22
- 238000003756 stirring Methods 0.000 description 22
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 20
- 229940034199 thyrotropin-releasing hormone Drugs 0.000 description 20
- XNSAINXGIQZQOO-UHFFFAOYSA-N L-pyroglutamyl-L-histidyl-L-proline amide Natural products NC(=O)C1CCCN1C(=O)C(NC(=O)C1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-UHFFFAOYSA-N 0.000 description 19
- 239000000627 Thyrotropin-Releasing Hormone Substances 0.000 description 19
- 102400000336 Thyrotropin-releasing hormone Human genes 0.000 description 19
- 101800004623 Thyrotropin-releasing hormone Proteins 0.000 description 19
- 239000000047 product Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 238000005191 phase separation Methods 0.000 description 18
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 16
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 13
- 239000008346 aqueous phase Substances 0.000 description 12
- -1 fatty acid esters Chemical class 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 239000011521 glass Substances 0.000 description 11
- 239000006228 supernatant Substances 0.000 description 11
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 238000013019 agitation Methods 0.000 description 9
- 102000004877 Insulin Human genes 0.000 description 8
- 108090001061 Insulin Proteins 0.000 description 8
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 229940125396 insulin Drugs 0.000 description 8
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 7
- 229920001610 polycaprolactone Polymers 0.000 description 7
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 102000018832 Cytochromes Human genes 0.000 description 6
- 108010052832 Cytochromes Proteins 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 229940098773 bovine serum albumin Drugs 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000013268 sustained release Methods 0.000 description 6
- 239000012730 sustained-release form Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 229940088597 hormone Drugs 0.000 description 5
- 239000005556 hormone Substances 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 102000016943 Muramidase Human genes 0.000 description 4
- 108010014251 Muramidase Proteins 0.000 description 4
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 238000004581 coalescence Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000004325 lysozyme Substances 0.000 description 4
- 235000010335 lysozyme Nutrition 0.000 description 4
- 229960000274 lysozyme Drugs 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 229960003604 testosterone Drugs 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 238000005354 coacervation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000002356 laser light scattering Methods 0.000 description 2
- 230000001592 luteinising effect Effects 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- DCBSHORRWZKAKO-UHFFFAOYSA-N rac-1-monomyristoylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OCC(O)CO DCBSHORRWZKAKO-UHFFFAOYSA-N 0.000 description 2
- 239000003488 releasing hormone Substances 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000013222 sprague-dawley male rat Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- ITYONPBTNRIEBA-UHFFFAOYSA-N 1-[3-(1h-imidazol-5-yl)-2-[(5-oxopyrrolidine-2-carbonyl)amino]propanoyl]pyrrolidine-2-carboxylic acid Chemical compound OC(=O)C1CCCN1C(=O)C(NC(=O)C1NC(=O)CC1)CC1=CN=CN1 ITYONPBTNRIEBA-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- FEBOTPHFXYHVPL-UHFFFAOYSA-N 3-[1-[4-(4-fluorophenyl)-4-oxobutyl]-4-piperidinyl]-1H-benzimidazol-2-one Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCC(N2C(NC3=CC=CC=C32)=O)CC1 FEBOTPHFXYHVPL-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- HETSDWRDICBRSQ-UHFFFAOYSA-N 3h-quinolin-4-one Chemical class C1=CC=C2C(=O)CC=NC2=C1 HETSDWRDICBRSQ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 108010069236 Goserelin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000007987 MES buffer Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- HDSBZMRLPLPFLQ-UHFFFAOYSA-N Propylene glycol alginate Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(C)C(C(=O)OCC(C)O)O1 HDSBZMRLPLPFLQ-UHFFFAOYSA-N 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- 229960002507 benperidol Drugs 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 1
- 229960002802 bromocriptine Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 229960002798 cetrimide Drugs 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical class C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 239000002812 cholic acid derivative Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 229960000978 cyproterone acetate Drugs 0.000 description 1
- UWFYSQMTEOIJJG-FDTZYFLXSA-N cyproterone acetate Chemical compound C1=C(Cl)C2=CC(=O)[C@@H]3C[C@@H]3[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 UWFYSQMTEOIJJG-FDTZYFLXSA-N 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 108700020496 deamido- thyrotropin-releasing hormone Proteins 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 239000003163 gonadal steroid hormone Substances 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical class C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- UMWKZHPREXJQGR-XOSAIJSUSA-N n-methyl-n-[(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl]decanamide Chemical compound CCCCCCCCCC(=O)N(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO UMWKZHPREXJQGR-XOSAIJSUSA-N 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000000710 polymer precipitation Methods 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 description 1
- 239000000770 propane-1,2-diol alginate Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229960004532 somatropin Drugs 0.000 description 1
- 235000011078 sorbitan tristearate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229940034208 thyroxine Drugs 0.000 description 1
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229940045860 white wax Drugs 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
- A61K9/1647—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1694—Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/14—Powdering or granulating by precipitation from solutions
Definitions
- the present invention relates to a method of producing microparticles for use in delivering a pharmaceutically active substance, particularly a peptide, protein or polynucleotide, and to the microparticles themselves and pharmaceutical compositions thereof.
- the present invention relates to the so-called phase separation method of producing microparticles wherein an emulsion of water droplets is formed in a continuous phase comprising a polymer dissolved in a non-aqueous solvent such as dichloro ethane.
- the polymer is caused to coacervate out of solution around the water droplets by the addition of a non-solvent for the polymer, such as a silicone oil.
- the process is generally carried out under vigorous agitation using a mixer to prevent coalescence of the droplets or incipient microparticles .
- a problem of this method is that the so-called stability window (i.e. the relative ratios of the components of the mixture e.g. silicone oil non-solvent, polymer, water and non-aqueous solvent which results in the successful formation of microparticles) is rather small. This limits the practical application of the method. For 2 example, when a ternary diagram is drawn representing silicone oil, polymer and dichloromethane solvent there is only a small area representing a very restricted range of these components (typically around 36% silicone oil, 4% polymer and 60% dichloromethane) which results in microparticles. It would be desirable to have a method of producing microparticles which was operable over a wider range of concentrations, in particular so that it could be adapted for use with a variety of active substances of varying molecular weight, solubility, polarity etc.
- so-called stability window i.e. the relative ratios of the components of the mixture e.g. silicone oil non-solvent, polymer, water and non-aque
- the so-called water-in-oil emulsion used to prepare the microparticles is an unstable emulsion and vigorous agitation is required in order to maintain a small droplet size and prevent coalescence during the polymer precipitation phase separation step.
- a high viscosity silicone oil is used as the non-solvent (since low viscosity oils tend to result in an even more reduced stability window) .
- the vigorous agitation or mixing of the system leads to the generation of large amounts of heat, which can be undesirable where the pharmaceutically active material to be loaded into the microparticles is a heat sensitive material, such as a peptide or protein.
- heat tends to promote evaporation of volatile non-aqueous solvent (e.g. dichloromethane) leading to lack of process 3 control.
- cooling systems such as dry ice or liquid nitrogen; but such cooling methods not preferred for large scale industrial application.
- Patent specification US3,531,418 describes the production of a polymer solution at high temperature. As the solution cools, the polymer is precipitated out of solution in the form of microparticles around a solid active agent core. Solid active agents may need to be ground to size, which may generate heat and denature heat- sensitive active agents. Moreover, use of a non-aqueous solvent in direct contact with the active agent can also result in denaturation . Alternatively, aqueous solutions may be encapsulated.
- US Patent 4,166,800 also relates to the preparation of microspheres by low temperature (-40° to -100°C) phase separation of a polymer and a core material. US4,389,331 employs cooling to room temperature as the phase separation step.
- Patent specification US4,622,244 describes a standard phase separation method wherein phase separation is brought about by the addition of a phase separation agent, such as a polymeric material or a non-solvent for the polymer being used to produce the microparticles. Phase separation occurs either at low temperatures of at least -30°C or at room temperature. However, isolation of the microparticles has to be carried out at a temperature of -30°C or lower. 4 US Patent 4,673,595 describes hardening of the microparticles at a temperature of between 0° and 25°C employing particular aliphatic fluorinated or fluorohalogenated hydrocarbons as hardening agents.
- Silicone oil non-solvent is used as a phase separation agent.
- Patent specification W089/03678 describes the use of a second non-solvent such as heptane to harden the microspheres prior to collection thereof.
- Patent specifications EP0377477 and US5,066,436 describe the use of other hardening agents such as fatty acid esters.
- Patent specifications US5,000,886 and US5,500,228 describe the use of volatile silicone oils as hardening agents, so as to facilitate removal thereof so that there is no residue in the microcapsules .
- Patent specifications GB2234896 and US5,603,960 disclose the use of surfactants during microparticle production.
- Patent specification GB2234896 discloses the use of a hardening mixture comprising heptane and Span 80 surfactant oil-in-water emulsion to harden the microspheres and to remove non-encapsulated active peptide material so as to avoid an initial burst of active when the microparticles are administered to a patient.
- Patent specification ⁇ s ⁇ , 603,960 describes a reversal of the standard phase separation technique, wherein the aqueous dispersion is formed in silicone oil non-solvent, and the solution of polymer in dichloromethane is added thereto to 5 initiate phase separation.
- Span 40 surfactant may be included in the aqueous dispersion of active in the silicone oil non-solvent.
- An object of the present invention is to provide a process having a broad stability window.
- the present invention is based on the use of a emulsifier to stabilise the system.
- the present invention provides a method of producing microparticles, which comprises; incorporating an emulsifier in an aqueous liquid and/or a non-aqueous solution containing a polymer; forming a dispersion of the aqueous liquid in the non- aqueous solution; and agitating the dispersion and adding thereto a non- solvent for the polymer so as to form polymer microparticles .
- the present invention includes a emulsifier in the aqueous liquid which forms the aqueous discontinuous phase of the "water-in-oil" dispersion and/or in the continuous "oil” phase; and is present at the interface between the aqueous droplets and the non-aqueous solvent.
- a emulsifier has been found to expand the stability window, and so to provide a process which is capable of producing microparticles over a relatively wide range of conditions (especially quantities of non-aqueous solvent, aqueous liquid, polymer, non-solvent and active 6 substance). It allows larger quantities of water and of polymer to be included in the dispersion. The process is thus robust and adaptable to a variety of active substances.
- the process should be suitable for the sustained release of small peptide molecules. It also enables lower viscosity non-solvents to be employed, which may not be possible in the absence of the emulsifier.
- the use of a emulsifier has been found to allow non- solvents and agitation conditions to be used, which are such that undue heat is not generated during the production of the polymer microparticles thereby protecting any pharmaceutically active agent incorporated therein from thermal degradation.
- the aqueous liquid comprises a pharmaceutically active agent suspended or dissolved therein.
- the pharmaceutically active agent can be any active solid or liquid substance but the method of the present invention is particularly applicable to those active agents which are susceptible to thermal degradation at temperatures above room temperature (i.e.
- active agents are proteins and peptides, such as enzymes, hormones, antigens etc. and those which exert a therapeutic or prophylactic effect, or can be used as diagnostic agents.
- the peptides or proteins may be recombinant, synthetic or from natural sources.
- tne peptide or protein may be lysozyme, insulin, thyrotropin releasing hormone (TRH) , luteinising hormone releasing hormone (LHRH) or analogues thereof (e.g. Leuprolide) , or cytochrome C.
- TRH thyrotropin releasing hormone
- LHRH luteinising hormone releasing hormone
- analogues thereof e.g. Leuprolide
- cytochrome C cytochrome C.
- the emulsifier is usually incorporated in the aqueous liquid or non-aqueous solvent by being dissolved or emulsified therein.
- the emulsifier is usually present in an amount of up to 60% by weight, generally up to 30% by weight, preferably up to 20% by weight, typically 5-15% by weight of the liquid. There is generally at least 1% by weight of emulsifier present.
- the emulsifier is a non-ionic surfactant, such as those having a hydroxyl- containing hydrophilic portion and a long chain fatty acid lipophilic portion. Typical non-ionic surfactants are available under the trademarks Span, Tween and Brij .
- Span type materials are partial esters of the common fatty acids (lauric, palmitic, stearic, and oleic) and hexitol and anhydrides (hexitans and hexides) , derived from sorbitol.
- Tween type materials are derived from the Span materials by adding polyoxyethylene chains to the non-esterified hydroxyl groups. Span products tend to be oil-soluble and dispersable or insoluble in water; while Tween products are soluble or well dispersed in water.
- Brij surfactants include polyoxyethylene ester groups.
- Preferred non-ionic surfactants are Span 20, 40, 60, 65 and 80.
- Anionic surfactants or cationic surfactants (such as quaternary ammonium compounds) may also be used.
- the HLB value of the surfactant is normally in the range 2 to 9.
- the emulsifier (which may or may not be a surfactant) may be any pharmaceutically acceptable emulsifying agent o O and may be non ionic, for example gum arabic, alginic acid, cetostearyl alcohol, cetyl alcohol, a glucose fatty acid ester, glyceryl monooleate, glyceryl monostearate, hydroxypropyl cellulose, a medium chain triglyceride, low molecular weight methylcellulose , a poloxamer, a polyoxyethylene alkyl ether, a polyoxyethylene castor oil derivative, a polyoxyethylene fatty acid ester, a polyoxyethylene stearate, polyvinyl alcohol, a sorbitan fatty acid ester, or a sucrose fatty acid ester; cationic, for example cetrimide, monoethanolamine or triethanolamine; or anionic, for example a cholic acid derivative, carbomer, docusate sodium oleic acid, propylene glycol
- the aqueous liquid is dispersed in a non- aqueous solution containing a polymer, generally a pharmaceutically acceptable polymer for pharmaceutical applications.
- a polymer generally a pharmaceutically acceptable polymer for pharmaceutical applications.
- the dispersion will be unstable and requires vigorous agitation. The degree of agitation may be determinative of the droplet size of the discontinuous aqueous phase.
- the surfactant also has an effect in controlling particle size.
- the aqueous liquid is usually 0.3-50%, generally 5-50%, especially 10-20% by weight of the dispersion. A preferred range is 1-20% by weight.
- the polymer used for forming the polymer microparticles is generally a pharmaceutically acceptable 9 polymer such as a polyester, polyvinylchloride, polycaprolactone or the well known polylactide family of polymers, in particular a polylactide-co-glycolide polymer.
- a pharmaceutically acceptable 9 polymer such as a polyester, polyvinylchloride, polycaprolactone or the well known polylactide family of polymers, in particular a polylactide-co-glycolide polymer.
- the ratio of lactide to glycolide (and endcapping) and molecular weight may be varied and determines the rate of release of the active material from the microparticles.
- the molar ratio of lactide to glycolide can vary in the range 100:0 to 0:100. However, molar ratios of 100:0 to 50:50 are preferred since the copolymers tend to be soluble in the non-aqueous solvents preferably employed.
- the ratio is preferably between 70:30 and 35:65 (more preferably 70:30 to 50:50).
- Preferred copolymers have a lactide to glycolide ratio of 50:50 or 75:25.
- the number average molecular weight Mn of the polylactide polymer may be in the range 5,000 to 50,000.
- the inherent viscosity (i.v.) is generally from below 0.2 up to 8. In vivo, such polymers undergo biodegradation by random, non-enzymatic scission to form lactic acid and glycolic acid metabolites. Thus, the bulk degradation of the polymer is determinative of the release time for most of the active agents to be included within the microparticle, such that the microparticles have a sustained release effect.
- the sustained release period may be up to 365 days but will generally be in the range 5 to i ⁇ O days, typically 10 to 30 days.
- the use of an emulsifier according to the present invention has been found to produce microparticles of narrow size distribution and excellent consistency of shape. Clearly, it is 10 desirable that the particles should have a consistent spherical shape, which are easier to inject, rather than irregular shapes.
- the non-aqueous solvent for the polymer solution is generally an organic solvent.
- the polymer may be present in an amount of up to 25% by weight, preferably m the range 0.5 to 10% by weight, more preferably 1 to 3% by weight.
- Dichloromethane methylene chloride
- Dichloromethane methylene chloride
- a non-solvent for the polymer is added to the continuous non-aqueous phase in order to coacervate the polymer from solution onto the dispersed aqueous droplets.
- the dispersion is kept in a constant state of agitation in order to prevent coalescence of the aqueous droplets or of the forming microparticles. If the non-aqueous solution has a relatively high viscosity, then the vigorous agitation results in the production of considerable heat, which must be removed by cooling in conventional processes.
- the non-solvent is a material of relatively low viscosity which is dissolvable in the non- aqueous solvent but does not substantially increase the viscosity tnereor
- the temperature of the method can be kept to around room temperature and is preferably in the range 10-25°C. However, no external cooling means are required in order to achieve this, thereby substantially 11 facilitating the industrial application of the process.
- the non-solvent is a silicone oil, such as those available from Dow Corning or Fluka Chemicals (Gillingham, UK) .
- the Dow Corning 200 series of oils are particularly preferred.
- the viscosities lie in the range 50-150 mPa, although viscosities of up to 500 may be employed.
- the prior art has generally employed silicone oils having viscosities of 500 to 1000 mPa and above.
- the polymer microparticles formed may then be hardened in conventional manner, e.g. by admixing with a non-solvent for the polymer such as a liquid hydrocarbon e.g. heptane or other conventional non-solvents. Agitation may be continued to prevent coalescence of the microparticles until hardening is completed.
- a non-solvent for the polymer such as a liquid hydrocarbon e.g. heptane or other conventional non-solvents. Agitation may be continued to prevent coalescence of the microparticles until hardening is completed.
- the microparticles may be filtered and washed. Generally, the microparticles are then dried, which has the effect of removing residual non-aqueous solvent and residual water so as to leave the microparticle consisting substantially of polymer, active agent if present and residual emulsifier (e.g. in amounts up to 5% by weight, more generally up to 2% by weight).
- the residual emulsifier is beneficial in that it facilitates the resuspension of the microparticles in water where the microparticles are to be used in the form of an aqueous suspension, for example as an injectable sustained release pharmaceutical formulation. 12
- the loading efficiency is defined as the amount of active substance entrapped in the microparticle divided by the amount introduced into the process .
- microparticles comprising a pharmaceutically active agent, a emulsifier and a pharmaceutically acceptable polymer. Because of the method of production, the microparticles are substantially free of non-solvent, such as silicone oil. The substantial freedom of the microparticles from hydrophobic non-solvents such as silicone oil, together with the presence of emulsifier ensures that the microparticles of the present invention are particularly easy to resuspend in water in order to provide pharmaceutical compositions thereof.
- Typical active agents are as follows.
- LHRH Luteinising Hormone Releasing Hormone
- TRH Thyrotrophin Releasing Hormone 14
- a further aspect of the present invention provides pharmaceutical formulations, particularly for injection, comprising the microparticles suspended in an aqueous pharmaceutically acceptable liquid.
- microparticles of the present invention may also find use in non-pharmaceutical areas such as agriculture (e.g. for the sustained release of pesticides) or in food (e.g. to incorporate sustained release flavourings into chewing gum) and this forms a further aspect of the invention.
- the microspheres can be used for targetting active agents to specific tissue sites.
- Drug targetting applications arise from the ability of microspheres to immobilise a depot of a pharmacologically active material in a tissue bed. This can be achieved either by direct injection into the tissue or by administration of particles having the correct size distribution into the arterial system supplying the tissue of interest, the particles then being trapped in the relevant capillary bed.
- the median particle size Dv50 (also known as Dv0.5) of the microparticles is in the range 2-300 microns, preferably 10-300 microns, more preferably 10-100 microns and particularly 10-50 microns.
- the Dv50 is the particle diameter having 50% of the total sample volume above and below it. It therefore represents the median volume diameter. This is relevant to active agents delivery systems, since particle volume is 15 related to the quantity of active agent that can be loaded. It is found that the loading efficiences of the active agent in the microparticles of the present invention is good and is generally in the range 5-75%.
- Example 1 This Example illustrate the use of different emulsifiers (i . e . surfactants) .
- the procedure of Example 1 was repeated, with the only change that different emulsifiers were used (Span 20,40 and 65), and the volume of silicone oil was 20 mi.
- the resulting mean particle sizes are shown in Table 2A. TABLE 2A
- Emulsifier used Particle size ( ⁇ m)
- 600mg emulsifier was dispensed into a mixing vessel along with 25ml 3% w/v poly (D, L-lactide-co-glycolide) (50:50 ratio, i.v. 0.7) in dichloromethane, and 3ml of demineralised water. The system was then homogenised and 20ml of silicone oil (lOO Pas) added under mixing. The resulting mixture was transferred into 200ml n-heptane and stirred for 1 hour after which the product was allowed to settle. The supernatant was decanted, 200ml fresh n- heptane added, and stirring continued. The resulting product was then collected on a membrane filter.
- Microparticles were sized by the method of laser light diffraction and the results summarised in Table 2B. This data illustrates that a range of emulsifiers can be utilised in the process.
- Example 3 shows the effect of different oil viscosities and mixing speeds.
- the procedure described in Example 1 was repeated, with the only change that 20 ml of silicone oil of viscosity 110 or 378 m.Pa.s was added, whilst the mixing speed was varied (6500, 8600 and 11,500 rp ) .
- the resulting mean particle sizes are shown in Table 3.
- silicone oil silicone oil DC200, -100 mPa.s
- a syringe driver equipped with 50 ml glass syringe.
- mixing was continued for 1 minute.
- the resulting mixture was then added to 200ml stirred n- heptane.
- Stirring was continued for a minimum of 30 minutes, whereafter stirring was stopped, and the formed microparticles allowed to settle.
- Supernatant was decanted, another 200ml of n-heptane added, and stirring continued for at least 30 minutes.
- stirring was stopped, and the microparticles were collected over a 21 cellulose ester filter (1.2 ⁇ m pore size).
- microparticles were dried under vacuum overnight. Microparticle sizes were determined using laserlight diffraction, and the entrapment of BSA in the microspheres determined using a bicinchoninic acid (BCA) protein assay. The results are shown in Table 4.
- silicone oil silicone oil DC200, ⁇ 100 mPa.s
- a syringe driver with a 50-ml glass syringe. 22
- mixing was continued for 1 minute.
- the resulting mixture was then added to 200 ml stirred n-heptane. Stirring was continued for a minimum of 30 minutes, after which the microparticles were washed and collected as described in Example 4.
- Mean microparticle size was determined by laserlight diffraction and found to be 17 ⁇ m.
- the entrapment of lysozyme in the microspheres was determined using a BCA protein assay. The entrapment efficiency was 56%.
- silicone oil silicone oil DC200, -100 mPa.s
- syringe driver equipped with a 50-ml glass syringe.
- mixing was continued for 1 minute.
- the resulting mixture was then added to 200 ml stirred n-heptane. The stirring was continued for a minimum of 30 minutes, following which the microparticles were washed and collected as described in Example 4.
- Mean microparticle size was determined by laserlight diffraction.
- the entrapment of TRH in the microspheres was determined by 23 dissolving the microspheres in dichloromethane, extracting TRH into an aqueous phase, and determining the extracted amount of TRH by high performance liquid chromatography. The results are shown in Table 5.
- lml of cytochrome C solution 25.32mg was mixed with approximately 1.5g Span 80 (20% w/w) or 1.5ml of water and the total aqueous phase adjusted to 3g with water.
- 25ml of 10% w/v RG503 (a 50:50 lactide/glycolide copolymer) solution in dichloromethane was then added, and the system mixed at lOOOOrp for 1 minute.
- 25ml Silicone oil was added at 2ml/minute whilst mixing following which mixing was continued for a further minute.
- the resulting system was poured into 200ml of HPLC grade n-heptane and mixed for 1 hour.
- Microsphere yield was determined gravimetrically , and the particle size distribution measured by laser light scattering (Malvern Mastersizer) . Results are given in Table 7.
- silicone oil viscosity has little influence on microsphere yield, although it does appear to influence the particle size distribution (albeit in an unpredictable manner) .
- the most important effect observed was the inability to produce microspheres in the absence of emulsifier (a precipitate resulting) , even with the most viscous oil at low temperatures.
- this 26 appears to conflict with the prior art which demonstrates particle production without surfactant.
- the conventional surfactant-free process is only able to produce microspheres within a very narrow range of conditions, and it is likely that the systems manufactured above are outside this stability window. This further illustrates the wide stability window of the process of the invention.
- a disadvantage of the conventional phase separation process is the relatively narrow range of conditions over which microparticles can be produced and the consequently restricted range of microparticles available.
- microparticulate systems were manufactured with and without emulsifier and over a range of polymer concentrations, aqueous phase volumes and protein loading levels.
- Span 80 was dispensed to a mixing vessel along with RG505 50/50 ratio lactide/glycolide copolymer (PLGA) dissolved in dichlorometnane and cytochrome C solution.
- the composition of these systems is summarised in Table 8.
- Each system was homogenised whilst silicone oil (lOOmPa.s) was added at 2ml/min. Samples were taken at designated 27 intervals and dispersed into l00-200ml n-heptane. The product that resulted was allowed to settle, rinsed with further heptane and recovered by filtration. Samples were dried and the nature of each product determined following the addition of water and brief sonication. The presence of a microparticulate product was indicated by formation a fine dispersion.
- microparticles can be produced over a far wider range of conditions in the presence of an emulsifier.
- cytochrome C when high levels were used it was impossible to produce particles at the higher level of polymer concentration in the absence of an emulsifier.
- the process was unable to form microparticles in the absence of an emulsifier when low levels of cytochrome C were used even at low polymer concentration.
- TRH is a very small molecule (3 amino acids) and is therefore more difficult to entrap than larger species.
- This experiment was performed using RG503 (a similar 50/50 co-polymer to RG505 but having a lower molecular weight) and a 75/25 lactide/glycolide copolymer.
- burst release A failing of many microparticulate systems is rapid 29 load release during the very early phase of the release profile. Known as burst release, this can be due to the presence in the formulation of free active compound, or the active's association with the particle surface rather than its entrapment. The importance of burst release arises due to the high potency of the active typically incorporated into microparticles and the risk of the development of toxic plasma levels.
- burst release can be attenuated by rinsing the product with an aqueous buffer prior to storage and administration. This, however, will result in the loss of a considerable quantity of often expensive active compound. It would be preferable for the formulation method to result in complete load entrapment.
- TRH loaded microparticles were prepared. 3g of an aqueous phase containing 400mg Span 80 and 54mg TRH was transferred into a mixing vessel along with 25ml of lactide/glycolide copolymer in dichloromethane. This mixture was homogenised, and 20ml silicone oil added under constant mixing. The resulting system was transferred into 200 ml n-heptane under stirring, the resulting product allowed to settle, supernatant decanted, further heptane added and stirring continued. Microparticles were recovered by filtration and dried.
- Entrapped TRH was determined by HPLC following particle dissolution in dichloromethane and peptide extraction into an aqueous phase. Microparticles were then washed with demineralised water, in order to remove any 30 non-entrapped or loosely associated active. Rinsed particles were re-dried and their TRH loading determined as above .
- this example demonstrates the ability of the phase separation process of the invention to promote high entrapment efficiency.
- SOOmg Span 80 was dispensed to a mixing vessel along with 25ml of polymer solution. Demineralised water was added and the system homoqenised. Silicone oil was added under constant mixing and the resulting system decanted into 200ml n-heptane and stirred. Stirring was halted, allowing the product to settle. The supernatant was 31 decanted, fresh n-heptane added, and stirring continued. Microparticles were then collected on a membrane filter and allowed to dry overnight. Microparticle diameters were determined by laser light diffraction. The results of this study are reported in Table 10 and indicate that the process described is flexible with respect to the polymers that can be utilised.
- PCL Poly (caprolactone)
- PVC Poly (vinylchloride)
- Span 80 800mg Span 80 was dispensed into a mixing vessel along with 3ml demineralised water and 25ml of 3% (w/v) poly(D,L- lactide-co-glycolide) (50:50 molar ratio, i.v. -0.5) in dichloromethane.
- the system was then homogenised and 20ml of coacervation agent added at a rate of 2ml per minute under constant mixing.
- the resulting mixture was transferred into 200ml n-heptane, and stirred. Stirring was halted, allowing microparticles to settle.
- the 32 supernatant was decanted, 200ml fresh n-heptane added, and stirring continued.
- the microparticulate product was then collected on a membrane filter and allowed to dry overnight.
- Microparticle size distributions were determined by laser light scattering, and the results summarised in Table 11. These data indicate that the phase separation process here described is not limited by the use of silicone oil.
- Span 80 was transferred into a mixing vessel along with 2ml of an aqueous phase containing 20mg leuprolide and 40ml 3% (w/v) poly (D, L-lactide-co-glycolide) (50:50 molar ratio, i.v. -0.7) in dichloromethane.
- This mixture was homogenised and 30ml silicone oil (lOOmPas) added under constant mixing.
- the resulting system was transferred into n-heptane and stirred.
- the resulting product was allowed to settle, the supernatant decanted, fresh heptane added and mixing continued. Microparticles were recovered by filtration. Manufacture was carried out in triplicate and the batches combined.
- microparticle size distribution was determined by laser light diffraction as 40 ⁇ m.
- the leuprolide content of 33 the microparticles was determined as 0.71%w/w by HPLC following particle dissolution and extraction of the peptide into an aqueous phase.
- Leuprolide release was determined by re-suspending a quantity of microparticulate material in 10mm MES buffer (pH 7.2) and incubating the system at 37°C. At the required time, samples were drawn, centrifuged and the leuprolide present in the aqueous supernatant determined by UV absorbance. This data is summarised in Figure 3, which demonstrates the controlled release of leuprolide from microparticles over a period of 55 days.
- leuprolide loaded microparticles manufactured as detailed in Example 13
- blank microparticles blank microparticles with free leuprolide or free leuprolide according to the dose schedule given in Table 12.
- Administration was by subcutaneous injection into the right flank, and injection sites were marked with a marker pen in order to facilitate their excision at necropsy.
- Injection site tissue was finely shredded and homogenised in a mixture consisting of 10ml hexane and 5ml phosphate buffer. Following homogenisation, the homogeniser head was rinsed with phosphate buffer, 34 rinsing's being added to the sample. Samples were centrifuged, the hexane removed, 5ml dichloromethane added and then shaken overnight. Samples were then extracted with phosphate buffer several times and the leuprolide content of the combined extracts determined by HPLC.
- LHRH 35 analog for example leuprolide
- leuprolide results in the suppression of plasma testosterone levels following an initial surge.
- This activity affords a convenient method for the assessment of LHRH bio-activity, and was used to assess the activity of leuprolide formulated into microspheres as detailed in Example 13.
- Rats were treated with leuprolide loaded microparticles, blank microparticles, free leuprolide and free leuprolide co-administered with blank microparticles as outlined in Example 14. Blood samples were drawn periodically, and plasma testosterone levels determined by radioimmunoassay .
- Leuprolide loaded microparticles were prepared by the phase separation method. 3ml of an aqueous phase containing 400mg span 80 and 20mg leuprolide was transferred to a mixing vessel to which was added 25ml of 1.5% (w/v) poly (D, L-lactide-co-glycolide) (50:50 molar ratio, i.v. -0.7) in dichloromethane. This mixture was homogenised and 25ml silicone oil added under constant mixing. The resulting system was transferred into 200 ml n-heptane under stirring and the resulting product allowed to settle, supernatant decanted, further n-heptane added and stirring continued. Microparticles were dried and their particle size determined by laserlight diffraction.
- Entrapped leuprolide was determined by HPLC following particle dissolution in dichloromethane and the extraction of peptide into an aqueous phase. Microparticles were found to have a diameter of 3l ⁇ m and a leuprolide content of 0.75%w/w.
- Blank microparticles were prepared by the phase separation method. 3ml of an aqueous phase containing 400mg Span 80 was transferred to a mixing vessel to which was added 25ml of 3%(w/v) poly (D, L-lactide-co-glycolide) (50:50 molar ratio, i.v. -0.7) in dichloromethane. This mixture was homogenised and 20ml silicone oil added under constant mixing. Tne resulting system was transferred into 200 ml n-heptane under stirring and the resulting product allowed to settle, supernatant decanted, further n-heptane added and stirring continued. Microparticles were dried 37 and were found to have a diameter of 45 ⁇ m and to contain no entrapped leuprolide.
- Both blank and leuprolide loaded microparticles were dispersed in a buffer consisting of 1% sodium carboxymethyl cellulose, 0.2% Tween 80, 0.14% methyl p-hydroxybenzoate, 0.014% propyl p-hydroxybenzoate and 5% sorbitol.
- Groups of 5 male Sprague-Dawley rats were dosed with 125mg/kg of microparticles, either blank or leuprolide-loaded, 7.5 mg/kg leuprolide or an appropriate volume of vehicle. Rats were sacrificed after 28 days, the injection sites excised, and subjected to histopathological investigation.
- microparticles manufactured by the method here described are bio-compatible and do not result in any irritation other than that expected from the injection of any foreign body.
- Silicone oil was determined by NMR spectroscopy . 38 Standards were prepared by dispensing 50mg of PLGA into glass vials and dissolving this material in dichloromethane laced with known quantities of silicone oil (lOOmPas). Following polymer dissolution, solvent was removed by evaporation, and the standards vacuum desiccated. 1ml deuterated chloroform was then added, the material shaken overnight, and the 1 H NMR spectrum of each standard determined. Samples were handled in a similar way except that the chloroform used to dissolve microparticles was silicone oil free. The silicone oil/solvent proton was calculated from the 1 H spectrum. This ratio was used to construct a liner calibration series for standards, from which unknown's could be determined. The results of this study are summarised on Table 13 and indicate that the process described above has the potential to produce microparticles with very low levels of residual silicone oil.
- Residual dichloromethane and n-heptane were determined by GC. Samples were weighed into glass vials and dissolved in 1,4-dioxane. Iso-octane, containing 2-butoxyethanol as an internal standard, was then added to each vial in order to precipitate the polymer. Precipitate was removed by centrifugation and the samples analysed by GC(SGE BPX5 25mx0.32mm, l ⁇ l split injection (20:1 split) at 280°C, Helium, 2ml/min) . Calibration was carried out using heptane and DCM dissolved in 1,4-dioxane and isooctane (1:2) with 2-butoxyethanol as an internal standard. The results of this study are summarised in Table 13 and 39 indicate that the microsphere production method here described has the potential to produce product with very low levels of residual solvent.
- Residual Span 80 was determined by UV absorbance (A 232 ) following dissolution of samples in acetonitrile, and solvent extraction of the emulsifier. Quantification was carried out by reference to the absorbencies obtained for known standards. The results of this study are summarised in Table 13 and indicate the microparticles produced by this method are associated with quantity of residual emulsifier. This may act to the benefit of the product since it may increase surface hydrophilicity and therefore aid particle wetting and redispersion.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Steroid Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR9908755-3A BR9908755A (pt) | 1998-03-14 | 1999-03-15 | Processo de produzir micropartìculas, e, micropartìcula |
CA002324235A CA2324235A1 (fr) | 1998-03-14 | 1999-03-15 | Production de microparticules |
EP99907729A EP1068257A1 (fr) | 1998-03-14 | 1999-03-15 | Production de microparticules |
AU27364/99A AU2736499A (en) | 1998-03-14 | 1999-03-15 | Production of microparticles |
JP2000536777A JP2002506901A (ja) | 1998-03-14 | 1999-03-15 | 微粒子の製造 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9805417.4A GB9805417D0 (en) | 1998-03-14 | 1998-03-14 | Production of microparticles |
GB9805417.4 | 1998-03-14 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09646200 A-371-Of-International | 2000-11-09 | ||
US10/317,547 Continuation US20030180368A1 (en) | 1998-03-14 | 2002-12-12 | Production of microparticles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999047588A1 true WO1999047588A1 (fr) | 1999-09-23 |
Family
ID=10828524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1999/000685 WO1999047588A1 (fr) | 1998-03-14 | 1999-03-15 | Production de microparticules |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1068257A1 (fr) |
JP (1) | JP2002506901A (fr) |
AU (1) | AU2736499A (fr) |
BR (1) | BR9908755A (fr) |
CA (1) | CA2324235A1 (fr) |
GB (1) | GB9805417D0 (fr) |
WO (1) | WO1999047588A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2832312A1 (fr) * | 2001-11-21 | 2003-05-23 | Inst Nat Sante Rech Med | Procede de preparation de microparticules sans solvant toxique, microparticules obtenues selon ce procede, utilisations et compositions pharmaceutiques |
WO2005105278A3 (fr) * | 2004-05-05 | 2006-08-03 | Akzo Nobel Nv | Procede de solidification d'emulsion antisolvante |
WO2006123361A3 (fr) * | 2005-03-01 | 2007-04-12 | Sun Pharmaceutical Ind Ltd | Compositions pharmaceutiques a liberation prolongee |
JP2011037882A (ja) * | 2001-08-31 | 2011-02-24 | Alkermes Inc | 残留溶媒抽出方法および同により生成される微粒子 |
WO2013023007A1 (fr) * | 2011-08-08 | 2013-02-14 | Landec Corporation | Particules à libération contrôlée, prolongée, pour traiter des graines et des plantes |
WO2013090828A2 (fr) | 2011-12-16 | 2013-06-20 | Biofilm Ip, Llc | Compositions d'injection cryogéniques, systèmes et procédés pour la modulation cryogénique de l'écoulement dans un conduit |
US20140323415A1 (en) * | 2002-11-19 | 2014-10-30 | Holger Petersen | Organic compounds |
GR1010327B (el) * | 2021-10-06 | 2022-10-17 | Φαρματεν Α.Β.Ε.Ε., | Παρατεταμενης αποδεσμευσης ενεσιμο φαρμακευτικο σκευασμα λεβοθυροξινης και μεθοδος παρασκευης αυτου |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989003678A1 (fr) * | 1987-10-30 | 1989-05-05 | Stolle Research & Development Corporation | Microspheres a faible solvant residuaire et procede de microencapsulage |
JPH01158042A (ja) * | 1987-02-03 | 1989-06-21 | Toray Ind Inc | 球状ポリマ微粉末の製造方法 |
WO1993025195A1 (fr) * | 1992-06-16 | 1993-12-23 | Centre National De La Recherche Scientifique (Cnrs) | Preparation et utilisation de nouveaux systemes colloidaux dispersibles a base de cyclodextrine, sous forme de nanospheres |
WO1994027718A1 (fr) * | 1993-05-25 | 1994-12-08 | Hagan Derek Thomas O | Preparation de microparticules et procede d'immunisation |
-
1998
- 1998-03-14 GB GBGB9805417.4A patent/GB9805417D0/en not_active Ceased
-
1999
- 1999-03-15 EP EP99907729A patent/EP1068257A1/fr not_active Ceased
- 1999-03-15 JP JP2000536777A patent/JP2002506901A/ja active Pending
- 1999-03-15 AU AU27364/99A patent/AU2736499A/en not_active Abandoned
- 1999-03-15 WO PCT/GB1999/000685 patent/WO1999047588A1/fr not_active Application Discontinuation
- 1999-03-15 BR BR9908755-3A patent/BR9908755A/pt not_active Application Discontinuation
- 1999-03-15 CA CA002324235A patent/CA2324235A1/fr not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158042A (ja) * | 1987-02-03 | 1989-06-21 | Toray Ind Inc | 球状ポリマ微粉末の製造方法 |
WO1989003678A1 (fr) * | 1987-10-30 | 1989-05-05 | Stolle Research & Development Corporation | Microspheres a faible solvant residuaire et procede de microencapsulage |
WO1993025195A1 (fr) * | 1992-06-16 | 1993-12-23 | Centre National De La Recherche Scientifique (Cnrs) | Preparation et utilisation de nouveaux systemes colloidaux dispersibles a base de cyclodextrine, sous forme de nanospheres |
WO1994027718A1 (fr) * | 1993-05-25 | 1994-12-08 | Hagan Derek Thomas O | Preparation de microparticules et procede d'immunisation |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 013, no. 419 (C - 637) 18 September 1989 (1989-09-18) * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011037882A (ja) * | 2001-08-31 | 2011-02-24 | Alkermes Inc | 残留溶媒抽出方法および同により生成される微粒子 |
JP2013216676A (ja) * | 2001-08-31 | 2013-10-24 | Alkermes Pharma Ireland Ltd | 残留溶媒抽出方法および同により生成される微粒子 |
JP2015227383A (ja) * | 2001-08-31 | 2015-12-17 | アルカームズ ファーマ アイルランド リミテッド | 残留溶媒抽出方法および同により生成される微粒子 |
FR2832312A1 (fr) * | 2001-11-21 | 2003-05-23 | Inst Nat Sante Rech Med | Procede de preparation de microparticules sans solvant toxique, microparticules obtenues selon ce procede, utilisations et compositions pharmaceutiques |
WO2003043605A1 (fr) * | 2001-11-21 | 2003-05-30 | Institut National De La Sante Et De La Recherche Medicale | Procede de preparation de microparticules sans solvant toxique, microparticules obtenues selon ce procede, utilisations et compositions pharmaceutiques |
US20140323415A1 (en) * | 2002-11-19 | 2014-10-30 | Holger Petersen | Organic compounds |
WO2005105278A3 (fr) * | 2004-05-05 | 2006-08-03 | Akzo Nobel Nv | Procede de solidification d'emulsion antisolvante |
WO2006123361A3 (fr) * | 2005-03-01 | 2007-04-12 | Sun Pharmaceutical Ind Ltd | Compositions pharmaceutiques a liberation prolongee |
WO2013023007A1 (fr) * | 2011-08-08 | 2013-02-14 | Landec Corporation | Particules à libération contrôlée, prolongée, pour traiter des graines et des plantes |
WO2013090828A2 (fr) | 2011-12-16 | 2013-06-20 | Biofilm Ip, Llc | Compositions d'injection cryogéniques, systèmes et procédés pour la modulation cryogénique de l'écoulement dans un conduit |
US9677714B2 (en) | 2011-12-16 | 2017-06-13 | Biofilm Ip, Llc | Cryogenic injection compositions, systems and methods for cryogenically modulating flow in a conduit |
GR1010327B (el) * | 2021-10-06 | 2022-10-17 | Φαρματεν Α.Β.Ε.Ε., | Παρατεταμενης αποδεσμευσης ενεσιμο φαρμακευτικο σκευασμα λεβοθυροξινης και μεθοδος παρασκευης αυτου |
Also Published As
Publication number | Publication date |
---|---|
BR9908755A (pt) | 2000-11-28 |
EP1068257A1 (fr) | 2001-01-17 |
JP2002506901A (ja) | 2002-03-05 |
AU2736499A (en) | 1999-10-11 |
CA2324235A1 (fr) | 1999-09-23 |
GB9805417D0 (en) | 1998-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wischke et al. | Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles | |
O'Donnell et al. | Preparation of microspheres by the solvent evaporation technique | |
EP0729353B1 (fr) | Preparation de microparticules biodegradables contenant un agent biologiquement actif | |
US5503851A (en) | Microencapsulation of water-soluble medicaments | |
US6861064B1 (en) | Encapsulation method | |
EP1343480B2 (fr) | Procede comprenant un transition de phase induite pour la production de microparticules contenant des agents actifs hydrophobes | |
Viswanathan et al. | Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique | |
US5650173A (en) | Preparation of biodegradable microparticles containing a biologically active agent | |
AU733199B2 (en) | Microparticles | |
JP2004510730A (ja) | 非経口的投与可能な制御放出微粒子調製物 | |
CN112972388B (zh) | 卡利拉嗪释放制剂 | |
EP1532985B1 (fr) | Procédé de production d'une composition à liberation prolongée | |
EP1210942A2 (fr) | Microparticules | |
US20020086060A1 (en) | Process for producing microparticles | |
EP1068257A1 (fr) | Production de microparticules | |
US20030180368A1 (en) | Production of microparticles | |
Iwata et al. | Selection of the solvent system for the preparation of poly (D, L-lactic-co-glycolic acid) microspheres containing tumor necrosis factor-alpha (TNF-α) | |
Sohier et al. | Release of small water-soluble drugs from multiblock copolymer microspheres: a feasibility study | |
Könnings et al. | Lipospheres as delivery systems for peptides and proteins | |
O'Donnell | Multiphase microspheres of poly (DL-lactic acid) and poly (DL-lactic-co-glycolic) acid containing water-soluble drugs or proteins produced by a potentiometric dispersion technique | |
Könnings et al. | 4 Lipospheres as Delivery Systems for Peptides | |
CA2429103A1 (fr) | Procede de production de microparticules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999907729 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2324235 Country of ref document: CA Ref country code: CA Ref document number: 2324235 Kind code of ref document: A Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09646200 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1999907729 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWR | Wipo information: refused in national office |
Ref document number: 1999907729 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999907729 Country of ref document: EP |