+

WO1999046045A1 - Probenträger - Google Patents

Probenträger Download PDF

Info

Publication number
WO1999046045A1
WO1999046045A1 PCT/EP1999/001607 EP9901607W WO9946045A1 WO 1999046045 A1 WO1999046045 A1 WO 1999046045A1 EP 9901607 W EP9901607 W EP 9901607W WO 9946045 A1 WO9946045 A1 WO 9946045A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
channel
liquid
channels
carrier according
Prior art date
Application number
PCT/EP1999/001607
Other languages
English (en)
French (fr)
Inventor
Ralf-Peter Peters
Nezih Ünal
Dirk Klaus Osterloh
Herbert Backes
Original Assignee
MICROPARTS GESELLSCHAFT FüR MIKROSTRUKTURTECHNIK MBH
Merlin Gesellschaft Für Mikrobiologische Diagnostika Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1998110499 external-priority patent/DE19810499A1/de
Priority to IL13828699A priority Critical patent/IL138286A/en
Priority to DE59905743T priority patent/DE59905743D1/de
Priority to US09/623,910 priority patent/US7560073B1/en
Priority to JP2000535452A priority patent/JP4350897B2/ja
Priority to BRPI9909249-2A priority patent/BR9909249B1/pt
Application filed by MICROPARTS GESELLSCHAFT FüR MIKROSTRUKTURTECHNIK MBH, Merlin Gesellschaft Für Mikrobiologische Diagnostika Mbh filed Critical MICROPARTS GESELLSCHAFT FüR MIKROSTRUKTURTECHNIK MBH
Priority to EP99911779A priority patent/EP1062042B1/de
Priority to AT99911779T priority patent/ATE241430T1/de
Priority to AU30340/99A priority patent/AU739563B2/en
Priority to CA002323424A priority patent/CA2323424C/en
Publication of WO1999046045A1 publication Critical patent/WO1999046045A1/de
Priority to HK01104438A priority patent/HK1035683A1/xx
Priority to US11/543,161 priority patent/US20070025875A1/en
Priority to US12/372,578 priority patent/US20090155128A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • B01L2400/0683Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves

Definitions

  • the invention relates to a sample carrier as it is used for microbiological analysis of sample liquids and for medical and environmental analysis and diagnosis.
  • sample carriers or test strips made of transparent plastic are used with a large number of chambers or cup-shaped recesses that are open on one side.
  • the sample carriers or test strips have e.g. B. 32 or 96 chambers or wells, which are filled with a reagent. After inoculation with bacterial suspension, the sample carriers or test strips may be sealed with a transparent film or closed with a lid.
  • the wells have a filling volume between 60 ⁇ l and 300 ⁇ l and are filled individually using auxiliary devices; pipettes with one channel or with 8, 48 or 96 channels are used for this.
  • a sample plate for an automated optical examination method is known from US Pat. No. 4,038,151 which is used to detect and count suspended microorganisms and to determine their sensitivity to antibiotics.
  • the plate consists of a rigid transparent plastic and contains e.g. B. 20 conical reaction chambers. The cross-sectional area of the reaction chambers is larger on one side of the plate than on the other side of the plate.
  • Next to each reaction chamber are two overflow chambers, which are located on the side of each reaction chamber on which there is an inlet channel for the reaction chamber in question.
  • reaction chambers are connected to the overflow chambers via slots.
  • the reaction chambers, the slots and the overflow chambers extend over the entire thickness of the sample plate.
  • the reaction chambers are connected in groups to at least one sample receiving chamber, which is closed with a septum, via specially arranged and shaped branched inlet channels located on a plate side.
  • the inlet channels enter tangentially on the larger side of the conical reaction chamber. The shape and area of the cross-section of each inlet channel changes suddenly at one point. At these points - as seen in the direction of flow - a flat and wide channel merges into a deep and narrow channel.
  • the inlet channels arranged on one side of the plate can be longer than the shortest connection between the reaction chamber and the sample receiving chamber in order to make it difficult to re-diffuse components present in the suspension.
  • the plate is - except for an edge area - glued on both sides with a semi-permeable film, which covers the reaction chambers, the overflow chambers, the slots and the inlet channels on one side of the plate as well as one side of the sample receiving chamber.
  • the reaction chambers are coated with a dried layer of a reagent substance.
  • sample liquid To introduce the sample liquid into the known sample plate, its channels and chambers are evacuated, so that the sample liquid is guided from a container located outside the plate by means of a cannula through the septum from the edge of the plate into the sample receiving chamber and through the inlet channels into the reaction chambers and if necessary. flows into the overflow chambers.
  • the suspension (sample liquid) that has flowed into the reaction chamber and the reagent layer are in - 3 -
  • the sample plate When optically examining the samples in the reaction chambers, the sample plate stands vertically in the measuring device. In this position, the feed channels enter the reaction chambers from above with respect to the direction of gravity, and the overflow chambers are located above the reaction chambers. This can possibly in the reaction chamber. Collect existing gas bubbles or those arising from a reaction or metabolism in the overflow chambers without disturbing the optical examination of the samples.
  • a sample plate is known from US Pat. No. 5,670,375, the up to 64 cavities of which are inoculated simultaneously. After the air has been sucked out of the cavities, the fluid to be examined flows from a container outside the sample plate through a connecting tube into the cavities and fills them.
  • a sample carrier in which, starting from a sample application area, sample liquid reaches reaction chambers via a distribution channel system.
  • the reaction chambers contain porous inserts that contain reagents.
  • the sample liquid is "sucked" into the reaction chambers due to the capillary forces generated in the porous insert parts.
  • the fact that there are insert parts in the reaction chambers restricts the photometric analyzes of the sample liquids reacting with the reagents in the reaction chambers. For example, it is not possible to carry out transmitted light and optical turbidity measurements with such an arrangement.
  • the invention is therefore based on the object of providing a sample carrier and a sample liquid distribution system which have a very high density of reaction chambers per unit area, inexpensively - 5 -
  • the invention proposes a sample carrier or a sample liquid distribution system that is provided with at least one sample receiving chamber for a sample liquid, - a distribution channel for sample liquid, which is connected to the at least one sample receiving chamber, with at least one distribution channel from each sample receiving chamber extends, at least one reaction chamber, into which an inlet channel branches off from the at least one distribution channel, and a vent opening for each reaction chamber.
  • This sample carrier according to the invention or this sample liquid distribution system according to the invention is characterized in that the dimensioning of each distributor channel and each inlet channel is dimensioned such that the liquid transport through the distributor and inlet channels takes place as a result of capillary forces, and that in each reaction chamber in the mouth region of the inlet channel Device for generating a capillary force for flowing the sample liquid from the inlet channel into the reaction chamber is arranged.
  • the distributor channels and inlet channels have such small cross-sectional areas or cross-sectional areas designed in such a way that the liquid transport in them by capillary forces - 6 -
  • the channels are thus designed as a capillary.
  • the cross section of the reaction chambers into which the sample liquid flowing through the channels is to flow is larger than the inlet channels. This creates the situation that the liquid has to flow from a channel with a small cross section into a larger cavity, namely a reaction chamber. So that this is solely due to the action of capillary forces, it is provided according to the invention that devices for generating a capillary force are created in each reaction chamber in the mouth region of the inlet channel by forming structures on the inside of the reaction chambers or by forming asymmetries Allow sample liquid to flow from the inlet channel into the reaction chamber.
  • capillary force generating devices By creating such capillary force generating devices in the region of the mouth of an inlet channel into a reaction chamber, the flow of the sample liquid generated by capillary forces is maintained until the reaction chamber is filled.
  • These capillary force generating devices favor the wetting of the walls of the reaction chambers with sample liquid and thereby maintain the liquid flow.
  • they can also be formed by surface treatments of the reaction chambers, which make the surfaces hydrophilic or make them so hydrophilic that the inside of the reaction chambers are wetted and thus the reaction chambers are completely filled with sample liquid .
  • the capillary force generating devices in the opening region of the inlet channels into the reaction chambers are made by introducing structures, in particular by introducing an inlet channel or the like. realized.
  • This inlet gutter has at least two Boundary surfaces that are connected by a transition area. This transition area is provided with curves, the radii of which are so small that capillary forces required to flow the sample liquid along this channel arise.
  • the flow of the liquid can be maintained by selecting the radius of curvature in the area between the base surface and the side surfaces of the reaction chamber by initially moving it along the corner and transition regions between the Bottom surface and the side surfaces flows in order to wet the entire bottom surface, whereupon the further transport is then maintained by the capillary action of the reaction chamber, the cross section of which is now completely filled with sample liquid.
  • a groove or the like should be located between the mouth and the bottom surface in the relevant side wall. Groove.
  • the corner region of two side surfaces of the reaction chamber which run at an angle to one another is also suitable as such a channel, provided that the radius of curvature in the corner or transition region of both side surfaces is so small that capillary forces acting on the sample liquid arise which are so great that they "Pull" the sample liquid out of the inlet channel.
  • the required radii of curvature of these channels are concerned, the general rule is that they should be smaller than the smallest dimension of the channel to which the channels connect.
  • the channels run at an angle unequal to 90 ° from a surface delimiting the chamber. Because of this In the ideal case, the resulting non-circular mouth opening flows from the channel into the chamber without additional measures.
  • the mechanism by which the sample liquid to be examined flows from the sample receiving chambers into the distribution channels can also be carried out using structures that generate capillary forces.
  • the distribution channels branch off from them at the level of the bottom surfaces of the sample receiving chambers. Since the cross-sections of the distributor channels in the confluence area are wetted with liquid after filling the sample receiving chambers with sample liquid, a flow automatically occurs within the distributor channels. The discharge of the sample liquid from the sample receiving chambers is thus guaranteed.
  • the distribution channels open into the sample receiving chambers above the bottom surfaces thereof.
  • care must be taken to ensure that the sample liquid is "pulled up” starting from the liquid level within the sample chambers. This is done by means of a capillary force formed in the sample receiving chamber.
  • a channel is also considered here, which is used as an outlet channel in one of the side walls of the
  • Sample receiving chambers is formed.
  • the trough can present itself as a transition region or corner region between two side surfaces of the sample receiving chambers which run at an angle to one another. In all cases, care must be taken to ensure that the groove or - 9 -
  • the miniaturization allows a large number of reaction chambers to be arranged in a confined space, which are represented, for example, as cavities introduced into a base body.
  • a confined space which are represented, for example, as cavities introduced into a base body.
  • the sample liquid fills all reaction chambers as evenly as possible and in particular at the same time.
  • the inlet channels have a small cross-sectional area than the distributor channels. The inlet channels thus act like throttles, which slow down the liquid transport, which is still caused by capillary forces. All inlet channels branching off along the extent of a distributor channel can have the same cross-sectional areas.
  • An alternative is to increase the cross-sectional areas of the inlet channels with increasing distance from the sample receiving chamber in order to achieve a greater throttling effect with the first inlet channels branching off in relation to the direction of flow of the sample liquid through the distributor channels than with the later branching channels Inlet channels.
  • the inlet ducts branch off from the distributor ducts on both sides thereof.
  • two branch points of the distribution channel, from which opposite supply channels branch off on opposite sides, are not directly opposite.
  • each reaction chamber is therefore provided with a ventilation opening. If these ventilation openings are wetted or even covered when filling the reaction chambers with sample liquid, there is a risk that the sample liquid flows out of the reaction chambers via the ventilation openings, provided that the wetting and covering of the ventilation openings cause sufficiently large capillary forces in these can. In fact, it is desirable to fill the reaction chambers completely with sample liquid, since any gas that may still have flowed in makes the optical examination using photometry difficult, if not impossible.
  • the further transport of the sample liquid through the ventilation openings is prevented by means for preventing further flow of the sample liquid.
  • These devices are advantageously based on the principle of geometrical shaping of the ventilation openings and the - 11 -
  • venting channels adjoining the ventilation openings could open into a cavity or channel preparation, the opening area lying within a side surface of the channel expansion or cavity, and no or only a few corner areas being arranged around the opening area. Because each corner area in turn generates capillary forces, which in turn are determined by the degree of rounding.
  • the ventilation openings of the reaction chambers are connected by connecting channels which open into a ventilation manifold.
  • This ventilation collecting channel is provided with a ventilation opening which connects the ventilation system of the sample carrier with the surroundings.
  • the targeted filling of the channel widenings can alternatively also be achieved by introducing a control liquid which is inert to the reagents and the sample liquid.
  • a control channel then opens into the channel widening, via which the control liquid reaches the channel widening. In this way, a liquid-controlled valve is created which, so to speak, the one-time actuation for over- - 13 -
  • control liquid can be introduced into the channel widenings by pressurizing the control liquid or, in turn, by utilizing capillary forces.
  • control liquid can be introduced into the channel widenings by pressurizing the control liquid or, in turn, by utilizing capillary forces.
  • the introduction of the reagent liquid into the ventilation collecting channel or into the ventilation channel system of the reaction chambers is expediently carried out in that this channel system is fluidly connected to at least one reagent liquid receiving chamber.
  • the reagent liquid enters from this chamber, in particular using those mechanisms as described above in connection with the sample receiving chambers and the distribution channels.
  • the sample carrier For the analysis of microbiological samples with the aid of the sample carrier according to the invention, it may be necessary to amplify the sample to be examined beforehand, ie that the sample material has to be increased in quantity before it is fed to the individual reaction chambers via the distributor feed channel system.
  • the process of amplifying and introducing the amplified sample into sample receiving chambers is simplified if the amplification itself takes place at the location of the sample receiving chamber. It is then desirable to pass the amplified sample material under external control to the reaction chambers assigned to the sample receiving chambers. This takes place according to an advantageous variant of the invention in that between the - 14 -
  • a first valve is arranged, which is preferably designed as a one-time valve, which can be transferred only once from its blocking state to the open state. If the transport of the sample from the sample receiving chamber to the individual reaction chambers is carried out by capillary forces, which is preferred, which is why all the channels formed in the sample carrier are designed as capillaries, then this first valve can also be arranged in the ventilation channel that corresponds to the group of reaction chambers with which the sample receiving chamber is connected. Because the controlled venting of the reaction chambers thus takes place, the inflow of the sample material from the sample receiving chamber into the individual reaction chambers is controlled.
  • the “interface” of the sample carrier according to the invention for controlling the first valve or the first valves should be designed quite simply. This presupposes that the valve can easily be controlled externally. It is preferably provided that the valve is controlled hydraulically or pneumatically, specifically by the liquid or gas present at the valve. For example, by exerting a pressure pulse on the sample material located in the sample receiving chamber, a hydraulic pressure arises at the first valve, which breaks up or otherwise bridges a blocking element of the first valve.
  • the first valve is designed as a bursting valve with a bursting film which breaks open when a certain pressure is exceeded and thus opens the channel in which the valve is located.
  • flap valves or non-return valves can be used which, when a corresponding pressure of the - 15 -
  • valve open any existing fluid (liquid or gas). This type of valve is preferred in particular when the transport of the fluids through the sample carrier is pressurized, that is, not by capillary forces.
  • a further alternative to the configuration of the first or the first valves consists in that this has a hydrophobic configuration, which is realized in the form of a corresponding surface treatment of the channel in the region of the valve or by an insert.
  • the fluid present at the hydrophobic valve bridges it, for example as a result of a particularly impulsive pressurization. If the channel in the area of the valve is wetted with liquid in this way and capillary forces are used for the further transport of the liquid, a one-way valve is thus created which can be bridged quite easily from the outside, namely by pressurizing the sample receiving chamber.
  • the first valve can also advantageously be designed as a channel widening, which in turn acts like a capillary jump (see also the description above in connection with the ventilation channels).
  • this channel widening is filled with liquid, which is done, for example, by applying pressure to the sample receiving chamber or by introducing an external or control liquid from outside, the transport of the liquid behind the valve is secured by capillary forces, so that the valve itself is again hydraulic can be bridged.
  • All channels, chambers and similar structures are preferably introduced from one side into a base body which is liquid-tight through a cover body, which is in particular a film - 16 -
  • the sample carrier is preferably made of plastic, such as polystyrene or polymethyl methacrylate (PMMA), polycarbonate or ABS.
  • the sample carrier can be produced by molding a mold insert in a micro injection molding process.
  • the structure of the mold insert is complementary to the structure of the sample carrier, i. H. complementary to the structure of the base body and / or the lid body.
  • the mold inserts to be used for these injection molding techniques are produced by lithography or electroforming, by microerosion or by micromechanical processing such as diamond milling.
  • the structured elements of the sample carrier can be produced from a photo-etchable glass or from silicon by anisotropic etching or by micromechanical processing methods.
  • the individual parts of the sample carrier are connected to one another at their contact surfaces, in particular by ultrasonic welding. In any case, this connection must be liquid and gas tight so that the individual chambers and channels are not in contact via the contact surfaces of the elements that make up the sample holder (base body and lid body).
  • the sample carrier according to the invention can consist of transparent material for transmitted light measurements and of transparent or opaque material for luminescence measurements. If the sample holder is made up of several parts (base body and cover body), the individual parts of the sample holder can consist of different materials.
  • the height of the reaction chambers and thus the thickness of the liquid layer irradiated by the light can be compared to that - 17 -
  • optical evaluation methods can be adapted. Reaction chambers with different heights can be present within the sample carrier.
  • the sample carrier according to the invention can have reaction chambers with volumes that are between 0.01 ⁇ l and 10 ⁇ l.
  • the reaction chamber density can be up to 35 / cm 2 . This means that 50 to 10,000 reaction chambers can be easily accommodated on a sample holder of a handy size.
  • the individual channels have a width and depth of 10 ⁇ m to 1,000 ⁇ m and in particular 10 ⁇ m to 500 ⁇ m.
  • a sample carrier constructed according to the invention has a height of 4 mm, for example, with a two-part construction (base body and cover body) the base body having a thickness of approximately 3.5 mm and the cover body formed as a film having a thickness of 0.5 mm.
  • the reaction chambers which may be round but also square, are approximately 3.0 mm deep, so that a bottom wall thickness of 0.5 mm is established. The volume of these reaction chambers is 1.5 ⁇ l each.
  • the individual channels have, in particular, a rectangular cross section, the inlet channels being approximately 400 ⁇ m wide and 380 ⁇ m deep and the distribution channels from which the inlet channels branch off are approximately 500 ⁇ m wide and 380 ⁇ m deep.
  • the ventilation openings (with a rectangular cross-section) are approximately 420 ⁇ m wide and approximately 380 ⁇ m deep.
  • the ventilation channels adjoining the ventilation openings have in particular a width and depth of 500 ⁇ m or 1,000 ⁇ m.
  • 96 reaction chambers can be filled at the same time on an area of 21.5 mm x 25 mm, i.e. 540 mm 2 .
  • the arithmetical area requirement of each reaction chamber is therefore 5.6 mm 2 .
  • the sample carrier according to the invention has the following advantages in particular:
  • sample receiving chambers are filled by means of commercially available devices, to which they are adapted in terms of dimensions and volume.
  • a reagent liquid present in a liquid can be used with a sample carrier that is equipped with
  • Sample receiving chambers for the reagent liquid can be easily introduced into the reaction chambers already filled with a fluid.
  • the sample material can be released from the sample receiving chamber to the individual reaction chambers in a targeted manner, namely by introducing a first valve into the channel system, which overall adjoins the sample receiving chamber.
  • Venting side from the reagent liquid to be supplied can be introduced into the reaction chambers in a controlled manner by arranging second valves in the venting tract.
  • These second valves can in particular be like the first
  • the covered reaction chambers are completely filled with the fluid to be examined.
  • the filling volume of each reaction chamber is automatically set; a dosing device for each individual reaction chamber is not required.
  • the fluid in the reaction chambers may have been further treatment and during the measurement effectively protected from evaporation by the cover film which is tightly connected to the base body.
  • test material e.g. B. bacterial suspension, blood samples or active substances
  • sample receiving chambers can be provided, which are located in the base body or in the lid body, and in the possibly several
  • microbiological, microchemical or bacteriological examination of the samples placed in the sample holder can be fully automated with reduced effort for the measuring devices.
  • the sample carriers can be stored at normal room temperature. The space required for storage is significantly less than with conventional sample carriers. Analogous to the known sample carriers, the sample carriers are intended for single use. Due to the greater packing density of the reaction chambers, the amount of used sample carriers to be disposed of is less than when using conventional sample carriers. - 20 -
  • the reaction chambers in the sample carrier can be loaded with a chemically or biologically active reagent by means of an adapted miniaturized device, which reagent is dried after introduction of the reagent fluid and adheres to the bottom and to the walls of the reaction chambers.
  • Reagents that can be used are, for example, oligopeptide- ⁇ -NA derivatives, p-nitrophenyl derivatives, sugar for fermentation and other tests, organic acids, amino acids for assimilation tests, decarboxylase substrates, antibiotics, antimycotics, nutrient media, marker substances, indicator substances and other substances become.
  • the sample carrier according to the invention and possibly coated with reagent can be used for the biochemical detection and sensitivity testing of clinically important microorganisms.
  • a defined suspension of microorganisms is produced with which the sample carrier is loaded.
  • the inoculated sample carrier is - if necessary. after a further treatment - measured using an optical method.
  • the results obtained are recorded with the aid of computers and are mathematically evaluated and assessed using adapted methods.
  • the sample carrier according to the invention can be used in blood group serology, clinical chemistry, in the microbiological detection of microorganisms, in testing the sensitivity of microorganisms to antibiotics, in microanalysis and in the testing of active substances.
  • FIG. 1 is a plan view of the top of a sample holder with a partially broken cover film
  • FIG. 2 shows a sectional view along the line II-II of FIG. 1 through a sample receiving chamber with a distribution channel adjoining it, FIG.
  • FIG. 5 shows the area of the sample carrier identified by V in FIG. 1 in plan view and enlarged view
  • the sample carrier 10 shown in the drawing has a two-part construction and consists of a base plate 12, the top 14 shown in FIG. 1 of which is covered by a cover film 16 (see also FIGS. - 22 -
  • the task of the sample carrier 10 is to conduct the applied sample liquid using a capillary force into a large number of reaction chambers in which different reagent substances are located. Furthermore, the reaction chambers filled with sample liquid should be able to be examined photometrically. Furthermore, it is intended to introduce liquids into the reaction chambers in a targeted manner from different locations.
  • the sample carrier 10 is divided into several sections 18, the configurations of which are identical to one another. In the following description, the design of one of these sections is discussed.
  • the base plate 12 of the sample carrier 10 is structured on its upper side 14, which is achieved by introducing grooves and depressions from the upper side 14 into the base plate 12. All of the grooves and depressions form a sample liquid and a reagent liquid distribution system, which is covered by the cover film 16 towards the top of the sample carrier 10.
  • each section 18 of the sample carrier 10 there is a sample receiving chamber 20 for receiving a sample liquid 22 (see FIG. 2).
  • feed channels 26 extending from both sides of the distribution channel 24 extend in the plan view according to FIG. 1 and, like the distribution channel 24, are formed by introducing grooves into the top side 14 of the base plate 12.
  • the inlet channels 26 extend from the distributor channel 24 to the reaction chambers 28, which as from - 23 -
  • the upper side 14 are formed in the base plate 12 depressions.
  • (Venting) connecting channels 30 run from the reaction chambers 28. These connecting channels 30 open in groups into two venting collecting channels 32, which run parallel to one another and parallel to the distributor channel 24. In other words, the reaction chambers 28 arranged on both sides of the distribution channel 24 are located between the distribution channel 24 on the one hand and one of the two ventilation collecting channels 32 on the other hand.
  • the connecting channels 30 and ventilation collecting channels 32 are also formed by introducing grooves into the upper side 14 of the base plate 12.
  • the ventilation collecting channels 32 end at one end in a ventilation opening 34, which lie in an outer edge side 36 (see FIG. 2) of the base plate 12.
  • the end of the ventilation collecting channels 32 opposite each of these ventilation openings 34 is connected to a reagent liquid receiving chamber 38, which will be discussed later.
  • This chamber 38 is also realized by introducing a depression into the upper side 14 of the base plate 12.
  • sample liquid and reagent liquid The nature of the liquids to be transported (sample liquid and reagent liquid).
  • the capillary forces within the channels can be exploited in a simple manner by the measures described above, it is problematic to transport the liquid from the chambers 20, 38, 28 into the connected channels or from the channels 26 into the connected ones To ensure reaction chambers 28 into it.
  • the problem here is in particular that the opening parts 40 of the distribution channel 24 into the sample receiving chamber 20 lie above the bottom wall 42 of the chamber 20 and within the lateral boundary 44 of the chamber 20.
  • the lateral boundary 44 of the chamber 20 is formed by side surface sections 46. As can be seen in particular from FIG.
  • the side surfaces 46 run at an angle in the region below the junction 40, in this case at an angle of approximately 90 ° to one another, so that a corner region 48 is formed between the two side surfaces 46.
  • this corner region 48 has such a small radius of curvature that an outlet channel 50 is formed in which a liquid meniscus forms when it is wetted with sample liquid 22.
  • this outlet trough 50 runs transversely to the bottom wall 42.
  • capillary forces acting on the sample liquid 20 arise in the corner region 48 due to the wetting of the side surfaces 46, which are sufficient to move the sample liquid 22 out of the sample receiving chamber 20 to suck out into the distribution channel 24.
  • the outlet channel 50 extends in particular to the bottom wall 42 of the sample receiving chamber 20.
  • the inlet channels 26 branch off from the latter. In these feed channels 26, the sample liquid 22 is also transported further by capillary forces. The liquid transport through the inlet channels 26 initially extends to the junction parts 52 of each inlet channel 26 into the reaction chamber 28 assigned to it (see FIG. 5). Without special measures or consideration of special conditions of the formation of the inlet channels 26 and reaction chambers 28, there is the risk that the liquid front does not extend further into the reaction chamber 28 starting from the mouth parts 52 of the inlet channel 26.
  • the orifices 52 are arranged on the upper end of two side surfaces 56 of the reaction chamber 28 that are angled away from the bottom wall 54 of a reaction chamber 28.
  • the reaction chamber 28 has a square or at least rectangular cross section (see the illustration in FIGS. 1 and 5), so that corner regions 58 and 60 result between the respective adjacent side surfaces 56 and between the side surfaces 56 and the bottom surface 54 . If these corner areas are provided with a sufficiently small radius of curvature, a liquid meniscus can form in the transition area of the surfaces forming the respective corner areas, which due to the tendency of the liquid to wet the adjacent surface areas as a result of capillary forces along the corner areas 58, 60 moved. - 26 -
  • the corner region 58 within which the junction 52 of the inlet channel 26 is arranged, thus acts like an inlet channel 62.
  • This inlet channel 62 enables the sample liquid 22 to flow from the inlet channel 26 into the reaction chamber 28.
  • This liquid initially flows along the inlet channel 62 in the direction of the bottom surface 54 of the reaction chamber 28, in order to run from there along the square corner areas 58 until the entire bottom of the reaction chamber 28 is wetted. In this way, the reaction chamber 28 increasingly fills with sample liquid 22, and solely because of the use of capillary forces.
  • the plurality of reaction chambers 28 should be filled uniformly and in particular also simultaneously. Supplementary filling of the reaction chambers 28 with sample liquid 22 can lead to undesired effects, since the sample liquid 22 can flow out again via the connecting channels 30 provided for ventilation, if desired. Therefore it is from
  • the inlet of the sample liquid 22 into the reaction chambers 28 is throttled.
  • the cross sections of the inlet channels 26 are smaller than the cross section of the distributor channel 24.
  • the inlet channels 26 thus form a type of throttle with increased flow resistance.
  • This throttling effect also has the advantage that, although the individual inlet channels branch off from the distribution channel 24 at different distances from the sample receiving chamber 20, all the reaction chambers 28 are filled essentially simultaneously (a certain delay is tolerated here).
  • the inlet channels 28 branch off from the distributor channel 24 offset from one another. This has the
  • each connecting channel 30 opens into the relevant reaction chamber 28 via a prechamber space 64 (see also FIG. 7).
  • the prechamber space 64 is arranged at the upper end of the reaction chamber 28 and is delimited at the top by the cover film 16. Its bottom wall 66 lying opposite the cover film 16 runs obliquely towards the reaction chamber 28.
  • the design of the prechamber space 64 is selected such that all air or all the gas which is in the reaction chamber 28 is discharged when the latter is filled, so that ultimately the liquid level within the reaction chamber 28 extends to the cover sheet 16 and not - 28 -
  • each expansion area 68 has the opening 70 of the connecting channel 30 extending on both sides Chamber areas 72, which extend up to an area - based on the gas flow direction - upstream of the junction 70 and taper towards the ventilation collecting duct 32.
  • the junction parts 70 lie in a side surface area 74 of the widening 68, wherein no corner areas are formed within this side surface area 74 either laterally or below the junction point 70. The only corner area that arises arises to the side of the junction 70 and adjacent to the film 16.
  • the connecting channel 30 thus ends within the widening 68 in such a way that its junction 70 is surrounded by flat sections.
  • Such a junction 70 has the advantage that the liquid front at the junction 70 now stops, since its further transport is prevented by capillary forces. This liquid front will move through the connecting channels 30, since after the reaction chambers 28 have been completely filled, the sample liquid will advance through the prechamber space 64 into the connecting channels 30, which in turn act as a capillary.
  • the widening 38 thus prevents the sample liquid from reaching the vent collection channel 32.
  • Vent collection channel 32 from a reagent liquid receiving chamber 38 In these receiving chambers 38 there is an additional reagent liquid, the - 29 -
  • reaction chambers 28 themselves are advantageously already covered with reagent substances which have been pre-assembled and applied to the reaction chambers 28 depending on the tests to be carried out. Until the sample liquid 22 enters, these reaction substances are in dried form in the reaction chambers 28.
  • the line system consisting of ventilation manifold 32 and connecting lines 30 and widenings 68, which had previously been used as the ventilation system, is then used to introduce additional reagents into the reaction chambers 28.
  • the expansion areas 68 for the reagent liquid are passable. This can be achieved, for example, by designing the opening parts 76 of the ventilation collecting channels 32 into the widening regions 68 in such a way that the inflow of the reagent liquid into the widenings is ensured as a result of capillary effects.
  • Reaction liquids in the chambers 38, the widenings 68 are filled with reaction liquid.
  • a third possibility consists in introducing a control liquid specifically into the widenings 68 (the control channels and control liquid receiving chambers required for this are not shown in the figures). All of the variants described here have in common that further transport of the reagent substances in the reagent liquid into the reaction chambers 28 requires the liquid areas 68 to be filled with liquid. As soon as these areas 68 are filled with liquid, this liquid comes into contact at the junction 70 with the sample liquid located in the connecting channel 30. The reagents of the reagent liquid are then transported further by diffusion.
  • the widening 68 is a bidirectional valve which, depending on the direction of flow, is either in the blocked state or in the open state.
  • FIGS. 5 and 9 also pointed out that 32 capillary forces are again used to transport the reagent liquid from the reagent receiving chambers 38 into the vent collecting channels connected to them.
  • the mechanism is similar to that described in FIGS. 1 and 6 is described.
  • the ventilation collecting duct 32 branches off at the upper end facing away from the bottom wall 78 of the chamber 38.
  • the junction 80 in the side wall boundary 82 of the chamber 38, which, as shown in FIG. 5, is rounded in this area.
  • a kind of outlet channel 84 is required which has such a small radius of curvature that a liquid meniscus is formed which, due to the tendency of the - 31 -
  • Liquid to wet the trough 84 continues to move along this - in this case.
  • FIG. 10 A first variant of such a valve 86 is shown in FIG. 10.
  • the distributor channel 24 extends through a channel widening 88 which is round in plan view and in which a porous hydrophobic insert body 90 is arranged. Due to its hydrophobic properties, the body 90 blocks the liquid transport through the expansion 88. If the sample liquid in the receiving chamber 20 is now subjected to a pressure, the liquid becomes in the expansion 88 and thus in the porosities of the hydrophobic
  • Insert body 90 pressed.
  • the porous body 90 is flushed with sample liquid until it reaches the area of the distributor channels 24 which adjoins the channel widening 88 and which, in relation to the direction of flow, lies behind the insert body 90. From there, the liquid is transported further by capillary forces. Since the hydrophobic insert body 90 is wetted on its surfaces by the application of pressure to the sample liquid, the liquid flow is maintained as a result of the capillary forces. In this way, a valve function is realized by liquid control (pressure control of the sample liquid).
  • valve construction 86 ' 32 -
  • the underlying idea is as described with reference to the expansion areas 68 (see FIGS. 5 and 8).
  • this embodiment 86 'too there is a special channel widening 88' in the distributor channel 24, which in plan view and in sectional view is as shown in FIGS. 11 and 12, is formed.
  • the widening 88 ' In the region of the mouth 92 of the part of the distribution channel 24 coming from the sample receiving chamber 20, the widening 88 'has a flat side surface 94 which is only delimited by a corner region towards the cover film 14. The capillary forces which may thus arise on both sides of the mouth 92 on the underside of the cover film 14 are not sufficient to suck the liquid out of the distribution channel 24.
  • the liquid front moving forward from the sample chamber 20 through the adjoining section of the distribution channel 24 thus comes to a standstill at the junction 92. Only when pressure is applied to the liquid of the sample receiving chamber 20 does sample liquid enter the expansion area 88 'and fill it up.
  • the widening area 88 ′ has an outlet 96, which opens into the further course of the distribution channel 24. As soon as the liquid pressed into the expansion region 88 'by pressure reaches the outlet 96, the sample liquid is transported further by capillary action.
  • valve 86 A final design of a valve 86 "is shown in Figures 13 and 14.
  • the mechanisms and design of this valve are nearly identical to the valve design 86 '.
  • the difference between the two is that the expansion area 88" of the valve 86 "is filled. not by the sample liquid, but by a control liquid 98 which is inert with respect to the sample liquid.
  • the control liquid 98 is located in a receiving chamber 100 which is connected to a - 33 -
  • Control channel 102 is connected to the expansion area 88 '.
  • the control liquid 98 can be introduced into the widening 88 ′′ on the one hand by exerting pressure on the control liquid 98, but on the other hand by maintaining a liquid flow using capillary forces. In the latter case, the above is done in connection with the inlet of the sample liquid 22 into the reaction chambers 28, proceed in that the opening 104 of the control channel 102 into the channel widening 88 "takes place in a region in which corner regions with sufficiently small rounding radii are formed within the channel widening 88", along which a liquid meniscus is formed and moves.
  • reaction substances can be introduced into the reaction chambers of the sample holder by the manufacturer and are stored there, in particular in dried form. Because of the small volumes of the reaction chambers, only small amounts of reaction substances are required, which is conducive to the drying process.
  • the sample liquid is introduced by the user. If the cover film 16 does not extend into the areas of the upper side 14 of the base plate 12 in which the sample receiving chambers 20 are located, these are freely accessible, so that the sample liquid is on - 34 -
  • the cover film can be introduced in a conventional manner by pipetting.
  • the cover film extends over the entire upper side and has openings which are aligned with the sample chambers (and the reagent liquid receiving chambers 38).
  • the cover film covers the chambers 20 and 38.
  • the sample liquid can be introduced by puncturing the cover film.
  • the cover film is slotted in the area of the chambers 20 and 38 and can thus be opened in the manner of a septum for the introduction of the sample liquid.
  • the rounding radii referred to in this description are in the ⁇ m and sub- ⁇ m range lie. In principle, it also applies to the radius of curvature that it is advantageously smaller than the smallest dimension of the channel to which the corner region adjoins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Materials For Photolithography (AREA)

Abstract

Der Probenträger weist mindestens eine Probenaufnahmekammer für eine Probenflüssigkeit auf, sowie einen Verteilerkanal für Probenflüssigkeit, der mit der mindestens einen Probenaufnahmekammer verbunden ist, wobei sich von jeder Probenaufnahmekammer mindestens ein Verteilerkanal erstreckt. Weiterhin weist der Probenträger mindestens eine Reaktionskammer auf, in die ein von dem mindestens einen Verteilerkanal abzweigender Zulaufkanal mündet, sowie eine Entlüftungsöffnung für jede Reaktionskammer. Die Dimensionierung jedes Verteilerkanals und jedes Zulaufkanals ist derart bemessen, daß der Flüssigkeitstransport durch die Verteiler- und Zulaufkanäle in Folge von Kapillarkräften erfolgt. In jeder Reaktionskammer ist im Einmündungsbereich des Zulaufkanals eine Einrichtung zur Erzeugung einer Kapillarkraft zum Fließen der Probenflüssigkeit aus dem Zulaufkanal in die Reaktionskammer angeordnet.

Description

Probenträcrer
Die Erfindung betrifft einen Probenträger, wie er für mikrobiologische Untersuchungen von Probenflüssigkeiten sowie für die medizinische und Umwelt-Analytik und -Diagnostik verwendet wird.
In der mikrobiologischen Diagnostik werden Absorption-, Streuungs- und Lumineszenzanalysen als optische Verfahren eingesetzt, z. B. Transmissions-, Fluoreszenz- oder Trübungsmessungen. Dabei werden Probenträger oder Test- streifen aus durchsichtigem Kunststoff mit einer Vielzahl von einseitig offenen Kammern oder tassenförmigen Vertiefungen benutzt. Die Probenträger oder Teststreifen haben z. B. 32 oder 96 Kammern oder Vertiefungen, die mit einem Reagenz belegt sind. Nach dem Beimpfen mit Bakteriensuspension werden die Probenträger oder Test- streifen ggf. mit einer durchsichtigen Folie versiegelt oder mit einem Deckel verschlossen. Die Vertiefungen haben ein Füllvolumen zwischen 60 μl und 300 μl und werden mittels apparativer Hilfsmittel einzeln befüllt; dazu werden Pipetten mit einem Kanal oder mit 8, 48 oder 96 Kanälen benutzt.
Aus US - 4 038 151 ist eine Probenplatte für ein automatisiertes optisches Untersuchungsverfahren bekannt, die zum Nachweisen und Auszählen von suspendierten Mikroorganismen und zum Bestimmen ihrer Empfindlichkeit gegen Antibiotika dient. Die Platte besteht aus einem steifen durchsichtigen Kunststoff und enthält z. B. 20 konische Reaktionskammern. Die Querschnittsfläche der Reaktions- kammern ist auf der einen Plattenseite größer als auf der anderen Plattenseite. Neben jeder Reaktionskammer sind zwei Überlaufkammern angebracht, die auf der Seite jeder Reaktionskammer liegen, auf der sich ein Zulaufkanal für die betreffende Reaktionskammer befindet. Die Reaktions-
BBSTÄTIGUNGSKOPIE - 2 -
kammern sind über Schlitze mit den Überlaufkammern verbunden. Die Reaktionskammern, die Schlitze und die Überlaufkammern erstrecken sich über die gesamte Dicke der Probenplatte. Die Reaktionskammern sind gruppenweise über speziell angeordnete und geformte und auf einer Plattenseite befindliche verzweigte Zulaufkanäle mit mindestens einer Probenaufnahmekammer verbunden, die mit einem Septum verschlossen ist . Die Zulaufkanäle treten an der größeren Seite der konischen Reaktionskammer tangential ein. Die Form und die Fläche des Querschnitts jedes Zulaufkanals ändert sich an jeweils einer Stelle sprunghaft. An diesen Stellen geht - in Strömungsrichtung gesehen - ein flacher und breiter Kanal jeweils in einen tiefen und schmalen Kanal über. Die auf einer Plattenseite angeordneten Zulaufkanäle können länger sein als die jeweils kürzeste Verbindung zwischen Reaktionskammer und Probenaufnahme- kammer, um die Rückdiffusion von in der Suspension vorhandenen Bestandteilen zu erschweren. Die Platte ist - bis auf einen Randbereich - auf beiden Seiten mit je einer semipermeablen Folie verklebt, die die Reaktionskammern, die Überlaufkammern, die Schlitze und die auf der einen Seite der Platte angebrachten Zulaufkanäle sowie eine Seite der Probenaufnahmekammer bedeckt . Die Reaktionskammern sind mit einer eingetrockneten Schicht einer Reagenzsubstanz belegt.
Zum Einbringen der Probenflussigkeit in die bekannte Probenplatte werden deren Kanäle und Kammern evakuiert, so daß die Probenflussigkeit aus einem außerhalb der Platte befindlichen Behälter mittels einer Kanüle durch das Septum hindurch von der Kante der Platte in die Probenaufnahmekammer geleitet wird und durch die Zulaufkanäle in die Reaktionskammern und ggf . in die Überlaufkammern strömt. Die in die Reaktionskammer eingeströmte Suspension (Probenflussigkeit) und die Reagenzschicht stehen in - 3 -
Kontakt mit der auf der Folie angebrachten Klebstoffschicht .
Bei der optischen Untersuchung der Proben in den Reaktionskammern steht die Probenplatte vertikal im Meßgerät . In dieser Lage treten die Zulaufkanäle in Bezug auf die Richtung der Schwerkraft von oben in die Reaktions- kammern ein, und die Überlaufkammern liegen oberhalb der Reaktionskammern. Damit können sich in der Reaktionskammer ggf . vorhandene oder bei einer Reaktion oder einem Stoffwechsel entstehende Gasblasen in den Überlaufkammern sammeln, ohne die optische Untersuchung der Proben zu stören.
Aus US - 5 670 375 ist eine Probenplatte bekannt, deren bis zu 64 Kavitäten simultan beimpft werden. Nachdem die Luft aus den Kavitäten abgesaugt ist, strömt das zu untersuchende Fiuid aus einem außerhalb der Probenplatte befindlichen Behälter durch ein Verbindungsrohr in die Kavitäten und füllt sie.
Aus US-A-5, 223 , 219 ist ein Probenträger bekannt, bei dem ausgehend von einem Probenaufgabebereich Probenflussigkeit über ein Verteilerkanalsystem in Reaktionskammern gelangt. In den Reaktionskammern befinden sich poröse Einsatzteile, die Reagenzien aufweisen. Die Probenflussigkeit wird aufgrund der in den porösen Einsatzteilen entstehenden Kapillarkräfte in die Reaktionskammern "gesaugt". Der Umstand, daß sich in den Reaktionskammern Einsatzteile befinden, schränkt die photometrischen Untersuchungen der mit den Reagenzien reagierenden Probenflüssigkeiten in den Reaktionskammern ein. So ist es beispielsweise nicht möglich, bei einer derartigen Anordnung Durchlicht- und optische Trübungsmessungen durchzuführen. Schließlich existieren im Stand der Technik noch Flüssigkeitsverteilungssysteme zum Transportieren einer Probenflussigkeit aus einer Ampulle in eine Vielzahl von Reaktionskammern, wobei bei diesen Systemen die Schwer- kraft zur Erzeugung einer Flüssigkeitsströmung durch die Verteilungskanäle ausgenutzt wird. Die Reaktionskammern müssen entlüftet werden, was durch von den Reaktions- kammern ausgehenden Entlüftungskanälen erfolgt, die ebenfalls ein Entlüftungskanalsystem bilden. Beide Kanal - Systeme (Verteilerkanalsystem und Entlüftungskanalsystem) sind nach Art von kommunizierenden Röhren ausgebildet, was, da Schwerkraft ausgenutzt wird, verhindert, daß die Probenflussigkeit nach Befüllung der Reaktionskammern aus den Entlüftungskanälen austritt.
Die zunehmende Verbreiterung und Automatisierung von quasiparallel ablaufenden Untersuchungen der Mikrobiologie, Analytik und Diagnostik macht es erforderlich, die bestehenden Probenträger- und Probenflüssigkeits- Verteilungssysteme weiterzuentwickeln und insbesondere zu miniaturisieren. Aufgrund der sich damit ergebenden relativ kleinen Querschnittsflächen der Kanäle ist es wünschenswert, wenn für den Flüssigkeitstransport andere Kräfte als die Schwerkraft oder Druckkräfte ausgenutzt werden können. Hier bieten sich insbesondere Kapillarkräfte an, was jedoch dann die Schwierigkeit mit sich bringt, den Flüssigkeitstransport auch dann noch aufrechterhalten zu können, wenn die Flüssigkeit aus einem im Querschnitt kleineren Bereich in einen im Querschnitt größeren Bereich innerhalb des Probenträgers bzw. Proben- flüssigkeitsverteilungssystems fließen soll.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Probenträger und ein Probenflüssigkeitsverteilungssystem zu schaffen, die über eine recht hohe Dichte an Reaktionskammern pro Flächeneinheit verfügen, kostengünstig - 5 -
herstellbar sind, einfach zu handhaben sind und über einen einfach von außen zu steuernden Flüssigkeitsströmungs- mechanismus verfügen.
Zur Lösung dieser Aufgabe wird mit der Erfindung ein Probenträger bzw. ein Probenflussigkeitsverteilungssystem vorgeschlagen, daß versehen ist mit mindestens einer Probenaufnahmekammer für eine Probenflussigkeit , - einem Verteilerkanal für Probenflussigkeit, der mit der mindestens einen Probenaufnahmekammer verbunden ist, wobei sich von jeder Probenaufnahmekammer mindestens ein Verteilerkanal erstreckt, mindestens einer Reaktionskammer, in die ein von dem mindestens einen Verteilerkanal abzweigender Zulauf - kanal mündet, und einer Entlüftungsöffnung für jede Reaktionskammer.
Dieser erfindungsgemäße Probenträger bzw. dieses erfindungsgemäße Probenflussigkeitsverteilungssystem ist dadurch gekennzeichnet, daß daß die Dimensionierung jedes Verteilerkanals und jedes Zulaufkanals derart bemessen ist, daß der Flüssigkeitstransport durch die Verteiler- und Zulaufkanäle in Folge von Kapillarkräften erfolgt, und daß in jeder Reaktionskammer im Einmündungsbereich des Zulaufkanals eine Einrichtung zur Erzeugung einer Kapillarkraft zum Fließen der Probenflussigkeit aus dem Zulaufkanal in die Reaktionskammer angeordnet ist .
Nach der Erfindung ist vorgesehen, daß die Verteilerkanäle und Zulaufkanäle derart kleine Querschnittsflächen bzw. derart gestaltete Querschnittsflächen aufweisen, daß in ihnen der Flüssigkeitstransport durch Kapillarkräfte - 6 -
erfolgt. Die Kanäle sind also als Kapillare ausgebildet. Die Reaktionskammern, in die die über die Kanäle fließende Probenflussigkeit einströmen soll, sind im Querschnitt größer als die Zulaufkanäle . Damit entsteht die Situation, daß die Flüssigkeit aus einem im Querschnitt kleinen Kanal in eine größere Kavität, nämlich einer Reaktionskammer einströmen muß. Damit dies einzig und allein aufgrund der Wirkung von Kapillarkräften erfolgt, ist erfindungsgemäß vorgesehen, daß in jeder Reaktionskämmer im Einmündungs- bereich des Zulaufkanals durch Ausbildung von Strukturen an der Innenseite der Reaktionskämmer oder durch Ausbildung von Asymmetrien Einrichtungen zur Erzeugung einer Kapillarkraft geschaffen werden, die ein Fließen der Probenflüssgkeit aus dem Zulaufkanal in die Reaktions- kammer ermöglichen. Durch Schaffung derartiger Kapillarkraft-Erzeugungseinrichtungen im Einmündungsbereich eines Zulaufkanals in eine Reaktionskammer wird der durch Kapillarkräfte erzeugte Fluß der Probenflussigkeit aufrechterhalten, bis die Reaktionskammer gefüllt ist. Diese Kapillarkraft-Erzeugungseinrichtungen begünstigen die Benetzung der Wände der Reaktionskammern mit Probenflussigkeit und Halten dadurch den Flüssigkeitsstrom aufrecht . Alternativ zu den oben angegebenen Ausgestaltungen der Kapillarkräft-Erzeugungseinrichtungen können diese also auch durch Oberflächenbehandlungen der Reaktionskammern ausgebildet sein, die die Oberflächen hydrophil machen bzw. so hydrophil gestalten, daß es zum Benetzen der Innenseiten der Reaktionskammern und somit zum vollständigen Ausfüllen der Reaktionskammern mit Probenflussigkeit kommt.
Insbesondere werden die Kapillarkräft-Erzeugungs- einrichtungen im Einmündungsbereich der Zulaufkanäle in die Reaktionskammern durch Einbringung von Strukturen, insbesondere durch Einbringen einer Einlaufrinne o. dgl . realisiert. Diese Einlaufrinne weist mindestens zwei Begrenzungsflachen auf, die durch einen Übergangsbereich miteinander verbunden sind. Dieser Übergangsbereich ist mit Rundungen versehen, deren Radien derart klein sind, daß zum Fließen der Probenflussigkeit entlang dieser Rinne benötigte Kapillarkräfte entstehen. Mündet der Zulaufkanal in Höhe der Bodenfläche in der Reaktionskammer ein, so kann bei entsprechender Wahl des Rundungsradius im Bereich zwischen der Bodenfläche und den Seitenflächen der Reaktionskammer der Fluß der Flüssigkeit dadurch aufrecht- erhalten werden, daß diese zunächst entlang der Ecken- und Übergangsbereiche zwischen der Bodenfläche und den Seitenflächen fließt, um auf diese Weise die gesamte Bodenfläche zu benetzen, woraufhin dann der weitere Transport durch die Kapillarwirkung der Reaktionskammer aufrechterhalten wird, deren Querschnitt nun vollständig mit Probenflussigkeit ausgefüllt ist. Sollte der Zulaufkanal oberhalb der Bodenfläche aus einer der Seitenflächen der Reaktionskammer heraus in die Reaktionskammer münden, so sollte zwischen der Einmündung und der Bodenfläche in der betreffenden Seitenwand eine Nut o. dgl . Rille eingearbeitet sein. Als eine solche Rinne eignet sich auch der Eckenbereich zweier winklig zueinander verlaufender Seitenflächen der Reaktionskammer, sofern der Rundungsradius im Ecken- bzw. Übergangsbereich beider Seiten- flächen derart klein ist, daß auf die Probenflussigkeit wirkende Kapillarkräfte entstehen, die derart groß sind, daß sie die Probenflussigkeit aus dem Zulaufkanal "ziehen". Was die erforderlichen Krümmungsradien dieser Rinnen anbelangt, so gilt allgemein, daß sie kleiner sein sollten als die kleinste Dimension des Kanals, an den die Rinnen anschließen.
Eine alternative Ausgestaltung zur Kapillarkräft-
Erzeugungseinrichtung besteht darin, daß die Kanäle in einem Winkel ungleich 90° aus einer die Kammer begrenzenden Fläche verlaufen. Aufgrund der sich dabei ergebenden nicht kreisrunden Einmündungsöffnung fließt die Probenflussigkeit im günstigsten Fall ohne zusätzliche Maßnahmen aus dem Kanal in die Kammer .
Der Mechanismus, durch den aus den Probenaufnahmekammern die zu untersuchende Probenflussigkeit in die Verteilerkanäle fließt, kann ebenfalls unter Ausnutzung von Kapillarkräfte erzeugenden Strukturen erfolgen. Im einfachsten Fall zweigen die Verteilerkanäle in Höhe der Bodenflächen der Probenaufnahmekammern von diesen ab. Da nach dem Befüllen der Probenaufnahmekammern mit Probenflussigkeit die Querschnitte der Verteilerkanäle im Einmündungsbereich mit Flüssigkeit benetzt sind, kommt es automatisch zu einer Strömung innerhalb der Verteiler- kanäle. Der Austrag der Probenflussigkeit aus den Probenaufnahmekammern ist damit gewährleistet.
Anders sieht die Situation aus, wenn, was aus herstellungstechnischen Gründen der Fall sein wird, die Verteilerkanäle oberhalb der Bodenflächen der Probenaufnahmekammern in diese einmünden. In diesem Fall muß dafür gesorgt werden, daß die Probenflussigkeit ausgehend von dem Flüssigkeitsspiegel innerhalb der Probenkammern "nach oben gezogen wird" . Dies erfolgt mittels einer in der Probenaufnahmekammer ausgebildeten Kapillarkräft-
Erzeugungseinrichtung, die in gleicher Weise wie die Kapillarkräft-Erzeugungseinrichtungen ausgebildet sein kann, die in den Reaktionskammern angeordnet sind. Als bevorzugte Variante kommt also auch hier eine Rinne in Frage, die als Auslaufrinne in einer der Seitenwände der
Probenaufnahmekammern ausgebildet ist. Alternativ dazu kann die Rinne sich als Übergangsbereich bzw. Eckenbereich zwischen zwei winklig zueinander verlaufenden Seitenflächen der Probenaufnahmekammern darstellen. In sämtlichen Fällen ist dafür zu sorgen, daß durch entsprechend kleine Wahl des Rundungsradius der Rinne bzw. - 9 -
des Eckenbereichs Kapillarkräfte entstehen, die auf die Flüssigkeit in der Weise einwirken, daß es zu einem selbständigen Fließen kommt.
Wie sich aus der vorstehenden Beschreibung ergibt, läßt die Miniaturisierung es zu, auf engstem Raum eine Vielzahl von Reaktionskammern anzuordnen, die sich beispielsweise als in einen Basiskörper eingebrachte Kavitäten darstellen. Bei der Verteilung der Probenflussigkeit über die Verteilerkanäle und die von diesen abzweigenden Zulaufkanälen ist es wünschenswert, daß die Probenflussigkeit möglichst gleichmäßig und insbesondere gleichzeitig sämtliche Reaktionskammern füllt . Um dies bei dem nach der Erfindung vorgesehenen Verteilerkanalsystem zu gewähr- leisten bzw. annähernd zu gewährleisten, ist es zweckmäßig, wenn die Zulaufkanäle eine kleine Querschnitts- fläche aufweisen als die Verteilerkanäle. Damit wirken die Zulaufkanäle nach Art von Drosseln, die den Flüssigkeitstransport, der weiterhin durch Kapillarkräfte verursacht wird, verlangsamen. Sämtliche entlang der Erstreckung eines Verteilerkanals abzweigende Zulaufkanäle können die gleichen Querschnittsflächen aufweisen. Eine Alternative besteht darin, die Querschnittsflächen der Zulaufkanäle mit zunehmendem Abstand derselben von der Probenaufnähme- kammer zu erhöhen, um bei den - bezogen auf die Strömungsrichtung der Probenflussigkeit durch die Verteilerkanäle - ersten abzweigenden Zulaufkanälen eine größere Drossel- Wirkung zu erzielen als bei den später abzweigenden Zulaufkanälen .
Aus Platzgründen ist es zweckmäßig, daß die Zulaufkanäle jeweils beidseitig der Verteilerkanäle von diesen abzweigen. Strömungstechnisch ist es insoweit von Vorteil, wenn zwei Abzweigungsstellen des Verteilerkanals, von denen auf gegenüberliegenden Seiten einander gegenüberliegende Zulaufkanäle abzweigen, nicht direkt gegenüber- - in ¬
liegend, sondern längs der Erstreckung des Verteilerkanals zueinander versetzt angeordnet sind. Denn jede Abzweigung eines Zulaufkanals vom Verteilerkanal stört, wenn auch geringfügig den durch Kapillarkräfte aufrechterhaltenen Flüssigkeitstransport. Aus diesen Gründen sollten daher derartige Störungen nicht gleichzeitig auf die sich entlang der Verteilerkanäle bewegende Flüssigkeitsfront auswirken, was der Fall wäre, wenn zwei einander gegenüberliegende abzweigende Zulaufkanäle in gleicher Höhe des Verteilerkanals und/oder exakt einander gegenüberliegend abzweigen.
Damit ausgehend von den Probenaufnahmekammern Probenflussigkeit in die Reaktionskammern einströmen kann, muß dafür gesorgt werden, daß das in diesen Kammern und in dem zu ihnen führenden Kanalsystem befindliche Gas entweichen kann. Daher ist jede Reaktionskammer mit einer Entlüftungsöffnung versehen. Werden diese Entlüftungs- öffnungen beim Befüllen der Reaktionskammern mit Proben- flüssigkeit benetzt bzw. gar überdeckt, so besteht die Gefahr, daß die Probenflussigkeit über die Entlüftungs- öffnungen aus den Reaktionskammern herausfließt, sofern die Benetzung und Überdeckung der Entlüftungsöffnungen in diesen ausreichend große Kapillarkräfte hervorrufen können. Tatsächlich ist es wünschenswert, die Reaktionskammern vollständig mit Probenflussigkeit auszufüllen, da eventuell noch eingeflossenes Gas die optische Untersuchung mittels Photometrie erschwert, wenn nicht gar unmöglich macht.
Vorteilhafterweise wird der weitere Transport der Probenflussigkeit durch die Entlüftungsöffnungen durch Einrichtungen zur Unterbindung des weiteren Fließens der Probenflussigkeit unterbunden. Diese Einrichtungen basieren vorteilhafterweise auf dem Prinzip, durch geometrische Formgebung der Entlüftungsöffnungen und der - 11 -
ggf. sich an diese anschließenden Entlüftungskanäle dafür zu sorgen, daß die entstehenden Kapillarkräfte derart gering sind, daß es zu einer Unterbrechung der Probenflüssigkeitsstromes kommt . Hier bieten sich insbesondere sog. "Kapillarsprünge", also Kanalaufweitungen an, in die die Probenflussigkeit aufgrund erschwerter Benetzungs- bedingungen der Wandungen der Kanalaufweitungen von selbst nicht einströmen kann. Beispielsweise könnten sich an die Entlüftungsöffnungen anschließende Entlüftungskanäle in eine Kavität bzw. Kanalauf eitung einmünden, wobei der Einmündungsbereich innerhalb einer Seitenfläche der Kanal- aufweitung bzw. Kavität liegt, und um den Einmündungs- bereich keinerlei oder nur wenige Eckenbereiche angeordnet sind. Denn jeder Eckenbereich erzeugt wiederum Kapillar- kräfte, die ihrerseits durch den Grad der Rundung bestimmt sind.
Zweckmäßigerweise schließen sich an die Entlüftungsoffnungen der Reaktionskammern Verbindungskanäle an, die in einen Entlüftungssammelkanal einmünden. Dieser Entlüftungssammelkanal ist mit einer Entlüftungsöffnung versehen, die das Entlüftungssystem des Probenträgers mit der Umgebung verbindet. Nachdem damit einer zweites Verteilerkanalsystem vorhanden ist, das von einer zentralen Stelle, nämlich den Entlüftungssammelkanälen einer Fluidverbindung mit den einzelnen Reaktionskammern ermöglicht, ist es wünschenswert, über dieses zweite Verteilersystem gezielt zusätzliche Reagenzflüssigkeiten in die Reaktionskammern einzubringen. Durch das Einbringen derartiger zusätzlicher Reagenzflüssigkeiten können die Probenflüssigkeiten, die in den Reagenzkammern bereits mit einem dort vorab eingebrachten und beispielsweise in eingetrockneter Form befindlichen Reagenzsubstanz reagiert haben, einer zweiten Reaktion unterzogen werden. Da das Entlüftungssystem jedoch über Einrichtung, insbesondere in Form von KanalaufWeitungen verfügt, die den Probenflüssig- - 12 -
keitsstrom aus den Reaktionskammern über die Entlüftungs- Öffnungen unterbinden soll, wird eine derartige Einrichtung auch den Transport der Reaktionsflüssigkeit über das Entlüftungskanalsystem in die Reaktionskammern erschweren. Diesbezüglich ist es von Vorteil, wenn durch entsprechende Ausgestaltung der die Strömungs- unterbindungseinrichtung bildenden KanalaufWeitungen dafür Sorge getragen wird, daß das Fließen von Reagenzienflüssigkeit in die Kanalaufweitungen durch Kapillarkräfte ermöglicht wird. Hier bieten sich wiederum die bereits oben beschriebenen Einlaufrinnenstrukturen an, die durch entsprechend ausgestaltete Eckenbereiche im Übergangsbereich mehrerer winklig zueinander stehender Flächen der KanalaufWeitungen realisiert werden können.
Aufgrund der zuvor beschriebenen Ausbildung der KanalaufWeitungen mit Kapillarkraft erzeugenden Einrichtungen, die das Einströmen von Reagenzflüssigkeit in die Kanalaufweitungen erlauben, werden diese mit Reagenzflüssigkeit aufgefüllt, bis die Reagenzienflüssigkeit die Einmündung des von den Reaktionskammern aus verlaufenden Abschnitten der Entlüftungskanäle überdeckt . Damit berühren sich in diesen Einmündungsbereichen die beiden Reagenzflüssig- keits- und Probenflüssigkeitsfronten. Der weitere Transport der Reagenzien erfolgt nun durch Diffusion bis in die Reaktionskammern hinein.
Das gezielte Auffüllen der KanalaufWeitungen, so daß es zum Diffusionstransport der Reagenzien kommen kann, kann alternativ auch durch Einbringen einer (gegenüber den Reagenzien und der Probenflussigkeit) inerten Steuerflüssigkeit erzielt werden. Zu diesem Zweck mündet in die Kanalaufweitung dann ein Steuerkanal ein, über den die Steuerflüssigkeit in die Kanalaufweitung gelangt . Auf diese Weise ist ein flüssigkeitsgesteuertes Ventil geschaffen, das sozusagen die Einmalbetätigung zum Über- - 13 -
führen des Ventils aus dem Sperrzustand in seinen Durchlaßzustand im Hinblick auf die Ermöglichung eines Diffusionstransports der Reagenzien erlaubt. Das Einbringen der Steuerflüssigkeit in die Kanalaufweitungen kann durch Druckbeaufschlagung der Steuerflüssigkeit oder wiederum durch die Ausnutzung von Kapillarkräften erfolgen. Hier bieten sich wieder die gleichen Mechanismen und Gestaltungen der Seitenwände und Einmündungsbereiche der Kanalaufweitungen an, wie sie weiter oben bereits beschrieben sind.
Die Einbringung der Reagenzienflüssigkeit in den Entlüftungssammelkanal bzw. in das Entlüftungskanalsystem der Reaktionskammern erfolgt zweckmäßigerweise dadurch, daß dieses Kanalsystem mit mindestens einer Reagenzienflüssigkeits-Aufnahmekammer fluidmäßig verbunden ist. Aus dieser Kammer gelangt die Reagenzienflüssigkeit insbesondere unter Ausnutzung derjenigen Mechanismen hinein, wie sie weiter oben im Zusammenhang mit den Probenaufnahmekammern und den Verteilerkanälen beschrieben sind.
Für die Untersuchung von mikrobiologischen Proben mit Hilfe des erfindungsgemäßen Probenträgers kann es erforderlich sein, die zu untersuchende Probe zuvor zu amplifizieren, d. h. daß das Probenmaterial mengenmäßig vermehrt werden muß, bevor es über das Verteiler-Zulauf- kanalsystem den einzelnen Reaktionskammern zugeleitet wird. Der Vorgang des Amplifizierens und des Einbringens der amplifizierten Probe in Probenaufnahmekammern wird vereinfacht, wenn die Amplifizierung selbst am Ort der Probenaufnahmekammer erfolgt. Dann ist es wünschenswert, das amplifizierte Probenmaterial von außen gesteuert an die den Probenaufnahmekammern zugeordneten Reaktions- kammern weiterzugeben. Dies erfolgt gemäß einer vorteilhaften Variante der Erfindung dadurch, daß zwischen der - 14 -
Probenaufnahmekammer und dem ersten von dem mindestens einen Verbindungskanal abzweigenden Zulaufkanal ein erstes Ventil angeordnet ist, das vorzugsweise als Einmalventil ausgebildet ist, welches lediglich ein einziges Mal aus seinem Sperrzustand in den Durchlaßzustand überführt werden kann. Wenn der Transport der Probe von der Probenaufnahmekammer zu den einzelnen Reaktionskammern durch Kapillarkräfte erfolgt, was bevorzugt angestrebt ist, weshalb sämtliche in dem Probenträger ausgebildeten Kanäle als Kapillare ausgebildet sind, dann kann dieses erste Ventil auch in dem Entlüftungskanal angeordnet sein, der der Gruppe von Reaktionskammern zugeordnet ist, mit denen die Probenaufnahmekammer verbunden ist . Denn durch die somit erfolgende gesteuerte Entlüftung der Reaktions- kammern wird der Zufluß des Probenmaterials aus der Probenaufnahmekammer in die einzelnen Reaktionskammern gesteuert .
Die "Schnittstelle" des erfindungsgemäßen Probenträgers zur Ansteuerung des ersten Ventils bzw. der ersten Ventile sollte recht einfach ausgestaltet sein. Das setzt voraus, daß das Ventil sich einfach von extern ansteuern läßt. Bevorzugt ist vorgesehen, das Ventil hydraulisch bzw. pneumatisch zu steuern, und zwar durch die am Ventil anstehende Flüssigkeit bzw. durch das anstehende Gas. Indem nämlich beispielsweise auf das sich in der Probenaufnahmekammer befindende Probenmaterial ein Druckimpuls ausgeübt wird, entsteht am ersten Ventil ein hydraulischer Druck, der ein Sperrelement des ersten Ventils aufbricht oder in sonstiger Weise überbrückt. So ist es beispielsweise denkbar, daß das erste Ventil als Berstventil mit einer Berstfolie ausgebildet ist, die bei Überschreitung eines bestimmten Drucks aufbricht und damit den Kanal, in dem sich das Ventil befindet, öffnet. Alternativ können Klappenventile bzw. Rückschlagventile eingesetzt werden, die bei Erreichen eines entsprechenden Drucks des - 15 -
anstehenden Fluids (Flüssigkeit oder Gas) öffnen. Diese Art von Ventilen ist insbesondere dann bevorzugt, wenn der Transport der Fluide durch den Probenträger druckbeaufschlagt, also nicht durch Kapillarkräfte erfolgt.
Eine weitere Alternative der Ausgestaltung des ersten bzw. der ersten Ventile besteht darin, daß dieses eine hydrophobe Ausgestaltung aufweist, die in Form einer entsprechenden Oberflächenbearbeitung des Kanals im Bereich des Ventils oder durch ein Einsatzteil realisiert wird. Das am hydrophoben Ventil anstehende Fiuid überbrückt dieses beispielsweise in Folge einer insbesondere impulsartigen Druckbeaufschlagung. Wenn der Kanal im Bereich des Ventils auf diese Weise mit Flüssigkeit benetzt ist und Kapillarkräfte zum weiteren Transport der Flüssigkeit eingesetzt werden, so ist damit ein Einmalventil geschaffen, das sich recht einfach von extern, nämlich durch Druckbeaufschlagung der Probenaufnahmekammer überbrücken läßt .
Das erste Ventil kann aber auch vorteilhafterweise als Kanalaufweitung ausgebildet sein, die ihrerseits wie ein Kapillarsprung wirkt (siehe hierzu auch die Beschreibung weiter oben im Zusammenhang mit den Entlüftungskanälen) . Sobald diese Kanalaufweitung mit Flüssigkeit aufgefüllt ist, was beispielsweise durch entsprechende Druckbeaufschlagung an der Probenaufnahmekammer erfolgt oder aber durch Einbringen einer Fremd- bzw. Steuerflüssigkeit von extern erfolgt, ist der Transport der Flüssigkeit hinter dem Ventil durch Kapillarkräfte gesichert, so daß das Ventil selbst wiederum hydraulisch überbrückbar ist.
Sämtliche Kanäle, Kammern und dergleichen Strukturen sind von vorzugsweise einer Seite in einen Grundkörper eingebracht, der durch einen Deckelkörper, bei dem es sich insbesondere um eine Folie handelt, flüssigkeitsdicht - 16 -
überdeckt ist. Beide Körper, der Grundkörper und der Deckelkörper, können aber auch zusammen die Kanäle und Kavitäten bilden. Der Probenträger besteht vorzugsweise aus Kunststoff, wie Polystyrol oder Polymethylmetacrylat (PMMA) , Polycarbonat oder ABS. Der Probenträger kann durch Abformen jeweils eines Formeinsatzes im Mikrospritzguß- verfahren hergestellt werden. Die Struktur des Formeinsatzes ist dabei komplementär zur Struktur des Probenträgers, d. h. komplementär zur Struktur des Basiskörpers und/oder des Deckelkörpers. Die für diese Spritzgußtechniken einzusetzenden Formeinsätze werden durch Lithographie oder Galvanoformung, durch Mikroerosion oder durch mikromechanische Bearbeitung wie Diamantfräsen hergestellt. Desweiteren können die strukturierten Elemente des Probenträgers aus einem photoätzbaren Glas oder aus Silizium durch anisotropes Ätzen oder durch mikromechanische Bearbeitungsverfahren hergestellt sein. Die Einzelteile des Probenträgers (Grundkörper und Deckel- körper) werden an ihren Berührungsflächen miteinander verbunden, und zwar insbesondere durch Ultraschallschweißen. In jedem Fall muß diese Verbindung flüssigkeits- und gasdicht sein, damit die einzelnen Kammern und Kanäle nicht über die Berührungsflächen der Elemente in Kontakt stehen, aus denen der Probenträger besteht (Grundkörper und Deckelkörper) .
Der erfindungsgemäße Probenträger kann für Durchlicht - Messungen aus durchsichtigem Material und für Lumineszenz - Messungen aus durchsichtigem oder undurchsichtigem Material bestehen. Sofern der Probenträger mehrteilig aufgebaut ist (Grundkörper und Deckelkörper) , können die einzelnen Teile des Probenträgers aus unterschiedlichen Materialien bestehen.
Die Höhe der Reaktionskammern und damit die Dicke der vom Licht durchstrahlten Flüssigkeitsschicht kann an das - 17 -
optische Auswertungsverfahren angepaßt sein. Innerhalb des Probenträgers können Reaktionskammern mit unterschiedlichen Höhen vorhanden sein.
Der erfindungsgemäße Probenträger kann Reaktionskammern mit Volumen aufweisen, die zwischen 0,01 μl und 10 μl liegen. Die Reaktionskammerdichte kann bis zu 35/cm2 betragen. Auf einem Probenträger handlicher Größe lassen sich somit problemlos 50 bis 10.000 Reaktionskammern unterbringen. Die einzelnen Kanäle haben eine Breite und Tiefe von 10 μm bis 1.000 μm und insbesondere 10 μm bis 500 μm.
Ein erfindungsgemäß aufgebauter Probenträger hat beispielsweise eine Höhe von 4 mm, wobei bei zweiteiligem Aufbau (Grundkörper und Deckelkörper) der Grundkörper eine Dicke von etwa 3 , 5 mm und der als Folie ausgebildete Deckelkörper eine Dicke von 0,5 mm aufweist. Die- ggf. runden, aber ebenso auch eckig ausbildbaren Reaktions- kammern sind etwa 3,0 mm tief, so daß sich eine Bodenwanddicke von 0,5 mm einstellt. Das Volumen dieser Reaktionskammern beträgt jeweils 1,5 μl . Die einzelnen Kanäle weisen insbesondere einen rechteckigen Querschnitt auf, wobei die Zulaufkanäle etwa 400 μm breit und 380 μm tief und die Verteilerkanäle, von denen die Zulaufkanäle abzweigen, etwa 500 μm breit und 380 μm tief sind. Die Entlüftungsöffnungen sind (bei rechteckigem Querschnitt) etwa 420 μm breit und etwa 380 μm tief. Die sich an die Entlüftungsöffnungen anschließenden Entlüftungskanäle weisen insbesondere eine Breite und Tiefe von 500 μm bzw. 1.000 μm auf. Auf einer Fläche von 21,5 mm x 25 mm, also 540 mm2, befinden sich 96 gleichzeitig befüllbare Reaktionskammern. Der rechnerische Flächenbedarf jeder Reaktionskammer beträgt also 5,6 mm2. Der erfindungsgemäße Probenträger hat insbesondere folgende Vorteile:
Er enthält eine wesentlich größere Anzahl von Reaktionskammern mit geringem Volumen, was zu einer höheren Probenkammerdichte führt .
Die Befüllung der Reaktionskammern mit der Probenflussigkeit erfolgt schneller und bei geringerem apparativen Aufwand einfacher, da die Probenflussigkeit nur an einigen wenigen Stellen (Probenaufnahme- kammern) appliziert wird und von dort selbsttätig in
Folge von Kapillarkräften bis in die Reaktionskammern hineinströmt .
Zum Befüllen der Reaktionskammern ist weder ein Überdruck der Probenflussigkeit noch ein Unterdruck in den Reaktionskammern erforderlich.
Die Probenaufnahmekammern werden mittels handelsüblicher Geräte befüllt, an die sie nach Abmessungen und Volumen angepaßt sind. Eine in einer Flüssigkeit vorhandene Reagenzien- flüssigkeit kann bei einem Probenträger, der mit
Probenaufnahmekammern für die Reagenzienflüssigkeit versehen ist, auf einfache Weise in die bereits mit einem Fiuid gefüllten Reaktionskammern nachträglich eingebracht werden. - Das Probenmaterial kann gezielt von der Probenaufnahmekammer an die einzelnen Reaktionskammern abgegeben werden, und zwar durch Einbringung eines ersten Ventils in das Kanalsystem, das sich insgesamt an die Probenaufnahmekammer anschließt. - Auch die ggf. den Reaktionskammern von deren
Entlüftungsseite aus zuzuführende Reagenzienflüssigkeit kann gesteuert in die Reaktionskammern eingebracht werden, indem in dem Entlüftungstrakt zweite Ventile angeordnet sind. Diese zweiten Ventile lassen sich insbesondere so, wie auch die ersten
Ventile, hydraulisch, pneumatisch o. dgl . steuern. - 19 -
Die abgedeckten Reaktionskammern werden vollständig mit dem zu untersuchenden Fiuid gefüllt. Das Füllvolumen jeder Reaktionskammer ist automatisch festgelegt; eine Dosiervorrichtung für jede einzelne Reaktionskammer ist nicht erforderlich.
Das in den Reaktionskammern befindliche Fiuid ist während einer ggf . weiteren Behandlung und während der Messung durch die mit dem Grundkörper dicht verbundene Deckfolie vor dem Verdunsten wirksam geschützt.
Der Materialbedarf für die Belegung der Reaktionskammern mit einem Reagenz, der Bedarf an Untersuchungsmaterial, z. B. Bakteriensuspension, Blutproben oder Wirkstoffen, und damit die Kosten sind kleiner als bei Probenträgern mit größerem Volumen der Reaktionskammern.
Für das zu untersuchende Fiuid, z. B. eine Bakteriensuspension, können Probenaufnahmekammern vorgesehen werden, die sich in dem Grundkörper oder in dem Deckelkörper befinden, und in die ggf. mehrere
Verbindungskanäle münden .
Die mikrobiologische, mikrochemische oder bakteriologische Untersuchung der in den Probenträger eingebrachten Proben ist vollautomatisierbar bei vermindertem Aufwand für die Meßgeräte.
Die Probenträger können bei normaler Zimmertemperatur gelagert werden. Der Platzbedarf bei der Lagerung ist deutlich geringer als bei herkömmlichen Probenträgern. Die Probenträger sind, analog zu den bekannten Probenträgern, für einmaligen Gebrauch bestimmt. Wegen der größeren Packungsdichte der Reaktions- kammern ist die zu entsorgende Menge an gebrauchten Probenträgern geringer als bei Verwendung herkömm- licher Probenträger. - 20 -
Die Reaktionskammern in dem Probenträger können mittels einer angepaßten miniaturisierten Vorrichtung mit einem chemisch oder biologisch wirksamen Reagenz belegt werden, das nach dem Einbringen des Reagenzfluids eingetrocknet wird und auf dem Boden und auf den Wänden der Reaktions- kammern haftet. Als Reagenzien können beispielsweise Oligopeptid-ß-NA-Derivate, p-Nitrophenyl -Derivate , Zucker für Fermentations- und andere Untersuchungen, organische Säuren, Aminosäuren für Assimilationsuntersuchungen, Decarboxylase-Substrate, Antibiotika, Antimycotica, Nährböden, Markersubstanzen, Indikatorsubstanzen und andere Substanzen verwendet werden.
Der erfindungsgemäße und ggf. mit Reagenz belegte Probenträger kann für den biochemischen Nachweis und die Empfindlichkeitsprüfung von klinisch bedeutsamen Mikroorganismen verwendet werden. In einem voll- automatisierten und miniaturisierten System wird eine definierte Suspension von Mikroorganismen hergestellt, mit der der Probenträger beschickt wird. Der beimpfte Probenträger wird - ggf . nach einer weiteren Behandlung - mittels eines optischen Verfahrens vermessen. Die dabei erhaltenen Ergebnisse werden rechnerunterstützt erfaßt und mittels angepaßter Verfahren mathematisch ausgewertet und beurteilt.
Der erfindungsgemäße Probenträger kann in der Blutgruppen- Serologie, der klinische Chemie, beim mikrobiologischen Nachweis von Mikroorganismen, bei der Prüfung der Empfindlichkeit von Mikroorganismen gegen Antibiotika, in der Mikroanalytik sowie bei der Prüfung von Wirkstoffen verwendet werden.
Die Erfindung wird anhand der Figuren im folgenden weiter erläutert. Im einzelnen zeigen: - 21 -
Fig. 1 eine Draufsicht auf die Oberseite eines Probenträgers mit teilweise aufgebrochener Deckfolie,
Fig. 2 eine Schnittansicht entlang der Linie II-II der Fig. 1 durch eine Probenaufnahmekammer mit sich an diese anschließendem Verteilerkanal,
Fig. 3 einen Schnitt entlang der Linie III-III durch die Probenkammern mit Darstellung der von diesen abzweigenden Verteilerkanälen,
Fig. 4 einen Schnitt entlang der Linie IV-IV der Fig. 1 durch die entlang der Breite des Probenträgers nebeneinanderliegenden Reaktionskammern,
Fig. 5 den in Fig. 1 bei V gekennzeichneten Bereich des Probenträgers in Draufsicht und vergrößerter Darstellung,
Fign. 6 bis 9
Querschnittsansichten entlang der Linien VI-VI bis IX-IX der Fig. 5 zur Verdeutlichung der Ausbildung der Kanäle und Kammern in jeweils ihren Übergangsbereichen und Einmündungs- bereichen, und
Fign. 10 bis 14
Darstellungen unterschiedlicher Ventilausgestaltungen in der Draufsicht und im Schnitt, wobei diese Ventile in dem in Fig. 5 mit XI gekennzeichneten Bereich angeordnet sind.
Der in der Zeichnung dargestellte Probenträger 10 weist einen zweiteiligen Aufbau auf und besteht aus einer Grund- platte 12, dessen in Fig. 1 dargestellte Oberseite 14 von einer Abdeckfolie 16 überdeckt ist (siehe auch die Fign. - 22 -
2 bis 4) . Aufgabe des Probenträger 10 ist es, applizierte Probenflussigkeit unter Ausnutzung von Kapillarkräften in eine Vielzahl von Reaktionskammern zu leiten, in denen sich unterschiedliche Reagenzsubstanzen befinden. Ferner sollen sich die mit Probenflussigkeit gefüllten Reaktionskammern photometrisch untersuchen lassen können. Weiterhin ist vorgesehen, von unterschiedlichen Stellen aus Flüssigkeiten gezielt in die Reaktionskammern einzubringen .
Wie insbesondere anhand von Fig. 1 zu erkennen ist, ist der Probenträger 10 in mehrere Abschnitte 18 unterteilt, deren Ausgestaltungen untereinander gleich sind. Bei der nachfolgenden Beschreibung wird jeweils auf die Ausgestaltung eines dieser Abschnitte eingegangen. Innerhalb jedes Abschnitts 18 ist die Grundplatte 12 des Probenträgers 10 an ihrer Oberseite 14 strukturiert, was durch Einbringung von Nuten und Vertiefungen von der Oberseite 14 aus in die Grundplatte 12 realisiert ist. Sämt- liehe Nuten und Vertiefungen bilden ein Proben- flüssigkeits- und ein Reagenzienflussigkeitsverteilungssystem, das zur Oberseite des Probenträgers 10 hin durch die Deckfolie 16 abgedeckt ist.
In jedem Abschnitt 18 des Probenträgers 10 befindet sich eine Probenaufnahmekammer 20 zur Aufnahme einer Probenflussigkeit 22 (siehe Fig. 2) . In Fluidverbindung mit der Probenaufnahmekammer 20 steht ein Verteilerkanal 24, der am oberseitigen Ende der Probenaufnahmekammer 20 in diese einmündet. Von dem Verteilerkanal 24 aus erstrecken sich beidseitig desselben in der Draufsicht gemäß Fig. 1 schlangenlinienförmig verlaufende Zulaufkanäle 26, die wie der Verteilerkanal 24 durch Einbringen von Nuten in die Oberseite 14 der Grundplatte 12 ausgebildet sind. Die Zulaufkanäle 26 erstrecken sich ausgehend von dem Verteilerkanal 24 bis in Reaktionskammern 28, die als von - 23 -
der Oberseite 14 in die Grundplatte 12 eingebrachte Vertiefungen ausgebildet sind. Von den Reaktionskammern 28 aus verlaufen (Entlüftungs-) Verbindungskanäle 30. Diese Verbindungskanäle 30 münden gruppenweise in zwei Entlüftungssammelkanäle 32 ein, die parallel zueinander und parallel zum Verteilerkanal 24 verlaufen. Mit anderen Worten befinden sich die beidseitig des Verteilerkanals 24 angeordneten Reaktionskammern 28 zwischen einerseits dem Verteilerkanal 24 und andererseits einem der beiden Entlüf ungssammelkanäle 32. Auch die Verbindungskanäle 30 und Entlüftungssammelkanäle 32 sind durch Einbringung von Nuten in die Oberseite 14 der Grundplatte 12 ausgebildet . Überdies enden die Entlüftungssammelkanäle 32 an ihrem einen Ende in einer Entlüftungsöffnung 34, die in einer Außenrandseite 36 (siehe Fig. 2) der Grundplatte 12 liegen. Das diesen Entlüftungsöffnungen 34 jeweils gegenüberliegende Ende der Entlüftungssammelkanäle 32 ist mit einer Reagenzflüssigkeits-Aufnahmekammer 38 verbunden, auf die später noch eingegangen werden wird. Auch diese Kammer 38 ist durch Einbringung einer Vertiefung in die Oberseite 14 der Grundplatte 12 realisiert .
Der Transport von Probenflussigkeit 22 aus der Probenaufnahmekammer 20 eines Abschnitts 18 des Probenträgers 10 bis in die der Probenaufnahmekammer 20 zugeordneten Reaktionskammern 28 erfolgt unter Ausnutzung von Kapillarkräften. Das gleiche gilt für den Transport von Reagenz- flüssigkeit aus den Kammern 38 in die Reaktionskammern 28. Damit diese Kapillarkräfte innerhalb der Kanäle entstehen können, müssen diese Kanäle 24,26,30,32 entsprechend dimensioniert sein. Gegebenenfalls bedarf es einer Oberflächenbehandlung der Innenseiten der Kanäle, um diese Oberflächen zu hydrophilisieren. Ob eine derartige Hydro- philisierung erforderlich ist, hängt zum einen vom Material, aus dem die Grundplatte 12 und die Deckfolie 16 bestehen, und zum anderen von der Viskosität und - 24 -
Beschaffenheit der zu transportierenden Flüssigkeiten (Probenflussigkeit und Reagenzienflüssigkeit) ab.
Während die Ausnutzung der Kapillarkräfte innerhalb der Kanäle durch die oben beschriebenen Maßnahmen auf einfache Art und Weise realisiert werden können, ist es problematisch, den Flüssigkeitstransport aus den Kammern 20,38,28 in die angeschlossenen Kanäle hinein bzw. aus den Kanälen 26 in die angeschlossenen Reaktionskammern 28 hinein zu gewährleisten. Auf Seiten der Fluidverbindung des Verteilerkanals 24 mit der Probenaufnahmekammer 20 besteht hier das Problem insbesondere darin, daß die Einmündungssteile 40 des Verteilerkanals 24 in die Probenaufnahmekammer 20 oberhalb der Bodenwand 42 der Kammer 20 und innerhalb der seitlichen Begrenzung 44 der Kammer 20 liegt. Die seitliche Begrenzung 44 der Kammer 20 wird durch Seitenflächenabschnitte 46 gebildet. Wie insbesondere anhand von Fig. 1 zu erkennen ist, verlaufen die Seitenflächen 46 im Bereich unterhalb der Einmündungs- stelle 40 winklig, in diesem Fall unter einem Winkel von etwa 90° zueinander, so daß ein Eckenbereich 48 zwischen beiden Seitenflächen 46 entsteht. Dieser Eckenbereich 48 weist an seinem Grund einen derart kleinen Krümmungsradius auf, daß eine Auslaufrinne 50 entsteht, in der sich bei Benetzung mit Probenflussigkeit 22 ein Flüssigkeitsmeniskus ausbildet. In dem hier beschriebenen Fall verläuft diese Auslaufrinne 50 quer zur Bodenwand 42. In der Auslaufrinne 50 entstehen also in Folge der Benetzung der Seitenflächen 46 im Eckenbereich 48 auf die Proben- flüssigkeit 20 wirkende Kapillarkräfte, die ausreichen, um die Probenflussigkeit 22 aus der Probenaufnahmekammer 20 heraus bis in den Verteilerkanal 24 zu saugen. Die Auslaufrinne 50 erstreckt sich insbesondere bis zur Bodenwand 42 der Probenaufnahmekammer 20. Sobald die Quer- schnittsfläche des Verteilerkanals 24 gänzlich von der Probenflussigkeit 22 ausgefüllt ist, erfolgt der weitere - 25 -
Transport der Probenflussigkeit im Verteilerkanal 24 durch nunmehr dort wirkende Kapillarkräfte.
Quer zur Erstreckung des Verteilerkanals 24 zweigen von diesem die Zulaufkanäle 26 ab. Auch in diesen Zulauf- kanälen 26 erfolgt der Weitertransport der Probenflussigkeit 22 durch Kapillarkräfte. Der Flüssigkeitstransport durch die Zulaufkanäle 26 reicht zunächst bis zur Einmündungssteile 52 jedes Zulaufkanals 26 in die ihm zugeordnete Reaktionskammer 28 (siehe Fig. 5) . Ohne besondere Maßnahmen bzw. Beachtung spezieller Gegebenheiten der Ausbildung der Zulaufkanäle 26 und Reaktions- kammern 28 besteht die Gefahr, daß sich die Flüssigkeitsfront ausgehend von der Einmündungssteile 52 des Zulauf- kanals 26 nicht weiter bis in die Reaktionskammer 28 erstreckt .
Um hier weiterhin den sicheren Flüssigkeitstransport durch Kapillarkrafteinwirkung zu gewährleisten, ist die Einmündungssteile 52 an dem der Bodenwand 54 einer Reaktionskammer 28 abgewandten oberen Ende zweier winklig aufeinanderstehender Seitenflächen 56 der Reaktionskammer 28 angeordnet. Insgesamt weist die Reaktionskammer 28 einen quadratischen oder zumindest rechteckigen Quer- schnitt auf (siehe die Darstellung in den Fign. 1 und 5) , so daß sich zwischen jeweils benachbarten Seitenflächen 56 und zwischen den Seitenflächen 56 und der Bodenfläche 54 Eckenbereiche 58 bzw. 60 ergeben. Werden diese Eckenbereiche mit einem ausreichend kleinen Rundungsradius versehen, so kann sich im Übergangsbereich der die jeweiligen Eckenbereiche bildenden Flächen ein Flüssigkeitsmeniskus ausbilden, der sich aufgrund der Tendenz der Flüssigkeit, die angrenzenden Flächenbereiche zu benetzen, in Folge von Kapillarkräften längs der Ecken- bereiche 58,60 fortbewegt. - 26 -
Der Eckenbereich 58, innerhalb dessen die Einmündungs- stelle 52 des Zulaufkanals 26 angeordnet ist, wirkt also wie eine Einlaufrinne 62. Diese Einlaufrinne 62 ermöglicht das Fließen der Probenflussigkeit 22 aus dem Zulaufkanal 26 in die Reaktionskammer 28. Diese Flüssigkeit fließt zunächst längs der Einlaufrinne 62 in Richtung zur Bodenfläche 54 der Reaktionskammer 28, um von dort aus entlang der viereckig umlaufenden Eckenbereiche 58 zu verlaufen, bis der gesamte Boden der Reaktionskammer 28 benetzt ist. Auf diese Weise füllt sich die Reaktionskammer 28 zunehmend mit Probenflussigkeit 22, und zwar einzig und allein aufgrund der Ausnutzung von Kapillarkräften.
Die Befüllung der Vielzahl von Reaktionskammern 28 sollte gleichmäßig und insbesondere auch gleichzeitig erfolgen. Eine zuschlagartige Befüllung der Reaktionskammern 28 mit Probenflussigkeit 22 kann zu unerwünschten Effekten führen, da nämlich die Probenflussigkeit 22 ggf. über die für die Entlüftung vorgesehenen Verbindungskanäle 30 ungewollte wieder abfließen kann. Daher ist es von
Vorteil, wenn der Einlaß der Probenflussigkeit 22 in die Reaktionskammern 28 gedrosselt erfolgt. Aus diesem Grund sind die Querschnitte der Zulaufkanäle 26 kleiner der Querschnitt des Verteilerkanals 24. Die Zulaufkanäle 26 bilden also eine Art Drossel mit erhöhtem Strömungswiderstand. Diese Drosselwirkung hat darüber hinaus den Vorteil, daß, obwohl die einzelnen Zulaufkanäle in unterschiedlichen Abständen zur Probenaufnahmekammer 20 vom Verteilerkanal 24 abzweigen, sämtliche Reaktionskammern 28 im wesentlichen gleichzeitig (eine gewisse Verzögerung wird hier toleriert) befüllt werden.
Wie insbesondere anhand der Fign. 1 und 5 zu erkennen ist, zweigen die Zulaufkanäle 28 in Erstreckung des Verteiler- kanals 24 versetzt zueinander von diesem ab. Dies hat den
Vorteil, daß die sich durch den Verteilerkanal 24 - 27 -
vorbewegende Flüssigkeitsfront im Bereich der Abzweigung der Zulaufkanäle 26 jeweils nur durch die Einmündung eines Zulaufkanals 26 "gestört wird" . Würden nämlich die beid- seitig des Verteilerkanals 24 paarweise angeordneten Zulaufkanäle 26 einander gegenüberliegend abzweigen, so könnte der Flüssigkeitstransport derart gestört sein, daß er zum Stillstand kommt. Hierbei ist zu berücksichtigen, daß Oberflächenunebenheiten sich mitunter stark auf die wirkenden Kapillarkräfte auswirken können. Die Abzweigung eines Zulaufkanals 26 vom Verteilerkanal 24 wirkt wie eine Kanalerweiterung, die, wenn sie zu groß ist, zum Stillstand der Strömung führen könnte . Denn der Transport durch einen abzweigenden Zulaufkanal 26 durch in diesem wirkende Kapillarkräfte tritt erst dann ein, wenn die Flüssigkeit im Verteilerkanal 24 den Querschnitt des abzweigenden Zulaufkanals 26 überdeckt. Daher sind die Zulaufkanäle 26 im Querschnitt klein ausgebildet, so daß sie letztendlich kein Hindernis für das Bestreben der Flüssigkeit darstellen, die Innenwandungen des Verteilerkanals 24 trotz Abzweigung des Zulaufkanals 26 zu benetzen.
Bei der Befüllung der Reaktionskammern 28 mit der Probenflussigkeit 22 wird die in diesen Kammern befindliche Luft bzw. das Gas über die Verbindungskanäle 30 abgeführt. Jeder Verbindungskanal 30 mündet über einen Vorkammerraum 64 in die betreffende Reaktionskammer 28 ein (siehe auch Fig. 7) . Der Vorkammerraum 64 ist am oberen Ende der Reaktionskammer 28 angeordnet und nach oben hin durch die Deckfolie 16 begrenzt. Seine der Deckfolie 16 gegenüber- liegende Bodenwand 66 verläuft schräg abfallend in Richtung zur Reaktionskammer 28. Die Gestaltung des Vorkammerraum 64 ist derart gewählt, daß sämtliche Luft bzw. sämtliches Gas, das sich in der Reaktionskammer 28 befindet, bei Befüllung derselben abgeführt wird, so daß letztendlich der Flüssigkeitsspiegel innerhalb der Reaktionskammer 28 bis zur Deckfolie 16 reicht und nicht - 28 -
durch Gasblasen o. dgl . gestört ist. Wie insbesondere in Fig. 5 zu erkennen ist, münden die der Entlüftung der Reaktionskammern 28 dienenden Verbindungskanäle 30 über AufWeitungsbereiche 68, die in der Draufsicht Herzform aufweisen, in den Entlüftungssammelkanal 32. Jeder Aufweitungsbereich 68 weist dabei beidseitig der Einmündung 70 des Verbindungskanals 30 sich erstreckende Kammerbereiche 72 auf, die sich bis in einen Bereich - bezogen auf die Gasströmungsrichtung - stromauf der Einmündungsstelle 70 erstrecken und sich zum Entlüftungs- sammelkanal 32 hin verjüngen. Die Einmündungssteile 70 liegt in einem Seitenflächenbereich 74 der AufWeitung 68, wobei innerhalb dieses Seitenflächenbereichs 74 sowohl seitlich als auch unterhalb der Einmündungsstelle 70 keine Eckenbereiche ausgebildet sind. Der einzige Eckenbereich, der sich einstellt, entsteht seitlich der Einmündungsstelle 70 und angrenzend an die Folie 16. Damit endet der Verbindungskanal 30 innerhalb der Aufweitung 68 in einer Weise, daß seine Einmündungsstelle 70 von flächigen Abschnitten umgeben ist. Eine derartige Einmündungsstelle 70 hat den Vorteil, daß nun die anstehende Flüssigkeits- front an der Einmündungsstelle 70 stoppt, da ihr Weitertransport durch Kapillarkräfte unterbunden ist . Diese Flüssigkeitsfront wird sich durch die Verbindungskanäle 30 hindurch fortbewegen, da sich im Anschluß an die vollständige Befüllung der Reaktionskammern 28 die Probenflussigkeit über den Vorkammerraum 64 bis in die wiederum als Kapillare wirkenden Verbindungskanäle 30 hinein vorbewegen wird. Die Aufweitung 38 verhindert also, daß die Probenflussigkeit bis in den Entlüftungssammelkanal 32 gelangt .
Wie bereits oben erwähnt, erstreckt sich jeder
Entlüftungssammelkanal 32 von einer Reagenzienflüssig- keits-Aufnahmekammer 38. In diesen Aufnahmekammern 38 befindet sich eine zusätzliche Reagenzienflüssigkeit , die - 29 -
zur Auslösung von Reaktionen der Probenflussigkeit in den Reaktionskammern 28 benötigt wird. Die Reaktionskammern 28 sind selbst bereits vorteilhafterweise mit Reagenz- substanzen belegt, die vorkonfektioniert und in Abhängigkeit der durchzuführenden Untersuchungen in die Reaktionskammern 28 appliziert worden ist. Bis zum Eintritt der Probenflussigkeit 22 befinden sich diese Reaktionssubstanzen in getrockneter Form in den Reaktionskammern 28.
Nachdem nun die Reaktion der Probenflussigkeit mit den bereits in den Reaktionskammern 28 befindlichen Reagenz - Substanzen abgelaufen ist, kann es erforderlich sein, eine zusätzliche Reaktion zu induzieren. Zu diesem Zweck wird dann über das bis dahin als Entlüftungssystem verwendete Leitungssystem aus Entlüftungssammelleitung 32 und Verbindungsleitungen 30 sowie AufWeitungen 68 dazu benutzt, um nun zusätzliche Reagenzien in die Reaktions- kammern 28 einzubringen. Für diesen Anwendungsfall sollte gewährleistet sein, daß die AufWeitungsbereiche 68 für die Reagenzienflüssigkeit passierbar sind. Dies kann beispielsweise dadurch realisiert werden, daß die Einmündungssteilen 76 der Entlüftungssammelkanäle 32 in die AufWeitungsbereiche 68 so ausgebildet sind, daß in Folge von Kapillarwirkungen das Einströmen der Reagenzienflüssigkeit in die Aufweitungen sichergestellt ist. Hier bieten sich die gleichen Mechanismen an, wie sie weiter oben bereits im Zusammenhang mit dem Einströmen der Probenflussigkeit 22 aus den Zulaufkanälen 26 in die Reaktionskammern 28 beschrieben worden sind. Durch Ausbildung von Eckenbereichen mit ausreichend geringen Rundungsradien in unmittelbarer Nähe der Einmündungsstelle 76 kann das Einfließen der Reaktionsflüssigkeit in die Kammern 72 der Aufweitungen 68 durch Kapillarkraft bewerk- stelligt werden. Eine weitere Alternative besteht darin, daß es bei Auswirkung eines hydraulischen Drucks auf die - 3 0 -
Reaktionsflüssigkeiten in den Kammern 38 die AufWeitungen 68 mit Reaktionsflüssigkeit ausgefüllt werden. Eine dritte Möglichkeit besteht darin, gezielt in die Aufweitungen 68 eine Steuerflüssigkeit einzubringen (die hierzu erforderlichen Steuerkanäle und Steuerflüssigkeits- aufnahmekammern sind in den Fign. nicht dargestellt) . Sämtlichen hier beschriebenen Varianten gemein ist, daß es zum weiteren Transport der in der Reagenzienflüssigkeit befindlichen Reagenzsubstanzen in die Reaktionskammern 28 hinein der Flüssigkeitsausfüllung der Aufweitungsbereiche 68 bedarf. Sobald diese Bereiche 68 mit Flüssigkeit ausgefüllt sind, kommt es an der Einmündungsstelle 70 zur Kontaktierung dieser Flüssigkeit mit der in dem Verbindungskanal 30 befindlichen Probenflussigkeit. Der weitere Transport der Reagenzien der Reagenzflüssigkeit erfolgt dann per Diffusion. Mit anderen Worten handelt es sich bei der AufWeitung 68 um ein bidirektionales Ventil, das sich in Abhängigkeit von der Durchströmungsrichtung entweder im Sperrzustand oder im Durchlaßzustand befindet.
Der Vollständigkeit halber sei unter Bezugnahme auf die Fign. 5 und 9 noch darauf hingewiesen, daß wiederum zum Transport der Reagenzienflüssigkeit aus den Reagenzien- Aufnahmekammern 38 in die an diese angeschlossenen Entlüftungssammelkanäle 32 Kapillarkräfte ausgenutzt werden. Der Mechanismus ist ähnlich dem, wie er anhand der Fign. 1 und 6 beschrieben ist. Gemäß Fig. 9 zweigt der Entlüftungssammelkanal 32 an dem der Bodenwand 78 der Kammer 38 abgewandten oberen Ende ab. Die Einmündungs- stelle 80 in der Seitenwandbegrenzung 82 der Kammer 38, die, wie Fig. 5 zeigt, in diesem Bereich gerundet ist. Um nun eine auf Kapillarkräften basierende Strömung aus der Kammer 38 heraus in den Kanal 32 zu realisieren, bedarf es wiederum einer Art Auslaufrinne 84 , die einen derart kleinen Krümmungsradius aufweist, daß sich ein Flüssigkeitsmeniskus bildet, der aufgrund der Tendenz der - 31 -
Flüssigkeit, die Rinne 84 zu benetzen, entlang dieser fort- in diesem Fall hochbewegt.
Anhand der Fign. 10 bis 14 soll nachfolgend noch auf konstruktive Möglichkeiten einer Ventilgestaltung eingegangen werden, mit der es möglich ist, die in den Probenaufnahmekammern 20 befindliche Flüssigkeit gezielt durch die angeschlossenen Verteilerkanäle 24 strömen zu lassen.
Eine erste Variante eines derartigen Ventils 86 ist in Fig. 10 gezeigt. Bei dieser Ventilkonstruktion 86 erstreckt sich der Verteilerkanal 24 durch eine in der Draufsicht runde KanalaufWeitung 88, in der ein poröser hydrophober Einsatzkörper 90 angeordnet ist. Aufgrund seiner hydrophoben Eigenschaften blockiert der Körper 90 den Flüssigkeitstransport durch die Aufweitung 88. Wird nun die Probenflussigkeit in der Aufnahmekammer 20 einem Druck ausgesetzt, so wird die Flüssigkeit in die Aufweitung 88 und damit in die Porositäten des hydrophoben
Einsatzkörpers 90 hineingedrückt. Dabei wird der poröse Körper 90 von Probenflussigkeit durchspült, bis diese in den sich an die Kanalaufweitung 88 anschließenden Bereich der Verteilerkanäle 24, der bezogen auf die Strömungs- richtung hinter dem Einsatzkörper 90 liegt, gelangt. Von da ab erfolgt der weitere Transport der Flüssigkeit durch Kapillarkräfte. Da der hydrophobe Einsatzkörper 90 auf seinen Oberflächen durch die Druckbeaufschlagung der Probenflussigkeit mit dieser benetzt ist, bleibt die Flüssigkeitsströmung in Folge der Kapillarkräfte aufrechterhalten. Auf diese Weise wird also durch Flüssigkeitssteuerung (Drucksteuerung der Probenflussigkeit) eine Ventilfunktion realisiert.
Die Fign. 11 und 12 zeigen eine alternative Ventilausbildung 86' . Der dieser Ventilkonstruktion 86' - 32 -
zugrundeliegende Gedanke ist so, wie anhand der Aufweitungsbereiche 68 (siehe Fign. 5 und 8) beschrieben. Auch bei dieser Ausgestaltung 86' befindet sich im Verteilerkanal 24 eine spezielle Kanalaufweitung 88', die in der Draufsicht und in der Schnittansicht so, wie in den Fign. 11 und 12 gezeigt, ausgebildet ist. Im Bereich der Einmündung 92 des von der Probenaufnahmekammer 20 kommenden Teils des Verteilerkanals 24 weist die Aufweitung 88' eine ebene Seitenfläche 94 auf, die lediglich zur Deckfolie 14 hin durch einen Eckenbereich begrenzt ist. Die damit zu beiden Seiten der Einmündung 92 an der Unterseite der Deckfolie 14 möglicherweise entstehenden Kapillarkräfte reichen nicht aus, um die Flüssigkeit aus dem Verteilerkanal 24 zu saugen. Damit kommt die ausgehend von der Probenkammer 20 durch den sich anschließenden Abschnitt des Verteilerkanals 24 vorbewegende Flüssigkeitsfront an der Einmündungsstelle 92 zum Stillstand. Erst wenn Druck auf die Flüssigkeit der Probenaufnahmekammer 20 gegeben wird, gelangt Proben- flüssigkeit in den Aufweitungsbereich 88' hinein und füllt diesen auf. Der Aufweitungsbereich 88' weist einen Auslaß 96 auf, der in den weiteren Verlauf des Verteilerkanals 24 einmündet . Sobald die per Druck in den Aufweitungsbereich 88' hineingedrückte Flüssigkeit den Auslaß 96 erreicht, erfolgt der weitere Transport der Probenflussigkeit wieder durch Kapillarwirkung.
Eine letzte Ausgestaltung eines Ventils 86" ist in den Fign. 13 und 14 gezeigt. Die Mechanismen und die Ausgestaltung dieses Ventils sind nahezu identisch zur Ventilgestaltung 86'. Der Unterschied zwischen beiden besteht darin, daß die Auffüllung des AufWeitungsbereichs 88" des Ventils 86" nicht durch die Probenflussigkeit, sondern durch eine gegenüber der Probenflussigkeit inerte Steuerflüssigkeit 98 erfolgt. Die Steuerflüssigkeit 98 befindet sich in einer Aufnahmekammer 100, die über einen - 33 -
Steuerkanal 102 mit dem Aufweitungsbereich 88' verbunden ist. Das Einbringen der Steuerflüssigkeit 98 in die Aufweitung 88" kann zum einen durch Druckausübung auf die Steuerflüssigkeit 98, zum anderen aber auch durch Aufrechterhaltung eines Flüssigkeitsstromes unter Ausnutzung von Kapillarkräften realisiert werden. Im letztgenannten Fall wird so, wie oben im Zusammenhang mit dem Einlaß der Probenflussigkeit 22 in die Reaktionskammern 28 beschrieben, verfahren, indem die Einmündung 104 des Steuerkanals 102 in die Kanalaufweitung 88" in einem Bereich erfolgt, in dem innerhalb der Kanalaufweitung 88" Eckenbereiche mit ausreichend geringen Rundungsradien ausgebildet sind, entlang derer sich ein Flüssigkeitsmeniskus bildet und fortbewegt . Durch Applikation (siehe Fign. 13 und 14) von Steuerflüssigkeit in die Kammern 100 kann dann der Schaltzustand des Ventils 86" quasi automatisch beeinflußt werden (nämlich von dem sperrenden in den leitenden Zustand) . Damit die Steuerflüssigkeit 98 aus der Kammer 100 in den Steuerkanal 102 gelangt, kann man sich wiederum der bereits oben im Zusammenhang mit den Auslaufrinnen der Kammern 20 und 38 beschriebenen Mechanismen und Maßnahmen bedienen.
Wie oben bereits erwähnt, können herstellerseitig in die Reaktionskammern des Probenträgers bereits Reaktions- Substanzen eingebracht sein, die insbesondere in getrockneter Form dort lagern. Wegen der kleinen Volumina der Reaktionskammern bedarf es lediglich geringer Mengen an Reaktionssubstanzen, was dem Austrocknungsvorgang förderlich ist.
Die Einbringung der Probenflussigkeit erfolgt anwender- seitig. Sofern die Deckfolie 16 sich nicht bis in die Bereiche der Oberseite 14 der Grundplatte 12 erstreckt, in denen sich die Probenaufnahmekammern 20 befinden, sind diese frei zugänglich, so daß die Probenflussigkeit auf - 34 -
herkömmliche Weise durch Pipettierung eingebracht werden kann. Selbiges gilt, wenn die Deckfolie sich über die gesamte Oberseite erstreckt und mit den Probenkammern (und den Reagenzflüssigkeits-Aufnahmekammern 38) fluchtende Öffnungen aufweist. Aus Gründen eines verbesserten Verdunstungsschutzes ist es von Vorteil, wenn die Deckfolie die Kammern 20 und 38 überdeckt. In einem solchen Fall läßt sich die Probenflussigkeit durch Punktion der Deckfolie einbringen. Eine Alternative besteht darin, daß die Deckfolie im Bereich der Kammern 20 und 38 geschlitzt ist und somit nach Art eines Septums für die Probenflüssigkeitseinbringung geöffnet werden kann.
Im Zusammenhang mit den Mechanismen, die zum Entlang- strömen der Flüssigkeit in den Eckenbereichen und entlang dieser eine Rolle spielen, sei an dieser Stelle hervorgehoben, daß die Rundungsradien, auf die in dieser Beschreibung verwiesen wird, im μm- und Sub-μm-Bereich liegen. Grundsätzlich gilt ferner für den Krümmungsradius, daß dieser vorteilhafterweise kleiner ist als die kleinste Dimension des Kanals, an den der Eckenbereich anschließt.

Claims

- 35 -
A N S P R Ü C H E
1. Probenträger mit mindestens einer Probenaufnahmekammer für eine Probenflussigkeit , einem Verteilerkanal für Probenflussigkeit, der mit der mindestens einen Probenaufnahmekammer verbunden ist, wobei sich von jeder Probenaufnahmekammer mindestens ein Verteilerkanal erstreckt, mindestens einer Reaktionskammer, in die ein von dem mindestens einen Verteilerkanal abzweigender Zulaufkanal mündet, und einer Entlüftungsöffnung für jede Reaktions- kammer,
d a d u r c h g e k e n n z e i c h n e t ,
daß die Dimensionierung jedes Verteilerkanals und jedes Zulaufkanals derart bemessen ist, daß der Flüssigkeitstransport durch die Verteiler- und Zulaufkanäle in Folge von Kapillarkräften erfolgt, und daß in jeder Reaktionskammer im Einmündungs- bereich des Zulaufkanals eine Einrichtung zur Erzeugung einer Kapillarkraft zum Fließen der Probenflussigkeit aus dem Zulaufkanal in die Reaktionskammer angeordnet ist.
2. Probenträger nach Anspruch 1, dadurch gekennzeichnet, daß jede Reaktionskammer eine Bodenfläche mit winklig zu dieser verlaufenden Seitenflächen aufweist und daß die Kapillarkräft-Erzeugungseinrichtung durch Ausbildung eines derart kleinen Rundungsradius im Übergangsbereich zwischen den Seitenflächen und der Bodenfläche realisiert ist, daß Probenflussigkeit - 36 -
entlang der Ubergangsbereiche durch Kapillarkräfte fließt.
Probenträger nach Anspruch 2, dadurch gekennzeichnet, daß der Zulaufkanal im Übergangsbereich zwischen den Seitenflächen und der Bodenfläche einer Reaktionskammer in diese mündet .
Probenträger nach Anspruch 2, dadurch gekennzeichnet, daß der Zulaufkanal oberhalb der Bodenfläche einer Reaktionskammer in diese mündet und daß sich zwischen der Einmündung des Zulaufkanals und dem Übergangs- bereich zwischen der Bodenfläche und den Seitenflächen eine Einlaufrinne mit einem das Fließen der Probenflussigkeit durch Kapillarkraft erzeugenden Querschnittsfläche und -form erstreckt.
Probenträger nach Anspruch 4, dadurch gekennzeichnet, daß die Einlaufrinne durch den Rundungsradius im Übergangsbereich zwischen zwei benachbarten und winklig zueinander verlaufenden Seitenflächen der Reaktionskammer ausgebildet ist.
Probenträger nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet , daß jede Probenaufnahmekammer eine Bodenfläche und winklig dazu verlaufende Seitenflächen aufweist und daß jeder Verteilerkanal in die ihm zugeordnete Probenaufnahmekammer im Übergangs- bereich zwischen der Bodenfläche und den Seitenflächen mündet .
Probenträger nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet , daß jede Probenaufnahmekammer eine Bodenfläche und winklig dazu verlaufende Seitenflächen aufweist, daß jeder Verteilerkanal in die ihm zugeordnete Probenaufnahmekammer oberhalb des - 37 -
Übergangsbereichs zwischen der Bodenfläche und den Seitenflächen einmündet und daß sich von der Einmündung aus eine Auslaufrinne in Richtung zur Bodenfläche erstreckt, deren Querschnittsfläche und -form ein Fließen der Probenflussigkeit durch Kapillarkraft ermöglicht.
8. Probenträger nach Anspruch 7, dadurch gekennzeichnet, daß die Auslaufrinne von zwei winklig zueinander verlaufenden Seitenflächen gebildet ist, deren Übergangsbereich einen derart kleinen Rundungsradius aufweist, daß Kapillarkräfte zum Fließen der Probenflussigkeit entlang des Übergangsbereichs entstehen.
9. Probenträger nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sämtliche von einem Verteilerkanal abzweigende Zulaufkanäle eine kleinere Querschnittsfläche aufweisen als der Verteilerkanal.
10. Probenträger nach Anspruch 9, dadurch gekennzeichnet, daß beidseitig eines jeden Verteilerkanals Zulauf- kanäle abzweigen und daß die Abzweigungsstellen einander gegenüberliegender Zulaufkanäle versetzt zueinander angeordnet sind.
11. Probenträger nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sich von jeder Entlüftungsöffnung jeder Reaktionskammer ein Verbindungskanal erstreckt und daß mehrere Verbindungskanäle in jeweils einen Entlüftungssammelkanal münden, der eine Entlüftungssammelöffnung aufweist .
12. Probenträger nach Anspruch 11, dadurch gekennzeichnet, daß in jedem Verbindungskanal und/oder in jeder Entlüftungsöffnung eine Einrichtung zur Unter- - 38 -
bindung des weiteren Fließens von Probenflussigkeit in Folge von Kapillarkräften angeordnet ist.
13. Probenträger nach Anspruch 12, dadurch gekennzeichnet, daß die Kapillarkraft-Unterbindungseinrichtungen in den Einmündungsbereichen der Verbindungskanäle in die Entlüftungssammelkanäle angeordnet sind.
14. Probenträger nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß jede Kapillarkräft-Unterbindungseinrichtung als Verbindungskanal- oder Entlüftungs- öffnungsaufweitung ausgebildet ist, die jeweils eine Seitenfläche aufweist, in die ein Verbindungskanal einmündet, wobei der Einmündungsbereich des sich von der Reaktionskammer aus erstreckenden Abschnitts des Verbindungskanals in der Aufweitung durch keinerlei Eckenbereiche oder eine so geringe Anzahl von Eckenbereichen mit Kapillarkraft erzeugenden Rundungs- radien begrenzt ist, daß der Fluß der Probenflussigkeit im Einmündungsbereich unterbunden ist.
15. Probenträger nach Anspruch 14, dadurch gekennzeichnet, daß sich jeder Entlüftungssammelkanal von einer Reagenzienaufnahmekammer zur Aufnahme einer Reagenzienflüssigkeit aus erstreckt, wobei das Fließen der Reagenzienflüssigkeit durch die Entlüftungskanäle durch in diesen erzeugten Kapillarkräfte erfolgt, und daß in dem Einmündungsbereich jedes Entlüftungssammelkanals in die AufWeitungen und/oder in den Einmündungsbereichen der sich von den Entlüftungskanälen aus erstreckenden Abschnitten der Verbindungskanäle in die Aufweitungen eine Einrichtung zur Erzeugung einer Kapillarkra t zur Befüllung der Aufweitungen angeordnet ist . - 39 -
16. Probenträger nach Anspruch 15, dadurch gekennzeichnet, daß jede Reagenzienaufnahmekammer eine Bodenfläche und dazu winklig verlaufende Seitenflächen aufweist und daß der einer Reagenzienaufnähmekammer zugeordnete Entlüftungssammelkanal oberhalb der Bodenfläche in die Reagenzienaufnahme- kammer einmündet, wobei zwischen der Einmündung und der Bodenfläche eine Einrichtung zur Erzeugung einer Kapillarkraft zum Fließen von Reagenzienflüssigkeit aus der Reagenzienaufnahmekammer in den Entlüftungssammelkanal angeordnet ist .
17. Probenträger nach Anspruch 16, dadurch gekennzeichnet, daß die Kapillarkräft-Erzeugungseinrichtung als Auslaufrinne ausgebildet ist, deren Querschnitts- form und -fläche ein Fließen der Reagenzienflüssigkeit durch Kapillarkraft ermöglicht .
18. Probenträger nach Anspruch 17, dadurch gekennzeichnet, daß die Auslaufrinne als in eine Seitenfläche eingebrachte Nut ausgebildet ist.
19. Probenträger nach Anspruch 17, dadurch gekennzeichnet, daß die Auslaufrinne als Übergangsbereich zwischen zwei benachbarten und winklig zueinander verlaufenden Seitenflächen ausgebildet ist, wobei der Übergangsbereich einen derart kleinen Rundungsradius aufweist, daß ein Fließen der Reagenzienflüssigkeit erzeugende Kapillarkräfte entstehen.
20. Probenträger nach Anspruch 14, dadurch gekennzeichnet, daß sich jeder Entlüftungssammelkanal von einer Reagenzienaufnahmekammer zur Aufnahme einer Reagenzienflüssigkeit aus erstreckt und daß in dem Einmündungsbereich jedes Entlüftungssammelkanals in die Aufweitungen und/oder in den Einmündungsbereichen - 40 -
der sich von den Entlüftungskanälen aus erstreckenden Abschnitten der Verbindungskanäle in die Aufweitungen eine Einrichtung zur Erzeugung einer Kapillarkraft zur Befüllung der Aufweitungen angeordnet ist.
21. Probenträger nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß Einrichtungen zum gesteuerten Fließenlassen der Probenflussigkeit durch die Verteilerkanäle in die Reaktionskammer vorgesehen sind.
22. Probenträger nach Anspruch 21, dadurch gekennzeichnet, daß die Fließsteuereinrichtungen Ventile aufweisen, die in jedem Verteilerkanal und/oder den Entlüftungsöffnungen der Reaktionskammern oder diesen nachgeschaltet angeordnet sind.
23. Probenträger nach Anspruch 22, dadurch gekennzeichnet, daß jedes Ventil durch externe Ansteuerung und/oder durch Druckbeaufschlagung der an ihm anstehenden Probenflussigkeit oder des an ihm anstehenden Gases hydraulisch bzw. pneumatisch aus einem Sperrzustand in einen Durchlaßzustand überführbar ist.
24. Probenträger nach Anspruch 23, dadurch gekennzeichnet, daß jedes Ventil eine Berstfolie und/oder ein poröses hydrophobes Einsatzteil und/oder eine hydrophobe Innenwandung aufweist.
25. Probenträger nach Anspruch 23, dadurch gekennzeichnet, daß jedes Ventil als in einem Verteilerkanal angeordnete Kanalaufweitung ausgebildet ist, in der der sich von einer Probenaufnahmekammer aus erstreckende erste Abschnitt eines Ventilkanals einmündet und von der aus sich der zu den Zulauf- - 41 -
kanälen verlaufende zweite Abschnitt des Verteilerkanals erstreckt, wobei der Einmündungsbereich des ersten Abschnitts des Verteilerkanals in die Aufweitung durch keinerlei Eckenbereiche oder eine so geringe Anzahl von Eckenbereichen mit Kapillarkräfte erzeugenden Rundungsradien begrenzt ist, daß der Fluß der Probenflussigkeit im Einmündungsbereich unterbrochen ist .
26. Probenträger nach Anspruch 25, dadurch gekennzeichnet, daß die KanalaufWeitungen durch Druckbeaufschlagung der in den ersten Abschnitten der Verteilerkanäle anstehenden Probenflussigkeit mit dieser auffüllbar ist und damit die Abschnitte der Verteilerkanäle durch Probenflussigkeit überbrückbar sind.
27. Probenträger nach Anspruch 25, dadurch gekennzeichnet, daß in jede Kanalaufweitung ein Steuerkanal für eine Steuerflüssigkeit mündet, mit der die Kanal - aufweitung auffüllbar ist und damit die Abschnitte der Verteilerkanäle durch Steuerflüssigkeit überbrückbar sind.
28. Probenträger nach Anspruch 27, dadurch gekennzeichnet, daß das Fließen der Steuerflüssigkeit durch die Steuerkanäle durch Kapillarkräfte erfolgt .
29. Probenträger nach Anspruch 28, dadurch gekennzeichnet, daß das Fließen der Steuerflüssigkeit aus den Steuerkanälen in die Kanalaufweitungen ebenfalls durch Kapillarkräfte und/oder durch eine Druckbeaufschlagung der Steuerflüssigkeit erfolgt .
30. Probenträger nach einem der Ansprüche 27 bis 29, dadurch gekennzeichnet, daß sich jeder Steuerkanal - 42 -
von einer Steuerflüssigkeits-Aufnahmekammer aus bis zur betreffenden Kanalaufweitung erstreckt .
31. Probenträger nach Anspruch 30, dadurch gekennzeichnet, daß jede Steuerflüssigkeits-Aufnahmekammer eine Bodenfläche und dazu winklig verlaufende Seitenflächen aufweist und daß der einer Steuerflüssigkeits-Aufnahmekammer zugeordnete Entlüftungssammelkanal oberhalb der Bodenfläche in die Steuerflüssigkeits-Aufnahmekammer einmündet, wobei zwischen der Einmündung und der Bodenfläche eine Einrichtung zur Erzeugung einer Kapillarkraft zum Fließen von Steuerflüssigkeit aus der Steuerflüssigkeits-Aufnahmekammer in den Entlüftungssammelkanal angeordnet ist.
32. Probenträger nach Anspruch 31, dadurch gekennzeichnet, daß die Kapillarkraft-Erzeugungseinrichtung als Auslaufrinne ausgebildet ist, deren Querschnitts- form und -fläche ein Fließen der Steuerflüssigkeit durch Kapillarkraft ermöglicht.
33. Probenträger nach Anspruch 32, dadurch gekennzeichnet, daß die Auslaufrinne als in eine Seitenfläche eingebrachte Nut ausgebildet ist.
34. Probenträger nach einem der Ansprüche 1 bis 33, dadurch gekennzeichnet, daß die Kammern, Kanäle und sonstigen Strukturen von mindestens einer Seite eines Basiskörpers aus in diesen eingebracht sind und daß diese mindestens eine Seite des Basiskörpers durch einen Deckelkörper flüssigkeitsdicht abgedeckt ist.
35. Probenträger nach Anspruch 34, dadurch gekennzeichnet, daß der Basiskörper und der Deckelkörper aus Kunststoff, Glas, Metall oder Silizium bestehen. - 43 -
36. Probenträger nach Anspruch 34 oder 35, dadurch gekennzeichnet, daß der Deckelkörper eine Folie ist.
37. Probenträger nach einem der Ansprüche 1 bis 36, dadurch gekennzeichnet, daß die mindestens eine Reaktionskammer eingetrocknete Reagenzien beinhaltet .
38. Verwendung eines Probenträgers nach einem der vorhergehenden Ansprüche in der mikrobiologischen Diagnostik, der Blutgruppen-Serologie, der klinischen Chemie, der Mikroanalytik und der Prüfung von Wirkstoffen, wobei jede Probenaufnahmekammer unterschiedliche Reagenzien beinhaltet.
PCT/EP1999/001607 1998-03-11 1999-03-11 Probenträger WO1999046045A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA002323424A CA2323424C (en) 1998-03-11 1999-03-11 Sample support
AT99911779T ATE241430T1 (de) 1998-03-11 1999-03-11 Probenträger
US09/623,910 US7560073B1 (en) 1998-03-11 1999-03-11 Sample support
JP2000535452A JP4350897B2 (ja) 1998-03-11 1999-03-11 試料担体
BRPI9909249-2A BR9909249B1 (pt) 1998-03-11 1999-03-11 suporte de amostras.
IL13828699A IL138286A (en) 1998-03-11 1999-03-11 Sample support
EP99911779A EP1062042B1 (de) 1998-03-11 1999-03-11 Probenträger
DE59905743T DE59905743D1 (de) 1998-03-11 1999-03-11 Probenträger
AU30340/99A AU739563B2 (en) 1998-03-11 1999-03-11 Sample support
HK01104438A HK1035683A1 (en) 1998-03-11 2001-06-27 Sample support
US11/543,161 US20070025875A1 (en) 1998-03-11 2006-10-05 Sample support
US12/372,578 US20090155128A1 (en) 1998-03-11 2009-02-17 Sample support

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE1998110499 DE19810499A1 (de) 1998-03-11 1998-03-11 Mikrotiterplatte
DE19902309.3 1999-01-21
DE19810499.5 1999-01-21
DE19902309 1999-01-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/543,161 Division US20070025875A1 (en) 1998-03-11 2006-10-05 Sample support
US12/372,578 Division US20090155128A1 (en) 1998-03-11 2009-02-17 Sample support

Publications (1)

Publication Number Publication Date
WO1999046045A1 true WO1999046045A1 (de) 1999-09-16

Family

ID=26044543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/001607 WO1999046045A1 (de) 1998-03-11 1999-03-11 Probenträger

Country Status (12)

Country Link
US (3) US7560073B1 (de)
EP (1) EP1062042B1 (de)
JP (1) JP4350897B2 (de)
AT (1) ATE241430T1 (de)
AU (1) AU739563B2 (de)
BR (1) BR9909249B1 (de)
CA (1) CA2323424C (de)
DE (1) DE59905743D1 (de)
ES (1) ES2203093T3 (de)
HK (1) HK1035683A1 (de)
IL (1) IL138286A (de)
WO (1) WO1999046045A1 (de)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013341A2 (de) * 1998-12-23 2000-06-28 MICROPARTS GESELLSCHAFT FÜR MIKROSTRUKTURTECHNIK mbH Vorrichtung zum Ableiten einer Flüssigkeit aus Kapillaren
WO2001008799A1 (de) * 1999-08-01 2001-02-08 Febit Ferrarius Biotechnology Gmbh Mikrofluidischer reaktionsträger mit drei strömungsebenen und transparenter deckschicht
WO2001075433A3 (en) * 2000-03-31 2002-03-14 Lifescan Inc Capillary flow control in a fluidic diagnostic device
JP2002243748A (ja) * 2000-10-25 2002-08-28 Microparts G Fuer Mikrostrukturtechnik Mbh 流体の分析及び流体の制御された搬送のための装置
JP2002357616A (ja) * 2001-05-31 2002-12-13 Inst Of Physical & Chemical Res 微量液体制御機構
WO2002058845A3 (en) * 2001-01-25 2003-01-03 Biopreventive Ltd Reaction vessel and system incorporating same
EP1304167A1 (de) * 2001-10-18 2003-04-23 Aida Engineering Ltd. Mikrodosier- und Probennahmevorrichtung sowie Mikrochip mit dieser Vorrichtung
EP1333286A1 (de) * 2000-09-18 2003-08-06 I-Card Corporation MIKRO-WELL-ARRAY UND VERFAHREN ZUM FLüSSIGKEITSABSCHLUSS MIT DEM MIKRO-WELL-ARRAY
WO2003019158A3 (de) * 2001-08-21 2003-11-13 Bestmann Lukas Thermo-optisches analysesystem für biochemische reaktionen
JP2004502164A (ja) * 2000-06-28 2004-01-22 スリーエム イノベイティブ プロパティズ カンパニー サンプル処理装置
JP2004504828A (ja) * 2000-07-28 2004-02-19 ジェネシステム 標的核酸配列の熱依存性連鎖増幅のための装置
EP1419818A1 (de) * 2002-11-14 2004-05-19 Steag MicroParts GmbH Vorrichtung zum schrittweisen Transport von Flüssigkeit unter Ausnutzung von Kapillarkräften
EP1440732A1 (de) 2003-01-23 2004-07-28 Steag MicroParts GmbH Mikrofluidische Anordnung zum Dosieren von Flüssigkeiten
EP1441131A1 (de) 2003-01-23 2004-07-28 Steag MicroParts GmbH Mikrofluidischer Schalter zum Anhalten eines Flüssigkeitsstroms während eines Zeitintervalls
WO2004028692A3 (de) * 2002-09-23 2004-07-29 Prisma Diagnostika Gmbh Trägerelement für diagnostische tests
DE10325110B3 (de) * 2003-05-30 2005-01-13 Universität Freiburg Blasenfrei befüllbarer Fluidkanal und Verfahren zum Füllen eines Fluidkanals
WO2005016529A1 (de) 2003-08-11 2005-02-24 Thinxxs Microtechnology Ag Flusszelle aus schichten mit verbindungsmittel
JP2005506541A (ja) * 2001-10-26 2005-03-03 エヌティーユー ベンチャーズ ピーティーイー リミテッド 試料調製一体型チップ
JP2005509514A (ja) * 2001-11-15 2005-04-14 セルラー プロセス ケミストリー インコーポレイテッド 堆積単純プレートにおける流体の流れの向上
EP1529567A2 (de) 2003-11-07 2005-05-11 Herbener, Heinz-Gerd Probenträger mit einer Reaktionskammer
EP1533035A1 (de) * 2003-11-21 2005-05-25 Boehringer Ingelheim microParts GmbH Probenträger
DE10360220A1 (de) * 2003-12-20 2005-07-21 Steag Microparts Gmbh Mikrostrukturierte Anordnung zur blasenfreien Befüllung zumindest eines Systems zur Ableitung von Flüssigkeiten, Vorrichtung mit einer solchen Anordnung und Befüllungsverfahren
EP1566215A2 (de) * 2004-02-17 2005-08-24 Boehringer Ingelheim microParts GmbH Mikrostrukturierte Plattform und Verfahren zum Handhaben einer Flüssigkeit
DE102004005193A1 (de) * 2004-02-02 2005-08-25 Medion Diagnostics Gmbh Vorrichtung und Verfahren zum Nachweis von Analyten durch Sichtbarmachung und Separation von Agglutination
DE102004038163A1 (de) * 2004-08-06 2006-03-16 Diacdem Chip Technologies Gmbh Fluoreszenz-basierte Assays zur schnellen, quantitativen Analyse von Biomolekülen (Proteine und Nukleinsäuren) durch Anreicherung auf Zellen oder Beads
WO2006069757A1 (de) * 2004-12-23 2006-07-06 Perdita Backes Neuartige mikrofluidische probenträger
DE102005056356A1 (de) * 2004-11-25 2006-07-13 Industrial Technology Research Institute, Chutung Analytteststruktur in einem Mikrofluidchip für die quantitative Analyse und Verfahren zur Verwendung derselben
US7094354B2 (en) 2002-12-19 2006-08-22 Bayer Healthcare Llc Method and apparatus for separation of particles in a microfluidic device
JP2006254211A (ja) * 2005-03-11 2006-09-21 Kenwood Corp データ圧縮装置、圧縮データ復元装置、データ圧縮方法、圧縮データ復元方法及びプログラム
US7125711B2 (en) 2002-12-19 2006-10-24 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
WO2007001912A1 (en) * 2005-06-28 2007-01-04 Hewlett-Packard Development Company, L.P. Microfluidic test systems with gas bubble reduction
WO2007061305A3 (en) * 2005-11-22 2007-08-09 Stichting Technonogisch Top In Sampling device for in vivo sampling of liquids from the gastrointestinal tract, process for the production thereof and mould or mask for use in the production process
US7347617B2 (en) 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
EP1932593A1 (de) * 2006-11-22 2008-06-18 FUJIFILM Corporation Mikrokanalchip und Konvergenzvorrichtung
US7435381B2 (en) 2003-05-29 2008-10-14 Siemens Healthcare Diagnostics Inc. Packaging of microfluidic devices
US7459127B2 (en) 2002-02-26 2008-12-02 Siemens Healthcare Diagnostics Inc. Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces
WO2009024916A1 (en) * 2007-08-23 2009-02-26 Koninklijke Philips Electronics N.V. Vent design for biosensor cartridge
WO2010055466A1 (en) * 2008-11-13 2010-05-20 Koninklijke Philips Electronics N.V. Interfacing an inlet to a capillary channel of a microfluidic system
US20100294811A1 (en) * 2007-12-10 2010-11-25 Masakazu Akechi Micro droplet operation device and reaction processing method using the same
US7887750B2 (en) 2004-05-05 2011-02-15 Bayer Healthcare Llc Analytical systems, devices, and cartridges therefor
WO2011120773A1 (de) 2010-03-31 2011-10-06 Boehringer Ingelheim Microparts Gmbh Bauteil eines biosensors und verfahren zur herstellung
WO2011124906A1 (en) * 2010-03-30 2011-10-13 Menai Medical Technologies Limited Sampling plate
US8128889B2 (en) * 2002-04-30 2012-03-06 Arkray, Inc. Analyzing article, analyzer and method of analyzing a sample using the analyzing article, and a method of forming an opening in the analyzing article
US20120167673A1 (en) * 2009-08-25 2012-07-05 Hach Lange Gmbh Water analyzer comprising a pneumatically driven multi-chamber peristaltic pump
US20120322141A1 (en) * 2007-10-26 2012-12-20 Toppan Printing Co., Ltd. Reaction chip, reaction method, temperature controlling unit for gene treating apparatus and gene treating apparatus
US8865091B2 (en) 2003-10-09 2014-10-21 3M Innovative Properties Company Multilayer processing devices and methods
US9011658B2 (en) 2010-03-30 2015-04-21 Jabil Circuit (Singapore) Pte, Ltd. Sampling plate
US9110044B2 (en) 2005-05-25 2015-08-18 Boehringer Ingelheim Vetmedica Gmbh System for the integrated and automated analysis of DNA or protein and method for operating said type of system
US9216413B2 (en) 2009-07-07 2015-12-22 Boehringer Ingelheim Microparts Gmbh Plasma separation reservoir
EP2945741A4 (de) * 2013-01-17 2016-06-08 Technion Res & Dev Foundation Mikrofluidische vorrichtung und verfahren dafür
WO2016204638A3 (en) * 2015-06-19 2017-02-09 Biosurfit, S.A. Capillary junction
US10816563B2 (en) 2005-05-25 2020-10-27 Boehringer Ingelheim Vetmedica Gmbh System for operating a system for the integrated and automated analysis of DNA or protein
EP4480581A1 (de) * 2023-06-23 2024-12-25 Koninklijke Philips N.V. Fluidische vorrichtung und verwendung derselben
WO2024261021A1 (en) 2023-06-23 2024-12-26 Koninklijke Philips N.V. Fluidic device and use of the same

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046045A1 (de) * 1998-03-11 1999-09-16 MICROPARTS GESELLSCHAFT FüR MIKROSTRUKTURTECHNIK MBH Probenträger
WO2005070546A1 (en) * 2004-01-12 2005-08-04 Applera Corporation Method and device for detection of nucleic acid sequences
JP2005345160A (ja) * 2004-05-31 2005-12-15 Advance Co Ltd 生体情報分析ユニット
AU2006217719A1 (en) * 2005-02-25 2006-08-31 Alere Switzerland Gmbh Fluidic gating device
JP2006346626A (ja) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd 反応チップ
EP1943499B1 (de) * 2005-10-26 2010-02-10 General Electric Company Verfahren und systeme zur abgabe fluidischer proben in sensorarrays
US20070122819A1 (en) * 2005-11-25 2007-05-31 Industrial Technology Research Institute Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
JP4766680B2 (ja) * 2006-02-24 2011-09-07 株式会社エンプラス 流体取扱装置
US20070280857A1 (en) * 2006-06-02 2007-12-06 Applera Corporation Devices and Methods for Positioning Dried Reagent In Microfluidic Devices
CN101522916B (zh) * 2006-08-02 2012-09-05 三星电子株式会社 薄膜化学分析设备和使用该设备的分析方法
US7738094B2 (en) * 2007-01-26 2010-06-15 Becton, Dickinson And Company Method, system, and compositions for cell counting and analysis
JP4816791B2 (ja) * 2007-03-02 2011-11-16 株式会社島津製作所 反応容器プレート及び反応処理装置
CA2704188C (en) * 2007-10-31 2015-11-17 Francis A. Lewandowski Device and method for high throughput screening of crystallization conditions in a vapor diffusion environment
WO2009066897A2 (en) * 2007-11-22 2009-05-28 Jae Chern Yoo Thin film valve device and its controlling apparatus
US8001855B2 (en) * 2008-01-14 2011-08-23 Medi Medical Engineering Corp. Fluid transferring apparatus
DE102008020131A1 (de) 2008-04-22 2009-10-29 Advanced Display Technology Ag Vorrichtung zum pixelintegrierten Rückführen von Flüssigkeit
CN102667477B (zh) * 2009-07-24 2015-01-07 阿科尼生物系统公司 流通池装置
JP5499840B2 (ja) * 2010-03-31 2014-05-21 凸版印刷株式会社 試料分析チップ及びこれを用いた試料分析方法
EP2436446B1 (de) 2010-10-04 2016-09-21 F. Hoffmann-La Roche AG Mehrkammerplatte und Verfahren zu ihrer Befüllung mit einer Probenflüssigkeit
EP2455162A1 (de) * 2010-10-29 2012-05-23 Roche Diagnostics GmbH Mikrofluidisches Element zur Analyse einer Probenflüssigkeit
US9523682B2 (en) 2011-11-16 2016-12-20 Becton, Dickinson And Company Methods and systems for detecting an analyte in a sample
US9063121B2 (en) 2012-05-09 2015-06-23 Stat-Diagnostica & Innovation, S.L. Plurality of reaction chambers in a test cartridge
US8964345B2 (en) 2012-07-02 2015-02-24 Reliance Controls Corporation Semiautomatic transfer switch with open neutral protection
US9573128B1 (en) * 2012-09-06 2017-02-21 SciKon Innovation, Inc. Fluidics device allowing fluid flow between a plurality of wells
US9678065B2 (en) 2013-01-11 2017-06-13 Becton, Dickinson And Company Low-cost point-of-care assay device
US9272277B2 (en) * 2013-02-15 2016-03-01 Honeywell International Inc. Capillary groove for isobaric waste entry
JP6003772B2 (ja) * 2013-03-29 2016-10-05 ソニー株式会社 マイクロチップ及びマイクロチップの製造方法
JP6130237B2 (ja) * 2013-06-14 2017-05-17 日本電信電話株式会社 フローセルおよび送液方法
ES2856191T3 (es) 2013-11-06 2021-09-27 Becton Dickinson Co Dispositivos microfluídicos y métodos de uso de los mismos
BR112016010721B1 (pt) 2013-11-13 2021-06-01 Becton, Dickinson And Company Método e sistema de análise de uma amostra para um analito
US10258984B2 (en) 2014-06-16 2019-04-16 Koninklijke Philips N.V. Cartridge for fast sample intake
EP3094252B1 (de) 2014-10-14 2021-08-25 Becton, Dickinson and Company Blutprobenverwaltung mit offenzelligem schaummaterial
SG11201702377QA (en) 2014-10-14 2017-04-27 Becton Dickinson Co Blood sample management using open cell foam
US10035145B2 (en) 2014-12-02 2018-07-31 SciKon Innovation, Inc. Piston assembly and related systems for use with a fluidics device
JP6426832B2 (ja) 2015-03-10 2018-11-21 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 生物体液の極微標本管理装置
SG11201707580WA (en) 2015-03-23 2017-10-30 Scikon Innovation Inc A method and related systems for use with a fluidics device
JP2018536142A (ja) 2015-09-01 2018-12-06 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 試料の相を分離するためのデプスフィルトレーションデバイス
US9700888B1 (en) * 2016-04-13 2017-07-11 Ipmd Inc. Point of care medical device for detecting infectious diseases
US10953403B2 (en) 2016-10-07 2021-03-23 Boehringer Ingelheim Vetmedica Gmbh Method and analysis system for testing a sample
NZ752618A (en) 2016-10-07 2021-12-24 Boehringer Ingelheim Vetmedica Gmbh Analysis device and method for testing a sample
CN109991035B (zh) * 2017-12-29 2021-12-24 台达电子工业股份有限公司 微量取样装置
CN111868501B (zh) * 2018-02-27 2023-07-04 芯易诊有限公司 使用连续稀释进行样品分析的装置及其方法
PL425107A1 (pl) 2018-03-30 2019-10-07 Bacteromic Spółka Z Ograniczoną Odpowiedzialnością Segment inkubacyjny
PL425106A1 (pl) 2018-03-30 2019-10-07 Bacteromic Spółka Z Ograniczoną Odpowiedzialnością Chip mikroprzepływowy
EP3953044A4 (de) * 2019-04-08 2022-06-01 Technion Research & Development Foundation Limited Multiplexiertes array von vorrichtungen für nanoliter-tröpfchen-arrays
USD975312S1 (en) 2020-02-14 2023-01-10 Beckman Coulter, Inc. Reagent cartridge
CN118696235A (zh) * 2021-12-23 2024-09-24 国立大学法人丰桥技术科学大学 微流路中的流体分注装置及微流路器件
TWI836890B (zh) * 2023-02-04 2024-03-21 信任生醫股份有限公司 直立式卡匣和樣本處理系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038151A (en) * 1976-07-29 1977-07-26 Mcdonnell Douglas Corporation Card for use in an automated microbial detection system
US4426451A (en) * 1981-01-28 1984-01-17 Eastman Kodak Company Multi-zoned reaction vessel having pressure-actuatable control means between zones
EP0282840A2 (de) * 1987-03-17 1988-09-21 Becton, Dickinson and Company Einweg-Vorrichtung zur Verwendung bei chemischen, immunochemischen und mikrobiologischen Analysen
FR2657879A1 (fr) * 1990-02-02 1991-08-09 Imedex Plaque de culture cellulaire.
US5223219A (en) * 1992-04-10 1993-06-29 Biotrack, Inc. Analytical cartridge and system for detecting analytes in liquid samples
US5230866A (en) * 1991-03-01 1993-07-27 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963498A (en) * 1985-08-05 1990-10-16 Biotrack Capillary flow device
US5637469A (en) * 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
EP0672110B1 (de) * 1992-11-06 2000-09-13 Biolog, Inc. Testvorrichtung für flüssig- und suspensionsproben
KR970706902A (ko) * 1995-09-12 1997-12-01 로드릭 리차드 제이 Dna 증폭 및 검정 방법 및 장치(device and method for dna amplification and assay)
US5670375A (en) 1996-02-21 1997-09-23 Biomerieux Vitek, Inc. Sample card transport method for biological sample testing machine
US5922593A (en) * 1997-05-23 1999-07-13 Becton, Dickinson And Company Microbiological test panel and method therefor
WO1999046045A1 (de) * 1998-03-11 1999-09-16 MICROPARTS GESELLSCHAFT FüR MIKROSTRUKTURTECHNIK MBH Probenträger
US7094354B2 (en) * 2002-12-19 2006-08-22 Bayer Healthcare Llc Method and apparatus for separation of particles in a microfluidic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038151A (en) * 1976-07-29 1977-07-26 Mcdonnell Douglas Corporation Card for use in an automated microbial detection system
US4426451A (en) * 1981-01-28 1984-01-17 Eastman Kodak Company Multi-zoned reaction vessel having pressure-actuatable control means between zones
EP0282840A2 (de) * 1987-03-17 1988-09-21 Becton, Dickinson and Company Einweg-Vorrichtung zur Verwendung bei chemischen, immunochemischen und mikrobiologischen Analysen
FR2657879A1 (fr) * 1990-02-02 1991-08-09 Imedex Plaque de culture cellulaire.
US5230866A (en) * 1991-03-01 1993-07-27 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow
US5223219A (en) * 1992-04-10 1993-06-29 Biotrack, Inc. Analytical cartridge and system for detecting analytes in liquid samples

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013341A3 (de) * 1998-12-23 2001-01-10 MICROPARTS GESELLSCHAFT FÜR MIKROSTRUKTURTECHNIK mbH Vorrichtung zum Ableiten einer Flüssigkeit aus Kapillaren
US6296126B1 (en) 1998-12-23 2001-10-02 Microparts Gesellschaft Device for removing a liquid from capillaries
EP1013341A2 (de) * 1998-12-23 2000-06-28 MICROPARTS GESELLSCHAFT FÜR MIKROSTRUKTURTECHNIK mbH Vorrichtung zum Ableiten einer Flüssigkeit aus Kapillaren
WO2001008799A1 (de) * 1999-08-01 2001-02-08 Febit Ferrarius Biotechnology Gmbh Mikrofluidischer reaktionsträger mit drei strömungsebenen und transparenter deckschicht
EP1652578A3 (de) * 1999-08-01 2006-07-26 febit biotech GmbH Mikrofluidischer Reaktionsträger
US7361314B1 (en) 1999-08-01 2008-04-22 Febit Biotech Gmbh Microfluid reaction carrier having three flow levels and a transparent protective layer
WO2001075433A3 (en) * 2000-03-31 2002-03-14 Lifescan Inc Capillary flow control in a fluidic diagnostic device
US6908593B1 (en) 2000-03-31 2005-06-21 Lifescan, Inc. Capillary flow control in a fluidic diagnostic device
JP2004502164A (ja) * 2000-06-28 2004-01-22 スリーエム イノベイティブ プロパティズ カンパニー サンプル処理装置
EP2316573A1 (de) * 2000-06-28 2011-05-04 3M Innovative Properties Co. Vorrichtungen und Verfahren zur Probenverarbeitung
JP4938198B2 (ja) * 2000-06-28 2012-05-23 スリーエム イノベイティブ プロパティズ カンパニー サンプル処理装置
JP2004504828A (ja) * 2000-07-28 2004-02-19 ジェネシステム 標的核酸配列の熱依存性連鎖増幅のための装置
JP2011200245A (ja) * 2000-07-28 2011-10-13 Pall Genesystems Sa 酸素反応及び/又は分子生物学反応を実施するための装置および核酸を増幅するための方法および充填のためのプロセス
EP1333286A4 (de) * 2000-09-18 2004-05-12 Card Corp I MIKRO-WELL-ARRAY UND VERFAHREN ZUM FLüSSIGKEITSABSCHLUSS MIT DEM MIKRO-WELL-ARRAY
EP1333286A1 (de) * 2000-09-18 2003-08-06 I-Card Corporation MIKRO-WELL-ARRAY UND VERFAHREN ZUM FLüSSIGKEITSABSCHLUSS MIT DEM MIKRO-WELL-ARRAY
JP2002243748A (ja) * 2000-10-25 2002-08-28 Microparts G Fuer Mikrostrukturtechnik Mbh 流体の分析及び流体の制御された搬送のための装置
WO2002058845A3 (en) * 2001-01-25 2003-01-03 Biopreventive Ltd Reaction vessel and system incorporating same
JP4566456B2 (ja) * 2001-05-31 2010-10-20 独立行政法人理化学研究所 微量液体制御機構および微量液体制御方法
JP2002357616A (ja) * 2001-05-31 2002-12-13 Inst Of Physical & Chemical Res 微量液体制御機構
WO2003019158A3 (de) * 2001-08-21 2003-11-13 Bestmann Lukas Thermo-optisches analysesystem für biochemische reaktionen
US7521179B2 (en) 2001-08-21 2009-04-21 Lukas Bestmann Thermo-optical analysis system for biological reactions
EP1304167A1 (de) * 2001-10-18 2003-04-23 Aida Engineering Ltd. Mikrodosier- und Probennahmevorrichtung sowie Mikrochip mit dieser Vorrichtung
JP2005506541A (ja) * 2001-10-26 2005-03-03 エヌティーユー ベンチャーズ ピーティーイー リミテッド 試料調製一体型チップ
JP2005509514A (ja) * 2001-11-15 2005-04-14 セルラー プロセス ケミストリー インコーポレイテッド 堆積単純プレートにおける流体の流れの向上
US7459127B2 (en) 2002-02-26 2008-12-02 Siemens Healthcare Diagnostics Inc. Method and apparatus for precise transfer and manipulation of fluids by centrifugal and/or capillary forces
US8337775B2 (en) 2002-02-26 2012-12-25 Siemens Healthcare Diagnostics, Inc. Apparatus for precise transfer and manipulation of fluids by centrifugal and or capillary forces
US8128889B2 (en) * 2002-04-30 2012-03-06 Arkray, Inc. Analyzing article, analyzer and method of analyzing a sample using the analyzing article, and a method of forming an opening in the analyzing article
WO2004028692A3 (de) * 2002-09-23 2004-07-29 Prisma Diagnostika Gmbh Trägerelement für diagnostische tests
EP1419818A1 (de) * 2002-11-14 2004-05-19 Steag MicroParts GmbH Vorrichtung zum schrittweisen Transport von Flüssigkeit unter Ausnutzung von Kapillarkräften
US7316802B2 (en) 2002-11-14 2008-01-08 Boehringer Ingelheim Microparts Gmbh Device for the stepwise transport of liquid utilizing capillary forces
US7125711B2 (en) 2002-12-19 2006-10-24 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
US7094354B2 (en) 2002-12-19 2006-08-22 Bayer Healthcare Llc Method and apparatus for separation of particles in a microfluidic device
DE10302720A1 (de) * 2003-01-23 2004-08-05 Steag Microparts Gmbh Mikrofluidischer Schalter zum Anhalten des Flüssigkeitsstroms während eines Zeitintervalls
DE10302721A1 (de) * 2003-01-23 2004-08-05 Steag Microparts Gmbh Mikrofluidische Anordnung zum Dosieren von Flüssigkeiten
EP1440732A1 (de) 2003-01-23 2004-07-28 Steag MicroParts GmbH Mikrofluidische Anordnung zum Dosieren von Flüssigkeiten
EP1441131B1 (de) * 2003-01-23 2017-12-20 Boehringer Ingelheim microParts GmbH Verwendung eines mikrofluidischen Schalters zum Anhalten eines Flüssigkeitsstroms während eines Zeitintervalls
US7134453B2 (en) * 2003-01-23 2006-11-14 Boehringer Ingelheim Microparts Gmbh Microfluidic switch for stopping a liquid flow during a time interval
EP1441131A1 (de) 2003-01-23 2004-07-28 Steag MicroParts GmbH Mikrofluidischer Schalter zum Anhalten eines Flüssigkeitsstroms während eines Zeitintervalls
US7435381B2 (en) 2003-05-29 2008-10-14 Siemens Healthcare Diagnostics Inc. Packaging of microfluidic devices
DE10325110B3 (de) * 2003-05-30 2005-01-13 Universität Freiburg Blasenfrei befüllbarer Fluidkanal und Verfahren zum Füllen eines Fluidkanals
WO2005016529A1 (de) 2003-08-11 2005-02-24 Thinxxs Microtechnology Ag Flusszelle aus schichten mit verbindungsmittel
US7595871B2 (en) 2003-08-11 2009-09-29 Thinxxs Microtechnology Ag Flow cell consisting of layer and connection means
US7347617B2 (en) 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
US8865091B2 (en) 2003-10-09 2014-10-21 3M Innovative Properties Company Multilayer processing devices and methods
EP1529567A2 (de) 2003-11-07 2005-05-11 Herbener, Heinz-Gerd Probenträger mit einer Reaktionskammer
EP1533035A1 (de) * 2003-11-21 2005-05-25 Boehringer Ingelheim microParts GmbH Probenträger
US7829027B2 (en) 2003-11-21 2010-11-09 Boehringer Ingelheim Microparts Gmbh Sample carrier
DE10354806A1 (de) * 2003-11-21 2005-06-02 Boehringer Ingelheim Microparts Gmbh Probenträger
EP1559676A3 (de) * 2003-12-20 2008-12-03 Boehringer Ingelheim microParts GmbH Mikrostrukturierte Anordnung zur blasenfreien Befüllung zumindest eines Systems zur Ableitung von Flüssigkeiten, Vorrichtung mit einer solchen Anordnung und Befüllungsverfahren
EP1559676A2 (de) 2003-12-20 2005-08-03 Boehringer Ingelheim microParts GmbH Mikrostrukturierte Anordnung zur blasenfreien Befüllung zumindest eines Systems zur Ableitung von Flüssigkeiten, Vorrichtung mit einer solchen Anordnung und Befüllungsverfahren
DE10360220A1 (de) * 2003-12-20 2005-07-21 Steag Microparts Gmbh Mikrostrukturierte Anordnung zur blasenfreien Befüllung zumindest eines Systems zur Ableitung von Flüssigkeiten, Vorrichtung mit einer solchen Anordnung und Befüllungsverfahren
US7754472B2 (en) 2004-02-02 2010-07-13 Medion Diagnostics Ag Device and method for detecting analytes by visualization and separation of agglutination
DE102004005193B4 (de) * 2004-02-02 2006-08-24 Medion Diagnostics Gmbh Vorrichtung zur Separation einzelner Partikel von Partikel-Agglutinationen
DE102004005193A1 (de) * 2004-02-02 2005-08-25 Medion Diagnostics Gmbh Vorrichtung und Verfahren zum Nachweis von Analyten durch Sichtbarmachung und Separation von Agglutination
EP2623200A3 (de) * 2004-02-17 2014-04-09 Boehringer Ingelheim microParts GmbH Mikrostrukturierte Plattform und Verfahren zum Handhaben einer Fluessigkeit
EP1566215A2 (de) * 2004-02-17 2005-08-24 Boehringer Ingelheim microParts GmbH Mikrostrukturierte Plattform und Verfahren zum Handhaben einer Flüssigkeit
EP1566215A3 (de) * 2004-02-17 2011-05-25 Boehringer Ingelheim microParts GmbH Mikrostrukturierte Plattform und Verfahren zum Handhaben einer Flüssigkeit
US7887750B2 (en) 2004-05-05 2011-02-15 Bayer Healthcare Llc Analytical systems, devices, and cartridges therefor
US8865089B2 (en) 2004-05-05 2014-10-21 Polymer Technology Systems, Inc. Analytical systems, devices, and cartridges therefor
DE102004038163A1 (de) * 2004-08-06 2006-03-16 Diacdem Chip Technologies Gmbh Fluoreszenz-basierte Assays zur schnellen, quantitativen Analyse von Biomolekülen (Proteine und Nukleinsäuren) durch Anreicherung auf Zellen oder Beads
DE102005056356B4 (de) * 2004-11-25 2010-04-08 Industrial Technology Research Institute, Chutung Verwendung eines Mikrofluidchips mit einer Probenteststruktur für die quantitative Analyse
DE102005056356A1 (de) * 2004-11-25 2006-07-13 Industrial Technology Research Institute, Chutung Analytteststruktur in einem Mikrofluidchip für die quantitative Analyse und Verfahren zur Verwendung derselben
WO2006069757A1 (de) * 2004-12-23 2006-07-06 Perdita Backes Neuartige mikrofluidische probenträger
AU2005321534B2 (en) * 2004-12-23 2011-04-07 Oktavia Backes Novel microfluidic sample holder
JP2006254211A (ja) * 2005-03-11 2006-09-21 Kenwood Corp データ圧縮装置、圧縮データ復元装置、データ圧縮方法、圧縮データ復元方法及びプログラム
US10073107B2 (en) 2005-05-25 2018-09-11 Boehringer Ingelheim Vetmedica Gmbh System for operating a system for the integrated and automated analysis of DNA or protein
US9110044B2 (en) 2005-05-25 2015-08-18 Boehringer Ingelheim Vetmedica Gmbh System for the integrated and automated analysis of DNA or protein and method for operating said type of system
US10816563B2 (en) 2005-05-25 2020-10-27 Boehringer Ingelheim Vetmedica Gmbh System for operating a system for the integrated and automated analysis of DNA or protein
US10184946B2 (en) 2005-05-25 2019-01-22 Boehringer Ingelheim Vetmedica Gmbh Method for operating a system for the integrated and automated analysis of DNA or protein
WO2007001912A1 (en) * 2005-06-28 2007-01-04 Hewlett-Packard Development Company, L.P. Microfluidic test systems with gas bubble reduction
US7437914B2 (en) 2005-06-28 2008-10-21 Hewlett-Packard Development Company, L.P. Microfluidic test systems with gas bubble reduction
WO2007061305A3 (en) * 2005-11-22 2007-08-09 Stichting Technonogisch Top In Sampling device for in vivo sampling of liquids from the gastrointestinal tract, process for the production thereof and mould or mask for use in the production process
EP1932593A1 (de) * 2006-11-22 2008-06-18 FUJIFILM Corporation Mikrokanalchip und Konvergenzvorrichtung
WO2009024916A1 (en) * 2007-08-23 2009-02-26 Koninklijke Philips Electronics N.V. Vent design for biosensor cartridge
US20120322141A1 (en) * 2007-10-26 2012-12-20 Toppan Printing Co., Ltd. Reaction chip, reaction method, temperature controlling unit for gene treating apparatus and gene treating apparatus
US8568668B2 (en) * 2007-12-10 2013-10-29 Shimadzu Corporation Micro droplet operation device and reaction processing method using the same
US10029253B2 (en) 2007-12-10 2018-07-24 Shimadzu Corporation Micro droplet operation device and reaction processing method using the same
US20100294811A1 (en) * 2007-12-10 2010-11-25 Masakazu Akechi Micro droplet operation device and reaction processing method using the same
WO2010055466A1 (en) * 2008-11-13 2010-05-20 Koninklijke Philips Electronics N.V. Interfacing an inlet to a capillary channel of a microfluidic system
US9216413B2 (en) 2009-07-07 2015-12-22 Boehringer Ingelheim Microparts Gmbh Plasma separation reservoir
US20120167673A1 (en) * 2009-08-25 2012-07-05 Hach Lange Gmbh Water analyzer comprising a pneumatically driven multi-chamber peristaltic pump
CN102893144A (zh) * 2010-03-30 2013-01-23 梅纳伊医疗科技有限公司 取样板
US8894832B2 (en) 2010-03-30 2014-11-25 Jabil Circuit (Singapore) Pte, Ltd. Sampling plate
US9011658B2 (en) 2010-03-30 2015-04-21 Jabil Circuit (Singapore) Pte, Ltd. Sampling plate
WO2011124906A1 (en) * 2010-03-30 2011-10-13 Menai Medical Technologies Limited Sampling plate
WO2011120773A1 (de) 2010-03-31 2011-10-06 Boehringer Ingelheim Microparts Gmbh Bauteil eines biosensors und verfahren zur herstellung
US9718057B2 (en) 2013-01-17 2017-08-01 Technion Research And Development Foundation Ltd. Microfluidic device and method thereof
EP2945741A4 (de) * 2013-01-17 2016-06-08 Technion Res & Dev Foundation Mikrofluidische vorrichtung und verfahren dafür
WO2016204638A3 (en) * 2015-06-19 2017-02-09 Biosurfit, S.A. Capillary junction
EP4480581A1 (de) * 2023-06-23 2024-12-25 Koninklijke Philips N.V. Fluidische vorrichtung und verwendung derselben
WO2024261021A1 (en) 2023-06-23 2024-12-26 Koninklijke Philips N.V. Fluidic device and use of the same

Also Published As

Publication number Publication date
AU3034099A (en) 1999-09-27
IL138286A0 (en) 2001-10-31
US7560073B1 (en) 2009-07-14
CA2323424A1 (en) 1999-09-16
ES2203093T3 (es) 2004-04-01
BR9909249A (pt) 2000-11-28
CA2323424C (en) 2005-03-08
ATE241430T1 (de) 2003-06-15
AU739563B2 (en) 2001-10-18
HK1035683A1 (en) 2001-12-07
DE59905743D1 (de) 2003-07-03
EP1062042B1 (de) 2003-05-28
US20070025875A1 (en) 2007-02-01
IL138286A (en) 2004-02-19
US20090155128A1 (en) 2009-06-18
JP4350897B2 (ja) 2009-10-21
BR9909249B1 (pt) 2009-12-01
JP2002505946A (ja) 2002-02-26
EP1062042A1 (de) 2000-12-27

Similar Documents

Publication Publication Date Title
EP1062042B1 (de) Probenträger
DE69303483T2 (de) Mikrohergestellte Vorrichtungen zum Handhaben von Sperma
EP1194240B1 (de) Einrichtung zum handhaben von flüssigkeitsproben und herstellungsverfahren sowie system zum handhaben von flüssigkeitsproben
DE2829796C3 (de) Vorrichtung zum gleichzeitigen Durchführen von Analysen an mehreren gegenseitig getrennten Flüssigkeitsproben sowie Verwendung der Vorrichtung zur Analyse von Mikroorganismen
DE102009015395B4 (de) Flusszelle zur Behandlung und/oder Untersuchung eines Fluids
EP1480749B1 (de) Mikrofluidsystem
EP1173541B1 (de) Vorrichtung zur durchführung von untersuchungen an zellkulturen
DE2904597C2 (de) Küvetteneinsatz
EP2308589B9 (de) Mikrofluidische struktur
WO2009106331A2 (de) Vorrichtung zur plasmaseparation
DE102018111822B4 (de) Fluidisches System zur Aufnahme, Abgabe und Bewegung von Flüssigkeiten, Verfahren zur Verarbeitung von Fluiden in einem fluidischen System
EP2623200A2 (de) Mikrostrukturierte Plattform und Verfahren zum Handhaben einer Fluessigkeit
DE19948087A1 (de) Strukturierter Probenträger und Verfahren zu seiner Herstellung
DE19810499A1 (de) Mikrotiterplatte
EP2248588B1 (de) Montier- und demontierbares Mikrofluidiksystem und Verfahren zur Flutung des Systems
WO2008128534A1 (de) Küvette für die optische analyse kleiner volumina
DE10046173A1 (de) Vorrichtung und Verfahren zur Separation von ungelösten Bestandteilen aus biologischen Flüssigkeiten
EP1533035A1 (de) Probenträger
EP1489404A1 (de) Verfahren zum Herstellen einer 3-D-Mikroskop-Durchflusszelle
EP2729251B1 (de) Mikrofluidische struktur mit vertiefungen
DE102023125347B3 (de) Mikrosystembauelement
EP1340543A1 (de) Mikrofluidsystem
DE102022209421A1 (de) Array für eine mikrofluidische Vorrichtung
EP4414075A2 (de) Zentrifugierbarer probenträger
WO2023280698A1 (de) Mikrofluidische vorrichtung und verfahren zum betreiben einer mikrofluidischen vorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999911779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 138286

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2323424

Country of ref document: CA

Ref country code: CA

Ref document number: 2323424

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 30340/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09623910

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999911779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 30340/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999911779

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载