+

WO1999043610A1 - Utilisation d'un reacteur a membrane pour la production d'hydrogene par craquage direct d'hydrocarbures - Google Patents

Utilisation d'un reacteur a membrane pour la production d'hydrogene par craquage direct d'hydrocarbures Download PDF

Info

Publication number
WO1999043610A1
WO1999043610A1 PCT/US1999/003574 US9903574W WO9943610A1 WO 1999043610 A1 WO1999043610 A1 WO 1999043610A1 US 9903574 W US9903574 W US 9903574W WO 9943610 A1 WO9943610 A1 WO 9943610A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
hydrogen
catalyst
reactor
hydrocarbons
Prior art date
Application number
PCT/US1999/003574
Other languages
English (en)
Inventor
Michael D. Amiridis
Tiejun Zhang
Cicero A. Bernales
Original Assignee
Niagara Mohawk Power Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niagara Mohawk Power Corporation filed Critical Niagara Mohawk Power Corporation
Priority to AU27738/99A priority Critical patent/AU2773899A/en
Priority to CA002317396A priority patent/CA2317396A1/fr
Priority to EP99908260A priority patent/EP1066216A1/fr
Publication of WO1999043610A1 publication Critical patent/WO1999043610A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane

Definitions

  • This invention relates generally to the production of hydrogen, and more specifically to the use of a membrane reactor for hydrogen production by the direct cracking of a hydrocarbon.
  • Inorganic membranes such as palladium (Pd), palladium-silver (Pd-Ag) and several other alloys have been utilized in the past to separate hydrogen from other reactants and products in various reactions including hydrogenations, and dehydrogenations. Due to the high cost of these membranes, a great effort has been also devoted over the last several years to the development of composite and alloy membranes. Membranes of this type consist of a thin palladium film (providing permselectivity) coated on a porous or non-porous support that provides the required mechanical strength. A special type of membrane has been developed by Buxbaum and co-workers (J. Membr. Sci., 85, 29 (1993). and U.S. Patent Nos.
  • This membrane takes advantage of the fact that several refractory metals such as niobium (Nb), tantalum (Ta), zirconium (Zr) and Vanadium (V) are one order of magnitude more permeable to hydrogen than palladium and have acceptable mechanical strength.
  • An electroless plating technique was used to deposit a thin palladium film (1-2 ⁇ m thickness) on the surface of the refractory metals.
  • Membranes prepared in this manner, and particularly Pd-Nb and Pd-Ta ensure high purity of the extracted hydrogen and are capable of permeating higher amounts of hydrogen than pure palladium membranes. In addition, they are stronger and more durable and can be used at higher temperatures.
  • the present invention overcomes the problems described above and demonstrates the feasibility of producing substantially pure hydrogen by the direct cracking of hydrocarbons by the use of a membrane reactor.
  • a membrane reactor can remove hydrogen from the reaction zone, and therefore, eliminate its negative effects on both reaction equilibrium and the reaction rate.
  • the utilization of a membrane reactor can increase significantly the efficiency of the hydrogen production process.
  • the membrane may be of any type of material that is selectively permeable only to hydrogen, and can thus effectively separate hydrogen from carbon monoxide and other components of the reacting mixture (e.g., unreacted hydrocarbons, carbon dioxide, water vapor, etc.).
  • the invention has been ' * demonstrated with a Pd-Nb-type of membrane which is believed to have certain advantages as discussed in the background section of this application.
  • the membrane preferably comprises Pd-Nb.
  • the invention may be applicable to cracking any suitable hydrocarbon such as methane, natural gas, ethane, ethylene, propane, propylene, butane, pentane, hexane or mixtures thereof, and hydrocarbons with molecular weights in the gasoline and diesel range.
  • the membrane reactor utilizes a catalyst bed which preferably comprises a nickel containing catalyst supported on a silica support.
  • the hydrogen produced in the reactor zone selectively permeates through the membrane wall and is carried away by a sweeping gas.
  • the reactor typically operates at a temperature in the range of about 400 to 900 °C.
  • FIG. 1 is an enlarged side sectional view of the catalyst reaction zone of double tubular catalytic membrane reactor.
  • FIG. 2 represents a plot of a comparison of methane conversion over 0.2 g of a 16 wt% Ni/Si0 2 catalyst at 550°C in a conventional fixed bed reactor and the reactor of Fig. 1.
  • FIG. 3 represents a plot of the comparison of methane conversion over 0.2 g of a 16 wt% Ni/SiO 2 catalyst at 7600 h" 1 in a conventional fixed bed reactor and the reactor of Fig. 1.
  • FIG. 4 is an enlarged side sectional view of the catalyst reaction zone of an alternative design of a fixed bed catalytic reactor having a membrane separator.
  • the invention was demonstrated with the double tubular catalytic membrane reactor (10) depicted in Figure 1.
  • the Pd-Nb membrane tube utilized has an outer diameter of 9.525 mm (3/8 in.) and a wall thickness of 0.25 mm; and was prepared according to the procedures described in the corresponding patents (U.S. 5,149,420 and 5,215, 729) covering its manufacture and use, which are incorporated herein by reference.
  • the reactor consists of an inner membrane tube (12) and an outer stainless steel or quartz tube (14) which define a flow passageway (16).
  • a catalyst bed (18) is located within the inner tube (12).
  • Electrical heater (20) controls the reaction temperature.
  • the hydrogen produced in the reactor zone selectively permeates through the membrane wall and is carried away by a sweeping gas indicated by the dotted arrows.
  • the outer tube (SS, 1 in. OD, 0.028 in. thickness) is directly connected to a sweeping gas supply (not shown).
  • the membrane occupied the central section of the inner tube and was connected to the reactor inlet and outlet with appropriate unions.
  • the catalyst (16 wt% Ni/SiO 2 ) was packed within the membrane tube and the produced hydrogen was purged with an inert sweeping gas such as argon in the shell side. Additional hydrogen is also exiting the reactor at the bottom of the catalyst bed, as indicated by the solid arrows.
  • Fig. 1 Another example of a membrane reactor configuration suitable for use in the present invention is shown in Fig. 4 wherein a fixed bed catalytic reactor or fuel processor is equipped with a membrane separator.
  • the fuel processor which employs direct cracking, converts the hydrocarbon feed to hydrogen and carbon products and with the membrane separator, selectively extracts hydrogen to produce an essentially pure hydrogen product.
  • the hydrocarbon gas is fed through an inlet port 42 and is cracked in internal chamber 44.
  • the hydrogen formed from the cracking permeates the selectively porous membrane tubes 32 and travels to exit port 48 (see small arrows), while carbon monoxide, other reaction products, and unreacted hydrocarbons exit through port 46.
  • the hydrocarbon gas feed enters one end of the reactor, passes through the catalyst bed, and the reaction products and unreacted hydrocarbons exit at the other end.
  • the membrane separator the flow of the hydrogen goes from the outside to the inside of the membrane tubes.
  • the flow of essentially pure hydrogen from all the membrane tubes are combined into a common header 50 and collected at exit port 48.
  • Other alternate reactor configurations for this type of reactor in commercial operations may include fluidized bed or moving bed reactors.
  • the catalyst used in the present invention will eventually deactivate as a result of carbon deposition.
  • the carbon deposited on the catalyst may be recovered and used in electrochemical applications (superconductors, electrodes and fuel cells) or fuel storage applications.
  • the deactivated catalyst can be fully regenerated by oxidization in air or steam gasification of the deposited carbon.
  • Figure 2 compares the methane conversions obtained from a conventional fixed bed reactor and the reactor of Fig. 1 at 550°C at different space veloe ties.
  • the CH 4 conversion in the conventional fixed bed reactor ranged from 31.7% at a space velocity of 60000 h "1 to 42.2% at 7500 h "1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

La présente invention concerne un procédé permettant de produire de l'hydrogène sensiblement pur dans un réacteur à membrane à partir d'un courant de gaz d'hydrocarbure mis au contact d'un catalyseur au nickel. Le réacteur à membrane associe une membrane perméable à l'hydrogène à un catalyseur capable de produire de l'hydrogène par craquage direct d'hydrocarbures. En l'occurrence, on met le courant de gaz d'hydrocarbure au contact du catalyseur à une température se situant dans une plage allant approximativement de 400 °C à 900 °C. Il en résulte que le gaz se convertit en un hydrogène sensiblement pur qui effectue une perméation sélective de la paroi en membrane.
PCT/US1999/003574 1998-02-24 1999-02-19 Utilisation d'un reacteur a membrane pour la production d'hydrogene par craquage direct d'hydrocarbures WO1999043610A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU27738/99A AU2773899A (en) 1998-02-24 1999-02-19 Use of a membrane reactor for hydrogen production via the direct cracking of hydrocarbons
CA002317396A CA2317396A1 (fr) 1998-02-24 1999-02-19 Utilisation d'un reacteur a membrane pour la production d'hydrogene par craquage direct d'hydrocarbures
EP99908260A EP1066216A1 (fr) 1998-02-24 1999-02-19 Utilisation d'un reacteur a membrane pour la production d'hydrogene par craquage direct d'hydrocarbures

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US7581498P 1998-02-24 1998-02-24
US60/075,814 1998-02-24
US23186299A 1999-01-14 1999-01-14
US09/231,862 1999-01-14

Publications (1)

Publication Number Publication Date
WO1999043610A1 true WO1999043610A1 (fr) 1999-09-02

Family

ID=26757305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/003574 WO1999043610A1 (fr) 1998-02-24 1999-02-19 Utilisation d'un reacteur a membrane pour la production d'hydrogene par craquage direct d'hydrocarbures

Country Status (5)

Country Link
EP (1) EP1066216A1 (fr)
CN (1) CN1291166A (fr)
AU (1) AU2773899A (fr)
CA (1) CA2317396A1 (fr)
WO (1) WO1999043610A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040539A1 (de) * 2000-08-18 2002-03-07 Aral Ag & Co Kg Membranreaktor und Verfahren zur Herstellung von hochreinem Wasserstoffgas
WO2002014215A3 (fr) * 2000-08-18 2003-10-23 Bp Benzin Und Petroleum Ag Reacteur a membrane et procede de production d'un gaz hydrogene de grande purete
EP1561725A1 (fr) * 2004-02-03 2005-08-10 Min-Hoi Rei Procédé et module de réacteur pour la production d' hydrogène à démarrage rapide
WO2007031713A1 (fr) * 2005-09-14 2007-03-22 Bp P.L.C. Procede de production d'hydrogene
US7252692B2 (en) * 2004-01-21 2007-08-07 Min-Hon Rei Process and reactor module for quick start hydrogen production
EP1829821A1 (fr) * 2006-03-01 2007-09-05 Enea-Ente Per Le Nuove Tecnologie, L'Energia e L'Ambiente Processus a membrane pour la production d'hydrogene
US7527661B2 (en) 2005-04-18 2009-05-05 Intelligent Energy, Inc. Compact devices for generating pure hydrogen
WO2012072199A1 (fr) * 2010-12-02 2012-06-07 Linde Aktiengesellschaft Procédé et dispositif de production d'hydrogène à partir de glycérine
CN103007697A (zh) * 2012-12-21 2013-04-03 上海合既得动氢机器有限公司 甲醇水制氢设备的膜分离器及其制备方法
US8597383B2 (en) 2011-04-11 2013-12-03 Saudi Arabian Oil Company Metal supported silica based catalytic membrane reactor assembly
US9272269B2 (en) 2012-03-08 2016-03-01 National University Of Singapore Catalytic hollow fibers
US9745191B2 (en) 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030192251A1 (en) * 2002-04-12 2003-10-16 Edlund David J. Steam reforming fuel processor
NL1021364C2 (nl) * 2002-08-30 2004-03-18 Stichting Energie Shift membraanbrander-brandstofcel combinatie.
CN107469628B (zh) * 2017-09-21 2019-10-01 中国科学院上海应用物理研究所 一种去除熔盐中气态氚及其同位素的装置及方法
CN108745263B (zh) * 2018-07-05 2020-02-07 山东理工大学 甲烷部分氧化制氢的透氧-透氢-反应三效管状膜反应器的制备方法
CN108745262B (zh) * 2018-07-05 2020-02-11 山东理工大学 透氧-透氢-甲烷部分氧化脱氢三效平板式膜反应器的制备方法及其测试系统
CN110483228B (zh) * 2018-11-06 2022-06-28 中国科学院青岛生物能源与过程研究所 一种质子传导膜反应器中反应同时获得高纯氢气和化学品的方法和装置
CN109824627B (zh) * 2019-03-01 2023-08-29 山东理工大学 一种透氧透氢耦合膜微反应器合成环氧丙烷的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962411A (en) * 1973-12-13 1976-06-08 United Technologies Corporation Method for catalytically cracking a hydrocarbon fuel
US4244811A (en) * 1978-07-25 1981-01-13 Exxon Research & Engineering Co. Catalytic cracking process with simultaneous production of a low BTU fuel gas and catalyst regeneration
US4981676A (en) * 1989-11-13 1991-01-01 Minet Ronald G Catalytic ceramic membrane steam/hydrocarbon reformer
US5215729A (en) * 1990-06-22 1993-06-01 Buxbaum Robert E Composite metal membrane for hydrogen extraction
US5326550A (en) * 1992-10-22 1994-07-05 The University Of British Columbia Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen
US5525322A (en) * 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5639431A (en) * 1993-03-16 1997-06-17 Tokyo Gas Co. Ltd. Hydrogen producing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962411A (en) * 1973-12-13 1976-06-08 United Technologies Corporation Method for catalytically cracking a hydrocarbon fuel
US4244811A (en) * 1978-07-25 1981-01-13 Exxon Research & Engineering Co. Catalytic cracking process with simultaneous production of a low BTU fuel gas and catalyst regeneration
US4981676A (en) * 1989-11-13 1991-01-01 Minet Ronald G Catalytic ceramic membrane steam/hydrocarbon reformer
US5215729A (en) * 1990-06-22 1993-06-01 Buxbaum Robert E Composite metal membrane for hydrogen extraction
US5326550A (en) * 1992-10-22 1994-07-05 The University Of British Columbia Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen
US5639431A (en) * 1993-03-16 1997-06-17 Tokyo Gas Co. Ltd. Hydrogen producing apparatus
US5525322A (en) * 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040539A1 (de) * 2000-08-18 2002-03-07 Aral Ag & Co Kg Membranreaktor und Verfahren zur Herstellung von hochreinem Wasserstoffgas
WO2002014215A3 (fr) * 2000-08-18 2003-10-23 Bp Benzin Und Petroleum Ag Reacteur a membrane et procede de production d'un gaz hydrogene de grande purete
US7252692B2 (en) * 2004-01-21 2007-08-07 Min-Hon Rei Process and reactor module for quick start hydrogen production
EP1561725A1 (fr) * 2004-02-03 2005-08-10 Min-Hoi Rei Procédé et module de réacteur pour la production d' hydrogène à démarrage rapide
US7527661B2 (en) 2005-04-18 2009-05-05 Intelligent Energy, Inc. Compact devices for generating pure hydrogen
WO2007031713A1 (fr) * 2005-09-14 2007-03-22 Bp P.L.C. Procede de production d'hydrogene
EP1829821A1 (fr) * 2006-03-01 2007-09-05 Enea-Ente Per Le Nuove Tecnologie, L'Energia e L'Ambiente Processus a membrane pour la production d'hydrogene
WO2012072199A1 (fr) * 2010-12-02 2012-06-07 Linde Aktiengesellschaft Procédé et dispositif de production d'hydrogène à partir de glycérine
US9745191B2 (en) 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US8597383B2 (en) 2011-04-11 2013-12-03 Saudi Arabian Oil Company Metal supported silica based catalytic membrane reactor assembly
US10071909B2 (en) 2011-04-11 2018-09-11 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US10093542B2 (en) 2011-04-11 2018-10-09 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US10252910B2 (en) 2011-04-11 2019-04-09 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US10252911B2 (en) 2011-04-11 2019-04-09 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic systems
US9272269B2 (en) 2012-03-08 2016-03-01 National University Of Singapore Catalytic hollow fibers
CN103007697B (zh) * 2012-12-21 2015-03-18 上海合既得动氢机器有限公司 甲醇水制氢设备的膜分离器及其制备方法
CN103007697A (zh) * 2012-12-21 2013-04-03 上海合既得动氢机器有限公司 甲醇水制氢设备的膜分离器及其制备方法

Also Published As

Publication number Publication date
AU2773899A (en) 1999-09-15
CN1291166A (zh) 2001-04-11
CA2317396A1 (fr) 1999-09-02
EP1066216A1 (fr) 2001-01-10

Similar Documents

Publication Publication Date Title
EP1066216A1 (fr) Utilisation d'un reacteur a membrane pour la production d'hydrogene par craquage direct d'hydrocarbures
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
US4713234A (en) Process and apparatus for conversion of water vapor with coal or hydrocarbon into a product gas
Nam et al. Methane steam reforming in a Pd-Ru membrane reactor
CA2497441C (fr) Dispositif et procede de production d'hydrogene a purete elevee
US5931987A (en) Apparatus and methods for gas extraction
US6461408B2 (en) Hydrogen generator
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US6919062B1 (en) Permreactor and separator type fuel processors for production of hydrogen and hydrogen, carbon oxides mixtures
CA2190893C (fr) Procede pour l'obtention d'hydrogene et d'un gaz de synthese a partir d'un gaz naturel, utilisant un reacteur a membrane
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
RU2248931C2 (ru) Способ получения газа, обогащенного водородом и/или оксидом углерода
EP1024111A1 (fr) Procédé et dispositif pour la préparation d'hydrogène de haute pureté
Hughes Composite palladium membranes for catalytic membrane reactors
WO1997017125A1 (fr) Dispositif et procedes d'extraction de gaz
Ioannides et al. Catalytic isobutane dehydrogenation in a dense silica membrane reactor
US7560090B2 (en) Process for producing hydrogen with permselective membrane reactor and permselective membrane reactor
JP4995461B2 (ja) 選択透過膜型反応器による炭化水素の二酸化炭素改質方法
Ferreira-Aparicio et al. Pure hydrogen production from methylcyclohexane using a new high performance membrane reactor
Gobina et al. Reaction coupling in catalytic membrane reactors
Gallucci et al. A review on patents for hydrogen production using membrane reactors
JP2955054B2 (ja) 燃料電池用水素製造方法及び装置並びに供給方法
MXPA00008106A (en) Use of a membrane reactor for hydrogen production via the direct cracking of hydrocarbons
JPH04325402A (ja) 燃料電池用水素製造方法及び装置並びに供給方法
Drioli et al. High temperature membrane reactors for clean productions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99803205.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2317396

Country of ref document: CA

Ref document number: 2317396

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999908260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/00203/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/008106

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999908260

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999908260

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载