WO1998039799A1 - Post-treating method for plasma etching - Google Patents
Post-treating method for plasma etching Download PDFInfo
- Publication number
- WO1998039799A1 WO1998039799A1 PCT/JP1997/000897 JP9700897W WO9839799A1 WO 1998039799 A1 WO1998039799 A1 WO 1998039799A1 JP 9700897 W JP9700897 W JP 9700897W WO 9839799 A1 WO9839799 A1 WO 9839799A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- post
- gas
- plasma
- plasma etching
- treatment
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000001020 plasma etching Methods 0.000 title claims abstract description 24
- 239000007789 gas Substances 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 54
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 51
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000000460 chlorine Substances 0.000 claims abstract description 38
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 38
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 25
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 239000011737 fluorine Substances 0.000 claims abstract description 24
- 238000002156 mixing Methods 0.000 claims abstract description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 238000005530 etching Methods 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 23
- 238000012805 post-processing Methods 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000009832 plasma treatment Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 229910018503 SF6 Inorganic materials 0.000 claims description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 claims description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 239000010408 film Substances 0.000 claims 1
- 125000001153 fluoro group Chemical group F* 0.000 claims 1
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 18
- 238000004380 ashing Methods 0.000 abstract description 6
- 230000001965 increasing effect Effects 0.000 abstract description 3
- 230000001681 protective effect Effects 0.000 description 69
- 238000005260 corrosion Methods 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 22
- 238000012546 transfer Methods 0.000 description 11
- 239000010410 layer Substances 0.000 description 9
- 238000005406 washing Methods 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017758 Cu-Si Inorganic materials 0.000 description 1
- 229910017931 Cu—Si Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 108010000020 Platelet Factor 3 Proteins 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005404 monopole Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/02068—Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
- H01L21/02071—Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
Definitions
- the present invention relates to a plasma etching processing method for performing fine processing on a substrate in a semiconductor device manufacturing process.
- the present invention particularly relates to a post-treatment method to be performed after etching a metal laminated wiring made of aluminum or an aluminum alloy, wherein the chlorine component in the gas used in the plasma etching is etched.
- the present invention relates to a post-treatment method of plasma etching for preventing corrosion of metal wiring caused by remaining on a surface.
- Conventional post-processing methods of plasma etching processing include a step of removing a resist used as a mask for etching (referred to as “ashing processing”) and an adhesion film (sidewall protection film) formed on the side wall of the metal wiring during the etching. ) And an etching process to further remove the sidewall protective film.
- the post-processing method of the present invention is a post-processing method in a narrow sense, and belongs to the former (assing process). Unless otherwise specified, the post-processing method is an asshing process.
- the metal wiring of semiconductor devices made of aluminum alloys includes a barrier layer such as Tin on the substrate side, and a similar TiN layer on the front side.
- a barrier layer such as Tin on the substrate side
- a similar TiN layer on the front side.
- Metal wire This is etched with a mixed gas plasma usually contain additive gas to the mixed gas plasma or further of C 1 2 and BC 1 3. Since A 1 is also etched by only C l 2 gas, in order to E T suchingu a metal wiring in a vertical shape, the lateral etch suppressing protective film, rock It is necessary to form a loose sidewall protection film.
- the sidewall protective film is composed of an etching reaction product and a resist component, and is formed on the sidewall of the metal wiring while proceeding simultaneously with the etching.
- the sidewall protective film is unnecessary after the etching is completed, and it is necessary to remove the resist and remove the sidewall protective film.
- the resist removal operation is performed immediately after etching without exposing the semiconductor substrate to the atmosphere. After this assing process, the process starts to remove the sidewall protective film. Since this process is a wet process using water or a chemical solution, the semiconductor substrate is once taken out to the atmosphere and then performed. In some cases, the sidewall protection film is removed immediately after being taken out to the atmosphere, or in other cases, several hours to several days later.
- the chlorine component having entered during the etching is in the sidewall protective film (C 1 2, C 1) are included. Since this chlorine component is not completely removed in the asshing process, when the semiconductor substrate is subsequently taken out to the atmosphere, it reacts with moisture in the atmosphere to form hydrochloric acid and corrode metal wiring. Therefore, in the polishing treatment, the resist must be removed and the residual chlorine component in the sidewall protective film must be removed. Another idea is that even if the residual chlorine component is present in the sidewall protective film, it does not have to react with moisture in the atmosphere until the sidewall protective film is removed. Another method is to cover the surface with a corrosion-resistant protective film (passivation treatment). In this case, in order to isolate the residual chlorine component of moisture and the side wall protective film in the atmosphere to form a film, such as A 1 2 0 3 on the surface of the sidewall protective film.
- a 1 F 3 is formed as a corrosion-resistant protective film. It is thought that it was.
- a 1 F 3 is a water-soluble but stable compound, and is considered to have been able to prevent the reaction between atmospheric moisture and residual chlorine components.
- the following method is known for the former method, that is, the treatment method for removing the residual chlorine component in the sidewall protective film. ing.
- Hei 2-7-172525, various mixed gas and H 2 OH, ⁇ , etc. are produced in order to improve the resist ashing speed.
- the mixing ratio is specified. Examples include 0 2 , 02 + H 2 0, 0 2 + N 2 , 0 2 + H 20 + N 2 s 02 + H 2 0 + CF 4 , ⁇ 2 + H 2 , ⁇ 2, which is a + H 2 + N physician.
- the oxide film S I_ ⁇ second base gas system (CF 4) in the aluminum wiring including the F is likely to be etched, it can be prevented by the mixing ratio of H 2 ⁇ more than 1 0% It is described.
- the above-mentioned polishing treatment is mainly described as a method for improving the resist removal rate (assisting rate), but does not describe the removability of the residual chlorine component in the sidewall protective film.
- a method of removing the resist and removing the side wall protective film using a mixed gas of halogen gas and a gas containing at least hydrogen is disclosed. It is shown. Examples of halogen gas, SF 6, NF 3, CF 4, BF 3, PF 3, PF have X e F 2, F 2 are mentioned.
- This example aims at removing the resist by a damage-free dry process and removing the sidewall protective film.
- the document states that the sidewall protective film can be removed by hydrofluoric acid treatment, but the underlying oxide film is also etched at the same time, so it is necessary to remove the sidewall protective film by a dry process.
- Example described in U.S. Patent US 5, 3 8 2, 3 1 6 in order to simultaneously remove the registry and the side wall protective film by plasma treatment after Edzuchingu consists gas and ⁇ 2 or H 2 ⁇ containing F gases Is used.
- the fluorine mixture ratio is set to 0.1 to 10%, but the material to be etched is polysilicon or polysilicon, and is used for etching of aluminum wiring and the like which is the target of the present invention. It's not something that I did.
- the sidewall protective film formed in the etching of A 1 is not removed even when a plasma treatment is performed by introducing a fluorine-based gas.
- gas containing F CF 4, NF 3, SF 6
- the water-soluble and fluoride sidewall protective film to remove the C 1 Ri by to plasma treatment in a mixed gas of H 2
- Examples are shown of washing with water and removing the etching mask (resist).
- the main purpose of this embodiment is to easily remove the side wall protective film by washing with water, and CF 4 is the main gas.
- the removal of the resist is to be performed in the last step, and the post-etching post-treatment includes three steps: a plasma treatment, a water washing, and an assing treatment.
- the side wall protective film of the aluminum wiring is composed of A1, C, Cl, Si, 0, etc., and A1 is not removed by fluorine radicals. Rather, A 1 F 3 is formed, and A 1 2 0 3 yo Ri stable film. Therefore, it is difficult to remove the sidewall protective film with a mixed gas system of fluorine and hydrogen in aluminum wiring.
- the side wall protective film is fluorinated with fluorine plasma, the side wall protective film is removed by rinsing with water.
- the need for a resist removal step is required. It is difficult to remove residual chlorine components to a level that does not cause corrosion even if left for a long time. Also, if F remains and reacts with atmospheric moisture to produce hydrogen fluoride HF, corrosion by HF may occur.
- the H 2 0 removal rate of registry can be ensured to some extent was the main gas. Then, removal of the residual chlorine components in the sidewall protective film, H generated when generating the H 2 0 plasma, 0:. To form a 3 ⁇ 4 11 (1, is removed by vaporization Further, after Atsushingu one of the reasons for removal of the sidewall protective film becomes difficult, since the sidewall protection film composed mainly of a 1 is a 1 2 0 3 is oxidized into Atsushingu, dissolved in the chemical liquid Al force Li Ya acid The side wall protective film is treated with F to make it A 1 F 3, and is easily dissolved in H 20 to make the side wall protective film easy to peel off.
- FIG. 1 is a diagram showing an example of a plasma etching apparatus for carrying out the present invention.
- FIG. 2 is a diagram showing the structure of the aluminum laminated film.
- FIG. 3 is a diagram showing an aluminum wiring shape after etching.
- FIG. 4 is a schematic diagram of the sidewall protective film.
- FIG. 5 is a diagram showing measurement results of residual chlorine and residual fluorine.
- the phenomenon that aluminum wiring corrodes when left in air after plasma etching of aluminum wiring depends on the material structure of aluminum wiring.
- a laminated film (the substrate side and the like titanium nitride, the substrate S i / oxide film S i 0 2 / ⁇ Chiyun T i N / Aruminiumu Alloy A 1 - S i - C u / nitrogen Kachiyun T i N / register PR).
- This is due to the fact that corrosion is likely to occur electrochemically. That is, a battery effect works between the stacked films made of different metals.
- Single-layer film of an aluminum wiring (substrate S i / oxide film S i 0 2 / Aluminum Alloy A l- S i- Cu / registration be sampled PR) is hard to corrode no battery effect.
- the above substrate is referred to as an aluminum laminated substrate or an aluminum single layer substrate.
- FIG. 1 shows a plasma etching apparatus embodying the present invention.
- the aluminum laminated semiconductor substrate 10 is taken out of the cassette 2 on the cassette table 1 by the robot arm 3 installed on the atmosphere side and introduced into the load lock chamber 5.
- the door 4 of the load lock chamber 5 is closed, and evacuation is started.
- the vacuum evacuation is carried out slowly so as not to wind up the foreign matter in the load lock chamber 5.
- the valve 6 between the load lock chamber 5 and the transfer chamber 9 is opened when the air is exhausted to a predetermined pressure or less.
- the transfer chamber 9 is constantly evacuated and maintained at a high vacuum.
- the semiconductor substrate 10 is transferred from the load lock chamber 5 to the transfer chamber 9 by the robot arm 11 provided in the transfer chamber 9. Immediately after the transfer, the valve 6 is closed.
- the pressure in the etching chamber 1 3 is evacuated to sufficiently high vacuum, preferably sure that the 1 0- 5 T orr table below, between the etching chamber 1 3 and the transfer chamber 9
- the valve 14 is opened, and the semiconductor substrate 10 is carried into the etching chamber 13.
- the semiconductor substrate 10 is mounted on a substrate mounting electrode (not shown).
- the electrodes are capable of electrostatically adsorbing the semiconductor substrate 10, and a heat gas of about several Torr to 10 Torr is introduced into the back surface of the semiconductor substrate 10 to increase the heat transfer efficiency between the electrode and the substrate.
- the gas inlet C l 2 (not shown) as a gas for etching and BC 1 3, the additive gas is introduced in addition to their in some cases.
- the electrode of this embodiment is of a monopole type that applies a high voltage to the electrostatic attraction film via the plasma
- the plasma is ignited by microwaves after the introduction of the etching gas.
- a high voltage for electrostatic attraction is applied to the electrodes, and the semiconductor substrate is attracted to the electrodes.
- This semiconductor substrate is previously controlled at a temperature of about 20 to 50 ° C.
- lithium gas is introduced into the back surface of the semiconductor substrate.
- the substrate temperature can be controlled by the electrode surface temperature.
- a high-frequency voltage of several 100 kHz to several 10 MHz, preferably 800 kHz to 2 MHz is applied to the electrode, and a bias voltage is applied to the substrate.
- the etching gas ions which have been turned into a plasma state by the microwave, are drawn vertically into the semiconductor substrate simultaneously with the application of the high frequency voltage. Radicals such as electrically neutral C1 in the etching gas enter the semiconductor substrate from random directions, and the etched portion 102a (the resist is removed) of the aluminum laminated film shown in FIG. Part). In the case of A1, chlorine radicals are etched, but the aluminum laminated film shown in FIG. 2 is not etched only by adsorbed chlorine radicals because the TiN is formed in the cap layer 102. However, with the help of high-energy ions drawn into the substrate by applying a high-frequency voltage, the TiN layer 102 is etched by so-called ion assist etching.
- the surface of the substrate becomes an Al alloy 103.
- a 1 is etched chloride A 1 C 1 3 and (or A l 2 C 1 6), and the removed vaporized.
- Some of the vaporized aluminum chloride is It collides with the side wall of the aluminum wiring (hereinafter simply referred to as the side wall) and is adsorbed on the side wall.
- part of the aluminum chloride released into the plasma, as it is or after being decomposed by the plasma re-enters the semiconductor substrate and adheres to the side wall.
- a part of the resist 101 is also etched. A part of it collides directly with the side wall and is adsorbed.
- a film composed of A 1, Cl, and C and a side wall protective film are formed on the side walls.
- This film continues to grow as etching proceeds, but is also etched at the same time, so it is actually very thin, a few nm. Since the sidewall protective film is formed, even if chlorine radicals are adsorbed on the sidewalls of the aluminum wiring, the aluminum wiring is not etched, and as a result, anisotropic etching of a vertical shape is performed.
- the aluminum wiring is etched under the aluminum interconnection layer is a barrier layer 1 0 4 der Ru in i N, it is S i 0 2 and the Edzuchingu material as the underlying layer 1 0 5 varies. Since the chloride of Ti has a high vapor pressure, the probability of being incorporated into the sidewall protective film is small. However, in the overetching after the etching depth reaches the oxide film, Si is slightly etched, and Si also adheres to the outermost surface of the sidewall protective film. Thus, the etching of the aluminum laminated film is completed. At the end of the etching, the high-frequency voltage applied to the electrode is stopped while maintaining the microwave discharge.
- the supply of the Helium gas on the backside of the substrate is stopped to lower the backside pressure sufficiently.
- the output of the microphone mouth wave is stopped, and the gas supply is also stopped.
- the etching chamber 13 is evacuated for a while, and when a high vacuum is obtained, the valve 14 with the transfer chamber 9 is opened, and the semiconductor substrate 10 is carried out of the etching chamber 13 by the robot arm 11.
- the resist film thickness at this time is about 1 ⁇ m.
- the pressure in the assing chamber 18 is equal to or lower than a predetermined pressure, and the valve 19 between the assing chamber 18 and the transfer chamber 9 is opened to transfer the semiconductor substrate 10 to the asshing chamber 18. And place it on a substrate holder (not shown).
- Substrate holder is 150 to 300 ° C, preferably at 200 to 250 ° C. Although the temperature of the semiconductor substrate has reached several 10 ° C. due to heating in the etching chamber 13, the temperature hardly rises when the semiconductor substrate is placed on the substrate holder. As the gas for asshing is introduced and the pressure rises, the heat conduction between the substrate holder and the semiconductor substrate improves, and the temperature of the semiconductor substrate gradually approaches a constant temperature.
- the assing gas is a mixed gas of H 2 ⁇ and CF 4 . Both flow, the total flow rate set to 5 0 0 cm 3 / min- constant, H 2 0 / CF 4: was 49 5 5, 4 7 5/ 2 5 cm 3 / min.
- the pressure was 2 Pa and the temperature of the substrate holder was 250 ° C.
- the plasma was generated by introducing microwave 100W.
- the plasma ignition dissociates the assing gas and generates radicals such as H, OH, ⁇ , F, CF, CF 2 , and CF 3 .
- Oxygen radical 0 is combined with carbon C in the resist to become C 0 and is vaporized and exhausted. In this manner, the asshing is completed in about 50 to 60 seconds. In this embodiment, over-asing is further performed for 120 seconds. After that, supply of the assing gas is stopped and high vacuum evacuation is performed.
- the valve 19 When the pressure drops to a predetermined value, the valve 19 is opened, the substrate 10 is taken out to the transfer chamber 9, and further sent to the load lock chamber 24 (unloading chamber).
- the load lock chamber 24 In the load lock chamber 24, after the valve 23 is closed, a slow leak is performed using nitrogen gas 26, and when the pressure reaches a pressure slightly higher than the atmospheric pressure, the door 25 to the atmosphere is opened, and the robot is moved to the cassette 2. Unload by arm 3.
- the process may immediately proceed to the step of removing the side wall protective film, but in some cases, the process may wait for a while in the air or in a nitrogen gas atmosphere until the next process. At this time, the aluminum wiring must not corrode.
- the mixing ratio of CF 4 is set to 2% or less, preferably 1%.
- the reason for this is that, as described above, in the mixed gas system of the present invention, when the mixing ratio of CF 4 is about 5 to 10%, the resist removal rate is the highest, but the removal of residual chlorine components in the side walls is not possible. Will be enough.
- the reason is that Although the protective film 106 is schematically shown, the residual chlorine component in the sidewall protective film 106 reacts with H or 0 H to be removed as HC 1, so that the protective film 106 is removed. Sufficient H, 0 H must be supplied. However, when the supply of F is large, the surface of the sidewall protective film 106 is covered with the strong film 107 of A 1 F 3 as shown in FIG.
- the CF 4 When the mixing ratio is sufficiently reduced, the A 1 F 3 film 107 is formed on the surface of the side wall protective film 106, but is not strong enough to completely block H and ⁇ H from entering. As a result, C 1 does not remain inside the side wall protective film 106 and there is little residual fluorine, so that the aluminum wiring 103 does not corrode.
- the thermal desorption method is a method of measuring the composition of a gas that desorbs by elevating the temperature of a sample in a vacuum and the amount of released gas, and enables analysis of the gas remaining in the aluminum film.
- Figure 5 summarizes the results of the above corrosion tests by the amount of residual chlorine and residual fluorine.
- the horizontal axis indicates the mixing ratio of CF 4
- the vertical axis indicates the amounts of residual chlorine and residual fluorine after asshing. The right end of FIG.
- FIG. 5 also shows the measurement results of the residual chlorine amount and the residual fluorine amount after etching.
- a large amount of chlorine remains in the aluminum film before assing.
- fluorine is used during etching. Since it is not used, the amount of residual fluorine is small and can be regarded as the measurement limit value.
- the mixing ratio of CF 4 is increased, the amount of residual chlorine and fluorine in the aluminum film is increasing. From the results in Fig. 5, it is necessary to determine the level at which the corrosion does not occur.
- the solid line also shown in Fig. 5 is the value.
- C 1 in the sidewall protective film is removed to prevent corrosion while satisfying the resist removal rate, and post-processing which is excellent in the removal characteristic of the sidewall protective film is also achieved. Became possible.
- the gas system containing 0 2 the registry in the mixed gas, for example ⁇ 2 and H 2 0 is removed There may be, in this case, at 0 2 and H 2 ⁇ mixed gas in the first step, it is effective to process in subsequent gas system of the present invention. Also in this case, the surface of the sidewall protective film is fluorinated in the latter half of the process, and the removal characteristics of the sidewall protective film are improved.
- a sufficient resist removing speed can be obtained even in an aluminum laminated film in which the resist removing speed is reduced due to the effect of aluminum attached to the resist surface.
- the residual chlorine component during the etching is completely removed, and the aluminum wiring can be prevented from being corroded when left in the air after the completion.
- the removal of the side wall protective film is also easy because the water-soluble A 1 F 3 is formed. For this reason, it is possible to expect an effect without the need to use special chemicals.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
A post-treating method for plasma etching is used for post-treating a semiconductor substrate including aluminum wiring after the substrate is etched with a plasma by using a gas containing chlorine. During the post-treatment, a gas containing hydrogen and fluorine is used as an ashing gas. The mixing ratio of the fluorine gas is less than 2 %, preferably, about 1 %. Therefore, the time for the post-treatment can be shortened and side wall removal can be improved because the ashing speed of the resist is increased and anticorrosion treatment and removability of the substrate are excellent. Therefore, the throughput of substrate treatment and the yield of the substrate are improved.
Description
明 細 書 Specification
プラズマェッチングの後処理方法 Post-treatment method of plasma etching
技術分野 Technical field
本発明は、 半導体装置の製造工程において、 基板上に微細加工を施す プラズマエッチングの処理方法に関する。 本発明は、 特に、 アルミニゥ ムあるいはアルミ二ゥム合金からなるメタル積層配線をエツチングし た後に実施する後処理方法であって、 プラズマエッチングの際に使用さ れたガス中の塩素成分が被ェツチング面に残留することによって引き 起こされるメタル配線の腐食を防止するためのプラズマェツチングの 後処理方法に関する。 背景技術 The present invention relates to a plasma etching processing method for performing fine processing on a substrate in a semiconductor device manufacturing process. The present invention particularly relates to a post-treatment method to be performed after etching a metal laminated wiring made of aluminum or an aluminum alloy, wherein the chlorine component in the gas used in the plasma etching is etched. The present invention relates to a post-treatment method of plasma etching for preventing corrosion of metal wiring caused by remaining on a surface. Background art
従来のプラズマェッチング処理の後処理方法は、 エツチングのマスク として使用されているレジス 卜の除去工程(アツシング処理と称する) と、 ェツチング中にメタル配線の側壁に形成された付着膜(側壁保護膜) を除去する工程と、 さらに側壁保護膜を除去するゥエツ ト処理の工程か らなっている。 本発明の後処理方法は、 狭義の後処理方法であり、 前者 (アツシング処理)に属する。 ここでは特に断らない限り後処理方法とい えばアツシング処理のこととする。 Conventional post-processing methods of plasma etching processing include a step of removing a resist used as a mask for etching (referred to as “ashing processing”) and an adhesion film (sidewall protection film) formed on the side wall of the metal wiring during the etching. ) And an etching process to further remove the sidewall protective film. The post-processing method of the present invention is a post-processing method in a narrow sense, and belongs to the former (assing process). Unless otherwise specified, the post-processing method is an asshing process.
アルミニウム合金 (A l— C u— S iや A l— S iなど) からなる半 導体装置のメタル配線は、 基板側に T i Nなどのバリア層、 表面側に同 じく T i Nなどのキヤップ層が形成された積層膜構造となっている。 こ のメタル配線は通常 C 1 2と B C 1 3の混合ガスプラズマあるいはさら に添加ガスを含む混合ガスプラズマでエッチングされる。 A 1は C l 2 ガスのみによってもエッチングされるため、 メタル配線を垂直形状にェ ツチングするためには、 水平方向のエッチングを抑制する保護膜、 いわ
ゆる側壁保護膜を形成する必要がある。 側壁保護膜は、 エッチング反応 生成物やレジス ト成分から構成され、 エッチングと同時進行しながらメ タル配線の側壁に形成されてゆく。 ところが、 この側壁保護膜は、 エツ チング終了後は不要な膜であり、 レジス トの除去とともに側壁保護膜の 除去を行う必要がある。 通常、 レジス トの除去作業であるアツシング処 理は、 半導体基板を大気に曝すことなく、 エッチング後直ちに実施され る。 このアツシング処理の後、 側壁保護膜を除去する工程に入る。 この 工程は水や薬液を使用したゥエツ ト処理であるため、 半導体基板を一旦 大気に取り出してから実施する。 大気に取り出した後、 直ちに側壁保護 膜の除去を実施する場合と、 数時間から数日後に実施する場合もある。 ところで、 側壁保護膜の中にはエツチング中に入り込んだ塩素成分 ( C 1 2、 C 1 ) が含まれている。 この塩素成分は、 アツシング処理におい て完全に除去されないために、 その後半導体基板を大気に取り出した際 に、 大気中の水分と反応して塩酸を形成し、 メタル配線を腐食させる。 そのため、 ァヅシング処理では、 レジス トを除去するとともに側壁保 護膜中の残留塩素成分を除去しなければならない。 また、 別の考え方と して、 残留塩素成分が側壁保護膜の中に存在していても側壁保護膜を除 去する時まで大気中の水分と反応しなければよいわけで、 側壁保護膜の 表面を耐腐食の保護膜で覆う という方法 (不動態化処理) もある。 この 場合は、 大気中の水分と側壁保護膜中の残留塩素成分を隔離するため、 側壁保護膜の表面に A 1 2 0 3などの皮膜を形成する。 The metal wiring of semiconductor devices made of aluminum alloys (such as Al—Cu—Si or Al—Si) includes a barrier layer such as Tin on the substrate side, and a similar TiN layer on the front side. Are formed in a laminated film structure in which a cap layer is formed. Metal wire This is etched with a mixed gas plasma usually contain additive gas to the mixed gas plasma or further of C 1 2 and BC 1 3. Since A 1 is also etched by only C l 2 gas, in order to E Tsuchingu a metal wiring in a vertical shape, the lateral etch suppressing protective film, rock It is necessary to form a loose sidewall protection film. The sidewall protective film is composed of an etching reaction product and a resist component, and is formed on the sidewall of the metal wiring while proceeding simultaneously with the etching. However, the sidewall protective film is unnecessary after the etching is completed, and it is necessary to remove the resist and remove the sidewall protective film. Usually, the resist removal operation is performed immediately after etching without exposing the semiconductor substrate to the atmosphere. After this assing process, the process starts to remove the sidewall protective film. Since this process is a wet process using water or a chemical solution, the semiconductor substrate is once taken out to the atmosphere and then performed. In some cases, the sidewall protection film is removed immediately after being taken out to the atmosphere, or in other cases, several hours to several days later. Meanwhile, the chlorine component having entered during the etching is in the sidewall protective film (C 1 2, C 1) are included. Since this chlorine component is not completely removed in the asshing process, when the semiconductor substrate is subsequently taken out to the atmosphere, it reacts with moisture in the atmosphere to form hydrochloric acid and corrode metal wiring. Therefore, in the polishing treatment, the resist must be removed and the residual chlorine component in the sidewall protective film must be removed. Another idea is that even if the residual chlorine component is present in the sidewall protective film, it does not have to react with moisture in the atmosphere until the sidewall protective film is removed. Another method is to cover the surface with a corrosion-resistant protective film (passivation treatment). In this case, in order to isolate the residual chlorine component of moisture and the side wall protective film in the atmosphere to form a film, such as A 1 2 0 3 on the surface of the sidewall protective film.
後者の方法の 1例が、 特公昭 5 8 _ 1 2 3 4 3号公報に記載されてい る。 ここでは、 アルミ配線を C 1を含むプラズマでエッチングした後、 6弗化硫黄 S F 6プラズマ処理を実施し、 アルミ配線の表面を Fで不動 態化している。 これは上記特許公報には詳述されていないが、 アルミ配 線の側壁保護膜の表面をフ ッ素プラズマに曝すことによ り、 耐腐食保護 膜として弗化アルミニウム A 1 F 3が形成されたものと考えられる。
A 1 F3は水溶性ではあるが安定な化合物であり、 大気中の水分と残留 塩素成分の反応を防止することができたものと考えられる。 One example of the latter method is described in Japanese Patent Publication No. 58-123432. Here, after the aluminum wiring is etched with plasma containing C1, sulfur hexafluoride SF 6 plasma treatment is performed to passivate the surface of the aluminum wiring with F. Although this is not described in detail in the above-mentioned patent publication, by exposing the surface of the side wall protective film of the aluminum wiring to fluorine plasma, aluminum fluoride A 1 F 3 is formed as a corrosion-resistant protective film. It is thought that it was. A 1 F 3 is a water-soluble but stable compound, and is considered to have been able to prevent the reaction between atmospheric moisture and residual chlorine components.
また、アルミ配線をエッチングした後に実施する耐腐食処理としての 後処理方法のうち、 前者の方法、 すなわち側壁保護膜中の残留塩素成分 を除去する処理方法に関しては、 次のような方法が知られている。 Among the post-treatment methods for corrosion resistance performed after etching the aluminum wiring, the following method is known for the former method, that is, the treatment method for removing the residual chlorine component in the sidewall protective film. ing.
腐食防止のメカニズムには触れていないが、特公昭 6 2 - 30 2 6 8 号公報に記載の例では、 エツチング後の後処理に酸素とフルォロカーボ ン(実施例は 02と C F4)の混合ガスを用いている。 また、 特開平 7- 2 2 1 0 7 5号公報には、 02と H 20の混合ガスプラズマによる後処理が 記載されている。 特開平 1— 1 6 9 9 29号公報に記載された例では、 02と H 20の混合ガスプラズマを用いるとともに両者の混合比を規定 してレジス トアツシングに有効な酸素原子 0の生成効率を高める方法 が閧示されている。 さらに、 特閧平 2 - 7 7 1 2 5号公報に記載の実施 例では、 レジス トアヅシング速度を向上させる目的で、 H、 OH、 〇な どの活性種を効率よく生成するため各種の混合ガスおよびその混合比 が規定されている。 その例として挙げられているのは、 02、 02 + H 2 0、 02 + N2、 02 + H 20 + N 2 s 02 + H 20 + C F 4, 〇 2 + H2、 〇 2 + H2 + Nい である。 ここで、 Fを含むガス系 ( C F4) ではアルミ 配線の下地の酸化膜 S i〇 2がエッチングされる恐れがあるが、 H2〇の 混合比を 1 0 %以上にすることで防止できると記載されている。 以上の ァヅシング処理は、 主としてレジス トの除去速度 (アツシング速度) を 向上する方法として記載されているもので、 側壁保護膜中の残留塩素成 分の除去性に関しては述べられていない。 Although the mechanism of corrosion prevention is not described, in the example described in Japanese Patent Publication No. 62-30268, the post-etching post-treatment of mixing oxygen and fluorocarbon (Examples 0 2 and CF 4 ) Gas is used. Further, in Japanese Laid-7- 2 2 1 0 7 5 JP, it describes a post-treatment 0 2 mixed gas plasma of H 2 0. In the example described in Japanese Patent Application Laid-Open No. 1-169929, a mixed gas plasma of O 2 and H 2 0 is used, and the mixing ratio of the two is defined, and the generation efficiency of oxygen atoms 0 effective for resist asssing is defined. It suggests ways to increase the quality. Further, in the embodiment described in Japanese Patent Publication No. Hei 2-7-172525, various mixed gas and H 2 OH, 〇, etc. are produced in order to improve the resist ashing speed. The mixing ratio is specified. Examples include 0 2 , 02 + H 2 0, 0 2 + N 2 , 0 2 + H 20 + N 2 s 02 + H 2 0 + CF 4 , 〇 2 + H 2 , 〇 2, which is a + H 2 + N physician. Here, the oxide film S I_〇 second base gas system (CF 4) in the aluminum wiring including the F is likely to be etched, it can be prevented by the mixing ratio of H 2 〇 more than 1 0% It is described. The above-mentioned polishing treatment is mainly described as a method for improving the resist removal rate (assisting rate), but does not describe the removability of the residual chlorine component in the sidewall protective film.
また、 特閧平 2 - 494 2 5号公報に記載の実施例では、 ハロゲンガ スと少なく とも水素を含むガスの混合ガスを用いて、 レジス トを除去す るとともに側壁保護膜も除去する方法が示されている。 ハロゲンガスの 例として、 S F 6、 NF3、 C F4、 B F3、 P F3、 P Fい X e F2、
F 2が挙げられている。 この例は、 レジス ト除去をダメージが発生しな い ドライプロセスで除去することと側壁保護膜の除去を目的としてい る。 側壁保護膜はフ ッ酸処理で除去できるが、 同時に下地酸化膜もエツ チングされてしまうので、 ドライプロセスによつて側壁保護膜を除去す ることが必要である旨記載されている。 Further, in the embodiment described in Japanese Patent Application Publication No. 2-49425, a method of removing the resist and removing the side wall protective film using a mixed gas of halogen gas and a gas containing at least hydrogen is disclosed. It is shown. Examples of halogen gas, SF 6, NF 3, CF 4, BF 3, PF 3, PF have X e F 2, F 2 are mentioned. This example aims at removing the resist by a damage-free dry process and removing the sidewall protective film. The document states that the sidewall protective film can be removed by hydrofluoric acid treatment, but the underlying oxide film is also etched at the same time, so it is necessary to remove the sidewall protective film by a dry process.
米国特許 U S 5 , 3 8 2 , 3 1 6に記載の例は、 レジス トと側壁保護 膜をェヅチング後のプラズマ処理で同時に除去するため、 Fを含むガス と〇 2あるいは H 2〇からなるガスの混合ガスプラズマを用いている。こ の場合のフ ッ素混合比は 0 . 1から 1 0 %としているが、 対象とする被 エツチング材料はポリ シリコンあるいはポリサイ ドであり、 本発明で対 象とするアルミ配線などのエッチングを対象としたものではない。 A 1 のエッチングにおいて形成される側壁保護膜はフッ素系のガスを導入 してプラズマ処理を施しても除去されることはない。 Example described in U.S. Patent US 5, 3 8 2, 3 1 6 , in order to simultaneously remove the registry and the side wall protective film by plasma treatment after Edzuchingu consists gas and 〇 2 or H 2 〇 containing F gases Is used. In this case, the fluorine mixture ratio is set to 0.1 to 10%, but the material to be etched is polysilicon or polysilicon, and is used for etching of aluminum wiring and the like which is the target of the present invention. It's not something that I did. The sidewall protective film formed in the etching of A 1 is not removed even when a plasma treatment is performed by introducing a fluorine-based gas.
特開平 7 - 3 2 6 6 0 9号公報に記載の例では、 A 1あるいは A 1 合金膜の配線をエツチングした後、 腐食を防止するとともに側壁保護膜 の除去を容易にするという 目的で、 Fを含むガス ( C F 4、 N F 3、 S F 6 )あるいは H 2を混合したガスでプラズマ処理することによ り C 1を 除去するとともに側壁保護膜を弗化して水溶性とし、 次のステツプで水 洗、 さらにエッチングのマスク (レジス ト) を除去する、 という例が示 されている。 この実施例は、 側壁保護膜を水洗で容易に除去することを 主目的としており、 C F 4が主ガスとなっている。 そのため、 プラズマ 処理後に水洗を実施することを前提としていて、 プラズマ処理後に基板 を大気中に放置した場合に腐食が発生しない程度まで C 1が除去され ているかについては、 述べられていない。 また、 レジス トの除去が最後 のステップに行われることになつており、 エッチング後の後処理は、 プ ラズマ処理、 水洗、 およびアツシング処理の 3つの工程からなる。 とこ ろで、 プラズマ処理においてアツシングも同時に実施されれば、 しかも
プラズマ処理後に水洗で側壁保護膜も容易に除去できれば、 工程数も 2 となり、 スループッ 卜の向上や基板処理コス トの低減が図れることにな る。 In the example described in Japanese Patent Application Laid-Open No. 7-326609, after etching the wiring of the A1 or A1 alloy film, for the purpose of preventing corrosion and facilitating removal of the side wall protective film, gas containing F (CF 4, NF 3, SF 6) or the water-soluble and fluoride sidewall protective film to remove the C 1 Ri by to plasma treatment in a mixed gas of H 2, in the next step Examples are shown of washing with water and removing the etching mask (resist). The main purpose of this embodiment is to easily remove the side wall protective film by washing with water, and CF 4 is the main gas. For this reason, it is assumed that washing is performed after the plasma treatment, and it is not described whether C1 is removed to such an extent that corrosion does not occur when the substrate is left in the air after the plasma treatment. In addition, the removal of the resist is to be performed in the last step, and the post-etching post-treatment includes three steps: a plasma treatment, a water washing, and an assing treatment. At this point, if atshing is performed simultaneously in the plasma processing, If the sidewall protective film can be easily removed by washing after the plasma treatment, the number of processes becomes two, and the throughput can be improved and the substrate processing cost can be reduced.
先に述べた従来技術においては、 主としてレジス トを効率よく短時間 に除去することを目的としている。 アルミ配線の残留塩素成分を積極的 に除去する方法およびメカニズムについては明らかにされておらず、 依 然として解決すべき課題となっている。 また、 アツシング後の側壁保護 膜の除去工程まで考慮したプラズマ処理については示されでおらず、 特 開平 2— 4 9 4 2 5号公報にフ ッ素ラジカルで側壁保護膜を除去する 旨が述べられているのと、 特閧平 7 - 3 2 6 6 0 9号公報に側壁保護膜 をプラズマによ り弗化して水洗で除去する例が述べられているのみで ある。 The above-mentioned prior art mainly aims at removing the resist efficiently and in a short time. Methods and mechanisms for actively removing residual chlorine components from aluminum wiring have not been clarified, and remain issues to be solved. In addition, there is no disclosure of a plasma treatment that takes into account the process of removing the sidewall protective film after the ashes, and Japanese Patent Application Laid-Open No. 2-49425 states that the sidewall protective film is removed by fluorine radicals. Japanese Patent Application Laid-Open No. 7-326609 only mentions an example in which the side wall protective film is fluorinated by plasma and removed by washing with water.
アルミ配線の側壁保護膜は A 1、 C、 C l、 S i、 0などから構成さ れており、 フッ素ラジカルでは A 1は除去されない。 むしろ、 A 1 F 3 が形成され、 A 1 2 0 3よ り安定な膜となる。 したがって、 アルミ配線に おいて、 フッ素と水素の混合ガス系で側壁保護膜を除去することは困難 である。 フ ッ素プラズマで側壁保護膜を弗化した後、 直ちに水洗処理を 施せば側壁保護膜が除去されるが、 レジス トの除去工程が必要なことや 、 プラズマ処理後に半導体基板を大気中に長時間放置しても腐食が生じ ないレベルまで残留塩素成分を除去するのは困難である。 また、 Fが残 留し、 大気中の水分と反応して弗化水素 H Fが生成されると、 H Fによ る腐食が発生する恐れがある。 The side wall protective film of the aluminum wiring is composed of A1, C, Cl, Si, 0, etc., and A1 is not removed by fluorine radicals. Rather, A 1 F 3 is formed, and A 1 2 0 3 yo Ri stable film. Therefore, it is difficult to remove the sidewall protective film with a mixed gas system of fluorine and hydrogen in aluminum wiring. Immediately after the side wall protective film is fluorinated with fluorine plasma, the side wall protective film is removed by rinsing with water. However, the need for a resist removal step is required. It is difficult to remove residual chlorine components to a level that does not cause corrosion even if left for a long time. Also, if F remains and reacts with atmospheric moisture to produce hydrogen fluoride HF, corrosion by HF may occur.
アルミ配線をエツチングした後の後処理では、 レジス 卜の除去ととも に側壁保護膜中の残留塩素成分を除去しなければならない。 これは、 ァ ッシング処理後に基板を大気中に取り出した後、 側壁保護膜を除去する ゥエツ ト処理工程に進む前に基板表面、 特にアルミ配線部に腐食が発生 するのを防止するためである。 すなわち、 レジス 卜の除去と同時に側壁
保護膜中の残留塩素成分を除去する反応が進行するプロセスとしなけ ればならない。 さらに、 本発明では、 レジス トおよび残留塩素成分を除 去した後の工程、 すなわち側壁保護膜の除去工程で側壁保護膜が速やか に除去されやすい処理をアツシング工程で実施しておく ことも大きな 課題としている。 特にアルミ積層配線からなる基板のエッチングでは、 極微量の残留塩素成分でも腐食が発生するため、 残留塩素成分の除去を 完全に実施できる処理が要求される。 発明の開示 In the post-processing after etching the aluminum wiring, it is necessary to remove the resist and the residual chlorine component in the sidewall protective film. This is to remove the sidewall protective film after the substrate is taken out into the atmosphere after the ashing process. This is to prevent corrosion on the substrate surface, particularly the aluminum wiring portion before proceeding to the etching process. In other words, the side wall is removed simultaneously with the removal of the resist. It must be a process in which the reaction to remove the residual chlorine component in the protective film proceeds. Furthermore, in the present invention, it is also a major problem that a step after removing the resist and the residual chlorine component, that is, a process in which the sidewall protective film is easily removed in the sidewall protective film removing step is performed in the asshing step. And In particular, when etching a substrate made of aluminum laminated wiring, corrosion occurs even with a trace amount of residual chlorine components, so processing that can completely remove residual chlorine components is required. Disclosure of the invention
本発明においては、 上記課題を解決するため、 レジス トの除去速度が ある程度確保できる H 2 0を主たるガスとした。 次に、 側壁保護膜中の 残留塩素成分の除去は、 H 2 0プラズマを生成したときに発生する H、 0:¾で11 ( 1を形成し、 気化して除去する。 また、 アツシング後の側壁 保護膜の除去が困難となる原因の一つに、 A 1を主とする側壁保護膜が アツシング中に酸化して A 1 2 0 3となるため、アル力 リゃ酸の薬液にも 溶解されにくい点が挙げられる。側壁保護膜を Fで処理することによ り A 1 F 3とし、 H 2 0に溶解しやすくすることで側壁保護膜が剥離しやす くなるようにした。 なお、 Fを使用する場合の課題は、 Fの混合比が多 すぎるとアルミ配線が腐食することであるが、 Fの混合比を腐食の発生 しないレベルまで低減することで、 レジス ト除去、 残留塩素成分の除去 、 側壁保護膜の剥離性向上の 3点を同時に満足することができる。 図面の簡単な説明 In the present invention, for solving the above problems, the H 2 0 removal rate of registry can be ensured to some extent was the main gas. Then, removal of the residual chlorine components in the sidewall protective film, H generated when generating the H 2 0 plasma, 0:. To form a ¾ 11 (1, is removed by vaporization Further, after Atsushingu one of the reasons for removal of the sidewall protective film becomes difficult, since the sidewall protection film composed mainly of a 1 is a 1 2 0 3 is oxidized into Atsushingu, dissolved in the chemical liquid Al force Li Ya acid The side wall protective film is treated with F to make it A 1 F 3, and is easily dissolved in H 20 to make the side wall protective film easy to peel off. The problem with using F is that if the mixing ratio of F is too high, the aluminum wiring will corrode.However, by reducing the mixing ratio of F to a level that does not cause corrosion, the removal of resist and the residual chlorine component Removal and improvement of the peelability of the sidewall protective film can be satisfied at the same time. Description
図 1は、 本発明を実施するためのプラズマエッチング装置の一例を示 す図である。 FIG. 1 is a diagram showing an example of a plasma etching apparatus for carrying out the present invention.
図 2は、 アルミ積層膜の構造を示す図である。 FIG. 2 is a diagram showing the structure of the aluminum laminated film.
図 3は、 エッチング後のアルミ配線形状を示す図である。
図 4は、 側壁保護膜の模式図である。 FIG. 3 is a diagram showing an aluminum wiring shape after etching. FIG. 4 is a schematic diagram of the sidewall protective film.
図 5は、 残留塩素および残留フッ素の測定結果を示す図である。 発明を実施するための最良の形態 FIG. 5 is a diagram showing measurement results of residual chlorine and residual fluorine. BEST MODE FOR CARRYING OUT THE INVENTION
アルミ配線をプラズマエッチングした後の大気中放置において、 アル ミ配線が腐食する現象は、 アルミ配線の材料的な構造に依存した特質が ある。 特に窒化チタンなどとの積層膜 (基板側から、 基板 S i/酸化膜 S i 02 /窒化チ夕ン T i N/アルミニゥム合金 A 1 - S i - C u/窒 化チ夕ン T i N/レジス ト PR) において発生しやすい。 これは、 腐食 が電気化学的に発生しやすい状態になっていることによる。 すなわち異 種金属からなる積層膜間に電池効果が働く ためである。 アルミ配線の単 層膜( 基板 S i/酸化膜 S i 02/アルミ合金 A l— S i— Cu/レジ ス ト P R) は電池効果がなく腐食しにくい。 以下、 上記の基板をアルミ 積層基板、 アルミ単層基板と称す。 The phenomenon that aluminum wiring corrodes when left in air after plasma etching of aluminum wiring depends on the material structure of aluminum wiring. In particular a laminated film (the substrate side and the like titanium nitride, the substrate S i / oxide film S i 0 2 /窒化Chiyun T i N / Aruminiumu Alloy A 1 - S i - C u / nitrogen Kachiyun T i N / register PR). This is due to the fact that corrosion is likely to occur electrochemically. That is, a battery effect works between the stacked films made of different metals. Single-layer film of an aluminum wiring (substrate S i / oxide film S i 0 2 / Aluminum Alloy A l- S i- Cu / registration be sampled PR) is hard to corrode no battery effect. Hereinafter, the above substrate is referred to as an aluminum laminated substrate or an aluminum single layer substrate.
図 1は本発明を実施するプラズマエッチング装置である。 アルミ積層 半導体基板 1 0は大気側に設置されたロボッ トアーム 3によりカセッ ト台 1上のカセッ ト 2から取り出されてロー ドロック室 5に導入され る。 次にロー ドロック室 5の扉 4が閉じられ、 真空排気が開始される。 真空排気はロー ドロック室 5の異物を巻き上げないようにスロー排気 される。所定の圧力以下に排気された時点でロードロ ック室 5 と搬送室 9間のバルブ 6が開けられる。 搬送室 9は常時真空排気され高真空に維 持されている。搬送室 9に設けられたロボッ トアーム 1 1によって半導 体基板 1 0がロードロック室 5から搬送室 9に搬送される。搬送後直ち にバルブ 6は閉じられる。 次に、 エッチング室 1 3の圧力が十分高真空 に排気されていること、好ましくは 1 0— 5T o r r台以下となっている ことを確認し、 エッチング室 1 3と搬送室 9の間のバルブ 1 4を開け、 半導体基板 1 0をエッチング室 1 3に搬入する。 エッチング室 1 3では
、 半導体基板 1 0は基板載置用の電極 (図示せず) に載置される。 電極 は半導体基板 1 0を静電吸着できるもので、 半導体基板 1 0の裏面に数 T o r r〜 1 0 T o r r程度のヘリ ゥムガスを導入して電極と基板間 の熱伝導効率を高める。 バルブ 14が閉じられた後、 ガス導入口 (図示 せず) からエッチング用のガスとして C l 2や B C 13、 場合によっては それらに加えて添加ガスが導入される。本実施例の電極はプラズマを介 して静電吸着膜に高電圧を印加するモノポールタイプであるため、 ェッ チングガス導入後にマイクロ波でプラズマが点火される。 プラズマが点 火した状態で電極に静電吸着用の高電圧が印加され、 半導体基板が電極 に吸着される。 この半導体基板は予め 20〜 5 0 °C程度の温度に制御さ れている。 この状態で半導体基板裏面にへリ ウムガスが導入される。 へ リ ゥムガスの圧力が数 T o r rに達すると、 基板温度は電極表面の温度 で制御できるようになる。 この状態で電極に数 1 00 kH zから 1 0数 MH z、 好ましくは 8 0 0 kH zから 2MH zの高周波電圧が印加され 、 基板にバイアス電圧が付加される。 マイ クロ波でプラズマ状態となつ たエッチングガスイオンが高周波電圧印加と同時に半導体基板に垂直 に引き込まれる。 エツチングガスのなかの電気的に中性な C 1などのラ ジカルはランダムな方向から半導体基板に入射し、 図 2に示したアルミ 積層膜の被ェヅチング部 1 0 2 a (レジス トの除去された部分) に吸着 する。 A 1の場合は塩素ラジカルでもエッチングされるが、 図 2に示し たアルミ積層膜はキャップ層 1 02に T i Nが形成されているため、 吸 着塩素ラジカルのみではエッチングされない。 しかし、 高周波電圧の印 加で基板に引き込まれた高エネルギーイオンの助けをかりて、 いわゆる イオンアシス トエッチングにより、 T i N層 1 0 2がエッチングされる 。 T i N層 1 0 2のエッチングが終了すると、 基板表面は A 1合金 1 03となる。 A 1はエッチングされて塩化物 A 1 C 13 (あるいは A l 2 C 16) となり、 気化して除去される。 気化したアルミ塩化物の一部は、
アルミ配線の側壁 (以下、 単に側壁と称す。 ) に衝突して側壁に吸着す る。 また、 プラズマ中に放出されたアルミ塩化物の一部は、 そのままの 状態あるいはプラズマによ り分解された状態で、 再び半導体基板に入射 し側壁に付着する。 また、 レジス ト 1 0 1の一部もエッチングされる。 その一部は直接側壁に衝突して吸着される。 また、 一旦プラズマ中に放 出された後、 再入射して側壁に付着する。 この様にして、 側壁には A 1 、 C l、 Cからなる皮膜、 側壁保護膜が形成される。 この膜はエツチン グが進行する間成長し続けるが、 同時にエッチングもされるため、 実際 には数 n mと非常に薄い。 側壁保護膜が形成されるため、 アルミ配線の 側壁に塩素ラジカルが吸着してもアルミ配線がェツチングされること がなく、 結果として垂直な形状の異方性エッチングが行われる。 アルミ 配線がエッチングされた後は、 アルミ配線層の下はバリア層 1 0 4であ るで i N、下地層 1 0 5である S i 0 2と被ェヅチング材料が変化する。 T iの塩化物は蒸気圧が高いため、 側壁保護膜に取り込まれる確率は小 さい。 しかし、 エッチング深さが酸化膜に達した後のオーバーエツチン グでは S iがわずかにエッチングされ、 側壁保護膜の最表面には S i も 付着する。 この様にしてアルミ積層膜のエッチングが終了する。 エッチ ングが終了した時点で、 マイクロ波放電は維持したまま、 電極に印加し ていた高周波電圧を停止する。 次に、 基板裏面のヘリ ゥムガスの供給を 停止して裏面圧力を十分低くする。 この状態でマイク口波の出力を停止 し、 ガス供給も停止する。 エッチング室 1 3をしばら く真空排気し、 高 真空が得られた時点で搬送室 9 とのバルプ 1 4を開け、 ロボッ トアーム 1 1 により、 半導体基板 1 0をエッチング室 1 3から搬出する。 この時 のレジス ト膜厚は、 約 1 〃mである。 次に、 アツシング室 1 8の圧力が 所定の圧力以下になっていることを確認し、 アツシング室 1 8 と搬送室 9間のバルブ 1 9を開いて半導体基板 1 0をアツシング室 1 8に搬送 し、 基板ホルダ (図示せず) に載置する。 基板ホルダは 1 5 0〜 3 0 0
°C、 好ましくは 20 0〜 2 5 0 °Cに加熱保持されている。 半導体基板の 温度はエッチング室 1 3での加熱によ り数 1 0°Cになっているが、 基板 ホルダに載置された時点では、 ほとんど温度は上昇しない。 アツシング 用のガスが導入され圧力が上昇するとともに、 基板ホルダと半導体基板 間の熱伝導が向上し、 半導体基板温度は一定温度に漸近してゆく。 アツ シングガスは H2〇と C F4の混合ガスである。 両者の流量は、 総流量を 5 0 0 c m3/m i n—定とし、 H 20 / C F 4 : 49 5 5、 4 7 5 / 2 5 cm3/m i nとした。 圧力は 2 P a、 基板ホルダの温度は 2 50 °Cとした。 プラズマはマイクロ波 1 00 0Wを導入して発生させた。 プ ラズマ点火によ りアツシングガスが解離し、 H、 OH、 〇、 F、 C F、 C F 2、 C F 3などのラジカルが発生する。酸素ラジカル 0はレジス トの 炭素 Cと結合して C 0となり気化して排気される。 この様にして約 50 〜 6 0秒でアツシングは終了する。 本実施例では、 さらにオーバ一アツ シングを続け 1 20秒間処理した。 その後、 アツシングガスの供給を停 止し高真空排気を行う。所定の圧力まで下がった時点でバルブ 1 9を開 け、 基板 1 0を搬送室 9に取り出し、 さらにロードロック室 24 (搬出 室) に送る。 ロードロック室 24では、 バルブ 23を閉じた後、 窒素ガ ス 2 6によるスローリークを実施し、 大気圧より若干高い圧力まで達し た時点で大気との扉 2 5を開け、 カセッ ト 2にロボッ トアーム 3で搬出 する。 この後、 直ちに側壁保護膜の除去工程に移る場合もあるが、 しば ら く次の工程に移るまで大気中あるいは窒素ガス雰囲気中などで待機 する場合とがある。 この時にアルミ配線が腐食してはならない。 本実施 例では C F4の混合比を 1 %程度とした場合、 最も良好な特性を示し、 1 0 0時間経過しても何等腐食は認められなかった。 また、 C F4を含 むアツシングガスで処理した場合、 C F4の混合比に関わらず側壁保護 膜の除去特性も良好で、 側壁保護膜残りが発生することはなかった。 FIG. 1 shows a plasma etching apparatus embodying the present invention. The aluminum laminated semiconductor substrate 10 is taken out of the cassette 2 on the cassette table 1 by the robot arm 3 installed on the atmosphere side and introduced into the load lock chamber 5. Next, the door 4 of the load lock chamber 5 is closed, and evacuation is started. The vacuum evacuation is carried out slowly so as not to wind up the foreign matter in the load lock chamber 5. The valve 6 between the load lock chamber 5 and the transfer chamber 9 is opened when the air is exhausted to a predetermined pressure or less. The transfer chamber 9 is constantly evacuated and maintained at a high vacuum. The semiconductor substrate 10 is transferred from the load lock chamber 5 to the transfer chamber 9 by the robot arm 11 provided in the transfer chamber 9. Immediately after the transfer, the valve 6 is closed. Then, the pressure in the etching chamber 1 3 is evacuated to sufficiently high vacuum, preferably sure that the 1 0- 5 T orr table below, between the etching chamber 1 3 and the transfer chamber 9 The valve 14 is opened, and the semiconductor substrate 10 is carried into the etching chamber 13. In etching chamber 1 3 The semiconductor substrate 10 is mounted on a substrate mounting electrode (not shown). The electrodes are capable of electrostatically adsorbing the semiconductor substrate 10, and a heat gas of about several Torr to 10 Torr is introduced into the back surface of the semiconductor substrate 10 to increase the heat transfer efficiency between the electrode and the substrate. After the valve 14 is closed, the gas inlet C l 2 (not shown) as a gas for etching and BC 1 3, the additive gas is introduced in addition to their in some cases. Since the electrode of this embodiment is of a monopole type that applies a high voltage to the electrostatic attraction film via the plasma, the plasma is ignited by microwaves after the introduction of the etching gas. With the plasma ignited, a high voltage for electrostatic attraction is applied to the electrodes, and the semiconductor substrate is attracted to the electrodes. This semiconductor substrate is previously controlled at a temperature of about 20 to 50 ° C. In this state, lithium gas is introduced into the back surface of the semiconductor substrate. When the pressure of the vapor gas reaches several Torr, the substrate temperature can be controlled by the electrode surface temperature. In this state, a high-frequency voltage of several 100 kHz to several 10 MHz, preferably 800 kHz to 2 MHz is applied to the electrode, and a bias voltage is applied to the substrate. The etching gas ions, which have been turned into a plasma state by the microwave, are drawn vertically into the semiconductor substrate simultaneously with the application of the high frequency voltage. Radicals such as electrically neutral C1 in the etching gas enter the semiconductor substrate from random directions, and the etched portion 102a (the resist is removed) of the aluminum laminated film shown in FIG. Part). In the case of A1, chlorine radicals are etched, but the aluminum laminated film shown in FIG. 2 is not etched only by adsorbed chlorine radicals because the TiN is formed in the cap layer 102. However, with the help of high-energy ions drawn into the substrate by applying a high-frequency voltage, the TiN layer 102 is etched by so-called ion assist etching. When the etching of the TiN layer 102 is completed, the surface of the substrate becomes an Al alloy 103. A 1 is etched chloride A 1 C 1 3 and (or A l 2 C 1 6), and the removed vaporized. Some of the vaporized aluminum chloride is It collides with the side wall of the aluminum wiring (hereinafter simply referred to as the side wall) and is adsorbed on the side wall. Also, part of the aluminum chloride released into the plasma, as it is or after being decomposed by the plasma, re-enters the semiconductor substrate and adheres to the side wall. Further, a part of the resist 101 is also etched. A part of it collides directly with the side wall and is adsorbed. Also, once released into the plasma, it re-enters and adheres to the side walls. In this manner, a film composed of A 1, Cl, and C and a side wall protective film are formed on the side walls. This film continues to grow as etching proceeds, but is also etched at the same time, so it is actually very thin, a few nm. Since the sidewall protective film is formed, even if chlorine radicals are adsorbed on the sidewalls of the aluminum wiring, the aluminum wiring is not etched, and as a result, anisotropic etching of a vertical shape is performed. After the aluminum wiring is etched under the aluminum interconnection layer is a barrier layer 1 0 4 der Ru in i N, it is S i 0 2 and the Edzuchingu material as the underlying layer 1 0 5 varies. Since the chloride of Ti has a high vapor pressure, the probability of being incorporated into the sidewall protective film is small. However, in the overetching after the etching depth reaches the oxide film, Si is slightly etched, and Si also adheres to the outermost surface of the sidewall protective film. Thus, the etching of the aluminum laminated film is completed. At the end of the etching, the high-frequency voltage applied to the electrode is stopped while maintaining the microwave discharge. Next, the supply of the Helium gas on the backside of the substrate is stopped to lower the backside pressure sufficiently. In this state, the output of the microphone mouth wave is stopped, and the gas supply is also stopped. The etching chamber 13 is evacuated for a while, and when a high vacuum is obtained, the valve 14 with the transfer chamber 9 is opened, and the semiconductor substrate 10 is carried out of the etching chamber 13 by the robot arm 11. The resist film thickness at this time is about 1 μm. Next, it is confirmed that the pressure in the assing chamber 18 is equal to or lower than a predetermined pressure, and the valve 19 between the assing chamber 18 and the transfer chamber 9 is opened to transfer the semiconductor substrate 10 to the asshing chamber 18. And place it on a substrate holder (not shown). Substrate holder is 150 to 300 ° C, preferably at 200 to 250 ° C. Although the temperature of the semiconductor substrate has reached several 10 ° C. due to heating in the etching chamber 13, the temperature hardly rises when the semiconductor substrate is placed on the substrate holder. As the gas for asshing is introduced and the pressure rises, the heat conduction between the substrate holder and the semiconductor substrate improves, and the temperature of the semiconductor substrate gradually approaches a constant temperature. The assing gas is a mixed gas of H 2 〇 and CF 4 . Both flow, the total flow rate set to 5 0 0 cm 3 / min- constant, H 2 0 / CF 4: was 49 5 5, 4 7 5/ 2 5 cm 3 / min. The pressure was 2 Pa and the temperature of the substrate holder was 250 ° C. The plasma was generated by introducing microwave 100W. The plasma ignition dissociates the assing gas and generates radicals such as H, OH, 〇, F, CF, CF 2 , and CF 3 . Oxygen radical 0 is combined with carbon C in the resist to become C 0 and is vaporized and exhausted. In this manner, the asshing is completed in about 50 to 60 seconds. In this embodiment, over-asing is further performed for 120 seconds. After that, supply of the assing gas is stopped and high vacuum evacuation is performed. When the pressure drops to a predetermined value, the valve 19 is opened, the substrate 10 is taken out to the transfer chamber 9, and further sent to the load lock chamber 24 (unloading chamber). In the load lock chamber 24, after the valve 23 is closed, a slow leak is performed using nitrogen gas 26, and when the pressure reaches a pressure slightly higher than the atmospheric pressure, the door 25 to the atmosphere is opened, and the robot is moved to the cassette 2. Unload by arm 3. After this, the process may immediately proceed to the step of removing the side wall protective film, but in some cases, the process may wait for a while in the air or in a nitrogen gas atmosphere until the next process. At this time, the aluminum wiring must not corrode. In this example, when the mixing ratio of CF 4 was about 1%, the best characteristics were exhibited, and no corrosion was observed even after 100 hours. In addition, when treated with an assing gas containing CF 4 , the removal characteristics of the side wall protective film were good irrespective of the mixing ratio of CF 4, and no residual side wall protective film was generated.
以下、 本発明の結果が得られた理由について説明する。
レジス トの除去速度は従来技術のなかで述べられているが、 ◦ 2に対 して他の C F 4や H 2〇を添加した場合、 5〜 1 0 %程度でレジス ト除去 速度が最大となる。 H 2 0に対して C F 4を添加した場合も、 5〜 1 0 % 程度の混合比の時にレジス ト除去速度が最大となる。 また、 大きなレジ ス ト除去速度を得るために、従来技術では 0 2を含むガスを用いている。 しかし、 アルミ配線のェッチング後のレジス ト表面には、 エツチング時 の反応生成物がレジス トに再入射するため、 A 1が付着している。 この A 1は 0 2を含むアツシングガスでは除去されない。 むしろ A 1付着部 の占める面積が大きいとレジス ト除去が阻害される。 発明者は、 0 2を 含むアツシングガスを用いた場合は、 酸素ラジカル 0によ り A 1付着部 を除いたレジス ト部が除去されるため、 次第に A 1付着部分の占める面 積比が大き くなり、 その結果レジス ト除去速度が遅くなることを見い出 した。 また、 〇 2を含むアツシングガスを用いるとレジス トが除去され ずに残ってしまう場合もあった。 ところが、 0 2は用いずに H 2 0を用い 、 さらに Fを含むガス C F 4を用いると、 レジス ト表面に付着した A 1 は弗化され、 アツシングが進行しても A 1付着部分の占める面積比が変 化せず、 結果としてレジス 卜の除去速度が変化せず、 最後までレジス ト の除去が可能となることを見い出した。 H 2 0には酸素原子が含まれて いるが、 プラズマ中では 0よ り 0 Hとして存在する比率が高く、 レジス ト表面の A 1を酸化する比率は 0 2ガスの場合に比較して少ない。 ま た、 A 1は 0と反応するより Fと反応しやすい。 そのこともレジス ト表 面の A 1の酸化を抑制している。 この様に、 アルミ配線のアツシング は、 H 2 0と C F 4の混合ガスで効率よく行われる。 Hereinafter, the reason why the result of the present invention was obtained will be described. Although the removal rate of the registry are described among the prior art, a case of adding other CF 4 or H 2 〇 in pairs ◦ 2, the registry removal rate at 5-1 about 0% up to Become. Even when CF 4 is added to H 20 , the resist removal rate is maximized at a mixing ratio of about 5 to 10%. In addition, in order to obtain a large resist removal rate, a gas containing O 2 is used in the conventional technology. However, A1 adheres to the resist surface after etching of the aluminum wiring because the reaction product at the time of etching re-enters the resist. This A 1 is not removed by an assing gas containing O 2 . Rather, if the area occupied by the A1 attachment area is large, resist removal is hindered. The inventors have found that when an assing gas containing O 2 is used, the resist portion excluding the A 1 attached portion is removed by the oxygen radical 0, so that the area ratio occupied by the A 1 attached portion gradually increases. As a result, it has been found that the resist removal speed is reduced. There is also a case where the registry With Atsushingugasu comprising 〇 2 may remain without being removed. However, 0 2 with H 2 0 without further the use of gas CF 4 containing F, A 1 attached to the registry surface is fluoride, occupied even if progress Atsushingu of A 1 attachment portion It was found that the area ratio did not change, and as a result, the resist removal rate did not change, and it was possible to remove the resist until the end. Although the H 2 0 is included an oxygen atom, a plasma high proportion present as 0 H than 0, the ratio of oxidizing the A 1 of registry surface small compared to the case of the 0 2 gas . Also, A 1 reacts more easily with F than with 0. This also suppresses the oxidation of A1 on the resist surface. As described above, aluminum wiring is efficiently performed with a mixed gas of H 20 and CF 4 .
ところで、 本発明では C F 4の混合比を 2 %以下、 望ましくは 1 %と している。 この理由は、 前述したように本発明の混合ガス系では、 C F 4の混合比が 5〜 1 0 %程度の場合に最もレジス ト除去速度は大きいが、 側壁中の残留塩素成分の除去が不十分になる。 その理由は、 図 3に側壁
保護膜 1 0 6を模式的に示したが、 側壁保護膜 1 0 6中の残留塩素成分 は Hや 0 Hと反応して H C 1 となって除去されるため、 側壁保護膜 1 0 6に十分な H、 0 Hの供給をしなければならない。 ところが、 Fの供給 が多いと、 側壁保護膜 1 0 6の表面は、 図 4に示したように、 A 1 F 3 の強固な膜 1 0 7に覆われてしまう。 したがって、 C 1が側壁保護膜 1 0 6中に残留したままアツシングが終了する。 その後、 A 1 F 3膜 1 0 7 とアルミ配線 1 0 3の熱膨張差による応力で A 1 F 3膜に亀裂が発生 した り、 大気中の H 2 0と A l F 3が反応して A 1 F 3膜 1 0 7が破損し たりすると、側壁保護膜 1 0 6中の( 1 と大気中の1^ 2 0とが反応する。 その結果アルミ配線 1 0 3が腐食する。 また、 側壁保護膜 1 0 6中の残 留フ ッ素の量も多いため、 大気中の H 2 0と反応してフッ酸 H Fが形成 され、 アルミ配線 1 0 3が腐食する。 しかし、 C F 4の混合比を十分に 下げると、 側壁保護膜 1 0 6の表面は A 1 F 3膜 1 0 7が形成されはす るが、 Hや〇 Hの進入を完全に遮断するほど強固ではない。 その結果、 側壁保護膜 1 0 6内部に C 1が残留することもなく、 残留フッ素も少な い。 したがって、 アルミ配線 1 0 3が腐食することもない。 In the present invention, the mixing ratio of CF 4 is set to 2% or less, preferably 1%. The reason for this is that, as described above, in the mixed gas system of the present invention, when the mixing ratio of CF 4 is about 5 to 10%, the resist removal rate is the highest, but the removal of residual chlorine components in the side walls is not possible. Will be enough. The reason is that Although the protective film 106 is schematically shown, the residual chlorine component in the sidewall protective film 106 reacts with H or 0 H to be removed as HC 1, so that the protective film 106 is removed. Sufficient H, 0 H must be supplied. However, when the supply of F is large, the surface of the sidewall protective film 106 is covered with the strong film 107 of A 1 F 3 as shown in FIG. Therefore, the asshing ends with C 1 remaining in the sidewall protective film 106. Thereafter, Ri crack A 1 F 3 film stress due to a difference in thermal expansion between A 1 F 3 film 1 0 7 and the aluminum wire 1 0 3 occurs by the reaction H 2 0 and A l F 3 in the atmosphere If the A 1 F 3 film 107 is damaged, (1) in the side wall protective film 106 reacts with 1 ^ 20 in the atmosphere. As a result, the aluminum wiring 103 corrodes. for even greater amount of residual Tomefu Tsu element in the side wall protective film 1 0 6, hydrofluoric acid HF are formed by reaction with H 2 0 in the air, the aluminum wiring 1 0 3 is corroded. However, the CF 4 When the mixing ratio is sufficiently reduced, the A 1 F 3 film 107 is formed on the surface of the side wall protective film 106, but is not strong enough to completely block H and 〇H from entering. As a result, C 1 does not remain inside the side wall protective film 106 and there is little residual fluorine, so that the aluminum wiring 103 does not corrode.
ところで、 腐食はァヅシング後に残留している塩素やフッ素の量に依 存する。 そこで、 アルミニウム膜の基板を用いて上記の腐食試験条件と 同じ処理を施し、 アルミニウム膜中に残留する塩素量及びフッ素量を昇 温脱離法によ り評価した。 昇温脱離法は、 真空中で試料を昇温し脱離す るガスの組成及び放出ガス量を測定する方法であり、 アルミニウム膜中 に残留しているガスの分析が可能である。 図 5は上記腐食試験結果を残 留塩素及び残留フッ素の量で整理したものである。 横軸は C F 4の混合 比率であり、 縦軸はアツシング後の残留塩素及び残留フッ素の量である 。 なお、 図 5の右端にはエッチング後の状態で残留塩素量及び残留フッ 素量を測定した結果を併記した。 アツシング前のアルミニウム膜中には 塩素が多量に残留している。 これに対し、 エッチング中にはフッ素を使
用していないため残留フ ッ素量は少なく、 測定限界値とみなせる。 C F 4の混合比率を増すにつれ、 アルミニウム膜中の残留塩素及び残留フ ッ素量が増えている。 図 5の結果で、 腐食が発生しない許容値がどのレ ベルかを判断する必要がある。 前述の腐食試験結果では C F4の混合比 率が 1 %程度では腐食が発生していないことを踏まえ、 C F4の混合比 率 1 %の残留塩素量及び残留フッ素良量を許容値とした。 図 5に併記し た実線がその値である。 図 5から、 C F 4の混合比率 2 %までは許容値 以下である。 C F4の混合比率 3 %では部分的に許容値以下となるが許 容値を越える場合があり腐食の可能性がある。 以上の結果から、 C F4 の混合比率 2 %以下とする H 20/ C F 4の混合ガス系によるアツシン グが防食特性を満たすことがわかった。 By the way, corrosion depends on the amount of chlorine and fluorine remaining after polishing. Therefore, the same treatment as the above corrosion test conditions was performed using an aluminum film substrate, and the amounts of chlorine and fluorine remaining in the aluminum film were evaluated by a thermal desorption method. The thermal desorption method is a method of measuring the composition of a gas that desorbs by elevating the temperature of a sample in a vacuum and the amount of released gas, and enables analysis of the gas remaining in the aluminum film. Figure 5 summarizes the results of the above corrosion tests by the amount of residual chlorine and residual fluorine. The horizontal axis indicates the mixing ratio of CF 4 , and the vertical axis indicates the amounts of residual chlorine and residual fluorine after asshing. The right end of FIG. 5 also shows the measurement results of the residual chlorine amount and the residual fluorine amount after etching. A large amount of chlorine remains in the aluminum film before assing. In contrast, fluorine is used during etching. Since it is not used, the amount of residual fluorine is small and can be regarded as the measurement limit value. As the mixing ratio of CF 4 is increased, the amount of residual chlorine and fluorine in the aluminum film is increasing. From the results in Fig. 5, it is necessary to determine the level at which the corrosion does not occur. In the corrosion test results of the above given that mixing ratios of CF 4 is not corrosion occur in about 1%, and the mixing ratio of 1% residual chlorine content and residual fluorine Yoryou of CF 4 and tolerance. The solid line also shown in Fig. 5 is the value. From Figure 5, to the mixing ratio of 2% CF 4 is less than the allowable value. When the mixing ratio of CF 4 is 3%, the value is partially below the allowable value, but may exceed the allowable value, and there is a possibility of corrosion. These results Atsushin grayed were found to meet the corrosion characteristics of a mixed gas system of H 2 0 / CF 4 to less mixing ratio of 2% CF 4.
さらに、 ァッシングガスに 〇 2を使用していないため、 側壁除去の際 に除去性を阻害する A 1203が側壁保護膜に形成されず、 むしろ H20 に溶解する A 1 F3が形成されている。 そのため、 側壁保護膜の除去性 も優れている。 Furthermore, since not using 〇 2 Asshingugasu, the A 1 F 3 which A 1 2 0 3 which inhibits the removability upon sidewall removal is not formed on the side wall protective film, but rather is dissolved in H 2 0 formed Have been. Therefore, the removability of the sidewall protective film is excellent.
以上述べたように、 本発明によ り、 レジス ト除去速度を満足しつつ、 側壁保護膜中の C 1を除去して腐食を防ぎ、 さらに側壁保護膜の除去特 性にも優れた後処理が可能となった。 As described above, according to the present invention, C 1 in the sidewall protective film is removed to prevent corrosion while satisfying the resist removal rate, and post-processing which is excellent in the removal characteristic of the sidewall protective film is also achieved. Became possible.
なお、 本発明では H20と C F4の混合ガス系について述べたが、 Fを 含む NF3、 S F 6などのガス系であれば、 前述したような理由によ り、 同じ効果が得られることは言うまでもない。 また、 アツシング処理を途 中で条件を変えることなく実施したが、 A 1と Fの結合が A 1と 0よ り 強固であることを考慮すると、 本発明の処理を実施した後、 レジス ト除 去速度を向上するため 02を含むガス系でアツシングを実施しても良い この場合は、 側壁保護膜中の表面には A 1 F 3がある程度形成されてお り、 側壁除去特性は阻害されない。 また、 アルミ積層膜によっては、 02を含むガス系、 たとえば〇 2と H20の混合ガスでレジス トが除去さ
れる場合があるが、 この場合は、 最初のステップで 0 2と H 2〇の混合ガ スで処理し、 その後本発明のガス系で処理することも有効である。 この 場合も、 側壁保護膜表面は後半の処理において弗化され、 側壁保護膜の 除去特性が改善される。 In the present invention, a mixed gas system of H 20 and CF 4 has been described.However, the same effects can be obtained with a gas system such as NF 3 or SF 6 containing F for the above-described reason. Needless to say. In addition, although the assuring process was performed without changing the conditions in the middle, considering that the bond between A1 and F is stronger than A1 and 0, the resist was removed after the process of the present invention was performed. Ashing may be performed with a gas system containing O 2 to improve the removal rate.In this case, A 1 F 3 is formed to some extent on the surface in the sidewall protective film, and the sidewall removal characteristics are not hindered. . Also, depending on the aluminum laminate film, the gas system containing 0 2, the registry in the mixed gas, for example 〇 2 and H 2 0 is removed There may be, in this case, at 0 2 and H 2 〇 mixed gas in the first step, it is effective to process in subsequent gas system of the present invention. Also in this case, the surface of the sidewall protective film is fluorinated in the latter half of the process, and the removal characteristics of the sidewall protective film are improved.
本発明によ り、 レジス ト表面に付着したアルミニウムの影響でレジス ト除去速度が低下してしまうようなアルミ積層膜においても、 十分なレ ジス ト除去速度が得られる。 また、 エッチング中の残留塩素成分も完全 に除去され、 終了後の大気放置でアルミ配線が腐食することが防止でき る。 さらに、 側壁保護膜の除去も水溶性の A 1 F 3が形成されているた め、 容易に除去される。 そのため、 特別な薬品を使用する必要がないと いつた効果も期待できる。
According to the present invention, a sufficient resist removing speed can be obtained even in an aluminum laminated film in which the resist removing speed is reduced due to the effect of aluminum attached to the resist surface. In addition, the residual chlorine component during the etching is completely removed, and the aluminum wiring can be prevented from being corroded when left in the air after the completion. Furthermore, the removal of the side wall protective film is also easy because the water-soluble A 1 F 3 is formed. For this reason, it is possible to expect an effect without the need to use special chemicals.
Claims
1 . 半導体基板上に設けられたアルミ二ゥムを含む金属薄膜を塩素を 含むガスによ りプラズマエッチングした後、 被処理物表面に残留してい る塩素成分を、 該半導体基板を大気に曝すことなく除去するプラズマェ ツチングの後処理方法において、 水素を含むガスとフッ素を含むガスの 混合ガスを導入してプラズマ化し、 該混合ガスプラズマによ り被ェッチ ング処理面を処理することを特徴とするプラズマェツチングの後処理 方法。 1. After a metal thin film containing aluminum provided on a semiconductor substrate is plasma-etched with a gas containing chlorine, the chlorine component remaining on the surface of the workpiece is exposed to the air. In a post-treatment method for plasma etching that removes without etching, a mixed gas of a gas containing hydrogen and a gas containing fluorine is introduced into a plasma, and the surface to be etched is treated with the mixed gas plasma. Post-treatment method for plasma etching.
2 . 請求の範囲第 1項に記載のプラズマエッチングの後処理方法にお いて、 該混合ガスのフッ素を含むガスの混合比率を 2 %以下としたこと を特徴とするプラズマエッチングの後処理方法。 2. The post-treatment method for plasma etching according to claim 1, wherein a mixing ratio of a gas containing fluorine of the mixed gas is 2% or less.
3 . 請求の範囲第 1項に記載のプラズマエッチングの後処理方法にお いて、 上記水素を含むガスは、 水素ガス、 水、 アルコールのグループか ら選択され、 上記フッ素を含むガスは、 フッ素ガス F 2、 弗化炭素ガス C x H y F z、 6弗化硫黄 S F 6、 3弗化窒素 N F 3のグループから選択さ れることを特徴とするプラズマエッチングの後処理方法。 3. The post-treatment method for plasma etching according to claim 1, wherein the gas containing hydrogen is selected from the group consisting of hydrogen gas, water, and alcohol, and the gas containing fluorine is fluorine gas. F 2, the post-processing method for plasma etching, characterized in that it is selected from the group of fluorocarbon gas C x H y F z, 6 sulfur hexafluoride SF 6, 3 nitrogen fluoride NF 3.
4 . 請求の範囲第 1項に記載のプラズマエッチングの後処理方法におい て、 上記被エッチング処理面の処理を実施した後、 連続して酸素を含む ガスプラズマ、 あるいは酸素を含むガスと水素を含むガスの混合ガスプ ラズマによる処理を施すことを特徴とするプラズマエツチングの後処 理方法。 4. In the post-processing method for plasma etching according to claim 1, after the processing of the surface to be etched is performed, a gas plasma containing oxygen or a gas containing oxygen and hydrogen are continuously contained. A post-processing method for plasma etching, which comprises performing a process using a mixed gas plasma of gases.
5 . 請求の範囲第 1項に記載のプラズマエッチングの後処理方法におい て、 上記被エッチング処理面の処理を実施する前に、 酸素を含むガスプ
ラズマ、 あるいは酸素を含むガスと水素を含むガスの混合ガスプラズマ による処理を施すことを特徴とするプラズマエッチングの後処理方法。 5. In the post-treatment method for plasma etching according to claim 1, before performing the treatment on the surface to be etched, a gas pump containing oxygen is required. A post-treatment method for plasma etching, which comprises performing a treatment using plasma of a mixed gas of a gas containing plasma and a gas containing oxygen and a gas containing hydrogen.
6 . 請求の範囲第 1項に記載のプラズマエッチングの後処理方法にお いて、 上記プラズマエッチング処理と上記後処理を真空的に隔離された 別の処理室で実施することを特徴とするプラズマエツチングの後処理 方法。 6. The post-processing method for plasma etching according to claim 1, wherein the plasma etching process and the post-processing are performed in another vacuum-separated processing chamber. Post-processing method.
7 . 請求の範囲第 1項に記載のプラズマエッチングの後処理方法にお いて、 被処理材料が、 少なく ともアルミニウムあるいはアルミニウムの 合金からなる層を含み、 該アルミニウムあるいはアルミニゥム合金から なる層の少なく とも一面に他の金属からなる層が形成された積層膜で あることを特徴とするプラズマエッチングの後処理方法。 7. The post-treatment method for plasma etching according to claim 1, wherein the material to be processed includes at least a layer made of aluminum or an aluminum alloy, and at least a layer made of the aluminum or aluminum alloy. A post-treatment method for plasma etching, comprising a laminated film having a layer made of another metal formed on one surface.
8 . 請求の範囲第 1項に記載のプラズマエッチングの後処理方法にお いて、 上記後処理がィオンの被処理材料への入射が制限されたラジカル 主体のプラズマ処理であることを特徴とするプラズマエツチングの後 処理方法。
8. The post-treatment method for plasma etching according to claim 1, wherein the post-treatment is a radical-based plasma treatment in which the incidence of ions on the material to be treated is restricted. Post-processing method for etching.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9/50343 | 1997-03-05 | ||
| JP5034397 | 1997-03-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1998039799A1 true WO1998039799A1 (en) | 1998-09-11 |
Family
ID=12856283
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP1997/000897 WO1998039799A1 (en) | 1997-03-05 | 1997-03-19 | Post-treating method for plasma etching |
Country Status (2)
| Country | Link |
|---|---|
| TW (1) | TW367555B (en) |
| WO (1) | WO1998039799A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011061160A (en) * | 2009-09-14 | 2011-03-24 | Tokyo Electron Ltd | Substrate processing apparatus and method |
| KR101311277B1 (en) * | 2011-12-16 | 2013-09-25 | 주식회사 테스 | Substrate processing system |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0590223A (en) * | 1991-01-22 | 1993-04-09 | Toshiba Corp | Manufacture of semiconductor device and semiconductor manufacturing device |
| JPH05226299A (en) * | 1991-10-21 | 1993-09-03 | Seiko Epson Corp | Manufacture of semiconductor device |
| JPH08180698A (en) * | 1994-12-22 | 1996-07-12 | Toshiba Corp | Semiconductor memory device |
-
1997
- 1997-03-19 WO PCT/JP1997/000897 patent/WO1998039799A1/en active Application Filing
-
1998
- 1998-02-24 TW TW087102641A patent/TW367555B/en not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0590223A (en) * | 1991-01-22 | 1993-04-09 | Toshiba Corp | Manufacture of semiconductor device and semiconductor manufacturing device |
| JPH0590225A (en) * | 1991-01-22 | 1993-04-09 | Toshiba Corp | Manufacture of semiconductor device |
| JPH05226299A (en) * | 1991-10-21 | 1993-09-03 | Seiko Epson Corp | Manufacture of semiconductor device |
| JPH08180698A (en) * | 1994-12-22 | 1996-07-12 | Toshiba Corp | Semiconductor memory device |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011061160A (en) * | 2009-09-14 | 2011-03-24 | Tokyo Electron Ltd | Substrate processing apparatus and method |
| US9209055B2 (en) | 2009-09-14 | 2015-12-08 | Tokyo Electronics Limited | Substrate processing apparatus |
| KR101311277B1 (en) * | 2011-12-16 | 2013-09-25 | 주식회사 테스 | Substrate processing system |
Also Published As
| Publication number | Publication date |
|---|---|
| TW367555B (en) | 1999-08-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2000012514A (en) | Post-treating method | |
| KR960000375B1 (en) | Fabricating method of semiconductor device | |
| KR950010044B1 (en) | Manufacturing method of semiconductor integrated circuit and equipment for the manufacture | |
| JP3259380B2 (en) | Method for manufacturing semiconductor device | |
| EP0416774B1 (en) | A method of treating a sample of aluminium-containing material | |
| US7585777B1 (en) | Photoresist strip method for low-k dielectrics | |
| KR101082993B1 (en) | Separation-material composition for photo-resist and manufacturing methods of semiconductor device | |
| JP2000311889A (en) | Post-etch treatment method of corrosion prevention surface characterized by plasma etching | |
| JPH07283320A (en) | Method of forming semiconductor device | |
| JPH04311033A (en) | Method for etching post-treatment for semiconductor device | |
| JPH09298199A (en) | Semiconductor device and manufacturing method thereof | |
| TW507286B (en) | Method and apparatus for fabricating semiconductor devices | |
| US8277672B2 (en) | Enhanced focused ion beam etching of dielectrics and silicon | |
| JPH10189537A (en) | Dry etching method | |
| WO1998039799A1 (en) | Post-treating method for plasma etching | |
| US7055532B2 (en) | Method to remove fluorine residue from bond pads | |
| JP3263132B2 (en) | Method for manufacturing semiconductor device | |
| JP4228424B2 (en) | Manufacturing method of semiconductor device | |
| JPH08306668A (en) | Ashing | |
| TW201517169A (en) | Pre-cleaning a semiconductor structure | |
| JP4559565B2 (en) | Method for forming metal wiring | |
| JPH01243528A (en) | Surface treatment | |
| JP2001237228A (en) | Substrate processing method, substrate processing apparatus, and device manufacturing method | |
| JPH0793293B2 (en) | Post-processing method | |
| JP3428927B2 (en) | Dry etching method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR SG US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase |