+

WO1998038775A1 - Modulator and modulation method - Google Patents

Modulator and modulation method Download PDF

Info

Publication number
WO1998038775A1
WO1998038775A1 PCT/JP1998/000657 JP9800657W WO9838775A1 WO 1998038775 A1 WO1998038775 A1 WO 1998038775A1 JP 9800657 W JP9800657 W JP 9800657W WO 9838775 A1 WO9838775 A1 WO 9838775A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
quadrature
digital
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP1998/000657
Other languages
English (en)
French (fr)
Inventor
Yoshiko Saito
Mitsuru Uesugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to EP98902264A priority Critical patent/EP0909067A4/en
Priority to US09/147,053 priority patent/US6097259A/en
Priority to AU58819/98A priority patent/AU5881998A/en
Publication of WO1998038775A1 publication Critical patent/WO1998038775A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2092Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner with digital generation of the modulated carrier (does not include the modulation of a digitally generated carrier)

Definitions

  • the present invention relates to a modulation device and a modulation method used in digital mobile communication and the like for quadrature modulating a digital baseband signal.
  • a signal to be transmitted is divided into an in-phase component and a quadrature component as disclosed in Japanese Patent Application Laid-Open No. 6-21991, and each component is separated.
  • Modulators that perform quadrature modulation after ⁇ modulation may be used.
  • FIG. 1 is a block diagram showing a configuration of a conventional modulator.
  • the ⁇ modulator 2 converts the modulated signal input from the input terminal 1 into a binary signal, and outputs the binary signal to the multiplier 3.
  • the multiplying circuit 3 multiplies the binary signal output from the ⁇ ⁇ modulator 2 by the carrier signal to generate an amplitude modulated signal, and outputs the amplitude modulated signal to the output terminal 4.
  • the modulation signal input from the input terminal 1 is ⁇ ⁇ -modulated by the ⁇ ⁇ modulator 2, and a binary ⁇ ⁇ -modulation signal is output.
  • the ⁇ modulation signal and the carrier signal are multiplied by the multiplication circuit 3 to generate an amplitude modulation signal, and the amplitude modulation signal is output to another device via the output terminal 4.
  • a conventional modulator can modulate a transmission signal into a digital quadrature signal.
  • the conventional modulator requires multiplication for quadrature modulation at a high sampling frequency, which is an inevitable process for realizing ⁇ modulation. For this reason, there is a problem that a high-speed multiplier is required and power consumption is increased. Disclosure of the invention
  • An object of the present invention is to provide a modulator which does not require a high-speed multiplier and achieves low power consumption.
  • the purpose of this is to set the center frequency of the digital baseband signal to four times the intermediate frequency and perform ⁇ ⁇ ⁇ modulation.
  • The output signal of the modulation circuit and its sign-inverted signal are switched by the switching circuit to four times the intermediate frequency. Achieved by a modulator that switches and selects at the sampling frequency.
  • FIG. 1 is a block diagram showing the configuration of a conventional modulator.
  • FIG. 2 is a block diagram illustrating a configuration of a modulator according to Embodiment 1 of the present invention
  • FIG. 3 is a block diagram illustrating a configuration of a modulator according to Embodiment 2 of the present invention
  • FIG. Waveform diagram showing the relationship between the modulator signal and noise in Embodiment 2.
  • FIG. 5 is a block diagram illustrating a configuration of a modulator according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram illustrating a configuration of a modulator according to Embodiment 4 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a modulator according to Embodiment 5 of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
  • the center frequency of the digital baseband signal is increased to four times the intermediate frequency and modulated, and this signal and its sign-inverted signal are switched by a switching circuit to four times the intermediate frequency.
  • a modulator that performs quadrature modulation by switching and selecting the sampling frequency will be described.
  • FIG. 2 is a block diagram showing a configuration of the modulator according to Embodiment 1 of the present invention.
  • the center frequency of the digital baseband signal is generally raised to a certain intermediate frequency, and then multiplied by a high-frequency carrier.
  • the interpolation filter 22 increases the center frequency of the in-phase component (hereinafter referred to as “I signal”) of the digital baseband signal input from the input terminal 21 to four times the intermediate frequency, and converts the signal having the increased frequency. Output to modulation circuit 23.
  • the interpolation filter 25 increases the center frequency of the quadrature component (hereinafter referred to as “Q signal”) of the digital baseband signal input from the input terminal 24 to four times the intermediate frequency, and increases the frequency.
  • the boosted signal is output to the ⁇ ⁇ modulation circuit 26.
  • the ⁇ modulation circuit 23 converts the I signal input from the interpolation filter 22 into a binary signal by ⁇ ⁇ ⁇ modulation, and outputs the converted signal to the switching circuit 27.
  • the ⁇ modulation circuit 26 converts the Q signal input from the interpolation filter 25 into a binary signal by ⁇ ⁇ ⁇ modulation, and outputs the converted signal to the switching circuit 27. .
  • the switching circuit 27 generates these sign-inverted signals (hereinafter, referred to as “nl signal” and “n Q signal”) from the ⁇ modulated I signal and Q signal, and generates an intermediate period 1 Z 4 Quadrature modulation is performed by selecting the four types of signals (I signal, Q signal, nl signal, and nQ signal) in the order of I signal, nQ signal, nl signal, and Q signal at the sampling cycle of
  • the digital orthogonal signal having the intermediate frequency obtained by the above is output to the DZA converter 28.
  • the DZA converter 28 converts the digital quadrature signal input from the switching circuit 27 into an analog quadrature signal, and outputs the converted analog quadrature signal to another device via an output terminal 29.
  • the quadrature modulated wave s (t) at the intermediate frequency is represented by the following equation (1), where the I signal component is i (t), the Q signal component is q (t), and the intermediate frequency is fo.
  • the switching circuit 27 is an I signal and an nQ signal , Nl signal, and Q signal in this order, and can be achieved for each sampling period Ts.
  • the center frequency of the I signal input to the input terminal 21 is raised to four times the intermediate frequency by the interpolation filter 22, and is modulated by the ⁇ modulation circuit 23.
  • the center frequency of the Q signal input to the input terminal 24 is raised to four times the intermediate frequency by the interpolation filter 25, and is modulated by the ⁇ modulation circuit 26.
  • the I signal and the Q signal The n I signal and the n Q signal, which are the sign inverted signals, are generated. Then, in the switching circuit 27, the I signal, the nQ signal, the nl signal, and the Q signal are sequentially selected in this order at every 14 sampling periods of the intermediate period, and the quadrature-modulated intermediate frequency digital signal is selected. An orthogonal signal is output.
  • the digital quadrature signal is converted into an analog quadrature signal by a 0/8 converter 28, and the converted analog signal is output to another device via an output terminal 29.
  • the quadrature modulation process can be performed by the switching circuit, so that the operation scale can be significantly reduced and the power consumption can be reduced as compared with the case where the high-speed multiplier is used. .
  • the center frequency of the digitized baseband signal is increased to four times the intermediate frequency and ⁇ ⁇ ⁇ modulated, and the ⁇ modulated signal is converted to a low-pass filter (hereinafter, referred to as a low-pass filter).
  • a low-pass filter A modulator that performs quadrature modulation by passing this signal and its sign-inverted signal at a sampling frequency that is four times the intermediate frequency and selecting it with a switching circuit will be described.
  • FIG. 2 is a block diagram showing a configuration of a modulator according to Embodiment 2 of the present invention. 1 are denoted by the same reference numerals as in FIG. 1, and description thereof will be omitted.
  • the modulator according to the second embodiment differs from the modulator according to the first embodiment in that the LPF 31 is inserted between the ⁇ ⁇ modulation circuit 23 and the switching circuit 27, LPF 32 is inserted between ⁇ ⁇ modulation circuit 24 and switching circuit 27.
  • the LPF 31 is a low-pass filter having a notch at the sampling frequency 1Z2, and removes unnecessary frequency components such as quantization noise near the sampling frequency 1Z2.
  • the LPF 32 is a low-pass filter having a notch at a frequency of 1Z2 of the sampling frequency, and removes unnecessary frequency components such as quantization noise near the frequency of 1Z2 of the sampling frequency.
  • the switching circuit 27 generates an nl signal from the I signal that has passed through the LPF 31, generates an nQ signal from the Q signal that has passed through the LPF 32, and generates an I signal, an nQ signal, and an nl signal with a sampling period of 1Z4 of the intermediate period. And Q signal in that order to perform quadrature modulation and output an intermediate frequency digital quadrature signal.
  • the N-bit DZA converter 34 converts the digital quadrature signal output from the switching circuit 27 into an analog quadrature signal, and outputs the converted analog quadrature signal to another device via the output terminal 29.
  • Fig. 4 (a) is a waveform diagram showing the waveform of the I signal before passing through the LPF
  • Fig. 4 (b) is a waveform diagram showing the waveform of the signal when the I signal not passing through the PF is quadrature-modulated.
  • Fig. 4 (c) is a waveform diagram showing the waveform of the I signal after passing through the LPF
  • Fig. 4 (d) is a waveform diagram showing the waveform of the signal when the I signal passing through the LPF is orthogonally modulated. is there.
  • the ⁇ ⁇ modulation output of the I signal (A1, A2) peaks at every sampling period fs.
  • the quantized noise (B 1) included in the ⁇ modulation output has been subjected to noise shaving that peaks at a sampling frequency fs of 1Z2 due to the characteristics of the ⁇ modulation method.
  • the peak of the shifted digital quadrature signal (All, A12, A21, A22) and the peak of the quantization noise (Bl1-, B12) overlap.
  • the S / N ratio signal-to-noise ratio
  • the specifications of GMS Global Systems for Mobi 1 co-cat
  • the average value of the phase accuracy is 5 ° or less and the maximum value is 20 ° or less
  • the experimental result of the above embodiment is The average value of the phase accuracy is 1.14 ° and the maximum value is 3.33 °.
  • the I signal input to the input terminal 21 has its center frequency raised to four times the intermediate frequency by the interpolation filter 22, is modulated by the ⁇ ⁇ ⁇ modulation circuit 23, and is unnecessary by the LPF 31. Frequency components are removed.
  • the Q signal input to the input terminal 24 has the center frequency raised to four times the intermediate frequency by the interpolation filter 25, is modulated by the ⁇ modulation circuit 26, and the unnecessary frequency component is Is removed.
  • the nl signal and the nQ signal which are sign inverted signals thereof, are generated from the I signal and the Q signal from which the unnecessary frequency components have been removed. Then, the I signal, the nQ signal, the nl signal, and the Q signal are sequentially selected in this order for every 1Z4 sampling period of the intermediate period, and a quadrature-modulated intermediate frequency digital quadrature signal is output.
  • the digital quadrature signal is converted to an analog quadrature signal by the 07-eight converter 34, and the converted analog quadrature signal is output to another device via the output terminal 29.
  • the modulator according to the second embodiment by passing the ⁇ ⁇ modulation output of the I signal and the Q signal through the LPF, the influence of quantization noise at the time of quadrature modulation is reduced, and the S / N ratio is reduced. Because of the improvement, high-precision modulation can be realized.
  • the center frequency of the digital baseband signal is increased to four times the intermediate frequency and modulated, and this signal, its sign-inverted signal, and those delay signals are sent to a switching circuit.
  • a modulator that performs quadrature modulation by switching and selecting at a sampling frequency four times as high as the intermediate frequency and adding them will be described.
  • FIG. 5 is a block diagram showing a configuration of a modulator according to Embodiment 3 of the present invention.
  • the same reference numerals as in FIG. 3 denote the same parts in FIG. 3, and a description thereof will be omitted.
  • the delay circuit 51 delays the ⁇ ⁇ -modulated I signal by one sampling time, and outputs the delayed I signal to the switching circuit 53.
  • the delay circuit 52 delays the ⁇ modulated Q signal by one sampling time, and outputs the delayed Q signal to the switching circuit 53.
  • the switching circuit 53 generates an nI signal and an nQ signal from the I signal passing through the ⁇ modulation circuit 23 and the Q signal passing through the ⁇ modulation circuit 26, respectively, and delays the signal through the delay circuit 51.
  • a delayed nl signal and a delayed nQ signal are generated from the I signal and the delayed Q signal passed through the delay circuit 52, respectively. From the eight types of signals, the I signal, the delayed I signal, the nQ signal and the delayed nQ signal, the nl signal and the delayed nl signal, and the Q signal and the delayed Q signal Two pairs of signals are selected in order and output to the adder 54.
  • the adder 54 adds a pair of signals output simultaneously from the switching circuit 53 to generate an intermediate-frequency digital orthogonal signal, and outputs the digital orthogonal signal to the N-bit D / A converter 34. .
  • the digital orthogonal signal s (t) output from the adder 54 is a repetition of the following equations (7) to (10).
  • the LPF 32 is the first order, and is the same signal as the digital quadrature signal that has passed through the LPF 31 and the LPF 32 and has been quadrature-modulated by the switching circuit 27.
  • the digital baseband signal is raised to a desired sampling frequency and is modulated by 1 bit, and the carrier is subjected to code processing and added according to the 1 bit modulated output value.
  • the modulator that performs quadrature modulation will be described below.
  • the one in which the ⁇ modulation output is 1 bit is referred to as 1-bit ⁇ modulation.
  • FIG. 6 is a block diagram showing a configuration of a modulator according to Embodiment 4 of the present invention. 1 are given the same reference numerals as in FIG. 1 and their description is omitted.
  • the interpolation filter 61 increases the frequency of the I signal input from the input terminal 21 to a desired sampling frequency fs.
  • the interpolation filter 63 converts the frequency of the Q signal input from the input terminal 24 to a desired sampling frequency fs. Enhance.
  • the 1-bit modulation circuit 62 modulates the I signal input from the interpolation filter 61 by 1 bit, and outputs the 1-bit modulated I signal to the quadrature modulation circuit 66.
  • the 1-bit modulation circuit 64 modulates the Q signal input from the interpolation filter 63 by 1 bit, and outputs the 1-bit modulated Q signal to the quadrature modulation circuit 66.
  • the pseudo transmission generation circuit 65 generates a cosine carrier and a sine carrier for wirelessly transmitting the signal, and outputs these carriers to the quadrature modulation circuit 66.
  • the quadrature modulation circuit 66 encodes the cosine carrier and the sine carrier input from the carrier generation circuit 65 according to the value of the 1-bit ⁇ ⁇ modulated I signal and Q signal, and encodes the cosine carrier and the sign.
  • a quadrature modulation process is performed by adding the obtained sine carrier and this digital quadrature signal is output to the A converter 67.
  • the digital orthogonal signal s (t) is expressed by the following equation.
  • the 0/8 converter 67 converts the digital quadrature signal into an analog quadrature signal, and outputs the converted analog quadrature signal to another device via the output terminal 29.
  • the I signal input to the input terminal 21 is subjected to a desired The wave number is increased, and 1-bit modulation is performed by the 1-bit modulation circuit 62.
  • the Q signal input to the input terminal 24 is raised to a desired frequency by the interpolation filter 63 and is modulated by the 1-bit modulation circuit 64 by 1 bit.
  • the quadrature modulation circuit 66 if the 1-bit ⁇ ⁇ modulated I signal is 1, the cosine carrier input from the carrier generation circuit 65 is maintained as it is, and if the I signal is 1, the cosine carrier is Is inverted. Similarly, if the 1-bit ⁇ ⁇ modulated Q signal is 1, the sine carrier input from the carrier generation circuit 65 is maintained as it is, and if the Q signal is 11, the sine carrier is inverted. Then, the coded cosine carrier and the sine carrier are added to obtain an intermediate frequency digital orthogonal signal.
  • the digital quadrature signal is converted into an analog quadrature signal by the 07-oct converter 67, and is output to another device via the output terminal 29.
  • the digital baseband signal is modulated to a desired sampling frequency by ⁇ modulation, an address is generated based on the ⁇ modulation output value, and the quadrature modulation result is calculated using the address.
  • a modulator that performs quadrature modulation by accessing the stored read section and reading the quadrature modulation result corresponding to the access will be described.
  • FIG. 7 is a block diagram showing a configuration of a modulator according to Embodiment 5 of the present invention. 1 are given the same reference numerals as in FIG. 1 and their description is omitted.
  • an interpolation filter 71 increases an I signal input from an input terminal 21 to a desired sampling frequency fs.
  • the interpolation filter 72 raises the Q signal input from the input terminal 24 to a desired sampling frequency fs.
  • the counter 73 outputs a pulse signal synchronized with the output of the ⁇ modulation circuits 23 and 26 to the address generator 74.
  • the address generator 74 is set according to the input ⁇ ⁇ modulation output. An address is generated, and the read unit 75 is accessed using the address.
  • the reading unit 75 stores the quadrature modulation result calculated in advance in the internal memory. For example, when the ⁇ ⁇ modulation outputs of the I signal and the Q signal are each 1 bit, the quadrature modulation results to be output at each timing are the four types shown in the above equations (11) to (14). The reading unit 75 stores the four types of quadrature modulation results in the internal memory in the order shown by equations (11) to (14). Then, the quadrature modulation result stored in the internal memory is read out based on the accessed address from the address generator 74, and is output to the DZA converter 76 as a digital quadrature signal at an intermediate frequency.
  • the converter 78 converts the digital quadrature signal into an analog quadrature signal, and outputs the converted analog quadrature signal to another device via an output terminal 29.
  • the I signal input to the input terminal 21 is raised to a desired frequency by the interpolation filter 71 and is ⁇ ⁇ ⁇ modulated by the ⁇ modulation circuit 23.
  • the Q signal input to the input terminal 24 is raised to a desired frequency by the interpolation filter 72 and modulated by the ⁇ modulation circuit 26.
  • the address generator 74 generates an address in synchronization with the pulse signal output from the counter 73 based on the ⁇ ⁇ modulation output values of the I signal and the Q signal. This address is accessed by the reading unit 75. Then, a quadrature modulation result corresponding to the address is read from the reading unit 75, and a digit orthogonal signal at an intermediate frequency is obtained.
  • the digital quadrature signal is converted to an analog quadrature signal by the 07-oct converter 76 and output from the output terminal.
  • a multiplier is not required at the time of quadrature modulation even in quadrature modulation of a ⁇ ⁇ modulation signal at an arbitrary sampling frequency. Since this modulator does not require multi-bit addition and subtraction as compared with the modulator of the fourth embodiment, further lower power consumption can be achieved.
  • the order and output accuracy of the ⁇ modulator are particularly restricted. There is no limit. Industrial applicability
  • the present invention relates to a modulation device and a modulation method for orthogonally modulating a digital baseband signal suitable for reducing power consumption, and is useful in digital mobile communication and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

明 細 書 変調装置及び変調方法 技術分野
本発明は、 ディジタル移動通信等において使用され、 ディジタルベースバン ド信号を直交変調する変調装置及び変調方法に関する。 背景技術
携帯電話などのディジタル移動通信システム等においては、 特開平 6— 2 1 9 9 1号公報等に開示されているように、 送信される信号を同相成分と直交成 分に分割し、 それぞれ成分を△∑変調した後に直交変調する変調器が使用され ることがある。
以下、 従来の変調器について図を用いて説明する。 図 1は、 従来の変調器の 構成を示すブロック図である。
図 1において、 △∑変調器 2は、 入力端子 1から入力された変調信号を 2進 の信号に変換し、 乗算回路 3に出力する。 また、 乗算回路 3は、 △∑変調器 2 から出力された 2進信号と搬送波信号とを乗算して振幅変調信号を生成し、 出 力端子 4に出力する。
次に、 上記構成を有する従来の変調器の動作について説明する。
まず、入力端子 1から入力された変調信号が△∑変調器 2にて△∑変調され、 2値の△∑変調信号が出力される。 次に、 Δ Σ変調信号と搬送波信号とが乗算 回路 3にて乗算されて振幅変調信号が生成され、 この振幅変調信号が出力端子 4を介して他の装置へ出力される。 このようにして、 従来の変調器は、 送信信 号をディジタル直交信号に変調することができる。
しかし、 上記従来の変調器においては、 Δ Σ変調を実現する上で避けられな い処理である高いサンプリング周波数下で直交変調のための乗算が必要となる。 このため、 高速乗算器が必要となり、 消費電力が大きくなるという問題点があ る。 発明の開示
本発明の目的は、 高速乗算器を不要にして低消費電力化を図った変調器を提 供することである。
この目的は、 ディジタルベースバンド信号の中心周波数を中間周波数の 4倍 に設定して△∑変調し、 △∑変調回路の出力信号及びその符号反転信号をスィ ツチング回路にて中間周波数の 4倍のサンプリング周波数で切替えて選択する 変調器により達成される。
また、 この目的は、 ディジタルベースバンド信号の中心周波数を任意に設定 して△∑変調し、 △∑変調回路の出力信号に従って搬送波信号を選択する変調 器により達成される。 図面の簡単な説明
図 1は、 従来の変調器の構成を示すブロック図、
図 2は、 本発明の実施の形態 1における変調器の構成を示すブロック図、 図 3は、 本発明の実施の形態 2における変調器の構成を示すブロック図、 図 4は、 本発明の実施の形態 2における変調器の信号と雑音の関係を示す波 形図、
図 5は、 本発明の実施の形態 3における変調器の構成を示すプロック図、 図 6は、 本発明の実施の形態 4における変調器の構成を示すブロック図、 及 び、
図 7は、 本発明の実施の形態 5における変調器の構成を示すプロック図であ る。 発明を実施するための最良の形態 以下、本発明を実施するための最良の形態について、 図面を用いて説明する。 (実施の形態 1 )
本発明の実施の形態 1においては、 ディジタルベースバンド信号の中心周波 数を中間周波数の 4倍に高めて△∑変調し、 この信号及びその符号反転信号を スイッチング回路にて中間周波数の 4倍のサンプリング周波数で切替えて選択 することにより直交変調を行う変調器について説明する。
図 2は、 本発明の実施の形態 1における変調器の構成を示すプロック図であ る。 ここで、 信号を無線で送信する場合、 一般的に、 ディジタルベースバンド 信号の中心周波数を一定の中間周波数まで高めてから高周波の搬送波を乗算す る。
補間フィル夕 2 2は、 入力端子 2 1から入力されたディジタルベースバンド 信号の同相成分 (以下、 「I信号」 という) の中心周波数を中間周波数の 4倍 に高め、 周波数を高められた信号を△∑変調回路 2 3に出力する。 同様に、 補 間フィルタ 2 5は、 入力端子 2 4から入力されたディジタルべ一スバンド信号 の直交成分 (以下、 「Q信号」 という) の中心周波数を中間周波数の 4倍に高 め、 周波数を高められた信号を△∑変調回路 2 6に出力する。
△∑変調回路 2 3は、 補間フィル夕 2 2から入力した I信号を△∑変調する ことにより 2進の信号に変換し、 変換された信号をスイッチング回路 2 7に出 力する。 同様に、 △∑変調回路 2 6は、 補間フィル夕 2 5から入力した Q信号 を△∑変調しることにより 2進の信号に変換し、 変換された信号をスィッチン グ回路 2 7に出力する。
スイッチング回路 2 7は、 △∑変調された I信号及び Q信号からこれらの符 号反転信号 (以下、 「n l 信号」 及び 「n Q信号」 という) を生成するととも に、 中間周期の 1 Z 4のサンプリング周期で前記 4種類の信号 (I 信号、 Q信 号、 n l 信号及び n Q信号) を I信号、 n Q信号、 n l 信号及び Q信号の順で 選択することにより直交変調を行い、 これにより得られた中間周波数を有する ディジタル直交信号を D ZA変換器 2 8に出力する。 DZA変換器 28は、 スィツチング回路 27から入力したディジ夕ル直交信 号をアナログ直交信号に変換し、 変換されたアナログ直交信号を出力端子 29 を介して他の装置に出力する。
次に、 本発明の実施の形態 1における変調器の直交変調処理について詳細に 説明する。
中間周波数における直交変調波 s(t)は、 I信号成分を i(t)、 Q信号成分を q(t)、 中間周波数を foとすると以下に示す式 (1) で表わされる。
s (t) = i (t) X cos ( 2 π f o t) -q (t) X s in ( 2 π f o t) (1) そして、 サンプリング周波数 fsは中間周波数 foの 4倍に設定されているの で、 上記式 (1) は以下に示す式 (2) に変形できる。
s (t) = i (1) Xcos (2 is t/4) -q(t) Xsin(2 π fs t/4) (2) ここで、 直交変調波 s(t)は、 サンプリング周期 Ts=lZfs ごとにサンプリ ングされて出力されるディジタル直交信号と等価である。 よって、 式 (2) は、 nを整数として、 以下に示す式(3)から(6)に置き換えることができる。
s(t) = i (t) (t=4 nTs) (3) s(t) = -q(t) (t=(4 n+ DTs) (4) s(t) =—i(t) (t = (4 n + 2)Ts) (5) s(t)=q(t) (t=(4 n+ 3)Ts) (6) すなわち、 直交変調は、 スイッチング回路 27を I信号、 nQ信号、 n l信 号、 Q信号の順でサンプリング周期 Ts ごとに順次選択させることにより達成 できる。
次に、 実施の形態 1における変調器の動作の流れについて説明する。
まず、 入力端子 21に入力された I信号は、 補間フィルタ 22にて中心周波 数を中間周波数の 4倍に高められ、 △∑変調回路 23にて△∑変調される。 同 様に、 入力端子 24に入力された Q信号は、 補間フィルタ 25にて中心周波数 を中間周波数の 4倍に高められ、 △∑変調回路 26にて△∑変調される。
次に、 スイッチング回路 27にて、 △∑変調された I信号及び Q信号からこ れらの符号反転信号である n I 信号及び n Q信号が生成される。 そして、 スィ ツチング回路 2 7において、 I 信号、 n Q信号、 n l 信号及び Q信号が、 この 順で中間周期の 1 4のサンプリング周期ごとに順次選択され、 直交変調され た中間周波数のディジ夕ル直交信号が出力される。
次に、 0 /八変換器2 8にて、 ディジタル直交信号がアナログ直交信号に変 換され、 変換されたアナログ信号は出力端子 2 9を介して他の装置に出力され る。
このように、 本実施の形態の変調器においては、 直交変調処理をスィッチン グ回路にて行うことができるので、 高速乗算器を用いる場合に比べ演算規模を 大幅に削減でき、 消費電力を低下できる。
(実施の形態 2 )
本発明の実施の形態 2においては、 ディジ夕ルベースバンド信号の中心周波 数を中間周波数の 4倍に高めて△∑変調し、 △∑変調された信号を低域通過フ ィル夕 (以下、 「L P F」 という) に通過させ、 この信号及びその符号反転信 号をスィッチング回路にて中間周波数の 4倍のサンプリング周波数で切替えて 選択することにより直交変調を行う変調器について説明する。
図 2は、 本発明の実施の形態 2における変調器の構成を示すプロック図であ る。 なお、 図 1と共通する部分は図 1同一符号を付してその説明を省略する。 図 2に示すように、 実施の形態 2における変調器は、 実施の形態 1における 変調器と比較して、 L P F 3 1が△∑変調回路 2 3とスィツチング回路 2 7と の間に挿入され、 L P F 3 2が△∑変調回路 2 4とスイッチング回路 2 7との 間に挿入される。
L P F 3 1は、 サンプリング周波数の 1 Z 2の周波数にノッチのある低域通 過フィル夕であり、 サンプリング周波数の 1 Z 2の周波数近傍における量子化 雑音等の不要周波数成分を除去する。 同様に、 L P F 3 2は、 サンプリング周 波数の 1 Z 2の周波数にノッチのある低域通過フィルタであり、 サンプリング 周波数の 1 Z 2の周波数近傍における量子化雑音等の不要周波数成分を除去す る。
スイッチング回路 27は、 LPF 31を通過した I信号から nl信号を生成 し、 LPF 32を通過した Q信号から nQ信号を生成し、 中間周期の 1Z4の サンプリング周期で、 I 信号、 nQ信号、 nl 信号及び Q信号をその順で選択 することにより直交変調を行い、中間周波数のディジ夕ル直交信号を出力する。
Nビット DZA変換器 34は、 スィツチング回路 27から出力されたディジ夕 ル直交信号をアナログ直交信号に変換し、 変換されたアナログ直交信号を出力 端子 29を介して他の装置に出力する。
次に、 実施の形態 2における変調器の I信号と雑音の関係について、 図 4の 波形図を用いて説明する。 なお、 実施の形態 2においては I信号について説明 するが、 Q信号の場合も同様に説明できる。
図 4 (a) は L P F通過前の I信号の波形を示す波形図であり、 図 4 (b) はし P Fを通過しない I信号を直交変調した際の信号の波形を示す波形図であ る。 また、 図 4 (c) は LP F通過後の I信号の波形を示す波形図であり、 図 4 (d) は L P Fを通過した I信号を直交変調した際の信号の波形を示す波形 図である。
図 4 (a) に示すように、 I信号の△∑変調出力 (A l、 A 2) は、 サンプ リング周期 fs ごとにピークとなる。 また、 △∑変調出力に含まれる量子化雑 音 (B 1) は、 △∑変調方式の特徴により、 サンプリング周波数 fs の 1Z2 の周波数でピークとなるノイズシェービングを受けている。
そして、 図 4 (b) に示すように、 I信号の△∑変調出力 (A l、 A 2) を サンプリング周波数の 1 / 4を中心周波数とする中間周波数に直交変調すると、 ディジタル直交信号 (Al l、 A12、 A21、 A22) のピークは、 I信号 の△∑変調出力 (A l、 A2) から中間周波数 fo=fs/4分だけ移動した位 置に現れる。
一方、 量子化雑音 (B 1) をサンプリング周波数の 1Z4を中心周波数とす る中間周波数に直交変調すると、 直交変調された量子化雑音 (B 1 1、 B 12) のピークは、 fsZ2— fo = fs/2— fsZ4 = fs/4となる。 このとき、 移動し たディジタル直交信号 (Al l、 A12、 A21、 A 22) のピークと量子化 雑音 (B l 1-、 B 12) のピークが重なる。 これにより、 S/N比 (信号対雑 音比) が低減してしまい、 高精度の変調ができない。
これに対し、 図 4 (c) に示すように、 I信号の△∑変調出力 (A l、 A2) を、 サンプリング周波数の 1/2にノツチができる特性の L P Fに通過させる と、 部分的に量子化雑音が除去され、 サンプリング周波数 fs の 1Z2の周波 数における量子化雑音 (B 1) の影響を低減できる。
これにより、 図 4 (d) に示すように、 量子化雑音 (B 1) をサンプリング 周波数の 1/4を中心周波数とする中間周波数に直交変調した場合、 移動した ディジタル直交信号 (A l l、 A 12、 A21、 A 22) のピークである中間 周波数 fo=fsZ4において、 量子化雑音 (B l l、 B 12) を低減できる。 これにより、 SZN比を改善して高精度の変調を行うことができる。
具体的には、 GMS (Global Systems for Mobi 1 co画 unicat ion) の仕様が、 位相精度の平均値 5° 以下、 最大値 20° 以下であるのに対し、 上記実施の形 態の実験結果は、 位相精度の平均値 1. 14° 、 最大値 3. 33° である。 な お、 この実験結果は、 単に一例であり、 条件によっては更に良い結果が得られ る。
次に、 実施の形態 2における変調器の動作の流れについて説明する。
まず、 入力端子 21に入力された I信号は、 補間フィル夕 22にて中心周波 数を中間周波数の 4倍に高められ、 △∑変調回路 23にて△∑変調され、 LP F 31にて不要周波数成分が除去される。 同様に、 入力端子 24に入力された Q信号は、 補間フィルタ 25にて中心周波数を中間周波数の 4倍に高められ、 △∑変調回路 26にて△∑変調され、 LPF 32にて不要周波数成分が除去さ れる。
次に、 スイッチング回路 27にて、 不要周波数成分が除去された I信号及び Q信号からこれらの符号反転信号である nl 信号及び nQ信号が生成される。 そして、 I 信号、 n Q信号、 n l 信号及び Q信号が、 この順で中間周期の 1 Z 4のサンプリング周期ごとに順次選択され、 直交変調された中間周波数のディ ジ夕ル直交信号が出力される。
次に、 07八変換器3 4にて、 ディジタル直交信号がアナログ直交信号に変 換され、 変換されたアナログ直交信号が出力端子 2 9を介して他の装置に出力 される。
このように、 実施の形態 2の変調器においては、 I信号と Q信号の△∑変調 出力を L P Fに通過させることにより、 直交変調時の量子化雑音の影響を軽減 して S/N比を改善できるため、 高精度の変調を実現できる。
(実施の形態 3 )
本発明の実施の形態 3においては、 ディジタルベースバンド信号の中心周波 数を中間周波数の 4倍に高めて△∑変調し、 この信号及びその符号反転信号、 並びに、 それらの遅延信号をスィツチング回路にて中間周波数の 4倍のサンプ リング周波数で切替えて選択し、 加算することにより直交変調を行う変調器に ついて説明する。
図 5は、 本発明の実施の形態 3における変調器の構成を示すプロック図であ る。なお、 図 3と共通する部分は図 3と同一符号を付してその説明を省略する。 遅延回路 5 1は、△∑変調された I信号を 1サンプリング時間だけ遅延させ、 遅延した I信号をスイッチング回路 5 3に出力する。 同様に、遅延回路 5 2は、 △∑変調された Q信号を 1サンプリング時間だけ遅延させ、 遅延した Q信号を スイッチング回路 5 3に出力する。
スイッチング回路 5 3は、 △∑変調回路 2 3を通過した I信号及び△∑変調 回路 2 6を通過した Q信号からそれぞれ n I信号及び n Q信号を生成し、 遅延 回路 5 1を通過した遅延 I信号及び遅延回路 5 2を通過した遅延 Q信号からそ れぞれ遅延 n l 信号及び遅延 n Q信号を生成する。 そして、 前記 8種類の信号 から、 中間周期の 1 Z 4のサンプリング周期で、 I信号と遅延 I信号、 n Q信 号と遅延 n Q信号、 n l 信号と遅延 n l 信号、 並びに、 Q信号と遅延 Q信号の 順序で 2種類ずつ一対の信号を選択して加算器 54に出力する。
加算器 54は、 スイッチング回路 53から同時に出力された一対の信号を加 算して中間周波数のディジ夕ル直交信号を生成し、 ディジタル直交信号を Nビ ット D/ A変換器 34に出力する。
加算器 54から出力されるディジタル直交信号 s(t)は、 以下に示す式(7) から(1 0)の繰り返しとなる。
s(t) = i (t) -i (t- 1) (t = 4 nTs) (7) s(t) = -q(t)+q(t- 1) (t=(4 n + l)Ts) (8) s(t) =— i (t) + i (t— 1) (t=(4 n + 2)Ts) (9) s(t)=q(t)-q(t- 1) (t = (4 n + 3)Ts) (1 0) このディジタル直交信号 s(t)は、 実施の形態 2において、 LP F 3 1及び
L P F 32がー次である場合であって、 LPF 3 1及び L P F 32を通過し、 スィツチング回路 27で直交変調されたディジタル直交信号と同一の信号であ る。
よって、 上記の構成により、 LPFを使用する場合に比べ、 量子化雑音の影 響を低減させたまま、 変調器の小型化を図ることができる。
(実施の形態 4)
本発明の実施の形態 4においては、 ディジタルべ一スバンド信号を、 所望の サンプリング周波数に高めて 1ビット△∑変調し、 1ビット△∑変調出力値に 応じて、 搬送波を符号処理して加算することにより直交変調する変調器につい て説明する。 ここでは、 △∑変調出力が 1ビットであるものを 1ビット△∑変 調という。
図 6は、 本発明の実施の形態 4における変調器の構成を示すブロック図であ る。なお、 図 1と共通する部分は図 1と同一符号を付してその説明を省略する。 図 6において、 補間フィルタ 6 1は、 入力端子 2 1から入力した I信号の周 波数を所望のサンプリング周波数 fsに高める。 同様に、補間フィル夕 63は、 入力端子 24から入力した Q信号の周波数を所望のサンプリング周波数 fs に 高める。
1ビッ卜△∑変調回路 62は、 補間フィル夕 61から入力した I信号を 1ビ ット△∑変調し、 1ビット△∑変調された I信号を直交変調回路 66に出力す る。 同様に、 1ビット△∑変調回路 64は、 補間フィル夕 63から入力した Q 信号を 1ビット△∑変調し、 1ビット△∑変調された Q信号を直交変調回路 6 6に出力する。 擬送波発生回路 65は、 信号を無線で送信するための余弦搬送 波及び正弦搬送波を発生し、 これらの搬送波を直交変調回路 66に出力する。 直交変調回路 66は、 1ビット△∑変調した I信号及び Q信号の値に応じて、 搬送波発生回路 65から入力した余弦搬送波及び正弦搬送波を符号処理し、 符 号処理された余弦搬送波と符号処理された正弦搬送波とを加算することにより 直交変調処理を行い、このディジ夕ル直交信号を A変換器 67に出力する。 ここで、 1ビット△∑変調された I信号成分 i(t)及び Q信号成分 q(t)は、 ともに 1または一 1となるので、 ディジタル直交信号 s(t)は、 以下に示す式
(1 1) から (14) で表される。 ただし、 nを整数とし、 t = nTs=nZfs とする。
s(t)=cos(2 πίο/fs) -sin(27ufo/fs) (i (t) = 1 , q (t) = 1 ) (1 1)
Figure imgf000012_0001
1) (12) s(t) = -cos(2 πίο/fs) -sin(2 πίο/fs) (i(t) = - l,q(t)=l) (13) s(t) = -cos(27cfo/fs)+sin(2 πίο/fs) (i (t) =— 1, q (t) =— 1 ) (14) このように、 i(t)=lのとき余弦搬送波をそのまま維持し、 i(t)=— lのとき 余弦搬送波を符号反転し、 q(t)=lのとき正弦搬送波をそのまま維持し、 q(t) = 一 1のとき正弦搬送波を符号反転し、 これらの符号化された余弦搬送波及び正 弦搬送波を加算することによりディジタル直交信号が得られる。
0/八変換器67は、 ディジタル直交信号をアナログ直交信号に変換し、 変 換したアナログ直交信号を出力端子 29を介して他の装置に出力する。
次に、 実施の形態 4における変調器の動作の流れについて説明する。
まず、 入力端子 21に入力された I信号は、 補間フィル夕 61にて所望の周 波数に高められ、 1ビット△∑変調回路 6 2にて 1ビット△∑変調される。 同 様に、 入力端子 2 4に入力された Q信号は、 補間フィルタ 6 3にて所望の周波 数に高められ、 1ビット△∑変調回路 6 4にて 1ビット△∑変調される。
次に、 直交変調回路 6 6にて、 1ビット△∑変調された I信号が 1ならば搬 送波発生回路 6 5から入力した余弦搬送波はそのまま維持され、 I 信号が一 1 ならば余弦搬送波は符号反転される。 同様に、 1ビット△∑変調された Q信号 が 1ならば搬送波発生回路 6 5から入力した正弦搬送波はそのまま維持され、 Q信号が一 1ならば正弦搬送波は符号反転される。 そして、 符号化された余弦 搬送波と正弦搬送波とが加算され、 中間周波数のディジ夕ル直交信号が得られ る。
次に、 07八変換器6 7にて、 ディジタル直交信号が、 アナログ直交信号に 変換され、 出力端子 2 9を介して他の装置に出力される。
上記構成を有する変調器においては、 任意のサンプリング周波数を用いた場 合でも、直交変調時に乗算器を必要としないので、演算量を大幅に削減できる。
(実施の形態 5 )
本発明の実施の形態 5において、 ディジタルベースバンド信号を、 所望のサ ンプリング周波数に高めて△∑変調し、 △∑変調出力値に基きァドレスを生成 し、 このアドレスを用いて、 直交変調結果を格納している読出し部にアクセス して、 アクセスに対応した直交変調結果を読出すことにより直交変調を行う変 調器について説明する。
図 7は、 本発明の実施の形態 5における変調器の構成を示すプロック図であ る。なお、 図 1と共通する部分は図 1と同一符号を付してその説明を省略する。 図 7において、 補間フィルタ 7 1は、 入力端子 2 1から入力した I信号を所 望のサンプリング周波数 f s に高める。 同様に、 補間フィル夕 7 2は、 入力端 子 2 4から入力した Q信号を所望のサンプリング周波数 f s に高める。 カウン 夕 7 3は、 △∑変調回路 2 3 、 2 6の出力に同期したパルス信号をアドレス発 生部 7 4に出力する。 アドレス発生部 7 4は、 入力した△∑変調出力に応じて アドレスを発生し、 アドレスを用いて読出し部 7 5にアクセスする。
読出し部 7 5は、 予め計算した直交変調結果を内部メモリに格納する。 例え ば、 I 信号と Q信号の△∑変調出力がそれぞれ 1ビットの場合、 各タイミング で出力すべき直交変調結果は、 前記の式 (1 1 ) から (1 4 ) に示す 4種類で ある。 読出し部 7 5は、 この 4種類の直交変調結果を式 ( 1 1 ) から (1 4 ) に示す順番で内部メモリに格納する。 そして、 アドレス発生部 7 4からァクセ スされたァドレスに基いて、 内部メモリに格納した直交変調結果を読み出し、 中間周波数におけるディジタル直交信号として D ZA変換器 7 6に出力する。
07八変換器7 6は、 ディジタル直交信号をアナログ直交信号に変換し、 変 換されたアナログ直交信号を出力端子 2 9を介して他の装置に出力する。
次に、 実施の形態 5における変調器の動作の流れについて説明する。
まず、 入力端子 2 1に入力された I信号は、 補間フィル夕 7 1にて所望の周 波数に高められ、 △∑変調回路 2 3にて△∑変調される。 同様に、 入力端子 2 4に入力された Q信号は、 補間フィル夕 7 2にて所望の周波数に高められ、 △ ∑変調回路 2 6にて△∑変調される。
次に、 ァドレス発生器 7 4にて、 I信号と Q信号の△∑変調出力値に基いて、 カウンタ 7 3から出力されるパルス信号に同期してァドレスが発生される。 こ のアドレスは読出し部 7 5にアクセスされる。 そして、 読出し部 7 5からアド レスに対応する直交変調結果が読み出され、 中間周波数におけるディジ夕ル直 交信号が得られる。
次に、 07八変換器7 6にて、 ディジタル直交信号がアナログ直交信号に変 換され出力端子から出力される。
以上の構成を有する変調器により、 任意のサンプリング周波数における△∑ 変調信号の直交変調でも、 直交変調時に乗算器が不要となる。 この変調器は、 実施の形態 4の変調器と比較して多ビットの加減算を必要としないので、 さら なる低消費電力化を図ることができる。
なお、 上記の各実施の形態において、 △∑変調器の次数や出力精度は特に制 限はない。 産業上の利用可能性
本発明は、 低消費電力化を図るのに好適なディジ夕ルベースバンド信号を直 交変調する変調装置及び変調方法であり、 ディジタル移動通信等において有用 である。

Claims

14 請 求 の 範 図
1 . ディジ夕ルベースバンド信号の同相成分及び直交成分の中心周波数を中 間周波数の 4ィ咅に変調する周波数変調手段と、 前記周波数変調されたディジ夕 ルベースパンド信号を△∑変調する△∑変調手段と、 前記△∑変調されたディ ジ夕ルベースバンド信号から不要周波数成分を除去する除去手段と、 前記不要 周波数成分を除去されたディジタルベースバンド信号から中間周波数のディジ タル直交信号を生成する直交変調手段を具備する変調装置。
2 . 直交変調手段は、 中間周波数の 4倍のサンプリング周波数で、 ディジ夕 ルベースパンド信号の同相成分、 直交成分の符号反転信号同相成分の符号反転 信号及び直交成分をその順に選択する請求の範囲 1記載の変調装置。
3 . 除去手段は、 低周波数成分のみを通過させる低域通過フィルタである請 求の範囲 1又は請求の範囲 2に記載の変調装置。
4 . 除去手段は、 ディジタルベースバンド信号の同相成分及び直交成分を 1 サンプリング周波数だけ遅延させる遅延回路と、 ディジタルべ一スパンド信号 の同相成分及び直交成分に前記遅延回路の出力成分を加算する加算器とを含む 請求の範囲 1又は請求の範囲 2に記載の変調装置。
5 . ディジタルべ一スバンド信号の同相成分及び直交成分の中心周波数を中 間周波数の 4倍に変調する周波数変調手段と、 前記周波数変調されたディジ夕 ルベースパンド信号を△∑変調する△∑変調手段と、 前記△∑変調されたディ ジタルベースバンド信号を 1サンプリング周波数だけ遅延させる遅延回路と、 前記△∑変調されたディジタルベースバンド信号から中間周波数の第 1ディジ タル直交信号を生成する第 1直交変調手段と、 前記遅延されたディジ夕ルベー スパンド信号から中間周波数の第 2ディジタル直交信号を生成する第 2直交変 調手段と、 前記第 1及び第 2ディジタル直交信号を加算する加算手段とを具備 する変調装置。
6 . 第 1及び第 2直交変調手段は、 同時に中間周波数の 4倍のサンプリング 周波数で、ディジタルベースバンド信号の同相成分、直交成分の符号反転信号、 同相成分の符号反転信号及び直交成分をその順に選択する請求の範囲 5記載の
7 . ディジタルベースバンド信号の同相成分及び直交成分を 1ビット単位で △∑変調する 1ビット△∑変調手段と、 余弦搬送波及び正弦搬送波を発生させ る搬送波発生手段と、 1ビット△∑変調されたディジタルベースバンド信号の 符号に基き前記余弦搬送波及び正弦搬送波を変換する搬送波変換手段と、 変換 された余弦搬送波と正弦搬送波とを加算することによりディジタル直交信号を 出力する搬送波加算器とを具備する変調装置。
8 . 搬送波変換手段は、 ディジタルベースバンド信号の同相成分の符号が正 ならば余弦搬送波をそのまま出力し、 負ならば余弦搬送波の符号を反転して出 力し、 ディジタルべ一スパンド信号の直交成分の符号が正ならば正弦搬送波の 符号をそのまま出力し、 負ならば正弦搬送波の符号を反転して出力することに より変換を行う請求の範囲 7記載の変調装置。
9 . ディジタルベースバンド信号の同相成分及び直交成分を△∑変調する△ ∑変調手段と、 前記△∑変調されたディジ夕ルベースバンド信号に応じたァド レスを発生させるアドレス発生手段と、 前記アドレスに基いて、 格納したディ ジ夕ル直交信号を読出す読出し手段とを具備する変調装置。
1 0 . ディジ夕ルベースバンド信号の同相成分及び直交成分の中心周波数を 中間周波数の 4倍に周波数変調する工程と、 この周波数変調した信号を△∑変 調する工程と、 この△∑変調した信号から不要周波数成分を除去する工程と、 この不要周波数成分を除去した信号から中間周波数のディジタル直交信号を生 成する工程とを有する変調方法。
1 1 . ディジタル直交信号を生成する工程は、 中間周波数の 4倍のサンプリ ング周波数で、 ディジタルベースバンド信号の同相成分、 直交成分の符号反転 信号、 同相成分の符号反転信号及び直交成分をその順に選択する請求の範囲 1 0記載の変調方法。
1 2 . 不要周波数成分を除去する工程は、 低周通過フィル夕により行われる 請求の範囲 1 0又は請求の範囲 1 1に記載の変調方法。
1 3 . 不要周波数成分を除去する工程は、 ディジタルべ一スバンド信号の同 相成分及び直交成分とこれらを 1サンプリング周波数だけ遅延させた成分とを 加算することにより行われる請求の範囲 1 0又は請求の範囲 1 1に記載の変調 方法。
1 4 . ディジタルベースバンド信号の同相成分及び直交成分の中心周波数を 中間周波数の 4倍に周波数変調する工程と、 この周波数変調した信号を△∑変 調する工程と、 この△∑変調した信号から不要周波数成分を除去する工程と、
△∑変調手段を通過した信号を 1サンプリング周波数だけ遅延させる工程と、
△∑変調手段を通過した信号から中間周波数の第 1ディジタル直交信号を生成 する工程と、 1サンプリング周波数だけ遅延した信号から中間周波数の第 2デ ィジ夕ル直交信号を生成する工程と、 前記第 1及び第 2ディジ夕ル直交信号を 加算する工程とを有する変調方法。
1 5 . 第 1ディジタル直交信号を生成する工程及び第 2ディジタル直交信号 を生成する工程は、 同時に中間周波数の 4倍のサンプリング周波数で、 デイジ タルベースバンド信号の同相成分、 直交成分の符号反転信号、 同相成分の符号 反転信号及び直交成分をその順に選択する請求の範囲 1 4記載の変調方法。
1 6 . ディジタルべ一スパンド信号の同相成分及び直交成分を 1ビット単位 で△∑変調する工程と、 余弦搬送波及び正弦搬送波を発生させる工程と、 前記 1ビット△∑変調されたディジタルベースバンド信号の符号に基き前記余弦搬 送波及び正弦搬送波を変換する工程と、 前記変換された余弦搬送波と正弦搬送 波とを加算することによりディジタル直交信号を出力する工程とを有する変調 方法。
1 7 . 余弦搬送波及び正弦搬送波を変換する工程は、 ディジタルベースバン ド信号の同相成分の符号が正ならば余弦搬送波をそのまま出力し、 負ならば余 弦搬送波を符号反転して出力し、 ディジ夕ルベースバンド信号の直交成分の符 号が正ならば正弦搬送波をそのまま出力し、 負ならば正弦搬送波を符号反転す ることにより変換を行う請求の範囲 1 6記載の変調方法。
1 8 . ディジ夕ルベースバンド信号の同相成分及び直交成分を△∑変調する 工程と、 △—∑変調したディジ夕ルベースバンド信号の値に応じたァドレスを発 生させる工程と、 前記アドレスに基いて、 格納したディジタル直交信号を出力 する工程とを有する変調方法。
PCT/JP1998/000657 1997-02-27 1998-02-17 Modulator and modulation method Ceased WO1998038775A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98902264A EP0909067A4 (en) 1997-02-27 1998-02-17 MODULATOR AND MODULATION PROCESS
US09/147,053 US6097259A (en) 1997-02-27 1998-02-17 Modulator and modulation method for orthogonally modulating digital baseband signals
AU58819/98A AU5881998A (en) 1997-02-27 1998-02-17 Modulator and modulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5860597 1997-02-27
JP9/58605 1997-02-27

Publications (1)

Publication Number Publication Date
WO1998038775A1 true WO1998038775A1 (en) 1998-09-03

Family

ID=13089161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000657 Ceased WO1998038775A1 (en) 1997-02-27 1998-02-17 Modulator and modulation method

Country Status (6)

Country Link
US (1) US6097259A (ja)
EP (1) EP0909067A4 (ja)
JP (1) JP3410355B2 (ja)
CN (1) CN1148924C (ja)
AU (1) AU5881998A (ja)
WO (1) WO1998038775A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG82659A1 (en) * 1998-12-14 2001-08-21 Cit Alcatel An electronic digital-to-analog converter circuit for a baseband transmission system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328353B (en) * 1997-08-16 2002-10-02 Nec Technologies GSM mobile receiver
US6763072B1 (en) 1999-08-25 2004-07-13 Victor Company Of Japan, Ltd. Method and apparatus for modulation and demodulation related to orthogonal frequency division multiplexing
US6922555B1 (en) * 1999-09-02 2005-07-26 Koninklijke Philips Electronics N.V. Phase interpolation receiver for angle modulated RF signals
JP2002064383A (ja) 2000-08-18 2002-02-28 Yamaha Corp Δς変調器
US6779010B2 (en) 2001-06-12 2004-08-17 Rf Micro Devices, Inc. Accumulator with programmable full-scale range
US6693468B2 (en) 2001-06-12 2004-02-17 Rf Micro Devices, Inc. Fractional-N synthesizer with improved noise performance
US7003049B2 (en) * 2001-06-12 2006-02-21 Rf Micro Devices, Inc. Fractional-N digital modulation with analog IQ interface
US6448831B1 (en) 2001-06-12 2002-09-10 Rf Micro Devices, Inc. True single-phase flip-flop
US6385276B1 (en) 2001-06-12 2002-05-07 Rf Micro Devices, Inc. Dual-modulus prescaler
TWI234349B (en) * 2003-04-04 2005-06-11 Realtek Semiconductor Corp DAC/ADC system
US20050163255A1 (en) * 2004-01-22 2005-07-28 Broadcom Corporation System and method for simplifying analog processing in a transmitter
DE102006006572A1 (de) * 2006-02-13 2007-08-16 Vega Grieshaber Kg Paarweise ZF-Abtastung für Puls-Laufzeit-Füllstandsensoren
US8776214B1 (en) 2009-08-12 2014-07-08 Amazon Technologies, Inc. Authentication manager
JP5271233B2 (ja) * 2009-10-22 2013-08-21 Kddi株式会社 電力増幅器に対応付けてδς変換器の制御値を制御する送信機、プログラム及び方法
WO2012164876A1 (ja) * 2011-06-03 2012-12-06 旭化成エレクトロニクス株式会社 送信器
US10362019B2 (en) 2011-07-29 2019-07-23 Amazon Technologies, Inc. Managing security credentials
US9767262B1 (en) 2011-07-29 2017-09-19 Amazon Technologies, Inc. Managing security credentials
US11444936B2 (en) 2011-07-29 2022-09-13 Amazon Technologies, Inc. Managing security credentials
US8863250B2 (en) 2012-02-01 2014-10-14 Amazon Technologies, Inc. Logout from multiple network sites
US8955065B2 (en) 2012-02-01 2015-02-10 Amazon Technologies, Inc. Recovery of managed security credentials
US9282098B1 (en) 2013-03-11 2016-03-08 Amazon Technologies, Inc. Proxy server-based network site account management
US8754678B1 (en) * 2013-03-15 2014-06-17 Analog Devices, Inc. Apparatus and methods for invertible sine-shaping for phase interpolation
US10475018B1 (en) 2013-11-29 2019-11-12 Amazon Technologies, Inc. Updating account data for multiple account providers
CN114884523B (zh) * 2022-04-28 2024-07-23 苏州市江海通讯发展实业有限公司 适用于陶瓷滤波器的中频调制信号的生成方法
US12328099B2 (en) 2023-02-23 2025-06-10 Analog Devices, Inc. Apparatus and methods for local oscillator interface circuits with quadrature clock generation and phase correction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621991A (ja) * 1992-03-30 1994-01-28 Toshiba Corp 変調器
JPH08149169A (ja) * 1994-11-16 1996-06-07 Matsushita Electric Ind Co Ltd ディジタル直交変調器
JPH09186728A (ja) * 1995-12-28 1997-07-15 Sony Corp 信号伝送装置及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1240444B (it) * 1990-05-18 1993-12-16 Borsano Corrado Procedimento per l'attuazione della modulazione digitale multilivello mediante un elaboratore di segnali numerici
US5530722A (en) * 1992-10-27 1996-06-25 Ericsson Ge Mobile Communications Inc. Quadrature modulator with integrated distributed RC filters
DE69534666T2 (de) * 1994-07-20 2006-06-29 Nippon Telegraph And Telephone Corp. Digitaler Quadraturmodulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621991A (ja) * 1992-03-30 1994-01-28 Toshiba Corp 変調器
JPH08149169A (ja) * 1994-11-16 1996-06-07 Matsushita Electric Ind Co Ltd ディジタル直交変調器
JPH09186728A (ja) * 1995-12-28 1997-07-15 Sony Corp 信号伝送装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0909067A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG82659A1 (en) * 1998-12-14 2001-08-21 Cit Alcatel An electronic digital-to-analog converter circuit for a baseband transmission system

Also Published As

Publication number Publication date
US6097259A (en) 2000-08-01
CN1217845A (zh) 1999-05-26
CN1148924C (zh) 2004-05-05
AU5881998A (en) 1998-09-18
JPH10304001A (ja) 1998-11-13
JP3410355B2 (ja) 2003-05-26
EP0909067A4 (en) 2005-06-22
EP0909067A1 (en) 1999-04-14

Similar Documents

Publication Publication Date Title
WO1998038775A1 (en) Modulator and modulation method
US6317468B1 (en) IF exciter for radio transmitter
US6339621B1 (en) One bit digital quadrature vector modulator
FI88980C (fi) Sigma-delta-modulator foer d/a-omvandlare
WO1990012451A1 (fr) Modulateur de frequence
KR940008272A (ko) 아날로그/디지탈 컨버터
JP2728114B2 (ja) Fm変調回路
KR100301887B1 (ko) 위상변조신호로부터위상차를검출하는지연검파장치
KR20060059155A (ko) 직접 변환 델타-시그마 송신기
US7702115B2 (en) Method and apparatus to reconstruct high-frequency components of an audio signal
JPS5870606A (ja) Fm信号のデジタル復調器
MXPA00008266A (es) Circuitos de compensacion de seno(x)/x.
US5020104A (en) Method of reducing the useful bandwidth of bandwidth-limited signals by coding and decoding the signals, and system to carry out the method
NO303710B1 (no) FremgangsmÕte og apparat for modulasjon av en bµreb°lge ved komponenter i fase og i kvadratur samt anvendelse av fremgangsmÕten
JP3179554B2 (ja) スペクトラム拡散通信システム
RU2699819C1 (ru) Способ формирования сигналов с расширенным спектром
JPH06104943A (ja) 四相位相変調装置
CA2245072C (en) One bit digital quadrature vector modulator
JPH04331517A (ja) 信号加算装置および信号加算方法
KR0154087B1 (ko) Cpm 신호 생성 장치
US7583638B2 (en) Device and method for processing a digital data signal in a CDMA radio transmitter
JP3373654B2 (ja) 変調信号発生装置
JP3960692B2 (ja) デジタル直交変調器
JP3206773B2 (ja) ディジタル信号処理型直交変調器
JPH0851315A (ja) デジタルssb変調器およびデジタルssb変調方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800186.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 09147053

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998902264

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998902264

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1998902264

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载