+

WO1998038678A1 - Semiconductor module - Google Patents

Semiconductor module Download PDF

Info

Publication number
WO1998038678A1
WO1998038678A1 PCT/DE1998/000502 DE9800502W WO9838678A1 WO 1998038678 A1 WO1998038678 A1 WO 1998038678A1 DE 9800502 W DE9800502 W DE 9800502W WO 9838678 A1 WO9838678 A1 WO 9838678A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal carrier
carrier plate
semiconductor module
module according
substrates
Prior art date
Application number
PCT/DE1998/000502
Other languages
German (de)
French (fr)
Inventor
Jürgen GÖTTERT
Martin Hierholzer
Original Assignee
Eupec Europäische Gesellschaft Für Leistungshalbleiter Mbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eupec Europäische Gesellschaft Für Leistungshalbleiter Mbh + Co. Kg filed Critical Eupec Europäische Gesellschaft Für Leistungshalbleiter Mbh + Co. Kg
Publication of WO1998038678A1 publication Critical patent/WO1998038678A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
    • H01L25/072Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • the invention relates to a semiconductor module consisting of a metal carrier plate with an upper surface and a lower surface, a heat sink on which the metal carrier plate is fastened via its lower surface, at least one heat-conducting and electrically insulating substrate which is fastened to the upper surface of the metal carrier plate, as well as several semiconductor components which are applied to the substrate.
  • Such semiconductor modules are generally known. In order to protect semiconductor modules from being destroyed by heat loss, good heat-conductive contact between the metal carrier plates and the heat sinks is required.
  • the metal carrier plate of the semiconductor module is designed as a convexly curved surface — preferably as a spherical surface — with respect to the flat surface of the heat sink, so that when the metal carrier plate is laterally fixed to the heat sink in question, the metal carrier plate is pressed and fixed to the heat sink under mechanical tension becomes.
  • this convex design of the metal carrier plate has proven to be advantageous.
  • the cause of these negative mechanical stresses when mounting on the flat heat sink is due, among other things, to the very different coefficients of thermal expansion between the used metal carrier plates and the used ceramic substrates.
  • the thermal expansion coefficients of metals and ceramics are very different, so that the heat which occurs when the ceramic substrates are soldered to the metal carrier plates causes the ceramic and the metal carrier plate to expand to different extents.
  • this object is achieved by a semiconductor module of the type mentioned at the outset, which is characterized in that one or more predetermined bending points are introduced into the metal carrier plate.
  • a plurality of substrates which are preferably metallized on both sides, on the one hand to facilitate assembly on the metal carrier plate and on the other hand to be able to apply the semiconductor components in a structured manner, are fastened to the upper surface of the metal carrier plate.
  • a solder In order to keep the difference in temperature as small as possible during the soldering process and after the assembly has cooled, a solder must be used which has a low melting temperature, but on the other hand not so low that the heat loss which occurs later when the semiconductor module is in operation causes the solder to melt . Melting temperatures of approx. 180 ° C are common. However, this measure is no longer sufficient if larger ceramic substrates are to be used, since the ceramic substrate lengths 1 are also proportional to the relationship for the difference in the linear expansion of two different materials. It is therefore very favorable to use several smaller ceramic substrates instead of a single large ceramic substrate, so that the length 1 can be dimensioned as desired. Gaps are then typically provided between the individual ceramic substrates. However, it is also conceivable for the individual ceramic substrates to be soldered onto the metal carrier plate in abutting fashion.
  • the lower surface of the metal carrier plate convex, in particular so convex that the lower surface of the metal carrier plate corresponds to a spherical surface in the longitudinal and transverse directions.
  • the predetermined bending points are typically introduced into the surfaces of the metal carrier plate.
  • the predetermined bending points are introduced into the lower surface.
  • the predetermined bending points are introduced in the areas corresponding to the gaps and / or in the areas of the surfaces lying approximately below the edges of the substrates.
  • grooves are provided as predetermined bending points, which then simultaneously into the surfaces in the longitudinal direction, in the transverse direction or in the longitudinal direction and transverse direction of the metal carrier plates are introduced.
  • other depressions into the surfaces of the metal carrier plates instead of the grooves, for example individual local notches or bores.
  • the metal carrier plates with slots instead of such bores, notches or grooves. It is essential that the metal carrier plates are prepared in such a way that their bending rigidity is reduced.
  • FIG. 1 shows a section through a semiconductor module according to the present invention in a schematic representation
  • FIG. 2 shows a top view of a semiconductor module
  • Figure 3 is a plan view of an alternative semiconductor module.
  • the basic structure of a semiconductor module 1 shown in FIG. 1 consists of a metal carrier plate 2 made of copper, three substrates 4 made of Al 2 O 3 ceramic applied by means of a soft solder layer, on which the actual semiconductor components 6 are fastened by means of a further solder layer 5.
  • the metal carrier plate 2 has an upper surface 11 and a lower surface 10.
  • the lower surface 10 of the metal carrier plate 2 rests on a heat sink 8 and is screwed onto the heat sink 8 by means of screws 9.
  • the metal carrier plate 2 has a lower surface 10 which is convex with respect to the heat sink 8.
  • On the upper surface 11 there are three thermally highly conductive, electrically insulating substrates 4, between which there are gaps 13.
  • the substrates 4 are connected to the upper surface 11 of the metal carrier plate 2 by a soft solder layer 3.
  • Semiconductor components 6 are in turn attached to the top of the substrate 6 via soft solder layers 5. These can be connected to housing connections (not shown).
  • the top sides of the semiconductor components 6 are typically connected to one another via bond connections (not shown).
  • the mechanical stresses between the ceramic substrates 4 and the metal carrier plate 2 are significantly reduced during assembly on the heat sink 8.
  • the grooves in the exemplary embodiment shown can absorb excess thermal paste, since they are located in the lower surface 10 of the metal carrier plate 2, so that a further improvement in the transitional heat resistance can be achieved.
  • the metal carrier plate 2 has a much greater length than its width, a convex deformation in the longitudinal direction may not be sufficient.
  • the transverse dimensions of which are quite large and are, for example, in the size of the transverse dimensions convex deformation in both the longitudinal and transverse directions is very advantageous.
  • the metal carrier plate 2 typically has the shape of a spherical cap.
  • the metal carrier plate 2 has a length of 187 mm and a width of 137 mm. Its thickness is 5 mm.
  • two grooves at a distance of 57 mm from one another then run symmetrically on the lower surface of the metal carrier plate in the transverse direction.
  • the opening angle of the grooves is expediently 60 °, it being shown that smaller opening angles can lead to insufficient elasticity and larger opening angles can break the metal carrier plate during processing.
  • Such a metal carrier plate is then attached to the heat sink, for example by eight screws.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The invention relates to semiconductor modules (1) comprising a metal support plate (2) a heat dissipator (8), at least one ceramic substrate (4) and several semiconductor elements (6). By introducing defined elastic points known as desired flexion points in the metal support plate (2) the mechanical tensions between the ceramic substrates and the metal support plate are substantially reduced during assembly on the cooling body. Transition heat resistance can thus be drastically reduced especially for convex shaped metal support plates without damaging the ceramic substrates during assembly.

Description

Beschreibungdescription
HalbleitermodulSemiconductor module
Die Erfindung betrifft ein Halbleitermodul bestehend aus einer Metallträgerplatte mit einer oberen Oberfläche und einer unteren Oberfläche, einem Kühlkörper, auf dem die Metallträgerplatte über ihre untere Oberfläche befestigt ist, zumindest einem wärmeleitenden und elektrisch isolierenden Substrat, das auf die obere Oberfläche der Metallträgerplatte befestigt ist, sowie mehreren Halbleiterbauelementen, die auf das Substrat aufgebracht sind.The invention relates to a semiconductor module consisting of a metal carrier plate with an upper surface and a lower surface, a heat sink on which the metal carrier plate is fastened via its lower surface, at least one heat-conducting and electrically insulating substrate which is fastened to the upper surface of the metal carrier plate, as well as several semiconductor components which are applied to the substrate.
Solche Halbleitermodule sind allgemein bekannt. Um Halbleitermodule vor Zerstörung durch entstehende Verlustwärme zu schützen, ist ein guter wärmeleitfähiger Kontakt der Metallträgerplatten zu den Kühlkörpern erforderlich.Such semiconductor modules are generally known. In order to protect semiconductor modules from being destroyed by heat loss, good heat-conductive contact between the metal carrier plates and the heat sinks is required.
Typischerweise ist die Metallträgerplatte des Halbleitermo- duls bezogen auf die ebene Oberfläche des Kühlkörpers als konvex gewölbte Fläche -vorzugsweise als Kugeloberfläche- ausgebildet, so daß bei seitlicher Fixierung der Metallträgerplatte auf den betreffenden Kühlkörper die Metallträgerplatte unter mechanischer Spannung an den Kühlkörper ange- preßt und fixiert wird. Zur Reduzierung des Übergangswärmewiderstandes zwischen der Metallträgerplatte und dem Kühlkörper hat sich diese konvexe Ausbildung der Metallträgerplatte als vorteilhaft erwiesen.Typically, the metal carrier plate of the semiconductor module is designed as a convexly curved surface — preferably as a spherical surface — with respect to the flat surface of the heat sink, so that when the metal carrier plate is laterally fixed to the heat sink in question, the metal carrier plate is pressed and fixed to the heat sink under mechanical tension becomes. To reduce the transition heat resistance between the metal carrier plate and the heat sink, this convex design of the metal carrier plate has proven to be advantageous.
Bei Modulen mit größeren Grundflächen entstehen aber mechanische Spannungen zwischen dem Keramiksubstrat und der Metallträgerplatte bei der Montage auf den ebenen Kühlkörper, die schlimmstenfalls zur Zerstörung der Keramiksubstrate führen.In the case of modules with larger base areas, however, mechanical stresses arise between the ceramic substrate and the metal carrier plate during assembly on the flat heat sink, which in the worst case lead to the destruction of the ceramic substrates.
Die Ursache dieser negativen mechanischen Spannungen bei der Montage auf den ebenen Kühlkörper liegt u. a. an den stark unterschiedlichen Wärmeausdehnungskoeffizienten zwischen den verwendeten Metallträgerplatten und den verwendeten Keramiksubstraten. Insbesondere sind die Wärmeausdehnungskoeffizienten von Metallen und Keramik sehr unterschiedlich, so daß die beim Verlöten der Keramiksubstrate mit den Metallträgerplat- ten auftretende Wärme dazu führt, daß sich die Keramik und die Metallträgerplatte unterschiedlich stark ausdehnen.The cause of these negative mechanical stresses when mounting on the flat heat sink is due, among other things, to the very different coefficients of thermal expansion between the used metal carrier plates and the used ceramic substrates. In particular, the thermal expansion coefficients of metals and ceramics are very different, so that the heat which occurs when the ceramic substrates are soldered to the metal carrier plates causes the ceramic and the metal carrier plate to expand to different extents.
Die Folge ist, daß nach Abkühlung der Anordnung nicht mehr eine planparallele, sondern eine, auf die Lage der Keramik- Substrate bezogen, konkav gekrümmte Metallträgerplatte vorliegt. Das bedeutet, daß ein guter Kontakt der Metallträgerplatte zum Kühlkörper nur noch an den seitlichen Flächen der Anordnung gewährleistet ist, der Mittelteil jedoch keinen oder nur schlechten Kontakt aufweist, so daß die Wärmeablei- tung unbefriedigend ist.The result is that after the arrangement has cooled, there is no longer a plane-parallel, but a concavely curved metal support plate, based on the position of the ceramic substrates. This means that good contact between the metal carrier plate and the heat sink is only guaranteed on the lateral surfaces of the arrangement, but the middle part has no or only poor contact, so that the heat dissipation is unsatisfactory.
Aufgabe der vorliegenden Erfindung ist es daher, ein Halbleitermodul der eingangs genannten Art so weiterzubilden, daß eine einfache Lötmontage möglich ist, wobei ein einwandfreier thermischer Kontakt zwischen der Metallträgerplatte und dem Kühlkörper gewährleistet bleibt .It is therefore an object of the present invention to develop a semiconductor module of the type mentioned at the outset in such a way that simple soldering installation is possible, while ensuring perfect thermal contact between the metal carrier plate and the heat sink.
Erfindungsgemäß wird diese Aufgabe durch ein Halbleitermodul der eingangs genannten Art gelöst, welches dadurch gekenn- zeichnet ist, daß in die Metallträgerplatte eine oder mehrere Sollbiegestellen eingebracht sind.According to the invention, this object is achieved by a semiconductor module of the type mentioned at the outset, which is characterized in that one or more predetermined bending points are introduced into the metal carrier plate.
Durch die Einführung von solchen Sollbiegestellen, d.h. von definierten elastischen Stellen, in die Metallträgerplatte werden die mechanischen Spannungen zwischen dem Keramiksubstrat und der Metallträgerplatte bei der Montage auf den Kühlkörper drastisch verringert. Insbesondere wird dadurch der Einsatz von konvexen Metallträgerplatten möglich, ohne daß die Gefahr besteht, daß die in den Modulen befindlichen Keramiksubstrate zerstört werden. Dadurch ist die Fertigung von Halbleitermodulen möglich, die einen sehr günstigen Übergangswärmewiderstand aufweisen. In einer Ausführungsform der vorliegenden Erfindung sind mehrere Substrate, die vorzugsweise beidseitig metallisiert sind, um einerseits die Montage auf die Metallträgerplatte zu erleichtern und andererseits die Halbleiterbauelemente strukturiert aufbringen zu können, auf die obere Oberfläche der Metallträgerplatte befestigt.The introduction of such predetermined bending points, ie of defined elastic points, into the metal carrier plate drastically reduces the mechanical stresses between the ceramic substrate and the metal carrier plate during assembly on the heat sink. In particular, this enables the use of convex metal carrier plates without the risk that the ceramic substrates located in the modules are destroyed. This makes it possible to manufacture semiconductor modules that have a very favorable transition heat resistance. In one embodiment of the present invention, a plurality of substrates, which are preferably metallized on both sides, on the one hand to facilitate assembly on the metal carrier plate and on the other hand to be able to apply the semiconductor components in a structured manner, are fastened to the upper surface of the metal carrier plate.
Die Befestigung erfolgt dabei vorzugsweise über eine Weichlotschicht. Wegen der Beziehung ΔX = Δα x ΔT x 1, bei der ΔX die Differenz der linearen Ausdehnung und Δα die Differenz der linearen Ausdehnungskoeffizienten von Keramik- substrat und Metallträgerplatte bezeichnet, sowie ΔT die Temperaturdifferenz der Anordnung zwischen Schmelztemperatur des Lots und der Raumtemperatur und 1 die Länge des aufzubringenden Keramiksubstrats, folgt, daß ein günstiges Verfahren zur Vermeidung von unerwünschten Trägerplattenverformungen darin besteht, ΔX und damit also die Parameter Δα, ΔT und 1 möglichst zu verkleinern. Δα ist allein materialabhängig und somit nicht variabel, wenn Metallträgerplatten und Keramiksubstrate verwendet werden. Um die Differenz der Temperaturen während des Lötvorgangs und nach Abkühlung der Anordnung möglichst klein zu halten, muß ein Lot verwendet werden, das eine niedrige Schmelztemperatur besitzt, andererseits jedoch nicht derart niedrig, daß die später bei Betrieb des Halbleitermoduls auftretende Verlustwärme das Lot zum Schmelzen bringt. Es sind Schmelztemperaturen von ca. 180°C üblich. Diese Maßnahme reicht jedoch nicht mehr aus, wenn größere Keramiksubstrate verwendet werden sollen, da die Keramik- substratlängen 1 ebenfalls proportional in die Beziehung für die Differenz der linearen Ausdehnung zweier unterschiedlicher Werkstoffe eingeht. Daher ist es sehr günstig, statt eines einzelnen großen Keramiksubstrats mehrere kleinere Keramiksubstrate zu verwenden, um so die Länge 1 wunschgemäß zu dimensionieren. Typischerweise sind dann zwischen den einzelnen Keramiksubstraten Lücken vorgesehen. Es ist jedoch auch denkbar, daß die einzelnen Keramiksubstrate Stoß an Stoß auf die Metallträgerplatte aufgelötet werden.The attachment is preferably carried out via a soft solder layer. Because of the relationship ΔX = Δα x ΔT x 1, where ΔX denotes the difference of the linear expansion and Δα the difference of the linear expansion coefficients of the ceramic substrate and the metal carrier plate, and ΔT the temperature difference of the arrangement between the melting temperature of the solder and the room temperature and 1 die Length of the ceramic substrate to be applied, it follows that a favorable method for avoiding undesired carrier plate deformations is to reduce ΔX and thus the parameters Δα, ΔT and 1 as much as possible. Δα is material-dependent and therefore not variable if metal carrier plates and ceramic substrates are used. In order to keep the difference in temperature as small as possible during the soldering process and after the assembly has cooled, a solder must be used which has a low melting temperature, but on the other hand not so low that the heat loss which occurs later when the semiconductor module is in operation causes the solder to melt . Melting temperatures of approx. 180 ° C are common. However, this measure is no longer sufficient if larger ceramic substrates are to be used, since the ceramic substrate lengths 1 are also proportional to the relationship for the difference in the linear expansion of two different materials. It is therefore very favorable to use several smaller ceramic substrates instead of a single large ceramic substrate, so that the length 1 can be dimensioned as desired. Gaps are then typically provided between the individual ceramic substrates. However, it is also conceivable for the individual ceramic substrates to be soldered onto the metal carrier plate in abutting fashion.
Wie eingangs erwähnt, hat es sich als besonders günstig erwiesen, die untere Oberfläche der Metallträgerplatte konvex auszubilden, insbesondere so konvex auszubilden, daß in Längs- und Querrichtung die untere Oberfläche der Metallträ- gerplatte einer Kugeloberfläche entspricht.As mentioned at the beginning, it has proven to be particularly expedient to make the lower surface of the metal carrier plate convex, in particular so convex that the lower surface of the metal carrier plate corresponds to a spherical surface in the longitudinal and transverse directions.
Es ist jedoch auch denkbar, die untere Oberfläche der Metallträgerplatte konkav auszubilden und in die Kavität zwischen der unteren Oberfläche der Metallträgerplatte und dem Kühl- körper eine Wärmeleitpaste einzufügen. Durch die Einbringung von Sollbiegestellen kann die Kavität soweit erniedrigt werden, daß trotz der Kavität und der Wärmeleitpaste immer noch ein befriedigender Übergangswärmewiderstandes erzielt werden kann.However, it is also conceivable to make the lower surface of the metal carrier plate concave and to insert a thermal paste into the cavity between the lower surface of the metal carrier plate and the heat sink. By introducing predetermined bending points, the cavity can be lowered to such an extent that a satisfactory transitional heat resistance can still be achieved despite the cavity and the heat-conducting paste.
Typischerweise werden die Sollbiegestellen in die Oberflächen der Metallträgerplatte eingebracht. Insbesondere werden die Sollbiegestellen bei einer Metallträgerplatte, deren untere Oberfläche konvex ausgebildet ist, in die untere Oberfläche eingebracht. Bei Metallträgerplatten, deren untere Oberfläche konkav ausgebildet ist, ist es zweckmäßig, die Sollbiegestellen zumindest in die obere Oberfläche der Metallträgerplatte einzubringen .The predetermined bending points are typically introduced into the surfaces of the metal carrier plate. In particular, in the case of a metal carrier plate, the lower surface of which is convex, the predetermined bending points are introduced into the lower surface. In the case of metal carrier plates, the lower surface of which is concave, it is expedient to introduce the predetermined bending points at least into the upper surface of the metal carrier plate.
In einer Weiterentwicklung der vorliegenden Erfindung werden die Sollbiegestellen in den den Lücken entsprechenden Bereichen und/oder in den in etwa unter den Rändern der Substrate liegenden Bereichen der Oberflächen eingebracht .In a further development of the present invention, the predetermined bending points are introduced in the areas corresponding to the gaps and / or in the areas of the surfaces lying approximately below the edges of the substrates.
Zweckmäßigerweise werden als Sollbiegestellen Nuten vorgesehen, die dann in Längsrichtung, in Querrichtung oder in Längsrichtung und Querrichtung zugleich in die Oberflächen der Metallträgerplatten eingebracht werden. Es ist jedoch auch denkbar anstatt der Nuten andere Vertiefungen in die Oberflächen der Metallträgerplatten einzubringen, so z.B. einzelne lokale Einkerbungen oder Bohrungen. Ferner ist denk- bar, anstatt solcher Bohrungen, Einkerbungen oder Nuten die Metallträgerplatten mit Schlitzen zu versehen. Wesentlich ist, daß die Metallträgerplatten so präpariert werden, daß ihre Biegesteifigkeit herabgesetzt wird.Expediently, grooves are provided as predetermined bending points, which then simultaneously into the surfaces in the longitudinal direction, in the transverse direction or in the longitudinal direction and transverse direction of the metal carrier plates are introduced. However, it is also conceivable to introduce other depressions into the surfaces of the metal carrier plates instead of the grooves, for example individual local notches or bores. It is also conceivable to provide the metal carrier plates with slots instead of such bores, notches or grooves. It is essential that the metal carrier plates are prepared in such a way that their bending rigidity is reduced.
Die Erfindung ist in der Zeichnung beispielsweise veranschaulicht und im nachstehenden im einzelnen anhand der Zeichnung beschrieben. Es zeigen:The invention is illustrated in the drawing, for example, and described in detail below with reference to the drawing. Show it:
Figur 1 in sche atischer Darstellung einen Schnitt durch ein Halbleitermodul gemäß der vorliegenden Erfindung,FIG. 1 shows a section through a semiconductor module according to the present invention in a schematic representation,
Figur 2 eine Draufsicht auf ein Halbleitermodul,FIG. 2 shows a top view of a semiconductor module,
Figur 3 eine Draufsicht auf ein alternatives Halbleitermodul.Figure 3 is a plan view of an alternative semiconductor module.
Der in Figur 1 dargestellte prinzipielle Aufbau eines Halbleitermoduls 1 besteht aus einer Metallträgerplatte 2 aus Kupfer, dreier mittels Weichlotschicht aufgebrachten Substraten 4 aus Al203-Keramik, auf denen, mittels einer weiteren Lotschicht 5, die eigentlichen Halbleiterbauelemente 6 befestigt sind.The basic structure of a semiconductor module 1 shown in FIG. 1 consists of a metal carrier plate 2 made of copper, three substrates 4 made of Al 2 O 3 ceramic applied by means of a soft solder layer, on which the actual semiconductor components 6 are fastened by means of a further solder layer 5.
Die Metallträgerplatte 2 weist eine obere Oberfläche 11 und eine untere Oberfläche 10 auf. Die Metallträgerplatte 2 liegt mit ihrer unteren Oberfläche 10 auf einem Kühlkörper 8 auf und wird über Schrauben 9 auf dem Kühlkörper 8 aufgeschraubt . Die Metallträgerplatte 2 hat eine bezüglich des Kühlkörpers 8 konvex ausgebildete untere Oberfläche 10. Auf der oberen Oberfläche 11 befinden sich drei thermisch gut leitende, elektrisch isolierende Substrate 4, zwischen denen Lücken 13 sind. Die Substrate 4 werden mit der oberen Oberfläche 11 der Metallträgerplatte 2 durch eine Weichlotschicht 3 verbunden. Auf der Oberseite des Substrats 6 sind wiederum über Weichlotschichten 5 Halbleiterbauelemente 6 befestigt. Diese können mit Gehäuseanschlüssen (nicht gezeigt) verbunden werden. Die Oberseiten der Halbleiterbauelemente 6 sind typi- scherweise über Bondverbindungen miteinander verbunden (nicht gezeigt) .The metal carrier plate 2 has an upper surface 11 and a lower surface 10. The lower surface 10 of the metal carrier plate 2 rests on a heat sink 8 and is screwed onto the heat sink 8 by means of screws 9. The metal carrier plate 2 has a lower surface 10 which is convex with respect to the heat sink 8. On the upper surface 11 there are three thermally highly conductive, electrically insulating substrates 4, between which there are gaps 13. The substrates 4 are connected to the upper surface 11 of the metal carrier plate 2 by a soft solder layer 3. Semiconductor components 6 are in turn attached to the top of the substrate 6 via soft solder layers 5. These can be connected to housing connections (not shown). The top sides of the semiconductor components 6 are typically connected to one another via bond connections (not shown).
In der unteren Oberfläche 10 der konvex ausgebildeten Metallträgerplatte 2 befinden sich zwei Sollbiegestellen 12, die als Nuten ausgebildet sind.In the lower surface 10 of the convex metal carrier plate 2 there are two predetermined bending points 12, which are designed as grooves.
Diese Nuten verlaufen quer zur Längsrichtung der Metallträgerplatte 2 in den den Lücken 13 entsprechenden Bereichen 14 der unteren Oberfläche 11 des Substrats 4, was aus der Figur 2 zu ersehen ist. Es ist jedoch auch denkbar, eine Nut inThese grooves run transversely to the longitudinal direction of the metal carrier plate 2 in the regions 14 of the lower surface 11 of the substrate 4 corresponding to the gaps 13, which can be seen from FIG. 2. However, it is also conceivable to have a groove in
Längsrichtung der Metallträgerplatte 2 anzuordnen (Figur 3).Arrange longitudinal direction of the metal support plate 2 (Figure 3).
Durch Einführung der Sollbiegestellen 12 in Form von Nuten in der Metallträgerplatte 2 werden die mechanischen Spannungen zwischen den Keramiksubstraten 4 und der Metallträgerplatte 2 bei den Montage auf den Kühlkörper 8 wesentlich verringert. Insbesondere ist hervorzuheben, daß die Nuten im gezeigten Ausführungsbeispiel überschüssige Wärmeleitpaste aufnehmen können, da sie sich in der unteren Oberfläche 10 der Metall- trägerplatte 2 befinden, so daß eine weitere Verbesserung des Übergangswärmewiderstandes erreicht werden kann.By introducing the predetermined bending points 12 in the form of grooves in the metal carrier plate 2, the mechanical stresses between the ceramic substrates 4 and the metal carrier plate 2 are significantly reduced during assembly on the heat sink 8. In particular, it should be emphasized that the grooves in the exemplary embodiment shown can absorb excess thermal paste, since they are located in the lower surface 10 of the metal carrier plate 2, so that a further improvement in the transitional heat resistance can be achieved.
Weist die Metallträgerplatte 2 eine wesentlich größere Länge als Breite auf, so genügt unter Umständen eine konvexe Ver- formung in der Längsrichtung nicht. Bei Metallträgerplatten, deren Querabmessungen recht groß sind und z.B. in der Größe der Querabmessungen liegen, ist eine konvexe Verformung sowohl in Längs- als auch in Querrichtung sehr vorteilhaft. Die Metallträgerplatte 2 weist in diesem Fall typischerweise die Form einer Kugelkalotte auf. In einem praktischen Ausführungsbeispiel hat die Metallträgerplatte 2 eine Länge von 187 mm und eine Breite von 137 mm. Ihre Dicke beträgt 5 mm. Typischerweise verlaufen dann zwei Nuten in einem Abstand von 57 mm zueinander symmetrisch auf der unteren Oberfläche der Metallträgerplatte in Querrichtung. Der Öffnungswinkel der Nuten beträgt zweckmäßigerweise 60°, wobei es sich gezeigt hat, daß kleinere Öffnungswinkel zu einer ungenügenden Elastizität und größere Öffnungswinkel zu einem Bruch der Metallträgerplatte bei der Verarbeitung führen können.If the metal carrier plate 2 has a much greater length than its width, a convex deformation in the longitudinal direction may not be sufficient. In the case of metal carrier plates, the transverse dimensions of which are quite large and are, for example, in the size of the transverse dimensions, convex deformation in both the longitudinal and transverse directions is very advantageous. In this case, the metal carrier plate 2 typically has the shape of a spherical cap. In a practical exemplary embodiment, the metal carrier plate 2 has a length of 187 mm and a width of 137 mm. Its thickness is 5 mm. Typically, two grooves at a distance of 57 mm from one another then run symmetrically on the lower surface of the metal carrier plate in the transverse direction. The opening angle of the grooves is expediently 60 °, it being shown that smaller opening angles can lead to insufficient elasticity and larger opening angles can break the metal carrier plate during processing.
Eine solche Metallträgerplatte wird dann beispielsweise durch acht Schrauben auf dem Kühlkörper befestigt. Such a metal carrier plate is then attached to the heat sink, for example by eight screws.

Claims

Patentansprüche claims
1. Halbleitermodul (1) bestehend aus einer Metallträgerplatte (2) mit einer oberen Oberfläche (11) und einer unteren Ober- fläche (10), einem Kühlkörper (8) auf dem die Metallträgerplatte (2) über ihre untere Oberfläche (10) befestigt ist, zumindest einem wärmeleitenden und elektrisch isolierenden Substrat (4), das auf die obere Oberfläche (11) der Metallträgerplatte (2) befestigt ist, sowie mehreren Halbleiterbau- elementen (6), die auf das Substrat (4) aufgebracht sind, d a d u r c h g e k e n n z e i c h n e t , daß in die Metallträgerplatte (2) eine oder mehrere Sollbiegestellen (12) eingebracht sind.1. Semiconductor module (1) consisting of a metal carrier plate (2) with an upper surface (11) and a lower surface (10), a heat sink (8) on which the metal carrier plate (2) is fastened via its lower surface (10) is characterized, at least one heat-conducting and electrically insulating substrate (4), which is attached to the upper surface (11) of the metal carrier plate (2), and several semiconductor components (6), which are applied to the substrate (4), that one or more predetermined bending points (12) are introduced into the metal carrier plate (2).
2. Halbleitermodul nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß mehrere Substrate (4) auf die obere Oberfläche (11) der Metallträgerplatte (2) befestigt sind.2. Semiconductor module according to claim 1, that a plurality of substrates (4) are fastened to the upper surface (11) of the metal carrier plate (2).
3. Halbleitermodul nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß zwischen den Substraten (4) Lücken (13) vorgesehen sind.3. Semiconductor module according to claim 2, d a d u r c h g e k e n e z e i c h n e t that gaps (13) are provided between the substrates (4).
4. Halbleitermodul nach einem der Ansprüche 1 bis 3 , d a d u r c h g e k e n n z e i c h n e t , daß die untere Oberfläche (10) der Metallträgerplatte (2) konvex ausgebildet ist.4. Semiconductor module according to one of claims 1 to 3, d a d u r c h g e k e n n z e i c h n e t that the lower surface (10) of the metal carrier plate (2) is convex.
5. Halbleitermodul nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß die Konvexität in Längs- und Querrichtung derart ausgebildet ist, daß sie einer Kugeloberfläche entspricht.5. Semiconductor module according to claim 4, d a d u r c h g e k e n n z e i c h n e t that the convexity in the longitudinal and transverse directions is designed such that it corresponds to a spherical surface.
6. Halbleitermodul nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß die Sollbiegestellung (12) in die untere Oberfläche (10) der Metallträgerplatte (2) eingebracht sind. 6. Semiconductor module according to claim 5, characterized in that the predetermined bending position (12) in the lower surface (10) of the metal carrier plate (2) are introduced.
7. Halbleitermodul nach Anspruch 5 oder 6, d a d u r c h g e k e n n z e i c h n e t , daß die Sollbiegestellen (12) in den den Lücken (13) entsprechenden Be- reichen (14) der unteren Oberfläche (10) eingebracht sind.7. The semiconductor module as claimed in claim 5 or 6, so that the predetermined bending points (12) are introduced into the areas (14) of the lower surface (10) corresponding to the gaps (13).
8. Halbleitermodul nach Anspruch 5 oder 6, d a d u r c h g e k e n n z e i c h n e t , daß die Sollbiegestellen (12) in den in etwa unter den Rändern (16) der Substrate (4) liegenden Bereichen der unteren Oberfläche (10) eingebracht sind.8. The semiconductor module as claimed in claim 5 or 6, so that the predetermined bending points (12) are introduced in the regions of the lower surface (10) lying approximately below the edges (16) of the substrates (4).
9. Halbleitermodul nach einem der Ansprüche 5 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß als Soll- biegesteilen (12) Nuten (15) vorgesehen sind.9. Semiconductor module according to one of claims 5 to 8, d a d u r c h g e k e n n z e i c h n e t that as predetermined bending parts (12) grooves (15) are provided.
10. Halbleitermodul nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß die Substrate (4) auf die Metallträgerplatte (2) über eine Weichlotschicht (3) befestigt sind.10. Semiconductor module according to one of claims 1 to 9, that the substrates (4) are attached to the metal carrier plate (2) via a soft solder layer (3).
11. Halbleitermodul nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß die Halbleiterbauelemente (6) über eine weitere Lotschicht (5) auf die Substrate (4) befestigt sind.11. The semiconductor module according to one of claims 1 to 10, that the semiconductor components (6) are attached to the substrates (4) via a further solder layer (5).
12. Halbleitermodul nach einem der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t , daß die Metallträgerplatte (2) auf den Kühlkörper (8) mit Schrauben (9) befestigt sind.12. Semiconductor module according to one of claims 1 to 11, d a d u r c h g e k e n n z e i c h n e t that the metal carrier plate (2) on the heat sink (8) with screws (9) are attached.
13. Halbleitermodul nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß als Substrate (4) Keramiksubstrate vorgesehen sind, insbesondere A1203- oder AlN-Substrate . 13. Semiconductor module according to one of claims 1 to 12, characterized in that ceramic substrates are provided as substrates (4), in particular A1 2 0 3 - or AlN substrates.
14. Halbleitermodul nach einem der Ansprüche 1 bis 13, d a d u r c h g e k e n n z e i c h n e t , daß als Metallträgerplatte eine Kupferplatte vorgesehen ist. 14. Semiconductor module according to one of claims 1 to 13, d a d u r c h g e k e n n z e i c h n e t that a copper plate is provided as the metal carrier plate.
PCT/DE1998/000502 1997-02-25 1998-02-19 Semiconductor module WO1998038678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1997107514 DE19707514C2 (en) 1997-02-25 1997-02-25 Semiconductor module
DE19707514.2 1997-02-25

Publications (1)

Publication Number Publication Date
WO1998038678A1 true WO1998038678A1 (en) 1998-09-03

Family

ID=7821421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000502 WO1998038678A1 (en) 1997-02-25 1998-02-19 Semiconductor module

Country Status (2)

Country Link
DE (1) DE19707514C2 (en)
WO (1) WO1998038678A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709511B2 (en) 1998-09-02 2004-03-23 Memc Electronic Materials, Inc. Process for suppressing oxygen precipitation in vacancy dominated silicon
US9159639B2 (en) 2011-07-07 2015-10-13 Semikron Elektronik Gmbh & Co., Kg Power electronic system with a cooling device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914815A1 (en) * 1999-03-31 2000-10-05 Abb Research Ltd Semiconductor module
WO2001008219A1 (en) * 1999-07-23 2001-02-01 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Semiconductor module
DE19942915A1 (en) * 1999-09-08 2001-03-15 Still Gmbh Power semiconductor module
DE10064979C1 (en) * 2000-12-18 2002-02-28 Dieter Loewer Semiconductor circuit device has base plate mounted on heat sink provided with stamped-out sections supporting mounting substrates for semiconductor components
DE10142971A1 (en) 2001-09-01 2003-03-27 Eupec Gmbh & Co Kg The power semiconductor module
WO2003071601A2 (en) * 2002-02-18 2003-08-28 Infineon Technologies Ag Circuit module and method for the production thereof
DE10333329B4 (en) * 2003-07-23 2011-07-21 SEMIKRON Elektronik GmbH & Co. KG, 90431 Power semiconductor module with rigid base plate
EP1672692B1 (en) * 2004-12-16 2015-01-07 ABB Research Ltd Power semiconductor module
US7696532B2 (en) 2004-12-16 2010-04-13 Abb Research Ltd Power semiconductor module
EP1825511B1 (en) * 2004-12-17 2011-11-23 Siemens Aktiengesellschaft Semiconductor switching module
TWI302821B (en) * 2005-08-18 2008-11-01 Ind Tech Res Inst Flexible circuit board with heat sink
DE102005061772B4 (en) * 2005-12-23 2017-09-07 Danfoss Silicon Power Gmbh The power semiconductor module
DE102006011995B3 (en) * 2006-03-16 2007-11-08 Semikron Elektronik Gmbh & Co. Kg Power semiconductor module, has base plate connected with substrate in material-coherent manner, and contact layer of substrate divided into segments for providing material-coherent connection with base plate
DE102006045939B4 (en) * 2006-09-28 2021-06-02 Infineon Technologies Ag Power semiconductor module with improved stability against temperature changes
US7808100B2 (en) 2008-04-21 2010-10-05 Infineon Technologies Ag Power semiconductor module with pressure element and method for fabricating a power semiconductor module with a pressure element
US8237260B2 (en) 2008-11-26 2012-08-07 Infineon Technologies Ag Power semiconductor module with segmented base plate
DE102009002191B4 (en) 2009-04-03 2012-07-12 Infineon Technologies Ag Power semiconductor module, power semiconductor module assembly, and method of making a power semiconductor module assembly
EP2447990B1 (en) * 2010-11-02 2020-12-23 ABB Power Grids Switzerland AG Base plate
EP4036967B1 (en) * 2011-06-27 2024-03-13 Rohm Co., Ltd. Semiconductor module
DE102011078806B4 (en) 2011-07-07 2014-10-30 Semikron Elektronik Gmbh & Co. Kg Manufacturing method for a power electronic system with a cooling device
DE102012201172B4 (en) * 2012-01-27 2019-08-29 Infineon Technologies Ag Method for producing a power semiconductor module with embossed base plate
AT14114U1 (en) * 2013-09-20 2015-04-15 Mikroelektronik Ges Mit Beschränkter Haftung Ab Support plate for a power electronics module
US9929066B1 (en) 2016-12-13 2018-03-27 Ixys Corporation Power semiconductor device module baseplate having peripheral heels

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853762A (en) * 1986-03-27 1989-08-01 International Rectifier Corporation Semi-conductor modules
DE4411858A1 (en) * 1993-04-08 1994-11-03 Fuji Electric Co Ltd Conductive contact structure for two conductors
DE4338107C1 (en) * 1993-11-08 1995-03-09 Eupec Gmbh & Co Kg Semiconductor module
EP0661748A1 (en) * 1993-12-28 1995-07-05 Hitachi, Ltd. Semiconductor device
JPH07202063A (en) * 1993-12-28 1995-08-04 Toshiba Corp Ceramic circuit board
US5530289A (en) * 1993-10-14 1996-06-25 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3915707A1 (en) * 1989-05-13 1990-11-22 Asea Brown Boveri PLASTIC HOUSING AND PERFORMANCE SEMICONDUCTOR MODULE WITH THIS HOUSING

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853762A (en) * 1986-03-27 1989-08-01 International Rectifier Corporation Semi-conductor modules
DE4411858A1 (en) * 1993-04-08 1994-11-03 Fuji Electric Co Ltd Conductive contact structure for two conductors
US5530289A (en) * 1993-10-14 1996-06-25 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
DE4338107C1 (en) * 1993-11-08 1995-03-09 Eupec Gmbh & Co Kg Semiconductor module
EP0661748A1 (en) * 1993-12-28 1995-07-05 Hitachi, Ltd. Semiconductor device
JPH07202063A (en) * 1993-12-28 1995-08-04 Toshiba Corp Ceramic circuit board
US5672848A (en) * 1993-12-28 1997-09-30 Kabushiki Kaisha Toshiba Ceramic circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709511B2 (en) 1998-09-02 2004-03-23 Memc Electronic Materials, Inc. Process for suppressing oxygen precipitation in vacancy dominated silicon
US9159639B2 (en) 2011-07-07 2015-10-13 Semikron Elektronik Gmbh & Co., Kg Power electronic system with a cooling device

Also Published As

Publication number Publication date
DE19707514C2 (en) 2002-09-26
DE19707514A1 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
DE19707514C2 (en) Semiconductor module
DE4338107C1 (en) Semiconductor module
DE4318241C2 (en) Metal coated substrate with improved resistance to thermal shock
EP1982355B1 (en) Power electronics assembly
DE10033977B4 (en) Interconnect structure for using semiconductor chips on substrates
EP0124029B1 (en) Well-coolable modular circuit carrying an electrical component
DE68927105T2 (en) MICRO-MELT FUSE SOLDERED TO A WIRE
DE68920469T2 (en) Electronic pack.
DE102012201172B4 (en) Method for producing a power semiconductor module with embossed base plate
EP0135120B1 (en) Ceramic-metallic element
DE102004021075A1 (en) Semiconductor component and method for its production
WO2002058142A2 (en) Power module
WO2001008219A1 (en) Semiconductor module
EP0805492A2 (en) Curved metal ceramic substrate
DE3940933A1 (en) METHOD FOR DEFORMING BASE PANELS
DE2109191A1 (en) Semiconductor component and method for its manufacture
DE4444680A1 (en) Multilayer substrate esp. for power semiconductor component
EP0632684B1 (en) Process for manufacturing metal-ceramic substrate
DE102015114522A1 (en) A method of soldering a first soldering partner to a second soldering partner using spacers
DE3922485C1 (en)
DE19614501C2 (en) Process for producing a ceramic-metal substrate and ceramic-metal substrate
DE19615481C5 (en) Arched metal-ceramic substrate
DE19609929B4 (en) The power semiconductor module
EP0938748B1 (en) Power connection for power semiconductor component
DE10134187A1 (en) Cooler for power semiconductor components and modules with individual cooling elements in two-dimensional matrix

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998537165

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载