WO1998037583A1 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor device Download PDFInfo
- Publication number
- WO1998037583A1 WO1998037583A1 PCT/JP1998/000599 JP9800599W WO9837583A1 WO 1998037583 A1 WO1998037583 A1 WO 1998037583A1 JP 9800599 W JP9800599 W JP 9800599W WO 9837583 A1 WO9837583 A1 WO 9837583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- forming
- layer
- semiconductor
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 128
- 238000004519 manufacturing process Methods 0.000 title claims description 65
- 238000000034 method Methods 0.000 title claims description 53
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 36
- 238000000576 coating method Methods 0.000 claims abstract description 10
- 239000007769 metal material Substances 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 93
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 30
- 239000012535 impurity Substances 0.000 claims description 29
- 229910052721 tungsten Inorganic materials 0.000 claims description 22
- 239000010937 tungsten Substances 0.000 claims description 22
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 21
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 20
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 20
- 230000003647 oxidation Effects 0.000 claims description 17
- 238000007254 oxidation reaction Methods 0.000 claims description 17
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 16
- 238000002955 isolation Methods 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 13
- 238000005468 ion implantation Methods 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 9
- 239000011229 interlayer Substances 0.000 claims description 9
- 229910021332 silicide Inorganic materials 0.000 claims description 9
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 9
- 238000000059 patterning Methods 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 239000000470 constituent Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 claims 1
- 238000001312 dry etching Methods 0.000 abstract description 14
- 239000000356 contaminant Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000003754 machining Methods 0.000 abstract 1
- 229920005591 polysilicon Polymers 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 8
- -1 arsenic ions Chemical class 0.000 description 6
- 238000001459 lithography Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 241000257465 Echinoidea Species 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910021342 tungsten silicide Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 2
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 1
- 241000293849 Cordylanthus Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 210000003323 beak Anatomy 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28035—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
- H01L21/28044—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
- H01L21/28061—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/661—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation
- H10D64/662—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation the conductor further comprising additional layers, e.g. multiple silicon layers having different crystal structures
- H10D64/664—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation the conductor further comprising additional layers, e.g. multiple silicon layers having different crystal structures the additional layers comprising a barrier layer between the layer of silicon and an upper metal or metal silicide layer
Definitions
- the present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device including a MISFET using a semiconductor or a metal material as a gate electrode.
- a conventional polycrystalline structure was formed by forming a gate electrode into a laminated structure composed of polycrystalline silicon, a metal nitride film, and a metal film. Proposals have been made to reduce the resistance of the gate electrode while maintaining the reliability of the gate oxide film in the case of silicon gate.
- titanium nitride is used as the barrier layer, and a metal film for lowering resistance, for example, a laminated film made of tungsten is used. It is difficult to select a chemical solution for cleaning the source / drain formation surface after electrode pattern application.
- thermal oxidation treatment is performed to recover the dry etch damage received by the gate oxide film in the gate etch portion, titanium nitride becomes abnormally oxidized, and the gate electrode becomes phthalate, or the titanium nitride and the tungsten are removed. There is a problem that is peeled off.
- the gate under the gate electrode is used.
- the issue is how to recover the dry etch damage of the oxide film (measure against insulation failure).
- an object of the present invention is to provide a method of manufacturing a semiconductor device having a low-resistance gate electrode and capable of improving reliability.
- Another object of the present invention is to provide a method for manufacturing a semiconductor device which has a gate electrode of low resistance, is fine and can improve reliability.
- Still another object of the present invention is to provide a method for manufacturing a semiconductor device suitable for high speed and high integration. Disclosure of the invention
- a gate electrode formed of a conductive laminate in which the lowermost layer is a semiconductor layer and another conductive film containing a metal material (metal film) for reducing resistance is laminated on the semiconductor layer
- the processing (pattern etch) of the lower layer the etching of the lowermost semiconductor layer is stopped halfway and left thinly, and the side wall of the upper conductive laminated film is covered with an insulating first side wall film.
- the thinned lowermost semiconductor layer is etched, cleaned, and thermally oxidized to improve the reliability by recovering the dry etching damage of the gate oxide film in the gate edge portion.
- Etching of the semiconductor film that will become the gate electrode is performed so that the semiconductor film remains, and an insulating film is provided on the sidewall of the etched semiconductor film to protect the gate edge from cleaning, wet etching, and the like. It is possible to do.
- a gate electrode structure in which a gate electrode is formed by laminating a semiconductor film and a metal film it becomes possible to prevent abnormal oxidation of the metal film and separation of the metal films during thermal oxidation treatment.
- the semiconductor film of the gate electrode is preferably etched so that the thickness of the semiconductor film remains at least 5 nm.
- a gate electrode in which a semiconductor film and a metal film are stacked it is not always necessary to stop the etching of the semiconductor film in the middle, and the gate electrode is formed on the side wall of the gate electrode, for example, at the interface between the semiconductor film and the metal film.
- the etching of the gate electrode may be stopped, and an insulating film may be formed on the side wall of the etched film.
- a first impurity layer is formed in the semiconductor substrate in a self-aligned manner with respect to the first side wall film.
- a groove having a desired depth is formed in a selected area of the main surface of the semiconductor substrate, and an insulating film is formed on the main surface of the semiconductor substrate including the groove.
- the present invention it is possible to easily perform a process of recovering damage to a gate oxide film in a metal-contaminated ⁇ gate-etched portion) after processing the gate electrode, which is a problem when forming a gate electrode having a laminated structure including a metal.
- the gate electrode resistance can be drastically reduced without increasing the junction leakage current due to metal contamination and without deteriorating the reliability of the gate oxide film.
- the use of the SAC and the group isolation enables a miniaturized MOSFET structure to be achieved and a highly integrated semiconductor device to be obtained.
- FIG. 1 is a fragmentary cross-sectional view showing a manufacturing step of a semiconductor device according to one embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a principal part showing a manufacturing step of the semiconductor device, following FIG. 1;
- FIG. 3 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 2;
- FIG. 4 is a fragmentary cross-sectional view following FIG. 3 showing the semiconductor device manufacturing process.
- FIG. 5 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 4;
- FIG. 6 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 5;
- FIG. 5 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 5;
- FIG. 5 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 5;
- FIG. 5 is a fragmentary cross-section
- FIG. 7 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. FIG. 8 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG.
- FIG. 9 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG.
- FIG. 10 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 9
- FIG. 11 is a fragmentary cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 1.0.
- FIG. 12 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 11
- FIG. 13 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 12;
- FIG. 12 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 12;
- FIG. 14 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 13;
- FIG. 15 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 14;
- FIG. 16 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 15;
- FIG. 17 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 16;
- FIG. 18 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 17;
- FIG. 19 is a fragmentary cross-sectional view showing a manufacturing step of a semiconductor device according to another embodiment of the present invention.
- FIG. 20 is a semi-continuation of Figure 19 It is principal part sectional drawing which shows the manufacturing process of a body device.
- FIG. 21 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 20;
- FIG. 22 is a cross-sectional view of a principal part showing a manufacturing step of the semiconductor device, following FIG. 21;
- FIG. 23 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG.
- FIG. 24 is a cross-sectional view of the principal part showing the manufacturing process of the semiconductor device, following FIG.
- FIG. 25 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. 24.
- FIG. 21 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 20
- FIG. 22 is a cross-sectional view of a principal part showing a manufacturing step of the semiconductor device, following FIG. 21
- FIG. 23 is a cross-sectional
- FIG. 26 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 25;
- FIG. 27 is a cross-sectional view of a principal part showing a manufacturing step of a semiconductor device, following FIG. 26.
- FIG. 28 is a cross-sectional view of a principal part showing a manufacturing step of the semiconductor device, following FIG. 27.
- FIG. 29 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG.
- FIG. 30 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. 29.
- FIG. 31 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 30;
- FIG. 30 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 30;
- FIG. 32 is a cross-sectional view of a principal part showing a manufacturing step of a semiconductor device, following FIG.
- FIG. 33 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. 32.
- FIG. 34 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. 33.
- FIG. 35 is a cross-sectional view of the principal part showing the manufacturing process of the semiconductor device, following FIG. FIG. 36 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 35; BEST MODE FOR CARRYING OUT THE INVENTION
- FIGS. 1 to 18 A first embodiment of the present invention will be described with reference to FIGS. 1 to 18.
- a selective oxide film 102 for isolation is formed on a P-type single crystal Si substrate 101 by a normal selective oxidation method (LOCOS technology). I do.
- This selective oxide film is formed to a thickness of, for example, 30 Onm.
- a gate oxide film 103 having a thickness of about 5 nm was formed on the surface of the Si substrate 101 partitioned by the selective oxide film by a thermal oxidation method.
- a 5 nm thick Si (polycrystalline silicon) film 104 is formed on the gate oxide film 103 by low pressure chemical vapor deposition.
- a 20 nm-thick titanium nitride film 105 as a Si film 104 barrier layer is deposited by sputtering.
- a low-resistance metal material having a high melting point that can withstand heat treatment for example, a tungsten film 106 is deposited on the titanium nitride film 105 to a thickness of 100 nm by sputtering.
- a silicon nitride film 107 having a thickness of 150 nm is formed on the surface of the tungsten film 106. It is formed by low pressure chemical vapor deposition.
- the resist 108 is patterned by a lithography technique.
- the silicon nitride film 107, the tungsten film 106, and the titanium nitride film 105 were sequentially processed by dry etching using the resist 108 as a mask.
- the lowermost Si film 104 On the other hand, etching of about 20 nm was performed, and after removing the resist mask, the shape shown in FIG. 4 was obtained.
- cleaning with an organic cleaning solution is performed for the purpose of removing contaminants such as dry etching residues.
- a silicon nitride film 109 having a thickness of 10 to 20 nm is deposited by low pressure chemical vapor deposition.
- the silicon nitride film is formed on the polycrystalline silicon film 104 and on the side walls of the gate, but the polycrystalline silicon film is oxidized to form an oxide film to protect the gate edge portion. You may.
- the cap layer patterned by performing anisotropic etching by dry etching technology.
- the first insulating side wall coating 11 made of, for example, oxidation-resistant silicon nitride is formed on the side walls of (107) and the gate electrodes (106, 105, and a part of 104). 0, a so-called side wall film is formed.
- a gate electrode is formed by completely patterning the Si film 104 using the cap layer and the insulating side wall film 110 of the side wall as a mask.
- the oxide film 103 is removed by cleaning with a mixed solution of ammonia and hydrogen peroxide and wet etching with a dilute hydrofluoric acid aqueous solution.
- the oxide film 103 is slightly etched.
- the cleaning means usually used in an LSI process including a hydrofluoric acid aqueous solution treatment is made of metal. It can be used while avoiding problems such as elution of water.
- the thermal oxide film 1 1 1 is Ri by the thermal oxidation in a dry ⁇ 2 atmosphere was 5 nm grown on the substrate.
- the thermal oxidation at this time since the titanium nitride 105 and the tungsten film 106 are covered with the first insulating sidewall film 110 and the cap layer 107 which are oxidation-resistant, Since the material exposed to the silicon nitride film and silicon is limited to silicon nitride film and silicon, it can be easily performed without the problem of blistering and peeling as in the conventional case described above.
- arsenic ions are implanted by ion implantation to match the first insulating side wall film 110 to form a first N-type impurity layer 112. I do.
- the ion implantation energy is 15 KeV
- the implantation concentration is 2 ⁇ 10 13 atoms / cm 2 .
- a silicon nitride film 113 having a thickness of 50 to 100 nm is deposited by low pressure chemical vapor deposition.
- a second insulating sidewall film 114 is obtained by performing anisotropic dry etching.
- a second N-type impurity layer 115 is formed by implanting phosphorus ions by ion implantation in alignment with the second insulating side wall film 114.
- the ion implantation energy is 25 to 30 KeV, and the implantation concentration is 5 ⁇ 10 14 atomscm 2 . Therefore, the second N-type impurity layer 115 is formed as a contact region deeper than the first N-type impurity layer 114.
- the SiO 2 insulating film 1 serving as an interlayer insulating film between wirings was formed. 16 is formed by the plasma CVD technique. This SiO 2 -based insulating film 116 has a thickness of about 300 nm.
- a resist 117 is patterned on the SiO 2 -based insulating film 116 by using a lithography technique.
- SAC Se1fA1ign Contact
- a conductor layer of aluminum and silicon was used as a conductor layer on the opening and on the top of the Si 2 -based insulating film 116 by a Snotter method. Is deposited to a thickness of 200 to 250 nm. For this conductive layer, a refractory metal such as tungsten or a refractory metal silicide can be applied.
- the conductive layer 118 is processed according to a desired wiring pattern by using lithography and dry etching techniques to form a wiring layer 119.
- the conductive layer 118 can be formed as a plug electrode (electrode structure embedded in the opening) to be a structure optimal for a multilayer wiring structure having flattening.
- the gate electrode structure is a polycrystalline silicon / titanium nitride (barrier layer of polycrystalline silicon and tungsten) Z tungsten from the lower layer.
- other gate electrode structures such as polycrystalline silicon non-crystalline silicon silicide (metal silicide film) and polycrystalline silicon Z nitride titanium nitride (metal nitride film) are used.
- metal silicide film When forming polycrystalline silicon Z tungsten silicide (metal silicide film), after forming the polycrystalline silicon film, a metal film made of tungsten is deposited on the polycrystalline silicon film. Then, by performing the heat treatment, a tungsten silicide (metal silicide film) can be easily formed.
- Example 1 a selective oxidation method (LOCOS technology) was employed as an isolation region for separation between a plurality of MOS FETs (elements).
- LOCOS technology a selective oxidation method
- a bird's beak is generated at the end of the selective oxide film, and it is a problem to miniaturize the element, particularly to obtain a MOSFET having a uniform gate oxide film of 5 nm or less.
- the second embodiment shown in FIGS. 19 to 34 has a thickness of 10 nm or less, In particular, it is easy to obtain a MOS FET having a gate oxide film with a thickness of 3 to 5 nm, and it solves the conventional problems.
- the present embodiment is a method of manufacturing a semiconductor device in the case where the groove isolation technology is used as the isolation.
- a thermal oxide film 202 with a thickness of 1 O nm is formed on the silicon substrate 201, and a silicon oxide with a thickness of 150 nm is formed on the thermal oxide film 202.
- a nitride film 203 is formed.
- a resist 204 for forming an isolation is buttered by a lithographic technique.
- the silicon nitride film 203, the thermal oxide film 202, and the silicon substrate 201 are etched by dry-etching technology using the resist as a mask.
- a groove (depth about 0.3111) is formed in the portion where the solution is to be formed.
- the silicon nitride film 203 is flattened as a polishing stopper using a so-called CMP (Chemical Mechanical Polishing) technique. Groove isolation is obtained by chemical modification. In this case, a parse beak unlike the above embodiment is not formed.
- CMP Chemical Mechanical Polishing
- the group isolation (G (Roove Isolation)
- a gate oxide film 207 having a thickness of about 3 to 5 nm is formed on the surface of the Si substrate 201 partitioned by the GI by a thermal oxidation method.
- a 50 nm thick Si (polycrystalline silicon) film 20 was formed on the good oxide film 207 by a low pressure chemical vapor deposition method.
- Form 8 a titanium nitride film 209 having a thickness of 200 nm and a tungsten film 210 having a thickness of 100 nm are deposited by a sputtering method. Then, a silicon nitride film 211 having a thickness of 150 ⁇ m is formed on the surface of the tungsten film 210 by a low pressure chemical vapor deposition method. Then, the resist 2 12 is patterned by lithography technology.
- the silicon nitride film 211, the tungsten nitride film 210, and the titanium nitride film 209 were processed by dry etching using the resist 212 as a mask.
- the underlying Si film 208 was also etched by about 20 ⁇ m to obtain the shape shown in FIG. 26 after removing the resist mask.
- cleaning with an organic cleaning solution was performed to remove contaminants such as dry etching residues.
- a silicon nitride film is formed on the side walls of the cap layer (211) and the gate electrodes (parts of 210, 209 and 208).
- a first insulating sidewall film 2 13 was formed.
- the first insulating side wall film 2 13 is formed by first depositing a silicon nitride film having a thickness of 10 to 20 nm by low pressure chemical vapor deposition as in Example 1, and then performing dry etching. It is formed by performing anisotropic etching by technology.
- the cap layer (211) and The gate electrode was formed by completely patterning the Si film 208 using the first insulating sidewall film 213 as a mask. Further, the oxide film 207 was removed by washing with a mixed solution of ammonia and hydrogen peroxide and dilute hydrofluoric acid aqueous solution.
- the cleaning means usually used in an LSI process such as a hydrofluoric acid aqueous solution treatment is used to elute metal. Can be used while avoiding such problems.
- a thermal oxide film 2 14 was placed on the substrate at 850 ° C and a dry O 2 atmosphere for the purpose of modifying the gate oxide film in the gate portion. 5 nm was grown.
- the modification treatment by the thermal oxidation method can be easily performed because the material exposed on the surface is limited to the silicon nitride film and silicon.
- arsenic ions are implanted by ion implantation technology to form a first N-type impurity layer 216 in alignment with the first insulating side wall film 213. did.
- the ion implantation energy is 15 KeV
- the implantation concentration is 2 ⁇ 10 13 atoms / cm 2 .
- a 50 to 100 nm thick silicon nitride film 113 is deposited by low pressure chemical vapor deposition, followed by anisotropic dry etching.
- a second side wall coating 2 15 was obtained.
- a second N-type impurity layer 217 was formed by implanting phosphorus ions by ion implantation in alignment with the second insulating side wall film 215. .
- the ion implantation energy is 25 to 30 KeV, and the implantation concentration is 5 ⁇ 10 1 atomscm 2 . Therefore, the second N-type impurity layer 2 15 It is formed as a contact region deeper than the N-type impurity layer 2 13 of FIG.
- an SiO 2 -based insulating film 218 serving as an interlayer insulating film between wirings is formed by a plasma CVD technique. did.
- the Si 2 -based insulating film 2 18 has a thickness of about 3101111.
- a resist 219 was patterned on the SiO 2 -based insulating film 218 by using a lithography technique.
- This conductor layer can be made of a high-melting-point metal such as tungsten or a high-melting-point metal silicide, as in the above embodiment.
- the conductor layer 220 is processed using a lithography and dry etching technique according to a desired wiring pattern to form a wiring layer 221.
- the final Passhibeshiyo down film coated perform by Uni selection Etsuchingu that this passivation emission film bonding pad exposed c
- bonding is performed on the exposed bonding pad to connect to an external lead, and finally, the semiconductor device is sealed with resin. Obtained. According to the second embodiment described above, it is possible to obtain a semiconductor device manufacturing method suitable for high speed and high integration by lowering the resistance of the gate electrode as well as improving the reliability.
- the gate electrode structure is polycrystalline silicon / titanium nitride tungsten from the lower layer, but other gate electrode structures and gate contact structures due to factors such as gate resistance and wiring contact.
- the contamination layer of the diffusion layer related to the processing of the metal electrode can be formed by the same procedure as in the present embodiment. It is possible to recover gate oxide film damage in the Toetu area. Therefore, a combination of the stacked electrode having the silicon film as the lowermost layer and the sidewall protection method described in the present embodiment is within the scope of the present invention.
- one MOS FET was used as an example.
- the formation of an isolation region in a semiconductor substrate is disclosed. Therefore, it is apparent that the present invention can be applied to the case of obtaining a semiconductor device having a plurality of MOS FETs as constituent elements, in general, a highly integrated semiconductor device called a semiconductor integrated circuit device. Specifically, it is useful when applied to the formation of MOS FET which constitutes a DRAM memory cell.
- the present invention relates to a dynamic cylinder having a MOSFET as a constituent element. It is used for manufacturing semiconductor devices such as memory access memories.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
明細書 半導体装置の製造方法 技術分野 Description Method of manufacturing semiconductor device
本発明は半導体装置の製造方法に係り、 特に半導体や金属材料を ゲ一 ト電極に用いた M O S F E Tを構成要素とする半導体装置の製 造方法に係る。 背景技術 The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device including a MISFET using a semiconductor or a metal material as a gate electrode. Background art
L S I の微細化に伴い、 M O S F E Tのゲー ト電極の低抵抗化が 強く求められてきている。 これは、 以下の理由による。 ( 1 ) 素子 の微細化によ りゲー ト電極幅が縮小され、 結果と してゲ一 ト電極配 線の抵抗が増加する傾向にあること、 ( 2 ) L S I の集積度が高ま るにつれ、 ゲー ト電極配線長が大き く なる結果、 ゲー ト電極配線の 抵抗が大きく なる傾向にある。 そのため、 ゲー ト電極材料と して、 従来よ り使われていた多結晶シリ コンあるいは硅化金属に変え、 よ り低抵抗のタングステンやチタン等の金属をゲー ト電極材料と して 用いた提案がされている。 例えば、 特開昭 6 1 — 1 5 2 0 7 6号公 報において、 ゲー ト電極を多結晶シリ コン、 窒化金属膜、 金属膜か らなる積層構造とすることによ り 、 従来の多結晶シリ コ ンゲー トの 場合のゲ一 ト酸化膜信頼性を保ちつつゲー ト電極の抵抗を低減する 提案がされている。 With the miniaturization of LSI, there is a strong demand for lowering the resistance of the MOSFET gate electrode. This is for the following reasons. (1) The gate electrode width is reduced due to the miniaturization of elements, and as a result, the resistance of the gate electrode wiring tends to increase. (2) As the integration degree of LSI increases, In addition, as the gate electrode wiring length increases, the resistance of the gate electrode wiring tends to increase. For this reason, there has been proposed a proposal in which polycrystalline silicon or metal silicide, which has been conventionally used, is used as a gate electrode material, and a lower resistance metal such as tungsten or titanium is used as the gate electrode material. Have been. For example, in Japanese Patent Application Laid-Open No. 61-152,076, a conventional polycrystalline structure was formed by forming a gate electrode into a laminated structure composed of polycrystalline silicon, a metal nitride film, and a metal film. Proposals have been made to reduce the resistance of the gate electrode while maintaining the reliability of the gate oxide film in the case of silicon gate.
しかし、 上記従来の技術においては、 金属膜を含むゲー ト電極を 加工するため、 ゲ一 トエツヂ部ゃ M O S F E Tのソース · ドレイ ン となる拡散層領域中に金属汚染が起こってしまう問題があることが 本発明者等によって明らかにされた。 However, in the above-mentioned conventional technology, since the gate electrode including the metal film is processed, the gate electrode portion, the source / drain of the MOSFET, It has been clarified by the present inventors that there is a problem that metal contamination occurs in the diffusion layer region to be formed.
すなわち、 ゲー ト電極と して多結晶シリ コン、 バリ ア層と しての 窒化チタンそして低抵抗化のための金属材料、 例えばタングステン よ り成る積層膜を用いた場合、 その積層膜のゲー ト電極パターン加 ェ後のソース · ドレイ ン形成表面を洗浄するための薬液を選択する のが難しい。 また、 ゲー トエツヂ部のゲー ト酸化膜が受けた ドライ エッチダメージ回復のための熱酸化処理を行う と、 窒化チタンが異 常酸化してゲー ト電極のフタ レ、 あるいはその窒化チタンとタンダ ステンとが剥離するという問題がある。 そこで、 その熱酸化処理を 施さないでソース · ドレイ ン形成のためのイオン打ち込みを行った 場合、 酸化膜表面の汚染が不純物ィオンによ り基板内に打ち込まれ、 P N接合リ ークの問題が新たに生じる。 That is, when a polycrystalline silicon is used as the gate electrode, titanium nitride is used as the barrier layer, and a metal film for lowering resistance, for example, a laminated film made of tungsten is used. It is difficult to select a chemical solution for cleaning the source / drain formation surface after electrode pattern application. In addition, when thermal oxidation treatment is performed to recover the dry etch damage received by the gate oxide film in the gate etch portion, titanium nitride becomes abnormally oxidized, and the gate electrode becomes phthalate, or the titanium nitride and the tungsten are removed. There is a problem that is peeled off. Therefore, if ion implantation for forming the source / drain is performed without performing the thermal oxidation treatment, contamination of the oxide film surface is implanted into the substrate by impurity ions, and the problem of PN junction leakage is reduced. Newly arise.
したがって、 ゲー ト電極と して、 多結晶シリ コンの半導体層およ びこの半導体層に窒化チタンそしてタングステンよ り成る導電体を 積層した導電積層膜を用いた場合、 ゲー ト電極下のゲ一 ト酸化膜の ドライエッチダメージ回復 (絶縁不良対策) が課題となる。 Therefore, when a semiconductor layer of polycrystalline silicon and a conductive laminated film in which a conductor made of titanium nitride and tungsten are laminated on the semiconductor layer are used as the gate electrode, the gate under the gate electrode is used. The issue is how to recover the dry etch damage of the oxide film (measure against insulation failure).
すなわち、 本発明の目的は、 低抵抗のゲー ト電極を有し、 かつ信 頼性向上を図ることが可能な半導体装置の製造方法を提供すること にある。 That is, an object of the present invention is to provide a method of manufacturing a semiconductor device having a low-resistance gate electrode and capable of improving reliability.
本発明の他の目的は、 低抵抗のゲー ト電極を有し、 微細でかつ信 頼性向上を図ることが可能な半導体装置の製造方法を提供すること にめる。 Another object of the present invention is to provide a method for manufacturing a semiconductor device which has a gate electrode of low resistance, is fine and can improve reliability.
本発明のさ らに他の目的は、 高速かつ高集積化に適した半導体装 置の製造方法を提供することにある。 発明の開示 Still another object of the present invention is to provide a method for manufacturing a semiconductor device suitable for high speed and high integration. Disclosure of the invention
(解決手段) (Solution)
本発明によれば、 最下層を半導体層と し、 その半導体層上に低抵 抗化のための金属材料 (金属膜) を含む他の導電膜を積層した導電 積層よ り成るゲ一 ト電極の加工 (パターンエッチ) を行うにあたり、 最下層の半導体層のェツチングを途中で止めて薄く残し、 上部の導 電積層膜の側壁部を絶縁性の第 1 の側壁被膜で覆い、 しかる後、 残 された薄い最下層の半導体層をェツチング除去、 洗浄そして熱酸化 処理を行いゲー トエツヂ部のゲー ト酸化膜の ドライエッチダメージ 回復によ り、 信頼性向上を図るものである。 According to the present invention, a gate electrode formed of a conductive laminate in which the lowermost layer is a semiconductor layer and another conductive film containing a metal material (metal film) for reducing resistance is laminated on the semiconductor layer In the processing (pattern etch) of the lower layer, the etching of the lowermost semiconductor layer is stopped halfway and left thinly, and the side wall of the upper conductive laminated film is covered with an insulating first side wall film. The thinned lowermost semiconductor layer is etched, cleaned, and thermally oxidized to improve the reliability by recovering the dry etching damage of the gate oxide film in the gate edge portion.
ゲ一 ト電極になる半導体膜のェツチングを、 その半導体膜が残る よ うにエッチングし、 エッチングした半導体膜の側壁に絶縁膜を設 けることで、 洗浄やウエッ トエッチング等からゲー トエッジ部を保 護することが可能となる。 Etching of the semiconductor film that will become the gate electrode is performed so that the semiconductor film remains, and an insulating film is provided on the sidewall of the etched semiconductor film to protect the gate edge from cleaning, wet etching, and the like. It is possible to do.
また、 ゲ一 ト電極を半導体膜と金属膜とを積層したゲー ト電極構 造では、 熱酸化処理時に金属膜の異常酸化や金属膜同士の剥離を防 止することが可能となる。 Further, in a gate electrode structure in which a gate electrode is formed by laminating a semiconductor film and a metal film, it becomes possible to prevent abnormal oxidation of the metal film and separation of the metal films during thermal oxidation treatment.
なお、 エッチングダメージから基板を保護するため、 ゲー ト電極 の半導体膜のエッチングは、 半導体膜膜厚が 5 n m以上残るよ う に すると良い。 Note that in order to protect the substrate from etching damage, the semiconductor film of the gate electrode is preferably etched so that the thickness of the semiconductor film remains at least 5 nm.
さ らに、 半導体膜と金属膜とを積層したゲー ト電極では、 必ずし も半導体膜のェツチングを途中で止める必要はなく 、 ゲー ト電極の 側壁、 例えば半導体膜と金属膜との界面でゲー ト電極のェツチング を停止し、 エッチングした膜の側壁に絶縁膜を形成しても良い。 また、 本発明によれば、 ゲー トエツヂ部のゲー ト酸化膜形成を行 つた後、 第 1 の側壁被膜に対して自己整合的に第 1 の不純物層を半 導体基体内に形成し、 その第 1 の側壁被膜の表面に第 2の側壁被膜 を形成し、 その第 2の側壁被膜の表面に対して自己整合的に第 2の 不純物層を半導体基体内に形成し、 その半導体基体主面上に層間絶 縁膜を形成し、 その層間絶縁膜に対して上記第 2の側壁被膜によ り 整合され、 上記第 2の不純物層表面を露出する コンタク ト用の開口 を形成することで、 低抵抗のゲー ト電極を有し、 微細でかつ信頼性 向上を図るものである。 Further, in a gate electrode in which a semiconductor film and a metal film are stacked, it is not always necessary to stop the etching of the semiconductor film in the middle, and the gate electrode is formed on the side wall of the gate electrode, for example, at the interface between the semiconductor film and the metal film. The etching of the gate electrode may be stopped, and an insulating film may be formed on the side wall of the etched film. Further, according to the present invention, after forming a gate oxide film in the gate etching portion, a first impurity layer is formed in the semiconductor substrate in a self-aligned manner with respect to the first side wall film. Forming a second side wall film on the surface of the first side wall film, forming a second impurity layer in the semiconductor substrate in a self-aligning manner with the surface of the second side wall film, By forming an interlayer insulating film on the substrate and forming an opening for contact that is aligned with the interlayer insulating film by the second sidewall film and exposes the surface of the second impurity layer, It has a gate electrode of resistance and is fine and improves reliability.
さ らに、 本発明によれば、 特にアイ ソ レーショ ン領域を半導体基 体主面の選択された区域に所望深さの溝を設け、 その溝を含む半導 体基体主面に絶縁膜を堆積し、 しかる後、 その絶縁膜を研磨処理す ることによ り溝内に上記絶縁膜が埋め込まれた構成のグループアイ ソ レーシヨ ンとすることで、 よ り高集積化に適した半導体装置が得 る ものである。 Further, according to the present invention, in particular, a groove having a desired depth is formed in a selected area of the main surface of the semiconductor substrate, and an insulating film is formed on the main surface of the semiconductor substrate including the groove. By depositing and then polishing the insulating film to form a group isolation in which the insulating film is embedded in the groove, a semiconductor device suitable for higher integration is obtained. Is obtained.
(効果) (Effect)
本発明によれば、 金属を含む積層構造のグー ト電極形成時に問題 となる、 ゲ一 ト電極加工後の金属汚染ゃゲー トエツヂ部におけるゲ ー ト酸化膜ダメージの回復処理が容易に行える。 そのため、 金属汚 染による接合リーク電流の増加ゃゲー ト酸化膜の信頼性劣化を引き 起こすことなく 、 ゲー ト電極抵抗を飛躍的に低減することができる。 According to the present invention, it is possible to easily perform a process of recovering damage to a gate oxide film in a metal-contaminated {gate-etched portion) after processing the gate electrode, which is a problem when forming a gate electrode having a laminated structure including a metal. As a result, the gate electrode resistance can be drastically reduced without increasing the junction leakage current due to metal contamination and without deteriorating the reliability of the gate oxide film.
また、 本発明によれば、 S A Cおよびグループアイ ソ レーショ ン と したことによ り 、 微細化の M O S F E T構造が達成でき、 高集積 化を図った半導体装置が得られる。 図面の簡単な説明 In addition, according to the present invention, the use of the SAC and the group isolation enables a miniaturized MOSFET structure to be achieved and a highly integrated semiconductor device to be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の一つの実施例である半導体装置の製造工程を 示す要部断面図である。 第 2図は、 第 1図に続く 、 半導体装置の製 造工程を示す要部断面図である。 第 3図は、 第 2図に続く 、 半導体 装置の製造工程を示す要部断面図である。 第 4図は、 第 3図に続く 、 半導体装置の製造工程を示す要部断面図である。 第 5図は、 第 4図 に続く 、 半導体装置の製造工程を示す要部断面図である。 第 6図は、 第 5図に続く 、 半導体装置の製造工程を示す要部断面図である。 第 7図は、 第 6図に続く 、 半導体装置の製造工程を示す要部断面図で ある。 第 8図は、 第 7図に続く 、 半導体装置の製造工程を示す要部 断面図である。 第 9図は、 第 8図に続く 、 半導体装置の製造工程を 示す要部断面図である。 第 1 0図は、 第 9図に続く 、 半導体装置の 製造工程を示す要部断面図である。 .第 1 1 図は、 第 1. 0図に続く 、 半導体装置の製造工程を示す要部断面図である。 第 1 2図は、 第 1 1 図に続く 、 半導体装置の製造工程を示す要部断面図である。 第 1 3図は、 第 1 2図に続く 、 半導体装置の製造工程を示す要部断面図 である。 第 1 4図は、 第 1 3図に続く 、 半導体装置の製造工程を示 す要部断面図である。 第 1 5図は、 第 1 4図に続く 、 半導体装置の 製造工程を示す要部断面図である。 第 1 6図は、 第 1 5図に続く 、 半導体装置の製造工程を示す要部断面図である。 第 1 7図は、 第 1 6図に続く 、 半導体装置の製造工程を示す要部断面図である。 第 1 8図は、 第 1 7図に続く 、 半導体装置の製造工程を示す要部断面図 である。 第 1 9図は、 本発明の他の実施例である半導体装置の製造 工程を示す要部断面図である。 第 2 0図は、 第 1 9図に続く 、 半導 体装置の製造工程を示す要部断面図である。 第 2 1図は、 第 2 0図 に続く 、 半導体装置の製造工程を示す要部断面図である。 第 2 2図 は、 第 2 1 図に続く 、 半導体装置の製造工程を示す要部断面図であ る。 第 2 3図は第 2 2図に続く 、 半導体装置の製造工程を示す要部 断面図である。 第 2 4図は、 第 2 3図に続く 、 半導体装置の製造ェ 程を示す要部断面図である。 第 2 5図は第 2 4図に続く 、 半導体装 置の製造工程を示す要部断面図である。 第 2 6図は第 2 5図に続く 、 半導体装置の製造工程を示す要部断面図である。 第 2 7図は第 2 6 図に続く、 半導体装置の製造工程を示す要部断面図である。 第 2 8 図は、 第 2 7図に続く 、 半導体装置の製造工程を示す要部断面図で ある。 第 2 9図は、 第 2 8図に続く 、 半導体装置の製造工程を示す 要部断面図である。 第 3 0図は、 第 2 9図に続く 、 半導体装置の製 造工程を示す要部断面図である。 第 3 1 図は、 第 3 0図に続く 、 半 導体装置の製造工程を示す要部断面図である。 第 3 2図は、 第 3 1 図に続く、 半導体装置の製造工程を示す要部断面図である。 第 3 3 図は、 第 3 2図に続く 、 半導体装置の製造工程を示す要部断面図で ある。 第 3 4図は、 第 3 3図に続く 、 半導体装置の製造工程を示す 要部断面図である。 第 3 5図は、 第 3 4図に続く 、 半導体装置の製 造工程を示す要部断面図である。 第 3 6図は、 第 3 5図に続く 、 半 導体装置の製造工程を示す要部断面図である。 発明を実施するための最良の形態 FIG. 1 is a fragmentary cross-sectional view showing a manufacturing step of a semiconductor device according to one embodiment of the present invention. FIG. 2 is a cross-sectional view of a principal part showing a manufacturing step of the semiconductor device, following FIG. 1; FIG. 3 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 2; FIG. 4 is a fragmentary cross-sectional view following FIG. 3 showing the semiconductor device manufacturing process. FIG. 5 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 4; FIG. 6 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 5; FIG. 7 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. FIG. 8 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. FIG. 9 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. FIG. 10 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 9; FIG. 11 is a fragmentary cross-sectional view showing the manufacturing process of the semiconductor device, following FIG. 1.0. FIG. 12 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 11; FIG. 13 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 12; FIG. 14 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 13; FIG. 15 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 14; FIG. 16 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 15; FIG. 17 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 16; FIG. 18 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 17; FIG. 19 is a fragmentary cross-sectional view showing a manufacturing step of a semiconductor device according to another embodiment of the present invention. Figure 20 is a semi-continuation of Figure 19 It is principal part sectional drawing which shows the manufacturing process of a body device. FIG. 21 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 20; FIG. 22 is a cross-sectional view of a principal part showing a manufacturing step of the semiconductor device, following FIG. 21; FIG. 23 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. FIG. 24 is a cross-sectional view of the principal part showing the manufacturing process of the semiconductor device, following FIG. FIG. 25 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. 24. FIG. 26 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 25; FIG. 27 is a cross-sectional view of a principal part showing a manufacturing step of a semiconductor device, following FIG. 26. FIG. 28 is a cross-sectional view of a principal part showing a manufacturing step of the semiconductor device, following FIG. 27. FIG. 29 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. FIG. 30 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. 29. FIG. 31 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 30; FIG. 32 is a cross-sectional view of a principal part showing a manufacturing step of a semiconductor device, following FIG. FIG. 33 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. 32. FIG. 34 is a cross-sectional view of main parts showing the manufacturing steps of the semiconductor device, following FIG. 33. FIG. 35 is a cross-sectional view of the principal part showing the manufacturing process of the semiconductor device, following FIG. FIG. 36 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor device, following FIG. 35; BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 ) (Example 1)
本発明の第一の実施の形態について第 1 図乃至第 1 8図を用いて 説明する。 A first embodiment of the present invention will be described with reference to FIGS. 1 to 18.
まず、 第 1 図に示すよ うに、 P型単結晶 S i 基板 1 0 1上に通常 の選択酸化法 ( L O C O S技術) によ り 、 アイ ソ レーショ ン用の選 択酸化膜 1 0 2を形成する。 この選択酸化膜は例えば、 3 0 O n m の厚さに形成される。 First, as shown in Fig. 1, a selective oxide film 102 for isolation is formed on a P-type single crystal Si substrate 101 by a normal selective oxidation method (LOCOS technology). I do. This selective oxide film is formed to a thickness of, for example, 30 Onm.
続いて、 第 2図に示すよ うに、 選択酸化膜によ り区画された S i 基板 1 0 1表面に、 熱酸化法によ り厚さおよそ 5 n mのゲ一 ト酸化 膜 1 0 3を形成する。 このゲー ト酸化膜 1 0 3上に、 減圧化学気相 成長法によ り厚さ 5 O n mの S i (多結晶シリ コン) 膜 1 0 4を形 成する。 この S i 膜 1 0 4バリ ア層と しての厚さ 2 0 n mの窒化チ タン膜 1 0 5.をスパッタ法によ り堆積する。 そして、 この窒化チタ ン膜 1 0 5上に低抵抗の金属材料でかつ熱処理に耐えられる高融点 の材料、 例えば、 タングステン膜 1 0 6 をスパッタ法によ り厚さ 1 0 0 n mに堆積する。 そしてさ らに、 上記窒化チタン膜 1 0 5およ びタングステン膜 1 0 6の酸化防止のために、 そのタングステン膜 1 0 6表面に厚さ 1 5 O n mの窒化シリ コン膜 1 0 7を減圧化学気 相成長法によ り形成する。 Subsequently, as shown in FIG. 2, a gate oxide film 103 having a thickness of about 5 nm was formed on the surface of the Si substrate 101 partitioned by the selective oxide film by a thermal oxidation method. Form. A 5 nm thick Si (polycrystalline silicon) film 104 is formed on the gate oxide film 103 by low pressure chemical vapor deposition. A 20 nm-thick titanium nitride film 105 as a Si film 104 barrier layer is deposited by sputtering. Then, a low-resistance metal material having a high melting point that can withstand heat treatment, for example, a tungsten film 106 is deposited on the titanium nitride film 105 to a thickness of 100 nm by sputtering. . Further, in order to prevent oxidation of the titanium nitride film 105 and the tungsten film 106, a silicon nitride film 107 having a thickness of 150 nm is formed on the surface of the tungsten film 106. It is formed by low pressure chemical vapor deposition.
続いて、 第 3図に示すよ うに、 リ ソグラフィ技術によ り レジス ト 1 0 8をパターニングする。 Subsequently, as shown in FIG. 3, the resist 108 is patterned by a lithography technique.
続いて、 レジス ト 1 0 8をマスク と して ドライエッチングによ り 上記窒化シリ コン膜 1 0 7、 タングステン膜 1 0 6、 窒化チタン膜 1 0 5の各膜を順次加工した。 このとき、 最下層の S i 膜 1 0 4 に 対して、 2 0 n m程度エッチングが行われ、 レジス トマスク除去後 において第 4図に示す形状を得た。 ひき続き、 ドライエッチング残 渣等の汚染物質除去を目的と して、 有機系洗浄液を用いた洗浄を行 なう。 Subsequently, the silicon nitride film 107, the tungsten film 106, and the titanium nitride film 105 were sequentially processed by dry etching using the resist 108 as a mask. At this time, the lowermost Si film 104 On the other hand, etching of about 20 nm was performed, and after removing the resist mask, the shape shown in FIG. 4 was obtained. Subsequently, cleaning with an organic cleaning solution is performed for the purpose of removing contaminants such as dry etching residues.
続いて、 第 5図に示すよ うに、 減圧化学気相成長法によ り厚さ 1 0〜 2 0 n mの窒化シリ コン膜 1 0 9を堆積する。 なお、 本実施例 では、 多結晶シリ コン膜 1 0 4上及びゲー ト側壁に窒化シリ コン膜 を形成したが、 多結晶シリ コン膜を酸化して酸化膜を形成し、 ゲー トエッジ部を保護しても良い。 Subsequently, as shown in FIG. 5, a silicon nitride film 109 having a thickness of 10 to 20 nm is deposited by low pressure chemical vapor deposition. In this embodiment, the silicon nitride film is formed on the polycrystalline silicon film 104 and on the side walls of the gate, but the polycrystalline silicon film is oxidized to form an oxide film to protect the gate edge portion. You may.
この後、 第 6図に示すよ うに、 ドライエッチング技術によ り異方 的にエッチングを行なう ことによ りパタ一ニングされたキャップ層 Thereafter, as shown in FIG. 6, the cap layer patterned by performing anisotropic etching by dry etching technology.
( 1 0 7 ) およびゲー ト電極 ( 1 0 6 、 1 0 5及び 1 0 4の一部) の側壁部に例えば耐酸化性の窒化シリ コンよ り成る第 1 の絶縁性側 壁被膜 1 1 0、 いわゆるサイ ドウオール膜を形成する。 The first insulating side wall coating 11 made of, for example, oxidation-resistant silicon nitride is formed on the side walls of (107) and the gate electrodes (106, 105, and a part of 104). 0, a so-called side wall film is formed.
そして、 第 7図に示すよ うに、 前記キャップ層及び側壁部の絶縁 性側壁被膜 1 1 0をマスク と して S i 膜 1 0 4を完全にパターニン グすることによりゲー ト電極を形成する。 Then, as shown in FIG. 7, a gate electrode is formed by completely patterning the Si film 104 using the cap layer and the insulating side wall film 110 of the side wall as a mask.
そして、 第 8図に示すよ うに、 アンモニア、 過酸化水素混合液に よる洗浄及び希フッ酸水溶液によ り酸化膜 1 0 3 をウエッ トエッチ ングによ り除去する。 この時、 酸化膜 1 0 3に若干のサイ ドエッチ がされる。 ここで、 表面に露出している物質は、 シリ コ ン酸化膜、 シリ コン窒化膜、 シリ コン膜であるので、 フッ酸水溶液処理をはじ めと した L S I 工程で通常用いられる清浄化手段を金属の溶出等の 問題を回避して使用することができる。 Then, as shown in FIG. 8, the oxide film 103 is removed by cleaning with a mixed solution of ammonia and hydrogen peroxide and wet etching with a dilute hydrofluoric acid aqueous solution. At this time, the oxide film 103 is slightly etched. Here, since the material exposed on the surface is a silicon oxide film, a silicon nitride film, or a silicon film, the cleaning means usually used in an LSI process including a hydrofluoric acid aqueous solution treatment is made of metal. It can be used while avoiding problems such as elution of water.
次に、 第 9図に示すように、 ゲー トエツヂ部の酸化膜による保護 を目的と して、 8 5 0 °C、 ドライ〇 2雰囲気中の熱酸化によ り で熱 酸化膜 1 1 1 を基板上に 5 n m成長させた。 この時の熱酸化におい て、 窒化チタン 1 0 5およびタングステン膜 1 0 6は、 耐酸化性で ある第 1 の絶縁性側壁被膜 1 1 0及びキヤップ層 1 0 7で覆われて いるため、 表面に露出している物質がシリ コン窒化膜およびシリ コ ンに限られているため、 前述した従来のよ うなフク レ、 剥離等の問 題はなく 、 容易に行える。 Next, as shown in Fig. 9, protection by an oxide film at the gate edge The purpose was 8 5 0 ° C, the thermal oxide film 1 1 1 is Ri by the thermal oxidation in a dry 〇 2 atmosphere was 5 nm grown on the substrate. In the thermal oxidation at this time, since the titanium nitride 105 and the tungsten film 106 are covered with the first insulating sidewall film 110 and the cap layer 107 which are oxidation-resistant, Since the material exposed to the silicon nitride film and silicon is limited to silicon nitride film and silicon, it can be easily performed without the problem of blistering and peeling as in the conventional case described above.
この後、 第 1 0図に示すよ うに、 第 1 の絶縁性側壁被膜 1 1 0に 整合して、 イオン注入技術によ り砒素イオンを打ち込み、 第 1 の N 型不純物層 1 1 2 を形成する。 この時のイオン打ち込みエネルギー は 1 5 K e V、 そして打ち込み濃度は 2 X 1 0 1 3 a t o m s / c m 2である。 Thereafter, as shown in FIG. 10, arsenic ions are implanted by ion implantation to match the first insulating side wall film 110 to form a first N-type impurity layer 112. I do. At this time, the ion implantation energy is 15 KeV, and the implantation concentration is 2 × 10 13 atoms / cm 2 .
続いて、 第 1 1 図に示すよ うに、 減圧化学気相成長法によ り厚さ 5 0〜 1 0 0 n mの窒化シリ コン膜 1 1 3を堆積する。 Subsequently, as shown in FIG. 11, a silicon nitride film 113 having a thickness of 50 to 100 nm is deposited by low pressure chemical vapor deposition.
続いて、 第 1 2図に示すよ うに、 異方的に ドライエッチングを行 なう ことによ り第 2 の絶縁性側壁被膜 1 1 4を得る。 Subsequently, as shown in FIG. 12, a second insulating sidewall film 114 is obtained by performing anisotropic dry etching.
そして、 第 1 3図に示すよ うに、 第 2 の絶縁性側壁被膜 1 1 4に 整合して、 イオン注入技術によ り リ ンイオンを打ち込み、 第 2 の N 型不純物層 1 1 5 を形成する。 この時のイオン打ち込みエネルギー は 2 5〜 3 0 K e V、 そして打ち込み濃度は 5 X 1 0 1 4 a t o m s c m 2である。 したがって、 第 2 の N型不純物層 1 1 5は、 第 1 の N型不純物層 1 1 4 よ り も深く コンタク ト用領域と して形成され る。 Then, as shown in FIG. 13, a second N-type impurity layer 115 is formed by implanting phosphorus ions by ion implantation in alignment with the second insulating side wall film 114. . At this time, the ion implantation energy is 25 to 30 KeV, and the implantation concentration is 5 × 10 14 atomscm 2 . Therefore, the second N-type impurity layer 115 is formed as a contact region deeper than the first N-type impurity layer 114.
続いて、 ァニール処理によ りイオンダメージを回復した後、 第 1 4図に示すよ うに、 配線間の層間絶縁膜となる S i O 2系絶縁膜 1 1 6 をプラズマ C V D技術によ り形成する。 この S i O 2系絶縁膜 1 1 6は厚さ約 3 0 0 n mである。 Subsequently, after the ion damage was recovered by annealing, as shown in FIG. 14, the SiO 2 insulating film 1 serving as an interlayer insulating film between wirings was formed. 16 is formed by the plasma CVD technique. This SiO 2 -based insulating film 116 has a thickness of about 300 nm.
続いて、 第 1 5図に示すよ うに、 この S i O 2系絶縁膜 1 1 6上 にリ ソグラフィ技術を用いてレジス ト 1 1 7をパターニングする。 そして、 第 1 6図に示すよ うに、 レジス ト 1 1 7をマスクに ドラ ィェツチング技術によ り S i 〇 2系絶縁膜 1 1 6をェツチングする ことによ り第 2の N型不純物層 1 1 5へのコンタク ト孔を開口する c このコンタク ト孔の開口は、 第 2の側壁被膜 1 1 4がほとんどエツ チされず、 また選択酸化膜 1 0 2端部は若干エッチされる程度で、 いわゆるセルファライ ンコンタク ト ( S A C : S e 1 f A 1 i g n C o n t a c t ) が実現でき、 高精度のマスク位置合わせを不 要と した微細化が図れる。 Subsequently, as shown in FIG. 15, a resist 117 is patterned on the SiO 2 -based insulating film 116 by using a lithography technique. The urchin by that shown in the first 6 figure registry 1 1 7 a second N-type impurity layer Ri especially good for Etsuchingu the S i 〇 2 based insulating film 1 1 6 Ri by the gong Ietsuchingu technology mask 1 1 the opening of the contactor preparative hole the opening c this contactor preparative hole to 5, the second side wall film 1 1 4 almost Etsu Chisarezu, also selective oxide film 1 0 2 end extent which is etched slightly The so-called self-aligned contact (SAC: Se1fA1ign Contact) can be realized, and miniaturization that does not require high-precision mask alignment can be achieved.
続いて、 第 1 7図に示すよ うに、 この開口部及び S i 〇 2系絶縁 膜 1 1 6上部に導体層と して、 アルミニゥムとシリ コンとの合金 1 1 8 をス ノ ッタ法によ り厚さ 2 0 0〜 2 5 0 n m堆積する。 この導 電層はタングステン等の高融点金属あるいは高融点金属シリサイ ド の適用が可能である。 Subsequently, as shown in FIG. 17, a conductor layer of aluminum and silicon was used as a conductor layer on the opening and on the top of the Si 2 -based insulating film 116 by a Snotter method. Is deposited to a thickness of 200 to 250 nm. For this conductive layer, a refractory metal such as tungsten or a refractory metal silicide can be applied.
そして、 第 1 8図に示すよ うに、 その導電層 1 1 8 を所望の配線 パターンに従ってリ ソグラフィ及びドライエツチング技術を用いて 加工し、 配線層 1 1 9 を形成する。 Then, as shown in FIG. 18, the conductive layer 118 is processed according to a desired wiring pattern by using lithography and dry etching techniques to form a wiring layer 119.
なお、 上記導電層 1 1 8は、 プラグ電極 (開口部内に埋め込まれ た電極構造) と して平坦化を有する多層配線構造に最適な構造にす ること もできる。 Note that the conductive layer 118 can be formed as a plug electrode (electrode structure embedded in the opening) to be a structure optimal for a multilayer wiring structure having flattening.
この後、 最終パッシベーシヨ ン膜を被覆し、 このパッシベ一ショ ン膜をボンディ ングパッ ドが露出するよ うに選択ェツチングを行う。 そして、 ウェハ状態からチップに加工 (スクライブ) した後、 外部 リー ドに接続するために、 露出したボンディ ングパッ ドに対してヮ ィャをボンディ ングし、 最後に樹脂封止して半導体装置を得る。 本実施形態ではグー ト電極構造と して下層から、 多結晶シリ コ ン /窒化チタン (多結晶シリ コンとタングステンとのバリ ア層) Zタ ングステンとなっているが、 ゲ一 ト抵抗や配線コンタク ト抵抗の低 減の目的から他のゲー ト電極構造、 例えば、 多結晶シリ コンノタ ン ダステンシリサイ ド (珪化金属膜) や多結晶シリ コン Z窒化タンダ ステン (窒化金属膜) 等の構造を選択しても、 本実施形態と同様の 手順により金属電極の加工に係る拡散層の汚染ゃゲー トエツヂ部で のゲー ト酸化膜ダメージの回復が可能である。 従って、 シリ コン膜 を最下層と した積層構造電極と本実施形態で示した側壁保護手法と の組み合わせは、 本発明の範疇である。 Thereafter, the final passivation film is covered, and selective etching is performed on the passivation film so that the bonding pad is exposed. After the wafer is processed (scribed) into chips from the wafer state, bonding is performed on the exposed bonding pad to connect to an external lead, and finally, the semiconductor device is obtained by resin sealing. . In this embodiment, the gate electrode structure is a polycrystalline silicon / titanium nitride (barrier layer of polycrystalline silicon and tungsten) Z tungsten from the lower layer. For the purpose of reducing the contact resistance, other gate electrode structures such as polycrystalline silicon non-crystalline silicon silicide (metal silicide film) and polycrystalline silicon Z nitride titanium nitride (metal nitride film) are used. Even if it is selected, it is possible to recover the gate oxide film damage at the contamination {gate edge} portion of the diffusion layer due to the processing of the metal electrode by the same procedure as in the present embodiment. Therefore, a combination of the stacked electrode having the silicon film as the lowermost layer and the sidewall protection method described in this embodiment is within the scope of the present invention.
なお、 多結晶シリ コ ン Zタ ングステンシリサイ ド (珪化金属膜) を形成する場合は、 多結晶シリ コン膜を形成した後、 タングステン よ り成る金属膜をその多結晶シリ コン膜上に堆積し、 熱処理するこ とによ り、 容易にタングステンシリサイ ド (珪化金属膜) を形成す ることができる。 When forming polycrystalline silicon Z tungsten silicide (metal silicide film), after forming the polycrystalline silicon film, a metal film made of tungsten is deposited on the polycrystalline silicon film. Then, by performing the heat treatment, a tungsten silicide (metal silicide film) can be easily formed.
(実施例 2 ) (Example 2)
前記実施例 1 では、 複数の M O S F E T (素子) 間分離のための アイ ソ レーショ ン領域と して、 選択酸化法 ( L O C O S技術) が採 用された。 しかし、 この選択酸化法の場合、 選択酸化膜端部にバー ズビークが発生し、 素子の微細化、 特に 5 n m以下の均一なゲー ト 酸化膜を有する M O S F E Tを得ることが課題である。 In Example 1 described above, a selective oxidation method (LOCOS technology) was employed as an isolation region for separation between a plurality of MOS FETs (elements). However, in the case of this selective oxidation method, a bird's beak is generated at the end of the selective oxide film, and it is a problem to miniaturize the element, particularly to obtain a MOSFET having a uniform gate oxide film of 5 nm or less.
第 1 9図乃至第 3 4図に示す第二の実施形態は、 1 0 n m以下、 特に 3〜 5 n m厚のゲ一 ト酸化膜を有する MO S F E Tを得ること が容易で、 しかも従来のよ うな問題を解決するものである。 The second embodiment shown in FIGS. 19 to 34 has a thickness of 10 nm or less, In particular, it is easy to obtain a MOS FET having a gate oxide film with a thickness of 3 to 5 nm, and it solves the conventional problems.
すなわち、 本実施例は、 アイ ソ レーショ ンと して溝アイ ソ レーシ ョ ン技術を用いた場合の半導体装置の製造方法である。 That is, the present embodiment is a method of manufacturing a semiconductor device in the case where the groove isolation technology is used as the isolation.
第 1 9図に示すよ うに、 シリ コン基板 2 0 1上に厚さおよ 1 O n mの熱酸化膜 2 0 2、 そしてこの熱酸化膜 2 0 2に厚さ 1 5 0 n m のシリ コン窒化膜 2 0 3を形成する。 As shown in Fig. 19, a thermal oxide film 202 with a thickness of 1 O nm is formed on the silicon substrate 201, and a silicon oxide with a thickness of 150 nm is formed on the thermal oxide film 202. A nitride film 203 is formed.
続いて、 第 2 0図に示すよ うに、 アイ ソ レーショ ン形成のための レジス ト 2 0 4をリ ソグラフィ技術によりバタ一ユングする。 Subsequently, as shown in FIG. 20, a resist 204 for forming an isolation is buttered by a lithographic technique.
続いて、 第 2 1 図に示すよ うに、 前記レジス トをマスク に ドライ ェツチング技術によ り シリ コン窒化膜 2 0 3、 熱酸化膜 2 0 2及び シリ コン基板 2 0 1 をエッチングしてアイ ソ レーショ ンが形成され るべき部分に溝 (深さおよそ 0. 3 111 ) を形成する。 Subsequently, as shown in FIG. 21, the silicon nitride film 203, the thermal oxide film 202, and the silicon substrate 201 are etched by dry-etching technology using the resist as a mask. A groove (depth about 0.3111) is formed in the portion where the solution is to be formed.
続いて、 第 2 2図に示すよ うに、 化学気相成長法によ り 、 S i O 2系絶縁 (C VD— S i 02) 膜 2 0 6を厚さ 5 0 0 n m堆積する。 図示はしていないが、 この C V D— S i 02膜 2 0 6の堆積に先立 つて、 溝の表面を熱酸化し、 薄い S i 02膜を形成して、 溝の表面 に結晶歪みを除去しておく とよい。 Subsequently, urchin by that shown in the second 2 FIG, Ri by the chemical vapor deposition, S i O 2 based insulating (C VD- S i 0 2) film 2 0 6 a thickness of 5 0 0 nm deposition. Although not shown, the CVD-S i 0 2 film 2 0 6 Sakiritsu connexion to deposition, the surface of the groove is thermally oxidized to form a thin S i 0 2 film, crystal distortion on the surface of the groove Should be removed.
続いて、 第 2 3図に示すよ うに、 化学的機械的研磨技術いわゆる CM P (C h e m i c a l M e c h a n i c a l P o l i s h i n g ) 技術を用いて、 シリ コン窒化膜 2 0 3を研磨ス ト ツバと し て平坦化工ツチングを行なう ことによ り 、 ダル一ブアイ ソ レーショ ン (G r o o v e I s o l a t i o n ) を得る。 この場合、 上記 実施例のよ うなパーズビークが形成されない。 Next, as shown in FIG. 23, the silicon nitride film 203 is flattened as a polishing stopper using a so-called CMP (Chemical Mechanical Polishing) technique. Groove isolation is obtained by chemical modification. In this case, a parse beak unlike the above embodiment is not formed.
続いて、 第 2 4図に示すよ うに、 グループアイ ソ レーショ ン (G r o o v e I s o l a t i o n ) G I によ り区画された S i 基板 2 0 1表面に、 熱酸化法によ り厚さおよそ 3〜5 n mのゲー ト酸化 膜 2 0 7を形成する。 Then, as shown in Fig. 24, the group isolation (G (Roove Isolation) A gate oxide film 207 having a thickness of about 3 to 5 nm is formed on the surface of the Si substrate 201 partitioned by the GI by a thermal oxidation method.
さ らに、 第 2 5図に示すよ うに、 このグー ト酸化膜 2 0 7上に、 減圧化学気相成長法によ り厚さ 5 0 n mの S i (多結晶シリ コン) 膜 2 0 8を形成する。 そしてさ らに、 厚さ 2 0 n mの窒化チタン膜 2 0 9及び厚さ 1 0 0 n mのタングステン膜 2 1 0をスパッタ法に よ り堆積する。 そして、 タングステン膜 2 1 0表面に厚さ 1 5 0 η mの窒化シリ コン膜 2 1 1 を減圧化学気相成長法によ り形成する。 そして、 リ ソグラフィ技術によ り レジス ト 2 1 2をパター-ングす る。 Further, as shown in FIG. 25, a 50 nm thick Si (polycrystalline silicon) film 20 was formed on the good oxide film 207 by a low pressure chemical vapor deposition method. Form 8. Further, a titanium nitride film 209 having a thickness of 200 nm and a tungsten film 210 having a thickness of 100 nm are deposited by a sputtering method. Then, a silicon nitride film 211 having a thickness of 150 ηm is formed on the surface of the tungsten film 210 by a low pressure chemical vapor deposition method. Then, the resist 2 12 is patterned by lithography technology.
続いて、 レジス ト 2 1 2をマスク と して ドライエッチングによ り 上記窒化シリ コン膜 2 1 1 、 タンダステン膜 2 1 0、 窒化チタン膜 2 0 9の各膜を加工した。 このとき、 下地の S i 膜 2 0 8 も 2 0 η m程度ェツチングされ、 レジス トマスク除去後において第 2 6図に 示す形状を得た。 ひき続き、 ドライエッチング残渣等の汚染物質除 去を目的と して、 有機系洗浄液を用いた洗浄を行なった。 Subsequently, the silicon nitride film 211, the tungsten nitride film 210, and the titanium nitride film 209 were processed by dry etching using the resist 212 as a mask. At this time, the underlying Si film 208 was also etched by about 20 ηm to obtain the shape shown in FIG. 26 after removing the resist mask. Subsequently, cleaning with an organic cleaning solution was performed to remove contaminants such as dry etching residues.
続いて、 第 2 7図に示すよ うに、 キャップ層 ( 2 1 1 ) およびゲ 一ト電極 ( 2 1 0、 2 0 9及び 2 0 8の一部) の側壁部に例えば窒 化シリ コンよ り なる第 1 の絶縁性側壁被膜 2 1 3を形成した。 この 第 1 の絶縁性側壁被膜 2 1 3は、 実施例 1 と同様に、 まず減圧化学 気相成長法によ り厚さ 1 0〜2 0 n mの窒化シリ コン膜を堆積し、 そして ドライエッチング技術によ り異方的にエッチングを行なう こ とによ り形成される。 Subsequently, as shown in FIG. 27, for example, a silicon nitride film is formed on the side walls of the cap layer (211) and the gate electrodes (parts of 210, 209 and 208). A first insulating sidewall film 2 13 was formed. The first insulating side wall film 2 13 is formed by first depositing a silicon nitride film having a thickness of 10 to 20 nm by low pressure chemical vapor deposition as in Example 1, and then performing dry etching. It is formed by performing anisotropic etching by technology.
そして、 第 2 8図に示すよ うに、 前記キヤップ層 ( 2 1 1 ) 及び 第 1 の絶縁性側壁被膜 2 1 3をマスク と して S i 膜 2 0 8を完全に パターニングすることによ り ゲー ト電極を形成した。 そしてさ らに、 アンモニア、 過酸化水素混合液による洗浄及び希フッ酸水溶液によ り酸化膜 2 0 7を除去した。 ここで、 表面に露出している物質は、 シリ コン酸化膜、 シリ コン窒化膜、 シリ コン膜であるので、 フッ酸 水溶液処理をはじめと した L S I 工程で通常用いられる清浄化手段 を金属の溶出等の問題を回避して使用することができる。 Then, as shown in FIG. 28, the cap layer (211) and The gate electrode was formed by completely patterning the Si film 208 using the first insulating sidewall film 213 as a mask. Further, the oxide film 207 was removed by washing with a mixed solution of ammonia and hydrogen peroxide and dilute hydrofluoric acid aqueous solution. Here, since the material exposed on the surface is a silicon oxide film, a silicon nitride film, or a silicon film, the cleaning means usually used in an LSI process such as a hydrofluoric acid aqueous solution treatment is used to elute metal. Can be used while avoiding such problems.
次に、 第 2 9図に示すよ うに、 ゲー トェッヂ部のゲー ト酸化膜の 改質を目的と して、 8 5 0 °C、 ドライ O 2雰囲気で熱酸化膜 2 1 4 を基板上に 5 n m成長させた。 この熱酸化法による改質処理も表面 に露出している物質がシリ コン窒化膜およびシリ コンに限られてい るため容易に行える。 Next, as shown in Fig. 29, a thermal oxide film 2 14 was placed on the substrate at 850 ° C and a dry O 2 atmosphere for the purpose of modifying the gate oxide film in the gate portion. 5 nm was grown. The modification treatment by the thermal oxidation method can be easily performed because the material exposed on the surface is limited to the silicon nitride film and silicon.
この後、 第 3 0図に示すよ うに、 第 1 の絶縁性側壁被膜 2 1 3 に 整合して、 イオン注入技術によ り砒素イオンを打ち込み、 第一の N 型不純物層 2 1 6を形成した。 この時のイオン打ち込みエネルギー は 1 5 K e V、そして打ち込み濃度は 2 X 1 0 1 3 a t o m s / c m 2である。 Thereafter, as shown in FIG. 30, arsenic ions are implanted by ion implantation technology to form a first N-type impurity layer 216 in alignment with the first insulating side wall film 213. did. At this time, the ion implantation energy is 15 KeV, and the implantation concentration is 2 × 10 13 atoms / cm 2 .
続いて、 第 3 1 図に示すよ うに、 減圧化学気相成長法によ り厚さ 5 0〜 1 O O n mの窒化シリ コン膜 1 1 3を堆積した後、 異方的に ドライエッチングを行なう ことによ り第 2の側壁被膜 2 1 5を得た。 そして、 第 3 2図に示すよ うに、 第 2の絶縁性側壁被膜 2 1 5 に 整合して、 イオン注入技術によ り リ ンイオンを打ち込み、 第二の N 型不純物層 2 1 7を形成した。 この時のイオン打ち込みエネルギー は 2 5〜 3 0 K e V、 そして打ち込み濃度は 5 X 1 0 1 a t o m s c m 2である。 したがって、 第 2の N型不純物層 2 1 5は、 第 1 の N型不純物層 2 1 3 よ り も深く コンタク ト用領域と して形成され る。 Next, as shown in Fig. 31, a 50 to 100 nm thick silicon nitride film 113 is deposited by low pressure chemical vapor deposition, followed by anisotropic dry etching. As a result, a second side wall coating 2 15 was obtained. Then, as shown in FIG. 32, a second N-type impurity layer 217 was formed by implanting phosphorus ions by ion implantation in alignment with the second insulating side wall film 215. . At this time, the ion implantation energy is 25 to 30 KeV, and the implantation concentration is 5 × 10 1 atomscm 2 . Therefore, the second N-type impurity layer 2 15 It is formed as a contact region deeper than the N-type impurity layer 2 13 of FIG.
続いて、 ァニール処理によ りイオンダメージを回復した後、 第 3 3図に示すよ うに、 配線間の層間絶縁膜となる S i O 2系絶縁膜 2 1 8 をプラズマ C V D技術によ り形成した。 この S i 〇 2系絶縁膜 2 1 8は厚さ約 3 0 0 1 111でぁる。 そして、 この S i 02系絶縁膜 2 1 8上にリ ソグラフィ技術を用いてレジス ト 2 1 9をパターニン グした。 Subsequently, after the ion damage is recovered by annealing, as shown in FIG. 33, an SiO 2 -based insulating film 218 serving as an interlayer insulating film between wirings is formed by a plasma CVD technique. did. The Si 2 -based insulating film 2 18 has a thickness of about 3101111. Then, a resist 219 was patterned on the SiO 2 -based insulating film 218 by using a lithography technique.
しかる後、 第 3 4図に示すよ うに、 レジス ト 2 1 9をマスクに ド ライエッチング技術によ り S i O 2系絶縁膜 2 1 8 をエッチングす ることによ り拡散層 2 1 7へのコンタク ト孔を開口 した。 このコン タク ト孔の開口は、 図から明らかなよ うに、 第二の側壁被膜 2 1 5 がェツチされず、 またグループアイ ソレ一シヨ ン G I 端部は若干ェ ツチされる程度であり 、 いわゆるセルファラインコンタク ト ( S A C : S e 1 f A l i g n C o n t a c t ) が実現できる。 Thereafter, the third 4 by FIG urchin, registry 2 1 9 Ri by the de dry etching technique to mask S i O 2 based insulating film 2 1 8 etched to Rukoto by the Ri diffusion layer 2 1 7 A contact hole was opened. As is clear from the figure, the opening of the contact hole is such that the second side wall coating 2 15 is not etched, and the end of the group isolation GI is slightly etched. A self-aligned contact (SAC) can be achieved.
続いて、 第 3 5図に示すよ うに、 この開口部及び S i 02系絶縁 膜 2 1 8上部に導体層と して、 アルミニウムとシリ コンとの合金 2 2 0をスパッタ法によ り厚さ 2 0 0〜 2 5 0 n m堆積する。 この導 体層は、 前記実施例と同様に、 タ ングステン等の高融点金属あるい は高融点金属シリサイ ドの適用が可能である。 Subsequently, urchin by that shown in 35 figure as a conductor layer in the opening and S i 0 2 based insulating film 2 1 8 upper, Ri by the alloy 2 2 0 of aluminum and silicon in the sputtering Deposit 200-250 nm thick. This conductor layer can be made of a high-melting-point metal such as tungsten or a high-melting-point metal silicide, as in the above embodiment.
そして、 第 3 6図に示すよ うに、 その導体層 2 2 0を所望の配線 パターンに従ってリ ソグラフィ及びドライエッチング技術を用いて 加工し、 配線層 2 2 1 を形成する。 Then, as shown in FIG. 36, the conductor layer 220 is processed using a lithography and dry etching technique according to a desired wiring pattern to form a wiring layer 221.
この後、 最終パッシベーシヨ ン膜を被覆し、 このパッシベーショ ン膜をボンディングパッ ドが露出するよ うに選択ェツチングを行う c そして、 ウェハ状態からチップに加工 (スクライブ) した後、 外部 リー ドに接続するために、 露出したボンディ ングパッ ドに対してヮ ィャをボンディ ングし、 最後に、 樹脂封止して半導体装置を得た。 以上の実施例 2によれば、 信頼性向上はもちろん、 ゲー ト電極の 低抵抗化によ り高速、 かつ高集積化に適した半導体装置の製造方法 が得られる。 Thereafter, the final Passhibeshiyo down film coated, perform by Uni selection Etsuchingu that this passivation emission film bonding pad exposed c Then, after processing (scribe) from the wafer state to chips, bonding is performed on the exposed bonding pad to connect to an external lead, and finally, the semiconductor device is sealed with resin. Obtained. According to the second embodiment described above, it is possible to obtain a semiconductor device manufacturing method suitable for high speed and high integration by lowering the resistance of the gate electrode as well as improving the reliability.
なお、 本実施形態においても、 ゲー ト電極構造と して下層から、 多結晶シリ コン/窒化チタン タングステンとなっているが、 ゲー ト抵抗や配線コンタク ト等の要因から他のゲー ト電極構造、 例えば、 多結晶シリ コン タングステンシリサイ ドゃ多結晶シリ コンノ窒化 タングステン等の構造を選択したと しても、 本実施形態と同様の手 順によ り金属電極の加工に係る拡散層の汚染ゃゲー トエツヂ部での ゲー ト酸化膜ダメージの回復が可能である。 従って、 シリ コン膜を 最下層と した積層構造電極と本実施形態で示した側壁保護手法との 組み合わせは、 本発明の範疇である。 In this embodiment also, the gate electrode structure is polycrystalline silicon / titanium nitride tungsten from the lower layer, but other gate electrode structures and gate contact structures due to factors such as gate resistance and wiring contact. For example, even if a structure such as polycrystalline silicon tungsten silicide or polycrystalline silicon non-nitride tungsten is selected, the contamination layer of the diffusion layer related to the processing of the metal electrode can be formed by the same procedure as in the present embodiment. It is possible to recover gate oxide film damage in the Toetu area. Therefore, a combination of the stacked electrode having the silicon film as the lowermost layer and the sidewall protection method described in the present embodiment is within the scope of the present invention.
また、 上述した実施例 1および実施例 2では一つの M O S F E T を例に説明したが、 実施例から明らかなよ うに半導体基体にアイ ソ レーシヨ ン領域を形成することを開示している。 したがって、 複数 の M O S F E Tを構成要素とする半導体装置、 一般的には半導体集 積回路装置と称される高集積化された半導体装置を得る場合に適用 できることは明らかである。 具体的には D R A Mのメモ リ セルを構 成する M O S F E Tの形成に適用して有用である。 産業上の利用可能性 In the first and second embodiments described above, one MOS FET was used as an example. However, as is apparent from the embodiment, the formation of an isolation region in a semiconductor substrate is disclosed. Therefore, it is apparent that the present invention can be applied to the case of obtaining a semiconductor device having a plurality of MOS FETs as constituent elements, in general, a highly integrated semiconductor device called a semiconductor integrated circuit device. Specifically, it is useful when applied to the formation of MOS FET which constitutes a DRAM memory cell. Industrial applicability
本願発明は、 M O S F E Tを構成要素とするダイナミ ツクラ ンダ ムアクセスメモリ等の半導体装置の製造に用いられる。 The present invention relates to a dynamic cylinder having a MOSFET as a constituent element. It is used for manufacturing semiconductor devices such as memory access memories.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3591097 | 1997-02-20 | ||
JP9/35910 | 1997-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998037583A1 true WO1998037583A1 (en) | 1998-08-27 |
Family
ID=12455195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/000599 WO1998037583A1 (en) | 1997-02-20 | 1998-02-13 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1998037583A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0926741A2 (en) * | 1997-12-23 | 1999-06-30 | Texas Instruments Incorporated | Gate structure and method of forming same |
JP2003531472A (en) * | 1999-09-02 | 2003-10-21 | アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド | Tungsten gate-enclosed MOS transistor, memory cell, and method of manufacturing the same |
US7846826B2 (en) | 2004-10-15 | 2010-12-07 | Elpida Memory Inc. | Method of manufacturing a semiconductor device with multilayer sidewall |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07335885A (en) * | 1994-06-08 | 1995-12-22 | Samsung Electron Co Ltd | Preparation of semiconductor element with low resistance gate electrode |
-
1998
- 1998-02-13 WO PCT/JP1998/000599 patent/WO1998037583A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07335885A (en) * | 1994-06-08 | 1995-12-22 | Samsung Electron Co Ltd | Preparation of semiconductor element with low resistance gate electrode |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0926741A2 (en) * | 1997-12-23 | 1999-06-30 | Texas Instruments Incorporated | Gate structure and method of forming same |
EP0926741A3 (en) * | 1997-12-23 | 1999-11-03 | Texas Instruments Incorporated | Gate structure and method of forming same |
JP2003531472A (en) * | 1999-09-02 | 2003-10-21 | アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド | Tungsten gate-enclosed MOS transistor, memory cell, and method of manufacturing the same |
US7846826B2 (en) | 2004-10-15 | 2010-12-07 | Elpida Memory Inc. | Method of manufacturing a semiconductor device with multilayer sidewall |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6285073B1 (en) | Contact structure and method of formation | |
US6274419B1 (en) | Trench isolation of field effect transistors | |
JP3219909B2 (en) | Method for manufacturing semiconductor device | |
US20020063283A1 (en) | Passivation of sidewalls of a word line stack | |
KR0139772B1 (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
US20020001935A1 (en) | Method of forming gate electrode in semiconductor device | |
US6847086B2 (en) | Semiconductor device and method of forming the same | |
US7176096B1 (en) | Transistor gate and local interconnect | |
JP2000514241A (en) | Transistor with self-aligned contacts and field insulator and fabrication process for the transistor | |
JPH0831932A (en) | Method for manufacturing semiconductor integrated circuit device | |
JP2008021935A (en) | Electronic device and manufacturing method thereof | |
WO1998037583A1 (en) | Method for manufacturing semiconductor device | |
JPH11204507A (en) | Manufacture of semiconductor device | |
JPH11102877A (en) | Metal nitride conversion method and semiconductor device manufacturing method | |
JPH08264771A (en) | Semiconductor device and its manufacture | |
JP2003173985A (en) | Semiconductor device and method for manufacturing the same | |
JPH09162392A (en) | Semiconductor device | |
US6521517B1 (en) | Method of fabricating a gate electrode using a second conductive layer as a mask in the formation of an insulating layer by oxidation of a first conductive layer | |
JPH1197529A (en) | Manufacture of semiconductor device | |
JPH0955424A (en) | Method of forming multilayer interconnection | |
JP3778065B2 (en) | Manufacturing method of semiconductor device | |
KR100307537B1 (en) | Method for forming gate of semiconductor device | |
JPH1187701A (en) | Semiconductor device and method for manufacturing the same | |
JP2001044201A (en) | Method for manufacturing semiconductor integrated circuit device | |
JP3966102B2 (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |