WO1998037241A1 - Methode de dosage d'allongement de telomerase - Google Patents
Methode de dosage d'allongement de telomerase Download PDFInfo
- Publication number
- WO1998037241A1 WO1998037241A1 PCT/US1998/003725 US9803725W WO9837241A1 WO 1998037241 A1 WO1998037241 A1 WO 1998037241A1 US 9803725 W US9803725 W US 9803725W WO 9837241 A1 WO9837241 A1 WO 9837241A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- telomerase
- nucleic acid
- sequence
- acid sequence
- sample
- Prior art date
Links
- 108010017842 Telomerase Proteins 0.000 title claims abstract description 81
- 238000003556 assay Methods 0.000 title description 11
- 150000007523 nucleic acids Chemical group 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 39
- 230000000694 effects Effects 0.000 claims abstract description 37
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 27
- 238000012360 testing method Methods 0.000 claims abstract description 22
- 150000001875 compounds Chemical class 0.000 claims abstract description 18
- 108020004707 nucleic acids Proteins 0.000 claims description 13
- 102000039446 nucleic acids Human genes 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 8
- 238000012216 screening Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 abstract description 12
- 239000000758 substrate Substances 0.000 abstract description 9
- 230000002401 inhibitory effect Effects 0.000 abstract description 3
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 25
- 230000000295 complement effect Effects 0.000 description 11
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 10
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 7
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 230000009758 senescence Effects 0.000 description 4
- 108091035539 telomere Proteins 0.000 description 4
- 210000003411 telomere Anatomy 0.000 description 4
- 102000055501 telomere Human genes 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- YXOLAZRVSSWPPT-UHFFFAOYSA-N Morin Chemical compound OC1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 YXOLAZRVSSWPPT-UHFFFAOYSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- UXOUKMQIEVGVLY-UHFFFAOYSA-N morin Natural products OC1=CC(O)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UXOUKMQIEVGVLY-UHFFFAOYSA-N 0.000 description 2
- 235000007708 morin Nutrition 0.000 description 2
- 238000011330 nucleic acid test Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 108010081734 Ribonucleoproteins Proteins 0.000 description 1
- 102000004389 Ribonucleoproteins Human genes 0.000 description 1
- 229940123582 Telomerase inhibitor Drugs 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007878 drug screening assay Methods 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000003277 telomerase inhibitor Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
Definitions
- Telomeres are tandem repeats at the ends of eukaryotic chromosomes that appear to function in chromosome replication.
- Telomerase is a ribonucleoprotein enzyme that synthesizes one strand of the telomeric DNA using as a template a sequence contained within the RNA component of the enzyme. See. e.g.. Blackburn (1992) Annu. Rev. Biochem. 61 : 1 13-129. incorporated herein by reference.
- Human telomerase is known to synthesize telomeric repeat units with the sequence 5'-TTAGGG-3'. See. e.g.. Morin (1989) Cell. 59:521-529. and Morin ( 1991) Nature 353:454-456. incorporated herein by reference.
- telomere shortening appears to dictate the number of cell divisions a normal somatic cell can undergo.
- Telomerase activity has also been linked to senescence. Whereas normal cells with relatively long telomeres and a senescent phenotype may contain little or no telomerase activity, tumor cells with short telomeres may have significant telomerase activity. Thus, organismal senescence might be halted or at least slowed if an effective. non-toxic telomerase inhibitor can be found. Accordingly, the identification of compounds that affect telomerase activity provides important benefits to efforts at treating human diseases such as cancer.
- the present invention relates to methods of measuring levels of telomerase. e.g., human telomerase activity, in a variety of samples, e.g., a biological sample.
- the invention also includes methods for screening compounds for their ability to modulate. e.g., to enhance or inhibit, telomerase activity, e.g., as a high throughput drug screening assay for pharmaceuticals which affect telomerase activity.
- the invention provides a method for screening for compounds that modulate telomerase activity.
- the method can detect telomerase activity by incubating a sample that is suspected of having telomerase activity with a nucleic acid test sequence and detecting elongation of the test sequence by telomerase.
- the comparison of the level of telomerase activity in the absence of a test compound with the level of activity in its presence can provide information regarding the inhibitory or the enhancing effects of the compound. For example, a compound shows inhibitory effects if the elongation occurs in its absence, but fails in its presence.
- test nucleic acid sequences preferably DNA sequences, that are other than a preparation of genomic DNA or cDNA library.
- test nucleic acid sequences preferably DNA sequences, that are other than a preparation of genomic DNA or cDNA library.
- These embodiments utilize a substantially pure nucleic acid sequence that is bound to a solid substrate and is exogenously added to a sample whose telomerase activity is being investigated.
- One aspect of the present assay relates to employing a hairpin nucleic acid sequence, having a single stranded region with a 3 '-terminus, that is affixed to a solid substrate.
- Telomerase in presence of appropriate oligonucleotides can add telomeric repeat sequences to the 3 '-terminus of the hairpin.
- the elongation of the test nucleic acid sequence is detected by adding a detector sequence that is selected to be complementary to a portion of the test sequence that includes at least one telomeric repeat sequence, thus hybridizing to this portion.
- the assay detects the hybridized detector sequence by providing a label, e.g., a radiolabel. in the detector sequence or adding such a label to the detector sequence. For example, addition of reagents that can hybridize to a section of the detector sequence and cause chemiluminescence or color change of the sample results in detection of telomerase activity.
- FIGURE 1 is a schematic depiction of the various steps of a preferred embodiment of the telomerase assay of the invention.
- the invention relates to methods for detecting telomerase activity and for screening for compounds that modulate the activity of telomerase in vivo or in vitro.
- the methods of the invention can identify compounds which may be useful for the treatment of conditions related to activity of telomerase.
- the invention also relates to methods for detecting the presence or absence of telomerase activity in a sample such as a biological sample, a tissue biopsy sample or a biological fluid, e.g., blood, urine, saliva, and the like.
- the telomerase assays of the invention are useful for detecting tissue (or other biological materials) which has telomerase activity, which may be an indicator of telomerase-linked conditions such as the presence of cancerous or precancerous cells.
- the invention thus provides methods for rapidly screening biological samples for conditions such as cancer.
- the invention provides a method for detecting telomerase activity in a sample.
- the method includes the steps of contacting a test nucleic acid sequence with a sample suspected of containing telomerase activity, under conditions such that if telomerase is present in the sample, the nucleic acid sequence is elongated by telomerase to form an elongated nucleic acid sequence, and detecting the elongated nucleic acid sequence.
- the sample can include cells, which can be lysed if desired. under conditions such that telomerase is not denatured, i.e.. such that telomerase activity is not destroyed.
- the invention provides a method for screening for compounds capable of modulating telomerase activity.
- the method includes the steps of contacting a nucleic acid sequence with a sample suspected of containing a telomerase. in the presence of a test compound, under conditions such that if telomerase is present in the sample, the nucleic acid sequence is elongated by telomerase to form an elongated nucleic acid sequence in the absence of the test compound, and detecting the presence or absence of the elongated nucleic acid sequence.
- Compounds which suppress the activity of telomerase may be useful as inhibitors of telomerase activity in vitro, and may therefore be useful as inhibitors of carcinogenesis or cell senescence, as described above.
- Compounds which enhance the activity of telomerase in the assays of the invention may be promoters of cancer or cell senescence. Accordingly, the assays of the invention provide the ability to screen for both potentially harmful and potentially therapeutic compounds.
- methods of the invention typically employ a nucleic acid hairpin having a 3 '-terminus to which telomerase can add telomeric repeat sequences.
- the nucleic acid sequence e.g., a hairpin: see W097/08183 and U.S. Patent Application No. 08/519.197
- the nucleic acid sequence includes at least one telomeric repeat sequence as a terminal portion of the hairpin sequence (e.g., TTAGGG-3').
- Telomeric repeat sequences include the human telomeric repeat sequence (5'-TTAGGG-3'), and other telomeric repeat sequences known to one of ordinary skill in the art.
- FIGURE 1 shows schematically that the nucleic acid test sequence can be immobilized on a solid support.
- the test sequence is a nucleic acid "hairpin", e.g., a nucleic acid molecule having self- complementary regions capable of hybridizing to each other to form a duplex "stem" region and, preferably, at least one dangling single-stranded portion.
- the advantages of immobilization of the test sequence include ease of handling, and manipulation, e.g., washing, separating, etc. The immobilization is achieved by a variety of methods known in the art.
- One embodiment incorporates commercially available biotinylated nucleic acid bases into the test sequence in order to attach the test sequence to a solid support that has been derivatized with avidin or streptavidin. e.g., streptavidin-coated 96-well plates, or streptavidin-coated beads such as Dynabeads. available for Dynal. Other methods for attaching or immobilizing a nucleic acid sequence on a solid support will be apparent to one of ordinary skill in the art.
- a nucleic acid hairpin which has been affixed to a solid support, is contacted with a sample that is suspected of having telomerase activity.
- telomerase is known to elongate a strand of nucleic acid by addition of telomeric repeat sequences.
- presence of telomerase activity in the sample is detected by determining whether tandemly repeated telomeric sequences have been added to the test hairpin strand.
- the elongation process requires the presence of appropriate oligonucleotide phosphates ("NTP"). i.e.. NTPs required for synthesis of a telomeric repeat sequence.
- telomerase extension reaction can be readily purchased from commercial suppliers and are added to the reaction mixture to permit the telomerase extension reaction to proceed (e.g.. human telomerase requires ATP. TTP. and GTP). Accordingly, if telomerase is present in the sample, it recognizes the 3'- terminus of the test sequence as a substrate and extends it by addition of telomeric repeat sequences.
- the test sequence includes a telomeric repeat sequence before addition of a sample which contains telomerase, e.g., a synthetic test sequence which is provided with a telomeric repeat sequence at the 3'-terminus by chemical synthesis.
- a preferred 3'-terminal portion of the test sequence is 5'- CTGGGTTAGGG-3'.
- the test nucleic acid sequence has the sequence 5'-CTAGT CGACG TGGTC CTTT(biotin)T T TGGAC CACGT CGACT AGCTG GGTTA GGG-3' .
- T(biotin) denotes a biotinylated thymidine.
- the methods of the invention can detect the presence of elongated nucleic acids with sufficient sensitivity such that no target replication steps such as Polymerase Chain Reaction ("PCR") or Ligase Chain Reaction (“LCR”) are required, and in a preferred embodiment no PCR or LCR steps are performed.
- Application of such replication methods typically involve various steps including selection of appropriate primers and necessary enzymes, heating and cooling cycles and the like. The elimination of such steps by the preferred embodiments can render the methods of the invention more convenient to use and less costly in comparison with those that utilize replication procedures.
- it can be advantageous to replicate the elongated nucleic acid (or its complement) or a portion thereof, e.g.. by PCR. LCR. or other known methods. For example, one may desire to incorporate such methods in the present invention if ultrasensivity of detection of telomerase is required.
- the methods of the invention detect repeat sequences added by telomerase to the nucleic acid substrate (e.g., a hairpin) by employing detection sequences that are complementary to a portion of the single-stranded region of the hai ⁇ in that includes at least one repeat sequence.
- a detector sequence which is complementary to a region of the hai ⁇ in as well as to at least a portion of a telomeric repeat sequence rather than to a single strand provides certain advantages.
- a "nicked" duplex structure is formed, comprising contiguous regions of intramolecular hai ⁇ in ai ⁇ in duplex and intermolecular detector:hai ⁇ in duplex.
- This arrangement provides base stacking between the intramolecular duplex (i.e.. the duplex "stem” of the hai ⁇ in) and the intermolecular duplex (i.e.. the detecto ⁇ hai ⁇ in duplex), which results in a greater sequence stringency than hybridization to a simple single strand. Further, the duplex region of the hai ⁇ in stabilizes, e.g., entropically, the detector-specific region of the hai ⁇ in and thereby favors formation of a detecto ⁇ hai ⁇ in duplex.
- the length of the single stranded region of the hai ⁇ in can be selected to allow the use of a variety of detector sequences. In particular, if detection of only a few telomeric repeat sequences is desired, it may be advantageous to select a hai ⁇ in with a relatively long single stranded region to allow stable attachment of a detector sequence that has only a few sequences that are complementary to telomeric repeat sequences.
- the detector sequence preferably contains at least a portion which is complementary to at least two telomeric repeat sequences, e.g.. the sequence 5'- CCCTAACCCTAA-3' or 5'- CCCUAACCCUAA-3'.
- the detector sequence also can include a poly(T). e.g., T30, "tail" region that is not complementary to the hai ⁇ in.
- T30 poly(T)
- the detector sequence hybridizes to this segment. Excess detector sequences and non-specifically- bound detector sequences are removed by washing with a buffer having an appropriate stringency to remove unbound detector sequences while not removing specifically- bound detector molecules, as known in the art.
- the hybridized detector sequences are then detected by well-known methods in the art for detecting nucleic acid sequences.
- the detector sequence contains a label, e.g., radiolabel. that allows a direct detection of the sequence.
- the sequence is detected indirectly by attaching a label to a portion of the detector sequence which can be subsequently detected by direct or indirect means.
- Labels can include radioisotopes, fluorophores, chemiluminescent tags and the like.
- European Patent Publication EP 128 332 herein inco ⁇ orated by reference, reports one such method that employs a "bridging moiety" which provides a bridge between an analyte and a "signaling moiety” which provides a detectable signal.
- the "signal generating" portion of the signaling entity can encompass virtually any of the signal generating systems used in the prior art. In particular, it comprises a moiety which generates a signal itself, e.g., a radiolabel. or a moiety which . upon further reaction or manipulation, will give rise to a signal, e.g.. an enzyme-linked system.
- Some other methods utilize radioactive nucleotides in a label and detect a nucleotide sequence to which such a label has hybridized by detecting the decay of the radioactive nucleotides.
- a preferred embodiment of the present invention employs a detector sequence shown in FIGURE 1 that is selected to have a poly(T) or poly(dT) "tail" to which a complementary probe sequence, i.e.. poly d(A) ⁇ 500 * hybridizes.
- the probe sequence is chosen to be long enough so as to allow attachment of various labels in the regions that are not hybridized to the detector sequence.
- excess polyd(A) i.e.. unhybridized polyd(A).
- FITC fluoreseinisothiocycanate
- telomerase activity in the sample, e.g., by addition of a color- forming substrate for AP. followed by spectrophotometric detection of any color formation.
- Example 1 provides further clarification of various steps of a preferred embodiment of the invention and is meant as illustrative and not in a limiting sense.
- a synthetic nucleic acid "hai ⁇ in” is used as a substrate for elongation by telomerase.
- Appropriate nucleic acid hai ⁇ ins can be designed and prepared by the skilled artisan (see, e.g., U.S. Patent Application Serial No. 08/519,197, filed August 25, 1995, which is hereby inco ⁇ orated by reference).
- the synthetic hai ⁇ in is first affixed to a solid support in a reaction vessel (such as a 96-well plate), e.g., through a biotin-streptavidin linkage or other means known in the art.
- a sample to be tested (which may contain telomerase) is then incubated with the solid-supported hai ⁇ in.
- Telomerase present in the sample extends the dangling single strand of the hai ⁇ in at the 3'-terminus. attaching six base repeats of the sequence 5'-TTAGGG-3'.
- the bound hai ⁇ ins are (optionally) washed to remove sample, and a "detector" sequence is supplied to the reaction vessel.
- the detector sequence includes at least one sequence which is complimentary to the telomerase extension products, i.e..
- the detector hybridizes to the bound hai ⁇ in only if two or more telomerase generated hexamer sequences (5'-TTAGGG-3') are present.
- the detector sequence preferably includes the sequence 5'-CCCTAACCCTAA-3' (or 5'- CCCUAACCCUAA-3').
- the detector further include a poly(T) (e.g., T 30 ) "tail", i.e.. a portion which is not complementary to the hai ⁇ in. If the bound hai ⁇ ins contain the sequence 5'-TTAGGGTTAGGG-3' (i.e. have been extended by telomerase). the detector sequence (or a portion thereof) will hybridize and bind to the hai ⁇ in. Excess detector, and non-specificallv-bound detector sequence, can be removed by washing with buffer of the appropriate stringency, as is known in the art.
- a probe complementary to the poly(T) "tail” of the detector sequence e.g., polyd
- polyd(A) 1500 is added, and hybridizes to the T 30 tail of the "detector" under appropriate conditions.
- anti-FITC-AP conjuggate of anti-FITC antibody (commercially available) with alkaline phosphatase (AP)
- AP alkaline phosphatase
- the methods of the invention attain the above-mentioned objectives including detection of telomerase activity.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU63395/98A AU6339598A (en) | 1997-02-24 | 1998-02-23 | Telomerase extension assay |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3879897P | 1997-02-24 | 1997-02-24 | |
US60/038,798 | 1997-02-24 | ||
US5010997P | 1997-06-18 | 1997-06-18 | |
US60/050,109 | 1997-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998037241A1 true WO1998037241A1 (fr) | 1998-08-27 |
Family
ID=26715548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/003725 WO1998037241A1 (fr) | 1997-02-24 | 1998-02-23 | Methode de dosage d'allongement de telomerase |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU6339598A (fr) |
WO (1) | WO1998037241A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000046601A1 (fr) * | 1999-02-02 | 2000-08-10 | Frank Larsen | Detection d'activite telomerase |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4734363A (en) * | 1984-11-27 | 1988-03-29 | Molecular Diagnostics, Inc. | Large scale production of DNA probes |
EP0297379A2 (fr) * | 1987-06-30 | 1989-01-04 | Miles Inc. | Procédé pour l'amplification des gènes |
US5489508A (en) * | 1992-05-13 | 1996-02-06 | University Of Texas System Board Of Regents | Therapy and diagnosis of conditions related to telomere length and/or telomerase activity |
-
1998
- 1998-02-23 AU AU63395/98A patent/AU6339598A/en not_active Abandoned
- 1998-02-23 WO PCT/US1998/003725 patent/WO1998037241A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4734363A (en) * | 1984-11-27 | 1988-03-29 | Molecular Diagnostics, Inc. | Large scale production of DNA probes |
EP0297379A2 (fr) * | 1987-06-30 | 1989-01-04 | Miles Inc. | Procédé pour l'amplification des gènes |
US5489508A (en) * | 1992-05-13 | 1996-02-06 | University Of Texas System Board Of Regents | Therapy and diagnosis of conditions related to telomere length and/or telomerase activity |
Non-Patent Citations (1)
Title |
---|
MANIATIS T., ET AL.: "MOLECULAR CLONING A LABORATORY MANUAL, PASSAGE.", MOLECULAR CLONING., XX, XX, 1 January 1982 (1982-01-01), XX, pages 214/215., XP002910094 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000046601A1 (fr) * | 1999-02-02 | 2000-08-10 | Frank Larsen | Detection d'activite telomerase |
Also Published As
Publication number | Publication date |
---|---|
AU6339598A (en) | 1998-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU700959B2 (en) | Immobilized mismatch binding protein for detection or purification of mutations or polymorphisms | |
Saiki et al. | Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. | |
JP4338783B2 (ja) | 核酸アレイへの比較蛍光ハイブリダイゼーション | |
EP1319179B1 (fr) | Procedes de detection et de dosage de sequences nucleotidiques | |
US5800994A (en) | Hybridization-ligation assays for the detection of specific nucleic acid sequences | |
US20040224353A1 (en) | Nucleic acid detection methods using universal priming | |
US20050191636A1 (en) | Detection of STRP, such as fragile X syndrome | |
AU2013282319B2 (en) | Nuclease protection methods for detection of nucleotide variants | |
CA2609328A1 (fr) | Quantification d'acides nucleiques et de proteines au moyen d'etiquettes de masse d'oligonucleotides | |
EP1337662A1 (fr) | Detection de molecules d'adn methylees | |
DK3108006T3 (en) | SINGLE-STRENGTHED OIGONUCLEOTIDE PRINCIPLES FOR CHROMOSOME OR RE-COPY COUNTING | |
CA2387306A1 (fr) | Dosages de variantes de sequences courtes | |
JP4532107B2 (ja) | 比率に基づくオリゴヌクレオチドプローブの選択 | |
EP1668158B1 (fr) | Detection et quantification d'arn | |
EP1249503A2 (fr) | Analyse multiplexe de gène sur support solide mobile | |
WO1998037241A1 (fr) | Methode de dosage d'allongement de telomerase | |
US6136531A (en) | Method of quantitatively detecting nucleic acids | |
US20030207302A1 (en) | Universal probe system | |
US20040121344A1 (en) | Method of detecting nucleotide polymorphism | |
US6210888B1 (en) | Technique for screening inhibitors of deamination enzyme activity | |
Chen et al. | A polymerase chain reaction-sequence-specific oligonucleotide procedure for HLA class II typing using biotin-and digoxigenin-labeled probes simultaneously in hybridization | |
EP0833945B1 (fr) | Procede de detection par extension catalysee par l'adn polymerase | |
RU2247781C2 (ru) | Способ определения однонуклеотидных замен в известных последовательностях нуклеиновых кислот | |
JP2001095574A (ja) | 塩基多型を検出する方法 | |
JP2002209584A (ja) | 塩基多型を検出する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998537016 Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase |