+

WO1998035345A1 - Support d'enregistrement magnetique - Google Patents

Support d'enregistrement magnetique Download PDF

Info

Publication number
WO1998035345A1
WO1998035345A1 PCT/JP1998/000540 JP9800540W WO9835345A1 WO 1998035345 A1 WO1998035345 A1 WO 1998035345A1 JP 9800540 W JP9800540 W JP 9800540W WO 9835345 A1 WO9835345 A1 WO 9835345A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
magnetic
magnetic recording
parts
magnetic layer
Prior art date
Application number
PCT/JP1998/000540
Other languages
English (en)
French (fr)
Inventor
Shinji Saito
Hitoshi Noguchi
Nobuo Yamazaki
Junichi Nakamigawa
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to EP98901572A priority Critical patent/EP0962919A1/en
Publication of WO1998035345A1 publication Critical patent/WO1998035345A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/71Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the lubricant
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a coating type large capacity, high recording density magnetic recording medium.
  • the present invention relates to a high-capacity, high-density magnetic recording medium having a magnetic layer and a substantially non-magnetic lower layer, and including a ferromagnetic metal powder or a hexagonal ferrite powder as an uppermost layer.
  • the magnetic recording medium by coating an iron oxide, C o-modified iron oxide, C r 0 2, the ferromagnetic metal powder, dispersed hexagonal ferrite powder in a binder and the magnetic layer to the nonmagnetic support are widely used.
  • ferromagnetic metal powder and hexagonal ferrite powder are known to have excellent high density recording characteristics.
  • large-capacity discs made of ferromagnetic metal powder with excellent high-density recording characteristics include large discs using 10 MB MF-2TD, 21 MB MF-2SD or hexagonal ferrite. There are 4 MB MF-2ED and 21 MB optical disks as capacity disks, but the capacity and performance were not sufficient. Under such circumstances, many attempts have been made to improve high-density recording characteristics. Below is an example Is shown.
  • Japanese Patent Application Laid-Open No. S64-84418 proposes the use of a vinyl chloride resin having an acidic group, an epoxy group and a hydroxyl group. It has been proposed to use a metal powder having a specific surface area of 25 to 7 O mVg or more for Hc 1000 Arthur, y de (0 e) or more for 1 2 3 7 4. It has been proposed to determine the specific surface area and the amount of magnetization of the magnetic material and to include an abrasive. In order to improve the durability of disk-shaped magnetic recording media, use of fatty acid esters having an unsaturated bond with an unsaturated fatty acid ester was proposed in Japanese Patent Publication No.
  • Japanese Patent Publication No. For 45 it is proposed to use a fatty acid ester having an ether bond with a branched fatty acid ester. It is proposed that the volume and surface roughness of pores containing lubricant be set to 0.005 to 0.025 / m.
  • Japanese Patent Application Laid-Open No. Sho 61-2946437 proposes the use of a fatty acid ester having a low melting point and a high melting point. It has been proposed to use an abrasive having a particle size of about 3/4 and a fatty acid ester having a low melting point. It has been proposed to use sex body and oxide chromium.
  • Japanese Patent Application Laid-Open No. HEI 3-2012063 proposes a configuration having a conductive layer and a magnetic layer containing metal powder.
  • a configuration having a magnetic layer and a non-magnetic layer of 1 // m or less is proposed in 29044446, and Japanese Patent Application Laid-Open No. 62-159393
  • a configuration having a magnetic layer including a non-magnetic layer is proposed in Japanese Patent Application Laid-Open No. Hei 5-2905.8.
  • Japanese Patent Application Laid-Open No. 5-109061 discloses a non-magnetic layer containing a conductive layer and a magnetic layer having an Hc of more than 140 Elstep and a thickness of 0.5 im or less. A configuration having a layer is proposed.
  • Japanese Patent Application Laid-Open No. 5-197497 / 1994 proposes a configuration including an abrasive larger than the thickness of the magnetic layer. When the thickness is 0.5 / m or less, Japanese Patent Laid-Open No. 6-68453 includes two types of abrasives with different particle diameters, and regulates the amount of abrasive on the surface. A proposed configuration has been proposed.
  • the magnetic tape used in a digital signal recording system is determined for each system, and is called a so-called DLT type, 3480, 3490, 3590, QIC, D8, or Magnetic tapes compatible with the DDS type are known.
  • the magnetic tape to be used has a relatively thick single-layer ferromagnetic powder having a thickness of 2.0 to 3.0 / m on one side of a non-magnetic support, and a binder.
  • a magnetic layer containing an abrasive and a polishing agent is provided, and a knock coat layer is provided on the other side to prevent turbulence and maintain good running durability.
  • the output is reduced and the thickness is lost.
  • Japanese Patent Application Laid-Open No. 5-182178 discloses a non-magnetic support.
  • a magnetic recording medium provided with an upper magnetic layer is disclosed.
  • the purpose is.
  • Especially recording capacity 0. 1 7 ⁇ 2 Gbit / inch 2 , preferably 0. 2 ⁇ 2 Gbit / inch 2, particularly preferably a magnetic recording medium having a large capacity of 0. 35 ⁇ 2 Gbi t / inch 2, especially It is intended to provide a disk-shaped magnetic recording medium. Disclosure of the invention
  • the present inventors have conducted intensive studies in order to obtain a large-capacity magnetic recording medium having good electromagnetic conversion characteristics and durability and particularly having a significantly improved error rate in a high-density recording area. It has been found that a magnetic recording medium having a large capacity, excellent high-density recording characteristics, and excellent durability, which is the object of the present invention, can be obtained by using a suitable medium, and the present invention has been accomplished.
  • the present invention provides a magnetic layer comprising a support and a substantially nonmagnetic lower layer and a magnetic layer formed by dispersing a ferromagnetic metal powder or a ferromagnetic hexagonal fly powder in a binder in this order.
  • the magnetic recording medium is a magnetic recording medium which surface recording density recording signals of 0. 1 7 ⁇ 2 Gbi t / inch 2, coercive force of the magnetic layer is 1 80 0 E Luz de more
  • the ferromagnetic metal powder has an average major axis length of 0.15 m or less, or the ferromagnetic hexagonal ferrite powder has an average particle diameter of 0.10 m or less.
  • a magnetic layer comprising a magnetic recording medium or a substantially non-magnetic lower layer on a support and a magnetic layer formed by dispersing a ferromagnetic metal powder or a ferromagnetic hexagonal fluorite powder in a binder in this order.
  • the magnetic recording medium transmits a signal having an areal recording density of 0.17 to 2 Gbit / inch 2 .
  • a magnetic recording medium for recording wherein the dry thickness of the magnetic layer is 0.05 to 0.30 ⁇ m, and ⁇ is 10.0 X 10 0 to 3 to 1.0 X 10 0-emu / cm 2 , and the coercive force of the magnetic layer is at least 1800 iL step ′.
  • the dry thickness of the magnetic layer is 0.0 5 to 0. Is 25 m, and the (that Dm is 8. is 0 X 1 0- 3 ⁇ 1. 0 X 1 0- 3 emu / cm 2
  • the substantially non-magnetic lower layer means that it may have a magnetic property to the extent that it does not participate in recording, and is hereinafter simply referred to as the lower layer or the non-magnetic layer.
  • the lower layer contains magnetic powder, it is preferable to contain less than 1/2 of the inorganic powder.
  • the areal recording density is obtained by multiplying the linear recording density by the track density.
  • 0m magnetic layer from vibrating sample magnetometer per unit area of one side: with (VSM manufactured by Toei Kogyo Co., Ltd.), a Hm 1 0 weight magnetic moment can be measured directly kO e (emu / cm 2) , It is equal to the magnetic flux density Bm (unit G 4 ⁇ emu / cm 3 ) obtained by VSM multiplied by the thickness (cm).
  • the unit of 0m is therefore expressed in emu / cm 2 or G ⁇ cm.
  • the linear recording density is the number of bits of a signal to be recorded per recording direction inch. These linear recording density, track density, and areal recording density are values determined by the system.
  • the present invention seeks to improve the areal recording density by improving the magnetic layer thickness, the magnetic layer Hc, and the center plane average surface roughness in terms of linear recording density, and optimizing ⁇ in terms of track density. It is a thing.
  • Preferred embodiments of the present invention are as follows.
  • a magnetic recording medium characterized in that the magnetic layer has a surface roughness of 5.0 nm or less, preferably 4.0 nm or less as a center plane average surface roughness measured by a 3D-MI RAU method.
  • the coercive force of the magnetic layer is not less than 2101 Ruste, the ferromagnetic metal powder has an average major axis length of 0.12 / zm or less, or the ferromagnetic hexagonal ferrite powder has A magnetic recording medium having an average particle size of 0.10 zm or less.
  • the magnetic recording medium records a signal having an areal recording density of 0.20 to 2 Gbit / inch 2.
  • a magnetic recording medium comprising:
  • the magnetic recording medium is a magnetic recording medium for a system having a high transfer rate of at least OMBZsec.
  • the magnetic recording medium wherein the magnetic recording medium is a magnetic recording medium for a large-capacity floppy disk system having a disk rotation speed of 200 rpm or more.
  • the magnetic recording medium is a magnetic recording medium for a large-capacity floppy disk system having a disk rotation speed of 200 rpm or more.
  • the ferromagnetic metal powder is mainly composed of Fe, has an average major axis length of 0.12 ⁇ m or less, and has a needle ratio of 3.09.0, preferably 4.09.0.
  • a magnetic recording medium characterized by the following.
  • the magnetic recording medium wherein the ferromagnetic metal powder is mainly composed of Fe, has an average major axis length of 0.10 m or less, and has a crystallite size of 80 to 180 persons.
  • a magnetic recording medium wherein the support has a center plane average surface roughness of 5.0 nm or less, more preferably 4.0 nm or less.
  • a magnetic recording medium characterized in that the lower layer and / or the magnetic layer contains at least three kinds of fatty acids and / or fatty acid esters.
  • the magnetic recording medium wherein the fatty acid contains at least a saturated fatty acid, and the fatty acid ester contains at least a saturated fatty acid ester or an unsaturated fatty acid ester.
  • the fatty acid esters include monoesters and diesters. Magnetic recording medium.
  • the magnetic recording medium wherein the fatty acid ester contains a saturated fatty acid ester and an unsaturated fatty acid ester.
  • the C / Fe peak ratio is preferably 5 to 120, and more preferably the C / Fe peak ratio is 5 to 10 0.
  • the magnetic recording medium wherein the lower layer contains carbon black having a particle diameter of 5 nm to 80 nm, and the magnetic layer contains carbon black having a particle diameter of 5 nm to 300 nm.
  • both the lower layer and the magnetic layer contain carbon black having an average particle diameter of 5 nm to 80 nm.
  • the magnetic recording medium wherein the lower layer comprises an acicular inorganic powder having an average major axis length of 0.20 / m or less and an acicular ratio of 4.0 to 9.0.
  • the lower layer contains an acicular inorganic powder
  • the magnetic layer contains an acicular ferromagnetic metal powder
  • the average major axis length of the acicular inorganic powder is the average major axis length of the acicular ferromagnetic metal powder.
  • a magnetic recording medium characterized by a factor of 1 to 3.0.
  • the magnetic recording medium wherein the magnetic layer contains at least an abrasive having an average particle diameter of 0.01 to 30 m.
  • the magnetic recording medium wherein the magnetic layer contains diamond having an average particle diameter of at least 2.0 m or less, preferably from 0.01 to 1.0 zm.
  • the lower layer and the Z or the magnetic layer contain a polyurethane having a glass transition temperature of at least 0 ° C to 100 ° C, more preferably 30 to 100 ° C. Mind recording medium.
  • a magnetic recording medium wherein the lower layer and / or the magnetic layer contains polyurethane having a breaking stress of at least 0.05 to 10 Kg / mm 2 .
  • the magnetic layer wherein the dry thickness of the magnetic layer is 0.05 to 0.20 m, and the magnetic layer contains an abrasive having an average particle diameter of 0.4 / m or less. recoding media.
  • the magnetic recording medium wherein the magnetic recording medium is a magnetic recording medium for recording a signal having a surface recording density of 0.35 to 2 Gbit / inch 2 .
  • the magnetic recording medium is a magnetic recording medium for a large-capacity floppy disk system having a disk rotation speed of at least 300 rpm.
  • the magnetic recording medium according to the present invention wherein the magnetic recording medium is a magnetic recording medium for a system having a high transfer rate of 2.0 MB / sec or more.
  • the magnetic recording medium is a magnetic recording medium for a high-capacity floppy disk system, which realizes backward compatibility capable of recording and reproducing with a current 3.5-inch type floppy disk. Magnetic recording medium.
  • a magnetic recording medium characterized by being a magnetic recording medium for a peak disk system.
  • the magnetic recording medium is a magnetic recording medium for a large-capacity floppy disk system in which a head floats by rotation of a disk.
  • the magnetic recording medium is a magnetic recording medium for a large-capacity floppy disk system in which a head floats due to rotation of a disk and a linear voice coil motor is used for driving the head.
  • the present invention by adopting the above-described configuration, has a surface that cannot be obtained by the conventional technology.
  • a magnetic recording medium with a recording density of 0.1 to 2 Gbit / inch2 which has both excellent high-density characteristics and excellent durability. It has been found that a magnetic recording medium, particularly a disk-shaped magnetic recording medium, can be obtained.
  • the excellent areal recording density according to the present invention is 0.17 to 2 Gbit / inch 2 , preferably 0.2 to 2 Gbit / inch 2, and further, the areal recording density is 0.35 to 2 Gb / inch 2.
  • coating-type magnetic recording media that had both high-density characteristics and excellent durability, which were never achieved with products known to the world, especially disk-shaped magnetic recording media, were obtained as follows. This is the result of organically combining points such as.
  • the key points of the present invention are (1) high He, ultra-smoothness, (2) improvement of composite lubricants and highly durable binders, improvement of ferromagnetic powder, securing of durability by using high hardness abrasives, and (3) ultra-thin magnetic layers.
  • the He of the magnetic layer can be set to at least 180 Elster, preferably at least 210 Elstep, and a large capacity and high density can be achieved.
  • the center surface average surface roughness of the support is preferably set to 4.0 nm or less, and a smooth magnetic layer can be obtained by the ATOMM structure.
  • the center surface average surface roughness of the magnetic layer is obtained.
  • the above (1) a wide range of functions and performances can be achieved under a wide range of conditions.
  • the above (2) secures the affinity and compatibility between the lubricants, and can exert a good lubrication function.
  • the following is an example of the combination of a plurality of lubricants with different functions (1).
  • lubricants of different polarities especially fatty acids and Z or fatty acid esters in combination.
  • a combination of a monoester and a diester of a fatty acid ester is used.
  • linear and branched lubricants especially fatty acids and Z or fatty acid esters.
  • a linear fatty acid ester and a branched fatty acid ester are used in combination.
  • saturated and unsaturated carbon chain lubricants especially fatty acids and / or fatty acid esters.
  • a saturated fatty acid ester and an unsaturated fatty acid ester are used in combination.
  • Unsaturated fatty acids are used in the fatty acid residue portions of fatty acids and fatty acid esters. 6) Use only three or more fatty acid esters in combination.
  • the dispersing performance is high, the glass transition temperature is high, and the breaking stress is high, so that a highly durable binder can be used.
  • the durability can be improved by using a polyurethane resin.
  • the polyurethane preferably has two or more OH groups at the molecular terminals, particularly preferably three or more, particularly four or more OH groups at the molecular terminals. It is preferable because it has high reactivity with polyisocyanate as a curing agent and can be cured to form a three-dimensional network coating film.
  • the hardness of the ferromagnetic powder can be increased, and the durability can be improved by increasing the A1 component. Further, how to ensure durability by using a high hardness abrasive will be described. The durability can be further ensured by using not only conventional abrasives such as alumina but also abrasives having a Mohs hardness of about 9, but also using diamond of fine particles having a Mohs hardness of 10 in combination. Next, (3) the ultra-thin magnetic layer and the reduction in fluctuation of the interface with the lower layer will be described.
  • the magnetic layer is preferably made ultra-thin in a thickness of 0.05 to 0.30 ⁇ m, more preferably 0.05 to 0.25 ⁇ m, and the fluctuation of the interface with the lower layer is reduced. As a result, a uniform, smooth and thin magnetic layer can be obtained, and high capacity and high density can be achieved.
  • powder ferromagnetic powder and non-magnetic powder.
  • the ferromagnetic metal powder has an average major axis length of preferably 0.15 m or less, more preferably 0.12 m or less, and the ferromagnetic hexagonal fly powder has an average particle diameter of Is highly filled with fine ferromagnetic powder of 0.10 m or less, As a result, large capacity and high density can be achieved. Higher filling of non-magnetic powder can improve durability.
  • powder (1) ferromagnetic powder and non-magnetic powder
  • the ferromagnetic metal powder has an average major axis length of preferably 0.15 m or less, more preferably 0.12 / m or less, and the ferromagnetic hexagonal ferrite powder has an average particle diameter of Use ferromagnetic powder of fine particles with a particle diameter of 0.10 m or less, especially for ferromagnetic metal powder, the average major axis length is 0.10 m or less, the acicular ratio is 4.0 to 9.0, and the crystal Ultra-fine particles with a size of 80 to 180 particles achieve high filling and ultra-smoothness of the magnetic layer, achieving high capacity and high density.
  • the stabilization of the head touch in 1 is described.
  • the appropriate strength, flexibility, and smoothness of the entire magnetic recording medium stabilize the head touch, and high-speed running and high-speed rotation stably increase the capacity and density.
  • the dimensional stability and the servo of 7 will be described.
  • the heat shrinkage rate at 100 ° C for 30 minutes and the heat shrinkage rate at 80 ° C for 30 minutes are both 0.5% or less for each direction in the plane of the support. to inner each direction, such as by thermal expansion coefficient is 1 0- 4 ⁇ 1 0- 8 Z ° C
  • Hakare dimensional stability, stable large capacity and high density by high speed running 'high speed Can be achieved.
  • the heat shrinkage of the magnetic layer and the support of (1) can be improved.
  • the effects of the lubricants at high and low temperatures in 1 by selecting and combining the various lubricants described above based on a certain concept, good lubrication performance can be obtained at both high and low temperatures.
  • the transfer rate which indicates the data write / read time, is 2 MB per second or more, which is comparable to that of a hard disk. It is 20 times faster than conventional FD and more than 2 times faster than MO. With great advantages.
  • This recording medium further comprising a lower layer and a thin magnetic layer Can be mass-produced with the same dispensing media as current FDs, and has the advantage of being less expensive than MOs and hard disks.
  • the present inventors have conducted intensive studies based on the knowledge of such a medium, and have found that the areal recording density which is much larger than that of the ZIP disk or MO (3.5 inches) is 0.17 to 2 Gbit / inch 2, preferably a 0. 2 ⁇ 2 Gbit / inch 2 further areal recording density 0. 35 ⁇ 2 Gb / inch 2, preferably is ⁇ 1 0. 0 x 1 0- 3 ⁇ 1 .
  • 0 X 1 is 0 _3 emu / cm 2, in particular (Dm is 8. 0 x 1 0- 3 ⁇ 1.
  • a magnetic recording medium especially a disk-shaped magnetic recording medium, which has both high capacity, high density characteristics and excellent durability without any problem, and in which the error rate especially in the high density recording area has been significantly improved, has been obtained.
  • This is an invention applicable to a magnetic tape, for example, a computer tape.
  • the ultra-thin magnetic layer contains ultra-fine magnetic powder having high output and high dispersibility, and the lower layer contains spherical or acicular inorganic powder, and the magnetic layer is thinned.
  • the cancellation of magnetic force in the magnetic layer is reduced, the output in the high frequency range is greatly increased, and the overwriting characteristics are also improved.
  • the effect of the ultra-thin magnetic layer can be achieved by combining with a narrow gap head and a magnetoresistive magnetic head (MR head), and the digital recording characteristics can be improved. I can do it.
  • the thickness of the upper magnetic layer is preferably in the range of 0.05 to 0.30 ⁇ m, more preferably 0.05, so as to match the magnetic recording method of high density recording and the performance required from the magnetic head. Selected for a thin layer of ⁇ 0.25 m.
  • Such an ultrathin magnetic layer which is uniform and thin, achieves a high degree of packing by dispersing fine magnetic powder and nonmagnetic powder with a highly dispersing agent and a combination of highly dispersible binders.
  • the magnetic material used is a high-capacity FDII. To maximize the suitability of computer tape, a magnetic material with high output, high dispersibility, and high randomization is used.
  • a ferromagnetic metal powder that is very fine and has an average major axis length of 0.15 / m or less, and more preferably 0.1 / m or less, or a strong particle having an average particle diameter of 0.10 or less that can achieve high output.
  • magnetic hexagonal ferrite powder especially by using a ferromagnetic metal powder having an average major axis length of 0.10 m or less and a crystallite size of 80 to 180, more Co is obtained.
  • A, Si, Y, Nd, etc. as a sintering inhibitor High output and high durability can be achieved.
  • a three-dimensional network binder system suitable for ultra-thin magnetic layers is used to ensure running stability and durability during high-speed rotation.
  • a composite lubricant that can maintain its effectiveness even when used under a wide range of temperature and humidity conditions or when used at high speeds is placed in the upper and lower layers. It ensures that an appropriate amount of lubricant is always supplied to the magnetic layer, increases the durability of the upper magnetic layer, and improves reliability.
  • the cushion effect of the lower layer can provide good head touch and stable running performance.
  • a high-capacity recording system requires a high transfer rate.
  • the transfer speed of Zip is 1.4 MB / sec
  • the maximum transfer speed of Hi FD is 3.6 MBZ.
  • the rotational speed of the magnetic disk must be increased by at least one order of magnitude compared to the conventional FD system.
  • the rotation speed of the magnetic disk is preferably 1800 rpm or more, and more preferably 3000 rpm or more.
  • the rotational speed of the magnetic disk is 2968 rpm
  • Hi FD the rotational speed of the magnetic disk is 3600 rpm.
  • the magnetic disk speed is estimated to be 5400 rpm and the transfer speed is expected to be 7.5 MB / s.
  • Increasing the capacity of magnetic recording Z The recording track density will increase as the density increases.
  • a servo recording area is provided on the medium to ensure the magnetic head training for recording tracks.
  • the characteristics of the support are important for improving the track density.
  • the dimensional stability of the support base particularly the isotropy, is considered.
  • Servo recording is an indispensable technology for recording and reproduction at high track densities, but this improvement can be achieved from the media side by making the support base as isotropic as possible.
  • a “sequential multilayer system” in which layers are sequentially formed is general.
  • the lower layer is applied, cured, or dried, and then the upper magnetic layer is applied in the same manner, followed by hardening and surface treatment.
  • FD differs from magnetic tape in that the same treatment is applied to both sides.
  • After the coating process it is completed as a final product through a slitting process, a punching process, a seal assembling process, and a satellite process. From the viewpoint of production yield, it is preferable to simultaneously or successively wet coat the upper magnetic layer while the lower layer is still wet.
  • Durability is an important factor for magnetic disks.
  • Means for improving the durability of the medium include a binder formulation that increases the film strength of the disc itself and a lubricant formulation that maintains the sliding property with the magnetic head.
  • the medium of the present invention improves the three-dimensional network binder system that has been proven in the current FD system for the binder formulation.
  • Lubricants exhibit excellent effects under various temperature and humidity environments in which they are used. Use a combination of multiple lubricants to cover a wide range of temperatures (low temperature, room temperature, high temperature) and humidity (low humidity, high humidity). Each lubricant exerts its function even below, and can maintain a comprehensively stable lubricating effect.
  • the lower layer has a lubricant tank effect so that an appropriate amount of lubricant is always supplied to the upper magnetic layer, and the durability of the upper magnetic layer can be improved. It was done. Amount of lubricant that can be included in ultra-thin magnetic layer However, simply thinning the magnetic layer reduces the absolute amount of lubricant, leading to poor running durability. In this case, it was difficult to achieve a balance between the two.
  • the upper and lower layers have separate functions and complement each other to achieve both improved electromagnetic conversion characteristics and improved durability. This functional differentiation was particularly effective in systems that slide the magnetic head and media at high speed.
  • the lower layer can have a function of controlling surface electric resistance in addition to the function of retaining lubricant.
  • a solid conductive material such as carbon black is often added to the magnetic layer. These not only limit the filling density of the magnetic material, but also affect the surface roughness as the magnetic layer becomes thinner. These drawbacks can be eliminated by adding a conductive material to the lower layer.
  • the large-capacity magnetic recording medium of the present invention is not limited to data such as letters and numbers, but is also used as an image recording medium. It has the ability to respond to the demands of the functions / costs as well.
  • the large-capacity medium of the present invention is based on a coated magnetic recording medium with a proven track record, and has excellent long-term reliability and excellent cost performance.
  • the present invention is achieved by accumulating various factors as described above, acting synergistically and organically to achieve the first time, and at the same time, selecting, combining, and synthesizing all the above-mentioned technologies.
  • the magnetic recording medium has a capability that can be applied to, for example, a HiFD, which was jointly developed by Sony Corporation and Fujifilm Corporation. With the rapid development of the processing capacity of personal computers in recent years and the large increase in the amount of information to be handled, Hi-FD has been developing new high-performance data recording systems with large capacity and high data transfer rates.
  • the current 3.5-inch floppy disks are widely used as easy-to-use recording media around the world, and these disks will continue to be used to read out and reuse the huge amount of stored data.
  • the 3.5-inch floppy disk "Hi FD" has a large capacity of 200 MB and a high transfer rate of 3.6 MBZ sec. It can record and play with the current 3.5-inch floppy disk. It is a next-generation large-capacity floppy disk system that can achieve excellent backward compatibility.
  • Newly developed ultra-thin layer coating 200 MB through the use of a cloth metal disc and a dual disc-gap head with both a narrow gap for high-density recording and a wide gap for current 3.5-inch floppy discs A large data file such as images and sounds can be easily handled.
  • the high linear recording density and the high-speed disk rotation of 360 rpm allow the transfer speed of the conventional 3.5-inch floppy disk (2 HD) to be up to 3.6 compared to about 0.06 MBZ sec. It achieves a high transfer rate of MB / sec. This enables about 60 times faster processing than before.
  • the dual discrete gap head is raised by rotating the disk in the same way as a hard disk, so that the head does not contact during recording and playback. By using a linear voice coil motor to drive the head, high-speed random access can be performed three to four times faster than conventional 3.5-inch floppy disk drives.
  • the dual discrete gap head realizes backward compatibility that enables recording and playback with the current 3.5-inch floppy disk.
  • the magnetic recording medium of the present invention has been developed so as to be applicable to a large-capacity floppy disk system.
  • the lower layer and the ultrathin magnetic layer may be provided on only one side or both sides of the support.
  • the upper magnetic layer can be provided after the lower layer is coated and the lower layer is wet (WZW) or dried (W / D). From the viewpoint of production yield, simultaneous or sequential wet coating is preferable, but in the case of a disc, coating after drying can be used sufficiently.
  • the upper layer and the lower layer can be formed simultaneously by simultaneous or sequential wet coating (WZW), so that a surface treatment step such as a calendar step can be effectively utilized. Even with an ultra-thin layer, the surface roughness of the upper magnetic layer can be improved.
  • the coercive force He of the magnetic layer must be more than 180 Elstepped, Bm is 2000 to 500 G for metal magnetic powder, and 100 to 3 G for barium fluoride powder. It is necessary that it be 0 0 0 G.
  • the ferromagnetic powder used in the upper magnetic layer of the present invention is preferably a ferromagnetic alloy powder containing ⁇ -Fe as a main component.
  • These ferromagnetic powders include A1, Si, S, Sc, Ca, Ti, V, Cr, Cu, Y, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ba, Ta, W, Re, Au, Hg, Pb, Bi, La, Ce, Pr, Nd, P, Co, Mn, Zn, Ni, Sr, B, etc. Atoms may be included.
  • At least one of Al, Si, Ca, Y, Ba, La, Nd, Co, Ni, and B be included in addition to ⁇ -Fe, and Co, Y, A More preferably, it contains at least one of 1.
  • the content of Co is preferably from 0 at% to 40 at%, more preferably from 15 at% to 35 at%, more preferably from 20 at% to 35 at%, based on Fe. It is as follows.
  • the content of Y is preferably from 1.5 to 15 at%, more preferably from 3 to 12 at%, and still more preferably from 4 to 9 at%.
  • a 1 is preferably from 1.5 at% to 30 at%, more preferably from 3 at% to 20 at%, more preferably from 4 at% to 14 at%.
  • These ferromagnetic powders may be previously treated with a dispersant, a lubricant, a surfactant, an antistatic agent, and the like described below before dispersion.
  • Japanese Patent Publication No. 44-14090 Japanese Patent Publication No. 451-183, Japanese Patent Publication No. 47-220, and Japanese Patent Publication No. 47-225 No. 3, Special Publication No. 46-28 46 66, Special No. 46-38 7 55, Special No. 47-428 86, Special No. 47-1 24 22, Special No. 47 No. 47-17-172,4, No.4,7-185,093, No.4,187-187,3, No.3,093,073, No.4, No.4 6- 3 9 6 3 9; U.S. Patent Nos. 0 3 6 2 1 5; 3 0 3 1 3 4 1; 3 1 0 0 1 9 4; 3 2 4 2 0 0 5 And No. 3389014.
  • the ferromagnetic alloy powder may contain a small amount of hydroxide or oxide.
  • a ferromagnetic alloy powder obtained by a known production method can be used. Can be mentioned.
  • a reducing agent such as sodium borohydride, hypophosphite or hydrazine
  • the ferromagnetic alloy powder thus obtained is subjected to a known gradual oxidation treatment, i.e., a method of drying after immersion in an organic solvent. Thereafter, a method of drying and a method of forming an oxide film on the surface by adjusting the partial pressure of oxygen gas and an inert gas without using an organic solvent can be used.
  • a known gradual oxidation treatment i.e., a method of drying after immersion in an organic solvent. Thereafter, a method of drying and a method of forming an oxide film on the surface by adjusting the partial pressure of oxygen gas and an inert gas without using an organic solvent can be used.
  • the ferromagnetic powder of the magnetic layer of the present invention is represented by a specific surface area by the BET method, it is 40 to 80 Om 2 / g, preferably 45 to 70 m 2 / g. If it is less than 40 m 2 / g, the noise increases, and if it is more than 80 m 2 Zg, the surface properties are not easily obtained, which is not preferable.
  • the crystallite size of the ferromagnetic powder of the magnetic layer of the present invention is from 80 to 18 OA, preferably from 100 to 18 OA, and more preferably from 110 to 175 A.
  • the major axis length of the ferromagnetic powder is 0.01 ⁇ mJ3 ⁇ 4 ⁇ 0.25 ⁇ m or less, preferably 0.03 / mi3 ⁇ 4J: 0.15 ⁇ m or less, more preferably 0.05 0mJ or less. 3 ⁇ m or more and 0.12 ⁇ m or less.
  • the needle ratio of the ferromagnetic powder is preferably 3.0 or more and 15.0 or less, more preferably 3.0 or more and 12.0 or less, and particularly preferably 3.0 or more and 9.0 or less.
  • S of the magnetic metal powder is 100 to 180 emu / g, preferably 110 emu / g to 170 emu / g, and more preferably 125 to 160 emu / g. .
  • the coercive force of the metal powder is preferably in the range of from 170 to 700 Elstepped, and more preferably in the range of from 1,800 to 3,100 Elstard.
  • the water content of the ferromagnetic metal powder is preferably set to 0.01 to 2%. It is preferable to optimize the water content of the ferromagnetic powder depending on the type of the binder. It is preferable that the pH of the ferromagnetic powder is optimized by a combination with the binder used. The range is 4 to 12 forces, preferably 6 to 10 forces.
  • the ferromagnetic powder may be subjected to a surface treatment with Al, Si, P or an oxide thereof, if necessary. The amount is 0.1 to 10% based on the ferromagnetic powder. Is preferably 10 OmgZm 2 or less.
  • the ferromagnetic powder may contain inorganic ions such as soluble Na, Ca, Fe, Ni, and Sr.
  • the ferromagnetic powder used in the present invention preferably has a small number of vacancies, and its value is preferably 20% by volume or less, more preferably 5% by volume or less.
  • the shape may be needle-like, rice-grain-like, or spindle-like, as long as the particle size characteristics described above are satisfied.
  • the SFD of the ferromagnetic powder itself is preferably small, and is preferably 0.8 or less. It is necessary to reduce the distribution of He in the ferromagnetic powder.
  • the SFD is 0.8 or less, the electromagnetic conversion characteristics are good, the output is high, and the magnetization reversal is sharp and the peak shift is small, which is suitable for high-density digital magnetic recording.
  • the hexagonal ferrite contained in the uppermost layer of the present invention there are barium fluoride, strong graphite, lead ferrite, substituted calcium calcium, and Co substituted bodies. Specifically, magnetoplumbite-type barium ferrite and strontium fluoride, magnetoplumbite-type ferrite whose particle surface is coated with spinel, and magnetoplumbite-type ballumite containing a part of spinel phase and And strontium fluoride.
  • the average plate diameter is preferably 4 Onn or less, but if it is 1 Onm or less, stable magnetization cannot be expected due to thermal fluctuations. Above 20 O nm, noise is high, and neither is suitable for high-density magnetic recording.
  • the plate ratio (plate diameter Z ⁇ thickness) is preferably 1 to 15. Preferably it is 1-7. When the plate ratio is small, the filling property in the magnetic layer is increased, which is preferable, but sufficient orientation cannot be obtained. If it is larger than 15, noise increases due to stacking between particles. BET specific surface area of the particle size range showing a 1 0 ⁇ 2 0 O m 2 / g .
  • the particle generation reaction system is made as uniform as possible, and the generated particles are subjected to distribution improvement processing. For example, a method of selectively dissolving ultrafine particles in an acid solution is also known.
  • the coercive force Hc measured on the magnetic material can be made up to about 50,000 Oersted to 50,000 Oersted. He is limited by the power of the recording head, where a higher value is advantageous for high-density recording. In the present invention, H c is from about 170 Oersted to about 400 Oersted, but is preferably from 180 Oelsted to 350 Oelsted. When the saturation magnetization of the head exceeds 1.4 Tesla, it is preferable to set the saturation magnetization to 2000 or more. He can be controlled by the particle diameter (plate diameter / plate thickness), the type and amount of contained elements, the element substitution site, the particle generation reaction conditions, and the like.
  • the saturation magnetization CTS is 40 emu / g to 8 O emu / g.
  • ⁇ s is preferably higher, but tends to be smaller as the particles become finer. It is well known to combine spinelite with magnetoplumbite to improve ⁇ s, and to select the type of element contained and the amount of addition. It is also possible to use W-type hexagonal ferrite.
  • the surface of the magnetic substance particles is also treated with a substance suitable for a dispersion medium and a polymer. Inorganic compounds and organic compounds are used for the surface treatment material. Typical examples of the main compound include oxides or hydroxides of Si, A, P, etc., various silane coupling agents, and various titanium coupling agents. The amount is 0.1 to 10% based on the magnetic material.
  • the pH of the magnetic material is also important for dispersion.
  • the method of producing the rhombic crystallites is as follows: (1) Barium oxide, iron oxide, metal oxide that replaces iron, and boron oxide as a glass-forming substance are mixed so as to have the desired composition and melted. A glass crystallization method of rapidly cooling to an amorphous body, then reheating, washing and pulverizing to obtain a barium fluoride crystal powder.
  • the inorganic powder used in the lower layer of the present invention is a non-magnetic powder, and is selected from, for example, inorganic compounds such as metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides. be able to.
  • the inorganic compound examples include ⁇ -alumina, S-alumina, iron-alumina, 0-alumina, gay carbide, chromium oxide, cerium oxide, ⁇ -iron oxide, and hematite, gelatin , Corundum, silicon nitride, titanium nitride, titanium oxide, silicon dioxide, tin oxide, magnesium oxide, tungsten oxide, zirconium oxide, boron nitride, zinc oxide, calcium carbonate, calcium sulfate, barium sulfate, molybdenum disulfide, etc.
  • titanium dioxide, zinc oxide, iron oxide, and barium sulfate because of their small particle size distribution and many means of imparting functions, and more preferred are titanium dioxide.
  • the average particle size of these non-magnetic powders is preferably 0.005 to 2 zm.
  • the particle diameter of the nonmagnetic powder is from 0.01 m to 0.2 / m.
  • the average particle diameter is preferably 0.08 or less
  • the average major axis length is preferably 0.3 ⁇ ⁇ or less.
  • 0.2 ⁇ m or less is more preferable.
  • the tap density is 0.05 to 2 g / ml, preferably 0.2 to 1.5 g / ml.
  • the water content of the nonmagnetic powder is 0.1 to 5% by weight, preferably 0.2 to 3% by weight, and more preferably 0.3 to 1.5% by weight.
  • the pH of the non-magnetic powder is 2 to 11, but the pH is particularly preferably between 5.5 and 10.
  • the specific surface area of the nonmagnetic powder is from 1 to 100 m 2 / g, preferably from 5 to 80 m 2 / g, more preferably from 10 to 7 Om 2 / g.
  • the crystallite size of the non-magnetic powder is preferably from 0.004 to 1 ⁇ m, more preferably from 0.04 to 0.1 ⁇ m.
  • the oil absorption using DBP is 5 to 100 ml / 100 g, preferably 10 to 80 ml / 100 g, and more preferably 20 to 60 ml / 100 g.
  • the specific gravity is 1 to 12, preferably 3 to 6.
  • the shape may be any of a needle shape, a spherical shape, a polyhedral shape, and a plate shape.
  • the Mohs hardness is preferably 4 or more and 10 or less.
  • the SA (stearic acid) adsorption amount of the non-magnetic powder is 1 to 20 fimoi / m 2 , preferably 2 to 15 / mol / m 2 , more preferably 3 to 8 mol / m 2 .
  • the pH is between 3 and 6.
  • a 1 2 0 3 S i 0 2 by surface treatment on the surface of the non-magnetic powder, T i 0 2, Z r 0 2, S n 0 2, S b 2 0 3, Z nO, Y2O3 is present Is preferred.
  • a 1 2 O 3 is particularly preferred for dispersibility.
  • a co-precipitated surface treatment layer may be used depending on the purpose, or a method in which alumina is present first, and then the surface layer has a silicide force, or the reverse method may be employed.
  • the surface treatment layer may be a porous layer depending on the purpose, it is generally preferable that the surface treatment layer is homogeneous and dense.
  • non-magnetic powder used in the lower layer of the present invention include HIT-100 (average particle size: 0.11 / m) and ZA-G1 manufactured by Sumitomo Chemical as alumina, and nanotites manufactured by Showa Denko as iron oxide.
  • Iron monoxide hematite
  • ⁇ - F e 2 0 3 particles used in the present invention
  • the needle-shaped gate one tie preparative particles and the precursor particles child.
  • Acicular goethite particles can be produced, for example, by the following method.
  • acicular goethite particles which are precursor particles, are dehydrated in a temperature range of 200 to 500 ° C or, if necessary, further heat-treated in a temperature range of 350 to 800 ° C. To obtain acicular Fe 2 O 3 particles. It should be noted that there is no problem even if a sintering inhibitor such as P, Si, B, Zr, or Sb adheres to the surface of the acicular goethite particles to be dehydrated or annealed.
  • a sintering inhibitor such as P, Si, B, Zr, or Sb adheres to the surface of the acicular goethite particles to be dehydrated or annealed.
  • ⁇ - F e 2 0 3 particles used in the present invention are prepared from the dehydrated or baked blunt needle-like one F e 2 0 3 particles obtained by the in the following manner. Obtain a suspension acicular ⁇ one F e 2 0 3 particles dispersed in an aqueous solution. The resulting suspension was added A 1 of compound in, coated with A 1 compound of that on the surface of the ⁇ - F e 2 0 3 particles with adjusting the p H of the suspension, then filtered, Rinse, dry, crush, and further degas if necessary.
  • A1 compound to be used aluminum salts such as aluminum acetate, aluminum sulfate, aluminum chloride and aluminum nitrate and alkali aluminates such as sodium aluminate can be used.
  • a 1 compound addition amount in this case is A 1 in terms relative to the alpha-F e 2 0 3 particles 0.0 to 5 0 wt% Dea You. When the amount is less than 0.01% by weight, the dispersion in the binder resin is insufficient. When the amount exceeds 50% by weight, the A1 compounds floating on the particle surface interact with each other. Not preferred.
  • an A 1 compound and a compound selected from P, T i, M n, N i, Z n, Z r, S n, and S b, including a Si compound can also be coated with one or more species.
  • the addition amount of these compounds used with A 1 compound is in the range of 0. 0 1-5 0% by weight for each alpha-F e 2 0 3 particles. When the amount is less than 0.01% by weight, there is almost no effect of improving the dispersibility by the addition, and when the amount exceeds 50% by weight, the compounds floating on the surfaces other than the particle surface interact with each other. Absent.
  • the method for producing titanium dioxide is as follows.
  • the methods for producing these titanium oxides are mainly the sulfuric acid method and the chlorine method.
  • the sulfuric acid method illuminate ore is digested with sulfuric acid, and Ti, Fe, etc. are extracted as sulfate.
  • the iron sulfate is removed by crystallization separation, and the remaining titanyl sulfate solution is filtered and purified, followed by thermal hydrolysis to precipitate hydrous titanium oxide.
  • impurities are washed and removed, a particle size regulator and the like are added, and the mixture is calcined at 80 to 100 ° C. to obtain crude titanium oxide.
  • Rutile type and anatase type are classified according to the type of nucleating agent added at the time of hydrolysis.
  • This crude titanium oxide is made by pulverization, sizing, and surface treatment. Natural or synthetic rutile is used as the raw ore in the chlorine method. The ore is chlorinated in a high temperature reduced state, T i is F e to T i C 1 4 is F e C l 2, and the iron oxide solidified by cooling is separated from the T i C 1 4 liquid. The obtained crude T i C 14 is purified by rectification, then a nucleating agent is added, and the mixture is instantaneously reacted with oxygen at a temperature of 100 ° C. or more to obtain crude titanium oxide. The finishing method for imparting pigmentary properties to the crude titanium oxide produced in this oxidative decomposition step is the same as the sulfuric acid method.
  • the fine slurry is transferred to a surface treatment tank, where the metal hydroxide is coated on the surface.
  • a predetermined amount of aqueous salt solution such as A1, Si, Ti, Zr, Sb, Sn, Zn, etc. is added, and an acid or neutralizer is added to neutralize the solution to generate water.
  • the surface of the titanium oxide particles is coated with an oxide.
  • By-product water-soluble salts are removed by decantation, filtration and washing, and finally Adjust the slurry pH, filter and wash with pure water.
  • the washed cake is dried with a spray dryer or band dryer.
  • the dried product is pulverized by a jet mill to produce a product.
  • the specific surface area of the carbon black in the lower layer is 100 to 500 m 2 / g>, preferably 150 to 400 m 2 Zg, and the DBP oil absorption is 20 to 400 ml / 100 g, preferably 30. ⁇ 400ml / 100g.
  • the average particle size of the carbon black is 5 nm to 80 nm, preferably 10 to 50 nm, and more preferably 10 to 40 nm. A small amount of carbon black having an average particle size of more than 80 nm may be contained.
  • the carbon black preferably has a pH of 2 to 10, a water content of 0.1 to 10%, and a tap density of 0.1 to 1 gZml.
  • carbon black used in the present invention examples include BLACKPEARLS 200 (manufactured by Cabot Corporation) (average particle size: 15), 140 (average particle size: 13 nm), and 130 (average particle size). Diameter 13nm), 1100 (average particle diameter 14nm), 100,000, 900 (average particle diameter 15nm), 0.80, 880, 700, L (average particle diameter 24nm) , VULCAN XC-72 (average particle diameter 30 nm), P (average particle diameter 19 nm), manufactured by Mitsubishi Kasei Kogyo Co., Ltd.
  • Kacchin Black EC Average particle size 30 nm
  • AXO Corporation Average particle size 20 nm
  • # 70 average particle size 27 nm
  • # 60 average particle size 49
  • # 55 average particle size 68nm
  • Carbon black having an average particle diameter of 72 nm As the carbon black having an average particle diameter of more than 80 nm used in the lower layer, Asahi Carbon Black Co. # 50 (average particle diameter 94 nm), # 35 (average particle diameter 82 nm) and the like can be mentioned. Carbon black may be used after being surface-treated with a dispersant or grafted with a resin, or a part of the surface may be graphitized. In addition, before adding bonbon black to the coating, it may be dispersed in a binder in advance. These carbon blacks can be used within a range not exceeding 50% by weight of the above-mentioned inorganic powder and within a range not exceeding 40% of the total weight of the nonmagnetic layer. These carbon blacks can be used alone or in combination. For the carbon black that can be used in the present invention, for example, “Carbon Black Handbook” (edited by Carbon Black Association) can be referred to.
  • an organic powder can be added to the lower layer according to the purpose.
  • examples include acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, and phthalocyanine pigment.
  • a polyfluorinated polyethylene resin can be used.
  • those described in JP-A-62-18564 and JP-A-60-2585827 can be used.
  • lubricant, dispersant, additive, solvent, dispersion method, etc. those of the magnetic layer described below can be applied.
  • a known technique for the magnetic layer can be applied.
  • the binder, lubricant, dispersant, additive, solvent, dispersion method, etc. of the magnetic layer, non-magnetic layer and back layer of the present invention can be applied to those of the magnetic layer, non-magnetic layer and back layer.
  • known techniques for the magnetic layer can be applied for the amount and type of the binder, the amount of the additive and the dispersant, and the type of the dispersing agent.
  • thermoplastic resin As the binder used in the present invention, conventionally known thermoplastic resins, thermosetting resins, reactive resins and mixtures thereof are used.
  • the thermoplastic resin has a glass transition temperature of —100 to 150 ° C., a number average molecular weight of 1,000 to 200,000, preferably 10,000, 100, 000, with a degree of polymerization of about 50 to 100 o
  • Such examples include vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, atarilic acid, atarilic acid esters, vinylidene chloride, acrylonitrile, methacrylic acid, methacrylic acid esters, styrene, butadiene, ethylene, vinyl butyral, There are polymers or copolymers containing vinyl acetal, vinyl ether, etc. as constituent units, polyurethane resins, and various rubber resins.
  • Thermosetting resins or reactive resins include phenolic resins, epoxy resins, polyurethane curable resins, urea resins, melamine resins, alkyd resins, acrylic-based reactive resins, formaldehyde resins, silicone resins, and epoxy-polyamide resins.
  • These resins are described in detail in the Plastic Handbook published by Asakura Shoten.
  • a known electron beam-curable resin can be used for each layer.
  • the above resins can be used alone or in combination, but preferred are vinyl chloride resin, vinyl chloride vinyl acetate copolymer, vinyl chloride vinyl acetate vinyl alcohol copolymer, vinyl chloride vinyl acetate maleic anhydride copolymer, And a combination of at least one selected from the group consisting of a polyurethane resin and a polyisocyanate.
  • Polyurethane resin structure is polyester polyurethane, polyether polyurethane, polyether polyester polyurethane, polycarbonate polyurethane Known materials such as polyesterpolyurethanepolyurethane and polyproprolactonepolyurethane can be used.
  • polyurethane In addition to these polar groups, it is preferable to have at least one OH group at each end of the polyurethane molecule, that is, a total of two or more OH groups. Since the OH group crosslinks with the polyisocyanate as a curing agent to form a three-dimensional network, it is preferable to include a large number of OH groups in the molecule. In particular, it is preferable that the OH group is located at the molecular terminal because the reactivity with the curing agent is high.
  • Polyurethane preferably has three or more OH groups at the molecular terminals, particularly preferably four or more.
  • the glass transition temperature is from 150 to 150 ° C, preferably from 0 ° C to 100 ° C, particularly preferably from 30 to 100 ° C, and the breaking elongation is from 100 to 2 ° C. 000%, breaking stress 0. 0 5 ⁇ 1 0 Kg / mm 2, yield point 0. 05 ⁇ 1 0 Kg / mm 2 are preferred.
  • breaking stress 0. 0 5 ⁇ 1 0 Kg / mm 2 yield point 0. 05 ⁇ 1 0 Kg / mm 2 are preferred.
  • binders used in the present invention are VAGH, VYHH, VMCH, VAGF, VAGD, VROH, VYES, VYNC, VMCC manufactured by Union Riki Byte Co., Ltd. as a vinyl chloride copolymer.
  • the binder used in the nonmagnetic layer and the magnetic layer of the present invention is used in an amount of 5 to 50% by weight, preferably 10 to 30% by weight, based on the nonmagnetic powder or the magnetic powder. It is preferable to use 5 to 30% by weight when using a vinyl chloride resin, 2 to 20% by weight when using a polyurethane resin, and 2 to 20% by weight for polyisocyanate, but it is preferable to use them in combination. If, for example, a small amount of dechlorination causes head corrosion, it is also possible to use only polyurethane or only polyurethane and isocyanate.
  • the magnetic recording medium of the present invention comprises two or more layers. Therefore, the amount of the binder, the amount of the vinyl chloride resin, the polyurethane resin, the polyisocyanate, or the other resin occupied in the binder, the molecular weight of each resin forming the magnetic layer, the amount of the polar group, or It is of course possible to change the physical properties of the resin between the non-magnetic layer and each magnetic layer as necessary, and rather it should be optimized for each layer, and apply the known technology for multilayer magnetic layers. it can. For example, when changing the amount of binder in each layer, it is effective to increase the amount of binder in the magnetic layer in order to reduce scratches on the surface of the magnetic layer, and to improve the head touch to the head. The flexibility can be increased by increasing the amount of the binder in the nonmagnetic layer.
  • polyisocyanate used in the present invention examples include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and 1,5-naphthylene.
  • Isocyanates such as diisocyanate, 0-toluidine diisocyanate, isophorone diisocyanate, triphenylamine triisocyanate, etc., and these isocyanates And polyalcohols, and polyisocyanates produced by condensation of isocyanates.
  • carbon black used in the magnetic layer of the present invention furnace for rubber, summary for rubber, black for color, acetylene black, and the like can be used.
  • Specific surface area is 5 ⁇ 50 Om D BP Oil absorption is 10 ⁇ 400ml / 100g, average particle size is 5nm ⁇ 300nm, pH is 2 ⁇ 10, water content is 0.1 110% and tap density is preferably 0.1-1 g / cc.
  • Specific examples of Ribonbon used in the present invention include BLACKPEARLS 200 (average particle diameter 15 nm), 130 (average particle diameter 13 nm), and 100000 average, manufactured by Cabot Corporation.
  • Carbon black may be surface-treated with a dispersing agent or the like, or may be graphitized with a resin, or may be a part of the surface graphitized.
  • the carbon black may be dispersed in a binder before adding it to the magnetic paint. These bonbons can be used alone or in combination. When carbon black is used, it is preferably used in an amount of 0.1 to 30% by weight based on the magnetic substance. Carbon black has functions such as preventing the magnetic layer from being charged, reducing the friction coefficient, imparting light-shielding properties, and improving the film strength, and these differ depending on the carbon black used.
  • these carbon blacks used in the present invention are different in type, amount and combination between the upper magnetic layer and the lower non-magnetic layer, and have the above-mentioned various properties such as particle diameter, oil absorption, conductivity, and PH.
  • various properties such as particle diameter, oil absorption, conductivity, and PH.
  • the carbon black that can be used in the magnetic layer of the present invention can be referred to, for example, “Carbon Black Handbook” edited by Rybon Black Association.
  • Examples of the abrasive used in the present invention include monoalumina having an ⁇ conversion rate of 90% or more, ⁇ -lumina, gaynium carbide, chromium oxide, cerium oxide, ⁇ _iron oxide, corundum, artificial diamond, silicon nitride, and carbonized carbon.
  • a composite of these abrasives (abrasive surface-treated with another abrasive) may be used. These abrasives may contain compounds or elements other than the main component, but the effect remains unchanged if the main component is 90% or more.
  • the particle size of these abrasives is preferably from 0.01 to 2, and in particular, in order to enhance the electromagnetic conversion characteristics, it is preferable that the particle size distribution is narrow. In order to improve durability, abrasives having different particle diameters can be combined as needed, or the same effect can be obtained by widening the particle size distribution using a single abrasive.
  • the tap density is preferably 0.3 to 2 g / cc
  • the water content is 0.1 to 5%
  • the pH is 2 to 11
  • the specific surface area is preferably 1 to 30 m 2 / g.
  • the shape of the abrasive used in the present invention may be any of a needle shape, a spherical shape, and a dice shape.
  • AKP-1 average particle diameter 0.50 / zm
  • AK P-15 average particle diameter 0.45 m
  • AKP-20 average particle diameter 0.39 m
  • AK P-30 average particle diameter 0.23 ⁇ m
  • AKP-50 average particle diameter 0.16 zm
  • HI T_20 HI ⁇ —30, ⁇ I ⁇ —55 (average particle size 0.20 ⁇ m), HIT-60, HI T-70 (average particle size 0.15 zm), HIT-80, HI T-100 (average particle size) 0.11 zm), Reynolds
  • ERC—DBM average particle diameter 0.22 ⁇ m
  • HP-DBM average particle diameter 0.22 m
  • HPS—DBM average particle diameter 0.19 m
  • chromium oxide G-5 (average particle size 0.32 ⁇ 111) , Chromex U2 (average particle diameter 0.18 / m), Chromex U1 (average particle diameter 0.17 ⁇ m), Toda Industries as an example of iron monoxide, TF100 (average particle diameter 0.14 ⁇ m), TF 140 (average particle size 0.17 // m), manufactured by Ibiden Co., Ltd. as an example of silicon carbide.
  • Data Random Ultrafine average particle size 0. 16 ⁇ m
  • These abrasives can be added to the nonmagnetic layer as needed. Addition to the non-magnetic layer can control the surface shape and control the projected state of the abrasive.
  • the particle size and amount of the abrasive added to the magnetic layer and the non-magnetic layer should of course be set to optimal values.
  • fine-particle diamond as an abrasive.
  • the diamond fine particles used in the present invention have an average particle diameter of preferably 0.10 to
  • Average particle size is 0.
  • the maximum diameter of each diamond fine particle is defined as a particle diameter
  • the average particle diameter refers to an average value of 500 measured particles randomly extracted from an electron microscope.
  • the amount of the diamond particles added is from 0.01 to 10% by weight, preferably from 0.03 to 5% by weight, based on the ferromagnetic powder. If the content is less than 0.01% by weight, it is difficult to ensure durability. If the content exceeds 10% by weight, noise is reduced by adding diamond. Less effective.
  • the amount of diamond particles added and the average particle size are specified in the above ranges. From the viewpoint of noise, the amount of diamond added is preferably as small as possible.
  • the recording medium it is preferable to appropriately select the amount of diamond added and the average particle diameter of the diamond suitable for the magnetic recording / reproducing apparatus from the above range.
  • the particle size distribution of the diamond fine particles is such that the number of particles having a particle diameter of 200% or more of the average particle diameter is 5% or less of the total number of diamonds, and the particle diameter is 50% or less of the average particle diameter. Preferably, the number is no more than 20% of the total number of diamonds.
  • the maximum value of the particle diameter of the diamond fine particles used in the present invention is 3.00 ⁇ m, preferably about 2.00 ⁇ m, and the minimum diameter is 0.01 / m, preferably It is about 0.02 ⁇ m.
  • the particle size distribution is determined by counting the number of particles based on the average particle diameter when measuring the particle diameter.
  • the particle size distribution of diamond particles also affects durability and noise. If the particle size distribution is wider than the above range, the effect corresponding to the average particle size set in the present invention is shifted as described above. That is, if the particle size is too large, noise increases or the head is damaged. Also, if there are many fine particles, the polishing effect will be unsatisfactory4. Further, those having an extremely narrow particle size distribution increase the price of the diamond fine particles, and the above range is advantageous in terms of cost.
  • the present invention can also be used in combination with a conventionally used abrasive, for example, an alumina abrasive, for the diamond fine particles.
  • a conventionally used abrasive for example, an alumina abrasive
  • the effect on durability and S / N ratio is better with only a small amount of diamond particles, but alumina is preferably used in an amount of 1 to 30% by weight, more preferably 3 to 2% by weight, for reasons such as cost. 5% by weight can be added. Also in this case, the amount of addition of alumina alone can be considerably reduced due to the inclusion of the diamond fine particles, and the viewpoint of ensuring durability and reducing noise is also preferable.
  • the static high-pressure method (1) first produces crystals larger than several 1 O ⁇ m, and crushes the crystals to produce diamond fines up to submicron.
  • Explosion of 2 The firing method is a method in which graphite is converted into diamond by generating an ultra-high pressure by a shock wave generated by explosive explosive.
  • the diamond produced by this method is a polycrystalline diamond whose primary particles are called 2 OA or 5 OA.
  • a gaseous compound containing carbon such as hydrocarbons is sent together with hydrogen gas to a closed container at normal pressure or lower, a high-temperature zone is formed by plasma or the like, and the raw material compounds are decomposed.
  • This is a method of depositing diamond on a substrate such as Mo.
  • the diamond fine particles include LS600F, LS600T, LS600F coated products (Nikel 30% or 56% coated products) of Lands Superabrasives, Co. LS—NPM, BN260, and others. These are preferable because diamond fine particles of any size of 0 to 100 / m can be obtained.
  • IRM 0-1 average particle diameter 0.60 ⁇ m, etc. can be used.
  • the additives used in the magnetic layer and the non-magnetic layer of the present invention have lubricating effects, antistatic effects, dispersing effects, plasticizing effects, and the like. .
  • a lubricant As a material exhibiting a lubricating effect, a lubricant is used which exerts a remarkable effect on the adhesion which occurs when friction occurs between the surfaces of the materials.
  • the lubricant is dissolved in the binder or partially exists in the state of being adsorbed on the surface of the ferromagnetic powder, and the lubricant migrates to the surface of the magnetic layer. It depends on the compatibility between the binder and the lubricant. When the compatibility between the binder and the lubricant is high, the migration speed is low. When the compatibility is low, the migration speed is high.
  • One way of thinking about the compatibility is to compare the solubility parameters of the two.
  • a non-polar lubricant is effective for fluid lubrication
  • a polar lubricant is effective for boundary lubrication.
  • the solid lubricant for example, molybdenum disulfide, tungsten disulfide graphite, boron nitride, fluorinated graphite and the like are used.
  • Long-chain fatty acids that exhibit boundary lubrication include monobasic fatty acids having 10 to 24 carbon atoms (which may contain unsaturated bonds or may be branched), and metal salts thereof (Li). , Na, K, Cu, etc.).
  • the fluorine-containing surfactant and the fluorine-containing polymer include fluorine-containing silicone, fluorine-containing alcohol, fluorine-containing ester, fluorine-containing alkyl sulfate, and metal salts thereof.
  • Higher fatty acid esters exhibiting fluid lubrication include monobasic fatty acids having 10 to 24 carbon atoms (which may contain unsaturated bonds or may be branched) and monobasic fatty acids having 2 to 12 carbon atoms.
  • Mono- or di-fatty acid esters consisting of any one of hydric, dihydric, trihydric, tetrahydric, pentahydric, and hexahydric alcohols (which may contain unsaturated bonds or may be branched).
  • Liquid paraffin and silicon derivatives such as dialkyl polysiloxane (alkyl has 1 to 5 carbon atoms), dialkoxy polysiloxane (alkoxy has 1 to 4 carbon atoms), monoalkyl monoalkoxy polysiloxane (alkyl has 1 to 5 carbon atoms) Silicone oil such as 5 carbons, alkoxy has 1 to 4 carbons), phenylpolysiloxane, fluoroalkylpolysiloxane (alkyl has 1 to 5 carbons), silicone with polar group, fatty acid modified silicone, Fluorine-containing silicone and the like can be mentioned.
  • lubricants include C12 to C22 ⁇ -, di-, tri-, tetra-, penta-, hexa-hydric alcohols (including unsaturated bonds or branched ones), carbon Alkoxy alcohols of the formulas 12 to 22 (which may or may not contain unsaturated bonds), alcohols such as fluorine-containing alcohols, polyolefins such as polyethylene and polypropylene, ethylene glycol, and polyethylene oxide Polyglycols such as phenols, alkyl phosphates and alkali metal salts thereof, alkyl sulfates and alkali metal salts thereof, polyphenyl ethers, fatty acid amides having 8 to 22 carbon atoms, aliphatic amines having 8 to 22 carbon atoms Such Is mentioned.
  • Phenylphosphonic acid has been shown to exhibit antistatic, dispersing and plasticizing effects.
  • PPA from Nissan Chemical Co., Ltd., such as ⁇ -naphthylphosphoric acid, phenylphosphoric acid, diphenylphosphoric acid, ⁇ -ethylbenzenephosphonic acid, phenylphosphinic acid, aminoquinones, various silane coupling agents, titanium Coupling agents, fluorine-containing alkyl sulfates and metal salts thereof can be used.
  • the lubricant used in the present invention is particularly preferably a fatty acid and a fatty acid ester, and in addition to these, different lubricants and additives can be used in combination. Specific examples of these are given below.
  • the first fatty acid a force prill acid as saturated fatty acids (C 7 H 15 COOH, mp 1 6 ° C), pelargonic acid (C 8 H 17 COOH, mp 1 5 ° C), capric acid (C 9 H 19 COOH, melting point 31.5 ° C), pendecylic acid (d.H 2 , COOH, melting point 28.6 ° C), lauric acid (CuH ⁇ COOH melting point 44 ° C) "NAA- 1 2 2", etc., tridecyl acid (C 12 H 25 COOH, mp 4 5. 5 ° C), Mi Risuchin acid (C, 3 H 27 C 00 H, mp 5 8 ° C) specifically Pentadecylic acid, such as "NAA-142" of NOF Corporation
  • oleic acid C 17 H 33 COOH (cis), melting point 16 ° C
  • oleic acid of Kanto Chemical Co., Ltd.
  • elaidic acid C 17 H 33 COOH (trans ), mp 4 4 to 4 5 ° C
  • Wako pure drug Co. such as "Eraijin acid”, cetoleic acid (C 21 H 41 COOH, melting point 3 3. 7 ° C), El force Acid (C 2 , H 41 COOH, melting point 33.4 to 34 ° C)
  • brassic acid C 21 H 41 COOH (trans), mp 6 1.
  • Esters with isocetyl laurate as lauric acid ester CuH 23 C 00 CH 2 CH (C 6 H 13) C 8 H 17), O rail laurate (CuH COOd 8 H 35), stearate Rirura urate (CH 23 COOC 18 H 37), Mi Risuchin Sane isopropyl myristate (C 13 H 27 COOCH (CH 3) as ester 2) specifically by New Japan Chemical Co., such as "Enujiwerubu I PM" Puchirumi restated
  • Stearic acid ester as propyl stearate (C l7 H 35 CO_ ⁇ _C 3 H 7), isopropyl stearate (C, 7 H 35 CO.OCH ( CH 3) 2), Puchirusutea rate (C, 7 H 35 COOC 4 H 9 )
  • sec-butyl stearate (C 17 H 35 COOCH (CH 3 ) C 2 H 5 ), tert-butyl stearate (C 17 H 35 Hexyl stearate (C 17 H 35 COOCs His), heptyl stearate such as COOC (CH 3 ) 3), amyl stearate (CH COOCSHU), isoamyl stearate (C 17 H 35 COO CH2CH2CH (CH 3 ) 2) (C 17 H 35 COOC 7 H 15 )
  • Matsumoto Yushi Matsumoto Yushi
  • Glycol type esters as butoxide shell chill stearate (C 17 H 35 C OOCH 2 CH 2 OC 4 H 9), butoxide shell chill O milled by wet Ichito (C 17 H 33 CO_ ⁇ _CH 2 CH 2 OC 4 H 9) , diethylene glycol monobutyl ether stearate or butoxide Chez Toki Chez chill stearate (C l7 H 35 COO (CH CH2O) 2 C 4 Hs), tetraethylene glycol monobutyl ether stearate (C 17 H 35 COO (CH 2 CH 2 ⁇ ).
  • Isocetyl isostearate isoC 17 H 35 COOCH2CH (C 6 Hi 3 ) C 8 H 17
  • isostearic acid ester isostearic acid ester.
  • isoC 17 H 35 COOC H 37 isoC 17 H 35 COOC H 37
  • stearyl isostearate isoC l 7 H 35 COOC 18 H 37
  • Puchiruoree Ichito as Orein ester C 17 H 33 COOC 4 H 9
  • Oreiruoree one Bok C 17 H 33 C OOC .BHSB
  • ethylene glycol one Luzoleil C 17 H 33 COOCH 2 CH 2 0
  • the oleic acid ester includes oleyl erucate (C 21 H 41 COOC, 8 H 35 ).
  • Triesters include triglyceride triglyceride (C 7 H 15 COOCH 2 CH (OCOCTH 15 ) CH 2 OCOC 7 H, 5 ).
  • alcohols such as oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol (oleyl alcohol)
  • CBHSBOH stearyl alcohol
  • C 18 H 37 OH stearyl alcohol
  • lauryl alcohol C2H25OH
  • lauric acid amide CHH 23 CONH 2
  • myristic acid amide C 13 H 27 CO NH 2
  • palmitic acid Ami de C l
  • Nonionic surfactants such as alkylene oxides, glycerins, glycidols, alkylphenol ethylene oxide adducts, etc., cyclic amines, esteramides, quaternary ammonium salts, hydantoin derivatives, heterocycles
  • Anionic surfactants containing acidic groups such as cationic surfactants such as sulfonic acid, phosphonium or sulfonium, carboxylic acid, sulfonate, phosphoric acid, sulfate group, phosphate group, etc., amino acids, aminosulfone
  • An amphoteric surfactant such as an acid, a sulfuric acid or phosphoric acid ester of an amino alcohol, or an alkylbedine type may also be used.
  • surfactants are described in detail in "Surfactant Handbook" (published by Sangyo Tosho Co., Ltd.). These lubricants, antistatic agents, etc. are not necessarily 100% pure, and may contain impurities such as isomers, unreacted materials, by-products, decomposed products, oxides, etc. in addition to the main components. . These impurities are preferably at most 30%, more preferably at most 10%.
  • the present invention is a magnetic recording medium capable of obtaining stable running durability both at the beginning of running and after running in a high-density, large-capacity magnetic recording medium requiring an ultra-smooth magnetic layer.
  • lubricants such as monoester and diester have been used. The present inventors have eagerly studied the properties of these lubricants, focusing on the ester group, and carefully studying the behavior in the lower layer and the magnetic layer.
  • the affinity with the binder is not so high, and it has the property that it is easy to appear on the surface of the magnetic layer without staying in the layer.
  • the diester lubricant is a polar group Since there are two ester groups in the molecule, it has a high affinity with the binder and tends to stay in the layer, so it has the property that it does not appear on the surface of the magnetic layer. Therefore, at the beginning of traveling, the lubricant of monoester contributes, and after the traveling, the lubricant of diester contributes. It is thought that longevity is obtained.
  • diester lubricants have extremely good low-temperature durability, and when used in combination with monoester lubricants having good high-temperature durability, extremely excellent running durability from low to high temperatures can be obtained. These effects have a so-called synergistic effect that is more than the effect obtained by simply adding the effect of the monoester lubricant and the effect of the diester lubricant.
  • the diester lubricant used in the present invention is preferably a compound represented by the following general formula (1).
  • R2 is a divalent group which may contain an unsaturated bond derived from one (CH 2 ) n — or one (CH 2 ) n — (n is an integer of 1 to 12) or shows one [CH 2 CH (CH 3)] mono- or one [CH 2 C (CH 3) 2 CH 2 ] shows one, Rl, R3 is a number 1 2-3 0 chain saturated or carbonless They may be the same or different in a saturated hydrocarbon group.
  • chain of the chain hydrocarbon group may be linear or branched, but it is preferable that both R1 and R3 are linear unsaturated, in which case the structures of R1 and R3 are the same. Some are particularly preferred. Further, as the unsaturated bond, either a double bond or a triple bond may be used, but a double bond is preferable, and one or more each may be used, and two or three may be used. The double bond may be either cis or trans.
  • R1 and R3 each have 12 to 30 carbon atoms, preferably 14 to 26 carbon atoms, and more preferably 14 to 20 carbon atoms. If the number of carbon atoms is less than 12, the volatility is high, so that it tends to volatilize from the surface of the magnetic layer during running and stop running. If the number of carbon atoms is larger than 30, the molecular mobility becomes low, so that the lubricant does not easily leach onto the surface of the magnetic layer, and the durability tends to be poor.
  • R2 is preferably a linear dihydric alcohol residue having OH at both terminals, and n is preferably 3 to 12.
  • n is small, repeated running durability is poor, and when it is too large, viscosity tends to be high, making it difficult to use and poor in durability.
  • residues such as ethylene glycol, neopentyl glycol, propanediol, propylene glycol, and butanediol are preferable.
  • the compound represented by the general formula (1) of the present invention is a diester of a diol represented by H ⁇ —R2-OH and preferably an unsaturated fatty acid represented by R1—COOH and R3—COOH. Preferably, there is.
  • Examples of the unsaturated fatty acids include 4-dodecenoic acid, 5-dodecenoic acid, 11-dodecenoic acid, cis-9-tridecenoic acid, myristoleic acid, 5-myristoleic acid, 6-pentadecenoic acid, and 7-palmitoleic acid.
  • Cis-9-no "noremitoleic acid, 7-heptadecenoic acid, oleic acid, ellagic acid, cis-6-octadecenoic acid, trans-11-octadecenoic acid, cis-11-eicosenoic acid, cis-13-docosenoic acid, 15-tetracosenoic acid, 17-hexacosenoic acid, cis-9, cis-12-octactenoic acid, trans-9, trans-12-octenoic acid Cis-9, trans-11, tr.
  • Ans-13-octadecatrienic acid cis-9, cis-12, cis-15-year-old cactadecatrienoic acid, stearolic acid, etc.
  • Linear unsaturated fatty acid 5-methyl-2-tridecenoic acid, 2-methyl 9-O click evening decenoic acid, 2-methyl-one 2-eicosenoic acid, 2, and branched unsaturated fatty acids such as 2-dimethyl one 1 1 one eicosenoic acid.
  • diol examples include ethylene glycol, trimethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-pentanediol, 1,8-octanediol, 9-nonanediol , 1,10-decanediol and other straight-chain saturated diols at both ends, propylene glycol, 1,2-butanediol, 1,3-butanediol, 2,4-pentanediol, 2,2-dimethyl-1,1, 3-propanediol, 2,5-hexanediol, 2-ethyl-1,3-hexanediol, 3-methyl-1,6-hexanediol, 1-methyl-1,7-pentanediol, 2,6-dimethyldiol Branched saturated diols such as 1,7-pentane
  • the compounds of the present invention are particularly preferably esters of linear unsaturated fatty acids.
  • Specific examples include neopentyl glycol didecanoate, ethylene glycol dioleyl, and the like, and the later-described polyester.
  • diesters are as follows.
  • a diester of a dicarboxylic acid and a chain unsaturated alcohol can also be used.
  • dicarboxylic acids examples include saturated dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, and butylmalonic acid.
  • saturated dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, and butylmalonic acid.
  • unsaturated dicarboxylic acids such as acid, maleic acid, fumaric acid, glutaconic acid, itaconic acid, and muconic acid.
  • chain unsaturated alcohols include cis-9-octadecen-l-ol (oleyl alcohol), trns-9-octadecen-l-l-ol (elaidyl alcohol), 9,10-octadecen-l-l- Ol (linoleyl alcohol) 9,12,15-octyl decetren-1-ol (linolenyl alcohol), cis-9-trns-ll, 13-octad decylen-1-ol Leostearyl alcohol), 2-pentadecene-1-ol, 2-hexadecene-1-ol, 2-heptadecen-1-ol, 2-octadecene-11-all, 15-hexadecene-1- Oars and the like are specific examples.
  • particularly preferred compounds of the present invention are esters of a linear unsaturated alcohol with a saturated dicarboxylic acid.
  • alcohol components include oleyl alcohol, elaidyl alcohol, linoleyl alcohol, linolenic alcohol, and eleostearyl alcohol
  • dicarboxylic acid components include malonic acid, succinic acid, glutaric acid, and the like.
  • Adipic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, butylmalonic acid, etc. More preferably a diester between malonic acid, succinic acid and oleyl alcohol, elaidyl alcohol, linoleyl alcohol, linolenyl alcohol.
  • Preferred diesters for achieving a C / Fe peak ratio of 5 to 100 described below include the following examples.
  • neopentyl glycol dioleate L-all
  • ethylene glycol dioleate L-a3
  • neopentyl glycol disulfide L-al2
  • propanediol dimyristate I-al3
  • the monoester lubricant used in the present invention is represented by the following general formulas (2) and (3).
  • R4 and R7 are linear or unsaturated hydrocarbon groups having 12 to 26 carbon atoms, which may be the same or different from each other, and R6 and R8 each represent a divalent group having 1 to 26 carbon atoms. They may be the same or different in a chain or branched, saturated or unsaturated hydrocarbon group.
  • monobasic fatty acids having 10 to 24 carbon atoms (including unsaturated bonds, And monohydric alcohols with 2 to 24 carbon atoms (including unsaturated bonds)
  • branched fatty acid a branched fatty acid
  • these include butyl stearate, octyl stearate, amyl stearate, isooctyl stearate, butyl myristate, octyl myristate, butoxyshethyl stearate, butoxyjethyl stearate, Ethyl hexyl stearate, 2-octyl dodecyl palmitate, 2-hexyl dodecyl palmitate, isohexadecyl stearate, oleyl oleate, dodecyl stearate, tridecyl stearate, oleyl erucate, etc. It is good.
  • monoesters of saturated and unsaturated fatty acids and alcohols, and fatty acid monoesters having an unsaturated bond are disclosed in Also, oleyl oleate described in U.S. Pat. Specific examples of the monoester are as follows.
  • the amount of the ester lubricant of the present invention used in the upper layer is 1 part by weight or more, preferably 3 parts by weight or more, more preferably 5 parts by weight or more, based on 100 parts by weight of the ferromagnetic metal powder in the upper layer.
  • the amount is 1 part by weight or more, preferably 3 parts by weight or more, more preferably 5 parts by weight or more based on 100 parts by weight of the powder, and it is preferable to add the upper layer and the lower layer.
  • the upper limit of each layer is preferably 20%. If the amount is too large, the surface of the magnetic layer becomes rough and the magnetic properties deteriorate, and if it is too small, the durability tends to be poor.
  • the diester lubricant and the ester lubricant are used in an amount of 3 to 30 parts by weight, preferably 100 parts by weight of the ferromagnetic powder contained in the magnetic layer or 100 parts by weight of the nonmagnetic powder contained in the lower layer. Includes 5 to 20 parts by weight.
  • the diester compound and the ester compound may be used as a mixture. In this case, the amount of the diester compound is preferably 30% or more based on the total amount of the diester and the ester.
  • the present invention also provides a substantially non-magnetic lower layer on a support, and a ferromagnetic gold layer on the lower layer.
  • each of the magnetic layer and the lower layer may be 100 parts by weight of the ferromagnetic metal powder or the nonmagnetic powder contained in the lower layer.
  • the fatty acid ester is contained in an amount of 3 to 30 parts by weight, preferably 5 to 20 parts by weight with respect to 100 parts by weight, and the CZF e peak ratio when the surface of the magnetic layer is measured by an Auger electron spectroscopy is 5 to 10 parts by weight.
  • the magnetic recording medium is a disk-shaped magnetic recording medium.
  • the amount of the ester or diester lubricant in the lower layer is almost the same, extremely high durability is achieved by suppressing the lubricant existing on the surface of the magnetic layer to a low value, and the magnetic property is improved. Keep the hardness of the layer surface high, There it is possible to impart the scratch resistance.
  • excellent durability can be achieved with a high-speed recording system (such as HiFD) with a rotational speed of more than 180 rpm (such as ZIP), and especially with a speed of more than 300 rpm. I understood.
  • the C / Fe peak ratio of the magnetic layer surface according to the Auger electron spectroscopy in the present invention is an index indicating the amount of the lubricant present on the magnetic layer surface.
  • This is based on the principle of irradiating a sample with an electron beam to determine the type of element from the kinetic energy of the ozone electrons coming out of the sample and measuring the amount of the element from the ozone electron dose. .
  • a peak of an iron atom derived from a magnetic material and a peak of carbon derived from a binder and a lubricant appear. Most of the carbon peaks are from lubricants.
  • the basis is that when the magnetic disk of the present invention is treated with hexane and the lubricant according to the present invention is removed, and the surface of the magnetic layer is measured by single-electron spectroscopy, the Fe peak is strong, but the binder is not. This is because the contributing C peak is weak, and conversely, the C peak is strong without hexane treatment.
  • the measurement of CZF e by Auger electron spectroscopy indicates a value determined by the following.
  • the kinetic energy range from 130 eV to 730 eV is integrated three times, the KLL peak of carbon and the LMM peak of iron are obtained in differential form, and the ratio of C / F e is obtained.
  • the C / Fe peak ratio by the Auger electron spectroscopy of the magnetic layer surface of the disk-shaped magnetic recording medium of the present invention is preferably a force of 5 to 100, particularly preferably a force of 5 to 80.
  • a conventional floppy disk or the like it is 100 or more. From this, it can be seen that the disk-shaped magnetic recording medium of the present invention has a significantly smaller amount of lubricant present on the surface of the magnetic layer than a conventional floppy disk or the like.
  • the amount of the lubricant contained in each of the magnetic layer and the lower layer of the disk-shaped magnetic recording medium of the present invention is 5 to 30 parts by weight with respect to 100 parts by weight of the ferromagnetic powder or the nonmagnetic powder, respectively. This is almost equivalent to the amount contained in a conventional floppy disk or the like. Therefore, in the disk-shaped magnetic recording medium of the present invention, although the amount of lubricant contained in the magnetic layer and the lower layer is almost the same as that of a conventional floppy disk or the like, the amount of lubricant existing on the surface of the magnetic layer is small. It is significantly less than conventional floppy disks.
  • the disk-shaped magnetic recording medium of the present invention has a lower lubricant present on the surface of the magnetic layer even though the amount of the ester or diester lubricant in the magnetic layer and the lower layer is almost equal to that of the conventional floppy disk. Extremely high durability And the hardness of the magnetic layer surface can be kept high, and high scratch resistance can be imparted. It has been found that excellent durability can be achieved especially with a high-speed recording system (such as HiFD) with a rotation speed of more than 180 O rpm (for example, like ZIP), especially 300 rpm or more. Was.
  • HiFD high-speed recording system
  • O rpm for example, like ZIP
  • the magnetic layer and the lower layer contained a large amount of lubricant and gradually appeared on the surface to exert a lubricating function.
  • the lubricant of the present invention that is, a large amount of lubricant present in the magnetic layer and the lower layer, and an appropriate amount on the surface (mainly the amount of C atoms in the lubricant and the amount of Fe atoms in the magnetic material detected by Auger electron spectroscopy)
  • the C / Fe value obtained from the above is preferably 5 to 100, particularly preferably 5 to 80)
  • Lubricants are ester compounds and diester compounds, especially diester compounds having unsaturated C CC, and ester compounds are preferred because of their compatibility with the binder and the surface of the non-magnetic powder.
  • the amount added in the coating layer is 3 to 30 parts by weight based on 100 parts by weight of the ferromagnetic powder and the nonmagnetic powder.
  • the amount of binder in the magnetic layer is 100 to 25 parts by weight per 100 parts by weight of the ferromagnetic powder including the hardener, and the amount of binder in the lower layer is 2.5 to 100 parts by weight of the nonmagnetic powder.
  • the affinity between the lubricant and the lower binder can be further increased, and the lubricant can be more and stably present in the lower layer. If the affinity between the lubricant and the binder is too high and the binder and the lubricant become completely compatible at the molecular level, it is not preferable because the lubricant cannot move to the upper layer.
  • the surface of the disk medium of the present invention contains a smaller amount of lubricant than the conventional disk medium, but contains a sufficient amount of ester and diester compounds, and the temperature rises due to the frictional heat between the disk and the head rotating at high speed.
  • it is hard to volatilize due to strong intermolecular interaction, and can maintain stable fluid lubrication without causing lubrication film breakage.
  • the storage stability at high temperature and high humidity can be improved for a ferromagnetic metal powder having AlZFe of 1.5 to 30 atomic%.
  • diesters have high hydrophilicity and easily absorb moisture, so they are easily hydrolyzed. Catalyst on magnetic material surface This problem is further strengthened by the active action, and the diester is more easily decomposed when stored at high temperature and high humidity.
  • ferromagnetic metal powder having Al / Fe of 1.5 atomic% to 30 atomic% this effect was small, and it was found that it was difficult to decompose. As a result, even after storage under high temperature and high humidity, the characteristics of the disk before storage can be exhibited with almost no decrease in durability.
  • each of these lubricants and surfactants used in the present invention has a different physical action, and the type, amount, and combination ratio of the lubricant that produces a synergistic effect are optimized according to the purpose. It must be determined. Controlling leaching to the surface by using fatty acids with different melting points in the non-magnetic layer and magnetic layer; Controlling leaching to the surface by using esters with different boiling points, melting points and polarities, adjusting the amount of surfactant It is conceivable to improve the stability of coating by increasing the amount of lubricant added in the intermediate layer to improve the lubricating effect. Of course, the present invention is not limited to the examples shown here. Generally, the total amount of the lubricant is selected in the range of 0.1% to 50% by weight, preferably 2% to 25% by weight based on the magnetic powder or the nonmagnetic powder.
  • All or a part of the additives used in the present invention may be added at any step in the production of magnetic and non-magnetic paints.
  • the additives may be mixed with the magnetic substance before the kneading step, It may be added in a kneading step with a binder and a solvent, added in a dispersing step, added after dispersing, or added just before coating.
  • the purpose may be achieved by applying a part or all of the additive by simultaneous or sequential application after applying the magnetic layer according to the purpose.
  • a lubricant can be applied to the surface of the magnetic layer after calendering or after the slit is completed.
  • the thickness configuration of the magnetic recording medium of the present invention is such that the nonmagnetic support has a thickness of 2 to 100 // m, preferably 2 to 80 m.
  • the non-magnetic support of the computer tape has a thickness of 3.0 to 6.5 ⁇ m (preferably 3.0 to 6.0 ⁇ m, more preferably 4.0 to 5.5 fim). Thick ones are used.
  • An undercoat layer may be provided between the support, preferably a non-magnetic flexible support, and the non-magnetic layer or the magnetic layer to improve adhesion.
  • the thickness of this undercoat layer is 0.01 to 0.5 mm m, preferably 0.02 to 0.5.
  • the present invention may be a double-sided magnetic layer disk-shaped medium in which a nonmagnetic layer and a magnetic layer are usually provided on both sides of the support, or may be provided on only one side.
  • a back coat layer may be provided on the side opposite to the non-magnetic layer and the magnetic layer in order to obtain effects such as antistatic and curl correction.
  • This thickness is between 0.1 and 4 zm, preferably between 0.3 and 2.0 ⁇ m.
  • Known undercoat layers and backcoat layers can be used.
  • the thickness of the magnetic layer of the medium of the present invention is optimized according to the saturation magnetization of the head used, the head gap length, and the band of the recording signal. m or less, preferably 0.05 // m or more and 0.30 ⁇ m or less.
  • the magnetic layer may be separated into two or more layers having different magnetic characteristics, and a known configuration relating to a multilayer magnetic layer can be applied.
  • the thickness of the nonmagnetic layer which is the lower layer of the medium according to the present invention, is 0.2 / m or more and 5.0 / zm or less, preferably 0.3 ⁇ m or more and 3.0 / zm or less, more preferably 1.0 / m or less. ⁇ M or more and 2.5 m or less.
  • the lower layer of the medium of the present invention exerts its effect as long as it is substantially a nonmagnetic layer.
  • the lower layer of the medium exhibits the effects of the present invention even if it contains a small amount of magnetic powder as an impurity or intentionally. Needless to say, the configuration can be regarded as substantially the same as that of the present invention.
  • a substantially non-magnetic layer indicates that the residual magnetic flux density of the lower layer is 100 G (Gauss) or less or the coercive force is 100 Elstepped or less, and preferably has no residual magnetic flux density and coercive force. Indicates that When the lower layer contains a magnetic powder, it is preferable that the lower layer contains less than 1 Z 2 of the whole inorganic powder.
  • the back coat layer preferably contains carbon black and inorganic powder.
  • the fine particles of carbon By adding a rack, the surface electric resistance of the back coat layer can be set low, and the light transmittance can also be set low. Some magnetic recording devices use the light transmittance of the tape and use it for operation signals. In such a case, the addition of fine carbon black is particularly effective.
  • fine particulate carbon black generally has excellent retention of a liquid lubricant and contributes to a reduction in the coefficient of friction when used in combination with a lubricant.
  • coarse-grained carbon black having an average particle diameter of 230 to 300 nm has a function as a solid lubricant, and forms fine protrusions on the surface of the back layer to reduce the contact area. This contributes to a reduction in the coefficient of friction.
  • the coarse-grained carbon black has the drawback that in a severe running system, the tape slides easily from the backcoat layer and the error rate increases.
  • Specific products of the particulate carbon black include the following.
  • RAVEN 2000 B (average particle diameter 18 nm), RAVEN 1500 B (average particle diameter 17 nm) (all manufactured by Columbia Carbon), BP800 (average particle diameter 17 nm) (Cabot Corporation) ), PR I NNTEX90 (average particle diameter 14 nm), PR I TEX 95 (average particle diameter 15 nm), PR I NTEX85 (average particle diameter 16 nm), PR I NTEX75 (average particle diameter 17) nm) (manufactured by Degussa), # 395 (average particle diameter 16 nm) (manufactured by Mitsubishi Kasei Kogyo).
  • Coarse Particle Force Ion Black examples include Samaru Black (average particle size 270 nm) (manufactured by Kahn Calp), RAVEN MTP (average particle size 275 nm) (manufactured by Columbia Carbon Co., Ltd.) ).
  • the content ratio (weight ratio) of fine carbon black of 10-20 nm and coarse particle power of 230-300 nm is preferably in the range of 98: 2 to 75:25, and more preferably in the range of 95: 5 to 85:15.
  • the content of carbon black (or the total amount when two types are used) in the back coat layer is usually in the range of 30 to 80 parts by weight with respect to 100 parts by weight of the binder. Preferably, it is in the range of 45 to 65 parts by weight. It is preferable to use two types of inorganic powders having different hardnesses in combination.
  • the friction coefficient can be stabilized by repeated running.
  • the sliding guide pole is not scraped.
  • the average particle size of the inorganic powder is preferably in the range of 30 to 50 nm.
  • Examples of the soft inorganic powder having a Mohs hardness of 3 to 4.5 include calcium sulfate, calcium carbonate, calcium silicate, barium sulfate, magnesium carbonate, zinc carbonate, and zinc oxide. These can be used alone or in combination of two or more. Of these, calcium carbonate is particularly preferred.
  • the content of the soft inorganic powder in the back coat layer is preferably in the range of 10 to 140 parts by weight, more preferably 35 to 100 parts by weight, based on 100 parts by weight of carbon black. Department.
  • the addition of a hard inorganic powder having a Mohs hardness of 5 to 9 enhances the strength of the back coat layer and improves running durability.
  • these inorganic powders are used together with Ribon Black or the above-mentioned soft inorganic powder, a strong backcoat layer is obtained with little deterioration even in repeated sliding.
  • the addition of the inorganic powder imparts an appropriate polishing force, and reduces the adhesion of shavings to tape guide poles and the like.
  • a soft inorganic powder (among others, calcium carbonate)
  • the hard inorganic powder preferably has an average particle diameter in the range of 80 to 250 nm (more preferably, 100 to 210 nm).
  • the hard inorganic powder having a Mohs' hardness of 5 to 9, for example, shed - can be mentioned iron oxide, a- Y Lumina, and chromium oxide (C r 2 0 3). These powders may be used alone or in combination. Of these, iron monoxide or na-alumina is preferred.
  • the content of the hard inorganic powder is usually 3 to 30 parts by weight, preferably 3 to 20 parts by weight, per 100 parts by weight of the carbon black. Parts by weight.
  • the difference in hardness between the soft inorganic powder and the hard inorganic powder is 2 or more (more preferably, 2.5 or more, particularly 3 or more). It is preferable to select and use a soft inorganic powder and a hard inorganic powder as described in (1).
  • the back coat layer preferably contains two types of inorganic powders having different specific Mohs hardnesses each having a specific average particle size, and two types of carbon black having different average particle sizes.
  • inorganic powders having different specific Mohs hardnesses each having a specific average particle size and two types of carbon black having different average particle sizes.
  • calcium carbonate is contained as the soft inorganic powder.
  • the back coat layer may contain a lubricant.
  • the lubricant can be appropriately selected from the above-mentioned lubricants that can be used for the nonmagnetic layer or the magnetic layer.
  • the lubricant is usually added in the range of 1 to 5 parts by weight based on 100 parts by weight of the binder.
  • the support used in the present invention is preferably a non-magnetic flexible support, and has a heat shrinkage of 0.5 at 100 ° C. for 30 minutes in each direction in the plane of the support. % Or less, and the heat shrinkage at 80 ° C. for 30 minutes must be 0.5% or less, more preferably 0.2% or less. Further, the heat shrinkage of the support at 100 ° C. 30 minutes and the heat shrinkage at 80 ° C. 30 minutes are within 10% of the in-plane directions of the support. Preferably, they are equal.
  • the support is preferably non-magnetic.
  • nonmagnetic supports include polyesters such as polyethylene terephthalate, polyethylene naphthalate, etc., polyolefins, cellulose triacetate, polycarbonate, polyamide, polyamide, polyamide, polyamide, polyamide, aromatic polyamide.
  • Known films such as polybenzoxazole can be used.
  • a high-strength support such as polyethylene naphthalate or polyamide.
  • a laminated type support as disclosed in JP-A-3-22427 may be used to change the surface roughness of the magnetic surface and the base surface.
  • These supports may be subjected to corona discharge treatment, plasma treatment, easy adhesion treatment, heat treatment, dust removal treatment, or the like in advance. Further, an aluminum or glass substrate is used as a support of the present invention. It is also possible to apply
  • a center roughness average surface roughness SRa measured by a WYKO surface roughness meter TOP 0-3 DM IRA U method is 4.0 nm or less, preferably 2. It is necessary to use the one below Onm. It is preferable that these nonmagnetic supports not only have a small center plane average surface roughness but also do not have coarse projections of 0.5 zmH. The surface roughness can be freely controlled by the size and amount of the filler added to the support as needed. Examples of these filters include oxides and carbonates such as Ca, Si, and Ti, and organic powders such as acrylic.
  • Maximum support height SRmax is 1; m or less, 10-point average roughness SRz is 0.5 ⁇ m or less, center plane height is SRp is 0.5 ⁇ m or less, center plane valley depth SRv is 0
  • the center plane area ratio S Sr is preferably 10% or more and 90% or less, and the average wavelength S is preferably 5 m or more and 300 / m or less.
  • the surface protrusion distribution of these supports can be arbitrarily controlled by a filter. Each can be controlled in the range of 0 to 2000 per 0.1 ⁇ 2 .
  • the F-5 value of the support used in the present invention is preferably 5 to 50 kg / Mi 2 , and the heat shrinkage of the support at 100 ° C. for 30 minutes is preferably 3% or less. It is preferably 1.5% or less, and the heat shrinkage at 80 ° C. for 30 minutes is preferably 1% or less, more preferably 0.5% or less.
  • the breaking strength is preferably 5 to 100 kg / mm 2
  • the elastic modulus is preferably 100 to 2000 kg / mm 2 .
  • Temperature expansion coefficient is 1 0- 4 ⁇ 1 0- 8 / ° C, preferably 1 0 one 5 ⁇ 1 0- 6 / ° C .
  • Humidity expansion coefficient is a 1 0- 4 / RH% or less, preferably 1 0 5 / RH% or less. It is preferable that these thermal characteristics, dimensional characteristics, and mechanical strength characteristics are substantially equal to each other in the in-plane direction of the support with a difference within 10%.
  • the step of producing the magnetic paint of the magnetic recording medium of the present invention comprises at least a kneading step, a dispersing step, and a mixing step provided before and after these steps as necessary.
  • Each process may be divided into two or more stages. All raw materials such as magnetic powders, non-magnetic powders, binders, carbon black, abrasives, antistatic agents, lubricants, and solvents used in the present invention may be added at the beginning or during any of the steps. .
  • each raw material may be added in two or more steps in a divided manner.
  • polyurethane may be divided and supplied in a kneading step, a dispersing step, and a mixing step for adjusting viscosity after dispersion.
  • a conventionally known manufacturing technique can be used as a part of the steps.
  • the kneading step it is preferable to use an open kneader, a continuous kneader, a pressure kneader, an extruder or the like having a strong kneading force.
  • a binder the magnetic powder or the non-magnetic powder and all or a part of the binder (however, preferably 30% or more of the total binder) and 150 to 500 parts of the magnetic powder are used. Parts are kneaded. Details of these kneading treatments are described in JP-A-1-106338 and JP-A-1-79274.
  • Glass beads can be used to disperse the magnetic layer solution and the non-magnetic layer solution, but zirconia beads, titania beads, and steel beads, which are high-density dispersion media, are preferred. It is. The particle size and filling rate of these dispersion media are used after being optimized. A well-known disperser can be used.
  • the lower layer is first applied using a gravure coating, a mouth coating, a blade coating, an extruder coating device, etc., which are generally used in the application of magnetic paints.
  • the upper layer is coated by a support pressurized type extrusion coating apparatus disclosed in JP-A-6-16186, JP-A-60-23871, JP-A-2-2656572. how to.
  • a coating liquid passing slit as disclosed in JP-A-63-88080, JP-A-2-17971, and JP-A-2-265657 is used. A method of applying the upper and lower layers almost simultaneously using one built-in coating head.
  • Third is a method of applying the upper and lower layers almost simultaneously using an extrusion coating apparatus with a backup roll disclosed in Japanese Patent Application Laid-Open No. 2-174649.
  • Japanese Patent Application Laid-Open No. 2-174649 discloses Japanese Patent Application Laid-Open No. 2-174649.
  • isotropic orientation is generally preferable to be in-plane two-dimensional random, but three-dimensional random may be provided by adding a vertical component.
  • hexagonal crystals three-dimensional randomness in the in-plane and vertical directions generally tends to occur, but in-plane two-dimensional randomness is also possible.
  • circumferential orientation may be performed using spin coating.
  • the drying position of the coating film can be controlled by controlling the temperature, air volume, and coating speed of the drying air, and the coating speed is from 20 111 / min to 100 Om / min.
  • the temperature is preferably 60 ° C. or higher.
  • an appropriate preliminary drying can be performed before entering the magnet zone.
  • Heat-rendering rolls are treated with heat-resistant plastic rolls such as epoxy, polyimide, polyamide, polyamide-amide, or metal rolls.
  • the processing temperature is preferably at least 50 ° C, more preferably at least 100 ° C.
  • the linear pressure is preferably 200 kg / cmE (above, more preferably more than 3.0 kg / cm).
  • the saturation magnetic flux density of the magnetic layer of the magnetic recording medium according to the present invention is 200 G or more to 500 G or less when ferromagnetic metal powder is used, and 100 G or less when hexagonal ferrite is used. Not less than 30000G.
  • the coercive forces He and Hr are in the range of 180 to 150 Rs, but are preferably in the range of 180 to 1 Rs, and preferably in the range of 180 to 1 Rs.
  • the distribution of coercive force is preferably narrow, and SFD and SFDr are preferably 0.6 or less.
  • the squareness ratio is 0.55 or more and 0.67 or less for two-dimensional random, Preferably 0.58 or more, 0.64 or less, in the case of three-dimensional random, preferably 0.45 or more, 0.55 or less, in the case of vertical orientation 0.6 or more in the vertical direction, preferably 0.
  • the value is 0.7 or more, preferably 0.8 or more.
  • the orientation ratio is preferably 0.8 or more for both two-dimensional random and three-dimensional random.
  • the squareness ratio in the vertical direction, Br, He, and Hr are preferably within 0.1 to 0.5 times the in-plane direction.
  • the squareness ratio is 0.7 or more, preferably 0.8 or more.
  • the coefficient of friction of the magnetic recording medium of the present invention with respect to the head is 0.5 or less, preferably 0.3 or less, in a temperature range of 10 ° C. to 40 ° C. and a humidity of 0% to 95%.
  • Yes resistor preferably magnetic surface 1 0 4 -1 0 12 O - n / a ⁇ 1, charge potential is - 5 0 0 V + 5 0 0 within V are preferred.
  • the elastic modulus of the magnetic layer at 0.5% elongation is preferably 100 to 200 kg / mm 2 in each in-plane direction, the breaking strength is preferably 100 to 70 kg / mm 2 , air recording medium modulus is preferably in the in-plane direction 1 0 0 ⁇ 1 5 0 0 Kg / ⁇ 2, the residual elongation is preferably 0.5% or less, heat at 1 0 0 ° C below any temperature
  • the shrinkage is preferably 1% or less, more preferably 0.5% or less, and most preferably 0.1% or less.
  • the glass transition temperature of the magnetic layer (the maximum point of the loss elastic modulus in dynamic viscoelasticity measurement measured at 110 Hz) is preferably 50 ° C or more and 120 ° C or less, and that of the lower nonmagnetic layer is 0 ° C to 100 ° C is preferred.
  • Loss elastic modulus is preferably in the range of 1 X 1 0 6 ⁇ 8 X 1 0 9 dyne / cm 2, the loss tangent is preferably 0.2 or less. If the loss tangent is too large, adhesion failure is likely to occur. It is preferable that these thermal characteristics and mechanical characteristics are almost equal within 10% in each direction in the plane of the medium.
  • the residual solvent contained in the magnetic layer is preferably at most 100 mg / m 2, more preferably at most 10 mg / m 2 .
  • the porosity of the coating layer is preferably 30% by volume or less, more preferably 20% by volume or less, for both the nonmagnetic lower layer and the magnetic layer.
  • the porosity is preferably small to achieve high output, but depending on the purpose, it may be better to secure a certain value. For example, in a disk medium in which repeated use is emphasized, a higher porosity often has a higher running durability.
  • the center surface average surface roughness Ra measured on the surface of the magnetic layer by a surface roughness meter T ⁇ PO-3DM IRAU manufactured by WYC0 company is 5.0 nm or less, preferably 4.0 nm or less, Further It is preferably 3.5 nm or less.
  • the maximum height SRmax of the magnetic layer is 0.5 ⁇ m or less, the ten-point average roughness SRz is 0.3 / m or less, the peak height SRp is 0.3m or less, the valley depth SRv is
  • the center plane area ratio S Sr is preferably 20% or more and 80% or less, and the average wavelength S; ia is preferably 5 / zm or more and 300 mJ2T.
  • the number of surface protrusions of the magnetic layer can be arbitrarily set in the range of 0.1 to 1 zm in the range of 0 to 2000, thereby obtaining electromagnetic conversion characteristics and friction coefficient. Is preferably optimized. These can be easily controlled by controlling the surface properties of the support by a filler, the particle size and amount of the powder added to the magnetic layer, the roll surface shape of the calendar treatment, and the like. The curl is preferably within ⁇ 3 rounds. It is easily presumed that the magnetic recording medium of the present invention can change the physical properties of the nonmagnetic layer and the magnetic layer according to the purpose.
  • the elastic modulus of the magnetic layer is increased to improve running durability, and at the same time, the elastic modulus of the non-magnetic layer is made lower than that of the magnetic layer to improve the contact of the magnetic recording medium with the head.
  • Magnetic paint ML-1 (using needle-shaped magnetic powder)
  • Ferromagnetic metal powder M—100 parts Composition: Co / Fe (atomic ratio) 30%,
  • HIT 55 (manufactured by Sumitomo Chemical Co., Ltd.) 10 parts Average particle diameter: 0.20 m, specific surface area: 8.0 to 9.0 m ; g Mohs hardness: 9, pH: 7.7 to 9.0
  • Ferromagnetic metal powder M—200 parts Composition: CoZF e (atomic ratio) 30%,
  • UR-860 (Toyobo) 5 parts ⁇ -alumina (average particle diameter 0.65 m) 2 parts Chromium oxide (average particle diameter: 0.35 m) 15 parts Carbon black (average particle diameter: 0.03 m) 2 parts Carbon black (Average particle diameter: 0.3 ⁇ m) 9 parts n-butyl stearate 4 parts butoxyshethyl stearate 4 parts oleic acid 1 part stearic acid 1 part methylethyl ketone 300 parts magnetic paint ML-4 (Using plate-shaped magnetic powder) 100 parts Barium-flight magnetic powder: M—4
  • HI ⁇ 55 (manufactured by Sumitomo Chemical Co., Ltd.) 10 parts Average particle diameter: 0.20 ⁇ m, specific surface area: 8.0 9.0 m 2 / g Mohs hardness: 9, PH: 7.7 ⁇ 9. 0
  • Magnesium ferrite magnetic powder M—500 parts to Ba molar ratio composition: Fe 9.10, Co 0.20, Zn 0.77
  • Ferromagnetic metal powder M—2100 parts Composition: CoZF e (atomic ratio) 30%,
  • a 1 compound (A 1 / F e atomic ratio 5%)
  • Phenylphosphonic acid 3 parts Myristic acid 1 part Stearic acid 0.6 parts butyl stearate 4 parts Cetyl lumitate 4 parts Oleyl oleate 4 parts Methylethyl ketone 180 parts Cyclohexanone 180 parts Magnetic paint ML-7 (using needle-shaped magnetic powder) Ferromagnetic metal powder: M—200 parts Composition: Co / Fe (atomic ratio) 30%,
  • a 1 compound (A 1 / F e atomic ratio 5%)
  • HIT 70 (Sumitomo Chemical Co., Ltd.) 10 parts Average particle diameter: 0.15 zm, Specific surface area: 17 m 2 Zg
  • Ferromagnetic metal powder M—200 parts Composition: Co / Fe (atomic ratio) 30%,
  • Average particle diameter 0.20 zm, specific surface area: 8.0-9.0 m 2 / g Mohs hardness: 9, pH: 7.7-9.0
  • a 1 2 0 3 is present 8 wt% with respect to the entire particles to the surface
  • UR 820 0 (manufactured by Toyobo) 5 parts Phenylphosphonic acid 4 parts Butyl stearate 10 parts Butoxyshethyl stearate 5 parts Isohexadecyl stearate 2 parts Stearic acid 3 parts Methyl ethyl ketone / cyclohexanone (8Z2 mixed solvent) 250 parts
  • Non-magnetic paint NU-2 using spherical inorganic powder
  • Ketzin Black EC (AKUZO NOBEL) 1 3 parts Average particle size: 30 nm
  • Ketjen Black E C 10 part average particle diameter: 30 nm
  • Non-magnetic paint NU-4 (using needle-like inorganic powder)
  • a 1 2 0 3 is present 8 wt% with respect to the entire particles to the surface
  • a 1 2 0 3 is present 8 wt% with respect to the entire particles to the surface
  • Nonmagnetic paint NU-6 (using needle-like inorganic powder)
  • Non-magnetic paint NU-7 (using needle-like inorganic powder)
  • Nonmagnetic powder alpha-F e 2 0 3 Matthew sheet 1 to 0 0 parts Average major axis length 0. 1 5 ⁇ nu B specific surface area by the ET method 5 0m 2 / g pH 9,
  • a 1 2 0 is present 8 wt% with respect to the entire particles to the surface Ribon Bon Black
  • Non-magnetic paint NU-8 (using needle-like inorganic powder).
  • a 1 2 03 exists 8 wt% with respect to the entire particles to the surface
  • UR550 manufactured by Toyobo 7 parts Phenylphosphonic acid 4 parts Stearic acid 1 part Oleic acid 1 part Butyl stearate 4 parts Butoxyshethyl stearate 4 parts Neopentyl glycol dioleyl 2 parts Ethylene glycol dioleyl 2 Part Methyl ethyl ketone / cyclohexanone (8/2 mixed solvent) 250 parts Production method 1 (Disc: W / W)
  • each component was kneaded with a kneader and then dispersed using a sand mill.
  • To the resulting dispersion add 10 parts of polyisocyanate to the coating liquid for the non-magnetic layer, 10 parts to the coating liquid for the magnetic layer, and add 40 parts of cyclohexanone to each.
  • the solution was filtered using a filter having an average pore size of / m to prepare a coating solution for forming a nonmagnetic layer and a coating solution for forming a magnetic layer.
  • the obtained coating solution for the non-magnetic layer is coated so that the thickness after drying is 1.5, and immediately thereafter, the thickness of the magnetic layer is adjusted so that the thickness of the magnetic layer is 0.15 ⁇ m.
  • Simultaneous multi-layer coating was performed on a polyethylene terephthalate support having a center plane average surface roughness of 3 nm in 2 and the frequency was 50 Hz, the magnetic field strength was 250 gauss and the frequency was 50 Hz while both layers were still wet. After passing through an AC magnetic field generator with two magnetic field strengths of 120 gauss, random orientation treatment was performed, and after drying, at a temperature of 90 ° C and a linear pressure of 300 kg / cm using a seven-stage calendar.
  • a 3.7-inch floppy disk was obtained by inserting a 3.7-inch cartridge (a zip-disk cartridge manufactured by Iomega, USA) with the liner installed inside and adding the specified mechanical components.
  • vertical alignment can be performed in addition to the above-described alignment method. Also, if necessary, after punching into a disc shape, heat treatment (usually 50 ° C to 90 ° C) is performed at a high temperature to accelerate the curing process of the coating layer. And post-treatment such as shaving the surface projections may be performed.
  • Each of the above-mentioned paints was kneaded with a kneader, and then dispersed using a sand mill. To the resulting dispersion, add 2.5 parts of polyisocynate to the coating solution for the non-magnetic layer, 3 parts to the coating solution for the magnetic layer, and add 40 parts of cyclohexanone to each. The mixture was filtered using a filter having an average pore size of 1 to prepare coating liquids for forming a nonmagnetic layer and for forming a magnetic layer, respectively.
  • the obtained coating solution for the non-magnetic layer is coated so that the thickness after drying is 1.7 zm, and immediately thereafter, the thickness of the magnetic layer is adjusted so that the thickness of the magnetic layer is 0.15 / m.
  • Simultaneous multi-layer coating was performed on an alamid support (trade name: MICRON) with a center plane average surface roughness of 2 nm and a thickness of 4.4 mm, and while both layers were still wet, 600 G
  • the magnet is oriented by a magnet with a magnetic force of 6000 G and a solenoid with a magnetic force of 6000 G. After drying, it is treated at a temperature of 85 ° C at a speed of 200 m / min. At a speed of 200 m / min.
  • each component was kneaded with a kneader, and then dispersed using a sand mill.
  • a sand mill To the resulting dispersion was added 10 parts of a polyisocyanate for the coating liquid for the non-magnetic layer, 10 parts for the coating liquid for the magnetic layer, and 40 parts of cyclohexanone.
  • the mixture was filtered using a filter having an average pore size of 1 to prepare a coating solution for forming a nonmagnetic layer and a coating solution for forming a magnetic layer.
  • the obtained coating solution of the nonmagnetic layer is coated on a polyethylene terephthalate support having a thickness of 62 / m and an average surface roughness of 3 nm so that the thickness after drying becomes 1.5 im.
  • a magnetic layer is applied thereon by a blade method so that the magnetic layer has a thickness of 0.15 m, frequency 50 Hz, magnetic field strength 2
  • Two magnetic field strengths of 50 Gauss, 50 Hz, and 120 Gauss were passed through an AC magnetic field generator to perform random orientation processing.
  • a method of not performing a calendar process on the nonmagnetic layer may be employed.
  • each component was kneaded with a kneader and then dispersed using a sand mill.
  • To the resulting dispersion was added 2.5 parts of a polyisocyanate for the coating solution for the non-magnetic layer, 3 parts for the coating solution for the magnetic layer, and 40 parts of cyclohexanone.
  • the mixture was filtered using a filter having an average pore size of 1 to prepare a coating solution for forming a nonmagnetic layer and a coating solution for forming a magnetic layer.
  • the obtained non-magnetic layer coating solution is coated on an aramid support having a thickness of 4.4 / m and a center-plane average surface roughness of 2 nm so that the thickness after drying is 1.7 m (trade name: (Mictron), dried once, and calendered. Then, a magnetic layer was coated thereon by a blade method so that the thickness of the magnetic layer became 0.15 m. Orientation was performed by a cobalt magnet having a magnetic force of 600 G and a solenoid having a magnetic force of 600 G. The subsequent steps were performed in the same manner as in Production Method 2. Calendar treatment of non-magnetic layer If you do not, you can also take a method.
  • each component was kneaded with a mixer, and then dispersed using a sand mill. To the resulting dispersion, add 10 parts of polyisocyanate to the coating solution for the non-magnetic layer, 10 parts to the coating solution for the magnetic layer, and add 40 parts of cyclohexanone to each. The mixture was filtered using a filter having an average pore size of 1 to prepare a coating solution for forming a nonmagnetic layer and a coating solution for forming a magnetic layer.
  • the obtained coating solution of the nonmagnetic layer is coated on a polyethylene terephthalate support having a thickness of 62 ⁇ m and an average surface roughness of 3 nm so that the thickness after drying becomes 1.5 ⁇ m.
  • a magnetic layer is further applied thereon by spin coating so that the thickness of the magnetic layer becomes 0.15 ⁇ m. o
  • the magnet was oriented in the circumferential direction. This was subjected to a batch-type rolling treatment capable of obtaining the same pressure as in Production Method 1 to smooth the surface. The subsequent steps were performed in the same manner as in Production Method 1.
  • a method of spin-coating a non-magnetic layer and spin-coating the magnetic layer on the non-magnetic layer while the non-magnetic layer is not dried may be used.
  • the use of the spin coat method not only increases the amount of remanent magnetization in the recording direction, but also reduces the perpendicular magnetization component of barium fluoride and metal magnetic powder having a short needle ratio, thereby improving the symmetry of the reproduced waveform.
  • Support B-1 polyethylene terephthalate
  • Thickness 62 ⁇ m
  • F—5 value MD 1 1 4 MP a.
  • Breaking strength MD276MPa.
  • TD2801MPa Elongation at break: MD174MPa, TD139MPa Thermal shrinkage (80 ° C, 30 minutes): MD0.04 %,
  • Thickness 55, center plane average surface roughness 1.8 nm
  • Thickness 62 zm, center plane average surface roughness 9 nm
  • Orientation 0-1 Perform randomized orientation.
  • Circumferential orientation is performed with 0—5C0 magnet.
  • Fine carbon black powder .100 parts
  • the areal recording density is the product of the linear recording density and the track density.
  • the linear recording density is the number of bits of a signal recorded per inch in the recording direction.
  • Track density is the number of tracks per inch.
  • 0m is the amount of magnetization per unit area of the magnetic recording medium. This is a value obtained by multiplying Bm (Gauss) by the thickness, which is a value that can be measured directly using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.) with HmlOkOe. (7) The error rate of the tape was measured using a DDS drive after recording the signal of the above linear recording density on the tape by the 8-10 conversion PR 1 equalization method.
  • the error rate of the disk was measured by recording the signal of the above linear recording density on the disk using the (2, 7) RLL modulation method.
  • the thickness of the magnetic recording medium is cut out to a thickness of about 0.1 m with a diamond cutter over the lengthwise direction using a diamond cutter, and the magnification is 100,000 to 1,000,000 times with a transmission electron microscope. Observation was performed at a magnification of preferably 20000 to 500,000, and the photograph was taken. The print size of the photo is A4-A5. Thereafter, the interface was visually judged by paying attention to the difference in shape between the ferromagnetic powder and the non-magnetic powder in the magnetic layer and the lower non-magnetic layer, and the surface of the magnetic layer was similarly darkened by force. Thereafter, the length of the cut line was measured with an image processing apparatus I BAS 2 manufactured by Zeiss. When the length of the sample photograph was 21 cm, the measurement was performed 85 to 300 times. The average of the measured values at that time was defined as the magnetic layer thickness d. d was calculated according to the description in JP-A-5-298653.
  • sample powder particles were observed with a transmission electron microscope, and each particle in the printed photograph was measured with an image analyzer to determine the particle size distribution.
  • the total magnification was corrected from the diffraction grating images observed at the same time.
  • sample powder particles were observed with a transmission electron microscope, and each particle in the printed photograph was measured with an image analyzer to determine the particle size distribution.
  • the total magnification was corrected from the diffraction grating images observed at the same time.
  • the sample was run for 1 000 hr in the same environment as the running durability with the head off, and the finished sample was run, the force cartridge case was opened, and the surface of the magnetic layer of the magnetic disk was visually observed for evaluation.
  • the sample was run for 100 hours in the same environment as the running durability in the head-off state, and the completed sample was run, the force cartridge case was opened, and the surface of the magnetic layer of the magnetic disk was visually observed for evaluation.
  • the C / Fe value was measured using a PH 1-660 type Auger electron spectrometer made by ⁇ Company.
  • the measurement conditions were as follows.
  • the error rate was measured using a DDS drive after recording the above-described linear recording density signal on a tape by using the 8-10 conversion PR 1 equalization method. Examples 3 3 and 3 4. In Reference Example 2, the error rate was similarly measured using the tape of Example 24 while changing the linear recording density and the track density.
  • the magnetic recording medium of the present invention from the results of the above table compared with the conventional disk-shaped medium, it can be seen that a much better especially gills Ichire one Bok in high density recording region is 1 0-5 below. Also it is understood that similarly gills one rate even in the computer one tape is considerably better in 1 0 5 below.
  • Magnetic paint mL— 1 (using needle-shaped magnetic powder)
  • Ferromagnetic metal powder m—100 parts Composition: CoZF e (atomic ratio) 30%,
  • Methyl ethyl ketone 180 parts 180 parts magnetic paint mL—2 (using needle-shaped magnetic powder)
  • Ferromagnetic metal powder m—210 parts Composition: Co / Fe (atomic ratio) 30%,
  • Ferromagnetic metal powder m—3
  • Magnesium fluoride magnetic powder m_5100 parts to Ba molar ratio composition: Fe 9.10, Co 0.20, Zn 0.77
  • a 1 2 0 3 is present 8 wt% with respect to the entire particles to the surface Carbon black
  • Ketjen Black EC (AKUZO NO BEL) 1 3 parts Average particle size: 30 nm
  • AKP-15 (Sumitomo Chemical Industries, Ltd.)
  • Nonmagnetic powder a- F e 2 0:! Major axis 0.1 5 / Matthew preparative 8 0 parts to m, a BET specific surface area of 5 0 m 2 / g pH 9
  • Nonmagnetic powder alpha-F e 2 0 3 Matthew sheet 1 to 0 0 parts major axis 0. 1 5 m, B specific surface area by the ET method 5 0 m 2 / g
  • each component was kneaded with a kneader, and then dispersed using a sand mill.
  • To the resulting dispersion add 10 parts of polyisocyanate to the coating solution for the non-magnetic layer, 10 parts to the coating solution for the magnetic layer, and add 40 parts of cyclohexanone to each.
  • the solution was filtered using a filter having an average pore size of / m to prepare a coating solution for forming a nonmagnetic layer and a coating solution for forming a magnetic layer.
  • the obtained coating solution for the nonmagnetic layer was further reconstituted so that the thickness after drying was 1.5 zm.
  • the magnetic layer is simultaneously layered on a polyethylene terephthalate support having a thickness of 62 m and a center plane average surface roughness of 3 nm so that the thickness of the magnetic layer is 0.15 m. Coating is performed, and while both layers are still in a wet state, two magnetic fields with a frequency of 50 Hz and a magnetic field strength of 250 gauss and a frequency of 50 Hz and 120 gauss are passed through an AC magnetic field generator and randomly oriented.
  • vertical alignment can be performed in addition to the above-described alignment method. Also, if necessary, after punching into a disc shape, heat treatment (usually 50 ° C to 90 ° C) is performed at a high temperature to accelerate the curing process of the coating layer. And post-treatment such as shaving the surface projections may be performed.
  • each component was kneaded with a kneader and then dispersed using a sand mill.
  • To the resulting dispersion was added 2.5 parts of polyisocyanate for the coating solution for the non-magnetic layer, 3 parts for the coating solution for the magnetic layer, and 40 parts of cyclohexanone.
  • the mixture was filtered using a filter having an average pore size to prepare a coating solution for forming a nonmagnetic layer and a coating solution for forming a magnetic layer.
  • the obtained coating solution for the non-magnetic layer is coated so that the thickness after drying is 1.7 ⁇ 1, and immediately thereafter, the thickness of the magnetic layer is adjusted to 0.15 / zm.
  • Simultaneous multi-layer coating was performed on an aramid support (trade name: MICRON) with a center surface average surface roughness of 2 nm and a thickness of 4.4 mm, and while both layers were still wet, 60 Orientation was performed by a cobalt magnet having a magnetic force of 600 G and a solenoid having a magnetic force of 600 G.
  • a backing layer with a thickness of 5 m (carbon black average particle size: 1 7 nm 100 parts, calcium carbonate average particle size: 40 nm 80 parts, ⁇ -alumina average particle size: 200 nm 5 parts were dispersed in nitrocellulose resin, polyurethane resin, and polyisocyanate). .
  • Slit to a width of 3.8 mm feed the slit product, attach the non-woven fabric and razor blade to a device with a take-up device so that it presses against the magnetic surface, and use a tape cleaning device to clear the surface of the magnetic layer.
  • the magnetic tape was assembled into a cartridge for DDS.
  • each component was kneaded with a kneader, and then dispersed using a sand mill.
  • To the resulting dispersion add 10 parts of polyisocyanate to the coating liquid for the non-magnetic layer, 10 parts to the coating liquid for the magnetic layer, and add 40 parts of cyclohexanone to each.
  • the mixture was filtered using a filter having an average pore size of 2 to prepare coating solutions for forming a nonmagnetic layer and a magnetic layer, respectively.
  • the obtained coating solution for the nonmagnetic layer was applied on a polyethylene terephthalate support having a thickness of 62 ⁇ m and an average surface roughness of 3 nm so that the thickness after drying would be 1.5.
  • the cloth is dried once, calendered, and then a magnetic layer is applied thereon by a blade method so that the magnetic layer has a thickness of 0.15 m, frequency 50 Hz, magnetic field strength 25
  • Two magnetic field strengths of 0 gauss, 50 Hz, and 120 gauss were passed through an AC magnetic field generator, and random orientation processing was performed.
  • a method of not performing a calendar process on the nonmagnetic layer may be employed.
  • Each of the above-mentioned paints was kneaded with a kneader, and then dispersed using a sand mill. Add 2.5 parts of polyisocyanate to the obtained dispersion and 3 parts of the coating liquid for the non-magnetic layer and 40 parts of cyclohexanone, respectively. The mixture was filtered using a filter having an average pore size of 1 to prepare coating liquids for forming a nonmagnetic layer and for forming a magnetic layer, respectively. The obtained non-magnetic layer coating solution is adjusted to a thickness of 4.4 / zm and a center plane average surface roughness of 2 nm so that the thickness after drying is 1.7 / m.
  • each component was kneaded with a kneader, and then dispersed using a sand mill. To the resulting dispersion, add 10 parts of polyisocyanate to the coating solution for the non-magnetic layer, 10 parts to the coating solution for the magnetic layer, and add 40 parts of cyclohexanone to each. The mixture was filtered using a filter having an average pore size of 2 to prepare coating solutions for forming a nonmagnetic layer and a magnetic layer, respectively.
  • the obtained coating solution of the nonmagnetic layer was spin-coated on a polyethylene terephthalate support having a thickness of 62 m and an average surface roughness of 3 nm so that the thickness after drying would be 1.5.
  • a magnetic layer is further applied thereon by a spin coat so that the thickness of the magnetic layer is 0.15 ⁇ m, and then a circle is applied by a 600 G homopolar opposite Co magnet.
  • An orientation treatment was performed in the circumferential direction. This was subjected to a batch-type rolling treatment capable of obtaining the same pressure as in Production Method 1 to smooth the surface. The subsequent steps were performed in the same manner as in Production Method 1.
  • a method of spin-coating a non-magnetic layer and spin-coating the magnetic layer on the non-magnetic layer while the non-magnetic layer is not dried may be used.
  • the spin coat method not only the amount of residual magnetization in the recording direction is increased, but also the perpendicular magnetization component of the barium ferrite / short needle ratio metal magnetic material can be reduced, and the symmetry of the reproduced waveform can be improved.
  • Thickness 62 ⁇ m
  • F—5 value MD11-4MPa
  • Support b 2 polyethylene naphthalate
  • Thickness 55, center plane average surface roughness 1.8 nm
  • Heat shrinkage 80 ° C, 30 minutes: MD 0.007%, TD 0.0.07%
  • Support b_ 3 polyethylene terephthalate
  • Thickness 62 m, center plane average surface roughness 9 nm
  • Magnetic properties Measured using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.) at Hml 0 KOe.
  • the linear recording density is the number of bits of a signal to be recorded per inch in the recording direction.
  • Track density is the number of tracks per inch.
  • the areal recording density is obtained by multiplying the linear recording density by the track density.
  • Dm is the amount of magnetization per unit area of the magnetic recording medium. It is obtained by multiplying Bm (Gauss) by the thickness. This is measured using a vibrating sample magnetometer (Toei Kogyo Co., Ltd.). Hml 0 KOe, which can be measured directly.
  • the error rate of the disk is obtained by (2, 7) RLL-modulating the signal with the above linear recording density. The method was recorded on a disk and measured.
  • the error rate of the tape was measured using a DDS drive by recording the signal of the above linear recording density on the tape by the 8-10 conversion PR1 equalization method.
  • the thickness of the magnetic layer is cut out to a thickness of about 0.1; zm with a diamond cutter along the longitudinal direction of the magnetic recording medium, and the transmission electron microscope is used to magnify 100 to 1,000 times. Observation was performed at a magnification of, preferably, 2000 to 50,000 times, and the photograph was taken. The print size of the photo is A4-A5. Then, the interface was visually judged by focusing on the difference in shape between the ferromagnetic powder and the nonmagnetic powder of the magnetic layer and the lower nonmagnetic layer, and the surface of the magnetic layer similarly became black. Thereafter, the length of the cut line was measured with an image processing apparatus I BAS 2 manufactured by Zeiss. When the length of the sample photograph was 21 cm, the measurement was performed 85 to 300 times. The average of the measured values at that time was defined as the magnetic layer thickness d. d was calculated according to the description in JP-A-5-298653.
  • sample powder particles were observed with a transmission electron microscope, and each particle in the printed photograph was measured with an image analyzer to determine the particle size distribution.
  • the total magnification was corrected from the diffraction grating images observed at the same time.
  • Method Trace the outer shape of the particle of the photograph on a digitizer with a slice pen, measure the long axis length and the short axis length, and average the average length as the average long axis length and the average short axis length. (Average major axis length / Average minor axis length) was defined as the needle ratio.
  • sample powder particles were observed with a transmission electron microscope, and each particle in the printed photograph was measured with an image analyzer to determine the particle size distribution.
  • the total magnification was corrected from the diffraction grating images observed at the same time.
  • the sample was run for 1000 hours in the same environment as the running durability in the head-off state. After the completed sample was run, the force cartridge case was opened, and the magnetic layer surface of the magnetic disk was visually observed and evaluated.
  • the sample was run for 1000 hours in the same environment as the running durability in the head-off state, and after running the completed sample, the force cartridge case was opened and the magnetic layer surface of the magnetic disk was visually observed and evaluated.
  • the starting torque of the LS-120 drive manufactured by Imation Co., Ltd. was measured when the head was turned on using a torque gauge model 300 ATG (unit: g • cm).
  • the error rate was measured using a DDS drive after recording the signal of the above linear recording density on a tape by the 8-10 conversion PR 1 equalization method.
  • the error rate was similarly measured using the tape of sample No. 24 while changing the linear recording density and the track density.

Landscapes

  • Magnetic Record Carriers (AREA)

Description

明細書
磁気記録媒体 技術分野
本発明は塗布型の大容量、 高記録密度の磁気記録媒体に関する。 特に磁性層と 実質的に非磁性の下層を有し、 最上層に強磁性金属粉末または六方晶フェライ ト 粉末を含む大容量、 高密度記録用の磁気記録媒体に関するものである。 発明の背景
磁気ディスクの分野において、 C 0変性酸化鉄を用いた 2 M Bの M F— 2 H D フロッピ一ディスクがパ一ソナルコンピュータに標準搭載されようになつた。 し 力、し扱うデータ容量が急激に増加している今日において、 その容量は十分とは言 えなくなり、 フロッピーディスクの大容量化が望まれていた。
また磁気テープの分野においても近年、 ミニコンピュータ一、 パーソナルコン ピュータ一、 ワークステ一ションなどのオフイスコンピュータ一の普及に伴って 、 外部記憶媒体としてコンピュータ一データを記録するための磁気テープ (いわ ゆるバックアップテープ) の研究が盛んに行われている。 このような用途の磁気 テープの実用化に際しては、 とくにコンピュータ一の小型化、 情報処理能力の増 大と相まって、 記録の大容量化、 小型化を達成するために、 記録容量の向上が強 く要求される。
従来、 磁気記録媒体には酸化鉄、 C o変性酸化鉄、 C r 0 2 、 強磁性金属粉末 、 六方晶系フェライ ト粉末を結合剤中に分散した磁性層を非磁性支持体に塗設し たものが広く用いられる。 この中でも強磁性金属粉末と六方晶系フェライ ト粉末 は高密度記録特性に優れていることが知られている。
ディスクの場合、 高密度記録特性に優れる強磁性金属粉末を用いた大容量ディ スクとしては 1 0 M Bの M F— 2 T D、 2 1 M Bの M F— 2 S Dまたは六方晶フ ェライ 卜を用いた大容量ディスクとしては 4 M Bの M F— 2 E D、 2 1 M Bフロ プティカルなどがあるが、 容量、 性能的に十分とは言えなかった。 このような状 況に対し、 高密度記録特性を向上させる試みが多ぐなされている。 以下にその例 を示す。
ディスク状磁気記録媒体の特性を向上させるために、 特開昭 6 4 - 8 4 4 1 8 には酸性基とエポキシ基と水酸基を有する塩化ビニル樹脂を用いることが提案さ れ、 特公平 3— 1 2 3 7 4には H c 1 0 0 0エルステ、 yド ( 0 e ) 以上、 比表面積 2 5 〜7 O mVg の金属粉末を用いることが提案され、 特公平 6— 2 8 1 0 6には磁 性体の比表面積と磁化量を定め、 研磨剤を含ませることが提案されている。 ディスク状磁気記録媒体の耐久性を改善させるために、 特公平 7— 8 5 3 0 4 には不飽和脂肪酸エステルとエーテル結合を有する脂肪酸エステルを用いること が提案され、 特公平 7— 7 0 0 4 5には分岐脂肪酸エステルとエーテル結合を有 する脂肪酸エステルを用いることが提案され、 特開昭 5 4 - 1 2 4 7 1 6にはモ ース硬度 6以上の非磁性粉末と高級脂肪酸エステルを含ませることが提案され、 特公平 7— 8 9 4 0 7には潤滑剤を含む空孔の体積と表面粗さを 0 . 0 0 5 ~ 0 . 0 2 5 / mとすること力提案され、 特開昭 6 1 - 2 9 4 6 3 7には低融点と高 融点の脂肪酸エステルを用いることが提案され、 特公平 7— 3 6 2 1 6には磁性 層厚みに対し 1 / 4〜 3 / 4の粒径の研磨剤と低融点の脂肪酸エステルを用いる ことが提案され、 特開平 3— 2 0 3 0 1 8には A 1を含むメタル磁性体と酸化ク ロム用いることが提案されている。
非磁性の下層や中間層を有するディスク状磁気記録媒体の構成として、 特開平 3— 1 2 0 6 1 3には導電層と金属粉末を含む磁性層を有する構成が提案され、 特開平 6— 2 9 0 4 4 6には 1 // m以下の磁性層と非磁性層を有する構成が提案 され、 特開昭 6 2 - 1 5 9 3 3 7には力一ボン中間層と潤滑剤を含む磁性層から なる構成が提案され、 特開平 5— 2 9 0 3 5 .8には力一ボンサイズを規定した非 磁性層を有する構成が提案されている。
一方、 最近になり薄層磁性層と機能性非磁性層からなるディスク状磁気記録媒 体が開発され、 1 0 0 M Bクラスのフロッピーディスクが登場している。 これら の特徴を示すものとして、 特開平 5 - 1 0 9 0 6 1には H cが 1 4 0 0エルステプト'以 上で厚さ 0 . 5 i m以下の磁性層と導電性粒子を含む非磁性層を有する構成が提 案され、 特開平 5— 1 9 7 9 4 6には磁性層厚より大きい研磨剤を含む構成が提 案され、 特開平 5— 2 9 0 3 5 4には磁性層厚が 0 . 5 / m以下で、 磁性層厚の 厚み変動を ± 1 5 %以内とし、 表面電気抵抗を規定した構成が、 特開平 6— 6 8 4 5 3には粒径の異なる 2種の研磨剤を含ませ、 表面の研磨剤量を規定した構成 が提案されている。
又テープ状の磁気記録媒体においても 近年、 ミニコンピュータ、 パーソナル コンピュータなどのオフィスコンピュータの普及に伴って、 外部記憶媒体として コンピュータデータを記録するための磁気テープ (所謂、 バックアップテープ) の研究が盛んに行われている。 このような用途の磁気テープの実用化に際しては 、 特にコンピュータの小型化、 情報処理能力の増大と相まって、 記録の大容量化 、 小型化を達成するために記録容量の向上が強く要求される。 また磁気テープの 使用環境の広がりによる幅広い環境条件下 (特に、 変動の激しい温湿度条件下な ど) での使用、 データ保存に対する信頼性、 更に高速での繰り返し使用による多 数回走行におけるデータの安定した記録、 読み出し等の性能に対する信頼性など も従来に増して要求される。
従来から、 デジタル信号記録システムにおいて使用される磁気テープは、 シス テム毎に決められており、 所謂 D L T型、 3 4 8 0、 3 4 9 0、 3 5 9 0、 Q I C、 D 8型、 あるいは D D S型対応の磁気テープが知られている。 そしてどのシ ステムにおいても、 用いられる磁気テープは、 非磁性支持体上の一方の側に、 膜 厚が 2 . 0〜3 . 0 / mと比較的厚い単層構造の強磁性粉末、 結合剤、 及び研磨 剤を含む磁性層が設けられており、 また他方の側には、 巻き乱れの防止や良好な 走行耐久性を保っために、 ノ ックコート層が設けられている。 しかし一般に上記 のように比較的厚い単層構造の磁性層においては、 出力が低下するという厚み損 失の問題がある。
磁性層の厚み損失による再生出力の低下を改良するために、 磁性層を薄層化す ることが知られており、 例えば、 特開平 5— 1 8 2 1 7 8号公報には非磁性支持 体上に無機質粉末を含み、 結合剤に分散してなる下層非磁性層と該非磁性層が湿 潤状態にある内に強磁性粉末を結合剤に分散してなる 1 . 0; a m以下の厚みの上 層磁性層を設けた磁気記録媒体が開示されている。
しかしながら、 急速なディスク状やテープ状の磁気記録媒体の大容量化、 高密 度化にともない、 このような技術をもってしても満足な特性を得ることが難し くなつてきていた。 また耐久性と両立させることも困難な状況になつてきている。 本発明は電磁変換特性、 特に高密度記録特性が格段に改良されかつ優れた耐久 性を併せ持ち、 特に高密度記録領域でのエラ一レートが格段に改良された磁気記 録媒体を提供することを目的としている。 特に記録容量が、 0. 1 7〜2 Gbit/ inch2 、 好ましくは 0. 2〜2 Gbit/inch2 、 特に好ましくは 0. 35〜2 Gbi t/inch2 という大容量の磁気記録媒体、 特にディスク状磁気記録媒体を提供する ことを目的としている。 発明の開示
本発明者らは電磁変換特性と耐久性が良好で特に高密度記録領域でのエラ一レ 一トが格段に改良された大容量の磁気記録媒体を得るために鋭意検討した結果、 以下のような媒体とすることで、 本発明の目的である大容量で優れた高密度記録 特性と優れた耐久性を有する磁気記録媒体が得られることを見いだし、 本発明に 至ったものである。
すなわち、 本発明は支持体上に実質的に非磁性である下層と強磁性金属粉末ま たは強磁性六方晶フ ライ ト粉末を結合剤中に分散してなる磁性層をこの順に設 けた磁気記録媒体において、 前記磁気記録媒体は面記録密度が 0. 1 7〜 2 Gbi t/inch2の信号を記録する磁気記録媒体であり、 前記磁性層の抗磁力が 1 80 0ェ ルス ド以上であり、 且つ前記強磁性金属粉末は平均長軸長が 0. 1 5 m以下で あり、 または前記強磁性六方晶フェライ ト粉末は平均粒子径が 0. 1 0 m以下 であることを特徴とする磁気記録媒体、 または支持体上に実質的に非磁性である 下層と強磁性金属粉末または強磁性六方晶フ.二ライ ト粉末を結合剤中に分散して なる磁性層をこの順に設けた磁気記録媒体において、 前記磁気記録媒体は面記録 密度が 0. 1 7〜2 Gbit/inch2の信号を記録する磁気記録媒体であり、 前記磁 性層の乾燥厚みが 0. 0 5〜0. 3 0〃mであり、 Φπιが 1 0. 0 X 1 0— 3〜1 . 0 X 1 0 - emu/cm2 であり、 且つ前記磁性層の抗磁力が 1 80 0 iルステプト '以上で あることを特徴とする磁気記録媒体によって達成できる。 好ましくは前記磁性層 の乾燥厚みが 0. 0 5〜0. 25 mであり、 且つ (Dmが 8. 0 X 1 0— 3〜1. 0 X 1 0-3emu/cm2 であることを特徴とする磁気記録媒体、 さらには前記磁気記 録媒体は面記録密度が 0. 2 0〜 2 Gbit/ inch 2の信号を記録する磁気記録媒体 であることを特徴とする磁気記録媒体とすることで、 従来の技術では得ることが できなかった大容量で、 優れた高密度特性と優れた耐久性を併せ持ち高密度記録 領域でのエラ一レー卜が格段に改良された磁気記録媒体を得ることができること を見いだしたものである。
ここで実質的に非磁性である下層とは記録に関与しない程度に磁性を持ってい ても良いという意味であり、 以降単に下層または非磁性層という。 下層に磁性粉 を含む場合は無機粉末の 1 / 2未満含むことが好ましい。
また、 面記録密度とは、 線記録密度とトラック密度を掛け合わせたものである。 0mとは片側の単位面積当たりの磁性層から振動試料型磁束計 (VSM:東英 工業社製) を用い、 Hm 1 0 kO eで直接測定できる磁気モーメント量 (emu /cm2) であり、 VSMで求められる磁束密度 Bm (単位 G= 4 π emu/c m3) に厚み (cm) を掛けたものに等しい。 従って 0mの単位は emu/cm2 または G · cmで表される。
線記録密度とは記録方向 1ィンチ当たりに記録する信号のビッ ト数である。 これら線記録密度、 トラック密度、 面記録密度はシステムによって決まる値で ある。
即ち本発明は面記録密度の向上に対しては線記録密度の点で磁性層厚み、 磁性 層 H c、 中心面平均表面粗さで改良を図り、 トラック密度の点で ΦΙΉの最適化を 図ったものである。
本発明の好ましい態様は次の通りである。
磁気記録媒体の全体に対するものとして
( 1 ) 前記磁性層の表面粗さが 3 D— M I RAU法による中心面平均表面粗さで 5. 0 nm以下、 好ましくは 4. 0 nm以下であることを特徴とする磁気記録媒 体。
(2) 前記磁性層の抗磁力が 2 1 0 01ルステ 以上であり、 前記強磁性金属粉末は 平均長軸長が 0. 1 2 /zm以下であり、 または前記強磁性六方晶フェライ ト粉末 は平均粒子径が 0. 1 0 zm以下であることを特徴とする磁気記録媒体。
(3) 前記磁気記録媒体は面記録密度が 0. 2 0〜2 Gbit/inch2の信号を記録 する磁気記録媒体であることを特徴とする磁気記録媒体。
(4) 前記磁気記録媒体は、 1. OMBZs e c以上の高速転送速度のシステム 用の磁気記録媒体であることを特徴とする磁気記録媒体。
(5) 前記磁気記録媒体は、 ディスク回転数が 20 0 0 r pm以上の大容量フロ ッピ一ディスクシステム用の磁気記録媒体であることを特徴とする磁気記録媒体。 磁性体の改良に関するものとして
(1) 前記強磁性金属粉末は F eを主体とし、 平均長軸長が 0. 1 2 ^m以下、 針状比は 3. 0 9. 0、 好ましくは 4. 0 9. 0であることを特徴とする磁 気記録媒体。
(2) 前記強磁性金属粉末は F eを主体とし、 平均長軸長が 0. 1 0 m以下、 結晶子サイズは 80人〜 1 80人であることを特徴とする磁気記録媒体。
支持体の改良に関するものとして
(1) 前記支持体の中心面平均表面粗さが 5. O nm以下、 更に好ましくは 4. 0 nm以下であることを特徴とする磁気記録媒体。
(2) 前記支持体の面内各方向に対し、 1 00°C3 0分での熱収縮率及び 8 0°C 30分での熱収縮率が共に 0. 5 %以下であることを特徴とする磁気記録媒体。
(3) 前記支持体の面内各方向に対し、 温度膨張係数が 1 0 1 0— eZ°Cであ ることを特徴とする磁気記録媒体。
(4) 前記支持体はポリエチレンテレフタレート又はポリアミ ドであることを特 徴とする磁気記録媒体。
潤滑剤の改良に関するものとして
( 1 ) 前記下層及び/又は磁性層には少なくとも合わせて 3種類の脂肪酸及び/ 又は脂肪酸エステルを含むことを特徴とする磁気記録媒体。
( 2 ) 前記脂肪酸及び前記脂肪酸エステルは脂肪酸残基同士が互いに同一である ことを特徴とする磁気記録媒体。
(3) 前記脂肪酸は少なくとも飽和脂肪酸を含み、 前記脂肪酸エステルは少なく とも飽和脂肪酸エステル又は不飽和脂肪酸エステルを含むことを特徴とする磁気 記録媒体。
(4) 前記脂肪酸エステルはモノエステル及びジエステルを含むことを^ ^寺徴とす る磁気記録媒体。
( 5 ) 前記脂肪酸エステルは飽和脂肪酸エステル及び不飽和脂肪酸エステルを含 むことを特 とする磁気記録媒体。
( 6 ) 前記磁ま層の表面をォ—ジェ電子分光法で測定したときの C/F eピーク 比が好ましくは 5〜1 2 0、 更に好ましくは C/F eピーク比が 5〜1 0 0であ ることを特徴とする磁気記録媒体。
下層非磁性粉の改良に関するものとして
(1) 前記下層は粒子径が 5 nm〜80 n mのカーボンブラックを含み、 前記磁 性層は粒子径が 5 nm〜 30 0 nmの力一ボンブラックを含むことを特徴とする 磁気記録媒体。
( 2 ) 前記下層は平均粒子径が 5 n m〜 8 0 n mのカーボンブラックと平均粒子 径が 80 nmより犬のカーボンブラックとを含むことを特徴とする磁気記録媒体。
(3) 前記下層及び前記磁性層はいずれも平均粒子径が 5 nm〜80 nmの力— ボンブラックを含むことを特徴とする磁気記録媒体。
( 4 ) 前記下層は平均長軸長が 0. 20 / m以下であり、 針状比が 4. 0〜 9. 0の針状無機粉末を含むことを特徴とする磁気記録媒体。
(5) 前記下層は針状無機粉末を含み、 前記磁性層は針状強磁性金属粉末を含み 、 前記針状無機粉末の平均長軸長が前記針状強磁性金属粉末の平均長軸長の 1.
1倍〜 3. 0倍であることを特徴とする磁気記録媒体。
(6) 前記下層及び/又は前記磁性層は燐化合物を含み、 かつ前記下層は針状又 は球状の無機粉末を含むことを特徴とする磁気記録媒体。
磁性層研磨剤の改良に関するものとして
( 1 ) 前記磁性層は少なくとも平均粒子径が 0. 0 1〜 30 mの研磨剤を 含むことを特徴とする磁気記録媒体。
( 2 ) 前記磁性層は少なくとも平均粒子径が 2. 0 m以下、 好ましくは 0. 0 1〜 1. 0 zmのダイアモンドを含むことを特徴とする磁気記録媒体。
( 3 ) 前記磁性層はモース硬度が 9以上の 2種類の研磨剤を含むことを特徴とす る磁気記録媒体。
( 4 ) 前記磁性層は アルミナとダイアモンドを含むことを特徴とする磁気記録 媒体。
結合剤の改良に関するものとして
( 1 ) 前記下層及び Z又は前記磁性層は少なくともガラス転移温度が 0 °C〜 1 0 0 °C、 更に好ま'しくは 3 0〜1 0 0 °Cのポリウレタンを含むことを特徴とする磁 気記録媒体。
( 2 ) 前記下層及び/又は前記磁性層は少なくとも破断応力が 0 . 0 5〜 1 0 K g/mm2のポリウレタンを含むことを特徴とする磁気記録媒体。
磁気記録媒体全体の改良に関するものとして
( 1 ) 前記磁性層の乾燥厚みが 0 . 0 5〜 0 . 2 0 mであり、 かつ前記磁性層 中に平均粒子径が 0 . 4 / m以下の研磨剤を含むことを特徴とする磁気記録媒体。
( 2 ) 前記磁気記録媒体が面記録密度が 0 . 3 5〜 2 Gbi t/inch2 の信号を記録 する磁気記録媒体であることを特徴とする磁気記録媒体。
( 3 ) 前記磁気記録媒体は、 ディスク回転数が 3 0 0 0 r p m以上の大容量フロ ッピ一ディスクシステム用の磁気記録媒体であることを特徴とする磁気記録媒体。
( 4 ) 前記磁気記録媒体は、 2 . 0 M B / s e c以上の高速転送速度のシステム 用の磁気記録媒体であることを特徴とする磁気記録媒体。
( 5 ) 前記磁気記録媒体は、 現行の 3 . 5ィンチ型フ口ッピーディスクとの記録 •再生が可能な下位互換を実現した、 大容量フロッピーディスクシステム用の磁 気記録媒体であることを特徴とする磁気記録媒体。
( 6 ) 前記磁気記録媒体は、 高密度記録用の狭いギヤップと現行の 3 . 5インチ 型フロッピ一ディスク用の広いギヤップの両方を備えたデュアルディスクリート ギヤップへッ ドを採用した大容量フ口ッピ一ディスクシステム用の磁気記録媒体 であることを特徴とする磁気記録媒体。
( 7 ) 前記磁気記録媒体は、 ディスクの回転によりへッ ドが浮上する大容量フロ ツビ一ディスクシステム用の磁気記録媒体であることを特徴とする磁気記録媒体
( 8 ) 前記磁気記録媒体は、 ディスクの回転によりへッ ドが浮上し、 かつへッ ド の駆動にはリニアタイプのボイスコイルモーターを用いる大容量フロッピ一ディ スクシステム用の磁気記録媒体であることを特徴とする磁気記録媒体。
本発明は、 上記構成とすることで、 従来の技術では得ることができなかった面 記録密度が 0 . 1 7〜2 Gbi t/inch2 である磁気記録媒体であって、 優れた高密 度特性と優れた耐久性を併せ持ち、 特に高密度領域でのエラーレ一卜が顕著に改 良された磁気記録媒体、 特にディスク状磁気記録媒体を得ることができることを 見いだしたものである。
本発明がかかる優れた面記録密度が 0 . 1 7〜2 Gbi t/inch2、 好ましくは 0 . 2〜2 Gbi t/inch2 更には面記録密度が 0 . 3 5〜 2 Gb / inch2 というかつ て塗布型の磁気記録媒体では世の中に知られた製品では達成されたことのない高 密度特性と優れた耐久性を併せ持つ磁気記録媒体、 特にディスク状磁気記録媒体 が得られたのは以下のようなボイントを有機的に結合し、 総合した結果である。 本発明のポイントは①高 H e、 超平滑化、 ②複合潤滑剤や高耐久性結合剤、 強 磁性粉末の改良、 高硬度研磨剤使用による耐久性確保、 ③磁性層の超薄層化と 下層との界面の変動減、 ④粉体 (強磁性粉末、 非磁性粉末) の高充塡化、 ⑤粉体 (強磁性粉末、 非磁性粉末) の超微粒子化、 ⑥へッ ドタツチの安定化、 ⑦寸法安 定性とサ一ボ、 ⑧磁性層、 支持体の熱収縮率改良、 ⑨高温、 低温での潤滑剤の作 用、 等が挙げられ、 これらを結合し、 総合した結果本発明に至った。
まず上記①の高 H e、 超平滑化について述べる。 高 H eの強磁性粉末を用いる ことにより、 磁性層の H eを 1 8 0 0エルステ 以上、 好ましくは 2 1 0 0エルステプド以 上にすることができ、 大容量、 高密度を達成できる。 超平滑化については支持体 の中心面平均表面粗さを好ましくは 4 . 0 n m以下にすることにより、 また A T O MM構成により平滑な磁性層が得られ、 好ましくは磁性層の中心面平均表面粗 さを好ましくは 4 . 0 n m以下にすることにより、 大容量、 高密度を達成できる 。 次に上記②複合潤滑剤や高耐久性結合剤、 強磁性粉末の改良、 高硬度研磨剤使 用による耐久性確保について述べる。 まず複合潤滑剤については潤滑能力を高め るための基本的な考え方は次の通りである。
( 1 ) 機能 ·性能の異なる複数の潤滑剤を組み合わせて使用する。
( 2 ) 機能 '性能の類似した複数の潤滑剤を組み合わせて使用する。
上記 (1 ) により、 幅広い条件下での、 幅広い機能 ·性能を達成できる。 また 上記 (2 ) により潤滑剤同士の親和性 ·相溶性が確保され、 良好な潤滑機能の 発揮ができる。 上記 (1 ) の機能 '性能の異なる複数の潤滑剤の組み合わせの例を挙げると以 下のようになる。
1 ) 流体潤滑機能を示す潤滑剤と境界潤滑機能を示す潤滑剤を組み合わせて使 用 3る。
2 ) 極性潤滑剤と非極性潤滑剤を組み合わせて使用する。
3 ) 液体潤滑剤と固体潤滑剤を組み合わせて使用する。
4 ) 極性の異なる潤滑剤、 特に脂肪酸及び Z又は脂肪酸エステルを組み合わせ て使用する。 例えば脂肪酸エステルのモノエステルとジエステルを組み合わせ て使用する。
5 ) 融点や沸点の異なる潤滑剤、 特に脂肪酸及び Z又は脂肪酸エステルを組み 合わせて使用する。
6 ) 炭素数の長さの異なる潤滑剤、 特に脂肪酸及び Z又は脂肪酸エステルを組 み合わせて使用する。
7 ) 直鎖と分岐の潤滑剤、 特に脂肪酸及び Z又は脂肪酸エステルを組み合わせ て使用する。 例えば直鎖脂肪酸エステルと分岐脂肪酸エステルを組み合わせて 使用する。
8 ) 飽和と不飽和の炭素鎖の潤滑剤、 特に脂肪酸及び/又は脂肪酸エステルを 組み合わせて使用する。 例えば飽和脂肪酸エステルと不飽和脂肪酸エステルを 組み合わせて使用する。
9 ) 結合剤との親和性の異なる潤滑剤を組み合わせて使用する。
1 0 ) 無機粉末との親和性の異なる潤滑剤を組み合わせて使用する。
このような上記 (1 ) のそれぞれの潤滑剤の組み合わせにより、 幅広い条件下 での、 幅広い機能 ·性能を達成できる。
上記 (2 ) の機能,性能の類似する複数の潤滑剤を組み合わせの例を挙げると 以下のようになる。
1 ) 脂肪酸と脂肪酸エステルの脂肪酸残基同士を同一にする。
2 ) 脂肪酸エステルの脂肪酸残基同士、 及び/又はアルコール残基同士が同一 な脂肪酸ェステルを組み合わせて使用する
3 ) 2種以上の飽和脂肪酸を組み合わせて使用する。 4 ) 脂肪酸と脂肪酸エステルの脂肪酸残基部分に飽和脂肪酸同士を使用する。
5 ) 脂肪酸と脂肪酸エステルの脂肪酸残基部分に不飽和脂肪酸同士を使用する。 6 ) 3種類以上の脂肪酸エステルのみを組み合わせて使用する。
7 ) 脂肪酸と脂肪酸アミ ドの脂肪酸部分同士を同一にする。
上記 (2 ) の潤滑剤の組み合わせにより潤滑剤同士の親和性,相溶性が確保さ れ、 良好な潤滑機能の発揮ができる。
上記 (1 ) の潤滑剤と (2 ) の潤滑剤は種々組み合わせて使用することにより 、 幅広い条件下での、 幅広い機能 ·性能を達成できるとともに、 潤滑剤同士の親 和性 ·相溶性が確保され、 良好な潤滑機能の発揮ができる。
つぎに高耐久性結合剤について述べる。 極性基を有することにより分散性能の高 く、 ガラス転移温度が高く、 破断応力の高いことにより耐久性の高い結合剤、 特 にポリウレタン樹脂を用いることにより耐久性を向上できる。 またポリウレタン の分子末端に 2個以上の O H基を有することが好ましく、 特に分子末端に 3個以 上、 特に 4個以上の O H基を有することが好ましく、 多価 O Hとすることで、 多 官能硬化剤である、 ポリイソシァネートとの反応性が高く、 硬化して 3次元網目 状の塗膜を形成できるので好ましい。 つぎに強磁性粉末の改良については強磁性 粉末の硬度を大きくできる、 A 1成分を増加させることにより耐久性を向上でき る。 さらに高硬度研磨剤使用による耐久性確保について述べる。 従来の研磨剤例 えば アルミナのようなモース硬度 9程度の研磨剤だけではなく、 モース硬度 1 0の微粒子のダイアモンドを組み合わせて使用することにより、 更に耐久性を確 保できる。 次に③の磁性層の超薄層化と下層との界面の変動減について述べる。 磁性層を好ましくは 0 . 0 5〜 0 . 3 0〃 m、 更に好ましくは 0 . 0 5〜 0 . 2 5 〃 mという超薄層化を行い、 かつ下層との界面の変動減を行うことによって、 均一,平滑 ·薄層の磁性層が得られ、 大容量、 高密度化が達成される。 更に④の 粉体 (強磁性粉末、 非磁性粉末) の高充塡化について述べる。 強磁性粉末具体的 には強磁性金属粉末は平均長軸長が好ましくは 0 . 1 5 m以下、 更に好ましく は 0 . 1 2 m以下であり、 強磁性六方晶フ ライ ト粉末は平均粒子径が 0 . 1 0 m以下の微粒子の強磁性粉末を高度に充塡することによって、 大きい 0 mが 得られ、 大容量、 高密度化が達成される。 非磁性粉末の高充塡化によって耐久性 改良が図れる。 次に⑤の粉体 (強磁性粉末、 非磁性粉末) の超微粒子化について 述べる。 強磁性粉末具体的には強磁性金属粉末は平均長軸長が好ましくは 0. 1 5 m以下、 更に好ましくは 0. 1 2 /m以下であり、 強磁性六方晶フェライ ト 粉末は平均粒子径が 0. 1 0 m以下の微粒子の強磁性粉末を用いること、 特に 強磁性金属粉末の場合、 平均長軸長が 0. 1 0 m以下、 針状比が 4. 0〜9. 0、 結晶子サイズが 80人〜 1 80人という超微粒子化によって、 高充填、 磁性 層の超平滑化が達成され、 大容量 ·高密度化が図れる。 次に⑥のへッドタツチの 安定化について述べる。 磁気記録媒体全体の適度な強度、 しなやかさ、 平滑性に よってへッ ドタツチの安定化が図れ、 高速走行 ·高速回転によっても安定に大容 量 ·高密度化が図れる。 次に⑦の寸法安定性とサ一ボについて述べる。 例えば支 持体の面内各方向に対し、 1 0 0°C3 0分での熱収縮率及び 8 0°C30分での熱 収縮率が共に 0. 5%以下であること、 支持体の面内各方向に対し、 温度膨張係 数が 1 0―4〜 1 0— 8Z°Cであることなどにより、 寸法安定性が図れ、 高速走行' 高速回転によっても安定に大容量 ·高密度化が図れる。 同様に⑧の磁性層、 支持 体の熱収縮率改良も図れる。 また⑨の高温、 低温での潤滑剤の作用については前 述の種々の潤滑剤を一定の考え方の基に選択、 組み合わせることにより、 高温と 低温のいずれでも、 良好な潤滑性能が得られる。
マルチメディア化が進むパソコンの分野ではこれまでのフロッピ一ディスクに 代わる大容量の記録メディアが注目され始め、 米国 I OMEGA (アイオメガ) 社から Z I Pディスクとして販売された。 これは本件出願人が開発した ATOM M (Adv a n c e d S u p e r Th i n L a y e r & H i gh 0 u t p u t Me t a l Me d i a T e c h n o 1 o g y ) を用いた下層と 薄層磁性層を有する記録媒体であり、 3.7インチで 1 0 0 MB以上の記録容量を 持った製品が販売されている。 1 00〜1 20MBの容量は MO (3.5インチ) とほぼ同じ容量であり、 1枚で新聞記事なら?〜 8月分収まるものである。 デー 夕 (情報) の書き込み '読み出し時間を示す転送レートは、 1秒当たり 2 MB以 上とハードディスク並であり、 これまでの FDの 20倍、 MOの 2倍以上の早さ を有し非常に大きな利点を持つ。 さらに下層と薄層磁性層を有するこの記録媒体 は現在の FDと同じ塗布型メディアで大量生産が可能であり、 MOやハードディ スクに比べて低価格で有るというメリットを有する。
本発明者らは、 この様な媒体の知見をもとに鋭意研究を行った結果、 前記 Z I Pディスクや MO (3.5インチ) よりも格段に記録容量の大きい面記録密度が 0 . 1 7〜2 Gbit/inch2、 好ましくは 0. 2〜 2 Gbit/inch2 更には面記録密度 が 0. 35〜2 Gb / inch2であって、 好ましくは Φπιが 1 0. 0 x 1 0— 3〜1 . 0 X 1 0_3emu/cm2 であり、 特に (Dmが 8. 0 x 1 0— 3〜1. 0 x 1 0 3emu/ cm2 というかって世の中に知られた製品では達成されたことのない大容量で高密 度特性と優れた耐久性を併せ持ち特に高密度記録領域でのエラ一レー卜が格段に 改良された磁気記録媒体、 特にディスク状磁気記録媒体が得られたものであり、 これは磁気テープ例えばコンピュータ一テープにも適用できる発明である。
本発明の磁気記録媒体は超薄層の磁性層に高出力、 高分散性に優れた超微粒子 の磁性粉を含み、 下層に球状又は針状などの無機粉末を含み、 磁性層を薄くする ことで磁性層内の磁力相殺を低減し、 高周波領域での出力を大幅に高め、 更に重 ね書き特性も向上させたものである。 磁気へッドの改良により、 狭ギャップへッ ドゃ磁気抵抗型磁気へッド (MRへッド) との組合せにより超薄層磁性層の効果 がー層発揮でき、 デジタル記録特性の向上が図れる。
上層磁性層の厚みは高密度記録の磁気記録方式や磁気へッドから要求される性 能にマッチするように好ましくは 0. 05〜0. 3 0〃mであり、 更に好ましく は 0. 05〜0. 25〃mの薄層に選択される。 均一でかつ薄層にしたこのよう な超薄層磁性層は微粒子の磁性粉や非磁性粉を分散剤の使用と分散性の高い結合 剤の組み合わせにより高度に分散させ、 高充塡化を図った。 使用される磁性体は 大容量 F Dゃコンピューターテープの適性を最大限に引き出すために、 高出力、 高分散性、 高ランダマイズ性に優れた磁性体を使用している。 即ち非常に微粒子 で且つ高出力を達成できる平均長軸長が 0. 1 5 /m以下、 更に好ましくは 0. 1 / m以下の強磁性金属粉末または平均粒子径が 0. 1 0 以下の強磁性六 方晶フェライト粉末を用いることで、 特に平均長軸長が 0. 1 0 m以下で、 結 晶子サイズが 80人〜 1 80人である強磁性金属粉末を用いることにより、 更に Coを多く含み、 焼結防止剤として Aし S i、 Y、 Ndなどを含むことにより 高出力、 高耐久性が達成できる。 高転送レートを実現するために超薄層磁性層に 適した 3次元ネッ トワークバインダーシステムを用い、 高速回転時における走行 の安定性、 耐久性を確保している。 また広範囲な温湿度条件下での使用や高速回 転使用時でも、 その効力を維持できる複合潤滑剤を上下 2層に配し、 更に下層に は潤滑剤のタンクとしての役割を持たせ、 上層磁性層に常に適量の潤滑剤を供給 できるようにし、 上層磁性層の耐久性を高め、 信頼性を向上させている。 また下 層のクッション効果は良好なへッ ドタツチと安定した走行性をもたらすことがで さる。
大容量記録システムでは高転送レートが求められる。 例えば Z i pでは転送 速度が 1. 4MB/秒であり、 H i FDでは最大 3. 6MBZ秒である。 このた めには磁気ディスクの回転数を、 従来の F Dシステムに比べて 1桁以上上げる必 要がある。 具体的には磁気ディスク回転数は 1800 rpm以上が好ましく、 3 000 r pm以上が更に好ましい。 例えば Z i pでは磁気ディスク回転数は 29 68 r pmであり、 H i FDでは磁気ディスク回転数は 3600 r pmである。 また別のシステムでは記録容量が 650 MB (0. 65 GB) では磁気ディスク 回転数は 5400 r pm、 転送速度は 7. 5 MB/秒と予測されている。 磁気記 録の大容量化 Z高密度化に伴い、 記録トラック密度が向上する。 一般には媒体上 にサーボ記録エリアを設け、 記録トラックに対する磁気へッ ドのトレ一サビリテ ィ確保を図っている。 本発明の磁気記録媒体では支持体べ一スとして等方的寸度 安定性を高めたベースを使用することが好ましく、 トレ一サビリティの一層の安 定化を図ることができる。 そして超平滑なベースを用いることによって、 磁性層 の平滑性を更に向上できる。
ディスク形態の磁気記録の高密度化には、 線記録密度とトラック密度の向上が 必要である。 このうちトラック密度の向上には、 支持体の特性が重要である。 本 発明の媒体では支持体べ一スの寸度安定性、 特に等方性に配慮している。 高トラ ック密度における記録再生では、 サ一ボ記録は不可欠な技術であるが、 支持体べ ースを出来るだけ等方化することで媒体サイ ドからもこの改良が図れる。
本発明は磁性層を単層から ATOMM構成にするメリッ トは次のように考えら れる。 ( 1 ) 磁性層の薄層構造化による電磁変換特性の向上、
( 2 ) 潤滑剤の安定供給による耐久性の向上
( 3 ) 上層磁性層の平滑化による高出力
( 4 ) 磁性層の機能分離による要求機能付与が容易
これらの機能は、 単に磁性層を重層化するだけでは達成できない。 重層構造を 構成するには、 層を順次構成する 「逐次重層方式」 が一般的である。 この方式は 先ず、 下層を塗布し、 硬化、 又は乾燥させた後、 上層磁性層を同様に塗布し、 硬 ィ匕、 表面処理を行う。 F Dは磁気テープと異なり、 両面に同様な処理を施す。 塗 布工程後スリツト工程、 パンチ工程、 シヱル組み込み工程、 サ一テフアイ工程を 経て最終製品として完成する。 生産得率の点からは、 下層が未だ湿潤状態の内に 、 上層磁性層を塗布する同時、 又は逐次湿潤塗布が好ましい。
磁性層薄層構造化により以下のような電磁変換特性の大幅な向上が出来る。
( 1 ) 記録減磁特性の改良による高周波領域での出力向上、
( 2 ) 重ね書き (オーバーライト) 特性の改良
( 3 ) ウィンドウマージンの確保
耐久性は磁気ディスクにとって重要な要素である。 特に高転送レー卜を実現す るために磁気ディスクの回転数を、 従来の F Dシステムに比べて 1桁以上上げる 必要があり、 磁気へッド /力一トリッジ内部品と媒体とが高速摺動する場合の媒 体耐久性の確保は重要な課題である。 媒体の耐久性を向上させる手段には、 ディ スク自身の膜強度を上げるバインダー処方と、 磁気へッ ドとの滑り性を維持する 潤滑剤処方がある。 本発明の媒体ではバインダー処方に現行の F Dシステムで実 績のある 3次元ネットワークバインダーシステムを改良している。
潤滑剤は、 使用される種々の温 ·湿度環境下でそれぞれ優れた効果を発揮する 潤滑剤を複数組み合わせて使用し、 広範囲な温度 (低温、 室温、 高温) 、 湿度 ( 低湿、 高湿) 環境下でも各潤滑剤がそれぞれ機能を発揮し、 総合的に安定した潤 滑効果を維持できるものである。
また上下 2層の構造を活用し、 下層に潤滑剤のタンク効果を持たせることで上 層磁性層に常に適量の潤滑剤が供給されるようにし、 上層磁性層の耐久性を向上 できるようにしたものである。 超薄層の磁性層に含ませることが出来る潤滑剤量 には限度があり、 単純に磁性層をうすくすることは潤滑剤の絶対量が減少し、 走 行耐久性の劣化につながる。 この場合、 両者のバランスを得ることは困難であつ た。 上下 2層に別々の機能を持たせ、 互いに補完することで電磁変換特性の向上 と耐久性の向上を両立させた。 この機能分化は磁気へッ ドとメディアを高速摺動 させるシステムでは特に有効であった。
下層には潤滑剤の保持機能の他に表面電気抵抗のコントロール機能を付与でき る。 一般に電気抵抗のコントロールには、 磁性層中にカーボンブラック等の固体 導電材料を加えることが多い。 これらは磁性体の充塡密度を上げることの制約と なるほか、 磁性層が薄層になるに従い、 表面粗さにも影響を与える。 下層に導電 材料を加えることによってこれらの欠点を除くことができる。
マルチメディァ社会になり、 画像記録へのニーズは産業界のみならず家庭でも 益々強くなつており、 本発明の大容量磁気記録媒体は単に文字、 数字などのデ一 タ以外に、 画像記録用媒体としての機能/コス卜の要請に十分応えられる能力を 持つものである。 本発明の大容量媒体は実績のある塗布型磁気記録媒体をベース としており、 長期信頼性に富み、 またコストパフォーマンスに優れているもので ある。
本発明は以上のような種々の要因を積み重ね、 相乗的、 有機的に作用させ、 初 めて達成されるものであると同時に前述の全ての技術を取捨選択して組み合わせ 、 総合することによって得られた磁気記録媒体は例えば、 ソニー (株) と富士フ イルム (株) の共同開発した H i F Dに適用できる能力を持つものである。 H i F Dは近年のパーソナルコンピュータ一の処理能力の急速な発達や、 扱う情報量 の大幅な増大に伴い、 大容量且つ高速なデータ転送速度を備えたより高性能な新 しいデ一タ記録システムに対する要望と、 一方現在の 3 . 5インチ型フロッピ一 ディスクは手軽に使える記録メディァとして世界中に普及しており、 これらのデ イスクを今後も利用し、 蓄積された膨大なデータを読み出して再利用できる新シ ステムとして開発されたものである。 3 . 5インチ型フロッピ一ディスク 「H i F D」 は 2 0 0 M Bの大容量、 3 . 6 MBZ s e cの高速転送速度の、 現行の 3 . 5インチ型フロッピ一ディスクとの記録 ·再生が可能な下位互換を実現できる 、 次世代の大容量フロッピーディスクシステムである。 新たに開発した超薄層塗 布型メタルディスクと、 高密度記録用の狭いギャップと現行の 3 . 5インチ型フ 口ッピーディスク用の広いギヤップの両方を備えたデュアルディスクリ一トギヤ ップへッ ドの採用により 2 0 0 M Bの大容量が実現でき、 画像や音声のような大 容量のデータファイルを容易に取り扱うことができるものである。 また高い線記 録密度と 3 6 0 0 r p mの高速ディスク回転により、 従来の 3 . 5ィンチ型フロ ッピーディスク (2 H D) の転送速度が約 0 . 0 6 M BZ s e cに対し、 最大 3 . 6 M B/ s e cの高速転送速度を実現したものである。 これは従来に比べ約 6 0倍の高速処理を可能とするものである。 またデュアルディスクリートギヤップ へッ ドをハードディスクと同様なディスクの回転によりへッ ドが浮上するため、 記録 ·再生時にへッ ドが接触しないため、 高寿命 ·高信頼性のある浮上型にし、 同時にへッ ドの駆動にはリニアタイプのボイスコイルモーターを用いることによ り高速ランダムアクセスを従来の 3 . 5ィンチ型フロッピ一ディスク ドライブに 比べ、 3 〜 4倍程度の高速化を可能にしている。 またデュアルディスクリートギ ヤップへッ ドにより、 現行の 3 . 5インチ型フロッピ一ディスクとの記録 '再生 が可能な下位互換を実現している。 さらにへッ ドローディングをソフ卜に行う新 機構を組み込むことにより、 ディスクの磨耗を低減することができ、 更にエラー 訂正機能の搭載により高い信頼性を確保するものである。 このような 2 0 0 M B の大容量、 3 . 6 M B/ s e cの高速転送速度の、 現行の 3 . 5インチ型フロッ ピーディスクとの記録 ·再生が可能な下位互換を実現した、 次世代の大容量フ口 ッピーディスクシステムに本発明の磁気記録媒体は適用できるように開発された ものである。
〔発明の実施の形態〕
[磁性層]
本発明の磁気記録媒体は下層と超薄層磁性層を支持体の片面だけでも、 両面に 設けても良い。 上下層は下層を塗布後、 下層が湿潤状態の内 (WZW) でも、 乾 燥した後 (W/D) にでも上層磁性層を設けることが出来る。 生産得率の点から 同時、 又は逐次湿潤塗布が好ましいが、 ディスクの場合は乾燥後塗布も十分使用 できる。 本発明の重層構成で同時、 又は逐次湿潤塗布 (WZW) では上層 Z下層 が同時に形成できるため、 カレンダ一工程などの表面処理工程を有効に活用でき 、 超薄層でも上層磁性層の表面粗さを良化できる。 磁性層の抗磁力 Heは 1 8 0 0エルステプド以上であることが必要であり、 金属磁性粉末では Bmは 2 0 0 0〜5 0 0 0 G、 バリウムフヱライト粉末では 1 0 0 0〜 3 0 0 0 Gで有ることが必要で める。
[強磁性金属粉末]
本発明の上層磁性層に使用する強磁性粉末としては、 α— F eを主成分とする 強磁性合金粉末が好ましい。 これらの強磁性粉末には所定の原子以外に A 1、 S i、 S、 S c、 C a、 T i、 V、 C r、 Cu、 Y、 Mo、 Rh、 P d、 Ag、 S n、 Sb、 T e、 B a、 Ta、 W、 Re、 Au、 Hg、 Pb、 B i、 L a、 C e 、 P r、 Nd、 P、 Co、 Mn、 Zn、 N i、 S r、 Bなどの原子を含んでもか まわない。 特に、 A l、 S i、 C a、 Y、 B a、 L a、 Nd、 C o、 N i、 Bの 少なくとも 1つを α— F e以外に含むことが好ましく、 C o、 Y、 A 1の少なく とも一つを含むことがさらに好ましい。 C oの含有量は F eに対して 0原子%以 上 4 0原子%以下が好ましく、 さらに好ましくは 1 5原子%以上 3 5 %以下、 よ り好ましくは 2 0原子%以上 3 5原子%以下である。 Yの含有量は 1. 5原子% 以上 1 5原子%以下が好ましく、 さらに好ましくは 3原子%以上 1 2原子%以下 、 より好ましくは 4原子%以上 9原子%以下である。 A 1は 1. 5原子%以上 3 0原子%以下が好ましく、 さらに好ましくは 3原子%以上 2 0原子%以下、 より 好ましくは 4原子%以上 1 4原子%以下である。 これらの強磁性粉末にはあとで 述べる分散剤、 潤滑剤、 界面活性剤、 帯電防止剤などで分散前にあらかじめ処理 を行ってもかまわない。 具体的には、 特公昭 4 4— 1 4 0 9 0号、 特公昭 4 5一 1 8 3 7 2号、 特公昭 4 7— 2 2 0 6 2号、 特公昭 4 7— 2 2 5 1 3号、 特公昭 4 6 - 2 8 4 6 6号、 特公昭 4 6— 3 8 7 5 5号、 特公昭 4 7— 4 2 8 6号、 特 公昭 47— 1 2 4 2 2号、 特公昭 4 7— 1 7 2 8 4号、 特公昭 4 7— 1 8 5 0 9 号、 特公昭 4 7— 1 8 5 7 3号、 特公昭 3 9— 1 0 3 0 7号、 特公昭 4 6— 3 9 6 3 9号、 米国特許第 3 0 2 6 2 1 5号、 同 3 0 3 1 3 4 1号、 同 3 1 0 0 1 9 4号、 同 3 2 4 2 0 0 5号、 同 3 3 8 9 0 1 4号などに記載されている。
強磁性合金粉末には少量の水酸化物、 または酸化物が含まれてもよい。 強磁性 合金粉末の公知の製造方法により得られたものを用いることができ、 下記の方法 を挙げることができる。 複合有機酸塩 (主としてシユウ酸塩) と水素などの還元 性気体で還元する方法、 酸化鉄を水素などの還元性気体で還元して F eあるいは F e— Co粒子などを得る方法、 金属カルボニル化合物を熱分解する方法、 強磁 性金属の水溶液に水素化ホウ素ナトリウム、 次亜リン酸塩あるいはヒドラジンな どの還元剤を添加して還元する方法、 金属を低圧の不活性気体中で蒸発させて粉 末を得る方法などである。 このようにして得られた強磁性合金粉末は公知の徐酸 化処理、 すなわち有機溶剤に浸潰したのち乾燥させる方法、 有機溶剤に浸潰した のち酸素含有ガスを送り込んで表面に酸化膜を形成したのち乾燥させる方法、 有 機溶剤を用いず酸素ガスと不活性ガスの分圧を調整して表面に酸化皮膜を形成す る方法のいずれを施したものでも用いることができる。
本発明の磁性層の強磁性粉末を BET法による比表面積で表せば 4 0〜8 Om2 /gであり、 好ましくは 4 5〜7 0m2/gである。 4 0m2/g以下ではノイズ が高くなり、 8 0m2Zg以上では表面性が得にく く好ましくない。 本発明の磁 性層の強磁性粉末の結晶子サイズは 8 0〜1 8 OAであり、 好ましくは 1 0 0〜 1 8 OA, 更に好ましくは 1 1 0〜1 7 5 Aである。 強磁性粉末の長軸長は 0. 0 1 ^mJ¾±0. 2 5〃m以下であり、 好ましくは 0. 0 3 /mi¾J:0. 1 5〃m以下 であり、 さらに好ましくは 0. 0 3〃m以上 0. 1 2〃m以下である。 強磁性粉末 の針状比は 3. 0以上 1 5. 0以下が好ましく、 さらには 3. 0以上 1 2. 0以 下が好ましく、 特に 3. 0以上 9. 0以下が好ましい。 磁性金属粉末の S は 1 0 0〜 1 8 0 emu/gであり、 好ましくは 1 1 0 emu/g〜 1 7 0 emu/g 、 更に好ま しくは 1 2 5〜 1 6 0 emu/ である。 金属粉末の抗磁力は 1 7 0 0エルステ 7ド以上 3 5 0 0エルステプド以下が好ましく、 更に好ましく.は 1, 8 0 0エルステ 7ド以上 3 0 0 0エル ステ ド以下である。
強磁性金属粉末の含水率は 0. 0 1〜 2 %とするのが好ましい。 結合剤の種類 によって強磁性粉末の含水率は最適化するのが好ましい。 強磁性粉末の pHは 、 用いる結合剤との組合せにより最適化することが好ましい。 その範囲は 4〜1 2である力^ 好ましくは 6〜1 0である。 強磁性粉末は必要に応じ、 A l、 S i 、 Pまたはこれらの酸化物などで表面処理を施してもかまわない。 その量は強磁 性粉末に対し 0. 1〜 1 0 %であり表面処理を施すと脂肪酸などの潤滑剤の吸着 が 10 OmgZm2 以下になり好ましい。 強磁性粉末には可溶性の N a、 Ca、 Fe、 Ni、 S rなどの無機イオンを含む場合がある。 これらは、 本質的に無い 方が好ましいが、 20 ΟρρπΟ¾下であれば特に特性に影響を与えることは少ない 。 また、 本発明に用いられる強磁性粉末は空孔が少ないほうが好ましくその値は 20容量%以下、 さらに好ましくは 5容量%以下である。 また形状については先 に示した粒子径についての特性を満足すれば針状、 米粒状、 紡錘状のいずれでも かまわない。 強磁性粉末自体の SFDは小さい方が好ましく、 0. 8以下が好ま しい。 強磁性粉末の Heの分布を小さくする必要がある。 尚、 SFDが 0. 8以 下であると、 電磁変換特性が良好で、 出力が高く、 また、 磁化反転がシャープで ピークシフ トも少なくなり、 高密度デジタル磁気記録に好適である。 Heの分布 を小さくするためには、 強磁性金属粉末においてはゲータイ 卜の粒度分布を良く する、 焼結を防止するなどの方法がある。
[六方晶フェライ ト粉末]
本発明の最上層に含まれる六方晶フェライトとしてバリウムフ ライ ト、 スト ロンチウムフヱライ ト、 鉛フェライ ト、カルシウムフヱライ 卜の各置換体、 Co 置換体等がある。 具体的にはマグネトプランバイ ト型のバリウムフェライト及び ストロンチウムフヱライ ト、 スピネルで粒子表面を被覆したマグネトプランバイ ト型フェライ ト、 更に一部スピネル相を含有したマグネトプランバイト型のバリ ゥムフヱライト及びストロンチウムフヱライト等が挙げられ、 その他所定の原子 以外に A l、 S i、 S, S c、 T i、 V, Cr、 Cu, Y, Mo, Rh, Pd, Ag、 Sn、 Sb、 Te、 Ba、 Ta、 W、 Re、 Au、 Hg、 Pb、 B i、 L a、 Ce、 P r、 Nd、 P, Co, Mn, Zn、 N i、 S r、 B、 Ge、 Nbな どの原子を含んでもかまわない。 一般には Co— Zn、 C o-T i, Co— Ti 一 Z r、 Co— T i - Zn, Ni— T i— Zn, Nb— Zn— Co、 Sb— Zn -Co. Nb— Zn等の元素を添加した物を使用することができる。 原料 ·製法 によっては特有の不純物を含有するものもある。 平均粒子径は六角板径で 10〜 200 nm、 好ましくは 10〜 1 00 mnであり、 特に好ましくは 10〜 80 であ o
特にトラック密度を上げるため磁気抵抗へッ ドで再生する場合、 低ノイズにす る必要があり、 平均板径は 4 O rnn以下が好ましいが、 1 O nm以下では熱揺らぎの ため安定な磁化が望めない。 2 0 O nm以上ではノイズが高く、 いずれも高密度磁 気記録には向かない。 板状比 (板径 Z扳厚) は 1〜1 5が望ましい。 好ましくは 1〜7である。 板状比が小さいと磁性層中の充填性は高くなり好ましいが、 十分 な配向性が得られない。 1 5より大きいと粒子間のスタツキングによりノィズが 大きくなる。 この粒子径範囲の B E T法による比表面積は 1 0〜2 0 O m 2/gを 示す。 比表面積は概ね粒子板径と板厚からの算術計算値と符号する。 粒子板径, 板厚の分布は通常狭いほど好ましい。 数値化は困難であるが粒子 T E M写真より 5 0 0粒子を無作為に測定する事で比較できる。 分布は正規分布ではない場合が 多いが、 計算して平均サイズに対する標準偏差で表すと σ /平均サイズ = 0 . 1 〜2 . 0である。 粒子径分布をシャープにするには粒子生成反応系をできるだけ 均一にすると共に、 生成した粒子に分布改良処理を施すことも行われている。 た とえば酸溶液中で超微細粒子を選別的に溶解する方法等も知られている。 磁性体 で測定される抗磁力 H cは 5 0 0エルステッド〜 5 0 0 0エルステッド程度まで作成できる。 H eは高い方が高密度記録に有利である力 記録へッ ドの能力で制限される。 本 発明では H cは 1 7 0 0エルステッドから 4 0 0 0エルステ^程度であるが、 好ましくは 1 8 0 0ェルス ド以上、 3 5 0 0エルステ^以下である。 へッ ドの飽和磁化が 1 . 4テス ラーを越える場合は、 2 0 0 0エルステ^以上にすることが好ましい。 H eは粒子径 (板径 ·板厚) 、 含有元素の種類と量、 元素の置換サイ ト、 粒子生成反応条件等 により制御できる。 飽和磁化 CT Sは 4 0 emu/g~ 8 O emu/gである。 σ sは高い方 が好ましいが微粒子になるほど小さくなる傾向がある。 σ s改良のためマグネト プランバイ トフヱライ トにスピネルフヱライ 卜を複合すること、 含有元素の種類 と添加量の選択等が良く知られている。 また W型六方晶フェライ トを用いること も可能である。 磁性体を分散する際に磁性体粒子表面を分散媒、 ポリマーに合つ た物質で処理することも行われている。 表面処理材は無機化合物、 有機化合物が 使用される。 主な化合物としては S i、 Aし P、 等の酸化物または水酸化物、 各種シラン力ップリング剤、 各種チタンカップリング剤が代表例である。 量は磁 性体に対して 0 . 1〜1 0 %である。 磁性体の p Hも分散に重要である。 通常 4 〜1 2程度で分散媒、 ポリマーにより最適値があるが、 媒体の化学的安定性、 保 存性から 6〜1 1程度が選択される。 磁性体に含まれる水分も分散に影響する。 分散媒、 ポリマーにより最適値があるが通常 0 . 0 1〜2 . 0 %が選ばれる。 ノヽ 方晶フ ライ 卜の製法としては、 ①酸化バリウム ·酸化鉄 ·鉄を置換する金属酸 化物とガラス形成物質として酸化ホゥ素等を所望のフヱライ ト組成になるように 混合した後溶融し、 急冷して非晶質体とし、 次いで再加熱処理した後、 洗浄 '粉 砕してバリウムフヱライ ト結晶粉体を得るガラス結晶化法、 ②バリウムフヱライ ト組成金属塩溶液をアルカリで中和し、 副生成物を除去した後 1 0 0 °C以上で液 相加熱した後洗浄 ·乾燥 ·粉砕してバリウムフ ライ ト結晶粉体を得る水熱反応 法、 ③バリウムフ ライ ト組成金属塩溶液をアルカリで中和し、 副生成物を除去 した後乾燥し 1 1 0 0 °C以下で処理し、 粉砕してバリウムフヱライ ト結晶粉体を 得る共沈法等があるが、 本発明は製法を選ばない。
[非磁性層]
次に下層に関する詳細な内容について説明する。 本発明の下層に用いられる無 機粉末は、 非磁性粉末であり、 例えば、 金属酸化物、 金属炭酸塩、 金属硫酸塩、 金属窒化物、 金属炭化物、 金属硫化物、 等の無機質化合物から選択することがで きる。 無機化合物としては例えば 化率 9 0 %以上の α—アルミナ、 S—アルミ ナ、 ァーアルミナ、 0—アルミナ、 炭化ゲイ素、 酸化クロム、 酸化セリウム、 α —酸化鉄、 、 へマタイ ト、 ゲ一タイ ト、 コランダム、 窒化珪素、 チタン力一バイ ト、 酸化チタン、 二酸化珪素、 酸化スズ、 酸化マグネシウム、 酸化タングステン 、 酸化ジルコニウム、 窒化ホウ素、 酸化亜鉛、 炭酸カルシウム、 硫酸カルシウム 、 硫酸バリウム、 二硫化モリブデンなどが単独または組合せで使用される。 特に 好ましいのは、 粒度分布の小ささ、 機能付与.の手段が多いこと等から、 二酸化チ タン、 酸化亜鉛、 酸化鉄、 硫酸バリウムであり、 更に好ましいのは二酸化チタン
、 α酸化鉄である。 これら非磁性粉末の平均粒子径は 0 . 0 0 5〜2 z mが好ま しいが、 必要に応じて平均粒子径の異なる非磁性粉末を組み合わせたり、 単独の 非磁性粉末でも粒径分布を広く して同様の効果をもたせることもできる。 とりわ け好ましいのは非磁性粉末の粒子径は 0 . 0 1 m〜0 . 2 / mである。 特に、 非磁性粉末が粒状金属酸化物である場合は、 平均粒子径 0 . 0 8 以下が好ま しく、 針状金属酸化物である場合は、 平均長軸長が 0 . 3 ^ πι以下が好ましく、 0. 2〃m以下がさらに好ましい。 タップ密度は 0. 0 5〜2 g/ml、 好ましくは 0. 2〜1. 5g/mlである。 非磁性粉末の含水率は 0. 1〜5重量%、 好ましく は 0. 2〜3重量%、 更に好ましくは 0. 3〜1. 5重量%である。 非磁性粉末 の pHは 2〜1 1であるが、 pHは 5. 5〜1 0の間が特に好ましい。 非磁性粉 末の比表面積は 1〜 1 0 0 m2 /g、 好ましくは 5〜 8 0 m2 /g、 更に好ましくは 1 0〜7 Om2 /gである。 非磁性粉末の結晶子サイズは 0. 0 0 4〃m〜l〃mが 好ましく、 0. 0 4〃m〜0. 1〃mが更に好ましい。 DB P (ジブチルフタレ ―ト) を用いた吸油量は 5〜 1 0 0ml/100g、 好ましくは 1 0〜8 0 ml/100g、 更 に好ましくは 2 0〜6 0ml/100gである。 比重は 1〜 1 2、 好ましくは 3〜6で ある。 形状は針状、 球状、 多面体状、 板状のいずれでも良い。 モース硬度は 4以 上、 1 0以下のものが好ましい。 非磁性粉末の SA (ステアリン酸) 吸着量は 1 〜2 0 fimoi/ m2 、 好ましくは 2~ 1 5 /mol/m2 、 さらに好ましくは 3〜8〃 mol/ m2 である。 pHは 3〜6の間にあることが好ましい。 これらの非磁性粉末 の表面には表面処理により A 1 203 S i 02 、 T i 02 、 Z r 02 、 S n 02 、 S b 203 、 Z nO、 Y2O3 が存在するが好ましい。 特に分散性に好ましい のは A 1 2 O 3 . S i 02 、 T i 02 、 Z r 02 であるが、 更に好ましいのは A 1 203 、 S i 02 、 Z r 02 である。 これらは組み合わせて使用しても良いし 、 単独で用いることもできる。 また、 目的に応じて共沈させた表面処理層を用い ても良いし、 先ずアルミナを存在させた後にその表層をシリ力を存在させる方法 、 またはその逆の方法を採ることもできる。 また、 表面処理層は目的に応じて多 孔質層にしても構わないが、 均質で密である方が一般には好ましい。
本発明の下層に用いられる非磁性粉末の具体的な例としては、 アルミナとして 住友化学製 H I T— 1 0 0 (平均粒子径 0.11 / m) , ZA— G 1、 酸化鉄として 昭和電工製ナノタイ ト (平均粒子径 0. 0 6 zm) 、 酸化鉄として戸田工業社製 αへマタイ ト DPN— 2 5 0, DPN- 2 5 0 ΒΧ (平均長軸長 0. 1 6〃m、 平均短軸長 0. 0 2 / m、 軸比 7. 4 5), DPN- 2 4 5, DPN- 2 7 0 B X, DPN- 5 5 0 BX, DPN— 5 5 0 RX (平均長軸長 0. 1 5〃 m、 平均 短軸長 0. 0 2〃m、 軸比 7. 5), D PN— 6 5 0 RX、 チタン工業製 "へマ タイ ト α— 4 0、 石原産業製ひへマタイ ト E 2 7 0, Ε 2 7 1 , Ε 3 0 0, Ε 3 0 3、 酸化チタンとして石原産業製酸化チタン TTO— 5 1 Β (平均粒子径 0. 0 1〜0. 0 3〃m) , TTO- 5 5 A (平均粒子径 0. 0 3〜 0. 0 5〃 m) , T T 0— 5 5 B (平均粒子径 0. 0 3〜 0 5 m) , TTO— 5 5 C (平 均粒子径 0. 0 3〜0. 0 5〃m) , TTO- 5 5 S (平均粒子径 0. 0 3〜 0 . 0 5 urn) , TTO— 5 5 D (平均粒子径 0. 0 3〜 0 5 urn) , SN— 1 0 0、 チタン工業製酸化チタン STT— 4 D (平均粒子径 0. 0 1 3 ^m) , STT— 3 0 D (平均粒子径 0. 0 9 /m) , STT— 3 0 (平均粒子径 0. 1 2 βτη) , STT— 6 5 C (平均粒子径 0. 1 2〃 m) 、 ティカ製酸化チタン M T- 1 0 0 S (平均粒子径 0. 0 1 5〃m) , MT- 1 0 0 T (平均粒子径 0. 0 1 5〃m) , MT- 1 5 0W (平均粒子径 0. 0 1 5〃m) , MT- 5 0 0 B (平均粒子径 0. 0 3 5 /m) , MT- 6 0 0 B (平均粒子径 0. 0 5 0 /m) , MT— 1 0 0 F, MT— 5 0 0 HD、 堺化学製酸化亜鉛として F I NEX— 2 5 (平均粒子径 0. 5 m) , 堺化学製硫酸バリウムとして B F— 1 (平均粒子 径 0. 0 5〃m) , B F— 1 0 (平均粒子径 0. 0 6 ;«m) , B F— 2 0 (平均 粒子径 0. 0 3 m) , ST— M、 同和鉱業製 D E F I C— Y, D E F I C— R 、 日本ァエロジル製 AS 2 BM, T i O 2 P 2 5、 宇部興産製 1 0 0 A, 5 0 0 A、 及びそれを焼成したものが挙げられる。 特に好ましい非磁性粉末は二酸化チ タンと α—酸化鉄である。
一酸化鉄 (へマタイ ト) は以下のような諸条件の基で実施される。 即ち、 本 発明における α— F e 2 03 粒子粉末の製造は、 針状ゲ一タイ ト粒子を前駆体粒 子とする。 針状ゲータイ ト粒子は例えば次のような方法で製造できる。
①第一鉄水溶液に等量以上の水酸化アル力.リ水溶液を加え、 水酸化第一鉄コロ ィ ドを含む p H I 1以上の懸濁液を調製し、 8 0°C以下の温度でこれに酸素含有 ガスを通気して第一鉄イオンに酸化反応を行わさせ、 針状ゲータイ ト粒子を生成 させる方法。
②第一鉄塩水溶液と炭酸アルカリ水溶液とを反応させ、 得られる F e C〇3 を 含む懸濁液に酸素含有ガスを通気して鉄ィオンに酸化反応を行わさせ、 紡錘状を 呈した針状ゲ一タイ ト粒子を生成させる方法。
③第一鉄塩水溶液に等量未満の水酸化アル力リ水溶液または炭酸アル力リ水溶 液を添加し、 得られる水酸化第一鉄コロイドを含む第一鉄塩水溶液に酸素含有ガ スを通気して鉄イオンに酸化反応を行わさせ、 針状ゲータイト核粒子を生成する 。 次いで、 該針状ゲ一タイト核粒子を含む第一鉄塩水溶液に、 該第一鉄塩水溶液 中の F e 2 +に対し等量以上の水酸化アルカリ水溶液を添加し、 その後、 酸素含有 ガスを通気して前記針状ゲータイト核粒子を成長させる方法。
④ 第一鉄水溶液に等量未満の水酸化アル力リまたは炭酸アル力リ水溶液を添 加して水酸化第一鉄コロイドを含む第一鉄塩水溶液を調製し、 得られた水溶液に 酸素含有ガスを通気して鉄イオンに酸化反応を行わさせ、 これによつて針状ゲ一 タイト核粒子を生成させ、 次いで、 酸性乃至中性領域で前記針状ゲータイト核粒 子を成長させる方法。
尚、 ゲ一タイト粒子の生成反応中に粒子粉末の特性向上等の為に通常添加され ている N i、 Z n、 P、 S i等の異種元素が添加されていても支障はない。 前駆 体粒子である針状ゲ一タイト粒子を 2 0 0〜5 0 0 °Cの温度範囲で脱水するか、 必要に応じて、 更に 3 5 0〜8 0 0 °Cの温度範囲で加熱処理により焼き鈍しをし て針状び一 F e 2 03 粒子を得る。 尚、 脱水または焼き鈍しされる針状ゲータイ ト粒子の表面に P、 S i、 B、 Z r、 S b等の焼結防止剤が付着していても支障 はない。 3 5 0〜8 0 0 °Cの温度範囲で加熱処理により焼き鈍しをするのは、 脱 水されて得られた針状 α— F e 2 03 粒子の粒子表面に生じている空孔を焼き鈍 しにより、 粒子の極表面を溶融させて空孔をふさいで平滑な表面形態とさせる事 が好ましいからである。
本発明において用いられる α— F e 2 03 粒子粉末は、 前記脱水または焼き鈍 しをして得られた針状 一 F e 2 03 粒子から次のようにして製造する。 針状 α 一 F e 2 03 粒子を水溶液中に分散して懸濁液を得る。 得られた懸濁液に A 1化 合物を添加し、 懸濁液の p Hを調整するとともに α— F e 2 03 粒子の表面にそ の A 1化合物で被覆し、 次いで、 濾過、 水洗、 乾燥、 粉砕、 必要により更に脱気 •圧密処理等を施す。 用いられる A 1化合物は酢酸アルミニウム、 硫酸アルミ二 ゥム、 塩化アルミニウム、 硝酸アルミニウム等のアルミニウム塩やアルミン酸ソ ーダ等のアルミン酸アルカリ塩を使用することができる。 この場合の A 1化合物 添加量は α— F e 2 0 3 粒子粉末に対して A 1換算で 0 . 0 1〜5 0重量%でぁ る。 0 . 0 1重量%未満である場合には、 結合剤樹脂中における分散が不十分で あり、 5 0重量%を超える場合には粒子表面に浮遊する A 1化合物同士が相互作 用するために好ましくない。 本発明における下層の非磁性粉末においては、 A 1 化合物とともに S i化合物を始めとして、 P、 T i、 M n、 N i、 Z n、 Z r、 S n、 S bから選ばれる化合物の 1種または 2種以上を用いて被覆することもで きる。 A 1化合物とともに用いるこれらの化合物の添加量はそれぞれ α— F e 2 03 粒子粉末に対して 0 . 0 1〜5 0重量%の範囲である。 0 . 0 1重量%未満 である場合には添加による分散性向上の効果が殆どなく、 5 0重量%を超える場 合には、 粒子表面以外に浮遊する化合物同士が相互作用をする為に好ましくない。 二酸化チタンの製法に関しては以下の通りである。 これらの酸化チタンの製法 は主に硫酸法と塩素法がある。 硫酸法はイルミナイ 卜の源鉱石を硫酸で蒸解し、 T i, F eなどを硫酸塩として抽出する。 硫酸鉄を晶析分離して除き、 残りの硫 酸チタニル溶液を濾過精製後、 熱加水分解を行なって、 含水酸化チタンを沈澱さ せる。 これを濾過洗浄後、 夾雑不純物を洗浄除去し、 粒径調節剤などを添加した 後、 8 0〜1 0 0 0 °Cで焼成すれば粗酸化チタンとなる。 ルチル型とアナターゼ 型は加水分解の時に添加される核剤の種類によりわけられる。 この粗酸化チタン を粉碎、 整粒、 表面処理などを施して作成する。 塩素法の原鉱石は天然ルチルや 合成ルチルが用いられる。 鉱石は高温還元状態で塩素化され、 T iは T i C 1 4 に F eは F e C l 2 となり、 冷却により固体となった酸化鉄は液体の T i C 1 4 と分離される。 得られた粗 T i C 1 4 は精留により精製した後核生成剤を添加し 、 1 0 0 0 °C以上の温度で酸素と瞬間的に反応させ、 粗酸化チタンを得る。 この 酸化分解工程で生成した粗酸化チタンに顔料的性質を与えるための仕上げ方法は 硫酸法と同じである。
表面処理は上記酸化チタン素材を乾式粉砕後、 水と分散剤を加え、 湿式粉砕、 遠心分離により粗粒分級が行なわれる。 その後、 微粒スラリーは表面処理槽に移 され、 ここで金属水酸化物の表面被覆が行なわれる。 まず、 所定量の A 1、 S i 、 T i、 Z r、 S b、 S n、 Z nなどの塩類水溶液を加え、 これを中和する酸、 またはアル力リを加えて、 生成する含水酸化物で酸化チタン粒子表面を被覆する 。 副生する水溶性塩類はデカンテ一シヨン、 濾過、 洗浄により除去し、 最終的に スラリー pHを調節して濾過し、 純水により洗浄する。 洗浄済みケーキはスプレ 一ドライヤーまたはバンドドライヤーで乾燥される。 最後にこの乾燥物はジエツ 卜ミルで粉砕され、 製品になる。
また、 水系ばかりでなく酸化チタン粉体に A 1 C 13 、 S i C 14 の蒸気を通 じその後水蒸気を流入して Aし S i表面処理を施すことも可能である。
下層にカーボンブラックを混合させて公知の効果である表面電気抵抗 R sを下 げること、 光透過率を小さくすることができるとともに、 所望のマイクロピツカ —ス硬度を得る事ができる。 また、 下層に力一ボンブラックを含ませることで潤 滑剤貯蔵の効果をもたらすことも可能である。 カーボンブラックの種類はゴム用 ファーネス、 ゴム用サ一マル、 カラー用ブラック、 アセチレンブラック、 等を用 いることができる。 下層のカーボンブラックは所望する効果によって、 以下のよ うな特性を最適化すべきであり、 併用することでより効果が得られることがある。 下層のカーボンブラックの比表面積は 1 0 0〜5 0 0 m2/g> 好ましくは 1 5 0〜4 0 0m2Zg、 DBP吸油量は 2 0〜 4 0 0 ml/100g, 好ましくは 3 0〜 4 0 0ml/100gである。 力一ボンブラックの平均粒子径は 5 nm〜 8 0 nm、 好ま しくは 1 0〜5 0 nm、 さらに好ましくは 1 0〜4 0 nmである。 平均粒子径が 8 0 nmより大きいカーボンブラックを少量含んでもかまわない。 カーボンブラ ックの pHは 2〜1 0、 含水率は 0. 1〜1 0%、 タップ密度は 0. l〜l gZ mlが好ましい。 本発明に用いられるカーボンブラックの具体的な例としてはキヤ ボッ ト社製 BLACKPEARLS 2 0 0 0 (平均粒子径 15議) , 1 4 0 0 (平均粒子径 13nm) 、 1 3 0 0 (平均粒子径 13nm) , 1 1 0 0 (平均粒子径 14nm ) , 1 0 0 0, 9 0 0 (平均粒子径 15nm), .8 0 0, 8 8 0, 7 0 0、 L (平均 粒子径 24nm) , VULCAN XC - 7 2 (平均粒子径 30nm) 、 P (平均粒子径 19nm) 、 三菱化成工業社製 # 3 0 5 0 B, # 3 1 5 0 B, # 3 2 5 0 B (平均 粒子径 30議) , # 3 7 5 0 B, # 3 9 5 0 B (平均粒子径 16nm), # 9 5 0 (平 均粒子径 16nm), # 6 5 0 B, # 9 7 0 B, # 8 5 0 B (平均粒子径 18nm) , M A- 6 0 0 (平均粒子径 18nm) , MA— 2 3 0, # 4 0 0 0, # 4 0 1 0、 コロ ンビアン力—ボン社製 CONDUCTEX SC (平均粒子径 17mn) 、 S C— U (平均粒子径 20nm) 、 9 7 5 (平均粒子径 20nm) 、 RAVEN 8 8 0 0 (平 均粒子径 13nm) , 8 0 0 0 (平均粒子径 13nm) , 7 0 0 0 (平均粒子径 14nm) , 5 7 5 0 (平均粒子径 17nm) , 5 2 5 0 (平均粒子径 19譲) , 5 0 0 0 (平均粒 子径 12nm) 、 3 5 0 0 (平均粒子径 16nm) , 2 1 0 0 (平均粒子径 17nm) , 2 0 0 0 (平均粒子径 18nm) , 1 8 0 0 (平均粒子径 18nm) , 1 5 0 0 (平均粒子径 18nm) , 1 2 5 5 (平均粒子径 23nm) , 1 2 5 0 (平均粒子径 21議) , 1 0 3 5
(平均粒子径 27nm) 、 ァクゾ一社製ケッチヱンブラック E C (平均粒子径 30nm) 、 旭力一ボンブラック社製 # 8 0 (平均粒子径 20nm) 、 # 7 0 (平均粒子径 27 nm) 、 # 6 0 (平均粒子径 49議) 、 # 5 5 (平均粒子径 68nm) 、 アサヒサ一マル
(平均粒子径 72nm) などがあげられる。 下層に用いられる平均粒子径が 8 0 nm より大きい力一ボンブラックとしては旭カーボンブラック社製 # 5 0 (平均粒 子径 94nm) 、 # 3 5 (平均粒子径 82nm) などが挙げられる。 カーボンブラックを 分散剤などで表面処理したり、 樹脂でグラフト化して使用しても、 表面の一部を グラフアイ ト化したものを使用してもかまわない。 また、 力一ボンブラックを塗 料に添加する前にあらかじめ結合剤で分散してもかまわない。 これらの力一ボン ブラックは上記無機質粉末に対して 5 0重量%を越えない範囲、 非磁性層総重量 の 4 0 %を越えない範囲で使用できる。 これらのカーボンブラックは単独、 また は組合せで使用することができる。 本発明で使用できるカーボンブラックは例え ば 「カーボンブラック便覧」 (カーボンブラック協会編) を参考にすることがで きる。
また下層には有機質粉末を目的に応じて、 添加することもできる。 例えば、 ァ クリルスチレン系樹脂粉末、 ベンゾグアナミン樹脂粉末、 メラミン系樹脂粉末、 フタロシアニン系顔料が挙げられる力 ポリ.ォレフィ ン系樹脂粉末、 ポリエステ ル系樹脂粉末、 ポリアミ ド系樹脂粉末、 ポリイミ ド系樹脂粉末、 ポリフッ化工チ レン樹脂も使用することができる。 その製法は特開昭 6 2— 1 8 5 6 4号、 特開 昭 6 0— 2 5 5 8 2 7号に記されているようなものが使用できる。
下層の結合剤樹脂、 潤滑剤、 分散剤、 添加剤、 溶剤、 分散方法その他は以下に 記載する磁性層のそれが適用できる。 特に、 結合剤樹脂量、 種類、 添加剤、 分散 剤の添加量、 種類に関しては磁性層に関する公知技術が適用できる。
[結合剤] 本発明の磁性層と非磁性層、 バック層のバインダー、 潤滑剤、 分散剤、 添加剤 、 溶剤、 分散方法その他は磁性層、 非磁性層、 バック層のそれが適用できる。 特 に、 バインダー量、 種類、 添加剤、 分散剤の添加量、 種類に関しては磁性層に関 する公知技術が適用できる。
本発明に使用される結合剤としては従来公知の熱可塑性樹脂、 熱硬化性樹脂、 反応型樹脂やこれらの混合物が使用される。 熱可塑性樹脂としては、 ガラス転移 温度が— 1 0 0〜 1 5 0 °C、 数平均分子量が 1 , 0 0 0〜 2 0 0, 0 0 0、 好まし くは 1 0, 0 0 0〜 1 0 0, 0 0 0、 重合度が約 5 0〜1 0 0 0程度のものである o
このような例としては、 塩化ビニル、 酢酸ビニル、 ビニルアルコール、 マレイ ン酸、 アタリル酸、 アタリル酸エステル、 塩化ビニリデン、 ァクリロ二トリル、 メタクリル酸、 メタクリル酸エステル、 スチレン、 ブタジエン、 エチレン、 ビニ ルブチラール、 ビニルァセタール、 ビニルエーテル、 等を構成単位として含む重 合体または共重合体、 ポリウレタン樹脂、 各種ゴム系樹脂がある。 また、 熱硬化 性樹脂または反応型樹脂としてはフヱノール樹脂、 エポキシ樹脂、 ポリウレタン 硬化型樹脂、 尿素樹脂、 メラミン樹脂、 アルキド樹脂、 アクリル系反応樹脂、 ホ ルムアルデヒド樹脂、 シリコーン樹脂、 エポキシ一ポリアミ ド樹脂、 ポリエステ ル樹脂とイソシァネ一トプレポリマ一の混合物、 ポリエステルポリオールとポリ イソシァネートの混合物、 ポリウレタンとポリイソシァネートの混合物等があげ られる。 これらの樹脂については朝倉書店発行の 「プラスチックハンドブック」 に詳細に記載されている。 また、 公知の電子線硬化型樹脂を各層に使用すること も可能である。 これらの例とその製造方法については特開昭 6 2 - 2 5 6 2 1 9 に詳細に記載されている。 以上の樹脂は単独または組合せて使用できるが、 好ま しいものとして塩化ビニル樹脂、 塩化ビニル酢酸ビニル共重合体、 塩化ビニル酢 酸ビニルビニルアルコール共重合体、 塩化ビニル酢酸ビニル無水マレイン酸共重 合体、 から選ばれる少なくとも 1種とポリウレタン樹脂の組合せ、 またはこれら にポリイソシァネートを組み合わせたものがあげられる。
ポリウレタン樹脂の構造はポリエステルポリウレタン、 ポリエーテルポリウレ タン、 ポリエーテルポリエステルポリウレタン、 ポリカーボネートポリウレタン 、 ポリエステルポリカーボネートポリウレタン、 ポリ力プロラク トンポリウレ夕 ンなど公知のものが使用できる。 ここに示したすべての結合剤について、 より優 れた分散性と耐久性を得るためには必要に応じ、 — COOM, — S03 M、 一 0 S03 M、 -P = 0 (OM) 、 一 0— P = 0 (OM) 2 、 (以上につき Mは水 素原子、 またはアルカリ金属塩基) 、 — NR2 、 一 N + R3 (Rは炭化水素基) 、 エポキシ基、 — SH、 一 CN、 などから選ばれる少なくともひとつ以上の極性 基を共重合または付加反応で導入したものを用いることが好ましい。 このような 極性基の量は 1 0―1〜 1 0—8モル Zgであり、 好ましくは 1 0— 2〜1 0— 6モル/ gで ある。 これら極性基以外にポリウレタン分子末端に少なくとも 1個ずつ、 合計 2 個以上の OH基を有することが好ましい。 OH基は硬化剤であるポリィソシァネ 一卜と架橋して 3次元の網状構造を形成するので、 分子中に多数含むほど好まし い。 特に OH基は分子末端にある方が硬化剤との反応性が高いので好ましい。 ポ リウレタンは分子末端に OH基を 3個以上有することが好ましく、 4個以上有す ることが特に好ましい。 本発明において、 ポリウレタンを用いる場合はガラス転 移温度が一 50〜 1 50 °C、 好ましくは 0 °C〜 1 00 °C、 特に好ましくは 30〜 1 00 °C、 破断伸びが 1 00 ~ 2 000 %、 破断応力は 0. 0 5〜 1 0 Kg/mm2 、 降伏点は 0. 05〜1 0 Kg/m m2 が好ましい。 このような物性を有することに より、 好ましくはディスク回転数が 1 80 0 r pm以上、 更に好ましくはデイス ク回転数が 3000 r pm以上の高速回転数でも良好な機械的特性を有する塗膜 が得られる。
本発明に用いられるこれらの結合剤の具体的な例としては塩化ビニル系共重合 体としてユニオン力一バイ ト社製 VAGH、. VYHH、 VMCH、 VAGF、 V AGD, VROH, VYE S, VYNC, VMCC, XYHL, XYSG, PK HH, PKH J, PKHC, PKFE, 日信化学工業社製、 MPR— TA、 MP R-TA 5, MPR-TAL, MPR-TSN, MPR - TMF, MPR-TS 、 MPR— TM、 MPR— TACK 電気化学社製 1 0 0 0W、 DX 80, DX 8 1, DX 82, DX8 3、 1 0 0 FD、 日本ゼオン社製 MR— 1 04、 MR— 1 05、 MR 1 1 0、 MR 1 00、 MR 5 5 5、 400 X- 1 1 0 A、 ポリウレタ ン樹脂として日本ポリウレタン社製ニッポラン N 230 1、 N2 302、 N 23 0 4、 大日本インキ社製パンデックス T— 5 1 0 5、 T-R 3 0 8 0、 Τ— 5 2 0 1、 ノく'一ノ ック D— 4 0 0、 D- 2 1 0— 8 0、 クリスボン 6 1 0 9, 7 2 0 9, 東洋紡社製バイロン UR 8 2 0 0, UR 8 3 0 0、 UR— 8 7 0 0、 RV 5 3 0, RV 2 8 0、 大日精化社製ポリカーボネートポリウレタン、 ダイフェラミ ン 4 0 2 0, 5 0 2 0, 5 1 0 0, 5 3 0 0, 9 0 2 0, 9 0 2 2. 7 0 2 0, 三菱化成社製ポリウレタン、 MX 5 0 0 4, 三洋化成社製ポリウレタン、 サンプ レン S P— 1 5 0、 旭化成社製ポリウレタン、 サラン F 3 1 0, F 2 1 0などが 挙げられる。
本発明の非磁性層、 磁性層に用いられる結合剤は非磁性粉末または磁性粉末に 対し、 5〜5 0重量%の範囲、 好ましくは 1 0〜3 0重量%の範囲で用いられる 。 塩化ビニル系樹脂を用いる場合は 5〜3 0重量%、 ポリウレタン樹脂を用いる 場合は 2〜2 0重量%、 ポリイソシァネ一トは 2〜2 0重量%の範囲でこれらを 組み合わせて用いることが好ましいが、 例えば、 微量の脱塩素によりへッ ド腐食 が起こる場合は、 ポリウレタンのみまたはポリウレタンとイソシァネートのみを 使用することも可能である。
本発明の磁気記録媒体は二層以上からなる。 従って、 結合剤量、 結合剤中に占 める塩化ビニル系樹脂、 ポリウレタン樹脂、 ポリイソシァネート、 あるいはそれ 以外の樹脂の量、 磁性層を形成する各樹脂の分子量、 極性基量、 あるいは先に述 ベた樹脂の物理特性などを必要に応じ非磁性層、 各磁性層とで変えることはもち ろん可能であり、 むしろ各層で最適化すべきであり、 多層磁性層に関する公知技 術を適用できる。 例えば、 各層でバインダー量を変更する場合、 磁性層表面の擦 傷を減らすためには磁性層のバインダー量を増量することが有効であり、 へッ ド に対するへッ ドタツチを良好にするためには、 非磁性層のバインダー量を多くし て柔軟性を持たせることができる。
本発明に用いるポリイソシァネートとしては、 トリレンジイソシァネート、 4 , 4' ージフエニルメタンジイソシァネート、 へキサメチレンジイソシァネート 、 キシリ レンジイソシァネート、 ナフチレン一 1, 5—ジイソシァネート、 0— トルイジンジイソシァネー ト、 イソホロンジイソシァネート、 トリフエ二ルメ夕 ントリイソシァネート等のイソシァネート類、 また、 これらのイソシァネート類 とポリアルコールとの生成物、 ま.た、 イソシァネート類の縮合によって生成した ポリイソシァネート等を使用することができる。 これらのイソシァネート類の巿 販されている商品名としては、 日本ポリウレタン社製、 コロネ一ト 、 コロネー ト HL, コロネ一ト 2 0 3 0、 コロネート 2 0 3 1、 ミリオネ—ト MR, ミリオ ネート MTL、 武田薬品社製、 タケネート D— 1 0 2, タケネート D— 1 1 0 N 、 タケネ一ト D— 2 0 0、 タケネート D— 2 0 2、 住友バイエル社製、 デスモジ ユール L, デスモジュール I L、 デスモジュール N, デスモジュール HL, 等が ありこれらを単独または硬化反応性の差を利用して二つもしくはそれ以上の組合 せで各層とも用いることができる。
[カーボンブラック、 研磨剤]
本発明の磁性層に使用されるカーボンブラックはゴム用ファーネス、 ゴム用サ 一マル、 カラー用ブラック、 アセチレンブラック、 等を用いることができる。 比 表面積は 5〜5 0 Om D BP吸油量は 1 0〜4 0 0ml /1 0 0 g、 平均 粒子径は 5 nm〜 3 0 0 nm、 pHは 2〜1 0、 含水率は 0. 1 ~ 1 0 %、 タツ プ密度は 0. 1〜1 g/cc、 が好ましい。 本発明に用いられる力一ボンブラック の具体的な例としてはキャボッ ト社製、 BLACKPEARLS 2 0 0 0 (平 均粒子径 15nm) 、 1 3 0 0 (平均粒子径 13nm) 、 1 0 0 0 均粒子径 16mn)、 9 0 0 (平均粒子径 15nm) 、 9 0 5、 8 0 0 (平均粒子径 17nm) , 7 0 0 (平均 粒子径 18nm) 、 VULCAN XC— 7 2 (平均粒子径 30nm) 、 STERL I N G FT (平均粒子径 180nm) 、 旭カーボン社製、 # 8 0 (平均粒子径 20nm) 、 # 6 0 (平均粒子径 49nm), # 5 5 (平均粒子径 68nm) 、 # 5 0 (平均粒子径 94 議) 、 # 3 5 (平均粒子径 82nm) 、 三菱化成工業社製、 # 2 4 0 0 B (平均粒子 径 15nm) 、 # 2 3 0 0 (平均粒子径 15nm) 、 # 9 0 0 (平均粒子径 16nm), # 1 0 0 0 (平均粒子径 18nm) 、 # 3 0 (平均粒子径 30nm) , # 4 0 (平均粒子径 20 nm)、 # 1 0 B (平均粒子径 84nm) 、 コロンビアン力—ボン社製、 CONDUC TEX S C (平均粒子径 17nm) 、 RAVEN 1 5 0 (平均粒子径 18nm) 、 5 0 (平均粒子径 21nm), 4 0 (平均粒子径 24nm) , 1 5 (平均粒子径 27nm) 、 R AVEN MTP (平均粒子径 2 7 5 n m) 、 R A V E N— MT— Pビーズ (平 均粒子径 330nm) 、 日本 EC社製、 ケッチ ンブラック E C 4 0 (平均粒子径 30η m) 、 カーンカルプ社製、 サ一マルブラック (平均粒子径 2 7 0 n m) 、 などが あげられる。 カーボンブラックを分散剤などで表面処理したり、 樹脂でグラフ ト 化して使用しても、 表面の一部をグラフアイ ト化したものを使用してもかまわな い。 また、 力一ボンブラックを磁性塗料に添加する前にあらかじめ結合剤で分散 してもかまわない。 これらの力一ボンブラックは単独、 または組合せで使用する ことができる。 カーボンブラックを使用する場合は磁性体に対する量の 0 . 1〜 3 0重量%で用いることが好ましい。 カーボンブラックは磁性層の帯電防止、 摩 擦係数低減、 遮光性付与、 膜強度向上などの働きがあり、 これらは用いるカーボ ンブラックにより異なる。 従って本発明に使用されるこれらのカーボンブラック は上層磁性層、 下層非磁性層でその種類、 量、 組合せを変え、 粒子径、 吸油量、 電導度、 P Hなどの先に示した諸特性をもとに目的に応じて使い分けることはも ちろん可能であり、 むしろ各層で最適化すべきものである。 本発明の磁性層で使 用できるカーボンブラックは例えば 「カーボンブラック便覧」 力一ボンブラック 協会編 を参考にすることができる。
本発明に用いられる研磨剤としては α化率 9 0 %以上の 一アルミナ、 β—了 ルミナ、 炭化ゲイ素、 酸化クロム、 酸化セリウム、 α _酸化鉄、 コランダム、 人 造ダイァモンド、 窒化珪素、 炭化珪素チタンカーバイ ト、 酸化チタン、 二酸化珪 素、 窒化ホウ素、 など主としてモース硬度 6以上の公知の材料が単独または組合 せで使用される。 また、 これらの研磨剤同士の複合体 (研磨剤を他の研磨剤で表 面処理したもの) を使用してもよい。 これらの研磨剤には主成分以外の化合物ま たは元素が含まれる場合もあるが主成分が 9 0 %以上であれば効果にかわりはな い。 これら研磨剤の粒子径は 0 . 0 1〜2 が好ましく、 特に電磁変換特性を高 めるためには、 その粒度分布が狭い方が好ましい。 また耐久性を向上させるには 必要に応じて粒子径の異なる研磨剤を組み合わせたり、 単独の研磨剤でも粒径分 布を広く して同様の効果をもたせることも可能である。 タップ密度は 0 . 3〜2 g/cc、 含水率は 0 . 1〜 5 %、 p Hは 2〜 1 1、 比表面積は 1〜 3 0 m2/gが好ま しい。 本発明に用いられる研磨剤の形状は針状、 球状、 サイコロ状、 のいずれで も良いが、 形状の一部に角を有するものが研磨性が高く好ましい。 具体的には 一アルミナの例として住友化学社製 A K P— 1 (平均粒子径 0. 50 /z m) 、 A K P— 1 5 (平均粒子径 0.45 m) 、 AKP- 20 (平均粒子径 0.39 m) 、 AK P- 30 (平均粒子径 0.23〃m) 、 AKP - 50 (平均粒子径 0.16 z m) 、 H I T_ 20、 H I Τ— 30、 Η I Τ— 55 (平均粒子径 0.20〃m) 、 H I T— 60 、 H I T- 7 0 (平均粒子径 0.15 zm) 、 H I T— 8 0、 H I T- 1 00 (平均 粒子径 0.11 zm) 、 レイノルズ社製、 ERC— DBM (平均粒子径 0.22〃 m) 、 HP-DBM (平均粒子径 0.22 m) 、 HPS— DBM (平均粒子径 0.19 m) 、 不二見研磨剤社製、 WA 1 0 00 0 (平均粒子径 0.29 m) 、 上村工業社製、 UB 20 (平均粒子径 0.13 jam) 、 酸化クロムの例として日本化学工業社製、 G 一 5 (平均粒子径 0.32^111) 、 クロメックス U 2 (平均粒子径 0.18/ m) 、 クロ メックス U 1 (平均粒子径 0.17〃 m) 、 一酸化鉄の例として戸田工業社製、 T F 1 00 (平均粒子径 0.14〃 m) 、 TF 1 40 (平均粒子径 0.17// m) 、 炭化ケ ィ素の例としてイビデン社製、 ベ一タランダムウルトラファイン (平均粒子径 0. 16^m) 、 二酸化珪素の例として昭和鉱業社製、 B— 3 (平均粒子径 0.17 zm) などが挙げられる。 これらの研磨剤は必要に応じ非磁性層に添加することもでき る。 非磁性層に添加することで表面形状を制御したり、 研磨剤の突出状態を制御 したりすることができる。 これら磁性層、 非磁性層の添加する研磨剤の粒径、 量 はむろん最適値に設定すべきものである。
また回転数が 1 80 Orpm (上、 特に 3 000 rpm以上の大容量 F Dの場合は、 研磨剤として微粒子ダイアモンドを使用することが好まし 、。
本発明に使用するダイアモンド微粒子は、 平均粒子径が好ましくは 0. 1 0〜
1. 0〃mで、 更に好ましくは 0. 1 0〜0. 8〃mである。 平均粒子径が 0.
1 0 zm未満では添加量に対する耐久性向上の効果が低くなる。 1. 0 / mより 大きいと耐久性は優れるもののノィズが高くなる傾向がある。
本発明においては、 各ダイアモンド微粒子の最大径をもって粒径とし、 平均粒 子径とは電子顕微鏡から無作為に抽出される 50 0ケの粒子の測定値の平均値を 指す。
ダイアモンド微粒子の添加量は、 強磁性粉末に対して 0. 0 1-1 0重量%、 好ましくは 0. 03〜5重量%の範囲である。 0. 0 1重量%未満では、 耐久性 の確保が困難になり、 1 0重量%を越えるとダイアモンド添加によるノイズ低減 効果が少なくなる。
ノイズ、 耐久性の観点からダイアモンド微粒子の添加量及び平均粒子径は、 上 記範囲に規定されるが、 ノイズの観点からは、 ダイアモンドの添加量はできるだ け少ない方が好ましく、 本発明の磁気記録媒体は、 磁気記録再生装置にあったダ ィアモンドの添加量、 その平均粒径を上記範囲から適宜選定することが好ましい。 また、 ダイアモンド微粒子の粒度分布としては、 粒子径が平均粒子径の 2 0 0 %以上の粒子個数がダイアモンド全個数中の 5 %以下であり、 粒子径が平均粒子 径の 5 0 %以下の粒子個数がダイアモンド全個数中の 2 0 %以下であることが好 ましい。 本発明に使用されるダイアモンド微粒子の粒子径の最大値は、 3 . 0 0 〃m、 好ましくは 2 . 0 0〃m程度であり、 その最小径は 0 . 0 1 / m、 好まし くは 0 . 0 2〃m程度である。
粒度分布の測定は、 上記の粒子径の測定の際に平均粒子径を基準にその個数を 計数して求める。
ダイアモンド微粒子は、 その粒度分布も耐久性とノイズに影響する。 粒度分布 が上記範囲より広いと前述したように本発明において設定した平均粒子径に相当 する効果がずれる。 即ち、 粒子径が大きすぎるものが多いとノイズを増大させた り、 へッドを傷つけたりする。 また、 微小なものが多いと研磨効果が不充 4とな る。 また、 極端に粒度分布の狭いものはダイアモンド微粒子の価格が高くなり、 上記範囲とすることがコスト的にも有利である。
更に、 本発明はダイアモンド微粒子に、 従来使用されている研磨剤、 例えば、 アルミナ研磨剤と併用することもできる。 耐久性と S N比への効果は、 少量のダ ィアモンド微粒子のみの方が良好だが、 コスト他の理由でアルミナを磁性体に対 して好ましくは 1〜 3 0重量%、 更に好ましくは 3〜 2 5重量%加えることもで きる。 この場合もダイアモンド微粒子を含むためにアルミナ単独で耐久性に必要 な添加量よりもかなり減量することができ、 耐久性の確保及びノイズの低減の観 点カヽらも好ましい。
ミクロンサイズダイアモンドパウダーの製法としては①静的高圧法、 ②爆発法 、 ③気相法の三つがある。 ①の静的高圧法は始めに数 1 O ^ mより大きい結晶を 造り、 その結晶を粉砕してサブミクロンまでのダイアモンド微粉を造る。 ②の爆 発法は火薬を爆発させることによつて発生する衝撃波で超高圧を発生させ、 黒鉛 をダイァモンドに変換させる方法である。 この方法で造られるダイアモンドはー 次粒子が 2 O Aとも 5 O Aともいわれる多結晶体のダイアモンドである。 ③の気 相法は炭化水素のような炭素を含む気体状の化合物を水素ガスと共に常圧以下の 密閉容器に送り込み、 プラズマ等によって高温ゾーンを形成させ、 原料化合物を 分解させて、 S iや M oの様な基板上にダイヤモンドを析出させる方法である。 ダイアモンド微粒子の具体例としてはランズスーパ一アブレツシブ社 (LANDS Superabrasives, Co) の L S 6 0 0 F、 L S 6 0 0 T、 L S 6 0 0 Fコート品 ( ニケル 3 0 %または 5 6 %コート品) 、 L S— N P M、 B N 2 6 0 0、 などがある 。 これらは 0〜1 0 0 / mの任意のサイズのダイアモンド微粒子が得られ、 好ま しい。 その他、 東名ダイヤモンド工業社の I RM 0 - 1 / 4 (平均粒子径 0 .
1 2 m) 、 I RM 0— 1 (平均粒子径 0 . 6 0〃m) などが使用できる。
[添加剤]
本発明の磁性層と非磁性層に使用される、 添加剤としては潤滑効果、 帯電防 止効果、 分散効果、 可塑効果、 などをもつものが使用され、 組み合わせること により総合的な性能向上が図れる。 潤滑効果を示すものとしては物質の表面同士 の摩擦の際、 生じる凝着を著しく作用を示す潤滑剤が使用される。 潤滑剤には 2 つの型のものがある。 磁気記録媒体に使用される潤滑剤は完全に流体潤滑か境界 潤滑であるか判定することはできないが、 一般的概念で分類すれば流体潤滑を示 す高級脂肪酸エステル、 流動パラフィン、 シリコン誘導体などや境界潤滑を示す 長鎖脂肪酸、 フッ素系界面活性剤、 含フッ素系高分子などに分類される。 塗布型 媒体では潤滑剤は結合剤に溶解した状態また一部は強磁性粉末表面に吸着した状 態で存在するものであり、 磁性層表面に潤滑剤が移行してくるが、 その移行速度 は結合剤と潤滑剤との相溶性の良否によって決まる。 結合剤と潤滑剤との相溶性 力《高いときは移行速度が小さく、 相溶性の低いときには早くなる。 相溶性の良否 に対する一つの考え方として両者の溶解パラメ一ターの比較がある。 流体潤滑に は非極性潤滑剤が有効であり、 境界潤滑には極性潤滑剤が有効である。 本発明に おいてはこれら特性の異なる流体潤滑を示す高級脂肪酸エステルと境界潤滑を示 す長鎖脂肪酸とを合わせて、 少なくとも 3種組み合わせることにより、 大容量、 高密度、 高耐久性を発揮することができるのである。 これらに組み合わせて固体 潤滑剤を使用することもできる。
固体潤滑剤としては例えば二硫化モリブデン、 二硫化タングステングラフアイ ト、 窒化ホウ素、 フッ化黒鉛などが使用される。 境界潤滑を示す長鎖脂肪酸とし ては、 炭素数 1 0〜2 4の一塩基性脂肪酸 (不飽和結合を含んでも、 また分岐し ていてもかまわない) 、 および、 これらの金属塩 (L i、 N a、 K、 C uなど) が挙げられる。 フッ素系界面活性剤、 含フッ素系高分子としてはフッ素含有シリ コーン、 フッ素含有アルコール、 フッ素含有エステル、 フッ素含有アルキル硫酸 エステルおよびそのアル力リ金属塩などが挙げられる。 流体潤滑を示す高級脂肪 酸エステルとしては、 炭素数 1 0〜2 4の一塩基性脂肪酸 (不飽和結合を含んで も、 また分岐していてもかまわない) と炭素数 2〜1 2の一価、 二価、 三価、 四 価、 五価、 六価アルコールのいずれか一つ (不飽和結合を含んでも、 また分岐し ていてもかまわない) とからなるモノ脂肪酸エステルまたはジ脂肪酸エステルま たはトリ脂肪酸エステル、 アルキレンォキシド重合物のモノアルキルェ—テルの 脂肪酸エステルなどが挙げられる。 また流動パラフィン、 そしてシリコン誘導体 としてジアルキルポリシロキサン (アルキルは炭素数 1〜 5個) 、 ジアルコキシ ポリシロキサン (アルコキシは炭素数 1〜4個) 、 モノアルキルモノアルコキシ ポリシロキサン (アルキルは炭素数 1〜 5個、 アルコキシは炭素数 1〜 4個) 、 フエ二ルポリシロキサン、 フロロアルキルポリシロキサン (アルキルは炭素数 1 ~ 5個) などのシリコーンオイル、 極性基をもつシリコーン、 脂肪酸変性シリコ ーン、 フッ素含有シリコーンなどが挙げられる。
その他の潤滑剤として炭素数 1 2〜2 2 ©—価、 二価、 三価、 四価、 五価、 六 価アルコール (不飽和結合を含んでも、 また分岐していてもかまわない) 、 炭素 数 1 2〜2 2のアルコキシアルコール (不飽和結合を含んでも、 また分岐してい てもかまわない) 、 フッ素含有アルコールなどのアルコール、 ポリエチレンヮッ クス、 ポリプロピレンなどのポリオレフイン、 エチレングリコール、 ポリエチレ ンォキシドヮックスなどのポリグリコール、 アルキル燐酸エステルおよびそのァ ルカリ金属塩、 アルキル硫酸エステルおよびそのアルカリ金属塩、 ポリフヱニル エーテル、 炭素数 8〜 2 2の脂肪酸ァミ ド、 炭素数 8〜 2 2の脂肪族ァミンなど が挙げられる。
帯電防止効果、 分散効果、 可塑効果などを示すものとしてフエニルホスホン酸
、 具体的には日産化学 (株) 社の 「PPA」 など、 αナフチル燐酸、 フエニル燐 酸、 ジフヱニル燐酸、 ρ—ェチルベンゼンホスホン酸、 フヱニルホスフィ ン酸、 アミノキノン類、 各種シランカップリング剤、 チタンカップリング剤、 フッ素含 有アルキル硫酸エステルおよびそのアル力リ金属塩、 などが使用できる。
本発明において使用される潤滑剤は特に脂肪酸と脂肪酸エステルが好ましく、 更にこれらに加えて別異の潤滑剤、 添加剤も組み合わせて使用することができる 。 これらの具体例を以下に挙げる。 まず脂肪酸では、 飽和脂肪酸として力プリル 酸 (C7H15COOH、 融点 1 6°C) 、 ペラルゴン酸 (C8H17COOH、 融点 1 5°C) 、 カプリン酸 (C9H19COOH、 融点 3 1. 5 °C) 、 ゥンデシル酸 (d 。H2, COOH、 融点 2 8. 6°C) 、 ラウリン酸 (CuH^COOH 融点 4 4 °C) 具体的には日本油脂 (株) 社の 「NAA— 1 2 2」 など、 トリデシル酸 (C 12H25COOH、 融点 4 5. 5°C) 、 ミ リスチン酸 (C , 3H27 C 00 H、 融点 5 8°C) 具体的には日本油脂 (株) 社の 「NAA— 1 4 2」 など、 ペンタデシル酸
(C HSQCOOH. 融点 5 3〜5 4°C) 、 パルミチン酸 (C15H3 L COOH、 融点 6 3~6 4°C) 具体的には日本油脂 (株) 社の 「N A A— 1 6 0」 など、 へ プタデシル酸 (C 16H33COOH、 融点 6 0〜6 1°C) 、 ステアリン酸 (C17H 35COOH, 融点 7 1. 5〜7 2°C) 具体的には日本油脂 (株) 社の 「NAA— 1 7 3 K」 など、 ノナデカン酸 (C18H37COOH、 融点 6 8. 7 °C) 、 ァラキ ン酸 (C19H39COOH、 融点 7 7°C) 、 ベヘン酸 (C21H43COOH、 融点 8 1〜8 2°C) などが挙げられる。 不飽和脂肪酸としてォレイン酸 (C17H33CO OH (cis) 、 融点 1 6°C) 具体的には関東化学 (株) 社の 「ォレイン酸」 など 、 エライジン酸 (C17H33COOH (トランス) 、 融点 4 4〜4 5°C) 具体的には和 光純薬 (株) 社の 「ェライジン酸」 など、 セトレイン酸 (C21H41 COOH、 融 点 3 3. 7°C) 、 エル力酸 (C2,H41 COOH、 融点 3 3. 4〜 3 4 °C) 具体的 には日本油脂 (株) 社の 「エル力酸」 など、 ブラシジン酸 (C21H41 COOH ( トランス) 、 融点 6 1. 5°C) 、 リノール酸 (C,7H31 COOH、 沸点 2 2 8 °C ( 1 4 mm) :) 、 リノレン酸 (C H29COOH、 沸点 1 9 7 °C (4 mm) ) などが 挙げられる。 分岐飽和脂肪酸としてはイソステアリン酸 (CH3CH (CH3) ( CH2) 14COOH、 融点 67. 6〜68. 1 °C) などが挙げられる。
エステル類ではラウリン酸エステルとしてイソセチルラウレート (CuH23C 00 C H 2 C H (C6H13) C8H17) 、 ォレイルラウレート (CuH COOd 8H35) 、 ステアリルラウレート (C H23COOC18H37) 、 ミ リスチン酸ェ ステルとしてイソプロピルミリステート (C13H27COOCH (CH3) 2) 具体 的には新日本理化 (株) 社の 「ェヌジヱルブ I PM」 など、 プチルミ リステート
(Ci3H27COOC4H9) など、 イソブチルミ リステート (C13H27COOiso -C4H9) 具体的には新日本理化 (株) 社の 「ェヌジヱルブ I BMj など、 ヘプ チルミリステ一ト (CL 3H27COOC7H15) 、 ォクチルミリステ一ト (C 13H2 TCOOCSH.T) 、 イソォクチルミ リステ一ト (C13H27COOCH2CH (C2 H5) C4H9) 、 イソセチルミ リステー卜 (C13H27CO〇CH2CH (C6H13 ) C8H17) などが挙げられる。
パルミチン酸エステルとしてォクチルパルミテ一ト (C,5H3I COOC8H17 ) 、 デシルバルミテート (C15H31 COOC,。H21) 、 イソォクチルパルミテ —卜 (C 15H31 COOCH2CH (C2H5) C4H9) 、 イソセチルパルミテート
(CisHs. COOCH2CH (C6H13) Ο,,Η,τ) 、 2—ォクチルドデシルパル ミテート (C15H31 COOCH2CH (C8H17) C,2H25) 、 2—へキシルドデ シルパルミテート (C15H3I COOCH2CH (C6H,3) C 12H25) 、 ォレイル パルミテート (C15H3,COOC18H35) などが挙げられる。
ステアリン酸エステルとしてプロピルステアレート (Cl7H35CO〇C3H7) 、 イソプロピルステアレート (C,7H35CO.OCH (CH3) 2) 、 プチルステア レート (C,7H35COOC4H9) 具体的には日本油脂 (株) 社の 「プチルステア レート」 など、 sec—プチルステアレート (C17H35COOCH (CH3) C2H5 ) 、 tert—プチルステアレート (C17H35COOC (CH3) 3) 、 アミルステア レート (C H COOCSHU) 、 イソアミルステアレート (C17H35COO CH2CH2CH (CH3) 2) など、 へキシルステアレート (C17H35COOCs His) 、 へプチルステアレート (C 17H35COOC7H15) 具体的には松本油脂
(株) 社の 「MYB— 1 8 5」 など、 ォクチルステアレ一ト (C17H35COOC 8H,7) 具体的には日本油脂 (株) 社の 「Ν—ォクチルステアレート」 など、 ィ ソォクチルステアレート (C17H35COOisoC8H17) 、 デシルステアレート ( C.7H35COOC,oH21) 、 イソデシルステアレート (C17H35COOiso— d 。H2,) 、 ドデシルステアレート (C,7H35COOCl 2H25) 、 イソトリデシル ステアレート (C17H35COOiso— CI3H27) 、 2—ェチルへキシルステアレ —ト (C17H35COOCH2CH (C2H5) C4H9) 、 イソへキサデシルステア レート (C17H35COOCH2CH (C2H5) C4H9) 、 イソセチルステアレ一 ト (Cl7H35COOCH2CH (C6H,3) C8H,7) 具体的には新日本理化 (株 ) 社の 「ェヌジエルプ HDS」 など、 イソステアリルステアレート (CI7H35C OOisoC18H37) 、 ォレイルステアレート (C 17H35COOC 18H37) などが 挙げられる。
ベヘン酸エステルとしてイソテトラコシルベへネ一ト (C21H43COOCH2
CH (C6H,3) C12H25) 具体的には新日本理化 (株) 社の 「ェヌジヱルブ DTB」 など) が挙げられる。
グリコールタイプのエステルとしてブトキシェチルステアレート (C17H35C OOCH2CH2OC4H9) 、 ブトキシェチルォレエ一ト (C 17H33CO〇CH2 CH2OC4H9) 、 ジエチレングリコールモノブチルエーテルステアレートまた はブトキシェトキシェチルステアレート (Cl7H35COO (CH CH2O) 2 C 4 Hs) 、 テトラエチレングリコールモノブチルエーテルステアレート (C17H35 COO (CH2CH2〇) .C4H9) 、 ジエチレングリコールモノフエニルエーテ ルステアレート (Cl 7H35COO (CH2CH2O) 2C6H6) 、 ジエチレングリ コールモノ 2—ェチルへキシルエーテルステ.アレート (C17H35COO (CH2 CH20) 2CH2CH (C2H5) C4H9) 、 など特開昭 5 9 - 2270 30号、 特開昭 59 - 659 3 1号に記載のエステルが使用できる。
イソステアリン酸エステルとしてイソセチルイソステアレート ( isoC17H35 COOCH2CH (C6Hi3) C8H17) 具体的には高級アルコール社の 「 1. C . I. S」 など、 ォレイルイソステアレート ( isoC17H35COOC H37) 、 ステアリルイソステアレート (isoCl 7H35COOC18H37) 、 イソステアリル
'
イソステアレート (isoC17H3'5COOiso— C18H37) 、 エイコセニルイソステ ァレート (isoC17H35COOC22H43) などが挙げられる。
ォレイン酸エステルとしてプチルォレエ一ト (C17H33COOC4H9) 、 新日 本理化 (株) 社の 「ェヌジヱルブ BO」 など、 ォレイルォレエ一卜 (C17H33C OOC .BHSB) 、 エチレングリコ一ルジォレイル (C17H33COOCH2CH20
COCirHaa) などが挙げられる。
エル力酸エステルとしてエルカ酸ォレイル (C21H41COOC,8H35) が挙げ れる。
ジエステルとしてジォレイルマレエ一ト (C 18H35OCOCH = CHCOOC , 8 H 3 5) 、 ネオペンチルグリコールジデカノエ一ト (C10H21 COOCH2C ( CH3) 2CH2OCOC,oH2.) 、 エチレングリコ一ルジラウレート (CuH COOCH2CH2OCOC MH23) 、 エチレングリコ一ルジォレイル (CI 7H33 COOCH2CH2OCOC H33) 、 1, 4—ブタンジオールジステアレ一卜 ( C7H35COO (CH2) 4OCOC7H35) 、 1 , 4一ブタンジオールジベへネ ート (C2,H43COO (CH2) 4OCOC21H43) 、 1, 1 0—デカンジオール ジォレイル (C 17H33COO (CH2) ,oOCOC, 7 H 33) , 2—ブテン一 1, 4 —ジオールセトレイル (C21H41COOCH2CH=CHCH2OCOC2lH41) などが挙げられる。
トリエステルとして力プリル酸トリグリセライ ド (C7H15COOCH2CH ( OCOCTH15) CH2OCOC7H,5) が挙げられる。
これら脂肪酸エステルゃ脂肪酸の他にアルコール類ではォレイルアルコール (
CBHSBOH) 、 ステアリルアルコール (C18H37OH) 、 ラウリルアルコール (C2H25OH) などがあげられる。
脂肪酸アミ ドとしてラウリン酸アミ ド (CHH23CONH2) 具体的には東京 化成 (株) 社の 「ラウリン酸アミ ド」 など、 ミ リスチン酸アミ ド (C13H27CO NH2) 、 パルミチン酸アミ ド (Cl 5H31CONH2) 、 ォレイン酸アミ ド ( cis -C8H,7CH=CH (CH2) 7CONH2) 具体的にはライオンァクゾ (株) 社 の 「ァ—モスリップ CP— P」 など、 エルカ酸ァミ ド ( cis- CBH17CH二 CH (CH2) M CONH2) 具体的にはライオンァクゾ (株) 社の 「ァーモスリップ E」 など、 ステアリン酸アミ ド (C17H35CONH2) 具体的にはライオンァク ゾ (株) 社の 「ァ—マイ ド H T」 などが挙げられる。
シリコン化合物として信越化学 (株) 社の 「T A V— 3 6 3 0」 、 「T A— 3 」 、 「K F— 6 9」 が挙げられる。
また、 アルキレンオキサイ ド系、 グリセリン系、 グリシドール系、 アルキルフ ヱノールエチレンォキサイ ド付加体、 等のノニオン界面活性剤、 環状アミン、 ェ ステルアミ ド、 第四級アンモニゥム塩類、 ヒダントイン誘導体、 複素環類、 ホス ホニゥムまたはスルホ二ゥム類等のカチオン系界面活性剤、 カルボン酸、 スルフ オン酸、 燐酸、 硫酸エステル基、 燐酸エステル基、 などの酸性基を含むァニオン 界面活性剤、 アミノ酸類、 アミノスルホン酸類、 ァミノアルコールの硫酸または 燐酸エステル類、 アルキルべダイン型、 等の両性界面活性剤等も使用できる。 こ れらの界面活性剤については、 「界面活性剤便覧」 (産業図書株式会社発行) に 詳細に記載されている。 これらの潤滑剤、 帯電防止剤等は必ずしも 1 0 0 %純粋 ではなく、 主成分以外に異性体、 未反応物、 副反応物、 分解物、 酸化物等の不純 分が含まれてもかまわない。 これらの不純分は 3 0 %以下が好ましく、 さらに好 ましくは 1 0 %以下である。
本発明は実施例 3 5に記載の如く脂肪酸エステルとしてモノエステルとジエス テルを組み合わせて使用すると特に好ましい結果が得られる。 以下に詳細に説明 する。
即ち本発明は超平滑な磁性層が求められる高密度、 大容量の磁気記録媒体にお いて、 走行初期も、 走行後も安定した走行耐久性が得られる磁気記録媒体である 。 従来潤滑剤としてはモノエステルゃジエステルなどの潤滑剤が使用されている 。 本発明者らはこれら潤滑剤の特性について.鋭意、 検討した結果エステル基に着 目して、 下層や磁性層における挙動を綿密に検討した結果、 モノエステルの潤滑 剤は極性基であるエステル基が分子中に一つであるため、 結合剤との親和性もそ れほど高くなく、 層中にとどまらずに磁性層表面に出やすいと言う特性があり、 またジエステルの潤滑剤は極性基であるエステル基が分子中に二つであるため、 結合剤との親和性が高く、 層中にとどまりやすいため磁性層表面に出にいと言う 特性がある。 そのため走行初期においてはモノエステルの潤滑剤が寄与すると共 に、 走行後においてはジエステルの潤滑剤が寄与するために極めて良好な走行耐 久性が得られるものと考えられる。 またジエステルの潤滑剤は低温耐久性が極め て良好であり、 高温耐久性が良好なモノエステルの潤滑剤と併用することにより 、 低温から高温まで極めて優れた走行耐久性が得られるものである。 そしてこれ らの効果は単にモノエステルの潤滑剤の効果とジエステルの潤滑剤の効果を加え た効果以上のいわゆる相乗効果が見られる。
本発明において使用するジエステルの潤滑剤は下記一般式 (1) で示される化 合物であることが好ましい。
R1-COO-R2-OCO-R3 …… (1)
(式中、 R2は一 (CH2) n —あるいはこの一 (CH2 ) n ― (nは 1〜1 2の 整数) から誘導される不飽和結合を含んでいても良い 2価の基を示すか、 一 〔C H2 CH (CH3 ) 〕 一、 あるいは一 〔CH2 C (CH3 ) 2 CH2 〕 一を示し 、 Rl、 R3 は炭素数 1 2〜3 0の鎖状飽和または不飽和炭化水素基で互いに同 —でも異なってもよい。 )
該鎖状炭化水素基の該鎖状とは、 直鎖でも分岐でも構わないが、 R1 および R 3 の両方が直鎖不飽和であることが好ましく、 その際 R1 および R3 の構造が同 じであるものが特に好ましい。 更に、 不飽和結合としては 2重結合、 3重結合い ずれでも構わないが、 2重結合が好ましく、 各 1個以上であれば良く、 2個また は 3個でも良い。 また、 2重結合はシスまたはトランスどちらでも構わない。
R1 および R3 の炭素数は各々 1 2〜3 0、 好ましくは 1 4〜2 6、 更に好ま しくは、 1 4〜20である。 炭素数が 1 2未満であると揮発性が高いため走行時 に磁性層表面から揮散してしまい走行停止となる傾向がある。 炭素数が 30より 大き 、と分子のモピリティが低くなるため潤滑剤が磁性層表面に浸出しにく く耐 久性が不良となる傾向がある。
また後述する C/F eピーク比は、 5〜1 2 0が好ましく、 5〜 1 00が更に 好ましく、 5〜8 0が特に好ましい力 5〜1 00にするには Rl 、 R3は、 以 下のような条件であることが好ましい。 即ち Rl 、 R 3はアルキル又はアルケニ ル基で、 これらは分岐でも直鎖でもかまわないが、 C = Cで表すことのできる不 飽和結合が含まれる基の方が好ましい。 また、 その両者は構造が同一である方が さらに好ましい。 Rl 、 R3の炭素数は 5〜2 1、 好ましくは?〜 1 7、 さらに 好ましくは 9〜1 3が望ましい。 Rl 、 R 3の炭素鎖の長さが短か過ぎると余り 好ましくない。 短か過ぎると揮発しやすくなること。 揮発しやすくなれば、 磁気 へッ ドとの間で生じる摩擦熱などで磁性層が高温になった際、 それが揮発して磁 性層における潤滑剤の表面量が減り、 耐久性が低下する結果にもなるからである 。 炭素鎖の長さが長過ぎると粘度が高くなり、 流体潤滑性能が低下して耐久性が 低下するおそれもあり、 余り好ましくない。
R2は直鎖で両末端に OHを有する 2価アルコール残基が好ましく、 nは 3〜 1 2が好ましい。 nが小さいと繰り返し走行耐久性が悪く、 大きすぎると粘度が 高くなつたりして使いにく くまた耐久性も不良になる傾向がある。 具体的にはェ チレングリコール、 ネオペンチルグリコール、 プロパンジオール、 プロピレング リコール、 ブタンジオールなどの残基などが好ましい。
本発明の一般式 (1) で表される化合物は、 H〇一 R2— OHで表されるジォ ールと好ましくは R1 — COOHおよび R3 — COOHで表される不飽和脂肪酸 とのジエステルであることが好ましい。
該不飽和脂肪酸としては、 4ードデセン酸、 5—ドデセン酸、 1 1ードデセン 酸、 c i s— 9—トリデセン酸、 ミ リストレイン酸、 5—ミ リストレイン酸、 6 一ペンタデセン酸、 7—パルミ トレイン酸、 c i s— 9—ノ、"ノレミ トレイン酸、 7 —ヘプタデセン酸、 ォレイン酸、 エラジン酸、 c i s— 6—才クタデセン酸、 t r a n s— 1 1—ォク夕デセン酸、 c i s— 1 1—エイコセン酸、 c i s— 1 3 ー ドコセン酸、 1 5—テトラコセン酸、 1 7—へキサコセン酸、 c i s— 9, c i s— 1 2—ォクタジェン酸、 t r a n s— 9, t r an s— 1 2—ォク夕ジェ ン酸、 c i s— 9, t r a n s— 1 1, t r. a n s— 1 3—ォクタデカトリェン 酸、 c i s— 9, c i s— 1 2, c i s— 1 5—才クタデカトリエン酸、 ステア ロール酸などの直鎖不飽和脂肪酸、 5—メチルー 2—トリデセン酸、 2—メチル —9—ォク夕デセン酸、 2—メチル一 2—エイコセン酸、 2, 2—ジメチル一 1 1一エイコセン酸などの分岐不飽和脂肪酸が挙げられる。
該ジオールとしては、 エチレングリコール、 トリメチレングリコール、 1, 4 —ブタンジオール、 1, 5—ペンタンジオール、 1, 6—へキサンジオール、 1 , 7—ペンタンジオール、 1, 8—オクタンジオール、 1, 9ーノナンジオール 、 1, 1 0—デカンジオールなどの直鎖飽和両末端ジオール、 プロピレングリ コール、 1, 2—ブタンジオール、 1, 3—ブタンジオール、 2, 4—ペンタン ジオール、 2, 2—ジメチル一 1, 3—プロパンジオール、 2, 5—へキサンジ オール、 2—ェチル一 1, 3—へキサンジオール、 3—メチルー 1, 6—へキサ ンジオール、 1ーメチルー 1, 7—ペンタンジオール、 2, 6—ジメチルー 1, 7—ペンタンジオール、 1一メチル一 1, 8—ノナンジオールなどの分岐飽和ジ オール、 2—ブテン一 1, 4ージオール、 2, 4一へキサジェンー 1, 6—ジェ ンジオール、 3—ペンテン一 1, 7—ジオールなどの直鎖不飽和ジオール、 2 一メチル一 2—ブテン一 1, 4一ジォ一ル、 2, 3—ジメチルー 2—ブテン一 1 , 4—ジオール、 2, 6—ジメチルー 3—へキセン一 1, 6—ジオールなどの分 岐不飽和ジォ一ルが例示される。
これらのうち特に好まし 、本発明の化合物は直鎖不飽和脂肪酸のエステルであ る。 具体的には、 ミ リス トレイン酸、 5—ミ リストレイン酸、 7—ノ レミ トレイ ン酸、 c i s— 9—パルミ トレイン酸、 ォレイン酸、 エライジン酸、 c i s— 6 —ォクタデセン酸 (ペトロセリン酸) 、 t r a n s— 6—ォクタデセン酸 (ぺト ロセェライジン酸) 、 t r a n s— 1 1—才クタデセン酸 (バセニン酸) 、 c i s - 1 1—エイコセン酸、 c i s— 1 3—ドコセン酸 (エル力酸) 、 c i s— 9 , c i s— 1 2—才クタジェン酸 (リノール酸) などの直鎖不飽和脂肪酸とジェ チレングリコール、 トリメチレングリコール、 1, 4一ブタンジオール、 1, 5 —ペンタンジオール、 1, 6—へキサンジオール、 1, 7—ペンタンジオール、 1, 8—オクタンジオール、 1, 9—ノナンジオール、 1, 1 0—デカンジォ一 ルなどとのエステルが好ましく、 より好ましくは該直鎖不飽和脂肪酸と 1, 4一 ブタンジオール、 1, 5—ペンタンジオール、 1, 6—へキサンジオール、 1, 7—ペン夕ンジオール、 1, 8—オクタンジオール、 1, 9ーノナンジオール、 1, 1 0—デカンジオールなどとのエステルである。 具体的にはネオペンチルグ リコールジデカノエート、 エチレングリコールジォレイルなどや後述するジエス テルが挙げられる。 ジエステルの例は以下の通りである。
L-a 1 C 1TH35COO (CH2) 40COC, 7 H 3 S
L- a 2 C,,H2,COO (CH2) 4OCOCH2. L- a 3 C7H33COO (CH2) 2OCOC7H33 L- a 4 CuH23 C OO (CH2) 4O CO C H H23
L- a 5 C 27H53 C OO (CH2) 4O CO C27H53
L- a 6 C,,H2iCOO (CH2) 4OCOC7H33
L- a 7 C7H33COO (CH2) I ,O C O C , TH33
L- a 8 C 17H33C OOCH2CH = CHCH2OC OC 17H33 L- a 9 C I4H27 C OO CH2CH = CHCH2O CO C H27 L- a 1 0 C7H33COO (CHZ) 8O C OC H27
また、 ジカルボン酸と、 鎖状不飽和アルコールとのジエステルも用いることが できる。
ジカルボン酸としては、 マロン酸、 コハク酸、 グルタル酸、 アジピン酸、 ピメ リン酸、 スベリン酸、 ァゼライン酸、 セバシン酸、 メチルマロン酸、 ェチルマロ ン酸、 プロピルマロン酸、 ブチルマロン酸等の飽和ジカルボン酸、 マレイン酸、 フマル酸、 グルタコン酸、 ィタコン酸、 ムコン酸等の不飽和ジカルボン酸が具体 例として挙げられる。
鎖状不飽和アルコールとしては、 c i s— 9—ォクタデセン一 1一オール (ォ レイルアルコール) 、 t r n s— 9—ォクタデセン一 1—オール (ェライジルァ ルコール) 、 9, 1 0—ォクタデセジェンー 1—オール (リノレイルアルコール ) 9, 1 2, 1 5—ォク夕デセトリェンー 1—オール (リノレニルアルコール ) , c i s - 9 - t r n s - l l, 1 3—ォクタデセトリェンー 1一オール (ェ レオステアリルアルコール) 、 2—ペンタデセン— 1—オール、 2—へキサデセ ン一 1—オール、 2—へプタデセン一 1一オール、 2—ォクタデセン一 1—ォー ル、 1 5一へキサデセン一 1—オール等が具体例として挙げられる。
これらのうち特に好ましい本発明の化合物は、 直鎖不飽和アルコールと、 飽和 ジカルボン酸とのエステルである。 具体的には、 アルコール成分としては、 ォレ ィルアルコール、 エライジルアルコール、 リノレイルアルコール、 リノレニルァ ルコール、 エレォステアリルアルコール等であり、 ジカルボン酸成分としては、 マロン酸、 コハク酸、 グルタル酸、 アジピン酸、 メチルマロン酸、 ェチルマロン 酸、 プロピルマロン酸、 ブチルマロン酸等であり、 これら間のジエステルである o 更に好ましくは、 マロン酸、 コハク酸と、 ォレイルアルコール、 エライジルァ ルコール、 リノレイルアルコール、 リノレニルアルコールとの間のジエステルで あ 0
後述する C/F eピーク比が 5〜1 00を達成するのに好ましいジエステルと しては、 次のような例を挙げることができる。
即ちネオペンチルグリコールジォレート (L- all) 、 エチレングリコールジォレ —ト (L-a3) 、 ネオペンチルグリコ一ルジデ力ノエ一ト (L- al2) 、 プロパンジ オールジミ リステート (い al3) などを挙げることができる。 その他にも次のよ うな例を挙げることができる。
CsH, , COOCH2C (CH3) aCHaOCOCsH,,
CTH.BCOOCHZC (CH3) 2CH2OCOC7H,5
C9H,9COOCH2C (CH3) 2CH2OCOC9H19
CHH23COOCH2C (CH3) 2CH2OCOCi.H23
C13H27COOCH2C (CH3) 2CH2OCOC,3H27
C7H35COOCH2C (CH3) 2CH2OCOC. 7 H 35
C2,H43COOCH2C (CH3) 2CH2OCOC2,H43
C4H7COOCH2C (CH3) 2CH2OCOC4H7
C22H45COOCH2C (CH3) 2CH2OCOC2 2 H 4 5
C , 7 H35COOCH2C (CH3) 2CH2OCOC 13H27
また本発明に使用するモノエステルの潤滑剤は下記一般式 (2) と (3) が挙げ れる。
R4-C00- (R5-0) m — R6 …… (2)
R7-COO-R8 …… (3)
(式中、 mは 1〜1 0の整数、 R5は一 (CH2) n 一あるいはこの一 (CH2 ) n — (nは 1〜1 0の整数) から誘導される不飽和結合を含んでいても良い 2価 の基を示し、 R4、 R7 は炭素数 1 2〜26の鎖状飽和または不飽和炭化水素基 で互いに同一でも異なってもよい。 R6、 R8 は炭素数 1〜26の鎖状または分 岐、 飽和または不飽和炭化水素基で互いに同一でも異なってもよい。 ) また炭素数 1 0〜24の一塩基性脂肪酸 (不飽和結合を含んでも、 また分岐して いてもかまわない) と炭素数 2〜 2 4の一価アルコール (不飽和結合を含んでも
、 また分岐していてもかまわない) とからなるモノ脂肪酸エステルが使用できる。 これらの具体例としてはブチルステアレート、 ォクチルステアレート、 ァミル ステアレート、 イソォクチルステアレ一卜、 ブチルミ リステ一卜、 ォクチルミ リ ステート、 ブトキシェチルステアレート、 ブトキシジェチルステアレート、 2— ェチルへキシルステアレート、 2—ォクチルドデシルパルミテート、 2—へキシ ルドデシルパルミテート、 イソへキサデシルステアレート、 ォレイルォレエ一卜 、 ドデシルステアレート、 トリデシルステアレ一卜、 エルカ酸ォレイルなどが好 ましい。
このほかにも特公昭 5 1 - 3 9 0 8 1号公報をはじめ周知のように飽和及び不 飽和の脂肪酸とアルコールのモノエステルやまた、 不飽和結合を有する脂肪酸モ ノエステルとしては、 特公平 4 4 9 1 7号公報記載のォレイン酸ォレイルなど も使用できる。 モノエステルの具体例は以下の通りである。
L-b 1 C17H35COOC17H35
Figure imgf000050_0001
L-b 3 Cl 7H35COOCH2CH2OC4H9
L-b 4 C17H35COO (CH2CH20) 2C4H。
本発明のエステル系の潤滑剤の使用量は、 上層においては上層の強磁性金属粉 末 1 0 0重量部に対し 1重量部以上、 好ましくは 3重量部以上、 更に好ましくは 、 5重量部以上であり、 下層においては、 粉末 1 0 0重量部に対し 1重量部以上 、 好ましくは 3重量部以上、 更に好ましくは、 5重量部以上であり、 上層下層と も添加するのが好ましい。 各層とも好ましく.は上限は 2 0 %であり、 多すぎると 磁性層表面が粗くなつて磁気特性が低下し、 少ないと耐久性が不良となる傾向が ある。 ジエステル系潤滑剤及びエステル系潤滑剤は、 磁性層に含まれる強磁性粉 末 1 0 0重量部又は下層中に含まれる非磁性粉末 1 0 0重量部に対し、 3〜3 0 重量部好ましくは 5〜2 0部重量含む。 ジエステル化合物とエステル化合物は混 合して用いても良い。 この場合、 ジエステル化合物はジエステルとエステルの全 体量に対して 3 0 %以上であることが好ましい。
また本発明は支持体上に実質的に非磁性の下層を設け、 該下層の上に強磁性金 属粉末を結合剤中に含む磁性層を設けた磁気記録媒体において、 前記磁性層及び 前記下層の各層は、 それぞれ前記強磁性金属粉末 1 0 0重量部又は前記下層に含 まれる非磁性粉末 1 0 0重量部に対し、 脂肪酸エステルを 3〜3 0重量部、 好ま しくは 5〜 2 0重量部含み、 前記磁性層の表面をオージ 電子分光法で測定した ときの C Z F eピーク比が 5〜1 2 0、 好ましくは 5〜 1 0 0、 更に好ましくは 5〜8 0であり、 且つ前記磁気記録媒体がディスク状であることを特徴とする磁 気記録媒体によって従来のフロッピーディスクに比べ磁性層、 下層中のエステル 又はジエステル系潤滑剤量がほぼ同等であるにも関わらず、 磁性層表面に存在す る潤滑剤を低い値に抑えることによって、 極めて高度な耐久性を達成し且つ、 磁 性層表面の硬度を高く保ち、 高い耐傷性を付与することができる。 とりわけ回転 数が 1 8 0 0 rpm以上 (例えば Z I Pのような) 、 特に 3 0 0 0 rpm以上の高速 回転の記録システム (例えば H i F Dのような) で抜群の耐久性を達成できるこ とが分かった。
本発明でいう磁性層表面のォ一ジェ電子分光法による C / F eピーク比とは、 磁性層表面の潤滑剤の存在量を示す指標となるものである。
これは、 試料に電子線を当てて試料から出てくるォ一ジヱ電子の運動エネルギー から元素の種類を判定し、 ォ一ジェ電子線量から元素の量を測定する原理を利用 したものである。
磁性層表面をオージ 分光分析すると磁性体由来の鉄原子のピーク及びバイン ダ一と潤滑剤由来の炭素のピークが現れる。 し力、し、 炭素のピークのほとんどは 潤滑剤由来のものである。 その根拠は、 本発明の磁気ディスクをへキサン処理し て本発明に係わる潤滑剤を除いてォ一ジェ霉子分光法により磁性層表面を測定す ると F eピークが強くでるが結合剤が寄与する Cピークは弱く、 逆にへキサン処 理しないと Cピークが強くでるためである。 即ち、 磁性層表面をォージェ分光分 析すると磁性体由来の鉄原子のピーク及び結合剤と潤滑剤由来の炭素のピークが 現れる力 炭素のピークのほとんどは本発明に係わる潤滑剤由来のものとみなす ことができるからである。
本発明において、 オージ 電子分光法による C Z F eの測定は、 以下により求 められる値を指す。 装置: Φ社製 PHI -660 型
測定条件: 1次電子線 加速電圧 3 K V
試料電流 1 3 0 n A
倍率 2 5 0倍
傾斜角度 3 0 °
上記条件で、 運動エネルギー (Kine t i c Energy) 130 eVから 730eV の範囲を 3回 積算し、 炭素の KLL ピークと鉄の LMM ピークの強度を微分形で求め、 C / F eの 比をとることで求める。
本発明のディスク状磁気記録媒体の磁性層表面のォ一ジェ電子分光法による C / F eピーク比は、 好ましくは 5〜 1 0 0、 特に好ましくは 5〜8 0である力 これに対し、 従来のフロッピ一ディスク等では 1 0 0以上である。 このことから 、 本発明のディスク状磁気記録媒体は、 従来のフロッピーディスク等よりも、 そ の磁性層表面に存在する潤滑剤量が顕著に少ないことがわかる。
一方、 本発明のディスク状磁気記録媒体の磁性層及び下層の各層に含まれる潤 滑剤量は、 それぞれ強磁性粉末又は非磁性粉末 1 0 0重量部に対し 5〜3 0重量 部である。 これは従来のフロッピーディスク等が含む量とほぼ同等である。 よって、 本発明のディスク状磁気記録媒体は、 その磁性層及び下層に含む潤滑 剤量が従来のフロッピ一ディスク等とほぼ同量であるにも関わらず、 磁性層表面 に存在する潤滑剤量が従来のフロッピーディスク等に比して顕著に少ないもので ある。
従来のフ口ッピーディスクの欠点として、 耐久性を向上させるために潤滑剤量 を多くすると、 表面に、 潤滑剤量が多くなり.その結果、 静止時に磁性層表面と磁 気へッ ドとの張りつきが生じ、 起動時トルクが大きくなる欠点がある。 また、 起 動時トルクを下げるため、 潤滑剤量を少なくすると、 摩擦係数が高くなり耐久性 が悪くなる。 これらの欠点は、 高密度記録等によって高速回転を行う場合、 より 顕著に表れる。
本発明のディスク状磁気記録媒体は従来のフロッピ一ディスクに比べ磁性層、 下層中のエステル又はジエステル系潤滑剤量がほぼ同等であるにも関わらず、 磁 性層表面に存在する潤滑剤を低い値に抑えることによって、 極めて高度な耐久性 を達成し且つ、 磁性層表面の硬度を高く保ち、 高い耐傷性を付与することができ る。 とりわけ回転数が 1 8 0 O rpm以上 (例えば Z I Pのような) 、 特に 3 0 0 0 rpm以上の高速回転の記録システム (例えば H i F Dのような) で抜群の耐久 性を達成できることが分かった。
さらに磁性層、 下層内部に潤滑剤を多く含んでおり徐々に表面に出て潤滑機能 を発揮するため、 長期保存性にも優れることが分かった。
本発明の潤滑剤の存在形態すなわち、 磁性層、 下層内部に潤滑剤を多く存在さ せ、 表面には適量 (ォージェ電子分光法の主として潤滑剤の C原子、 磁性体の F e原子の検出量から求めた C / F e値で好ましくは 5〜1 0 0、 特に好ましくは 5〜8 0 ) 存在させることを実現するための手段として、 下記の方法がある。
① 潤滑剤はエステル化合物、 ジエステル化合物で、 特に不飽和 C = Cを持 っジエステル化合物、 エステル化合物がバインダー、 及び非磁性粉末表面との親 和性があり好ましい。 塗布層中の添加量は強磁性粉末、 及び非磁性粉末 1 0 0重 量部に対して 3〜3 0重量部である。
② 磁性層のバインダー量は硬化剤を含めて強磁性粉末 1 0 0重量部に対し 1 0〜2 5重量部、 下層のバインダー量は非磁性粉末 1 0 0重量部に対し 2 5
〜4 0重量部と下層の方にバインダ一量を多くすることが望ましい。
③ 特に下層用バインダ一は S 03 N aのような強い極性基と骨格に芳香環 を多く含有する構造が好ましい。 これにより潤滑剤と下層バインダ一との親和性 がより高まり潤滑剤が下層に多く且つ安定的に存在することができる。 潤滑剤と バインダ一の親和性が高すぎてバインダ一と潤滑剤が完全に分子レベルで相溶す るようになると潤滑剤は上層に移行する事ができなくなるため好ましくない。
本発明のディスク媒体の表面には従来のものより少量の潤滑剤であるがエス テル、 ジエステル化合物が必要十分に存在し、 高速で回転するディスクとヘッ ド の間の摩擦熱で温度が上昇しても、 強い分子間相互作用によって揮発しにく く、 潤滑膜の膜切れを起こすことなく安定した流体潤滑を維持することができる。
本発明で A l Z F eが 1 . 5原子%〜3 0原子%である強磁性金属粉末のと き高温高湿保存安定性を向上することができる。 これはもともとジエステルは親 水性が高く吸湿しやすいため加水分解されやすい性質がある。 磁性体表面の触媒 活性作用でさらにこの問题が強くなり高温高湿で保存すると更にジエステルが分 解しやすくなる。 A l / F eが 1 . 5原子%〜 3 0原子%である強磁性金属粉末 の場合はこの影響が小さく、 分解しにく くなることがわかった。 この結果、 高温 高湿下で保存した後でも耐久性はほとんど低下することなく保存前のディスクの 特性を発揮することができる。
本発明で使用されるこれらの潤滑剤、 界面活性剤は個々に異なる物理的作用を 有するものであり、 その種類、 量、 および相乗的効果を生み出す潤滑剤の併用比 率は目的に応じ最適に定められるべきものである。 非磁性層、 磁性層で融点の異 なる脂肪酸を用い表面への滲み出しを制御する、 沸点、 融点や極性の異なるエス テル類を用い表面への滲み出しを制御する、 界面活性剤量を調節することで塗布 の安定性を向上させる、 潤滑剤の添加量を中間層で多く して潤滑効果を向上させ るなど考えられ、 無論ここに示した例のみに限られるものではない。 一般には潤 滑剤の総量として磁性粉末または非磁性粉末に対し、 0 . 1重量%〜 5 0重量% 、 好ましくは 2〜2 5重量%の範囲で選択される。
また本発明で用いられる添加剤のすべてまたはその一部は、 磁性および非磁性 塗料製造のどの工程で添加してもかまわない、 例えば、 混練工程前に磁性体と混 合する場合、 磁性体と結合剤と溶剤による混練工程で添加する場合、 分散工程で 添加する場合、 分散後に添加する場合、 塗布直前に添加する場合などがある。 ま た、 目的に応じて磁性層を塗布した後、 同時または逐次塗布で、 添加剤の一部ま たは全部を塗布することにより目的が達成される場合がある。 また、 目的によつ てはカレンダーした後、 またはスリツ ト終了後、 磁性層表面に潤滑剤を塗布する こともできる。
[層構成]
本発明の磁気記録媒体の厚み構成は非磁性支持体が 2〜1 0 0 // m、 好ましく は 2〜8 0〃mである。 コンピュータ一テープの非磁性支持体は、 3 . 0〜6 . 5〃m (好ましくは、 3 . 0〜6 . 0〃m、 更に好ましくは、 4 . 0〜5 . 5 fi m) の範囲の厚さのものが使用される。
支持体、 好ましくは非磁性可撓性支持体と非磁性層また磁性層の間に密着性向 上のための下塗り層を設けてもかまわない。 本下塗層厚みは 0 . 0 1〜0 . 5〃 m、 好ましくは 0. 0 2〜 0. 5 である。 本発明は通常支持体両面に非磁性層 と磁性層を設けてなる両面磁性層ディスク状媒体であっても、 片面のみに設けて もかまわない。 この場合、 帯電防止やカール補正などの効果を出すために非磁性 層、 磁性層側と反対側にバックコート層を設けてもかまわない。 この厚みは 0. 1〜4 zm、 好ましくは 0. 3〜2. 0 〃mである。 これらの下塗層、 バックコ一 ト層は公知のものが使用できる。
本発明の媒体の磁性層の厚みは用いるへッ ドの飽和磁化量やへッ ドギャップ長 、 記録信号の帯域により最適化されるものであるが、 一般には 0. 0 5 zm以上 0. 5 /m以下であり、 好ましくは 0. 0 5 //m以上 0. 3 0〃m以下である。 磁性層を異なる磁気特性を有する 2層以上に分離してもかまわず、 公知の重層磁 性層に関する構成が適用できる。
本発明になる媒体の下層である非磁性層の厚みは 0. 2 /m以上 5. 0 /zm以 下、 好ましくは 0. 3〃m以上 3. 0 /zm以下、 さらに好ましくは 1. 0〃m以 上 2. 5 m以下である。 なお、 本発明媒体の下層は実質的に非磁性層であれば その効果を発揮するものであり、 たとえば不純物としてあるいは意図的に少量の 磁性粉を含んでも、 本発明の効果を示すものであり、 本発明と実質的に同一の構 成と見なすことができることは言うまでもない。 実質的に非磁性層とは下層の残 留磁束密度が 1 0 0 G (ガウス) 以下または抗磁力が 1 0 0エルステプド以下であるこ とを示し、 好ましくは残留磁束密度と抗磁力をもたないことを示す。 又、 下層に 磁性粉を含む場合は、 下層の全無機粉末の 1 Z 2未満含むことが好ましい。
[バックコ一ト層]
一般に、 コンピュータデータ記録用の磁気テープは、 ビデオテープ、 オーディ ォテープに比較して、 繰り返し走行性が強く要求される。 このような高い走行耐 久性を維持させるために、 バックコート層には、 カーボンブラックと無機粉末が 含有されていることが好ましい。
カーボンブラックは、 平均粒子径の異なる二種類のものを組み合わせて使用す ることが好ましい。 この場合、 平均粒子径が 1 0〜2 O nmの微粒子状力一ボン ブラックと平均粒子径が 2 3 0〜 3 0 0 n mの粗粒子状カーボンブラックを組み 合わせて使用することが好ましい。 一般に、 上記のような微粒子状のカーボンブ ラックの添加により、 バックコート層の表面電気抵抗を低く設定でき、 また光透 過率も低く設定できる。 磁気記録装置によっては、 テープの光透過率を利用し、 動作の信号に使用しているものが多くあるため、 このような場合には特に微粒子 状のカーボンブラックの添加は有効になる。 また微粒子状カーボンブラックは一 般に液体潤滑剤の保持力に優れ、 潤滑剤併用時、 摩擦係数の低減化に寄与する。 一方、 平均粒子径が 230〜3 0 0 nmの粗粒子状カーボンブラックは、 固体潤 滑剤としての機能を有しており、 またバック層の表面に微小突起を形成し、 接触 面積を低減化して、 摩擦係数の低減化に寄与する。 しかし粗粒子状カーボンブラ ックは、 過酷な走行系では、 テープ摺動により、 バックコート層からの脱落が生 じ易くなり、 エラー比率の増大につながる欠点を有している。
微粒子状カーボンブラックの具体的な商品としては、 以下のものを挙げること ができる。
RAVEN 2000 B (平均粒子径 1 8 nm) 、 RAVEN 1 500 B (平均 粒子径 1 7 nm) (以上、 コロンビアカーボン社製) 、 BP 8 0 0 (平均粒子径 1 7 nm) (キャボッ ト社製) 、 PR I NNTEX90 (平均粒子径 1 4 nm) 、 PR I TEX 9 5 (平均粒子径 1 5 nm) 、 PR I NTEX85 (平均粒子 径 1 6 nm) 、 PR I NTEX7 5 (平均粒子径 1 7 n m) (以上、 デグサ社製 ) 、 # 3 9 5 0 (平均粒子径 1 6 n m) (三菱化成工業 (株) 製) 。
また粗粒子力一ボンブラックの具体的な商品の例としては、 サ一マルブラック (平均粒子径 27 0 nm) (カーンカルプ社製) 、 RAVEN MTP (平均粒 子径 275 nm) (コロンビアカーボン社製) を挙げることができる。
バックコート層において、 平均粒子径の異なる二種類のものを使用する場合、 1 0〜 20 n mの微粒子状カーボンブラックと 230〜 300 n mの粗粒子状力 —ボンブラックの含有比率 (重量比) は、 前者:後者 = 98 : 2〜 75 : 25の 範囲にあることが好ましく、 更に好ましくは、 9 5 : 5〜85 : 1 5の範囲であ る。
バックコート層中のカーボンブラック (二種類のものを使用する場合には、 そ の全量) の含有量は、 結合剤 1 0 0重量部に対して、 通常 30〜80重量部の範 囲であり、 好ましくは、 45〜6 5重量部の範囲である。 無機粉末は、 硬さの異なる二種類のものを併用することが好ましい。
具体的には、 モース硬度 3〜4 . 5の軟質無機粉末とモース硬度 5〜9の硬質 無機粉末とを使用することが好ましい。
モース硬度が 3〜4 . 5の軟質無機粉末を添加することで、 繰り返し走行によ る摩擦係数の安定化を図ることができる。 しかもこの範囲の硬さでは、 摺動ガイ ドポールが削られることもない。 またこの無機粉末の平均粒子径は、 3 0 ~ 5 0 n mの範囲にあることが好ましい。
モース硬度が 3〜 4 . 5の軟質無機粉末としては、 例えば、 硫酸カルシウム、 炭酸カルシウム、 珪酸カルシウム、 硫酸バリウム、 炭酸マグネシウム、 炭酸亜鉛 、 及び酸化亜鉛を挙げることができる。 これらは、 単独で、 あるいは二種以上を 組み合わせて使用することができる。 これらの中では、 特に、 炭酸カルシウムが 好ましい。
バックコート層内の軟質無機粉末の含有量は、 カーボンブラック 1 0 0重量部 に対して 1 0〜 1 4 0重量部の範囲にあることが好ましく、 更に好ましくは、 3 5〜 1 0 0重量部である。
モース硬度が 5〜 9の硬質無機粉末を添加することにより、 バックコート層の 強度が強化され、 走行耐久性が向上する。 これらの無機粉末を力一ボンブラック や前記軟質無機粉末と共に使用すると、 繰り返し摺動に対しても劣化が少なく、 強いバックコート層となる。 またこの無機粉末の添加により、 適度の研磨力が付 与され、 テープガイ ドポール等への削り屑の付着が低減する。 特に軟質無機粉末 (中でも、 炭酸カルシウム) と併用すると、 表面の粗いガイ ドポールに対しての 摺動特性が向上し、 バックコート層の摩擦係数の安定化も図ることができる。 硬質無機粉末は、 その平均粒子径が 8 0〜2 5 0 n m (更に好ましくは、 1 0 0〜2 1 0 n m) の範囲にあることが好ましい。
モース硬度が 5〜 9の硬質無機質粉末としては、 例えば、 ひ—酸化鉄、 a— Ύ ルミナ、 及び酸化クロム (C r 2 0 3 ) を挙げることができる。 これらの粉末は 、 それぞれ単独で用いても良いし、 あるいは併用しても良い。 これらの内では、 ひ一酸化鉄又はな—アルミナが好ましい。 硬質無機粉末の含有量は、 カーボンブ ラック 1 0 0重量部に対して通常 3〜 3 0重量部であり、 好ましくは、 3〜 2 0 重量部である。
バックコート層に前記軟質無機粉末と硬質無機粉末とを併用する場合、 軟質無 機粉末と硬質無機粉末との硬さの差が、 2以上 (更に好ましくは、 2 . 5以上、 特に、 3以上) であるように軟質無機粉末と硬質無機粉末とを選択して使用する ことが好ましい。
バックコート層には、 前記それぞれ特定の平均粒子径を有するモース硬度の異 なる二種類の無機粉末と、 前記平均粒子径の異なる二種類のカーボンブラックと が含有されていることが好ましい。 特に、 この組み合わせにおいて、 軟質無機粉 末として炭酸カルシウムが含有されていることが好ましい。
バックコート層には、 潤滑剤を含有させることができる。 潤滑剤は、 前述した 非磁性層、 あるいは磁性層に使用できる潤滑剤として挙げた潤滑剤の中から適宜 選択して使用できる。 バックコート層において、 潤滑剤は、 結合剤 1 0 0重量部 に対して通常 1〜5重量部の範囲で添加される。
[支持体]
本発明に用いられる支持体は、 非磁性可撓性支持体であることが好ましく、 支 持体の面内各方向に対し、 1 0 0 °C 3 0分での熱収縮率が 0 . 5 %以下であり、 8 0 °C 3 0分での熱収縮率が 0 . 5 %以下、 更に好ましくは 0 . 2 %以下である ことが必要である。 更に前記支持体の 1 0 0 °C 3 0分での熱収縮率及び 8 0 °C 3 0分での熱収縮率が前記支持体の面内各方向に対し、 1 0 %以内の差で等しいこ とが好ましい。 支持体は非磁性であることが好ましい。 これら非磁性支持体はポ リエチレンテレフタレート、 ポリエチレンナフタレート、 等のポリエステル類、 ポリオレフイン類、 セルローストリアセテート、 ポリ力一ボネート、 ポリアミ ド 、 ポリイミ ド、 ポリアミ ドィミ ド、 ポリスルフオン、 ポリアラミ ド、 芳香族ポリ アミ ド、 ポリべンゾォキサゾールなどの公知のフィルムが使用できる。 ポリェチ レンナフタレート、 ポリアミ ドなどの高強度支持体を用いることが好ましい。 ま た必要に応じ、 磁性面とベース面の表面粗さを変えるため特開平 3— 2 2 4 1 2 7に示されるような積層タイプの支持体を用いることもできる。 これらの支持体 にはあらかじめコロナ放電処理、 プラズマ処理、 易接着処理、 熱処理、 除塵処理 、 などをおこなっても良い。 また本発明の支持体としてアルミまたはガラス基板 を適用することも可能である。
本発明の目的を達成するには、 支持体として WYKO社製の表面粗さ計 TOP 0- 3 D-M I RA U法で測定した中心面平均表面粗さ S R aは 4. 0 nm以下、 好ましくは 2. Onm以下のものを使用する必要がある。 これらの非磁性支持体は 単に中心面平均表面粗さが小さいだけではなく、 0. 5 zmH上の粗大突起がな いことが好ましい。 また表面の粗さ形状は必要に応じて支持体に添加されるフィ ラーの大きさと量により自由にコントロールされるものである。 これらのフイラ 一としては一例としては C a, S i、 T iなどの酸化物や炭酸塩の他、 アクリル 系などの有機粉末があげられる。 支持体の最大高さ SRmaxは 1 ; m以下、 十点平 均粗さ SRzは 0. 5〃m以下、 中心面山高さは SRpは 0. 5〃m以下、 中心面谷 深さ SRvは 0. 5 m以下、 中心面面積率 S Sr は 1 0 %以上、 9 0 %以下、 平 均波長 S は 5 m以上、 3 0 0 /m以下が好ましい。 所望の電磁変換特性と耐 久性を得るため、 これら支持体の表面突起分布をフイラ一により任意にコント口 —ルできるものであり、 0. 0 1〃mから 1〃mの大きさのもの各々を 0. 1麵2 あたり 0個から 2 0 0 0個の範囲でコントロールすることができる。
本発明に用いられる支持体の F— 5値は好ましくは 5〜5 0Kg/Mi2、 また、 支 持体の 1 0 0 °C 3 0分での熱収縮率は好ましくは 3 %以下、 さらに好ましくは 1 . 5%以下、 8 0°C3 0分での熱収縮率は好ましくは 1 %以下、 さらに好ましく は 0. 5 %以下である。 破断強度は 5〜 1 0 0 Kg/mm2、 弾性率は 1 0 0 ~ 2 0 0 0 Kg/mm2 が好ましい。 温度膨張係数は 1 0―4〜 1 0- 8/°Cであり、 好ましくは 1 0一5〜 1 0— 6/°Cである。 湿度膨張係数は 1 0— 4/RH%以下であり、 好ましくは 1 0 5/RH%以下である。 これらの熱特性、 寸法特性、 機械強度特性は支持体の面 内各方向に対し 1 0 %以内の差でほぼ等しいことが好ましい。
[製法]
本発明の磁気記録媒体の磁性塗料を製造する工程は、 少なくとも混練工程、 分 散工程、 およびこれらの工程の前後に必要に応じて設けた混合工程からなる。 個 々の工程はそれぞれ 2段階以上にわかれて 、てもかまわない。 本発明に使用する 磁性粉末、 非磁性粉末、 結合剤、 カーボンブラック、 研磨剤、 帯電防止剤、 潤滑 剤、 溶剤などすベての原料はどの工程の最初または途中で添加してもかまわない 。 また、 個々の原料を 2つ以上の工程で分割して添加してもかまわない。 例えば 、 ポリウレタンを混練工程、 分散工程、 分散後の粘度調整のための混合工程で分 割して投入してもよい。 本発明の目的を達成するためには、 従来の公知の製造技 術を一部の工程として用いることができる。 混練工程ではオープンニーダ、 連続 ニーダ、 加圧ニーダ、 ェクストル一ダなど強い混練力をもつものを使用すること が好ましい。 二—ダを用いる場合は磁性粉末または非磁性粉末と結合剤のすべて またはその一部 (ただし全結合剤の 3 0 %以上が好ましい) および磁性粉末 1 0 0部に対し 1 5〜 5 0 0部の範囲で混練処理される。 これらの混練処理の詳細に ついては特開平 1— 1 0 6 3 3 8、 特開平 1 — 7 9 2 7 4に記載されている。 ま た、 磁性層液および非磁性層液を分散させるにはガラスビーズを用ることができ るが、 高比重の分散メディアであるジルコ二アビ一ズ、 チタニアビーズ、 スチ一 ルビ一ズが好適である。 これら分散メディアの粒径と充塡率は最適化して用いら れる。 分散機は公知のものを使用することができる。
本発明で重層構成の磁気記録媒体を塗布する場合、 以下のような方式を用 、る ことが好ましい。 第一に磁性塗料の塗布で一般的に用いられるグラビア塗布、 口 ール塗布、 ブレード塗布、 ェクストル一ジョン塗布装置等により、 まず下層を塗 布し、 下層がゥヱッ 卜状態のうちに特公平 1 一 4 6 1 8 6や特開昭 6 0 - 2 3 8 1 7 9 , 特開平 2— 2 6 5 6 7 2に開示されている支持体加圧型ェクストル一ジ ョン塗布装置により上層を塗布する方法。 第二に特開昭 6 3— 8 8 0 8 0、 特開 平 2— 1 7 9 7 1 , 特開平 2— 2 6 5 6 7 2に開示されているような塗布液通液 スリッ トを二つ内蔵する一つの塗布へッ ドにより上下層をほぼ同時に塗布する方 法。 第三に特開平 2— 1 7 4 9 6 5に開示されているバックアップロール付きェ クストル一ジョン塗布装置により上下層をほぼ同時に塗布する方法である。 なお 、 磁性粒子の凝集による磁気記録媒体の電磁変換特性等の低下を防止するため、 特開昭 6 2— 9 5 1 7 4ゃ特開平 1 一 2 3 6 9 6 8に開示されているような方法 により塗布へッ ド内部の塗布液にせん断を付与することが望ましい。 さらに、 塗 布液の粘度については、 特開平 3— 8 4 7 1に開示されている数値範囲を満足す る必要がある。 本発明の構成を実現するには下層を塗布し乾燥させたのち、 その 上に磁性層を設ける逐次重層塗布を用いてもむろんかまわず、 本発明の効果が失 われるものではない。 ただし、 塗布欠陥を少なく し、 ドロップァゥトなどの品質 を向上させるためには、 前述の同時重層塗布を用いることが好ましい。
ディスクの場合、 配向装置を用いず無配向でも十分に等方的な配向性が得られ ることもある力 \ コバルト磁石を斜めに交互に配置すること、 ソレノイ ドで交流 磁場を印加するなど公知のランダム配向装置を用いることが好ましい。 等方的な 配向とは強磁性金属粉末の場合、 一般的には面内 2次元ランダムが好ましいが、 垂直成分をもたせて 3次元ランダムとすることもできる。 六方晶フ ライ 卜の場 合は一般的に面内および垂直方向の 3次元ランダムになりやすいが、 面内 2次元 ランダムとすることも可能である。 また異極対向磁石など公知の方法を用い、 垂 直配向とすることで円周方向に等方的な磁気特性を付与することもできる。 特に 高密度記録を行う場合は垂直配向が好ましい。 また、 スピンコートを用い円周配 向してもよい。
磁気テープの場合はコバルト磁石ゃソレノィ ドを用いて長手方向に配向する。 乾燥風の温度、 風量、 塗布速度を制御することで塗膜の乾燥位置を制御できる様 にすることが好ましく、 塗布速度は 2 0 111/分〜1 0 0 O m/分、 乾燥風の温度は 6 0 °C以上が好ましい、 また磁石ゾーンに入る前に適度の予備乾燥を行なうことも できる。
力レンダ処理ロールとしてエポキシ、 ポリイミ ド、 ポリアミ ド、 ポリイミ ドア ミ ド等の耐熱性のあるプラスチックロールまたは金属ロールで処理するが、 特に 両面磁性層とする場合は金属ロール同志で処理することが好ましい。 処理温度は 、 好ましくは 5 0 °C以上、 さらに好ましくは 1 0 0 °C以上である。 線圧力は好ま しくは 2 0 0 kg/cmE (上、 さらに好ましくは 3 .0 0 kg/cm以上である。
[物理特性]
本発明になる磁気記録媒体の磁性層の飽和磁束密度は強磁性金属粉末を用いた 場合 2 0 0 0 G以上 5 0 0 0 G以下、 六方晶フェライ トをもちいた場合は 1 0 0 0 G以上 3 0 0 0 G以下である。 抗磁力 H eおよび H rは 1 8 0 0エルステ^以上 5 0 0 0 1ルステプド以下であるが、 好ましくは 1 8 0 0ヱルステッド以上、 3 0 0 0ヱルス ίプド以 下である。 抗磁力の分布は狭い方が好ましく、 S F Dおよび S F D rは 0 . 6以 下が好ましい。 角形比は 2次元ランダムの場合は 0 . 5 5以上0 . 6 7以下で、 好ましくは 0. 5 8以上、 0. 6 4以下、 3次元ランダムの場合は 0. 4 5以上 、 0. 5 5以下が好ましく、 垂直配向の場合は垂直方向に 0. 6以上好ましくは 0. 7以上、 反磁界補正を行った場合は 0. 7以上好ましくは 0. 8以上である 。 2次元ランダム、 3次元ランダムとも配向度比は 0. 8以上が好ましい。 2次 元ランダムの場合、 垂直方向の角形比、 B r、 H eおよび H rは面内方向の 0. 1〜0. 5倍以内とすることが好ましい。
磁気テープの場合、 角型比は 0. 7以上、 好ましくは 0. 8以上である。
本発明の磁気記録媒体のへッ ドに対する摩擦係数は温度一 1 0°Cから 4 0°C、 湿度 0 %から 9 5 %の範囲において 0. 5以下、 好ましくは 0. 3以下、 表面固 有抵抗は好ましくは磁性面 1 04〜 1 012ォ—ム/^1、 帯電位は— 5 0 0 Vから + 5 0 0 V以内が好ましい。 磁性層の 0. 5 %伸びでの弾性率は面内各方向で好ま しくは 1 0 0〜 2 0 0 0 Kg/mm2 、 破断強度は好ましくは 1 0〜 7 0 Kg/mm2 、 磁 気記録媒体の弾性率は面内各方向で好ましくは 1 0 0〜 1 5 0 0 Kg/ 謹2 、 残留 のびは好ましくは 0. 5 %以下、 1 0 0°C以下のあらゆる温度での熱収縮率は好 ましくは 1 %以下、 さらに好ましくは 0. 5 %以下、 もっとも好ましくは 0. 1 %以下である。 磁性層のガラス転移温度(1 1 0 Hzで測定した動的粘弾性測定の 損失弾性率の極大点)は 5 0°C以上 1 2 0°C以下が好ましく、 下層非磁性層のそ れは 0 °C〜 1 0 0 °Cが好ましい。 損失弾性率は 1 X 1 06 〜 8 X 1 09 dyne/cm2 の範囲にあることが好ましく、 損失正接は 0. 2以下であることが好ましい。 損 失正接が大きすぎると粘着故障が発生しやすい。 これらの熱特性や機械特性は媒 体の面内各方向で 1 0 %以内でほぼ等しいことが好ましい。 磁性層中に含まれる 残留溶媒は好ましくは 1 0 0 mg/ m2 以下、 さ.らに好ましくは 1 0 mg/ m2 以下で ある。 塗布層が有する空隙率は非磁性下層、 磁性層とも好ましくは 3 0容量%以 下、 さらに好ましくは 2 0容量%以下である。 空隙率は高出力を果たすためには 小さい方が好ましいが、 目的によってはある値を確保した方が良い場合がある。 例えば、 繰り返し用途が重視されるディスク媒体では空隙率が大きい方が走行耐 久性は好ましいことが多い。
磁性層の表面を WY C 0社製の表面粗さ計 T◦ PO- 3 D-M I R A U法で測 定した中心面平均表面粗さ R aは 5. 0 nm以下、 好ましくは 4. 0 nm以下、 さら に好ましくは 3. 5nm以下である。 磁性層の最大高さ SRmaxは 0. 5〃m以下、 十点平均粗さ SRzは 0. 3 /m以下、 中心面山高さ SRpは 0. 3 m以下、 中心 面谷深さ SRvは 以下、 中心面面積率 S Srは 2 0%以上、 8 0 %以下 、 平均波長 S ;iaは 5 /zm以上、 3 0 0 mJ2T が好ましい。 磁性層の表面突起は 0. 0 1〃mから 1 zmの大きさのものを 0個から 2 0 0 0個の範囲で任意に設定 することが可能であり、 これにより電磁変換特性、 摩擦係数を最適化することが 好ましい。 これらは支持体のフイラ—による表面性のコントロールや磁性層に添 加する粉体の粒径と量、 カレンダ処理のロール表面形状などで容易にコント口— ルすることができる。 カールは ±3議以内とすることが好ましい。 本発明の磁 気記録媒体は、 目的に応じ非磁性層と磁性層でこれらの物理特性を変えることが できるのは容易に推定されることである。 例えば、 磁性層の弾性率を高く し走行 耐久性を向上させると同時に非磁性層の弾性率を磁性層より低く して磁気記録媒 体のへッ ドへの当りを良くするなどである。 発明を実施するための最良の形態
次に本発明の具体的実施例を説明するが、 本発明はこれに限定されるものでは ない。 尚、 特に言及しないかぎり、 「部」 は、 「重量部」 を示す。
<塗料の作製〉
磁性塗料 ML— 1 (針状磁性粉使用)
強磁性金属粉末 : M— 1 1 0 0部 組成: Co/F e (原子比) 3 0%、
H c 2 5 5 0エルステッド、 比表面積 5 5m2/gヽ s 1 4 0 emu/g
結晶子サイズ 1 2 0人、 長軸長 0. 0 4 8 /m、 針状比 4 八 1化合物 (八 17 6 原子比 8%)
Y化合物 (Y/F e 原子比 6%)
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 8 2 0 0 (東洋紡社製) 3部 ひアルミナ
H I T 5 5 (住友化学社製) 1 0部 平均粒子径: 0. 2 0 m, 比表面積: 8. 0〜9. 0 m; g モース硬度: 9、 pH : 7. 7〜9. 0
力一ボンブラック
# 5 0 (旭カーボン社製) 5部 平均粒子径: 9 4 nm、 比表面積: 2 8 m2, g
DB P吸油量: 6 1 ml/100g. pH : 7. 5
揮発分: 1. 0重量%
フエニルホスホン酸 3部 ブチルステアレート 1 0部 ブトキシェチルステアレ一ト 5部 ィソへキサデシルステアレート 3部 ステアリ ン酸 2部 メチルェチルケトン 1 8 0部 シクロへキサノン 1 8 0部 磁性塗料 ML - 2 (針状磁性粉使用)
強磁性金属粉末 : M— 2 1 0 0部 組成: C oZF e (原子比) 3 0 %、
H e 2 3 6 0エルステッド、 比表面積 4 9 m2 /gヽ as 1 4 6 emu/g 結晶子サイズ 1 7 0 A、 平均長軸長 0. 1 0 0〃m、 針状比 6、 S FD 0. 5 1
A 1化合物 (A l /F e原子比 5 %)
Y化合物 (YZF e 原子比 5 %)
pH 9. 4
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 0部 匕
ポリウレタン樹月:
UR 5 5 0 0 (東洋紡社製) 4部 αアルミナ
Η I Τ 7 0 (住友化学社製) 1 0部 平均粒子径: 0. 1 5 /zm、 比表面積: 1 7 m2/g
モース硬度: 9、 pH: 7. 7~9. 0
力一ボンブラック
# 5 0 (旭力一ボン社製) 1部 平均粒子径: 9 4 nm、 比表面積: 2 8m2/ g
D B P吸油量: 6 1 ml/100g, pH: 7. 5
揮発分: 1. 0重量%
フエニルホスホン酸 3部 ォレイン酸 1部 ステアリン酸 0. 6部 エチレングリコールジォレイル 1 2部 メチルェチルケトン 1 8 0部 シクロへキサノン 1 8 0部 磁性塗料 ML— 3 (針状磁性粉使用:比較例)
強磁性金属粉末: M— 3
組成/ F e : N i = 9 6 : 4 1 0 0部
H e 1 6 0 0エルステプド、 比表面積 4 5 m2 /g
結晶子サイズ 2 2 0人、 σ s 1 3 5 emu/g
平均長軸長 0. 2 0〃m、
針状比 9
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR- 8 6 0 0 (東洋紡社製) 5部 αアルミナ (平均粒子径 0. 6 5 m) 2部 酸化クロム (平均粒子径: 0. 3 5 m) 1 5部 カーボンブラック (平均粒子径: 0. 0 3 m) 2部 カーボンブラック (平均粒子径: 0. 3〃m) 9部 n—プチルステアレート 4部 ブトキシェチルステアレート 4部 ォレイン酸 1部 ステアリン酸 1部 メチルェチルケトン 3 0 0部 磁性塗料 ML— 4 (板状磁性粉使用) 1 0 0部 バリウムフヱライ ト磁性粉 : M— 4
対 B aモル比組成: F e 9. 1 0、 C o 0. 2 0、 Z n 0. 7 7
H c 2 5 0 0ヱルステッド、 比表面積 5 0m2 g. os 5 8 emu/g 平均扳径 3 5 nm、 扳状比 4
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 8 2 0 0 (東洋紡社製) 3部 αァノレミ ナ
H I Τ 5 5 (住友化学社製) 1 0部 平均粒子径: 0. 2 0 ^ m、 比表面積: 8. 0 9. 0 m2/g モース硬度: 9、 P H: 7. 7〜9. 0
力一ボンブラック
# 5 0 (旭力一ボン社製) 5部 平均粒子径: 9 4 nm、 比表面積: 2 8 m2/g
DB P吸油量: 6 1 ml/100g, pH : 7. 5
揮発分: 1. 0重量%
フエニルホスホン酸 3部 ブチルステアレート 1 0部 ブトキシェチルステアレート 5部 レート 3部 ステアリン酸 2部 メチルェチルケトン 1 2 5部 シクロへキサノン 1 2 5部 磁性塗料 ML— 5 (板状磁性粉使用)
ノくリウムフェライ ト磁性粉 : M— 5 1 0 0部 対 B aモル比組成: F e 9. 1 0、 C o 0. 2 0、 Z n 0. 7 7
He 2 5 0 0エルステッド、 比表面積 5 0m2/g、 CTS 5 8 emu/g 平均板径 3 5 nm. 板状比 2. 5
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 0部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 4部 αアルミナ
H I Τ5 5 (住友化学工業社製) 1 0部 平均粒子径: 0. 2 0 /zm、 比表面積: 8. 0〜9. 0 m2/g モース硬度: 9、 pH: 7. 7〜9. 0
力一ボンブラック
# 5 0 (旭カーボン社製) 1部 平均粒子径: 9 4 nm、 比表面積: 2 8 m2/g
D B P吸油量: 6 1 ml/100g、 pH : 7. 5
揮発分: 1. 0重量%
フエニルホスホン酸 3部 ォレイン酸 1部 ステアリン酸 0. 6部 エチレングリコ一ルジォレイル 1 6部 メチルェチルケトン 1 8 0部 シクロへキサノン 1 8 0部 磁性塗料 ML— 6 (針状磁性粉使用)
強磁性金属粉末 : M— 2 1 0 0部 組成: C oZF e (原子比) 3 0 %、
H e 2 3 6 0エルステッド、 比表面積 4 9 m2 /g、 as l 4 6 emu/g 結晶子サイズ 1 7 0人、 平均長軸長 0. 1 0 0〃m、 針状比 6、 S FD 0. 5 1
A 1化合物 (A 1 /F e原子比 5 %)
Y化合物 (Y/F e 原子比 5 %)
H 9. 4
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 0部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 4部 αァノレミナ
H I Τ 7 0 (住友化学社製) 1 0部 平均粒子径: 0. 1 5 /m、 比表面積: 1 7 m2/g
モース硬度: 9、 pH : 7. 7〜9. 0
カーボンブラック
# 5 0 (旭力一ボン社製) 1部 平均粒子径: 9 4 n m、 比表面積: 2 8 m2/ g
DB P吸油量: 6 1 ml/100g. pH : 7. 5
揮発分: 1. 0重量%
フエニルホスホン酸 3部 ミ リスチン酸 1部 ステアリン酸 0. 6部 ステアリン酸ブチル 4部 ノ、。ルミチン酸セチル 4部 ォレイン酸ォレイル 4部 メチルェチルケトン 1 8 0部 シクロへキサノン 1 8 0部 磁性塗料 ML— 7 (針状磁性粉使用) 強磁性金属粉末 : M— 2 1 0 0部 組成: C o/F e (原子比) 3 0 %、
He 2 3 6 0エルステッド、 比表面積 4 9 m2 /g、 s 1 4 6 emu/g 結晶子サイズ 1 7 0 A、 平均長軸長 0. 1 0 0 //in, 針状比 6、 S FD 0. 5 1
A 1化合物 (A 1 /F e原子比 5 %)
Y化合物 (YZF e 原子比 5 %)
H 9. 4
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 0部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 4部 びァノレミナ
H I T 7 0 (住友化学社製) 1 0部 平均粒子径: 0. 1 5 zm、 比表面積: 1 7m2Zg
モース硬度: 9、 pH : 7. 7〜9. 0
ダイアモンド 1部
L S 6 0 0 F (ランズス-パ -アブレ"ンブ社製)
平均粒子径: 0. 1 5 / m、
カーボンブラック
# 5 0 (旭カーボン社製) 1部 平均粒子径: 9 4 nm、 比表面積: .2 8 mVg
DB P吸油量: 6 1 ml/100g. pH : 7. 5
揮発分: 1. 0重量%
フェニルホスホン酸 3部 ステアリ ン酸ァミル 4部 ブトキシェチルステアレ- 6部 オレイン酸ォレイル 4部 メチルェチルケトン 1 8 0部 シクロへキサノン 1 8 0部 磁性塗料 ML - 8 (針状磁性粉使用)
強磁性金属粉末 : M— 2 1 0 0部 組成: C o/F e (原子比) 3 0 %、
H e 2 3 6 0ェルス ド、 比表面積 4 6 m2 /g、 os l 5 3 emu/g 結晶子サイズ 1 6 0人、 平均長軸長 0. 1 0 0〃m、 針状比 6、
S FD 0. 5 1、 pH 9. 4
A 1化合物 (A 1 /F e原子比 1 1 %)
Y化合物 (Y/F e 原子比 7 %)
Mg化合物 (MgZF e 原子比 1 %)
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 0部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 4部 αアルミナ
H I Τ 5 5 (住友化学工業社製) 1 0部
(H I Τ 5 5 /MR 1 1 0/MEK
5部 Zl部 / 4部の別分散品)
平均粒子径: 0. 2 0 zm、 比表面積: 8. 0-9. 0m2/g モース硬度: 9、 pH: 7. 7〜9. 0
ダイアモンド 1部
L S 6 0 0 F (ランズス -パ-アブレプシブ社製).
平均粒子径: 0. 2 7 /m、
カーボンブラック
# 5 0 (旭カーボン社製) 1部 平均粒子径: 9 4 nm、 比表面積: 2 8m2/g
DB P吸油量: 6 1 ml/lOOg, pH: 7. 5
揮発分: 1. 0重量%
フヱニルホスホン酸 3部 ステアリン酸 1部 ォレイン酸 1部 ステアリン酸ブチル 4部 ブトキシェチルステアレート 4部 ネオペンチルダリコールジォレイル 2部 エチレングリコールジォレイル 2部 メチルェチルケトン 1 80部 シクロへキサノン 1 80部 非磁性塗料 NU - 1 (球状無機粉使用)
非磁性粉末 T i 02 結晶系ルチル 80部 平均粒子径 0. 03 5 ^m. BET法による比表面積 4 Om2 /g
H 7 T i 02 含有量 90 %以上、
D BP吸油量 27~38 g/100g.
表面に A 1203が粒子全体に対し 8重量%存在
カーボンブラック
コンダクテックス SC— U (コロンビアンカーボン社製) 20部 平均粒子径: 2 0 n m
DB P吸油量: 1 1 5 m 1 / 1 00 g
pH: 7. 0
BET法による比表面積: 220m2Zg
揮発分: 1. 5%
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 820 0 (東洋紡社製) 5部 フエニルホスホン酸 4部 ブチルステアレート 1 0部 ブトキシェチルステアレート 5部 イソへキサデシルステアレート 2部 ステアリン酸 3部 メチルェチルケトン/シクロへキサノン (8Z2混合溶剤) 25 0部 非磁性塗料 NU— 2 (球状無機粉使用)
非磁性粉末 T i 02 結晶系ルチル 1 0 0部 平均粒子径 0. 035 //m、 BET法による比表面積 40 m2 /g
H 7 T i 02 含有量 90%以上、
DB Ρ吸油量 27〜3 8 g/100g,
表面に A 12 03 、 S i 02として存在
ケツチヱンブラック EC (AKUZO NOBEL社製) 1 3部 平均粒子径: 30 n m
D BP吸油量: 350 m 1/1 00 g
pH: 9. 5
B ET法による比表面積: 950m2/g
揮発分: 1. 0%
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 6部 ポリウレタン樹脂
UR 8200 (東洋紡社製) 6部 フエニルホスホン酸 4部 エチレングリコールジォレイル 1 6部 ォレイン酸 1部 ステアリン酸 0. 8部 メチルェチルケトン /シクロへキサノン (8/2混合溶剤) 2 50部 非磁性塗料 NU— 3 (球状無機粉使用 :比較例)
非磁性粉末 T i 02 結晶系ルチル 7 5部 平均粒子径 0. 03 5 ^m, 比表面積 4 Om2 /g
pH 7 T i O 2 含有量 90 %以上、
DB P吸油量 27〜 38 g/100g.
表面に A 12 03 、 S i 02として存在 カーボンブラック
ケッチェンブラック E C 1 0部 平均粒子径: 3 0 n m
DBP吸油量: 3 5 0 m 1 / 1 0 0 g
pH: 9. 5
BET法による比表面積: 9 5 0m2/g
揮発分: 1. 0%
ァノレミナ
AKP- 1 5 (住友化学工業社製)
平均粒子径: 0. 6 5 m 1 5部 塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹 B (匕
UR 8 6 0 0 (東洋紡社製) 5部
4部 n—ブチルステアレート 4部 ブトキシェチルステアレート 4部 ォレイン酸 1部 ステアリン酸 1部 メチルェチルケトン 3 0 0部 非磁性塗料 NU - 4 (針状無機粉使用)
非磁性粉末 α— F e 203 へマタイト 8 0部 平均長軸長 0. 1 5 /zm、 BET法による比表面積 5 0 m2 /g pH 9
表面に A 1203が粒子全体に対し 8重量%存在
カーボンブラック
コンダクテックス S C— U (コロンビアンカーボン社製) 2 0部 平均粒子径: 2 0 n m
DBP吸油量: 1 1 5 m 1 Z 1 0 0 g pH : 7. 0
B E T法による比表面積: 2 2 0 m g
揮発分: 1. 5%
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 8 2 0 0 (東洋紡社製) 5部 フエニルホスホン酸 4部 ブチルステアレート 1 0部 ブ卜キシェチルステアレート 5部 イソへキサデシルステアレート 2部 ステアリ ン酸 3部 メチルェチルケトン /シクロへキサノン (8/ 2混合溶剤) 2 5 0部 非磁性塗料 NU— 5 (針状無機粉使用)
非磁性粉末 α— F e 203 へマタイ ト 1 0 0部 平均長軸長 0. 1 5 ;t m、 BET法による比表面積 5 0 m2 /g pH 9
表面に A 1203が粒子全体に対し 8重量%存在
力一ボンブラック
# 3 2 5 0 B (三菱化成社製) 1 8部 平均粒子径: 3 0 nm、 比表面積: 2 4 5m2/g
DB P吸油量: 1 5 5m lZl 0.0 g、 pH : 6. 0 揮発分: 1. 5重量%
塩化ビニル共重合体
MR 1 0 4 (日本ゼオン社製) 1 5部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 7部 フエニルホスホン酸 4部 エチレングリコ一ルジォレイル 1 6部 ォレイン酸 1. 3部 ステアリン酸 0. 8部 メチルェチルケトン Zシクロへキサノン (8/2混合溶剤) 2 5 0部 非磁性塗料 NU— 6 (針状無機粉使用)
非磁性粉末 ひ一 F e203 へマタイ ト 1 0 0部 平均長軸長 0. 1 5〃m、 BET法による比表面積 5 0 m2 /g pH 9、
表面に A 1 03が粒子全体に対し 8重量%存在
力一ボンブラック
# 3 2 5 0 B (三菱化成社製) 1 8部 平均粒子径: 3 0 nm、 比表面積: 2 4 5 m2/g
D B P吸油量: 1 5 5 ml/100g. pH: 6. 0
揮発分: 1. 5重量%
塩化ビニル共重合体
MR 1 0 4 (日本ゼオン社製) 1 5部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 7部 フヱニルホスホン酸 4部 ミ リスチン酸 1部 ステアリ ン酸 0. 6部 ステアリン酸ブチル 4部 パルミチン酸セチル 4部 ォレイン酸ォレイル 4部 メチルェチルケトン/シクロへキサノン (8/ 2混合溶剤) 2 5 0部 非磁性塗料 NU - 7 (針状無機粉使用)
非磁性粉末 α— F e203 へマタイ ト 1 0 0部 平均長軸長 0. 1 5 ^nu B ET法による比表面積 5 0m2 /g pH 9、
表面に A 120 が粒子全体に対し 8重量%存在 力一ボンブラック
コンダクテックス S C— U (コロンビアンカーボン社製) 1 0部 平均粒子径: 2 0 n m
DB P吸油量: 1 1 5 m 1 / 1 0 0 g
pH: 7. 0
BET法による比表面積: 2 2 0 m2/g
揮発分: 1. 5%
力一ボンブラック
# 5 0 (旭カーボン社製) 1 0部 平均粒子径: 9 4 nm、 比表面積: 2 8 m2/g
D B P吸油量: 6 1 ml/100g、 p H: 7. 5
揮発分: 1. 0重量%
塩化ビニル共重合体
MR 1 0 4 (日本ゼオン社製) 1 5部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 7部 フエニルホスホン酸 4部 ステアリン酸アミル 4部 ブトキシェチルステアレート 6部 ォレイン酸ォレイル 4部 メチルェチルケトン/シクロへキサノン (8/ 2混合溶剤) 2 5 0部 非磁性塗料 NU - 8 (針状無機粉使用) .
非磁性粉末 α— F e 203 へマタイト 1 0 0部 平均長軸長 0. 1 6 ^ιη、 BET法による比表面積 5 Om2 /g p H 9、
表面に A 1203が粒子全体に対し 8重量%存在
力一ボンブラック
コンダクテックス SC— U (コロンビアン力一ボン社製) 2 5部 平均粒子径: 2 0 n m DB P吸油量: 1 1 5 m 1 / 1 0 0 g
pH : 7. 0
BET法による比表面積: 2 2 0 m2Zg
揮発分: 1. 5 %
塩化ビニル共重合体
MR 1 0 4 (日本ゼオン社製) 1 6部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 7部 フヱニルホスホン酸 4部 ステアリン酸 1部 ォレイン酸 1部 ステアリン酸ブチル 4部 ブトキシェチルステアレート 4部 ネオペンチルグリコールジォレイル 2部 エチレングリコールジォレイル 2部 メチルェチルケトン /シクロへキサノン (8/2混合溶剤) 2 5 0部 製法 1 (ディスク : W/W)
上記 1 0の塗料のそれぞれについて、 各成分をニーダで混練したのち、 サンド ミルを用いて分散させた。 得られた分散液にポリイソシァネートを非磁性層の塗 布液には 1 0部、 磁性層の塗布液には 1 0部を加え、 さらにそれぞれにシクロへ キサノン 4 0部を加え, 1 /mの平均孔径を有するフィルタ一を用いて濾過し 、 非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1. 5 になるようにさらにそ の直後にその上に磁性層の厚さが 0. 1 5〃mになるように、 厚さ 6 2 で中心 面平均表面粗さが 3 nmのポリエチレンテレフタレート支持体上に同時重層塗布 をおこない、 両層がまだ湿潤状態にあるうちに周波数 5 0Hz、 磁場強度 2 5 0ガ ウスまた周波数 5 0Hz、 1 2 0ガウスの 2つの磁場強度交流磁場発生装置の中を 通過されランダム配向処理をおこな 、乾燥後、 7段のカレンダで温度 9 0 °C、 線 圧 3 0 0 kg/cmにて処理を行い、 3. 7吋に打ち抜き表面研磨処理を施した後、 ライナ一が内側に設置済の 3. 7吋のカートリッジ (米 I ome g a社製 z i p— d i s kカートリッジ) に入れ、 所定の機構部品を付加し、 3. 7吋フロ ッピーディスクを得た。 また一部のサンプルについてはランダマイズ配向処理 の前に 4000 Gの同極対向 C o磁石による長手配向を施した。
この場合、 十分なランダマイズ化が最終的に行われるように交流磁場発生装置 の周波数と磁場強度を高くすることが好ましく、 これにより配向度比 98%以上 を得ることができる。
なおバリウムフェライ ト磁性体を用いる場合は、 上記配向方法以外に垂直配向 を施すことが可能である。 また、 必要に応じ、 ディスク形状に打ち抜いたあと高 温でのサ一モ処理 (通常 50°C〜9 0°C)を行ない塗布層の硬化処理を促進させる 、 研磨テープでバ一二ッシュ処理をおこない、 表面の突起を削るなどの後処理を 行ってもよい。
製法 2 (コンピュータ一テープ: W/W)
上記の塗料について、 各成分をニーダで混練したのち、 サンドミルを用いて分 散させた。 得られた分散液にポリイソシァネートを非磁性層の塗布液には 2. 5 部、 磁性層の塗布液には 3部を加え、 さらにそれぞれにシクロへキサノン 4 0部 を加え, 1 mの平均孔径を有するフィルタ一を用いて濾過し、 非磁性層形成用 および磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1. 7 zmになるようにさらにそ の直後にその上に磁性層の厚さが 0. 1 5 /mになるように、 厚さ 4. 4〃mで 中心面平均表面粗さが 2 nmのァラミ ド支持体 (商品名: ミク トロン) 上に同時 重層塗布を行ない、 両層がまだ湿潤状態にあるうちに 6 00 0 Gの磁力を持つコ ノくルト磁石と 6000 Gの磁力を持つソレノィ ドにより配向させた。 乾燥後、 金 属ロールのみから構成される 7段のカレンダーで温度 8 5 °Cにて分速 200 m/ m i n. で処理を行い、 その後、 厚み 5 /zmのバック層 (カーボンブラック 平均粒子径: 1 7 nm 1 0 0部、 炭酸カルシウム 平均粒子径: 40 nm 80部、 αアルミナ 平均粒子径: 20 0 nm 5部をニトロセルロース樹脂、 ポリウレタン樹脂、 ポリイソシァネートに分散) を塗布した。 3. 8 mmの幅に スリッ トし、 スリッ ト品の送り出し、 巻き取り装置を持った装置に不織布と力ミ ソリブレードが磁性面に押し当たるように取り付け、 テープクリ一ニング装置で 磁性層の表面のクリ—ニングを行い、 得られた磁気テープを D D S用力一トリッ ジに組み込んだ。
製法 3 (ディスク : W/D)
上記 1 6の塗料のそれぞれについて、 各成分をニーダで混練した後、 サンドミ ルを用いて分散させた。 得られた分散液にポリイソシァネ一トを非磁性層の塗布 液には 1 0部、 磁性層の塗布液には 1 0部を加え、 さらにそれぞれにシクロへキ サノン 4 0部を加え, 1 z mの平均孔径を有するフィルターを用いて濾過し、 非 磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1 . 5 i mになるように厚さ 6 2 /mで中心面平均表面粗さが 3 n mのポリエチレンテレフタレ一ト支持体上に塗 布し一度乾燥させ、 カレンダ処理を行ったのち、 さらにその上に磁性層の厚さが 0 . 1 5 mになるようにブレード方式により磁性層を塗布、 周波数 5 0 Hz、 磁 場強度 2 5 0ガウスまた周波数 5 0 Hz、 1 2 0ガウスの 2つの磁場強度交流磁場 発生装置の中を通過されランダム配向処理をおこない、 これ以降については製法 1と同様に行った。 また非磁性層のカレンダ一処理を行わない方法をとることも できる。
製法 4 (コンピュータテープ: WZ D )
上記の塗料について、 各成分をニーダで混練した後、 サンドミルを用いて分散 させた。 得られた分散液にポリィソシァネ一トを非磁性層の塗布液には 2 . 5部 、 磁性層の塗布液には 3部を加え、 さらにそれぞれにシクロへキサノン 4 0部を 加え, 1 /z mの平均孔径を有するフィルタ一を用いて濾過し、 非磁性層形成用お よび磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1 . 7 mになるように厚さ 4 . 4 / mで中心面平均表面粗さが 2 n mのァラミ ド支持体 (商品名: ミク トロン) 上に塗布し一度乾燥させ、 カレンダ処理を行ったのち、 さらにその上に磁性層の 厚さが 0 . 1 5 mになるようにブレード方式により磁性層を塗布、 6 0 0 0 G の磁力を持つコバルト磁石と 6 0 0 0 Gの磁力を持つソレノィ ドにより配向させ た。 これ以降については製法 2と同様に行った。 また非磁性層のカレンダ一処理 を行わな 、方法をとることもできる。
製法 5 (ディスク : スピンコート)
上記 1 6の塗料のそれぞれについて、 各成分を二—ダで混練した後、 サンドミ ルを用いて分散させた。 得られた分散液にポリイソシァネ一トを非磁性層の塗布 液には 1 0部、 磁性層の塗布液には 1 0部を加え、 さらにそれぞれにシクロへキ サノン 4 0部を加え, 1 mの平均孔径を有するフィルタ一を用いて濾過し、 非 磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1. 5〃mになるように厚さ 6 2 〃mで中心面平均表面粗さが 3 nmのポリエチレンテレフタレ一ト支持体上にス ピンコート塗布し一度乾燥させたのち、 さらにその上に磁性層の厚さが 0. 1 5 〃mになるようにスピンコ一トにより磁性層を塗布、 6 0 0 0 Gの同極対向 C o 磁石により円周方向に配向処理をおこなった。 これを製法 1 と同様な圧力が得ら れるバッチ方式の圧延処理を行い表面を平滑化した。 これ以降については製法 1 と同様に行った。 また、 非磁性層をスピンコート塗布し非磁性層が未乾燥のうち にその上に磁性層をスピンコ一卜する塗布する方式を用いることもできる。 スピ ンコ一卜方式を用いることで、 記録方向の残留磁化量が大きくなるばかりでなく 、 バリウムフユライ トや短針状比のメタル磁性粉末の垂直磁化成分を低減させ再 生波形の対称性を良好にすることができる。
支持体 B— 1 ポリエチレンテレフタレ一ト
厚さ : 6 2〃m、 F— 5値: MD 1 1 4 MP a.
TD 1 0 7MP a
破断強度: MD 2 7 6 MP a. TD 2 8 1 MP a 破断伸度: MD 1 7 4MP a、 TD 1 3 9MP a 熱収縮率 (8 0°C、 3 0分) : MD 0. 0 4%,
TD 0. 0 5%
熱収縮率 (1 0 0°C、 3 0分) : MD 0. 2%、
TD 0. 3 %
温度膨張係数:長軸 1 5 X 1 0 - 5/°C、
短軸 1 8 X 1 0 5/°C 中心面平均表面粗さ 3 nm
支持体 B— 2 ポリエチレンナフタレート
厚さ : 5 5 、 中心面平均表面粗さ 1. 8 nm
熱収縮率 (8 0°C、 3 0分) : MD 0. 0 0 7 %,
TD 0. 0 0 7 % 熱収縮率 (1 0 0°C、 3 0分) : MD 0. 0 2 %,
TD 0. 0 2 % 温度膨張係数:長軸 1 0 X 1 0— 5/°c、
短軸 1 1 X 1 0— 5Z°C
支持体 B— 3 ポリエチレンテレフタレート
厚さ : 6 2 zm、 中心面平均表面粗さ 9 nm
支持体 B— 4 ァラミ ド
厚さ 4. 4〃
中心面平均表面粗さ 2 nm
配向 0— 1 ランダマイズ配向を行う。
0— 2 C o磁石で長手方向に配向した後、 ラ ズ配向を行う。
0- 3 Co磁石で長手方向に配向した後、 ソレノイ ドで長手方向に配向 する (
0- 4 C o磁石で垂直配向を行う。
0— 5 C 0磁石で円周配向を行う。
バック層塗料 BL— 1
微粒子状カーボンブラック粉末 . 1 0 0部
[ (キヤボッ ト社製、 BP— 8 0 0、 平均粒子径: 1 7 nm) ]
粗粒子状力一ボンブラック粉末 1 0部
[ (カーンカルプ社製、 サ一マルブラック、
平均粒子径: 2 7 0 n m) ]
炭酸カルシウム (軟質無機粉末) 8 0部
[ (白石工業 (株) 製、 白艷華 0、 平均粒子径: 4 0 nm、
モース硬度: 3) ] 一アルミナ (硬質無機粉末) 5部
[ (平均粒子径: 200 nm、 モース硬度: 9) ]
二トロセルロース樹脂 1 40部 ポリウレタン樹脂 1 5部 ポリイソシァネート 40部 ポリエステル樹脂 5部 分散剤:ォレイン酸銅 5部
銅フタロシアニン 5部 硫酸バリウム 5部 メチルェチルケトン 2 200部 酢酸ブチル 3 00部 トルエン 600部 上記ノくックコート層を形成する各成分を連続二一ダで混練したのち、 サンドミ ルを用いて分散させた。 得られた分散液を 1 mの平均孔径を有するフィル夕一 を用いて濾過し、 バックコート層形成用塗布液を調製した。
以上のような各方法を適宜、 表 1〜 4のように組み合わせて得られたサンプルに ついて磁気特性、 中心面平均粗さ、 面記録密度等をを測定した。
(1) 磁気特性 (He) :振動試料型磁束計 (東英工業社製) を用い、 Hm l 0 KO eで測定した。
(2) 中心面平均表面粗さ (Ra) : 3 D— M I RAUでの表面粗さ (Ra) : WYKO社製 TOPO 3 Dを用いて、 3 D—MI RAU法で約 2 5 0 ^mx 25 0 zmの面積の Ra値を測定した。 測定波長約 65 0 nmにて球面補正、 円筒補正 を加えている。 本方式は光干渉にて測定する非接触表面粗さ計である。
(3) 面記録密度は、 線記録密度とトラック密度を掛け合わせたものである。
(4) 線記録密度は記録方向 1インチ当たりに記録する信号のビッ ト数である。
(5) トラック密度は、 1インチ当たりのトラック数である。
(6) 0mは磁気記録媒体の単位面積当たりの磁化量である。 Bm (ガウス) と 厚みを掛け合わせたものであり、 これは振動試料型磁束計 (東英工業社製) を用 い、 Hml O kOeで測定した値で、 直接測定できる値である。 (7) テープのエラ一レートは上記の線記録密度の信号を 8— 1 0変換 P R 1 等化方式でテープに記録し DDS ドライブを用いて測定した。
(8) ディスクのエラ一レートは上記の線記録密度の信号を(2, 7)RLL変調 方式をディスクに記録し測定した。
(9) 磁性層厚みは 磁気記録媒体を長手方向に渡ってダイヤモンドカッターで 約 0. I mの厚味に切り出し、 透過型電子顕微鏡で倍率 1 0 0 0 0倍〜 1 0 0 0 0 0倍、 好ましくは 2 0 0 0 0倍〜 5 0, 0 0 0倍で観察し、 その写真撮影を 行った。 写真のプリントサイズは A 4〜A 5である。 その後、 磁性層、 下層非磁 性層の強磁性粉末や非磁性粉末の形状差に注目して界面を目視判断して黒く渕ど り、 力、つ磁性層表面も同様に黒く渕どった。 その後、 Z e i s s社製画像処理装 置 I BAS 2にて渕どりした線の長さを測定した。 試料写真の長さが 2 1 cmの 場合、 測定を 8 5〜3 0 0回行った。 その際の測定値の平均値を磁性層厚み dと した。 dは、 特開平 5— 2 9 8 6 5 3の記載により、 算出した。
(1 0) 磁性粉と研磨剤の粒径の測定方法
•磁性粉粒子の粒度分布の測定
試料粉末粒子を透過型電子顕微鏡で観察し、 プリントした写真の粒子一個一個 を画像解析装置で測定して、 粒度分布を求めた。
1. 試料調整
約 1 0m 1の水の入った秤量瓶にほぼ耳搔き一杯の粉末粒子を入れ、 超音波分 散を 1 0分行つた後、 コロジォン膜を張つた銅メッシュですくつて乾燥させた。 それをカーボン蒸着して補強し、 観察用試料とした。
2. 粒子の観察および写真プリント .
観察:装置…透過型電子顕微鏡
撮影倍率… 6万倍
写真プリント :総合倍率… 2 0万倍
総合倍率は同時観察の回折格子像から補正した。
3. 粒子サイズの測定
装置: K 0 N T R 0 N社製画像解析装置 K S 4 0 0
方法:デジタイザ一上に写真の粒子の外形をスライスペンでトレースして、 長 軸長、 短軸長を測定し、 それの平均を平均長軸長、 平均短軸長とし、 それらの比 (平均長軸長/平均短軸長) を針状比とした。
測定粒子数… 500個
•研磨剤粒子の粒度分布の測定
試料粉末粒子を透過型電子顕微鏡で観察し、 プリントした写真の粒子一個一個 を画像解析装置で測定して、 粒度分布を求めた。
1. 試料調整
約 1 0 m lの水の入った秤量瓶にほぼ耳搔き一杯の粉末粒子を入れ、 超音波分 散を 1 0分行った後、 コロジオン膜を張った銅メッシュですくって乾燥させた。 それをカーボン蒸着して補強し、 観察用試料とした。
2. 粒子の観察および写真プリン卜
観察:装置…透過型電子顕微鏡
撮影倍率… 1万倍
写真プリント :総合倍率… 3万倍
総合倍率は同時観察の回折格子像から補正した。
3. 粒子サイズの測定
装置: K◦ N T R 0 N社製画像解析装置 K S 4 0 0
方法:デジタイザ一上に写真の粒子の外形をスライスペンでトレースして、 測 定し、 その平均を平均粒子径とした。
測定パラメータ一…円相当径
測定粒子数… 500個
(1 1) 走行耐久性: フロッピディスク ドライブ (米 I ome g a社製 Z I P 1 0 0 :回転数 296 8 r pm) を用い半径 3 8 mm位置にへッ ドを固定し、 記録密度 3 4 k f c iで記録を行った後その信号を再生し、 1 00%とした。 そ の後、 以下のフローを 1サイクルとするサ一モサイクル環境で 1 500時間走行 させた。 走行 24時間おきに出力をモニターしその出力が初期の値の 7 0%以下 となった点を NGとした。
(サーモサイクルフロー)
25°C、 5 0 %RH 1時間→ (昇温 2時間) →60°C、 20 %RH 7時 間→ (降温 2時間) — 25 °C、 50 %RH 1時間— (降温 2時間) → 5 °C 、 50 %RH 7時間→ (昇温 2時間) →くこれを繰り返す〉
(1 2) ライナ一ウェア評価
へッ ドオフの状態で走行耐久性と同じ環境で、 サンプルを 1 000 h r走行さ せ、 終了したサンプルを走行後力一トリッジケースを開き磁気ディスクの磁性層 表面を目視観察し評価した。
〇:磁性層表面に欠陥がないもの
△:磁性層表面の一部に細かな傷が発生したもの
X :磁性層表面全体に細かな傷が発生したもの
(1 3) ライナ付着評価
へッ ドオフの状態で走行耐久性と同じ環境で、 サンプルを 1 0 0 0 h r走行 させ、 終了したサンプルを走行後力一トリッジケースを開き磁気ディスクの磁性 層表面を目視観察し評価した。
〇:磁性層表面にライナの付着がないもの
△:磁性層表面の一部にライナの付着が発生したもの
X :磁性層表面全体にライナの付着が発生したもの
(1 4) 起動卜ノレク評価
東日製作所トルクゲージ モデル 300 ATGを用いて、 I ma t i o n社製 L S - 1 2 0 ドライブにおけるへッ ドオン時の起動トルクを測定した (単位: g • cm) o
(1 5) CZF eの測定
Φ社製 PH 1 - 660型ォ一ジェ電子分光法測定器を用い、 C/F e値を測定 した。 測定条件は次の通りであった。
1次電子線の加速電圧 3 kV、 試料電流 1 3 0 nA.、 倍率 250倍、 傾斜角度 3 0度。
運動エネルギー (Kinetic Energy) 1 30 eV〜 7 3 0 eVの範囲を 3回積算し、 炭素の KLLピークと鉄の LMMピークの強度を微分形で求め、 C/F eの比を 求めた。 表 1 ディスク
υ 丄 丄ι 丄
1
1 -1 ϊ
Figure imgf000086_0001
表 2
Figure imgf000087_0001
実施例 1 8〜 2 0および参考例 1では実施例 1 3のディスクを用い、 線記録密度と トラ ック密度を変えて同様にエラ一レー卜を測定した。 表 3 コンピュータ一テープ
Figure imgf000088_0002
表 4
Figure imgf000088_0001
前述の如くエラーレートは上記の線記録密度の信号を 8— 1 0変換 P R 1等 化方式でテープに記録し DDS ドライブを用いて測定した。 実施例 3 3 , 3 4. 参考例 2は実施例 2 4のテープを用い、 線記録密度とトラック密度を変えて同様 にエラ一レ一トを測定した。
上記表の結果から本発明の磁気記録媒体は従来のディスク状媒体に比べ、 特に 高密度記録領域でのエラ一レ一卜が 1 0— 5以下で格段に良好であることがわかる 。 またコンピュータ一テープにおいても同様にエラ一レートが 1 0 5以下で格段 に良好であることがわかる。
実施例 3 5
<塗料の作製 >
磁性塗料 mL— 1 (針状磁性粉使用)
強磁性金属粉末 : m— 1 1 0 0部 組成: C oZF e (原子比) 3 0 %、
H c 2 5 5 0ェルステツ ド、 比表面積 5 5m2/g、 as l 4 0 emu/g 結晶子サイズ 1 2 0人、 長軸長 0. 0 4 8 im、 針状比 4
八 1化合物 (八 17 6 原子比 8 %)
Y化合物 (Y/F e 原子比 6 %)
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 8 2 0 0 (東洋紡社製) 3部
«アルミナ
H I T 5 5 (住友化学社製) 1 0部 力一ボンブラック
# 5 0 (旭力一ボン社製) 5部 フエニルホスホン酸 3部 潤滑剤 (エステル:表 9— 1, 1 0 - 1 )
ステアリン酸 2部 メチルェチルケトン 1 8 0部 ン 1 8 0部 磁性塗料 mL— 2 (針状磁性粉使用)
強磁性金属粉末 : m— 2 1 0 0部 組成: Co/F e (原子比) 3 0%、
H c 2 3 6 0ェルステツ ド、 比表面積 4 9m2 /g、 as 1 4 6 emu/g 結晶子サイズ 1 7 0 A、 長軸長 0. 1 0 0〃m、 針状比 6、 SFD
0. 5 1
1化合物 ( 17 6 原子比 5%)
Y化合物 (YZF e 原子比 5%)
pH 9. 4
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 0部 ポリウレ夕ン樹 J3旨
UR 5 5 0 0 (東洋紡社製) 4部 aァノレミナ
H I T7 0 (住友化学社製) 1 0部 力一ボンブラック
# 5 0 (旭カーボン社製) 1部 フヱニルホスホン酸 3部 潤滑剤 (エステル:表 9— 1, 1 0 - 1)
ォレイン酸 1部 ステアリン酸 0. 6部 エチレングリコ一ルジォレイル 1 2部 メチルェチルケトン 1 8 0部 シクロへキサノン 1 8 0部 磁性塗料 mL— 3 (針状磁性粉使用 :比較例)
強磁性金属粉末: m— 3
組成 ZF e : N i = 9 6 : 4 1 0 0部
H c 1 6 0 0エルステッ ド、 比表面積 4 5 m2 /g 結晶子サイズ 2 2 0人、 σ s 1 3 5 emu/g
平均長軸長 0. 2 0〃m、
針状比 9
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR - 8 6 0 0 (東洋紡社製) 5部 αアルミナ (平均粒子径 0. 6 5 m) 2部 酸化クロム (平均粒子径: 0. 3 5 /m) 1 5部 カーボンブラック (平均粒子径: 0. 0 3 /m) 2部 カーボンブラック (平均粒子径: 0. 3 m) 9部 潤滑剤 (エステル:表 9 1、 1 0 - 1 )
ォレイン酸 1部 ステアリン酸 1部 メチルェチルケトン 3 0 0部 磁性塗料 mL— 4 (板状磁性粉使用) 1 0 0部 ノくリウムフヱライ ト磁性粉 : m— 4
対 B aモル比組成: F e 9. 1 0、 C o 0. 2 0、 Z n 0. 7 7
He 2 5 0 0ェルステツ ド、 比表面積 5 Om2 Zg、 ひ s 5 8 emu/g 板径 3 5 nm、 板状比 4
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 8 2 0 0 (東洋紡社製) 3部 アルミナ
H I T 5 5 (住友化学社製) 1 0部 力一ボンブラック
# 5 0 (旭カーボン社製) 5部 フヱニルホスホン酸 3部 潤滑剤 (エステル:表 9一 1、 1 0 - 1)
ステアリン酸 2部 メチルェチルケトン 1 2 5部 シクロへキサノン 1 2 5部 磁性塗料 mL— 5 (板状磁性粉使用)
ノくリウムフヱライ ト磁性粉 : m_ 5 1 0 0部 対 B aモル比組成: F e 9. 1 0、 C o 0. 2 0、 Z n 0. 7 7
H c 2 5 0 0ェルステツ ド、 比表面積 5 Om2 Zg、 as 5 8 emu/g 板径 3 5 nm、 板状比 2. 5
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 0部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) 4部 αアルミナ
H I Τ 5 5 (住友化学工業社製) 1 0部 力一ボンブラック # 5 0 (旭カーボン社製) 1部 フエニルホスホン酸 3部 潤滑剤 (エステル:表 9— 1、 1 0 - 1)
ォレイン酸 1部 ステアリン酸 0. 6部 エチレングリコールジォレイル 1 6部 メチルェチルケトン 1 8 0部 シクロへキサノン 1 8 0部 非磁性塗料 nU— l (球状無機粉使用)
非磁性粉末 T i 02 結晶系ルチル 8 0部 平均粒子径 0. 0 3 5 ^m, BET法による比表面積 4 Om2 /g pH 7 T i 02 含有量 90%以上、
DB P吸油量 2 7〜 3 8 g/100g,
表面に A 1203 が粒子全体に対し 8重量%存在 カーボンブラック
コンダクテックス SC— U (コロンビアン力一ボン社製) 2 0部 塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 8200 (東洋紡社製) 5部 フエニルホスホン酸 4部 潤滑剤 (エステル:表 9一 1、 1 0 - 1)
ステアリ ン酸 3部 メチルェチルケトン /シクロへキサノン (8/2混合溶剤) 25 0部 非磁性塗料 nU— 2 (球状無機粉使用)
非磁性粉末 T i 02 結晶系ルチル 1 0 0部 平均粒子径 0. 035 ^π BET法による比表面積 40 m' /g H 7 T i 02 含有量 90 %以上、
DB P吸油量 27〜 3 8 g/100g.
表面に A 1203 、 S i 02 が存在
ケッチェンブラック EC (AKUZO NO BEL社製) 1 3部 平均粒子径: 30 n m
DB P吸油量: 35 0m lZl 00 g
p H: 9. 5
BET法による比表面積: 9 5 Om2 /g
揮発分: 1. 0% .
塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 6部 ポリウレタン樹月
UR 8 200 (東洋紡社製) 6部 フェニルホスホン酸 4部 潤滑剤 (エステル:表 9一 1、 1 0 1)
ォレイン酸 1部 ステアリン酸 0. 8部 メチルェチルケトン/シクロへキサノン (8/2混合溶剤) 2 5 0部 非磁性塗料 n U - 3 (球状無機粉使用:比較例)
非磁性粉末 T i 02 結晶系ルチル Ί 5部 平均粒子径 0. 0 3 5 m、 比表面積 4 0 m2 /g
H 7 T i 02 含有量 9 0 %以上、
D BP吸油量 2 7〜3 8g/100g、
表面に A 1203 S i 02が存在
カーボンブラック
ケッチェンブラック E C 1 0部 ァノレミナ
AKP— 1 5 (住友化学工業社製)
平均粒子径: 0. 6 5 m 1 5部 塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 8 6 0 0 (東洋紡社製) 5部 潤滑剤 (エステル:表 9一 1、 1 0 - 1)
ォレイン酸 1部 ステアリ ン酸 1部 メチルェチルケトン 3 0 0部 非磁性塗料 nU - 4 (針状無機粉使用) .
非磁性粉末 a— F e20:! へマタイ ト 8 0部 長軸長 0. 1 5 / m、 BET法による比表面積 5 0m2 /g pH 9
表面に A 12 O 3 が粒子全体に対し 8重量%存在
力一ボンブラック
コンダクテックス S C— U (コロンビアンカーボン社製) 2 0部 塩化ビニル共重合体 MR 1 1 0 (塩化ビニル共重合体) 1 2部 ポリウレタン樹脂
UR 8 2 0 0 (東洋紡社製) 5部 フエニルホスホン酸 4部 潤滑剤 (エステル:表 9一 1、 1 0 - 1)
ステアリン酸 3部 メチルェチルケトン/シクロへキサノン (8/2混合溶剤) 2 5 0部 非磁性塗料 nU— 5 (針状無機粉使用)
非磁性粉末 α— F e 203 へマタイ ト 1 0 0部 長軸長 0. 1 5 m、 B ET法による比表面積 5 0 m2 /g
H 9、 表面に A 1203 が粒子全体に対し 8重量%存在
力一ボンブラック
# 3 2 5 0 B (三菱化成社製) 1 8部 塩化ビニル共重合体
MR 1 0 4 (日本ゼオン社製) 1 5部 ポリウレタン樹脂
UR 5 5 0 0 (東洋紡社製) · 7部 フエニルホスホン酸 4部 潤滑剤 (エステル:表)
ォレイン酸 1. 3部 ステアリン酸 0. 8部 メチルェチルケトン /シクロへキサノン (8/2混合溶剤) 2 5 0部 製法 1 (ディスク : WZW)
上記 1 0の塗料のそれぞれについて、 各成分をニーダで混練したのち、 サンド ミルをもちいて分散させた。 得られた分散液にポリイソシァネートを非磁性層の 塗布液には 1 0部、 磁性層の塗布液には 1 0部を加え、 さらにそれぞれにシクロ へキサノン 4 0部を加え, 1 //mの平均孔径を有するフィルタ一を用いて濾過し 、 非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1. 5 zmになるようにさらにそ の直後にその上に磁性層の厚さが 0. 1 5〃mになるように、 厚さ 6 2 mで中心 面平均表面粗さが 3 nmのポリエチレンテレフタレ一ト支持体上に同時重層塗布 をおこない、 両層がまだ湿潤状態にあるうちに周波数 5 0Hz、 磁場強度 2 5 0ガ ウスまた周波数 5 0Hz、 1 2 0ガウスの 2つの磁場強度交流磁場発生装置の中を 通過されランダム配向処理をおこない乾燥後、 7段のカレンダで温度 9 0°C、 線 圧 3 0 0 kg/cmにて処理を行い、 3. 7吋に打ち抜き表面研磨処理を施した後、 ライナ一が内側に設置済の 3. 7吋のカートリッジ (米 I ome g a社製 z i p— d i s kカートリッジ) に入れ、 所定の機構部品を付加し、 3. 7吋フロ ッピーディスクを得た。 また一部のサンプルについてはランダマイズ配向処理の 前に 4 0 0 0 Gの同極対向 C 0磁石による長手配向を施した。
この場合、 十分なランダマイズ化が最終的に行われるように交流磁場発生装置 の周波数と磁場強度を高くすることが好ましく、 これにより配向度比 9 8 %以上 を得ることができる。
なおバリウムフニライ ト磁性体を用いる場合は、 上記配向方法以外に垂直配向 を施すことが可能である。 また、 必要に応じ、 ディスク形状に打ち抜いたあと高 温でのサ一モ処理 (通常 5 0°C〜9 0°C)を行ない塗布層の硬化処理を促進させる 、 研磨テープでバー二ッシュ処理をおこない、 表面の突起を削るなどの後処理を 行ってもよい。
製法 2 (コンピュータ一テープ: WZW)
上記の塗料について、 各成分を二—ダで混練したのち、 サンドミルをもちいて 分散させた。 得られた分散液にポリィソシァネ一トを非磁性層の塗布液には 2. 5部、 磁性層の塗布液には 3部を加え、 さらにそれぞれにシクロへキサノン 4 0 部を加え, 1 mの平均孔径を有するフィルタ一を用いて濾過し、 非磁性層形成 用および磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1. 7 ΖΠ1になるようにさらにそ の直後にその上に磁性層の厚さが 0. 1 5 /zmになるように、 厚さ 4. 4〃mで中 心面平均表面粗さが 2 nmのァラミ ド支持体 (商品名: ミク トロン) 上に同時重 層塗布をおこない、 両層がまだ湿潤状態にあるうちに 6 0 0 0 Gの磁力を持つコ バルト磁石と 6 0 0 0 Gの磁力を持つソレノィ ドにより配向させた。 乾燥後、 金 属ロールのみから構成される 7段のカレンダーで温度 8 5 °Cにて分速 2 0 0 m/ m i n . で処理を行い、 その後、 厚み 5〃mのバック層 (カーボンブラック 平均粒子サイズ: 1 7 n m 1 0 0部、 炭酸カルシウム 平均粒子サイズ: 4 0 n m 8 0部、 αアルミナ 平均粒子サイズ: 2 0 0 n m 5部をニトロセル ロース樹脂、 ポリウレタン樹脂、 ポリイソシァネートに分散) を塗布した。 3 . 8 mmの幅にスリッ トし、 スリッ ト品の送り出し、 巻き取り装置を持った装置に 不織布とカミソリブレードが磁性面に押し当たるように取り付け、 テープクリ一 ニング装置で磁性層の表面のクリ一二ングを行い、 得られた磁気テープを D D S 用カートリッジに組み込んだ。
製法 3 (ディスク : WZD )
上記 1 0の塗料のそれぞれについて、 各成分をニーダで混練したのち、 サンド ミルをもちいて分散させた。 得られた分散液にポリイソシァネ一トを非磁性層の 塗布液には 1 0部、 磁性層の塗布液には 1 0部を加え、 さらにそれぞれにシクロ へキサノン 4 0部を加え, 1 〃mの平均孔径を有するフィルターを用いて濾過し 、 非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1 . 5 になるように厚さ 6 2 〃mで中心面平均表面粗さが 3 n mのポリエチレンテレフタレ一ト支持体上に塗 布し一度乾燥させ、 カレンダ処理を行ったのち、 さらにその上に磁性層の厚さが 0 . 1 5 mになるようにブレード方式により磁性層を塗布、 周波数 5 0 Hz、 磁 場強度 2 5 0ガウスまた周波数 5 0 Hz、 1 2 0ガウスの 2つの磁場強度交流磁場 発生装置の中を通過されランダム配向処理をおこない、 これ以降については製法 1と同様に行った。 また非磁性層のカレンダ一処理を行わない方法をとることも できる。
製法 4 (コンピュータテープ: W/D )
上記の塗料について、 各成分をニーダで混練したのち、 サンドミルを用いて分 散させた。 得られた分散液にポリイソシァネートを非磁性層の塗布液には 2 . 5 部、 磁性層の塗布液には 3部を加え、 さらにそれぞれにシクロへキサノン 4 0部 を加え, 1 mの平均孔径を有するフィルタ一を用いて濾過し、 非磁性層形成用 および磁性層形成用の塗布液をそれぞれ調製した。 得られた非磁性層塗布液を、 乾燥後の厚さが 1. 7 /mになるように厚さ 4. 4 /zmで中心面平均表面粗さが 2 nmのァラミ ド支持体 (商品名: ミクトロン) 上に塗布し一度乾燥させ、 カレンダ処理を行ったのち、 さらにその上に磁性層の 厚さが 0. 1 5〃mになるようにブレード方式により磁性層を塗布、 6 0 0 0 G の磁力を持つコバルト磁石と 6 0 0 0 Gの磁力を持つソレノィドにより配向させ た。 これ以降については製法 2と同様に行った。 また非磁性層のカレンダ一処理 を行わない方法をとることもできる。
製法 5 (ディスク : スピンコート)
上記 1 0の塗料のそれぞれについて、 各成分を二—ダで混練したのち、 サンド ミルをもちいて分散させた。 得られた分散液にポリイソシァネートを非磁性層の 塗布液には 1 0部、 磁性層の塗布液には 1 0部を加え、 さらにそれぞれにシクロ へキサノン 4 0部を加え, 1 mの平均孔径を有するフィルターを用いて濾過し 、 非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
得られた非磁性層塗布液を、 乾燥後の厚さが 1. 5 になるように厚さ 6 2 mで中心面平均表面粗さが 3 nmのポリエチレンテレフタレ一ト支持体上にス ピンコート塗布し一度乾燥させたのち、 さらにその上に磁性層の厚さが 0. 1 5 〃mになるようにスピンコ一卜により磁性層を塗布、 6 0 0 0 Gの同極対向 Co 磁石により円周方向に配向処理をおこなった。 これを製法 1と同様な圧力が得ら れるバッチ方式の圧延処理を行い表面を平滑化した。 これ以降については製法 1 と同様に行った。 また、 非磁性層をスピンコート塗布し非磁性層が未乾燥のうち にその上に磁性層をスピンコ一卜する塗布する方式を用いることもできる。 スピ ンコート方式を用いることで、 記録方向の残留磁化量が大きくなるばかりでなく 、 バリウムフェライトゃ短針状比のメタル磁性体の垂直磁化成分を低減させ再生 波形の対称性を良好にすることができる。
潤滑剤 ジエステル
L- a 1 C17H35CO〇 (CH2) 4OCOC17H35
L- a 2 C,,H2, COO (CH2) 4OCOCi,H2,
L- a 3 C17H33COO (CH2) 2OCOC17H33
L- a 4 C,,H23COO (CH2) 40COCi,H23 L- a 5 C27H53COO (CH2) 4OCOC27H53
L- a 6 C H ' COO (CH2) 4OCOC17H33
L- a 7 C 17H33C OO (CH2) I .OCOCTHSS
L- a 8 C17H33COOCH2CH = CHCH2OCOC,7H33 L- a 9 Cl 4H27COOCH2CH = CHCH2OCOC14H27 L- a 1 0 C 17H33C OO (CH2) 8OCOC,4H2T
L- a 1 1 C, 7 H33COOCH2C (CH3) 2 C H 20 C 0 C , 7 H 33 L- a 1 2 C.oH2iCOOCH2C (CH3) 2 C H 20 C 0 C > 0 H 2 , L- a 1 3 C3H27COO (CH2) 3OCOC3H27
潤滑剤 モノエステル
Figure imgf000099_0001
L-b 2 C17H35COOC4H9
L-b 3 C,7H3BCOOCH2CH2OC4H9
L-b 4 C, 7 H35COO (CH2CH20) 2C4H9
支持体 b— l ポリエチレンテレフタレート
厚さ : 62〃m、 F— 5値: MD 1 1 4 MP a,
TD 1 07 MP a
破断強度: MD 27 6 MP a. TD 2 8 IMP a 破断伸度: MD 1 7 4MPa、 TD 1 3 9 MP a 熱収縮率 (80°C、 3 0分) : MD 0. 0 4%.
TD 0. 0 5% 熱収縮率 (1 00°C、 3.0分) : MD 0. 2%、
TD 0. 3 % 温度膨張係数:長軸 1 5 X 1 0 ° ,
短軸 1 8 X 1 0 5/°C
中心面平均表面粗さ 3 nm
支持体 b— 2 ポリエチレンナフタレート
厚さ : 55 、 中心面平均表面粗さ 1. 8 nm 熱収縮率 (80°C、 3 0分) : MD 0. 0 07 %, TD 0. 0 0 7 %
熱収縮率 (1 0 0°C、 3 0分) : MD 0. 0 2%、
TD 0. 0 2% 温度膨張係数:長軸 1 0 X 1 0 ~ °C
短軸 1 1 X 1 0/°c
支持体 b_ 3 ポリエチレンテレフタレート
厚さ : 6 2 m、 中心面平均表面粗さ 9 nm
支持体 b— 4 ァラミ ド
厚さ 4. 4 //
中心面平均表面粗さ 2 nm
配向 00—一 11 ランダマィズ配向を行う。
0— 2 C o磁石で長手方向に配向した後、 ラ ズ配向を行つ。 o— 3 C 0磁石で長手方向に配向した後、 ソレノィドで長手方向に配向 する。
0- 4 C o磁石で垂直配向を行う。
o— 5 C o磁石で円周配向を行う。
バック層塗料 bL— 1
微粒子状カーボンブラック粉末 1 0 0部
[ (キャボット社製、 BP— 8 0 0、 平均粒子サイズ 1 7 nm) ] 粗粒子状カーボンブラック粉末 1 0部
[ (カーンカルブ社製、 サ一マルブラック、
平均粒子サイズ: 2 7.0 nm) ]
炭酸カルシウム (軟質無機粉末) 8 0部
[ (白石工業 (株) 製、 白艷華 0、 平均粒子サイズ: 4 0 nm、
モース硬度: 3) ]
α—アルミナ (硬質無機粉末) 5部
[ (平均粒子サイズ: 2 0 0 nm、 モース硬度: 9) ]
二トロセルロース樹脂 1 4 0部 ポリウレタン樹脂 1 5部 ポリィソシァネート 40部 ポリエステル樹脂 5部 分散剤:ォレイン酸銅 5部
銅フタロシアニン 5部 硫酸バリウム 5部 メチルェチルケトン 2200部 酢酸ブチル 3 00部 トルエン 600部 上記バックコ一ト層を形成する各成分を連続ニーダで混練したのち、 サンドミ ルを用いて分散させた。 得られた分散液を 1 の平均孔径を有するフィルタ一 を用いて濾過し、 バックコート層形成用塗布液を調製した。
以上のような各方法を適宜、 表 5又は表 7のように組み合わせて得られたサン プルについて磁気特性、 中心面平均粗さ、 面記録密度等を測定し表 6又は表 8に 示した。
(1) 磁気特性 (He) :振動試料型磁束計 (東英工業社製) を用い、 Hml 0 KO eで測定した。
(2) 中心面平均表面粗さ (Ra) : 3 D— M I RAUでの表面粗さ (Ra) : WYKO社製 TOPO 3 Dを用いて、 3 D— M I RAU法で約 2 50 ^mX 25 0〃mの面積の R a値を測定した。 測定波長約 6 5 0 nmにて球面補正、 円筒補正 を加えている。 本方式は光千渉にて測定する非接触表面粗さ計である。
(3) 線記録密度は記録方向 1インチ当たりに記録する信号のビッ ト数である。
(4) トラック密度とは 1ィンチ当たりの卜ラック数である。
(5) 面記録密度とは線記録密度とトラック密度を掛け合わせたものである。
(6) (Dmとは磁気記録媒体の単位面積当たりの磁化量である。 Bm (ガウス) と厚みを掛け合わせたものであり、 これは振動試料型磁束計 (東英工業社製) を 用い、 Hml 0 KO eで測定した値で、 直接測定できる値である。
これら線記録密度、 トラック密度、 面記録密度はシステムによって決まる値で あ 。
(7) ディスクのエラ一レートは上記の線記録密度の信号を(2, 7)RLL変調 方式をディスクに記録し測定した。
(8) テープのエラ一レートは上記の線記録密度の信号を 8— 1 0変換 P R 1 等化方式でテープに記録し D D Sドライブを用いて測定した。
(9) 磁性層厚みは 磁気記録媒体を長手方向に渡ってダイヤモンドカッターで 約 0. 1 ;z mの厚味に切り出し、 透過型電子顕微鏡で倍率 1 0 0 0 0倍〜 1 0 0 0 0 0倍、 好ましくは 2 0 0 0 0倍〜 5 0, 0 0 0倍で観察し、 その写真撮影を 行った。 写真のプリントサイズは A 4〜A 5である。 その後、 磁性層、 下層非磁 性層の強磁性粉末や非磁性粉末の形状差に注目して界面を目視判断して黒く渕ど り、 かつ磁性層表面も同様に黒く渕どった。 その後、 Z e i s s社製画像処理装 置 I BAS 2にて渕どりした線の長さを測定した。 試料写真の長さが 2 1 cmの 場合、 測定を 8 5〜3 0 0回行った。 その際の測定値の平均値を磁性層厚み dと した。 dは、 特開平 5— 2 9 8 6 5 3の記載により、 算出した。
(1 0) 磁性粉と研磨剤の粒径の測定方法
•磁性粉粒子の粒度分布の測定
試料粉末粒子を透過型電子顕微鏡で観察し、 プリントした写真の粒子一個一個 を画像解析装置で測定して、 粒度分布を求めた。
1. 試料調整
約 1 0 m 1の水の入った秤量瓶にほぼ耳搔き一杯の粉末粒子を入れ、 超音波分 散を 1 0分行った後、 コロジオン膜を張った銅メッシュですくって乾燥させた。 それをカーボン蒸着して補強し、 観察用試料とした。
2. 粒子の観察および写真プリント
観察:装置…透過型電子顕微鏡 .
撮影倍率… 6万倍
写真プリント :総合倍率… 2 0万倍
総合倍率は同時観察の回折格子像から補正した。
3. 粒子サイズの測定
装置: KONTRON社製画像解析装置 KS 4 0 0
方法:デジタイザ一上に写真の粒子の外形をスライスペンで卜レースして、 長 軸長、 短軸長を測定し、 それの平均を平均長軸長、 平均短軸長とし、 それらの比 (平均長軸長/平均短軸長) を針状比とした。
測定粒子数… 5 0 0個
•研磨剤粒子の粒度分布の測定
試料粉末粒子を透過型電子顕微鏡で観察し、 プリントした写真の粒子一個一個 を画像解析装置で測定して、 粒度分布を求めた。
1. 試料調整
約 1 0 m 1の水の入った秤量瓶にほぼ耳搔き一杯の粉末粒子を入れ、 超音波分 散を 1 0分行った後、 コロジオン膜を張った銅メッシュですくつて乾燥させた。 それを力一ボン蒸着して補強し、 観察用試料とした。
2. 粒子の観察および写真プリント
観察:装置…透過型電子顕微鏡
撮影倍率… 1万倍
写真プリント:総合倍率… 3万倍
総合倍率は同時観察の回折格子像から補正した。
3. 粒子サイズの測定
装置: KONTRON社製画像解析装置 KS 4 0 0
方法:デジタイザ一上に写真の粒子の外形をスライスペンでトレースして、 測 定し、 その平均を平均粒子径とした。
測定パラメーター…円相当径
測定粒子数… 5 0 0個
(1 1) 走行耐久性:フロッピディスクドライブ (米 I ome g a社製 Z I P 1 0 0 :回転数 2 9 6 8 r pm) を用い半径 3 8 mm位置にへッドを固定し、 記録密度 3 4 k f c iで記録を行った後その信号を再生し、 1 0 0%とした。 そ の後、 以下のフローを 1サイクルとするサーモサイクル環境で 1 5 0 0時間走行 させた。 走行 2 4時間おきに出力をモニタ—しその出力が初期の値の 7 0%以下 となった点を NGとした。
(サ一モサイクルフロー)
2 5°C、 5 0 %RH 1時間— (昇温 2時間) →6 0°C、 2 0 %RH 7時 間→ (降温 2時間) →2 5°C、 5 0%RH 1時間→ (降温 2時間) → 5 °C 、 50%RH 7時間→ (昇温 2時間) —くこれを繰り返す〉
(12) ライナ一ウェア評価
へッ ドオフの状態で走行耐久性と同じ環境で、 サンプルを 1000 h r走行さ せ、 終了したサンプルを走行後力一トリッジケースを開き磁気ディスクの磁性層 表面を目視観察し評価した。
〇:磁性層表面に欠陥がないもの
Δ:磁性層表面の一部に細かな傷が発生したもの
X :磁性層表面全体に細かな傷が発生したもの
(13) ライナ付着評価
へッ ドオフの状態で走行耐久性と同じ環境で、 サンプルを 1000 h r走行 させ、 終了したサンプルを走行後力一トリッジケースを開き磁気ディスクの磁性 層表面を目視観察し評価した。
〇:磁性層表面にライナの付着がないもの
△:磁性層表面の一部にライナの付着が発生したもの
X :磁性層表面全体にライナの付着が発生したもの
(14)起動トノレク評価
東日製作所トルクゲージ モデル 300 ATGを用いて、 Ima t i on社製 LS- 120 ドライブにおけるへッ ドオン時の起動トルクを測定した (単位: g • cm) o
表 5 ディスク mm サンプル m厚み He φτη 織
卜 iasi
No. (〃ΓΪ1) (エノレス (ηπυ (emu/ cm2 )
テツド)
1 mL-2 0.15 2360 3.5 4.8X10— 3 nU-1 b-1 纖 1 o-l
2 mL-2 0.15 2360 2.3 4.8X10—3 πϋ-2 b-1 纖 1 o-l
3 mL-2 0.15 2360 1.9 4.8X10一3 nU-4 b-1 «1 o-l
4 mL-2 0.15 2360 1.7 4.8X10-3 ηϋ-5 b-1 撤 1 o-l
5 mL-2 0.05 2400 1.4 1.6X10—3 nU-5 b-1 mi o-l
6 mL-2 0.10 2380 1.6 3.2X10-3 nU-5 b-1 mi o-l
7 mL-2 0.20 2330 1.9 6.4X10-3 ηϋ-5 b-1 搬 1 o-l
8 mL-2 0.15 2360 1.5 4.8X10—3 ηϋ-5 b-2 mi o-l
9 mL-1 0.15 2550 2.5 4.2X10一3 nU-5 b-1 ■1 o-l
10 mL-4 0.15 2500 2.2 2. IX 10一3 nU-5 b-1 mi o-l
11 mL-5 0.15 2500 1.8 2.4X10-3 nU-5 b-1 嫩 1 o-l
12 mL-2 0.15 2360 2.5 4.8X10—3 ηϋ-5 b-1 縦 3 o-l
13 mL-2 0.15 2360 1.7 4.8X10一3 nU-5 b-1 赃 1 0-2
14 mL-5 0.15 2500 1.8 2.5X10—3 ηϋ-5 b-1 赃 1 0-2
15 mL-4 0.15 2700 1.9 2.3X10— 3 ηϋ-5 b-1 mi 0-4
16 mL-2 0.15 2660 1.6 4.8X10—3 nU-5 b-1 嫩 5 0-5
17 mL-4 0.15 2700 1.8 2.3X10一3 nU-5 b-1 «5 0-5 表 6 ディスク
Figure imgf000106_0001
サンプル No 1 8〜2 0ではサンプル No 1 3のディスクを用い、 線記録密度 とトラック密度を変えて同様にエラ一レ一トを測定した。 表 7 コンピュータ一テープ
Figure imgf000107_0001
表 8
サンプル 卜ラック密度 鶴繊度 藤 »度 エラ一レ一ト
No. (tpi) (kbpi) (Gbit/inch2) (10- 5)
21 3000 122 0.366 0.09
22 3000 122 0.366 0.02
23 3000 122 0.366 0.003
24 3000 122 0.366 0.001
25 3000 122 0.366 0.01
26 3000 122 0.366 0.002
27 3000 122 0.366 0.01
28 3000 122 0.366 0.0005
29 3000 122 0.366 0.02
30 4000 150 0.6 0.02
31 5000 170 0.85 0.5 前述の如くエラ一レートは上記の線記録密度の信号を 8— 1 0変換 P R 1等 化方式でテープに記録し DDS ドライブを用いて測定した。 サンプル No 3 0、 3 1はサンプル No 2 4のテープを用い、 線記録密度とトラック密度を変えて同 様にエラ一レ一トを測定した。
表 9 1 ディスク
上層磁性層
媒体 サンプル 潤滑剤 潤滑剤
No No
種類 種類 里
(部) (部) (部) (部)
1
1 L-a3 6 L-b2 6 L-a3 8 L-b2 8
2 L-a3 6 L-b3 6 L-a3 8 L-b3 8
{
3 L-a3 6 L-b4 6 L-a3 8 L-b4 8
1
4 L-a3 9 L-b3 3 L-a3 12 L-b3 4
1
5 L-a3 3 L - b3 9 L-a3 4 L-b3 12
6 し a3 6 L-b3 6 L - a3 12 L-b3 4
1
7 L-al 6 L-b3 6 L-al 8 L-b3 8
1
8 L-a8 6 L-b3 6 L-a8 8 L-b3 5
9 L-a3 6 L-b3 6 L-al 8 L-b3 8
1 0 L-a3 6 L-b3 6 L-a3 8 L-b2 8
1 1 L-a3 6 L-b2 6 L-a3 8 L-b3 8
1
1 2 L-a3 6 L-b3 3 L-a3 8 L-b3 8
1 3 L-a3 6 L-b3 3 L-a3 8 L-b3 5
1 4 L-a3 6 L-b3 6 L-a3 8 L-b3 5
1
1 5 L-a3 3 L-b3 3 L-a3 5 L-b3 5
1
1 6 L-a3 8 L-b3 8 L-a3 10 L-b3 10
1 7 1 L-a3 6 L-b3 6 L-a3 10 L-b3 8
1 8 3 L-a3 6 L-b3 6 L-a3 8 L-b3 8
1 9 6 L-a3 6 L-b3 6 L-a3 8 L-b3 8
2 0 9 L-a3 6 L-b3 6 L-a3 8 L-b3 8 9 一 2 ディスク
媒体 サンプル C / F e 走行耐久 ライナウェア ラィナ付着 起動トルク
No No 性
1
1 55 1200 〇 〇 60
1
2 50 1500 〇 〇 53
1
3 50 1440 〇 〇 59
1
4 35 1500 〇 〇 55
1
5 70 1080 〇 〇 65
1
6 40 1500 〇 〇 56
1
7 25 1008 o o 64
1
8 20 1200 o o 54
9 30 1104 o o 63
1
1 0 50 1032 o o 65
1
1 1 55 1008 o o 60
1
1 2 45 1500 o o 54
1
1 3 40 1464 o o 54
1
1 4 40 1440 〇 〇 55
1
1 5 30 1008 〇 〇 50
1
1 6 65 1320 〇 〇 68
1 7 60 1500 〇 〇 55
1 8 3 95 1008 〇 . 〇 65
1 9 6 90 972 〇 〇 70
2 0 9 90 1080 〇 〇 61 表 1 0— 1 ディスク
媒体 サンプル 上層磁性層
No No 潤滑剤 潤滑剤
種類 種類 種類 量 種類
(部) (部) (部) (部)
2 1 10 L-a3 6 L-b3 6 L-a3 10 L-b3 8
2 2 11 L-a3 6 L-b3 6 L-a3 10 L-b3 8
2 3 15 L-a3 6 し - b3 6 L-a3 10 L-b3 8
2 4 L-a3 4 し - b2 4 L-a3 6 L - b2 6
L-b3 4 L-b3 6
1
2 5 L-al A I -b2 4 L-a3 6 I -b2 6
I -h4 4 I -b4 6
2 6 L-al 12 L-al 16
2 7 L-a3 12 . し - a3 16
2 8 し - a8 12 L-a8 16
1
2 9 L-b2 12 L-b2 16
1
3 0 L-a3 12 L-b3 16
1
3 1 L-b3 12 L-a3 16
1
3 2 L - al 6 L-a3 6 L-al 8 L-a3 8
1
3 3 L-b2 6 L-b3 6 L-b2 8 L-b3 8
3 4 2 Lall 8 L - b3 2 Lall 8 L-b3 2
3 5 2 Lall 12 L-b3 2 Lal l 12 L-b3 2
3 6 2 Lall 20 L-b3 2 Lall 20 L-b3 2
3 7 2 La3 14 L-b3 2 La3 14 L-b3 2
3 8 2 Lal2 16 L-b3 2 Lal2 16 L - b3 2
3 9 2 Lal3 16 L-b3 2 Lal3 16 L-b3 2 0— 2 ディスク
Figure imgf000112_0001
表 9と表 1 0の結果より明らかな如く、 本発明のモノエステルの潤滑剤とジエス テルの潤滑剤を併用した場合には顕著に走行耐久性、 ライナウェア、 ライナ付着 、 起動トルクの点で良好な効果を発揮した。
なお、 実験結果については明記しないが、 上記モノエステルとジエステルの潤 滑剤を併用した場合には、 コンピュータ一テープに適用しても、 良好な 1 0 0パ ス後ゃ 1 0 0 0パス後においても低い摩擦係数が得られ、 また耐久性として目詰 まりが少なく、 耐磨耗性の優れた磁気記録媒体が得られ、 好ましいことがわかつ o
実施例 3 6
実施例 3 6に使用した磁性体の特性を表 1 1と表 1 2に示す。
1 1 バリウムフェライト磁性体
Figure imgf000114_0001
表 1 2 強磁性金属粉末 磁性体 平均長軸長 針状比 ひ s 含有元素
^nm) (emu/g) FelOO モルに対するモル 数
MP① 80 5 2340 160 Co 30, Al 7, Y 6
MP© 50 6 2320 140 Co 30, Al 10, Y 5
MP③ 80 5 1890 140 Co 20, Al 7, Y 5 瞻 80 5 1700 140 Co 20, Al 6, Y 6
表 1 1及び 1 2に記載の磁性体を用いて磁気ディスク及び磁気テープを以下の ように作成した。
<塗料の作成 >
磁性塗料 1 (六方晶系フ ライ ト : ディスク)
ノく 'リウムフヱライ ト磁性粉: B a F①〜 B a F⑥ 1 0 0部 塩化ビニル共重合体
M R 5 5 5 (日本ゼオン社製) 5部 ポリウレタン樹脂
U R 8 2 0 0 (東洋紡社製) 3部 カーボンブラック
# 5 0 (旭カーボン社製) 1部 フエニルホスホン酸 2部 ブチルステアレート 1 0部 ブトキシェチルステアレ一ト 5部 ィソへキサデシルステアレート 3部 ステアリ ン酸 2部 メチルェチルケトン 1 2 5部 シクロへキサノン 1 2 5部 磁性塗料 2 (六方晶系フェライ ト :テープ)
バリウムフヱライ ト磁性粉 : B a F①、 ② 1 0 0部 塩化ビニル系共重合体
MR 5 5 5 (日本ゼオン社製) 6部 ポリウレタン樹脂 3部
U R 8 2 0 0 (東洋紡社製) 3部 力一ボンブラック (平均粒子径 0 . 0 1 5 m)
# 5 5 (旭力一ボン社製) 5部 フエニルホスホン酸 2部 ブチルステアレ一ト 1部 ステアリ ン酸 2部 メチルェチルケトン 1 2 5部 シクロへキサノン 1 2 5部
<塗料の作成〉
磁性塗料 3 (強磁性金属:ディスク)
強磁性金属微粉末: M P①〜 M P④ 1 0 0部 塩化ビニル共重合体
M R 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
U R 8 2 0 0 (東洋紡社製) 3部 カーボンブラック
# 5 0 (旭力一ボン社製) 5部 フエニルホスホン酸 3部 ブチルステアレート 1 0部 ブトキシェチルステアレー卜 5部 ィソへキサデシルステアレ一ト 3部 ステアリ ン酸 2部 メチルェチルケ卜ン 1 8 0部 シクロへキサノン 1 8 0部 磁性層塗料 4 (強磁性金属:テープ)
強磁性金属微粉末: M P①、 M P② 1 0 0部 塩化ビニル系共重合体
M R 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
U R 8 2 0 0 (東洋紡社製) 3部 カーボンブラック
# 5 5 (旭カーボン社製) 1部 ブチルステアレート 1部 ステアリ ン酸 5部 メチルェチルケトン 1 0 0部 ン 2 0部 トルエン 60部 非磁性塗料 5 (下層:ディスク)
非磁性粉末 T i 02 結晶系ルチル 80部 平均粒子径 0. 0 3 5 in、 B ET法による比表面積 40m2 /g p H 7 T i 02 含有量 90 %以上、
D BP吸油量 ?〜 3 8 g/100g,
表面に A 12 03としてが粒子全体の 8重量%存在
カーボンブラック
コンダクテックス S C—U (コロンビアン力一ボン社製) 20部 塩化ビニル共重合体
MR 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
UR 820 0 (東洋紡社製) 5部 フヱニルホスホン酸 4部 ブチルステアレ一ト 1 0部 ブトキシェチルステアレート 5部 イソへキサデシルステアレート 2部 ステアリン酸 3部 メチルェチルケトン /シクロへキサノン (8/2混合溶剤) 2 50部 非磁性塗料 6 (下層用:テープ)
非磁性粉末 T i 02 結晶系ルチル 80部 平均粒子径 0. 0 3 5 //m、 BET法による比表面積 40m2 /g pH 7 T i◦ 2 含有量 90 %以上、
D BP吸油量 27〜3 8g/100g、
表面に A 12 03としてが粒子全体の 8重量%存在
力一ボンブラック
コンダクテックス S C— U (コロンビアン力一ボン社製) 20部 塩化ビニル共重合体 M R 1 1 0 (日本ゼオン社製) 1 2部 ポリウレタン樹脂
U R 8 2 0 0 (東洋紡社製) 5部 フエニルホスホン酸 4部 プチルステアレート 1部 ステアリン酸 3部 メチルェチルケトン/シクロへキサノン (8 Z 2混合溶剤) 2 5 0部 製法 1 ディスク
上記の塗料のそれぞれについて、 各成分をニーダで混練したのち、 表 1 3— 1 及び 1 4一 1に記載のように所定のダイアモンド微粒子を加え (または加えず) 、 サンドミルを用いて分散させた。 得られた分散液に、 媒体により前記表に記載 のように分散した αアルミナ H I Τ 5 5 (住友化学社製 S L H 5 5 ) を所定量加 えるか、 加えず、 更にポリイソシァネートを下層の塗布液には 1 0部、 磁性層の 塗布液には 1 0部を加え、 さらにそれぞれにシクロへキサノン 4 0部を加え, 1 の平均孔径を有するフィルタ一を用いて濾過し、 下層形成用および磁性層形 成用の塗布液をそれぞれ調製した。
得られた下層塗布液を、 乾燥後の厚さが 1 . 5 Y& になるようにさらにその直 後にその上に磁性層の厚さが 0 . 2 m になるように、 厚さ 6 2〃mで中心面平 均表面粗さが 3 n mのポリエチレンテレフタレ一ト支持体上に同時重層塗布をお こない、 強磁性金属磁性体を用いた場合は両層がまだ湿潤状態にあるうちに周波 数 5 0 Hz、 磁場強度 2 5 0ガウスまた周波数 5 0 Hz、 1 2 0ガウスの 2つの磁場 強度交流磁場発生装置の中を通過させランダム配向処理を行い、 乾燥後、 7段の 力レンダで温度 9 0 °C、 線圧 3 0 0 Kg/cm にて処理を行い、 3 . 5吋に打ち抜き 表面研磨処理施してディスク媒体を得た。 また、 六方晶系フェライ ト磁性体を用 いた場合は、 ランダム配向処理を行わなかった以外は上記工程と同一の工程でデ イスク媒体を得た。
製法 1 一 2 (ディスク)
表 1 4一 1の媒体 N o 1 6は、 前記製法 1の内、 ポリエチレンテレフ夕レート 支持体の中心面平均表面粗さが 7 n mのものを用いた他は製法 1と同様にデイス ク媒体を得た。
製法 2 コンピュータ一テープ
上記の塗料について、 各成分をニーダで混練したのち、 表 1 5— 1に記載のよ うに所定のダイアモンド微粒子を加え (または加えず) 、 媒体により表 1 5— 1 に記載のように分散した アルミナ H I T 5 5 (住友化学社製 S LH 5 5) を所 定量加えるか、 加えず、 サンドミルを用いて分散させた。 得られた分散液にポリ イソシァネートを下層の塗布液には 2. 5部、 磁性層の塗布液には 3部を加え、 さらにそれぞれにシクロへキサノン 4 0部を加え, 1 /m の平均孔径を有するフ ィルターを用いて濾過し、 下層形成用および磁性層形成用の塗布液をそれぞれ調 製した。
得られた下層塗布液を、 乾燥後の下層の厚さが 1. 7 fim になるようにさらに その直後にその上に磁性層の厚さが 0. 1 5 〃m になるように、 厚さ 4. 4 fim で中心面平均表面粗さが 2 nmのァラミ ド支持体 (商品名: ミク トロン) 上に同 時重層塗布をおこない、 両層がまだ湿潤状態にあるうちに 6 0 0 0 Gの磁力を持 つコバルト磁石と 6 0 0 0 Gの磁力を持つソレノィ ドにより配向させた。 乾燥後 、 金属ロールのみから構成される 7段のカレンダーで温度 8 5 °Cにて分速 2 0 0 m/m i n. で処理を行い、 その後、 厚み 5 〃mのバック層 (カーボンブラ ック 平均粒子径: 1 7 nm 1 0 0部、 炭酸カルシウム 平均粒子径: 4 0 η m 8 0部、 びアルミナ 平均粒子径: 2 0 0 n m 5部をニトロセルロース樹 月旨、 ポリウレタン樹脂、 ポリィソシァネ一トに分散) を塗布した。 3. 8 mmの 幅にスリッ トし、 スリッ ト品の送り出し、 巻き取り装置を持った装置に不織布と 力ミソリブレ―ドが磁性面に押し当たるように取り付け、 テープクリーニング装 置で磁性層の表面のクリーニングを行い、 テープ試料を得た。
上記作成した磁性体、 磁気ディスク及びコンピュータ一テープの各々の性能を 下記の測定法により評価した。
測定法
( 1 ) 磁気特性 (H c、 CTS ) :振動試料型磁束計 (東英工業社製) を用い、 H m 1 0 KO eで測定した。
(2) ダイアモンド微粒子 (粒径分布) : ダイアモンド粉を適量とり、 その電子 顕微鏡写真から無作為に抽出した 5 00ケの粒子を前記方法により測定して平均 粒径 ø、 粒径が平均粒径 øの 2 0 0 %以上の粒子個数がダイアモンド全個数中に 占める割合 (ΔΝ200 ) ( ) 、 粒径が平均粒径 øの 5 0%以下の粒子個数がダ ィァモンド全個数中に占める割合 (ΔΝ50) (%) を求めた。
(3) 中心面平均表面粗さ R a : WYKO社製 TOPO 3 Dを用いて、 3D—M I RAU法で約 250 ^mx 2 5 0 mの面積の R a値を測定した。 測定波長約 650 nmにて球面補正、 円筒補正を加えている。 本方式は光干渉にて測定する 非接触表面粗さ計である。
(4) ディスク電磁変換特性
出力:再生出力の測定は、 国際電子工業社製 (旧東京エンジニアリング) 製の ディスク試験装置と SK 6 0 6 B型評価装置を用いギャップ長 0. 3〃mのメタ ルインギャップへッ ドを用い、 半径 24. 6 mmの位置において記録波長 9 0 K FC Iで記録した後、 へッ ド増幅機の再生出力をテク トロ二クス社製オシロスコ ープ 7 6 3 3型で測定した。
SN比:再生出力を測定したディスクを DC消去した後、 了ドバンテスト社製 TR 4 1 7 1型スぺク トロアナライザ一で再生出力 (ノイズ) を測定した。
SN比=ー20 10 g (ノイズ Z再生出力) とし、 媒体 No 1、 1 8の SN比 を 0 d Bとして相対値で示した。
(5) テープ電磁変換特性
CN比 (テープ) :記録へッ ド (MIG、 ギャップ 0.15//m、 1. 8 T) をドラ ムテスタ一に取り付けてデジタル信号を記録再生した。 へッ ドーメディア相対速 度 3 m/ s e c、 記録波長 0. 3 5〃 m、 ノィズは変調ノィズを測定した。 ( 6 ) 耐久性:
①磁気ディスク耐久性: フロッピーディスク ドライブ (米 I ome g a社製 Z I P 1 00 :回転数 2 9 6 8 r pm) を用い半径 3 8 mm位置にへッ ドを固 定した。 その後 以下のフローを 1サイクルとするサーモサイクル環境で走行さ せた。 目視で試料表面にキズがついた時点を NGとした。 媒体 No 1の耐久時間 を 1 0 0%とした。
(サ一モサイクルフロー) 2 5°C、 5 0 %RH 1時間— (昇温 2時間) — 6 0°C、 2 0 %RH 7時 間— (降温 2時間) → 2 5 °C、 5 0 % R H 1時間— (降温 2時間) → 5 °C 、 1 0 %RH 7時間→ (昇温 2時間) →<これを繰り返す >
②コンピューターテープ耐久性: DDSドライブを用い、 所定の信号を記録し た後、 再生信号をモニタ一しつつ 5 0° 1 0 %RHで走行させた。 初期再生出 力の 7 0 %になった時点で NGとした。 媒体 No 3 2の耐久性を 1 0 0 %として 表示した。
表 1 3— 1、 表 1 4一 2に磁気ディスク評価結果を、 表 1 5— 2に磁気テープ 評価結果を示した。
表 1 3— 1 《リウムフヱライト使用ディスクの媒体の結果
Figure imgf000122_0001
Φ * :平均粒子径
A:ダイアモンド添加量 (対 BaF)重量%
B :アルミナ添加量 (対 BaF)重量%
表 1 3— 2 ノ 'リウムフヱライト使用ディスク媒体の結果
Figure imgf000123_0001
A:ダイアモンド添加量 (対 BaF)重量%
B :アルミナ添加量 (対 BaF)重量%
表 1 4一 1 強磁性金属磁性体使用ディスク媒体の結果
Figure imgf000124_0001
Φ * :平均粒子径
A:ダイアモンド添加量 (対 BaF)重量%
B : アルミナ添加量 (対 BaF)重量% 表 1 4— 2 強磁性金属磁性体使用ディスク媒体の結果
Figure imgf000125_0001
Α:ダイアモンド添加量 (対 BaF)重量%
B :アルミナ添加量 (対 BaF)重量%
表 1 5— 1 テープ媒体の結果
Figure imgf000126_0001
Φ* :平均粒子径
A:ダイアモンド添加量 (対 BaF)重量% B : アルミナ添加量 (対 BaF)重量% 表 1 5— 2 テープ媒体の結果
Figure imgf000127_0001
A ド添加量 (対 BaF)重量%
B :アルミナ添加量 (対 BaF)重量%
実施例 3 6の結果より明らかな如く磁性層中に好ましくは平均粒子径 0. 1 0 〜1. 0 zmであるダイアモンド微粒子を強磁性粉末に対して好まレ.くは 0. 0 1〜 5重量%含有させることにより、 耐久性を確保しつつ、 その電磁変換特性に おけるノィズを改善することができる。 産業上の利用分野
本発明は支持体上に実質的に非磁性である下層と強磁性金属粉末または強磁性 六方晶フ ライ ト粉末を結合剤中に分散してなる磁性層をこの順に設けた磁気記 録媒体において、 前記磁気記録媒体は面記録密度が 0. 1 7〜2 Gbit/inch2の 信号を記録する磁気記録媒体であり、 前記磁性層の抗磁力が 1 8 0 0 ルス ト '以上 であり、 且つ前記強磁性金属粉末は平均長軸長が 0. 1 2 m以下であり、 また は前記強磁性六方晶フェライ ト粉末は平均粒子径が 0. 1 0 m以下であること を特徴とする磁気記録媒体、 または前記磁性層の乾燥厚みが 0. 0 5〜 3 0 〃mであり、 (Dmが 1 0. 0 x 1 0— 3〜し 0 x 1 0— 3emu/cm2 であることを特 徴とする磁気記録媒体によって達成できる。 好ましくは前記磁性層の乾燥厚みが 0. 0 5〜0. 2 5 mであり、 且つ (Dmが 8. 0 X 1 0— 3〜 1. 0 X 1 0— 3em u/cm2 であることを特徴とする磁気記録媒体、 さらには前記磁気記録媒体は面記 録密度が 0. 2 0〜2 Gb / inch2の信号を記録する磁気記録媒体であることを 特徴とする磁気記録媒体とすることで、 従来の塗布型の磁気記録媒体の技術では 得ることができなかった大容量で優れた高密度特性と優れた耐久性を併せ持つ高 密度記録領域でのエラ一レー卜が格段に改良された磁磁気記録媒体を得ることが できる。

Claims

請求の範囲
1. 支持体上に実質的に非磁性である下層と強磁性金属粉末または強磁性六方 晶フ ライ 卜粉末を結合剤中に分散してなる磁性層をこの順に設けた磁気記録媒 体において、 前記磁気記録媒体は面記録密度が 0. 1 7〜2 Gbit/inch2の信号 を記録する磁気記録媒体であり、 前記磁性層の抗磁力が 1 8 0 01ルス ト'以上であ り、 且つ前記強磁性金属粉末は平均長軸長が 0. 1 5 /m以下であり、 または前 記強磁性六方晶フェライ ト粉末は平均粒子径が 0. 1 0 /im以下であることを特 徴とする磁気記録媒体。
2. 支持体上に実質的に非磁性である下層と強磁性金属粉末または強磁性六方 晶フェライ ト粉末を結合剤中に分散してなる磁性層をこの順に設けた磁気記録媒 体において、 前記磁気記録媒体は面記録密度が 0. 1 7〜2 Gb / inch2の信号 を記録する磁気記録媒体であり、 前記磁性層の乾燥厚みが 0. 0 5〜0. 3 0 mであり、 Φπιが 1 0. 0 x 1 0 3〜 1. 0 x 1 0— 3emu/cm2 であり、 且つ前記 磁性層の抗磁力が 1 800エルステッド以上であることを特徴とする磁気記録媒体。
3. 前記磁性層の乾燥厚みが 0. 05〜 25 /mであり、 且つ Φπιが 8.
0 X 1 0— 3~1. 0 X 1 0 " 3 emu/cm2 であることを特徵とする請求項 1または請 求項 2記載の磁気記録媒体。
4. 前記磁気記録媒体は面記録密度が 0. 2 0〜2 Gbit/inch2の信号を記録 する磁気記録媒体であることを特徴とする請求項 1または請求項 2記載の磁気記 録媒体。
5. 前記磁性層の表面粗さが 3 D— MI R.AU法による中心面平均表面粗さで 5. 0 nm以下であることを特徴とする請求項 1または請求項 2記載の磁気記録 媒体。
6. 前記磁性層の抗磁力が 2 1 0 O ルステ 以上であり、 且つ前記強磁性金属粉 末は平均長軸長が 0. 1 2 m以下であり、 または前記強磁性六方晶フエライ ト 粉末は平均粒子径が 0. 1 0 以下であることを特徴とする請求項 1または請 求項 2記載の磁気記録媒体。
7. 前記磁気記録媒体は、 し 0 MBZs e c以上の高速転送速度のシステム 用の磁気記録媒体であることを特徴とする請求項 1または請求項 2記載の磁気記 録媒体。
8. 前記磁気記録媒体は、 ディスク回転数が 2 0 0 0 r pm以上の大容量フロ ツビ一ディスクシステム用の磁気記録媒体であることを特徴とする請求項 1また は請求項 2記載の磁気記録媒体。
9. 前記強磁性金属粉末は F eを主体とし、 平均長軸長が 0. 1 2 /m以下、 針状比は 3. 0〜9. 0であることを特徴とする請求項 1または請求項 2記載の 磁気記録媒体。
1 0. '前記強磁性金属粉末は F eを主体とし、 平均長軸長が 0. 1 0 以下 、 結晶子サイズは 8 0人〜 1 8 0人であることを特徴とする請求項 1または請求 項 2記載の磁気記録媒体。
1 1. 前記支持体の 3 D— M I RAU法による中心面平均表面粗さが 5. O n m以下であることを特徴とする請求項 1または請求項 2記載の磁気記録媒体。
1 2. 前記支持体の面内各方向に対し、 1 0 0°C3 0分での熱収縮率が 0. 5 %以下及び 8 0°C3 0分での熱収縮率が 0. 2%以下であることを特徴とする請 求項 1または請求項 2記載の磁気記録媒体。
1 3. 前記支持体の面内各方向に対し、 温度膨張係数が 1 0— 4〜1 0— 8/°Cで あることを特徴とする請求項 1または請求項 2記載の磁気記録媒体。
1 4. 前記下層及び/又は磁性層には少なくとも流体潤滑機能を示す潤滑剤と 境界潤滑機能を示す潤滑剤を含むことを特徴とする請求項 1または請求項 2記載 の磁気記録媒体。
1 5. 前記潤滑剤の脂肪酸及び前記脂肪酸;ステルは脂肪酸残基同士が互いに 同一であることを特徴とする請求項 1 4記載の磁気記録媒体。
1 6. 前記潤滑剤の脂肪酸は少なくとも飽和脂肪酸を含み、 前記脂肪酸エステ ルは少なくとも飽和脂肪酸エステル又は不飽和脂肪酸エステルを含むことを特徴 とする請求項 1 4記載の磁気記録媒体。
1 7. 前記潤滑剤の脂肪酸エステルはモノエステル及びジエステルを含むこと を特徴とする請求項 1 4記載の磁気記録媒体。
1 8. 前記潤滑剤の脂肪酸エステルは飽和脂肪酸エステル及び不飽和脂肪酸ェ ステルを含むことを特徴とする請求項 1 4記載の磁気記録媒体。
1 9. 前記磁性層の表面をオージ 電子分光法で測定したときの C/F eピー ク比が 5〜1 0 0であることを特徴とする請求項 1または請求項 2記載の磁気記 録媒体。
2 0. 前記下層は粒子径が 5 nm〜8 0 n mのカーボンブラックを含み、 前記 磁性層は粒子径が 5 nm〜 3 0 0 n mのカーボンブラックを含むことを特徴とす る請求項 1または請求項 2記載の磁気記録媒体。
2 1. 前記下層は平均粒子径が 5 nm〜8 0 nmのカーボンブラックと平均粒 子径が 8 0 nmより大のカーボンブラックとを含むことを特徴とする請求項 1ま たは請求項 2記載の磁気記録媒体。
2 2. 前記下層及び前記磁性層はいずれも平均粒子径が 5 nm〜8 0 nmの力 一ボンブラックを含むことを特徴とする請求項 1または請求項 2記載の磁気記録 媒体。
2 3. 前記下層は平均長軸長が 0. 2 0 /m以下であり、 針状比が 4. 0〜 9 . 0の針状無機粉末を含むことを特徴とする請求項 1または請求項 2記載の磁気 記録媒体。
2 4. 前記下層は針状無機粉末を含み、 前記磁性層は針状強磁性金属粉末を含 み、 前記針状無機粉末の平均長軸長が前記針状強磁性金属粉末の平均長軸長の 1 . 1倍〜 3. 0倍であることを特徴とする請求項 1または請求項 2記載の磁気記 録媒体。
2 5. 前記下層及び/又は前記磁性層は燐化合物を含み、 かつ前記下層は針状 又は球状の無機粉末を含むことを特徴とする請求項 1または請求項 2記載の磁気 記録媒体。
2 6. 前記磁性層は少なくとも平均粒子径が 0. 0 1〜 0. 3 0 mの研磨剤 を含むことを特徴とする請求項 1または請求項 2記載の磁気記録媒体。
2 7. 前記磁性層は少なくとも平均粒子径が 2. 0 /zm以下のダイアモンドを 含むことを特徴とする請求項 1または請求項 2記載の磁気記録媒体。
2 8. 前記磁性層はモース硬度が 9以上の 2種類の研磨剤を含むことを特徴と する請求項 1または請求項 2記載の磁気記録媒体。
2 9. 前記磁性層は アルミナとダイアモンドを含むことを特徵とする請求項 1または請求項 2記載の磁気記録媒体。
3 0. 前記下層及び/又は前記磁性層は少なくともガラス転移温度が 0 °C〜 1 0 0 °Cのポリゥレタンを含むことを特徴とする請求項 1または請求項 2記載の磁 気記録媒体。
3 1. 前記下層及び/又は前記磁性層は少なくとも破断応力が 0. 0 5〜1 0 K g/mm2のポリウレタンを含むことを特徴とする請求項 1または請求項 2記 載の磁気記録媒体。
3 2. 前記磁性層の乾燥厚みが 0. 0 5〜0. 2 0 /mであり、 かつ前記磁性 層中に平均粒子径が 0. 4 m以下の研磨剤を含むことを特徴とする請求項 1ま たは請求項 2記載の磁気記録媒体。
3 3. 前記磁気記録媒体が面記録密度が 0. 3 5〜2 Gbit/inch2 の信号を記 録する磁気記録媒体であることを特徴とする請求項 1または請求項 2記載の磁気 記録媒体。
34. 前記磁気記録媒体は、 ディスク回転数が 3 0 0 0 r pm以上の大容量フ 口ッピ一ディスクシステム用の磁気記録媒体であることを特徴とする請求項 1ま たは請求項 2記載の磁気記録媒体。
3 5. 前記磁気記録媒体は、 2. OMBZs e c以上の高速転送速度のシステ ム用の磁気記録媒体であることを特徴とする請求項 1または請求項 2記載の磁気 記録媒体。
3 6. 前記磁気記録媒体は、 現行の 3. 5インチ型フロッピーディスクとの記 録 ·再生が可能な下位互換を実現した、 大容量フロッピーディスクシステム用の 磁気記録媒体であることを特徴とする請求項 1または請求項 2記載の磁気記録媒 体。
3 7. 前記磁気記録媒体は、 高密度記録用の狭いギャップと現行の 3. 5イン チ型フロッピ一ディスク用の広いギヤップの両方を備えたデュアルディスクリ一 トギヤップへッ ドを採用した大容量フロッピ一ディスクシステム用の磁気記録媒 体であることを特徴とする請求項 1または請求項 2記載の磁気記録媒体。
3 8. 前記磁気記録媒体は、 ディスクの回転によりヘッ ドが浮上する大容量フ 口ッピ一ディスクシステム用の磁気記録媒体であることを特徴とする請求項 1ま たは請求項 2記載の磁気記録媒体。
3 9 . 前記磁気記録媒体は、 ディスクの回転によりへッ ドが浮上し、 かつへッ ドの駆動にはリニアタイプのボイスコイルモータ一を用いる大容量フロッピ一デ イスクシステム用の磁気記録媒体であることを特徴とする請求項 1または請求項 2記載の磁気記録媒体。
4 0 . 前記支持体はポリエチレンテレフタレート又はポリアミ ドであることを 特徴とする請求項 1または請求項 2記載の磁気記録媒体。
PCT/JP1998/000540 1997-02-10 1998-02-10 Support d'enregistrement magnetique WO1998035345A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98901572A EP0962919A1 (en) 1997-02-10 1998-02-10 Magnetic recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP09027115 1997-02-10
JP9/27115 1997-02-10
JP6156097 1997-03-14
JP9/61560 1997-03-14

Publications (1)

Publication Number Publication Date
WO1998035345A1 true WO1998035345A1 (fr) 1998-08-13

Family

ID=26365005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000540 WO1998035345A1 (fr) 1997-02-10 1998-02-10 Support d'enregistrement magnetique

Country Status (4)

Country Link
US (1) US6254964B1 (ja)
EP (1) EP0962919A1 (ja)
KR (1) KR20010029493A (ja)
WO (1) WO1998035345A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982714A1 (en) * 1998-08-27 2000-03-01 TDK Corporation Magnetic Disk
EP1434199A1 (en) * 2002-12-27 2004-06-30 Fuji Photo Film Co., Ltd. Magnetic recording medium
EP0869482B1 (en) * 1997-03-31 2006-10-25 Fuji Photo Film Co., Ltd. Magnetic recording medium
US8795858B2 (en) 2010-03-19 2014-08-05 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096419A (en) * 1997-03-21 2000-08-01 Toray Industries, Inc. Aromatic polyamide film and magnetic recording medium using the same
US6475598B1 (en) * 1999-06-24 2002-11-05 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2002015415A (ja) 2000-06-29 2002-01-18 Fuji Photo Film Co Ltd 磁気ディスク
JP2002047066A (ja) * 2000-08-02 2002-02-12 Tokai Carbon Co Ltd SiC成形体およびその製造方法
EP1207522A1 (en) 2000-11-16 2002-05-22 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP4153657B2 (ja) 2000-11-21 2008-09-24 富士フイルム株式会社 磁気記録媒体
JP2002170217A (ja) * 2000-11-29 2002-06-14 Fuji Photo Film Co Ltd 磁気ディスク
JP2002183929A (ja) * 2000-12-18 2002-06-28 Fuji Photo Film Co Ltd 磁気記録媒体
JP2002329307A (ja) * 2001-04-27 2002-11-15 Fuji Photo Film Co Ltd 磁気記録媒体
DE10135957A1 (de) 2001-07-24 2003-02-13 Emtec Magnetics Gmbh Magnetisches Aufzeichnungsmedium
JP2003085730A (ja) * 2001-09-10 2003-03-20 Fuji Photo Film Co Ltd 磁気記録媒体
JP2003132516A (ja) * 2001-10-25 2003-05-09 Fuji Photo Film Co Ltd 磁気記録媒体
US20040253482A1 (en) * 2003-06-12 2004-12-16 Philip James B. Dual-layer magnetic medium with nonhalogenated binder system
US20050025998A1 (en) * 2003-07-30 2005-02-03 Imation Corp. Data storage media having a sublayer containing a pigment combination having balanced pigment weight ratios
US20050170190A1 (en) * 2004-02-02 2005-08-04 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2007273037A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp 磁気記録媒体およびその製造方法
US20080055777A1 (en) * 2006-09-06 2008-03-06 Seagate Technology Llc Perpendicular magnetic recording media with improved scratch damage performance
JP6058607B2 (ja) 2014-09-30 2017-01-11 富士フイルム株式会社 磁気テープおよびその製造方法
JP6325977B2 (ja) * 2014-12-26 2018-05-16 富士フイルム株式会社 磁気テープおよびその製造方法
US9711174B2 (en) * 2014-12-26 2017-07-18 Fujifilm Corporation Magnetic tape and method of manufacturing the same
JP6209172B2 (ja) * 2015-02-25 2017-10-04 富士フイルム株式会社 磁気テープおよびその製造方法
JP6300762B2 (ja) * 2015-07-28 2018-03-28 富士フイルム株式会社 磁気テープおよびその製造方法
JP6316248B2 (ja) 2015-08-21 2018-04-25 富士フイルム株式会社 磁気テープおよびその製造方法
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
JP6552402B2 (ja) 2015-12-16 2019-07-31 富士フイルム株式会社 磁気テープ、磁気テープカートリッジ、磁気記録再生装置および磁気テープの製造方法
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
JP6430927B2 (ja) 2015-12-25 2018-11-28 富士フイルム株式会社 磁気テープおよびその製造方法
JP6427127B2 (ja) 2016-02-03 2018-11-21 富士フイルム株式会社 磁気テープおよびその製造方法
JP6465823B2 (ja) 2016-02-03 2019-02-06 富士フイルム株式会社 磁気テープおよびその製造方法
JP6472764B2 (ja) 2016-02-29 2019-02-20 富士フイルム株式会社 磁気テープ
JP6467366B2 (ja) 2016-02-29 2019-02-13 富士フイルム株式会社 磁気テープ
JP6474748B2 (ja) 2016-02-29 2019-02-27 富士フイルム株式会社 磁気テープ
JP6556096B2 (ja) 2016-06-10 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6534637B2 (ja) 2016-06-13 2019-06-26 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6534969B2 (ja) 2016-06-22 2019-06-26 富士フイルム株式会社 磁気テープ
JP6556100B2 (ja) 2016-06-22 2019-08-07 富士フイルム株式会社 磁気テープ
JP6556101B2 (ja) 2016-06-23 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6549529B2 (ja) 2016-06-23 2019-07-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6556102B2 (ja) 2016-06-23 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6498154B2 (ja) 2016-06-23 2019-04-10 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6496277B2 (ja) 2016-06-23 2019-04-03 富士フイルム株式会社 磁気テープ
JP6549528B2 (ja) 2016-06-23 2019-07-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6717684B2 (ja) 2016-06-23 2020-07-01 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6507126B2 (ja) 2016-06-23 2019-04-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6529933B2 (ja) 2016-06-24 2019-06-12 富士フイルム株式会社 磁気テープ
JP6552467B2 (ja) 2016-08-31 2019-07-31 富士フイルム株式会社 磁気テープ
JP6556107B2 (ja) 2016-08-31 2019-08-07 富士フイルム株式会社 磁気テープ
JP6585570B2 (ja) 2016-09-16 2019-10-02 富士フイルム株式会社 磁気記録媒体およびその製造方法
JP6701072B2 (ja) 2016-12-27 2020-05-27 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2018106778A (ja) 2016-12-27 2018-07-05 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6684203B2 (ja) 2016-12-27 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6588002B2 (ja) 2016-12-27 2019-10-09 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6684236B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6602805B2 (ja) 2017-02-20 2019-11-06 富士フイルム株式会社 磁気テープ
JP6685248B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6602806B2 (ja) 2017-02-20 2019-11-06 富士フイルム株式会社 磁気テープ
JP6684238B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6684239B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6684234B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6689223B2 (ja) 2017-02-20 2020-04-28 富士フイルム株式会社 磁気テープ
JP6649298B2 (ja) 2017-02-20 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6637456B2 (ja) 2017-02-20 2020-01-29 富士フイルム株式会社 磁気テープ
JP6689222B2 (ja) 2017-02-20 2020-04-28 富士フイルム株式会社 磁気テープ
JP6649297B2 (ja) 2017-02-20 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6684235B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6684237B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6694844B2 (ja) 2017-03-29 2020-05-20 富士フイルム株式会社 磁気テープ装置、磁気再生方法およびヘッドトラッキングサーボ方法
JP6649312B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6626031B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6660336B2 (ja) 2017-03-29 2020-03-11 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649313B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6626032B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6615815B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649314B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6632561B2 (ja) 2017-03-29 2020-01-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6615814B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6632562B2 (ja) 2017-03-29 2020-01-22 富士フイルム株式会社 磁気テープ
JP6723198B2 (ja) 2017-06-23 2020-07-15 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6691512B2 (ja) 2017-06-23 2020-04-28 富士フイルム株式会社 磁気記録媒体
JP6723202B2 (ja) 2017-07-19 2020-07-15 富士フイルム株式会社 磁気テープ
JP6717787B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6717786B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気テープおよび磁気テープ装置
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
JP6707060B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気テープ
JP6717785B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気記録媒体
JP6678135B2 (ja) 2017-07-19 2020-04-08 富士フイルム株式会社 磁気記録媒体
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
JP6707061B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気記録媒体
JP6723203B2 (ja) 2017-07-19 2020-07-15 富士フイルム株式会社 磁気テープ
JP6714548B2 (ja) 2017-07-19 2020-06-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP6884220B2 (ja) 2017-09-29 2021-06-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
WO2019065199A1 (ja) 2017-09-29 2019-04-04 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
JP6830931B2 (ja) 2018-07-27 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6784738B2 (ja) 2018-10-22 2020-11-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830945B2 (ja) 2018-12-28 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7042737B2 (ja) 2018-12-28 2022-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003073B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US11158339B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Magnetic recording layer formulation for tape media
US12014760B2 (en) 2019-08-20 2024-06-18 International Business Machines Corporation Process for forming tape media having synergistic magnetic recording layer and underlayer
US11158337B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Tape cartridge having tape media having synergistic magnetic recording layer and underlayer
US11410697B2 (en) 2019-08-20 2022-08-09 International Business Machines Corporation Process for forming underlayer for tape media
US11152027B2 (en) 2019-08-20 2021-10-19 International Business Machines Corporation Tape media having synergistic magnetic recording layer and underlayer
US11790942B2 (en) * 2019-08-20 2023-10-17 International Business Machines Corporation Process for forming magnetic recording layer for tape media
JP6778804B1 (ja) 2019-09-17 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
WO2024173535A1 (en) * 2023-02-14 2024-08-22 Actnano, Inc. Compositions for reducing friction or stiction of a surface, methods and articles comprising the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652541A (ja) * 1992-07-31 1994-02-25 Fuji Photo Film Co Ltd 磁気記録媒体及びその製造方法
JPH06267059A (ja) * 1993-03-15 1994-09-22 Fuji Photo Film Co Ltd 磁気記録媒体
JPH07192250A (ja) * 1993-12-27 1995-07-28 Tdk Corp 磁気記録媒体
JPH08221740A (ja) * 1995-02-20 1996-08-30 Fuji Photo Film Co Ltd 磁気記録媒体
JPH08255333A (ja) * 1995-03-17 1996-10-01 Konica Corp 磁気記録方法および磁気記録ディスク
JPH0922523A (ja) * 1995-07-04 1997-01-21 Fuji Photo Film Co Ltd 磁気記録媒体
JPH0935240A (ja) * 1995-07-18 1997-02-07 Victor Co Of Japan Ltd 磁気記録媒体

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795896A (fr) 1972-02-24 1973-08-23 Eastman Kodak Co Materiau pour l'enregistrement magnetique a plusieurs couches et son procede de preparation
FR2353110A1 (fr) 1976-03-12 1977-12-23 Kodak Pathe Nouveau produit d'enregistrement magnetique et procede pour sa preparation
JPS5430002A (en) 1977-08-11 1979-03-06 Fuji Photo Film Co Ltd Magnetic recording medium using ffrromagnetic metal powders
JPS5555438A (en) 1978-10-17 1980-04-23 Hitachi Maxell Ltd Magnetic recording medium
JPS55139634A (en) 1979-04-16 1980-10-31 Hitachi Maxell Ltd Magnetic recording medium
EP0025583B1 (en) 1979-09-14 1982-11-24 Mitsubishi Materials Corporation Electroconductive powder and process for production thereof
JPS5840073B2 (ja) 1980-06-09 1983-09-02 日本発条株式会社 防振装置
JPS5798135A (en) 1980-12-11 1982-06-18 Fuji Photo Film Co Ltd Magnetic recording medium
JPS57154618A (en) 1981-03-19 1982-09-24 Sony Corp Magnetic recording medium
US4507157A (en) 1981-05-07 1985-03-26 General Electric Company Simultaneously doped light-emitting diode formed by liquid phase epitaxy
JPS5817539A (ja) 1981-07-21 1983-02-01 Sony Corp 磁気記録媒体
JPS5851327A (ja) 1981-09-22 1983-03-26 Fujitsu Ltd 入出力制御システム
GB2108098B (en) 1981-10-30 1985-03-20 Tioxide Group Plc Improved pigments and their preparation
JPS5885931A (ja) 1981-11-16 1983-05-23 Matsushita Electric Ind Co Ltd 磁気記録媒体
JPS58139337A (ja) 1982-02-13 1983-08-18 Hitachi Maxell Ltd 磁気記録媒体
JPS58159228A (ja) 1982-03-17 1983-09-21 Hitachi Maxell Ltd 磁気記録媒体
JPS598124A (ja) 1982-07-07 1984-01-17 Matsushita Electric Ind Co Ltd 磁気記録媒体
DE3328595A1 (de) 1982-08-09 1984-02-09 Victor Company Of Japan, Ltd., Yokohama, Kanagawa Magnetaufzeichnungsmaterial
US4587157A (en) 1982-10-25 1986-05-06 Verbatim Corp. Wear resisting undercoat for thin film magnetic recording media
JPS59142741A (ja) 1983-02-04 1984-08-16 Fuji Photo Film Co Ltd 磁気記録媒体
JPS59154646A (ja) 1983-02-23 1984-09-03 Hitachi Maxell Ltd 磁気記録媒体
JPS6045940A (ja) 1983-08-22 1985-03-12 Fuji Photo Film Co Ltd 磁気記録媒体
JPS60109020A (ja) 1983-11-17 1985-06-14 Tdk Corp 磁気記録媒体およびその製造方法
JPS60124025A (ja) 1983-12-06 1985-07-02 Fuji Photo Film Co Ltd 磁気記録媒体
JPS60154327A (ja) 1984-01-25 1985-08-14 Fuji Photo Film Co Ltd 磁気記録媒体
JP2597967B2 (ja) 1984-03-09 1997-04-09 株式会社東芝 磁気記録媒体
US4708906A (en) 1984-04-18 1987-11-24 Victor Company Of Japan, Ltd. Magnetic recording medium comprising an undercoat layer made of specific type of resin composition
US4619856A (en) 1984-05-28 1986-10-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPS6173237A (ja) 1984-09-18 1986-04-15 Hitachi Maxell Ltd 磁気デイスク
JPS61214223A (ja) 1985-03-20 1986-09-24 Hitachi Maxell Ltd 磁気記録媒体
JP2500934B2 (ja) 1985-03-27 1996-05-29 ティーディーケイ株式会社 磁気記録媒体
GB2181445B (en) 1985-10-09 1989-11-08 Tdk Corp Magnetic recording medium
JPS6292128A (ja) 1985-10-17 1987-04-27 Hitachi Maxell Ltd 磁気記録媒体
JPS6292132A (ja) 1985-10-18 1987-04-27 Fuji Photo Film Co Ltd 磁気記録媒体の製造方法
JPH0743445B2 (ja) 1985-12-09 1995-05-15 ダイアホイルヘキスト株式会社 偏光板用ポリエチレンナフタレ−ト一軸高配向フイルム
JPH0719360B2 (ja) 1986-03-13 1995-03-06 富士写真フイルム株式会社 磁気記録媒体
US4952444A (en) 1986-03-14 1990-08-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPH0766522B2 (ja) 1986-04-14 1995-07-19 富士写真フイルム株式会社 磁気記録媒体
JPH0640382B2 (ja) 1986-10-20 1994-05-25 富士写真フイルム株式会社 磁気記録媒体
JPH0618070B2 (ja) 1986-10-31 1994-03-09 帝人株式会社 磁気記録媒体
JPH0693297B2 (ja) 1987-01-30 1994-11-16 富士写真フイルム株式会社 磁気記録媒体
US4851289A (en) 1987-01-30 1989-07-25 Fuji Photo Film Co., Ltd. Magnetic recording medium
EP0277783B1 (en) 1987-02-02 1994-04-06 Canon Kabushiki Kaisha Magnetic recording medium
JPS63191315A (ja) 1987-02-04 1988-08-08 Fuji Photo Film Co Ltd 磁気記録媒体
JPS63217526A (ja) 1987-03-05 1988-09-09 Hitachi Ltd 磁気デイスク塗膜の製造方法
JPH0766527B2 (ja) 1987-03-28 1995-07-19 富士写真フイルム株式会社 磁気記録媒体とその製造方法
US4863791A (en) 1987-04-06 1989-09-05 United Technologies Automotive, Inc. Sound absorption in foam core panels
JPH0652566B2 (ja) 1987-04-10 1994-07-06 富士写真フイルム株式会社 磁気記録媒体
JPS63261529A (ja) 1987-04-20 1988-10-28 Fuji Photo Film Co Ltd 磁気記録媒体
JPH0775066B2 (ja) 1987-05-29 1995-08-09 富士写真フイルム株式会社 磁気記録媒体
US5318838A (en) 1988-01-22 1994-06-07 Fuji Photo Film Co., Ltd. Magnetic recording medium comprising ferromagnetic particles, binder resins and phenyl phosphonic acid
JPH0649171B2 (ja) 1988-07-04 1994-06-29 富士写真フイルム株式会社 塗布方法
JP2559262B2 (ja) 1988-10-13 1996-12-04 富士写真フイルム株式会社 磁気デイスク
JP2900169B2 (ja) 1988-10-19 1999-06-02 富士写真フイルム株式会社 磁気記録媒体
US5051291A (en) 1989-01-17 1991-09-24 Konica Corporation Magnetic recording medium
US5093192A (en) 1989-03-28 1992-03-03 Konica Corporation Magnetic recording medium
JP2644322B2 (ja) 1989-03-31 1997-08-25 株式会社東芝 磁気記録媒体
JP2893269B2 (ja) 1989-04-11 1999-05-17 コニカ株式会社 磁気記録媒体
JPH02281421A (ja) 1989-04-21 1990-11-19 Fuji Photo Film Co Ltd 磁気記録媒体の製造方法
JPH0349030A (ja) 1989-07-18 1991-03-01 Tdk Corp 磁気記録媒体およびその製造方法
JP3032808B2 (ja) 1989-09-29 2000-04-17 コニカ株式会社 磁気記録媒体の製造方法
US5160761A (en) 1989-12-29 1992-11-03 Tdk Corporation Method for making a magnetic disk
JPH043316A (ja) 1990-04-20 1992-01-08 Fuji Photo Film Co Ltd 磁気記録媒体及びその製造方法
JP2645910B2 (ja) 1990-10-08 1997-08-25 富士写真フイルム株式会社 磁気記録媒体
JPH04146518A (ja) 1990-10-08 1992-05-20 Fuji Photo Film Co Ltd 磁気記録媒体
JPH04195819A (ja) 1990-11-27 1992-07-15 Victor Co Of Japan Ltd 磁気記録媒体
DE4142052C2 (de) 1990-12-20 1999-07-15 Fuji Photo Film Co Ltd Magnetaufzeichnungsmedium
JP2552958B2 (ja) 1991-01-21 1996-11-13 富士写真フイルム株式会社 磁気記録媒体
US5827600A (en) 1991-01-21 1998-10-27 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5645917A (en) 1991-04-25 1997-07-08 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2563711B2 (ja) 1991-01-24 1996-12-18 松下電器産業株式会社 磁気テープ
JP2614154B2 (ja) 1991-04-19 1997-05-28 富士写真フイルム株式会社 磁気記録媒体
DE69227472T2 (de) 1991-08-23 1999-03-18 Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa Verfahren zur Herstellung eines magnetischen Aufzeichnungsmediums
SG42857A1 (en) * 1991-10-14 1997-10-17 Ibm A method of servowriting a magnetic disk drive
JP2835661B2 (ja) 1991-12-19 1998-12-14 富士写真フイルム株式会社 磁気記録媒体及びその製造方法
DE69328696T2 (de) 1992-01-08 2001-04-19 Fuji Photo Film Co., Ltd. Magnetisches Aufzeichnungsmedium
JP2566091B2 (ja) 1992-01-31 1996-12-25 富士写真フイルム株式会社 磁気記録媒体
US5672423A (en) 1992-01-31 1997-09-30 Fuji Photo Film Co., Ltd. Magnetic recording medium having an underlayer containing three different powders
JP2789065B2 (ja) 1992-02-18 1998-08-20 富士写真フイルム株式会社 磁気記録媒体
US5512350A (en) * 1992-07-31 1996-04-30 Fuji Photo Film Co., Ltd. Magnetic recording medium having a magnetic layer with a specified surface roughness and which contains ferromagnetic powder, binder, and an abrasive
US5455104A (en) 1992-12-02 1995-10-03 Konica Corporation Magnetic recording medium
US5458948A (en) 1992-12-18 1995-10-17 Konica Corporation Magnetic recording medium
JP3106271B2 (ja) 1993-01-13 2000-11-06 富士写真フイルム株式会社 磁気記録媒体
JP2835699B2 (ja) * 1994-12-13 1998-12-14 富士写真フイルム株式会社 磁気記録媒体
JP3473877B2 (ja) * 1995-10-13 2003-12-08 富士写真フイルム株式会社 磁気記録媒体
US5750250A (en) * 1995-10-20 1998-05-12 Toda Kogyo Corporation Hematite particles and magnetic recording medium having a non-magnetic under-coat layer containing hematite (Fe2 O3) particles.
US5958565A (en) * 1996-04-26 1999-09-28 Fuji Photo Film Co., Ltd. Magnetic recording tape favorably employable for computer data storage
JPH09293229A (ja) * 1996-04-26 1997-11-11 Fuji Photo Film Co Ltd コンピュータデータ記録用磁気テープ
JPH09326111A (ja) * 1996-06-05 1997-12-16 Fuji Photo Film Co Ltd コンピュータデータ記録用磁気テープ
JP3509838B2 (ja) * 1996-12-16 2004-03-22 戸田工業株式会社 鉄を主成分とする金属磁性粒子粉末を使用している磁気記録媒体の非磁性下地層用酸化チタン粒子粉末、該酸化チタン粒子粉末を用いた非磁性下地層を有する磁気記録媒体の基体並びに該基体を用いた磁気記録媒体
EP0853066B1 (en) * 1997-01-08 2000-10-04 Toda Kogyo Corp. Hematite particles and magnetic recording medium using hematite particles as non-magnetic particles for a non-magnetic undercoat layer
JPH10241148A (ja) * 1997-02-28 1998-09-11 Toda Kogyo Corp 磁気記録媒体
EP0865034B1 (en) * 1997-03-14 2006-06-07 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6096406A (en) * 1997-07-15 2000-08-01 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP3157812B2 (ja) 1999-04-27 2001-04-16 日本電気アイシーマイコンシステム株式会社 昇圧回路及びこれを用いた半導体集積回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652541A (ja) * 1992-07-31 1994-02-25 Fuji Photo Film Co Ltd 磁気記録媒体及びその製造方法
JPH06267059A (ja) * 1993-03-15 1994-09-22 Fuji Photo Film Co Ltd 磁気記録媒体
JPH07192250A (ja) * 1993-12-27 1995-07-28 Tdk Corp 磁気記録媒体
JPH08221740A (ja) * 1995-02-20 1996-08-30 Fuji Photo Film Co Ltd 磁気記録媒体
JPH08255333A (ja) * 1995-03-17 1996-10-01 Konica Corp 磁気記録方法および磁気記録ディスク
JPH0922523A (ja) * 1995-07-04 1997-01-21 Fuji Photo Film Co Ltd 磁気記録媒体
JPH0935240A (ja) * 1995-07-18 1997-02-07 Victor Co Of Japan Ltd 磁気記録媒体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIKKEI ELECTRONICS, 29 July 1996, NIKKEI BUSINESS PUBLICATIONS, INC., pp. 87-90, XP002916981 *
See also references of EP0962919A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869482B1 (en) * 1997-03-31 2006-10-25 Fuji Photo Film Co., Ltd. Magnetic recording medium
EP0982714A1 (en) * 1998-08-27 2000-03-01 TDK Corporation Magnetic Disk
EP1434199A1 (en) * 2002-12-27 2004-06-30 Fuji Photo Film Co., Ltd. Magnetic recording medium
US8795858B2 (en) 2010-03-19 2014-08-05 Fujifilm Corporation Magnetic recording medium and method of manufacturing the same

Also Published As

Publication number Publication date
KR20010029493A (ko) 2001-04-06
EP0962919A1 (en) 1999-12-08
EP0962919A4 (ja) 1999-12-29
US6254964B1 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
WO1998035345A1 (fr) Support d&#39;enregistrement magnetique
JPH10302243A (ja) 磁気記録媒体
JP2006286114A (ja) 磁気記録媒体
WO2007114394A1 (ja) 磁気記録媒体、リニア磁気記録再生システムおよび磁気記録再生方法
US20090174969A1 (en) Magnetic recording medium, magnetic signal reproduction system and magnetic signal reproduction method
JP2004273070A (ja) 磁気記録媒体
US6291052B1 (en) Magnetic recording medium
JP2007305208A (ja) 磁気記録媒体およびその製造方法
JPH10312525A (ja) 磁気記録媒体
JPH1125442A (ja) 磁気記録媒体
JP2007272956A (ja) 磁気記録媒体
JPH10320744A (ja) 磁気記録媒体
JPH10320759A (ja) ディスク状磁気記録媒体
JPH10275325A (ja) ディスク状磁気記録媒体
JPH1173622A (ja) 磁気記録媒体
JP2003036520A (ja) 磁気記録媒体
JP2003022515A (ja) 磁気記録媒体
JP2001331924A (ja) 磁気記録媒体
JPH10228623A (ja) 磁気記録媒体
JPH10302244A (ja) 磁気ディスク
JP2002015414A (ja) 磁気記録媒体
JPH10228631A (ja) 磁気記録媒体
JPH10334457A (ja) 磁気記録媒体
JPH10228635A (ja) 磁気記録媒体
JPH10228630A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998901572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997001974

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998901572

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001974

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019997001974

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998901572

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载