WO1998035068A1 - Aluminum alloy product - Google Patents
Aluminum alloy product Download PDFInfo
- Publication number
- WO1998035068A1 WO1998035068A1 PCT/US1997/002117 US9702117W WO9835068A1 WO 1998035068 A1 WO1998035068 A1 WO 1998035068A1 US 9702117 W US9702117 W US 9702117W WO 9835068 A1 WO9835068 A1 WO 9835068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy composition
- composition contains
- alloy
- scandium
- zirconium
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 94
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 56
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 48
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 44
- 239000010703 silicon Substances 0.000 claims abstract description 44
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 43
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 41
- 239000011777 magnesium Substances 0.000 claims abstract description 41
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 21
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 11
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 10
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 10
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 10
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims abstract description 10
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 10
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims abstract description 10
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims abstract description 10
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims description 141
- 229910045601 alloy Inorganic materials 0.000 claims description 140
- 230000007797 corrosion Effects 0.000 claims description 15
- 238000005260 corrosion Methods 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 19
- 229910052748 manganese Inorganic materials 0.000 claims 19
- 239000011572 manganese Substances 0.000 claims 19
- 239000000047 product Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000010953 base metal Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910000547 2024-T3 aluminium alloy Inorganic materials 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004299 exfoliation Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229910000989 Alclad Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000542 Sc alloy Inorganic materials 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Definitions
- ALUMINUM ALLOY PRODUCT This invention relates to an aluminum alloy product, and more particularly to aluminum alloy products developed for aerospace applications. Nearly all commercial airplanes have fuselage skins made of Alclad 2024-T3.
- the base metal, 2024-T3 sheet has the necessary strength and damage tolerance for aerospace applications, but suffers from susceptibility to pitting and/or intergranular corrosion attack. To compensate for that problem, the base metal is effectively isolated from the environment by a cladding layer, a paint or coating system or a combination of both.
- An alcladding process involves combining a thin layer of an aluminum alloy anodic relative to
- 2024-T3 on both sides of 2024-T3 sheet. These layers act as a barrier and also afford galvanic protection to the 2024-T3 in case the cladding is damaged. In cases where these layers are intentionally removed by machining or chemical milling to save weight, 2024-T3 sheet may be protected with coatings and/or by anodization.
- the Alclad layer contributes little with respect to strength, adds weight to the sheet and can act to initiate fatigue cracks.
- Other coating systems may also add weight and, if damaged, fail to protect 2024-T3 base metal. Surfaces that are anodized are brittle and can act to initiate cracks.
- Another disadvantage of 2024-T3 sheet is its relatively high density (0.101 lb/in 3 ) .
- the alloys of this invention have a relatively low density, good corrosion resistance and a good combination of strength and toughness so as to obviate cladding, painting and/or other base metal protection systems.
- One embodiment of the present invention pertains to an aluminum alloy product comprising an alloy composition which includes about 3-7 wt % magnesium, about 0.03-0.20 wt % zirconium, about 0.2- 1.2 wt % manganese, up to 0.15 wt % silicon and about 0.05-0.5 wt % of a dispersoid- forming element selected from the group consisting of: scandium, erbium, yttrium, gadolinium, holmium and hafnium, the balance being aluminum and incidental elements and impurities. It is preferred that the dispersoid-forming element is scandium.
- This alloy composition is also preferably zinc- free and lithium- free.
- substantially free means having no significant amount of that component purposely added to the alloy composition, it being understood that trace amounts of incidental elements and/or impurities may find their way into a desired end product.
- the alloys of the invention are based on the Al-Mg-Sc system and are of sufficient corrosion resistance so as to obviate cladding or other protection systems. Strength in these alloys is primarily generated through, strain hardening of a metal matrix which is generally uniform in composition. Combinations of strength and damage tolerance properties sufficient for fuselage skin applications can be obtained by an appropriate selection of composition, deformation processing and subsequent stabilization treatments.
- Al-Mg-Sc alloy materials of this invention display adequate tensile strength properties and toughness indicators together with excellent resistance to intergranular (or grain boundary) corrosion. These materials, also demonstrate good resistance to exfoliation attack and excellent stress corrosion cracking ("SCC") resistance during alternate immersion in an NaCl solution tested according to ASTM G-47.
- SCC stress corrosion cracking
- a principal alloy embodiment of this invention comprises an alloy composition which includes about 3-7 wt % magnesium, about 0.03-0.2 wt % zirconium, about 0.2-1.2 wt % manganese, up to 0.15 wt % silicon, and about 0.05-0.5 wt % of a dispersoid- forming element selected from the group consisting of: scandium, erbium, yttrium, gadolinium, holmium and hafnium, the balance being aluminum and incidental elements and impurities.
- the aluminum alloy composition contains about 3.5-6 wt % magnesium; about 0.06-0.12 wt % zirconium; about 0.4-1 wt % manganese, up to 0.08 wt % silicon and about 0.16-0.34 wt % scandium.
- the aluminum alloy composition consists essentially of about 3.8-5.2 wt % magnesium; about 0.09-0.12 wt % zirconium, about 0.5-0.7 wt % manganese, up to 0.05 wt % silicon and about 0.2-0.3 wt % scandium.
- Preferred embodiments of this aluminum alloy are also substantially zinc- free and lithium-free.
- this invention manages to impart significantly higher strengths and greater corrosion resistance to fuselage skin sheet stock through the addition of certain rare earths or rare earth "act-alikes" , such as scandium, by causing rare earth-rich precipitates to form. These precipitates have the ability to store and resist loss of strength arising from plastic deformation. Because of the relatively small size and fine distribution of these particles, recovery and recrystallization of the resulting alloy are also inhibited.
- the invention alloy is more temperature resistant than the same alloy devoid of scandium or scandium-like additives.
- temperature resistant it is meant that a large portion of the strength and structure imparted by working this alloy is retained in the fuselage skin sheet end product, even after exposure to one or more higher temperatures, typically above about 450°F., such as during subsequent rolling operations or the like.
- a remainder of substantially aluminum may include some incidental, yet intentionally added elements which may affect collateral properties of the invention, or unintentionally added impurities, neither of which should change the essential characteristics of this alloy.
- magnesium contributes to strain hardening and strength. Zirconium additions are believed to improve the resistance of scandium precipitates to rapid growth.
- Scandium and zirconium serve yet another purpose.
- scandium is believed to precipitate to form a dispersion of fine, intermetallic particles (referred to as "dispersoids") , typically of an A1 3 X stoichio etry, with X being either Sc, Zr or both Sc and Zr.
- Al 3 (Sc, Zr) dispersoids impart some strength benefit as a precipitation-hardening compound, but more importantly, such dispersoids efficiently retard or impede the process of recovery and recrystallization by a phenomenon sometimes called the "Zener Drag" effect. [See generally, C.S.
- Scandium dispersoids are very small in size, but also large in number. They generally act as “pinning” points for migrating grain boundaries and dislocations which must bypass them for metal to soften. Recrystallization and recovery are the principal metallurgical processes by which such strain hardenable alloys soften. In order to "soften” an alloy having a large population of Al 3 (Sc, Zr) particles, it is necessary to heat the material to higher temperatures than would be required for an alloy not having such particles.
- a sheet product that contains Al 3 (Sc, Zr) dispersoids will have higher strength levels than a comparable alloy to which no scandium was added.
- this invention exhibits an ability to resist softening during the high temperature thermal exposures usually needed to roll sheet products. In so doing, the invention alloy will retain some of the strength acquired through rolling. Other scandium-free alloys would tend to retain less strength through rolling, thus yielding a lower strength final product.
- An added benefit of zirconium is its ability to limit the growth of these A1 3 X particles to assure that such dispersoids remain small, closely spaced and capable of producing a Zener Drag effect.
- the alloy of this invention may contain up to 0.15 wt % silicon with up to 0.08 wt % being preferred and 0.05 wt % or less being most preferred.
- the alloy products described herein may accommodate up to about 0.25 wt % copper or preferably about 0.15 wt % Cu or less.
- the aluminum alloy product of this invention is especially suited for applications where damage tolerance is required.
- damage tolerant aluminum products are used for aerospace applications, particularly fuselage skin, and the lower wing sections, stringers or pressure bulkheads of many airplanes.
- each alloy being aluminum, incidental elements and impurities.
- All of the aforementioned alloys were direct chill (or "DC") cast as 2-1/2 x 12 inch ingots and the rolling surfaces scalped therefrom. Alloy A was not homogenized. Alloy B was homogenized for 5 hours at 550°F. followed by 5 hours at 800°F. Alloy C was homogenized for 5 hours at 500°F., then for 6 more hours at 750°F. The scalped ingots were heated to 550°F. for 30 minutes and cross rolled approximately 50% to a nominal thickness of 1 inch. Alloys A and B were then reheated to 550°F. and rolled to a final nominal thickness of 0.1 inch. Mechanical properties for each alloy were then evaluated after a stabilization treatment of 5 hours at 550°F.
- Alloy C was heated to 700°F. and cross rolled to approximately 1 inch thick. This slab was then reheated to 530°F. and rolled to 0.5 inch thickness. The resulting plate from Alloy C was then aged for 15 hours at 500°F. until the electrical conductivity increased to 28.0% of the International Annealed Copper Standard (or "IACS"). Alloy C plate was then heated again to 500°F. and warm rolled to a final thickness of 0.1 inch before being subjected to its final heat treatment of 2 hours at 500°F.
- IACS International Annealed Copper Standard
- Table I reports the physical, mechanical property and corrosion data available for the foregoing samples of Alloys A, B and C, then compares them with typical values for 2024-T3 aluminum, 6013-T6 aluminum and another potential fuselage skin material known commercially as Alcoa's C-188 product as manufactured in accordance with U.S. Patent No. 5,213,639, the full disclosure of which is expressly incorporated herein by reference.
- the materials of this invention display adequate tensile strength properties.
- the toughness indicators of Alloy A and B, per center notch toughness and fatigue crack growth (or "FCG") data also strongly indicate that these materials will exhibit good inherent toughnesses as well.
- the resistance to grain boundary corrosion attack of the present invention is also noteworthy.
- a standard test for measuring such attacks in Al-Mg base alloys is the ASSET (or ASTM G- 66) test after a "sensitization" treatment at 212°F.
- the subject materials demonstrated good resistance to exfoliation attack in that test with only Alloy B showing any evidence of exfoliation, and even then to just an EA level. By comparison, other materials showed some pitting attack (P) with minimal blistering.
- the invention materials also showed excellent SCC resistance during alternate immersion testing using an NaCl solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69717858T DE69717858T2 (en) | 1997-02-10 | 1997-02-10 | ALUMINUM ALLOY PRODUCT |
ES97906549T ES2188897T3 (en) | 1997-02-10 | 1997-02-10 | ALUMINUM ALLOY PRODUCT. |
EP97906549A EP0958393B1 (en) | 1995-01-31 | 1997-02-10 | Aluminum alloy product |
JP53428098A JP4014229B2 (en) | 1997-02-10 | 1997-02-10 | Aluminum alloy products |
AU21211/97A AU2121197A (en) | 1997-02-10 | 1997-02-10 | Aluminum alloy product |
PCT/US1997/002117 WO1998035068A1 (en) | 1995-01-31 | 1997-02-10 | Aluminum alloy product |
KR10-1999-7007143A KR100469929B1 (en) | 1997-02-10 | 1997-02-10 | Aluminium Alloy Product |
CA002280191A CA2280191C (en) | 1997-02-10 | 1997-02-10 | Aluminum alloy product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/381,032 US5624632A (en) | 1995-01-31 | 1995-01-31 | Aluminum magnesium alloy product containing dispersoids |
PCT/US1997/002117 WO1998035068A1 (en) | 1995-01-31 | 1997-02-10 | Aluminum alloy product |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998035068A1 true WO1998035068A1 (en) | 1998-08-13 |
Family
ID=22260366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/002117 WO1998035068A1 (en) | 1995-01-31 | 1997-02-10 | Aluminum alloy product |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0958393B1 (en) |
JP (1) | JP4014229B2 (en) |
KR (1) | KR100469929B1 (en) |
AU (1) | AU2121197A (en) |
CA (1) | CA2280191C (en) |
DE (1) | DE69717858T2 (en) |
ES (1) | ES2188897T3 (en) |
WO (1) | WO1998035068A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002523621A (en) * | 1998-08-21 | 2002-07-30 | ダイムラークライスラー・アクチェンゲゼルシャフト | A new corrosion resistant weldable, high magnesium content aluminum-magnesium alloy, especially for automobiles |
JP2002523622A (en) * | 1998-08-21 | 2002-07-30 | ダイムラークライスラー・アクチェンゲゼルシャフト | Corrosion resistant weldable high magnesium content aluminum-magnesium alloy, especially for aircraft |
JP2003526733A (en) * | 1998-08-21 | 2003-09-09 | ダイムラークライスラー・アクチェンゲゼルシャフト | Corrosion resistant weldable aluminum-magnesium alloy, especially for traffic technology |
WO2012047868A2 (en) * | 2010-10-04 | 2012-04-12 | Gkn Sinter Metals, Llc | Aluminum powder metal alloying method |
WO2012079828A1 (en) * | 2010-12-15 | 2012-06-21 | Aleris Aluminum Koblenz Gmbh | Method of producing a shaped al alloy panel for aerospace applications |
CN104254635A (en) * | 2012-02-29 | 2014-12-31 | 波音公司 | Aluminum alloy with additions of scandium, zirconium and erbium |
EP1917373B2 (en) † | 2005-08-16 | 2018-08-15 | Aleris Aluminum Koblenz GmbH | High strength weldable al-mg alloy |
EP3683327A1 (en) | 2019-01-17 | 2020-07-22 | Aleris Rolled Products Germany GmbH | Method of manufacturing an almgsc-series alloy product |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040156739A1 (en) | 2002-02-01 | 2004-08-12 | Song Shihong Gary | Castable high temperature aluminum alloy |
US7584778B2 (en) | 2005-09-21 | 2009-09-08 | United Technologies Corporation | Method of producing a castable high temperature aluminum alloy by controlled solidification |
RU2599590C1 (en) * | 2015-05-22 | 2016-10-10 | Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") | Structural wrought non-heat-treatable aluminium-based alloy |
JP6726058B2 (en) * | 2016-08-12 | 2020-07-22 | 本田技研工業株式会社 | Manufacturing method of Al alloy casting |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0489408A1 (en) * | 1990-12-03 | 1992-06-10 | Aluminum Company Of America | Aircraft sheet |
WO1995026420A1 (en) * | 1994-03-28 | 1995-10-05 | Collin Jean Pierre | High-scandium aluminium alloy and method for making semi-finished products |
RU2048576C1 (en) * | 1993-12-17 | 1995-11-20 | Центральный научно-исследовательский институт конструкционных материалов "Прометей" | Aluminium-base alloy |
-
1997
- 1997-02-10 EP EP97906549A patent/EP0958393B1/en not_active Revoked
- 1997-02-10 CA CA002280191A patent/CA2280191C/en not_active Expired - Fee Related
- 1997-02-10 JP JP53428098A patent/JP4014229B2/en not_active Expired - Fee Related
- 1997-02-10 ES ES97906549T patent/ES2188897T3/en not_active Expired - Lifetime
- 1997-02-10 DE DE69717858T patent/DE69717858T2/en not_active Revoked
- 1997-02-10 WO PCT/US1997/002117 patent/WO1998035068A1/en not_active Application Discontinuation
- 1997-02-10 KR KR10-1999-7007143A patent/KR100469929B1/en not_active Expired - Fee Related
- 1997-02-10 AU AU21211/97A patent/AU2121197A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0489408A1 (en) * | 1990-12-03 | 1992-06-10 | Aluminum Company Of America | Aircraft sheet |
RU2048576C1 (en) * | 1993-12-17 | 1995-11-20 | Центральный научно-исследовательский институт конструкционных материалов "Прометей" | Aluminium-base alloy |
WO1995026420A1 (en) * | 1994-03-28 | 1995-10-05 | Collin Jean Pierre | High-scandium aluminium alloy and method for making semi-finished products |
Non-Patent Citations (3)
Title |
---|
CHEMICAL ABSTRACTS, vol. 125, no. 22, 25 November 1996, Columbus, Ohio, US; abstract no. 282251, XP002040086 * |
DATABASE WPI Section Ch Week 9629, Derwent World Patents Index; Class M26, AN 96-285556, XP002040087 * |
V.I. LUKIN: "Effect of Sc, MN, Zr alloying elements on the weldability of Al-Mg-Sc-Mn-Zr system alloys", SVAR. PROIZVOD., vol. 6, 1996, pages 9 - 11 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002523621A (en) * | 1998-08-21 | 2002-07-30 | ダイムラークライスラー・アクチェンゲゼルシャフト | A new corrosion resistant weldable, high magnesium content aluminum-magnesium alloy, especially for automobiles |
JP2002523622A (en) * | 1998-08-21 | 2002-07-30 | ダイムラークライスラー・アクチェンゲゼルシャフト | Corrosion resistant weldable high magnesium content aluminum-magnesium alloy, especially for aircraft |
JP2003526733A (en) * | 1998-08-21 | 2003-09-09 | ダイムラークライスラー・アクチェンゲゼルシャフト | Corrosion resistant weldable aluminum-magnesium alloy, especially for traffic technology |
EP1917373B2 (en) † | 2005-08-16 | 2018-08-15 | Aleris Aluminum Koblenz GmbH | High strength weldable al-mg alloy |
CN103140313A (en) * | 2010-10-04 | 2013-06-05 | Gkn烧结金属有限公司 | Aluminum powder metal alloying method |
WO2012047868A3 (en) * | 2010-10-04 | 2012-06-07 | Gkn Sinter Metals, Llc | Aluminum powder metal alloying method |
US9533351B2 (en) | 2010-10-04 | 2017-01-03 | Gkn Sinter Metals, Llc | Aluminum powder metal alloying method |
WO2012047868A2 (en) * | 2010-10-04 | 2012-04-12 | Gkn Sinter Metals, Llc | Aluminum powder metal alloying method |
WO2012079828A1 (en) * | 2010-12-15 | 2012-06-21 | Aleris Aluminum Koblenz Gmbh | Method of producing a shaped al alloy panel for aerospace applications |
CN103261462A (en) * | 2010-12-15 | 2013-08-21 | 爱励轧制产品德国有限责任公司 | Method of producing a shaped Al alloy panel for aerospace applications |
US9533339B2 (en) | 2010-12-15 | 2017-01-03 | Aleris Rolled Products Germany Gmbh | Method of producing a shaped Al alloy panel for aerospace applications |
CN104254635A (en) * | 2012-02-29 | 2014-12-31 | 波音公司 | Aluminum alloy with additions of scandium, zirconium and erbium |
EP3683327A1 (en) | 2019-01-17 | 2020-07-22 | Aleris Rolled Products Germany GmbH | Method of manufacturing an almgsc-series alloy product |
WO2020148203A1 (en) | 2019-01-17 | 2020-07-23 | Aleris Rolled Products Germany Gmbh | METHOD OF MANUFACTURING AN AIMgSc-SERIES ALLOY PRODUCT |
Also Published As
Publication number | Publication date |
---|---|
CA2280191A1 (en) | 1998-08-13 |
JP4014229B2 (en) | 2007-11-28 |
EP0958393B1 (en) | 2002-12-11 |
DE69717858D1 (en) | 2003-01-23 |
AU2121197A (en) | 1998-08-26 |
CA2280191C (en) | 2007-07-31 |
KR100469929B1 (en) | 2005-02-02 |
EP0958393A1 (en) | 1999-11-24 |
DE69717858T2 (en) | 2003-07-31 |
KR20000070878A (en) | 2000-11-25 |
ES2188897T3 (en) | 2003-07-01 |
JP2001511847A (en) | 2001-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5624632A (en) | Aluminum magnesium alloy product containing dispersoids | |
US9039848B2 (en) | Al—Mg—Zn wrought alloy product and method of its manufacture | |
CN100503861C (en) | High damage tolerant aluminum alloy products especially for aerospace applications | |
EP1917373B2 (en) | High strength weldable al-mg alloy | |
US7993474B2 (en) | Aircraft structural member made of an Al-Cu-Mg alloy | |
KR101784581B1 (en) | Brazing sheet core alloy for heat exchanger | |
CA2768503A1 (en) | Improved 5xxx aluminum alloys and wrought aluminum alloy products made therefrom | |
WO2013118734A1 (en) | Aluminum alloy sheet for connecting components and manufacturing process therefor | |
EP0958393B1 (en) | Aluminum alloy product | |
WO2013007471A1 (en) | Method of manufacturing an al-mg alloy sheet product | |
CA3121117C (en) | Method of manufacturing an aimgsc-series alloy product | |
WO2014028616A1 (en) | 2xxx series aluminum lithium alloys | |
CN105283568A (en) | Aluminum casting alloy with improved high-temperature performance | |
JPS60121249A (en) | Stress corrosion resistant aluminum base alloy | |
CA3074942A1 (en) | Al-zn-cu-mg alloys with high strength and method of fabrication | |
US5643372A (en) | Process for the desensitisation to intercrystalline corrosion of 2000 and 6000 series Al alloys and corresponding products | |
US20190185979A1 (en) | Annealing Process | |
JPS6339661B2 (en) | ||
US20230183843A1 (en) | Magnesium alloy, magnesium alloy plate, magnesium alloy bar, manufacturing methods thereof, and magnesium alloy member | |
RU2779736C1 (en) | Method for manufacturing products from almgsc series alloy | |
EP3652356A1 (en) | High-strength corrosion-resistant aluminum alloy and method of making the same | |
Uddin | Effect of copper to magnesium ratio on precipitation induced anisotropy during ageing of recrystallized Al-Zn-Mg-Cu alloy | |
KR20250010016A (en) | New 7XXX Aluminum Alloy Products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1019997007143 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2280191 Country of ref document: CA Ref country code: CA Ref document number: 2280191 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1998 534280 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997906549 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997906549 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997007143 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997906549 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019997007143 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997906549 Country of ref document: EP |