WO1998032571A1 - Dispositif d'etalonnage de robot et methode afferente - Google Patents
Dispositif d'etalonnage de robot et methode afferente Download PDFInfo
- Publication number
- WO1998032571A1 WO1998032571A1 PCT/JP1998/000164 JP9800164W WO9832571A1 WO 1998032571 A1 WO1998032571 A1 WO 1998032571A1 JP 9800164 W JP9800164 W JP 9800164W WO 9832571 A1 WO9832571 A1 WO 9832571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- axis
- calibration
- posture
- universal joint
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000006073 displacement reaction Methods 0.000 claims abstract description 35
- 210000000707 wrist Anatomy 0.000 claims abstract description 30
- 238000005259 measurement Methods 0.000 claims description 11
- 238000012937 correction Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 230000036544 posture Effects 0.000 description 49
- 238000010586 diagram Methods 0.000 description 10
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39007—Calibrate by switching links to mirror position, tip remains on reference point
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39019—Calibration by cmm coordinate measuring machine over a certain volume
Definitions
- the present invention relates to an apparatus and a method for calibrating a robot, and more particularly, to a position shift of a control point caused by giving a command to the robot to change only the posture of the robot while keeping the position of the control point of the robot constant.
- the robot parameters inside the control device such as the angle between links in the home position, the torsion angle between links, the distance between links, the link length, etc. Since there is an error between the numerical value describing the geometrical configuration and the numerical value of the actual robot, the position and posture of the robot recognized by the control device and the actual position and posture of the robot An error occurs between them. The position and posture of the robot recognized by the control device are compared with the actual position and posture of the robot, and correction is made to the robot parameters of the control device to correct this error. Rehearse and rehearse.
- a calibration device with 6 axes of freedom of movement and a displacement detection function for each degree of freedom is installed in a place where the relative positional relationship from the robot is known or accurate measurement can be obtained.
- the tip of the vibration device is mechanically connected to the tip of the wrist of the robot, and the robot's position data and posture data are back-calculated from the position data and posture data obtained from the displacement detection means of the calibration device. Then, the robot is calibrated.
- an object of the present invention is to provide a relatively simple calibration device and a calibration method that does not involve complicated operations and that can be easily automated.
- the present invention provides a movable part having a degree of freedom of movement in three orthogonal axes directions, a displacement detecting means for detecting a displacement of the movable part for each degree of freedom,
- the robot is operated by giving a command to change only the posture of the robot, and the displacement of the movable part of the calibration device, which occurs at this time, is measured by the displacement measuring means, and corrected from the measured value. Calculate the amount.
- FIG. 1 is a configuration diagram showing an embodiment of the present invention
- FIG. 2 is a front view of a calibration apparatus in the embodiment of the present invention
- FIG. 3 is a side view of the calibration apparatus in the embodiment of the present invention
- FIG. 4 shows a universal joint according to another embodiment of the present invention. It is a front sectional view.
- FIG. 5 is a first explanatory diagram of the calibration method in the embodiment of the present invention
- FIG. 6 is a second explanatory diagram of the calibration method in the embodiment of the present invention
- FIG. 7 is a diagram of the present invention.
- FIG. 8 is a third explanatory diagram of the calibration method in the embodiment
- FIG. 8 is a fourth illustrative diagram of the calibration method in the embodiment of the present invention.
- FIG. 1 is a configuration diagram showing an embodiment of the present invention.
- reference numeral 1 denotes a robot to be calibrated.
- 1 1 is the base of the robot 1 and 1 2 is the swivel head.
- the swivel head 1 2 is attached to the base 11 so as to be swivelable about a vertical axis S.
- Reference numeral 13 denotes a lower arm, which is attached to the swivel head 12 so as to be swingable about a horizontal axis L.
- the horizontal axis L is an axis that passes through the paper of the figure from the front to the back.
- Reference numeral 14a denotes a fixed portion of the upper arm, which is attached to the lower arm 13 so as to be swingable about the horizontal axis U.
- the horizontal axis U is an axis that passes through the paper of the figure from the front to the back.
- Reference numeral 14b denotes a rotating portion of the upper arm, which is rotatably mounted on the fixed portion 14a of the upper arm around the rotation axis R.
- the rotation axis R is an axis extending in the length direction of the rotation part 14 b of the upper arm, and is orthogonal to the horizontal axis U.
- Reference numeral 15 denotes a wrist, which is attached to the rotating part 14 b of the upper arm so as to be swingable about the swing axis B.
- the swing axis B is an axis that passes through the paper of the figure from front to back, and is orthogonal to the rotation axis R.
- Reference numeral 16 denotes a wrist tip, which is attached to the wrist 15 so as to be rotatable around the rotation axis T.
- the rotation axis T is orthogonal to the rotation axis B.
- Robot 1 and calibration device 2 are both fixed at the installation site. At this time, the robot 1 and the calibration device 2 are oriented so that the directions of the coordinate system 1a of the robot 1 and the coordinate system 2a of the calibration device 2 match. However, the origins of the coordinate system 1a and the coordinate system 2a may be different.
- the calibration device 2 has a universal joint 25, and the wrist tip 16 of the robot 1 and the calibration device 2 are mechanically connected via the universal joint 25.
- Numeral 3 denotes arithmetic means, which is electrically connected to the calibration device 2 via a signal line 4.
- the calculation means 3 is, for example, a personal computer equipped with required programs.
- Reference numeral 5 denotes a control device for the robot 1, which is electrically connected to the arithmetic unit 3 via a signal line 6.
- the control device 5 is electrically connected to the robot 1 via a power supply cable 7.
- FIG. 2 is a front view of the calibration device 2
- FIG. 3 is a side view of the calibration device 2.
- reference numeral 21 denotes a fixed base, and the fixed base 21 is provided with a first linear guide rail 21 1 and first displacement detecting means 2 12.
- the first linear guide rail 2 1 1 faces the front and rear direction of the calibration device 2 (hereinafter referred to as X axis).
- Reference numeral 22 denotes a first slide table, which is slidably held by the first linear guide rail 2 11. That is, the first slide 22 has a degree of freedom of movement in the X-axis direction. Further, the movement of the first slide table 22 is precisely measured by the first displacement detection means 2 12. Further, the first slide table 22 is provided with a second linear guide rail 22 1 and a second displacement detecting means 22 2. The second linear guide rail 2 2 1 faces the left and right direction of the calibration device 2 (hereinafter referred to as the Y axis).
- Reference numeral 23 denotes a second slide table, which is slidably held by the second linear guide rail 22 1. That is, the second slide 23 has a degree of freedom of movement in the Y-axis direction. The movement of the second slide 23 is precisely measured by the second displacement detecting means 222. Further, the second slide 23 is provided with a third linear guide rail 231, and third displacement detecting means 232. The third linear guide rail 2 31 faces the vertical direction of the calibration device 2 (hereinafter referred to as the Z axis). '
- Reference numeral 24 denotes a third slide table, which is slidably held by the third linear guide rail 2 31. That is, the third slide 24 has a freedom of movement in the Z-axis direction. Further, the movement of the third slide 24 is precisely measured by the third displacement detecting means 232.
- the third slide 24 is moved in three orthogonal axes, that is, It freely moves in the X, Y, and Z axis directions, and the amount of movement is independent for each axis by the first, second, and third displacement detection means 2 1 2, 2 2 2, 2 3 2 Measured precisely.
- first, second and third displacement detecting means 2 12, 22 2, 23 2 are capable of accurately measuring the change in distance, and the measurement results are processed by the arithmetic unit 3. Anything that can be output as a signal is acceptable.
- Such displacement detecting means include, for example, one using laser-light and one using electromagnetic means.
- Reference numeral 25 denotes a universal joint, one end of which is fixed to the third slide 24 and the other end (free end) freely rotates around three orthogonal axes.
- Reference numeral 251 denotes a reference point, which is an intersection of three rotation axes of the universal joint. That is, the reference point 25 1 is a center point where the position does not change regardless of how the free end of the universal joint 25 is rotated.
- Reference numeral 26 denotes a jig.
- One end of the jig is fastened to the free end of the universal joint 25 with bolts 25 2, and the other end has a structure capable of being connected to the wrist tip 16 of the robot 1.
- the jig 26 can be easily connected to and separated from the universal joint 25 by attaching and detaching the bolt 25.
- the universal joint 25 is a universal joint having a generally known structure, but may be configured as follows.
- FIG. 4 is a sectional view of a universal joint according to another embodiment of the present invention.
- reference numeral 25 denotes a universal joint, which comprises a concave portion 25 3 and a spherical portion 25 4.
- the concave part 25 3 is a metal part with a precision machined frustoconical hole in the center part and a magnet 255 incorporated in the bottom part, which is fixed to a slide table of a calibration device (not shown).
- the sphere part 254 is composed of a precise sphere part 256 made of a magnetic metal and a joint part 257.
- the sphere 2556 is placed so as to cover the hole of the concave portion 2553, and is held by the magnetic force of the magnet 255.
- the joint part 257 is connected to a jig of a calibration device (not shown).
- the center of the spherical portion 256 is maintained at a fixed position against a relatively small external force. Rotates freely in the axial direction. That is, it behaves similarly to a general universal joint.
- an external force greater than the magnetic force generated by the magnet 255 is applied to the spherical portion 25 4, the coupling between the spherical portion 25 4 and the concave portion 25 3 is released. For this reason, robots and calibration equipment Mechanical coupling and separation are facilitated.
- the displacement detecting unit 21 2, 222, 23 coordinates the Kiyaribu Reshiyon device obtained by the 2 (chi 2, .gamma.2, Zeta 2) a, and stores the calculation means 3. 'Next, the calculation procedure for determining the correction value of the robot parameter using the coordinate values obtained by the above operation will be described.
- the above calculation is performed inside the arithmetic means 3, and the calculation result of the home error vector ⁇ is sent to the control device 5 via the signal line 6, and the link angle in the home position of the robot 1 is corrected. Complete the calibration.
- the robot 1 is given a command to move the reference point 25 1 by the difference between the coordinate value of the first measurement and the coordinate value of the second measurement.
- FIG. 5 is an explanatory diagram showing a method of calibrating the swing axis B.
- the angle of the swing axis B such that the rotation axis T is parallel to the rotation axis R is defined as the origin of the swing axis B, and the wrist 15 is rotated around the swing axis B by 90 ° from the origin.
- the rotated posture is set as a starting posture, and the wrist tip 16 is connected to a calibration device (not shown) via a jig 26.
- the robot 1 rotates the rotating part 14 b of the upper arm by 180 ° around the rotation axis R, and rotates the wrist part 15 by 90 ° instead of the swing axis B.
- ⁇ sin— 1 ⁇ / (2 1 B) ⁇ (8)
- 1 B is the distance from the swing axis B to the reference point 25 1, which is a known value measured in advance.
- FIG. 6 is an explanatory view showing a method of calibrating the rotation axis R
- FIG. It is a front view and (b) is a front view.
- the angle of the rotation axis R is set as the origin of the rotation axis R such that the swing axis B is horizontal, and the rotation part 14 b of the upper arm is rotated around the R axis by 90.
- the wrist part 15 is rotated by a predetermined angle around the B-axis, and the jig 26 is set in a posture parallel to the Y-axis as the starting posture.
- the wrist tip part 16 is not shown through the jig 26. It is connected to a calibration device.
- the turning head (not shown) is turned, and the horizontal axis L and the horizontal axis U are not moved, and the rotating part 14 b of the upper arm is moved around the rotating axis R.
- the command is 90 °, that is, the command in the starting position is + 90 °
- the command is to rotate to 90 °
- the end posture has a mirror image relationship with the start posture based on the XZ plane of the robot coordinates.
- the difference between the reference point 25 1 in the start posture and the reference point 25 1 ′ in the end posture that is, the displacement of the reference point 251 should be 0 if the origin of the rotation axis R is correct.
- the relationship between the displacement ⁇ of the reference point 25 1 in the Z-axis direction obtained by the calibration device 2 and the origin error AR of the rotation axis R can be expressed by the following equation.
- FIG. 7 is an explanatory diagram showing a method of calibrating the horizontal axis U.
- the angle of the horizontal axis U such that the rotation axis R is horizontal is defined as the origin of the horizontal axis U
- the fixed part 14a of the upper arm is rotated around the horizontal axis U by ⁇ ⁇ ⁇ from the origin, and the wrist is rotated.
- a posture in which the part 15 is rotated around the ⁇ axis by ⁇ ° is set as a starting posture, and the wrist tip part 16 is connected to a calibration device (not shown) via a jig 26.
- the robot 1 rotates the fixed part 14 a of the upper arm about the horizontal axis U by 16 ° from the origin, and rotates the rotating part 14 b of the arm about 180 ° about the rotation axis R, and then vertically Axis S, horizontal axis L, and swing axis B are commanded not to move as they are, and take the end posture.
- the reference point 25 1 in the start posture and the end Difference between reference point 25 1 ′ in attitude should be 0 if the origin of the horizontal axis U is correct.
- the relationship between the displacement ⁇ in the X-axis direction of the reference point 25 1 obtained by the calibration device 2 and the origin error ⁇ of the horizontal axis U can be expressed as follows.
- FIG. 8 is an explanatory diagram showing a method of calibrating the horizontal axis L.
- the angle of the horizontal axis L such that the lower arm 13 becomes vertical is set as the origin of the horizontal axis L, and the lower arm 13 is rotated around the horizontal axis L by ⁇ from the origin, and the wrist part 15 is moved.
- the posture rotated by ⁇ ⁇ ⁇ around the B axis is the starting posture, and the wrist tip 16 is connected to a calibration device (not shown) via a jig 26.
- the robot 1 rotates the lower arm 13 around the horizontal axis L by ⁇ — from the origin, rotates the wrist 15 clockwise around the ⁇ axis, and moves the wrist relative to the starting posture.
- 15 makes a symmetrical posture. Instruct the vertical axis S, horizontal axis U, rotary axis R, and rotary axis T not to move and take the end posture.
- the Z-axis component of the difference between the reference point 2 51 in the start posture and the reference point 2 5 1 ′ in the end posture that is, the reference point 25
- the displacement in the Z-axis direction of 1 should be 0 if the origin of the horizontal axis L is correct.
- the relationship between the displacement ⁇ in the Z-axis direction of the reference point 25 1 obtained by the calibration device 2 in the Z-axis and the origin error ⁇ L of the horizontal axis L can be expressed by the following equation.
- the above calibration is performed for a certain axis, and according to the result, Correct the axis origin and recalibrate. By repeating this process until the error of the origin becomes smaller than a predetermined level, the accuracy of the calibration is further improved.
- this calibration procedure is programmed in the calculation means, including a function to select the operation program of the robot 1, it is possible to automate and automate the tasks other than the coupling and separation of the robot 1 and the calibration device 2. Needless to say. As described above, the present invention has the following effects.
- the structure of the calibration device is relatively simple and inexpensive.
- the calibration device is compact and excellent in portability. Therefore, for example, even when the origin is shifted due to a running robot hitting a workpiece or the like, the calibration device can be brought to the site and calibration can be executed while the robot is installed on the site.
- the present invention is applicable to a calibration device and a method for an articulated robot.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69840298T DE69840298D1 (de) | 1997-01-29 | 1998-01-16 | Vorrichtung und verfahren zum einstellen von robotern |
EP98900411A EP1016506B1 (en) | 1997-01-29 | 1998-01-16 | Device and method for calibrating robot |
US09/355,507 US6317699B1 (en) | 1997-01-29 | 1998-01-16 | Device and method for calibrating a robot |
KR10-1999-7006665A KR100494232B1 (ko) | 1997-01-29 | 1998-01-16 | 로봇의 캘리브레이션 장치 및 방법 |
JP50681798A JP4072628B2 (ja) | 1997-01-29 | 1998-01-16 | ロボットのキャリブレーション方法およびシステム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3125897 | 1997-01-29 | ||
JP9/31258 | 1997-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998032571A1 true WO1998032571A1 (fr) | 1998-07-30 |
Family
ID=12326335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/000164 WO1998032571A1 (fr) | 1997-01-29 | 1998-01-16 | Dispositif d'etalonnage de robot et methode afferente |
Country Status (7)
Country | Link |
---|---|
US (1) | US6317699B1 (ja) |
EP (1) | EP1016506B1 (ja) |
JP (1) | JP4072628B2 (ja) |
KR (1) | KR100494232B1 (ja) |
CN (1) | CN1067932C (ja) |
DE (1) | DE69840298D1 (ja) |
WO (1) | WO1998032571A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007064355A3 (en) * | 2005-06-03 | 2007-08-02 | Honeywell Int Inc | Carbon nanotube-based glucose sensor |
US7275330B2 (en) | 2004-10-30 | 2007-10-02 | Korea Electric Power Corporation | Three axial displacement measuring apparatus |
JP2009080616A (ja) * | 2007-09-26 | 2009-04-16 | Mitsubishi Electric Corp | 数値制御装置 |
JP2010016415A (ja) * | 2004-06-01 | 2010-01-21 | Applied Materials Inc | 基板を支持するための方法及び装置 |
WO2010106937A1 (ja) * | 2009-03-17 | 2010-09-23 | 川崎重工業株式会社 | ロボット及びオートゼロイング方法 |
JP2010531238A (ja) * | 2007-05-16 | 2010-09-24 | エーエスアーベー カッティング システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 切断機用自在軸受装置の位置調整用装置および方法 |
CN101913147A (zh) * | 2010-07-12 | 2010-12-15 | 中国科学院长春光学精密机械与物理研究所 | 高精度全自动大型转载系统 |
JP2011011326A (ja) * | 2009-07-06 | 2011-01-20 | Ihi Corp | ロボットのツール位置較正治具と方法 |
JP2011224672A (ja) * | 2010-04-15 | 2011-11-10 | Kobe Steel Ltd | ロボットのツールベクトルの導出方法及び較正方法 |
WO2017026045A1 (ja) * | 2015-08-10 | 2017-02-16 | 富士通株式会社 | ハンド力覚計測装置、ハンド力覚計測方法、及びハンド力覚計測プログラム |
WO2024190883A1 (ja) * | 2023-03-15 | 2024-09-19 | 京セラ株式会社 | 処理装置、載置部材及びプログラム |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6571148B1 (en) | 2000-05-03 | 2003-05-27 | The Boeing Company | System for automatically certifying the accuracy of a manufacturing machine and associated methods |
US6519860B1 (en) * | 2000-10-19 | 2003-02-18 | Sandia Corporation | Position feedback control system |
KR100416224B1 (ko) * | 2001-05-03 | 2004-01-31 | 광주과학기술원 | 로봇의 캘리브레이션 장치 및 그 방법 |
KR100381510B1 (ko) * | 2001-05-03 | 2003-04-23 | 광주과학기술원 | 병렬 기구형 로봇의 캘리브레이션 장치 및 그 방법 |
JP4142304B2 (ja) * | 2001-10-22 | 2008-09-03 | 株式会社安川電機 | アーク溶接用ロボット |
CN1582217A (zh) * | 2001-11-01 | 2005-02-16 | 阿森姆布里昂股份有限公司 | 校准部件摆放机器的方法,适于实施该方法的装置以及适于该方法或装置中使用的校准部件 |
JP3946711B2 (ja) * | 2004-06-02 | 2007-07-18 | ファナック株式会社 | ロボットシステム |
CN101396682B (zh) * | 2007-09-28 | 2010-09-15 | 刘乐贺 | 一种用于喷涂的智能臂机构 |
US8457786B2 (en) * | 2008-11-25 | 2013-06-04 | Abb Technology Ltd | Method and an apparatus for calibration of an industrial robot system |
CN101813499B (zh) * | 2010-03-30 | 2011-06-08 | 上海市计量测试技术研究院 | 一种三维微触觉传感器的校准方法与装置 |
JP5425006B2 (ja) * | 2010-07-12 | 2014-02-26 | 株式会社神戸製鋼所 | ロボットのツールベクトルの導出に用いる治具 |
KR101323819B1 (ko) * | 2011-07-04 | 2013-10-31 | 삼성중공업 주식회사 | 형강절단로봇의 캘리브레이션 장치 및 그 캘리브레이션 방법 |
CN103101060B (zh) * | 2011-11-11 | 2015-07-01 | 鸿富锦精密工业(深圳)有限公司 | 机器人工具中心点的传感校正方法 |
CN103376080B (zh) * | 2012-04-27 | 2016-09-07 | 上海西门子燃气轮机部件有限公司 | 一种用于校准机器人工作单元的方法 |
JP2014176940A (ja) * | 2013-03-15 | 2014-09-25 | Yaskawa Electric Corp | ロボットシステム、ロボット制御方法及び被加工物の製造方法 |
JP5802735B2 (ja) * | 2013-12-27 | 2015-11-04 | ファナック株式会社 | 退避装置を備えた対象物搬送システム |
CN104802802B (zh) * | 2014-01-23 | 2017-04-05 | 南京聚特机器人技术有限公司 | 一种用于摆臂式履带机器人零位校准的误差辨识方法 |
DE102014003931B3 (de) * | 2014-03-18 | 2015-09-24 | Dürr Systems GmbH | Roboteranordnung mit paarweise aneinander angepasstem Applikationsgerät mit Zwischenflansch und entsprechendes Montageverfahren |
CN104848876B (zh) * | 2015-05-18 | 2017-10-03 | 哈尔滨工程大学 | 全方位移动机器人定位码盘的安装误差测量方法 |
CN105583825B (zh) * | 2016-03-14 | 2017-06-30 | 中国计量大学 | 一种工业机器人轨迹检测装置 |
US10596706B2 (en) | 2016-04-08 | 2020-03-24 | Delta Electronics, Inc. | Mechanism-parameter-calibration method for robotic arm system |
US11267125B2 (en) | 2016-04-08 | 2022-03-08 | Delta Electronics, Inc. | Mechanism-parameter-calibration method for robotic arm system |
TWI601611B (zh) * | 2016-04-08 | 2017-10-11 | 台達電子工業股份有限公司 | 用於機器手臂系統之機構參數校正方法 |
JP6501746B2 (ja) * | 2016-10-07 | 2019-04-17 | キヤノン株式会社 | 変位測定装置、ロボット、ロボットアーム及び物品の製造方法 |
WO2018200256A1 (en) | 2017-04-24 | 2018-11-01 | Think Surgical, Inc. | Magnetic coupling and method for calibrating a robotic system |
DE102017004433B4 (de) * | 2017-05-08 | 2019-03-14 | Kuka Deutschland Gmbh | Roboterjustage |
CN107443425A (zh) * | 2017-09-20 | 2017-12-08 | 柳州欧卡机器人有限公司 | 一种基于多关节的工业机器人校准装置 |
CN107718049B (zh) * | 2017-11-10 | 2022-02-15 | 尊道(上海)自动化设备有限公司 | 一种机械手工作位置偏移的检测机构及检测方法 |
JP6784660B2 (ja) * | 2017-11-28 | 2020-11-11 | ファナック株式会社 | 入力装置およびロボットの制御システム |
TWI639494B (zh) * | 2017-12-26 | 2018-11-01 | 范光照 | 機械手臂校正方法與裝置 |
KR102561103B1 (ko) * | 2018-11-16 | 2023-07-31 | 삼성전자주식회사 | 로봇 보정 시스템 및 그것의 보정 방법 |
CN109909646B (zh) * | 2019-02-02 | 2021-01-01 | 宁波吉利汽车研究开发有限公司 | 机器人焊枪工作点的修正方法、装置及电子设备 |
DE102019102798A1 (de) * | 2019-02-05 | 2020-08-06 | Franka Emika Gmbh | Kombinieren zweier einzelner Robotermanipulatoren zu einem Robotersystem durch Kalibrieren |
KR102477551B1 (ko) | 2019-04-12 | 2022-12-13 | 삼성중공업 주식회사 | 로봇 캘리브레이션 장치 |
CN110202582B (zh) * | 2019-07-03 | 2021-11-26 | 桂林电子科技大学 | 一种基于三坐标平台的机器人标定方法 |
DE102019131400B4 (de) * | 2019-11-21 | 2022-03-10 | Franka Emika Gmbh | Kraftmessung und Krafterzeugung in redundanten Robotermanipulatoren |
CN112902898B (zh) | 2019-12-03 | 2022-11-29 | 台达电子工业股份有限公司 | 三维测量装置及所适用的机械手臂的校正方法 |
CN112372415A (zh) * | 2020-11-06 | 2021-02-19 | 江苏克劳波尔科技有限公司 | 一种砂芯毛刺打磨装置及方法 |
CN112536822A (zh) * | 2020-12-04 | 2021-03-23 | 法奥意威(苏州)机器人系统有限公司 | 一种空间轨迹精度测量装置及方法 |
CN113478459A (zh) * | 2021-05-27 | 2021-10-08 | 成都飞机工业(集团)有限责任公司 | 一种机器人用标定、试刀及检测一体化装置及使用方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62148172A (ja) * | 1985-12-19 | 1987-07-02 | フアナツク株式会社 | 直交座標型ロボツトの原点調整装置 |
JPS62297082A (ja) * | 1986-06-16 | 1987-12-24 | フアナツク株式会社 | 産業用ロボツトの基準位置決め装置の取付構造 |
JPH04365586A (ja) * | 1991-06-14 | 1992-12-17 | Toyota Autom Loom Works Ltd | ハンドアイの光軸整合方法及び直交軸整合方法 |
JPH0577058A (ja) * | 1991-09-24 | 1993-03-30 | Daihatsu Motor Co Ltd | スポツト溶接システムにおけるスポツト溶接座標の測定装置 |
JPH05261682A (ja) * | 1991-04-09 | 1993-10-12 | Yaskawa Electric Corp | 産業用ロボットのキャリブレーション方式 |
JPH05329786A (ja) * | 1992-05-29 | 1993-12-14 | Mitsubishi Electric Corp | 産業用ロボット装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4372721A (en) * | 1981-05-18 | 1983-02-08 | Nordson Corporation | Apparatus for calibrating link position transducers of a teaching robot and a work robot |
US4725965A (en) * | 1986-07-23 | 1988-02-16 | American Telephone And Telegraph Company | Method for calibrating a SCARA robot |
US4892457A (en) * | 1988-07-11 | 1990-01-09 | Gmf Robotics Corporation | Apparatus for mastering a robot |
US5099216A (en) * | 1988-11-04 | 1992-03-24 | Ron Pelrine | Magnetically levitated apparatus |
KR920008141B1 (ko) * | 1990-04-03 | 1992-09-22 | 한국과학기술연구원 | 로보트의 성능측정 및 계수인식장치 |
JP3319022B2 (ja) * | 1993-03-22 | 2002-08-26 | 株式会社安川電機 | ロボット装置の機構データの較正方法 |
US6071060A (en) * | 1998-04-08 | 2000-06-06 | Mcms, Inc. | Calibration jig for an automated placement machine |
-
1998
- 1998-01-16 DE DE69840298T patent/DE69840298D1/de not_active Expired - Lifetime
- 1998-01-16 US US09/355,507 patent/US6317699B1/en not_active Expired - Lifetime
- 1998-01-16 CN CN98802106A patent/CN1067932C/zh not_active Expired - Fee Related
- 1998-01-16 JP JP50681798A patent/JP4072628B2/ja not_active Expired - Fee Related
- 1998-01-16 KR KR10-1999-7006665A patent/KR100494232B1/ko not_active Expired - Fee Related
- 1998-01-16 EP EP98900411A patent/EP1016506B1/en not_active Expired - Lifetime
- 1998-01-16 WO PCT/JP1998/000164 patent/WO1998032571A1/ja active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62148172A (ja) * | 1985-12-19 | 1987-07-02 | フアナツク株式会社 | 直交座標型ロボツトの原点調整装置 |
JPS62297082A (ja) * | 1986-06-16 | 1987-12-24 | フアナツク株式会社 | 産業用ロボツトの基準位置決め装置の取付構造 |
JPH05261682A (ja) * | 1991-04-09 | 1993-10-12 | Yaskawa Electric Corp | 産業用ロボットのキャリブレーション方式 |
JPH04365586A (ja) * | 1991-06-14 | 1992-12-17 | Toyota Autom Loom Works Ltd | ハンドアイの光軸整合方法及び直交軸整合方法 |
JPH0577058A (ja) * | 1991-09-24 | 1993-03-30 | Daihatsu Motor Co Ltd | スポツト溶接システムにおけるスポツト溶接座標の測定装置 |
JPH05329786A (ja) * | 1992-05-29 | 1993-12-14 | Mitsubishi Electric Corp | 産業用ロボット装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1016506A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010016415A (ja) * | 2004-06-01 | 2010-01-21 | Applied Materials Inc | 基板を支持するための方法及び装置 |
US8365682B2 (en) | 2004-06-01 | 2013-02-05 | Applied Materials, Inc. | Methods and apparatus for supporting substrates |
US7275330B2 (en) | 2004-10-30 | 2007-10-02 | Korea Electric Power Corporation | Three axial displacement measuring apparatus |
WO2007064355A3 (en) * | 2005-06-03 | 2007-08-02 | Honeywell Int Inc | Carbon nanotube-based glucose sensor |
JP2010531238A (ja) * | 2007-05-16 | 2010-09-24 | エーエスアーベー カッティング システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 切断機用自在軸受装置の位置調整用装置および方法 |
JP4618616B2 (ja) * | 2007-09-26 | 2011-01-26 | 三菱電機株式会社 | 数値制御装置 |
JP2009080616A (ja) * | 2007-09-26 | 2009-04-16 | Mitsubishi Electric Corp | 数値制御装置 |
WO2010106937A1 (ja) * | 2009-03-17 | 2010-09-23 | 川崎重工業株式会社 | ロボット及びオートゼロイング方法 |
US8358422B2 (en) | 2009-03-17 | 2013-01-22 | Kawasaki Jukogyo Kabushiki Kaisha | Robot and auto-zeroing method |
JP2010214533A (ja) * | 2009-03-17 | 2010-09-30 | Kawasaki Heavy Ind Ltd | ロボット、及びオートゼロイング方法 |
JP2011011326A (ja) * | 2009-07-06 | 2011-01-20 | Ihi Corp | ロボットのツール位置較正治具と方法 |
JP2011224672A (ja) * | 2010-04-15 | 2011-11-10 | Kobe Steel Ltd | ロボットのツールベクトルの導出方法及び較正方法 |
CN101913147A (zh) * | 2010-07-12 | 2010-12-15 | 中国科学院长春光学精密机械与物理研究所 | 高精度全自动大型转载系统 |
WO2017026045A1 (ja) * | 2015-08-10 | 2017-02-16 | 富士通株式会社 | ハンド力覚計測装置、ハンド力覚計測方法、及びハンド力覚計測プログラム |
JPWO2017026045A1 (ja) * | 2015-08-10 | 2018-04-26 | 富士通株式会社 | ハンド力覚計測装置、ハンド力覚計測方法、及びハンド力覚計測プログラム |
WO2024190883A1 (ja) * | 2023-03-15 | 2024-09-19 | 京セラ株式会社 | 処理装置、載置部材及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
US6317699B1 (en) | 2001-11-13 |
CN1246087A (zh) | 2000-03-01 |
EP1016506B1 (en) | 2008-12-03 |
JP4072628B2 (ja) | 2008-04-09 |
EP1016506A1 (en) | 2000-07-05 |
EP1016506A4 (en) | 2007-05-02 |
KR100494232B1 (ko) | 2005-06-13 |
CN1067932C (zh) | 2001-07-04 |
KR20000070430A (ko) | 2000-11-25 |
DE69840298D1 (de) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998032571A1 (fr) | Dispositif d'etalonnage de robot et methode afferente | |
US5239855A (en) | Positional calibration of robotic arm joints relative to the gravity vector | |
JP5321532B2 (ja) | ロボットキャリブレーション装置及びキャリブレーション方法 | |
JP4653824B2 (ja) | 機上計測装置にて計測対象物の形状を計測する工作機械システム | |
US20060196062A1 (en) | Method for calibrating parallel kinematic mechanism, method for verifying calibration, program product for verifying calibration, method for taking data, and method for taking correction data for spatial posturing correction | |
US20030033104A1 (en) | Marking out method and system | |
JP2012104136A (ja) | 機械の精度を高めるための方法 | |
JP5071238B2 (ja) | 6軸ロボットの2軸原点位置較正方法、6軸ロボットの制御装置、多関節型ロボットの軸原点位置較正方法及び多関節型ロボットの制御装置 | |
WO1986006998A1 (en) | Apparatus for setting industrial robot in reference position | |
WO1985000548A1 (en) | Method of and apparatus for determining reference position of industrial robot | |
US5418890A (en) | Arm origin calibrating method for an articulated robot | |
JPH05111886A (ja) | ロボツトマニピユレータのキヤリブレーシヨン点教示方法およびキヤリブレーシヨン作業方法 | |
JP2000055664A (ja) | 姿勢を計測する機能を持つ多関節型ロボット・システム、ターン・テーブルを校正基準に用いてジャイロの計測精度を検証する方法及びシステム、及び、n軸で構成されるターン・テーブルのキャリブレーションを行う装置及び方法 | |
JP2003181782A (ja) | 産業用ロボット | |
JP2022084259A (ja) | 情報処理装置、情報処理方法、ロボットシステム、測定システム、ロボットシステムを用いた物品の製造方法、制御プログラム及び記録媒体 | |
JPH1185234A (ja) | 自動工具交換装置の教示点の位置補正装置とその方法 | |
JPH0774964B2 (ja) | ロボットの位置決め誤差補正方法 | |
JP2538287B2 (ja) | 水平関節型ロボットの原点調整方式 | |
JPH0760332B2 (ja) | ロボツト校正装置 | |
JP5667437B2 (ja) | ロボットの外部軸の計測方法、ロボットの教示データ作成方法、およびロボットのコントローラ | |
JPS62199383A (ja) | ロボツトの制御方式 | |
KR20110123942A (ko) | 디지털 수평계를 이용한 수직다관절 로봇의 캘리브레이션 방법 | |
JP2005028529A (ja) | 産業用ロボットの原点位置合わせ装置 | |
JPS62148173A (ja) | 関節型ロボツトの原点調整方法 | |
JPH0691566A (ja) | 多関節腕型ロボットの原点姿勢位置の較正方法と装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 98802106.4 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1019997006665 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09355507 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998900411 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998900411 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997006665 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019997006665 Country of ref document: KR |