+

WO1998031054A1 - Photoelectric transducer and device using the same - Google Patents

Photoelectric transducer and device using the same Download PDF

Info

Publication number
WO1998031054A1
WO1998031054A1 PCT/JP1997/000049 JP9700049W WO9831054A1 WO 1998031054 A1 WO1998031054 A1 WO 1998031054A1 JP 9700049 W JP9700049 W JP 9700049W WO 9831054 A1 WO9831054 A1 WO 9831054A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
optical system
conversion device
biaxial
light
Prior art date
Application number
PCT/JP1997/000049
Other languages
French (fr)
Japanese (ja)
Inventor
Terunori Warabisako
Ken Tsutsui
Shinichi Muramatsu
Tsuyoshi Uematsu
Hiroyuki Ohtsuka
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/000049 priority Critical patent/WO1998031054A1/en
Publication of WO1998031054A1 publication Critical patent/WO1998031054A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/484Refractive light-concentrating means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/488Reflecting light-concentrating means, e.g. parabolic mirrors or concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photoelectric conversion device that converts light energy into electric power, and more particularly to a condensing photoelectric conversion device in which a photoelectric conversion element is combined with a condensing optical system.
  • the present invention is suitable for general-purpose photovoltaic power generation, similar to ordinary solar cells.
  • the appearance of portable electronic devices is important, and power sources for consumer products with low directivity of light incidence, It can also be used for high-voltage power supplies and sensors. Background art
  • the flat solar cell elements (cells) 20 are arranged in a plane with as few gaps as possible to increase the filling efficiency, and connected by wiring leads 21. Therefore, such a solar cell module has a structure in which cells composed of semiconductor elements are spread.
  • the former condensing type belongs to the same category as that of the present invention, but there are some configuration examples as shown in FIG.
  • FIG. 3 A single-axis low-magnification light concentrator 34 composed of a glass lens is applied to the solar cell 33
  • Japanese Patent Application Laid-Open No. 58-68988 discloses an example mainly of a tracking type of biaxial focusing. This is shown in Fig. 3 (A-2).
  • a 1-mm square solar cell chip 31 is mounted on a wiring board 30 and is combined with a refracting lens 32 of 10 to 20 mm in size.
  • a refracting lens 32 of 10 to 20 mm in size.
  • an example of biaxial focusing in which the refracting lens 32 is separated from the solar cell chip 31 is disclosed in Japanese Patent Application Laid-Open No. 7-231111. Disclosure of the invention
  • a concentrating module that can reduce the area of the power generation element per module area is effective.
  • the focusing magnification is small, and the required area of the semiconductor photoelectric conversion element mounted on the module does not become much smaller than the module area.
  • the area of the semiconductor photoelectric conversion element can be reduced because the focusing magnification can be increased, but the light incident on the light at an angle deviating from the optical axis can be focused.
  • a tracking type equipped with a sun tracking mechanism is generally used so that the direct light always enters the optical system perpendicularly, because the light is easily deviated from the element. Furthermore, it is necessary to increase the allowable incident angle. Therefore, the only light that can be used is direct paraxial light, and almost all scattered light cannot be used.
  • An object of the present invention is to provide a biaxial concentrating photoelectric conversion device that can be used in a non-tracking type and does not need to have a semiconductor photoelectric conversion element having a large area as in a flat-panel solar cell, and its application. Equipment.
  • the object is to provide a semiconductor photoelectric conversion element, a biaxial refractive optical system having an opening diameter equal to or larger than the maximum diameter of the semiconductor portion of the semiconductor photoelectric conversion element, and a semiconductor photoelectric conversion device facing the biaxial refractive optical system.
  • a biaxial reflective optical system which is located on the semiconductor photoelectric conversion element side from the focal point of the biaxial refractive optical system on the opposite side of the element as a structural unit, and a plurality of such structural units are arranged in a plane or curved surface This can be achieved by a photoelectric conversion device having a photoelectric conversion module configured as described above.
  • reference numeral 1 denotes a semiconductor photoelectric conversion element (hereinafter abbreviated as an element)
  • reference numeral 2 denotes a constituent unit (hereinafter referred to as a cell)
  • reference numeral 3 denotes a photoelectric conversion module (hereinafter referred to as a module)
  • reference numeral 4 Is an array of refraction lenses forming a biaxial refracting optical system
  • reference numeral 5 is a wiring board on which the element 1 is mounted
  • reference numeral 6 is an array forming a biaxial reflecting optical system.
  • the biaxial reflecting optical system and the semiconductor photoelectric conversion element inside the focal point of the biaxial refractive optical system, the refracted light by the biaxial refractive optical system is reflected by the biaxial reflecting optical system.
  • the system can be further converged and incident on the element, and the allowable incident angle can be widened Therefore, it can be used in a non-tracking type.
  • the condensing optical system is configured using a biaxial refracting optical system and a biaxial reflecting optical system capable of condensing light at a high magnification, the area of the element can be kept small. It can be.
  • FIG. 1 is a schematic partial cross-sectional view of a module illustrating the configuration of the present invention.
  • FIG. 2 is a bird's-eye view showing an arrangement of cells constituting a conventional solar cell module.
  • FIG. 3 is a cross-sectional view and a bird's-eye view showing an example of a conventional concentrating solar cell module.
  • FIG. 4 is an explanatory sectional view showing the relationship between the operation and the size of the device of the present invention in comparison with the conventional device.
  • FIG. 5 is a characteristic relation diagram for explaining the photoelectric conversion operation of the device of the present invention.
  • FIG. 6 is an explanatory sectional view and a characteristic diagram showing a light-condensing operation of a refractive optical system in the light-condensing system of the photoelectric conversion element of the present invention.
  • FIG. 7 is a schematic plan view and a cross-sectional view illustrating an example of the configuration of a condensing optical system according to the present invention.
  • FIG. 8 is a view for explaining the light collecting operation in the light collecting optical system of the present invention. It is an example of a cell cross section and an optical path.
  • FIG. 9 is a schematic cross-sectional view for explaining the configuration of the module of the present invention and a method of configuring the module.
  • FIG. 10 is a schematic plan view of a module for explaining one embodiment of the module of the present invention.
  • FIG. 11 is a schematic plan view of one embodiment showing a positional relationship between a light-collecting system, a wiring board, and cells constituting a module of the present invention and a wiring state.
  • FIG. 12 is a schematic plan view of a module showing another embodiment of the module of the present invention.
  • FIG. 13 is a schematic bird's-eye view showing one embodiment relating to the element structure and the cell configuration of the present invention.
  • FIG. 14 is a schematic cross-sectional view showing the configuration of a module to which the element exemplified in FIG. 13 is applied.
  • FIG. 15 is a schematic bird's-eye view and a cross-sectional view of a device illustrating another embodiment and a cell configuration of the device of the present invention.
  • FIG. 16 is a schematic sectional view showing another embodiment of the device of the present invention.
  • FIG. 17 is a schematic plan view for explaining wiring and element arrangement for explaining one embodiment of modularization of the embodiment shown in FIG.
  • FIG. 18 shows another example of the device and modularization of the present invention. It is a cross section showing an example.
  • FIG. 19 is a bird's-eye view schematic diagram for explaining one embodiment relating to the application of the present invention to a power generation system.
  • FIG. 20 is a plan explanatory view of the configuration of the module array in one embodiment relating to the application of the present invention.
  • FIG. 21 is a schematic bird's-eye view of another embodiment related to the application of consumer equipment of the present invention.
  • FIG. 22 is a schematic plan view showing a configuration example of a module to which the present invention is applied.
  • the element used in the conventional flat type or condensing type has a structure as shown in Fig. 4 (A), and the thickness of the semiconductor part of the element is usually smaller than the diffusion length of a small number of carriers. , But the lateral dimensions of the device are much longer.
  • an extremely thin n-type diffusion layer 401 is formed on the surface of a p-type substrate 400, and electrons and holes formed by incident light 402 are formed.
  • electrons, which are minor carriers of the p-type substrate are collected by the n-type diffusion layer 401 in the diffusion length region 403 and contribute as output.
  • FIG. As shown, the carrier redistribution on the substrate 410 caused by the non-uniformity of the light irradiation required only a short distance movement, and the electrons generated by the weak light 411
  • the diffusion region 4 12 almost overlaps with the one generated in 4 14, and is collected by the common negative electrode 4 15 via the nearby n-type region 4 13.
  • the output depends on the total amount of light incident on the device, and the effect of incident non-uniformity is reduced.
  • the output depends on the total amount of incident light even in a spherical shape as shown in Fig. 4 (C) or an irregular mass not shown here.
  • These characteristics are advantageous when concentrating the solar cell, and uniform light collection is not required, and it does not depend much on the incident direction. large.
  • Such an effect can be expected when the maximum diameter of the semiconductor portion of the element is about twice the diffusion length of the minority carrier.
  • the element dimensions are determined by the thickness of the semiconductor portion and the lateral direction. The reason why the maximum diameter is displayed instead of the dimension is that the present invention captures the shape of the semiconductor portion of the element from the viewpoint of the diffusion length of the minority carrier.
  • the maximum diameter depends on the quality of the semiconductor material, and the longer the carrier lifetime, the larger the device can be made.
  • the relationship between the carrier diffusion length and the carrier life time is as shown in Fig. 5 (A), taking silicon as an example.
  • the carrier diffusion length Ld is about 350 ⁇ m, and the above-mentioned situation until the maximum diameter is about 700 m, which is twice as large. Is realized.
  • the diffusion length after processing into a device is about 1 mm, and the above situation is realized up to a maximum diameter of about 2 mm.
  • the life time is about 30 s and the carrier diffusion length is about 200 ⁇ m. Therefore, the above condition is satisfied for an element whose maximum diameter is up to about 400 m, so that the carrier collection requires only one pair of positive and negative contacts. Of course, there may be more than one contact.However, loss of carrier recombination at the contact and light blocking by the electrode increases, so that the contact It is desirable that the area of the unit be small as long as the series resistance of the element can be increased, and the number of contact pairs is preferably small.
  • FIG. 5 (B) shows the efficiency and carrier characteristics of a device with a thickness of 500 ⁇ m and a standard high-quality surface (surface recombination speed: s to 1000 cm / s).
  • FIG. 4 is a diagram showing the relationship with a film, with the temperature and the light collection magnification as parameters. At the standard temperature (25 ° C), the efficiency of about 19% can be obtained in the case of non-light-collecting with a normal substrate, but the efficiency of more than 21% can be obtained with 10 times the light-collection. In addition, even if the operating conditions are slightly higher than the actual temperature of 75 ° C, an efficiency of about 17% can be achieved by 10-fold focusing. Efficiency of more than 15% can be expected at 75 ° C even with a carrier film power of about 30 ⁇ s for SOG silicon.
  • FIG. 5 (C) shows the efficiency obtained when the carrier temperature is 30 s and the carrier temperature is 75 CC for the same 500 m thick element.
  • FIG. 4 is a diagram showing the magnification as a parameter. Although the efficiency increases with the increase in the light collection magnification, the efficiency is saturated at a light collection magnification of about 15 times because the series resistance of the electrode system is set to 1 ⁇ , and the efficiency decreases at higher light collection magnifications. I do. Therefore, in practice, it is desirable to collect light of about 10 times and at most about 20 times.
  • Fig. 5 (D) shows the efficiency of the device when the light-gathering power is 10 times, with the temperature and the surface recombination velocity S as parameters.
  • the surface recombination rate is expressed in logarithm. Efficiency tends to saturate below the surface recombination velocity of 1000 cmZs, and even if the recombination velocity increases to 100,000 cmZs, the light was condensed. In this case, the decrease in efficiency is relatively small.
  • the effect of the temperature rise is large, and the efficiency decreases by 5 points as the temperature rises from 2 ⁇ ° C to 75 ° C. Therefore, the rise of the element temperature is suppressed even if the light concentration is about 10 times In this regard, it is advantageous that the element is small.
  • the temperature rise of the element can be suppressed.
  • FIG. 6 (A) is a cross-sectional view showing an optical path of incident light by a general spherical lens.
  • the lens 600 has a shape in which a hemispherical upper part A-P-B of radius R and a cylindrical lower part A-B-B'-A 'are connected by A- ⁇ -B. For simplicity, consider the incident light parallel to the main axis 0-C of the condensing system.
  • the incident light 61 enters the lens surface P at a distance r from the main axis of the light collection system at an angle of 0 with respect to the lens surface, travels through the lens after refraction.
  • Q is the point of intersection of the optical path and the lower end surface A — 0 — B of the hemispheric lens, and it passes through the intersection C of the main axis of the condensing system and the virtual sphere A — C – B of the hemispheric lens and is perpendicular to the main axis of the condensing system.
  • the incident angle 6> is in the range of 0 to 45 °, the position of the lower end face of the hemispherical lens
  • the light-gathering magnification is about 2 times regardless of the incident angle, a light-gathering rate of about 9 to 14 times can be obtained at the lower end position of the virtual sphere of the hemispherical lens.
  • the side length (2r ") of the light-receiving surface when condensed is shown by the ratio to the lens diameter (2R).
  • the incident angle 0 is 45 °, Even in this case, the side length of the light receiving section is 20% or less of the lens radius.
  • the focal point of the lens is located at a distance of 1 to 2 times the lens radius from the center 0 of the lens, and in the vicinity of this point, the light is condensed at a higher magnification or Can reduce the size of the light-receiving surface, but if the light-gathering magnification is too high, the temperature of the element will increase, and precise control of the position will be required, increasing the disadvantages that are not preferred in practice I do. Therefore, it is desirable to arrange the element a little away from the focal point of the lens.
  • a paraxial ray For a paraxial ray, light can be condensed almost along the main axis of the condensing system, but for light incident at an angle to the main axis of the condensing system, it is about 10 times higher. Even off-axis light has large off-axis and deviates from a small light receiving unit. The same applies to incident light having a twist component with respect to the main axis of the light-collecting system. Therefore, it is necessary to arrange the elements in a condensing optical system that is a combination of a biaxial refracting optical system and a biaxial reflecting optical system to form a cell.
  • the biaxial reflecting optical system used here is located closer to the element than the focal point of the biaxial refractive optical system. Further, it is desirable that the reflectance in the wavelength region where the photoelectric conversion is effectively performed is higher than the reflectance of the surface of the mounted element. This allows light to enter the element at a large expected angle. In addition, in order to exhibit a refocusing effect even for incident light having a torsional component, it is desirable that the radius of curvature of the biaxial reflection optical system be smaller than that of the biaxial refractive optical system. .
  • Fig. 7 shows an example of the design of the condensing optical system that composes the cell.
  • the surface of the lens 71 constituting the refractive optical system is spherical, and the radius of curvature thereof is R. Since the cells 72 are arranged in a densely packed manner in a plane, the external shape viewed from above is a hexagon, and the size is a square 73 inscribed in the great circle 71 of the lens sphere. Is determined to be inscribed in circle 7 4. That is, the unit lens on the light-receiving surface side of the cell has a round hexagonal column shape obtained by cutting a sphere into a hexagon determined as described above.
  • the cell surface When formed under such conditions, the cell surface can form an obtuse angle with the adjacent cell surface at an obtuse angle rather than a right angle when the cells are densely packed.
  • a lens array can be embossed.
  • the die In the case of forming by using a die, the die can be easily cut out and the lens surface can be widened most.
  • the reflecting surface 75 circumscribes the hexagon. It is composed of a spherical surface 76 with a radius of curvature intermediate between the radius of the circle 74 and the radius of curvature of the lens. Then, it is configured such that the virtual sphere 71 of the spherical lens constituting the refractive optical system and the ridge of the hexagonal prism 72 intersect at the same point.
  • the element is centered on the optical axis, and the distance between the side walls of the hexagonal prism is centered on the intersection of the optical axis with the plane containing the intersection of the ridge of the hexagonal prism and the virtual sphere of the spherical lens. It is placed in a rectangular parallelepiped space 77 whose height is 1/4 and height is 1Z2. The position of the reflecting optical system is optimized between the focal point of the lens 71 and the cubic space 77 depending on the conditions of the incident light.
  • the maximum diameter of the semiconductor portion of the element does not exceed the diameter of the circumscribed sphere of the rectangular parallelepiped space 77.
  • the maximum diameter of the semiconductor portion of the element does not exceed 15 1 2 2 ( ) / 2 times the radius of curvature of the lens.
  • key ya is 2 7/1 5 1/2 times the diffusion length of Li ⁇ .
  • the radius of curvature of the lens can be made smaller, but on the other hand, as the diffusion length of the minority carrier becomes shorter, the element characteristics deteriorate.
  • the radius of curvature of the lens is 2.92 mm.
  • Fig. 8 shows the optical path in such a cell configuration.
  • the light is reflected on the side of the cell.
  • the side of the cell does not need to have a reflective structure. You can think.
  • Fig. 8 (A) shows the light incident parallel to the optical axis on the spherical lens at the position 81 on the optical axis, the position at an opening angle of 15 degrees 82, the position at an opening angle of 30 degrees 83 Shows the optical path when the light enters each cell.
  • a material with a refractive index of 1.5 such as acrylic resin
  • the focal point is approximately two to three times the radius of curvature from the point of incidence of the spherical lens.
  • the focal length is 5.84 to 8.76 mm because the maximum design value of the lens radius of curvature is 2.92 mm.
  • the thickness of the cell can be reduced to 9 mm or less.
  • the incident light travels while converging in the lens, and mostly passes through the photoelectric conversion element region 77.
  • Light that has passed through the outside of the element region partially reaches the element region after being reflected by the reflecting mirror. In other words, all the light beams parallel to the optical axis that enter the cell light receiving unit are captured in the element region.
  • Fig. 8 (B) shows the optical path of light entering the same incident point at an angle of 15 degrees. In this case, part of the incident light is directly Most of the light reaches the device area after being reflected by the reflector.
  • Fig. 8 (C) shows the optical path of light that enters the same incident point at an angle of 30 degrees.
  • no light directly reaches the element region, and light incident on the near side of the lens when viewed from the light incident direction is reflected by the reflector and then reaches the element region, but the direction of the lens is changed.
  • the light incident on this side enters the adjacent cell, passes through the lower side of the element region of the adjacent cell in such a way as to pass through, and after being reflected by the reflecting mirror, is emitted again to the outside of the cell.
  • the projection area on the side opposite to the cell is small, and most reaches the element region.
  • Fig. 8 (D) shows the optical path of light entering the same incident point at an angle of 45 degrees. In this case, most of the incident light reaches the element area of the adjacent cell and is captured. This cell captures light incident on the adjacent cell.
  • the incident light having an angle of 45 degrees or less with the optical axis of the condensing optical system is considered.
  • most of the angle can be captured by the photoelectric conversion element except for a decrease at a part where the angle is around 30 degrees.
  • the angle between the optical axis of the condensing optical system and the optical axis exceeds 45 degrees, shielding by the adjacent cell occurs on the light-receiving surface of the cell, but the amount of light received by the entire module is the same as that of a flat plate.
  • the element region there is a possibility that incident light from a cell next to the cell concerned may be captured.
  • the module closely packs such hexagonal prism unit cells, It is configured by connecting them in series and parallel as appropriate. If such a module is installed at an elevation of 35 degrees to the south at a position of 35 degrees north latitude, it will be direct for about 6 hours in the daytime without changing the elevation angle due to the difference in solar altitude in summer and winter.
  • Sunlight can be captured by approximately 4- to 16-fold light collection, and scattered light with an aperture angle of 90 degrees can also be captured by 4- to 16-fold light collection. This is a sufficient condition for practical operation of solar cells.
  • scattered light can be captured even during the time when direct light cannot be captured.
  • the required amount of solar cells is only 1/4 to 1Z16, which greatly reduces the amount of expensive semiconductor materials used. Can be reduced. Also. Equipment for cell manufacturing. Labor costs and other consumables can be reduced at the same rate.
  • the module is configured by arranging cells in a plane and interconnecting the cells. To realize this structure, it is possible to integrate individual cells after forming each cell, but more productively, the refractive optical system, As shown in Fig. 1, the elements, wiring, and reflective optics are grouped together, and as shown in Fig. 1, a member 4 with integrated refractive optics, a wiring substrate 5 with integrated elements, and a reflective optics are integrated. It is desirable that the module 3 be formed by separately forming the members 6 thus formed and by laminating and integrating these members.
  • the cell can be made smaller and the overall thickness of the module can be reduced. can do.
  • the cell size about 1 mm or less and using a condensing optical system that combines refraction and reflection, the light condensing operation can be performed with a thickness equivalent to the protective glass of an ordinary flat plate module.
  • Modules can be configured.
  • the mechanical strength of the cell can be significantly improved compared to the conventional case where the cell is simply made thin. Further, as a result, it becomes easy to impart flexibility to the module.
  • the power generation unit is small, there is a large degree of freedom in designing the module, and it is possible to flexibly cope with various applications from electric power to small consumer products in order to adapt to any shape. Become.
  • the device can be handled as particles, and a continuous manufacturing process based on the fluidity of the particles can be constructed, greatly improving productivity. It is possible to do.
  • the maximum diameter of the semiconductor portion of the element is about twice or less than the diffusion length of the minority carrier in the semiconductor, it is unavoidable when the light-collecting operation is performed.
  • the deterioration of the photoelectric conversion characteristics due to the non-uniform light condensing is suppressed to a small extent.
  • the maximum diameter of the semiconductor portion is smaller than twice the diffusion length of the minority carrier, the distribution of the excited photogenerating carrier depends on the local incident intensity of the light. Therefore, the resistance is almost uniform in the element depending on the total amount of light incident on the element.Therefore, the influence of the resistance due to the carrier redistribution in the element observed in the conventional element. This is because the problem of characteristic degradation due to parallel connection of cells having different characteristics is reduced. Therefore, the characteristics
  • the advantage of condensing light can be brought out to the medium magnification range of 10 to 20 times without deteriorating.
  • the module is composed of a large number of cells, it is easy to obtain a high voltage in a small area, and it is possible to simplify and reduce the size of the power supply device during DCDC conversion or DCAC conversion.
  • the photoelectric conversion device of the present invention when used for electric power, it is not necessary to perform solar tracking or seasonal elevation angle adjustment, and it is possible to use scattered light. It is possible to construct a non-tracking type module that can be used similarly in a similar form to the module. In addition, since the effective light receiving angle can be increased, a power generation device having a small directivity and a small output fluctuation depending on the direction can be configured when used in a small consumer product.
  • the photoelectric conversion element 91 is a single-crystal silicon solar cell, and is a substantially rectangular parallelepiped having a thickness of 200 ⁇ m and a side length of 1 mm.
  • the device was manufactured by the usual high-efficiency solar cell manufacturing method. Since the details of the manufacturing method are out of the scope of the present invention, only a brief description will be given below.
  • the substrate is a 150-111111 diameter -shaped ⁇ 2, (100), 2 Qcm, and has a surface diffusion of 0.2 m thick on both sides at 900 ° C by a solid phosphorus diffusion source. went.
  • a negative electrode contact mainly composed of Ag is printed on a part of the rear surface phosphorus diffusion region. It is formed by firing at 50 ° C, and the positive electrode contact mainly composed of Ag A1 is also printed and fired in a part of the area where the phosphorus diffusion layer is removed. Formed.
  • a pair of the positive electrode contact 92 and the negative electrode contact 93 is provided in a portion near the back side of each element 91.
  • the substrate material is a film made of transparent polyethylene terephthalate (PET) resin, and the wiring is mainly Ag. It is formed by a screen printing method using a paste as a component and fired at 150 ° C.
  • the elements 91 are aligned with the center of a hexagon with a vertex distance of 4 mm, the center of which is aligned with the center, and 200 rows vertically and 2 3 1 rows on the substrate. Were arranged. In FIG. 10, the middle part is omitted by a dotted line. As shown in FIG. 11, the element 91 is connected in parallel in the row direction by a positive electrode wiring 112 and a negative electrode wiring 113, and the positive electrode wiring 112 and the negative electrode are connected at both ends of the row. The wires 1 1 and 3 were short-circuited and connected in series in units of rows.
  • the hexagonal prism-shaped spherical lens 95 constituting the refractive condensing system of the cell in FIG. 9 was formed by flowing borosilicate glass melted by heating into a mold.
  • the lens surface has a radius of curvature of 2.82 mm, and a densely packed structure corresponding to the position of each element on the wiring board 94 is arranged in a row with a vertical length of 202 rows and 23.3 rows.
  • This lens array has a thickness of 4.5 mm and a flat bottom surface. This lens array is provided with a flat margin area of 10 mm width to form a frame around the lens array.
  • the reflecting mirror 96 forming the cell reflecting optical system in FIG. 9 has a structure in which a reflecting film is covered on a spherical lens array, and the radius of curvature provided corresponding to the element position is set.
  • a film coated with A1 with a thickness of about 1 ⁇ m was formed on the surface of an acrylic resin with a 2.4 mm spherical lens.
  • the overall thickness is about 1.2 mm, and the opposing surface of the reflecting surface is flat.
  • the external dimensions are the same as the shape including the margin around the lens array.
  • the components of the lens array 95, the wiring board 94 on which the elements are integrated, and the reflector 97 on which the reflector 96 is formed are made of a 0.2 mm-thick ethylene-vinyl-acetate (EVA).
  • EVA ethylene-vinyl-acetate
  • the module was laminated and integrated with a thermoplastic filler as described above to form a frameless module of 720 mm square.
  • the periphery was sealed with butyl rubber, and reinforced with A1 reinforcement frames.
  • a terminal board is attached to a part of the reinforcing frame material, a lead for collecting the column output is drawn out and connected to it, and a backflow prevention diode is connected in series with the output output terminal. It was inserted and the whole was put in a terminal box, and the module was completed.
  • This output can be obtained from the positive terminal 1 1 2 ′ or 1 12 ′′ and the negative terminal 1 13 ′ or 1 13 ′′ in FIG.
  • the choice depends on connecting the modules in series and parallel.
  • the total area of the element is 462 cm 2 , which corresponds to 8.9% of the module area of 5,184 cm 2 .
  • the effective light receiving area is 92.4% of the module area.
  • the output voltage of the module was 116 V
  • the output current was 0.89 A
  • the conversion efficiency was 14.8%.
  • the device area is about an order of magnitude less than in the non-light-collecting case, but the output per module is about 77 W, and the output per light-receiving area is almost the same.
  • the element 91 is arranged on the light receiving surface side of the wiring board 94 with the contact part facing downward.
  • the main light receiving surface of the element may be disposed on the opposite side of the light receiving surface of the wiring board 94 with the element 91 facing downward, and may be provided so as to face the reflecting mirror.
  • a combination of glass and PET is used.
  • the lens may be formed of a transparent resin such as PMMA. In order to reduce the reflection loss at the boundary between the lens material and the transparent substrate material, it is necessary that the refractive indices be close to each other, and in practice, it is desirable that they match within ⁇ 02.
  • the shape of the cells to be mounted for fine packing is a hexagonal prism.
  • the shape of the cells is not particularly limited. As shown in Fig. 12, square lenses 1 2 5 are arranged in a square lattice. They may be arranged, and the element 91 may be arranged at the center.
  • the element was formed in the same manner as in Example 1, the side length was 1 mm, and the thickness was 200 ⁇ m.
  • Four hundred and four hundred mra pitches were arranged on the wiring board, each in a row and column, and the rows were connected in series and each row was connected in parallel.
  • the lens is made of poly-methyl methacrylate (PMMA), the radius of curvature of the lens surface is 2.82 mm, and the vertical and horizontal pitch is 4 mm and the height is 202 Rows, 202 were accumulated in one row. As shown in FIG. 12, there is no corresponding element in the outermost peripheral portion of the lens array.
  • This lens array has a thickness of 4.5 mm and a flat bottom surface.
  • the reflecting mirror corresponding to the reflecting mirror 96 forming the reflecting optical system of the cell in FIG. 9 is a spherical lens made of PMMA having a radius of curvature of 2.4 mm arranged corresponding to the element position. It has a reflective film in which a ray is covered with A1 with a thickness of about 1 ⁇ m. The total thickness is about 1.4 mm, and the opposing surface of the reflecting surface is flat.
  • the external dimensions are the same as those of the lens array including the margin around the lens array.
  • This module in the area 4 0 0 cm 2 of the device 5 of the module area 6, 8 5 6 cm 2. 8% der Ri, AMI. 5 of the output voltage 1 1 5 V for normally incident light, The conversion efficiency was 16% at an output current of 1.28 A, but the output of incident light was slightly lower than that of Example 1 especially in oblique directions.
  • Example 3 Embodiments 1 and 2 show examples in which a rectangular parallelepiped element is flattened in a cubic space in which the element is mounted, as shown in FIG. 9, that is, the shortest side is arranged in a vertical direction.
  • the arrangement of the elements is not limited. An example is shown in FIG.
  • the element 1331 is rectangular, and has a positive electrode 132 and a negative electrode 133 at one end.
  • the contacts are respectively connected to a positive electrode wiring 134 and a negative electrode wiring 135 formed on the transparent resin substrate 136.
  • the element is inserted into the opening 144 provided in the reflective optical system array 141, and the gap between the reflective optical system array 141 and the element 131 is made of resin. And the whole is integrated with the refractive lens array 142.
  • the substrate used to form this module was p-type, (100), 2 ⁇ cm, 500 ⁇ m thick, which was cut into 1 mm squares and phosphorus diffused throughout. did. Positive and negative contacts were formed on both sides of one end of this chip, and they were connected in such a way that they were erected on the positive and negative wires formed on the transparent resin wiring board 13 6 .
  • the element was aligned with the recess provided in the reflective optical system array 141 and integrated with the lens array 144 and the wiring board 136 by vacuum lamination using a low-viscosity filler. .
  • Fig. 15 shows an example in which the contact with the wiring is at three places. The outside is the positive electrode 132, the center is the negative electrode 133, and the transparent resin is used for each. It is connected to the positive electrode wiring 134 and the negative electrode wiring 135 formed on the substrate 136.
  • the element 13 1 used here has p 'diffusion region 13 2' and n ⁇ diffusion region 13 3 'corresponding to the contact part, as shown in the same figure (B-1). Are provided. In this case, when the element is connected to the wiring board, the positive electrode and the n-diffusion region are not erroneously connected even if the direction of the element is reversed.
  • P ′ diffusion region 13 2 ′ and n ⁇ diffusion region 13 3 ′ are provided symmetrically with respect to the four sides, and the positive electrode is provided at the four corners.
  • the negative electrode 133 is provided at the center of the 132 side, the polarity is correctly connected regardless of which side is connected to the wiring board. Therefore, in the process, it is only necessary to take measures for regulating the "side" of the element so as to correctly contact the wiring of the wiring board. Also, in the above example, if the positive electrode and the negative electrode, and the p ′ region and the n region are exchanged, the structure is the same even if the polarities are opposite.
  • the elements are arranged on the side opposite to the light receiving surface with respect to the wiring portion when configuring the cell / module, but it is not obstructed to arrange them on the same side as the light receiving surface. .
  • a rectangular parallelepiped element is used in the cubic space in which the element is mounted, but the element shape is not limited to a rectangular parallelepiped.
  • the symmetry of the element becomes higher, so that the handling of the element when forming a cell / module is simplified, and the productivity of the module is improved. be able to.
  • Fig. 16 is a schematic cross-sectional view of the mounted granular silicon cell.
  • the substrate 160 is a p-type, 0.5 ⁇ cm crystal and has a diameter of 0.4 mm.
  • An n-type region 161 is formed on the surface by diffusion, and an opening 164 is provided in a part of the region.
  • a positive electrode 163 is connected to the exposed p region of the opening 164, and the contact portion is a high concentration p region 165.
  • a negative electrode 162 is connected to a part of the surface n region 161.
  • the cross section of each of the positive electrode and the negative electrode is indicated by a circle, but this is because the cross section is shown at the intersection with the mesh formed by a thin line. is there.
  • At least Ag should be applied to the surface of the wire that contacts the n-type region.
  • a metal layer having a metal layer as a main component and a metal layer containing Ag containing at least A1 is formed on the surface of the striated line in contact with the P-type region.
  • the mesh line spacing is 0.4 mm, and the pitch of the same type of line is 1.2 mm.
  • the diameter of the wire is 60 m, which is actually a double track, but is shown simply in the figure.
  • FIG. 17 shows a state in which this element is arranged on a wiring board.
  • the condylar granular elements 160 are arranged in a matrix at 1.2 mm intervals.
  • the wiring board is basically a plain weave cross formed with insulating filaments 16 6, but the filaments 16 7 (indicated by the thin dotted lines in the figure) that intersect the element positions are actually removed. There is no.
  • the lines on both sides of the element position are replaced with the negative electrode line 162 and the positive electrode line 163. Therefore, the elements are connected in parallel in the vertical direction, and are connected in parallel by connecting the positive electrode wire on the outside and the negative electrode wire of the element row adjacent to the element row in series. A series connection has been realized for each element row.
  • the formed module is 600 mm square, 6 mm thick, and its surroundings are protected by a 14 mm aluminum frame. Under standard measurement conditions, the output is 42.8 W, the output voltage is 238 V, the short-circuit current is 0.24 mA, and the module efficiency is 12%.
  • the type of element constituting the photoelectric conversion device is not limited.
  • a thin film solar cell is used for the element, This will be described with reference to FIG.
  • a transparent conductive film 18 1 is formed on a glass substrate 180 with a desired pattern, and a 5 nm p : amorphous silicon layer 18 is formed thereon by a known plasma CVD method.
  • Form 2. The ⁇ + amorphous silicon layer 18 2 is formed so as to cover one end of the underlying transparent conductive film 18 1, and a 400 nm i-layer 18 3, 50 Amorphous silicon layers of nm layer 184 are respectively formed. Layers of this covers the is et a [rho 1 layer 1 8 2 parts covering the transparent conductive film 1 8 1, and on the opposite side of the transparent conductive film 1 8 1 are made patterns shaped to expose.
  • a lattice-like pattern is formed on most of the 1 'layer 184 by the deposition of aluminum, and a negative electrode 185 is formed covering the i-layer 183 so as to be continuous therewith.
  • the positive electrode 185 ' is formed so as to be in contact with only the transparent conductive film 181.
  • the negative electrode 18 5 and the positive electrode 18 ⁇ ′ are continuous, and a series connection of cells is realized.
  • the glass substrate 1 This is separated together with 80 and mounted on the focusing optics as individual cells. The size of each cell is several mm square or about 1 mm square.
  • the glass substrate 180 be previously provided with a grid-like cut from the back surface so that it can be easily cut.
  • the mounting on the condensing optical system can be handled in the same manner as in the above-described embodiment.
  • Fig. 19 shows an example of application to a house connected to a commercial power source.
  • the solar cell module 190 is as described in the first embodiment, and the rated output per module is 115 V and 1.28 A.
  • seven modules are connected in parallel to one branch line 191, via a backflow prevention diode 1992, and 14 modules are connected in parallel to another single branch line 1993. Were connected in parallel and connected to the inverter input.
  • the control and use of electric power after the integration is well-known, and it is known to convert to AC and connect it to commercial power on the AC side, or to connect to the DC side and install the integration It is used for electrical equipment (indicated by the dotted line in the figure), for example, rotating equipment such as air conditioners and pumps.
  • a large number of small cells are connected in series, so that the voltage can be easily increased in units of modules, and the voltage required for linking to 100 V is a single voltage. Obtained by module.
  • the output current per module becomes smaller, so that the required number of modules are connected in parallel to form an array to obtain the desired power capacity.
  • Conventional modules of the same size are composed of cells as large as 10 cm square, so even if all the cells in the module are connected in series, the rated output is 24 V, 3 A It is about. Therefore, in order to use it directly for power supply for home electric appliances or to link with commercial power supply, connect about 5 modules in series or use DC-DC conversion. It is necessary to boost to more than 100 V.
  • each module must be thick enough to withstand a 3 A current load, and the connection of each cell in the module must be connected to this current capacity. Necessary, the overall wiring tended to be thicker. In addition, some module failures cause a group of modules (strings) connected in series to the module to malfunction, thus greatly affecting the system and urgent repair. Was required.
  • the module of the present embodiment can generate a high voltage required for power use in units of modules, so that all the current collection systems can be connected in parallel. Therefore, emergency repair of the system can be performed simply by disconnecting the defective module from the system, and recovery can be performed by replacing the defective module with a good product at any time and reconnecting to the photovoltaic power system. Therefore, the maintenance of the photovoltaic array is easy. Another feature is that it can respond to demands for increased system capacity by increasing the number of modules, which makes it very flexible to respond to system changes.
  • an array in which 14 modules are connected to one branch line is standard.
  • the modules are arranged symmetrically with respect to the branch line to reduce the number of branch lines, and the total wiring from the module to the branch line is performed. Some measures have been taken to shorten the length.
  • An array in which seven modules are connected to one branch line 191 shows the concept of expansion, and expansion can be performed on a module-by-module basis.
  • the backflow prevention diode 192 is shown outside the module, but in general, as shown in Fig. 20, It is housed in a terminal box 201 provided on the module 190 together with a cable connection terminal (not shown), and has a waterproof structure integrated with the module.
  • the output voltage of the module is high, it is desirable to use a coaxial structure for the output cable.
  • One end of the coaxial cable 202 is fixed to the connection terminal of the module, and the other end is connected to the other end.
  • a waterproof connector (not shown) for connecting to the collector line 203 is connected.
  • the current collection line is a current collection harness in which the waterproof connection points 204 are arranged at intervals according to the module standard, and are connected by the touch through the above-mentioned waterproof connector. This configuration improves the workability and maintains the maintenance when replacing a defective module.
  • the output current per module is small, but conversely, a thin conductive wire can be used for the wiring inside the module, which saves the material constituting the module. are doing.
  • FIG. 21 shows an example of application to a portable satellite communication device (manufacturable station).
  • a system will be set up for use as an independent DC power supply in combination with a battery.
  • the power required for transmission by the communication equipment is 40 W and the storage voltage is 12 V.
  • Face 2 1 1 of the housing 2 1 0 a 4 5 X 4 5 cm 2 the power generation efficiency 1 5% nominal 3 I by the solar cell of 0 W is possible.
  • By mounting the solar cell on one main surface of the housing it is possible to cover the average required power when facing the sun.
  • a satellite tracking antenna is usually placed on the lid of the case, it is desirable to mount the solar cell on the back of the case.
  • a cell array 2 22 over a power generation unit area 2 21 of about 30 mm of the module 220 is generated. May be connected in series. This is achieved by connecting the negative pole of a cell row and the positive pole of an adjacent cell row outside the cell array.
  • a single cell array with a width of 450 mm can generate a rated power of about 190 mA, so that a power generation unit with a width of 2.3 W is generated for each power generation unit with a width of 30 mm.
  • 15 rows of power generation units can be arranged in the main surface area of the housing.
  • each power generation unit In parallel connection of each power generation unit, at least one pair of positive and negative electrodes 223, 223 * formed outside the cell array are connected alternately from above and below the power generation unit. This is achieved. Therefore, the power generation capacity per module is 35 W, and the output is at the end of the module. It is taken out from the positive and negative electrodes 222, 224 '. A rating of about 100 W can be obtained with three modules. Therefore, even when the solar cell module is placed on a horizontal surface, sufficient power can be supplied when operating communication equipment in a normal usage.
  • the power generation capacity of the module is not much different from that of the conventional flat module, and the cost is greatly reduced. It is possible to do so. This is because the module structure is more suitable for mass production by automation, and the production amount of cells can be almost the reciprocal of the light collection magnification.
  • a high voltage can be easily obtained with a small module area
  • a commercial power voltage can be supplied by a single module, and it is suitable for use in an AC output module. It is also suitable for low-power consumer use.
  • the required voltage can be obtained in a small area, and it has excellent design flexibility such as flexibility and phase adaptability, and can be used in a variety of applications.
  • light can be taken in at a high angle, and it is easy to minimize the decrease in output with respect to partial light shielding. Even in a situation where power cannot be obtained, it is possible to effectively obtain generated power.
  • the present invention and Ga A s, Ga I nP of any crystal compound semiconductor, etc.
  • transparent optical plastics such as PMMA and polycarbonate may be used for the module material. It also includes structures composed of a combination of these materials and molding and integration of a single material.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A photoelectric transducer comprising a photoelectric transducer module in which a plurality of structural units are arranged on a flat or curved face. Each structural unit includes a semiconductor photoelectric transducer element, a biaxial-refraction optical system having an aperture larger than the maximum diameter of the semiconductor part of the transducer element, and a biaxial-reflection optical system which faces to the refraction optical system, with the transducer element therebetween. The distance between the refraction optical system and the reflection optical system is shorter than the focal length of the refraction optical system. Therefore, the photoelectric transducer can be used in a non-tracking type without increasing the area of the semiconductor photoelectric transducer element unlike flat plate type solar cells.

Description

明 細 書 光電変換装置およびその応用装置 技術分野  Description Photoelectric conversion device and its application

本発明は光エネルギーを電力に変換する光電変換装置に係り 、 特に光電変換素子を集光光学系と組み合わせた集光型の光電変 換装置に関する。 本発明は通常の太陽電池と同様に、 汎用太陽光 発電に用いて好適であ り 、 また、 携帯用電子機器などの外観が重 要で光入射の指向性の低い民生品用の電源や、 高電圧電源、 セ ン サ一などにも利用できる。 背景技術  The present invention relates to a photoelectric conversion device that converts light energy into electric power, and more particularly to a condensing photoelectric conversion device in which a photoelectric conversion element is combined with a condensing optical system. The present invention is suitable for general-purpose photovoltaic power generation, similar to ordinary solar cells. In addition, the appearance of portable electronic devices is important, and power sources for consumer products with low directivity of light incidence, It can also be used for high-voltage power supplies and sensors. Background art

従来公知の太陽電池モジュ ールには、 大別 して、 集光型と非集 光型とがある。 後者は第 2 図に示すよう に、 平板状の太陽電池素 子 (セル) 2 0 を充填効率を上げる よう できるだけ隙間な く 平面 状に配列 して配線 リ ー ド 2 1 で接続し、モジュールが構成される 従って、 このよう な太陽電池モジュールは、 半導体素子で構成さ れるセルを敷き詰めた構造となる。 一方、 前者の集光型は本発明 と同 じ範疇に属する ものであるが、第 3 図に示すよう ない く つか の構成例がある。  Conventionally known solar cell modules are roughly classified into a condensing type and a non-concentrating type. In the latter case, as shown in Fig. 2, the flat solar cell elements (cells) 20 are arranged in a plane with as few gaps as possible to increase the filling efficiency, and connected by wiring leads 21. Therefore, such a solar cell module has a structure in which cells composed of semiconductor elements are spread. On the other hand, the former condensing type belongs to the same category as that of the present invention, but there are some configuration examples as shown in FIG.

まず、一軸集光の例が特開平 6 - 3 7 3 4 4 号公報に開示され ている。 これを第 3 図 ( A — 1 ) に示す。 太陽電池セル 3 3 にガ ラス レ ンズで構成した一軸の低倍率集光系 3 4が適用されてい る o First, an example of uniaxial focusing is disclosed in Japanese Patent Application Laid-Open No. Hei 6-37334. ing. This is shown in Fig. 3 (A-1). A single-axis low-magnification light concentrator 34 composed of a glass lens is applied to the solar cell 33

また、二軸集光の追尾型を中心と した例が特開昭 5 8 - 6 8 9 8 8号公報に開示されている。 これを第 3 図 ( A — 2 ) に示す。 配線基板 3 0 上に 1 m m角の太陽電池チ ッ プ 3 1 を搭載し、 1 0 〜 2 0 m mサイ ズの屈折レ ンズ 3 2 と組み合わせている。さ らに、 屈折レ ンズ 3 2 を太陽電池チ ッ プ 3 1 から離して構成した二軸 集光の例が特開平 7 — 2 3 1 1 1 1 号公報に開示されている。 発明の開示  Japanese Patent Application Laid-Open No. 58-68988 discloses an example mainly of a tracking type of biaxial focusing. This is shown in Fig. 3 (A-2). A 1-mm square solar cell chip 31 is mounted on a wiring board 30 and is combined with a refracting lens 32 of 10 to 20 mm in size. Further, an example of biaxial focusing in which the refracting lens 32 is separated from the solar cell chip 31 is disclosed in Japanese Patent Application Laid-Open No. 7-231111. Disclosure of the invention

太陽電池モジュールのコス ト低減のためには、モジュール面積 あたり の発電素子の面積を低減できる集光型モジュールが有効 である。  In order to reduce the cost of the solar cell module, a concentrating module that can reduce the area of the power generation element per module area is effective.

しかし、 一般に、 上記一軸集光の従来技術では集光倍率が小さ く 、モジュールに搭載する半導体光電変換素子の所要面積はモ ジ ユール面積に対してあま り小さ く な らない。  However, in general, in the above-mentioned conventional technique of uniaxial focusing, the focusing magnification is small, and the required area of the semiconductor photoelectric conversion element mounted on the module does not become much smaller than the module area.

一方、上記二軸集光の従来技術では集光倍率を高く でき るため 半導体光電変換素子の面積は小さ く て済むが、光軸から外れた角 度で入射する光に対しては光の焦点が素子から外れ易いため、常 に直達光が光学系に垂直に入射するよう に、太陽追尾機構を備え た追尾型が一般的である。 さ らに、 許容入射角度を大き く とれな いため、 利用できる光は直達近軸光のみとな り 、 全天散乱光は殆 ど利用するこ とができない。 On the other hand, in the above-described conventional biaxial focusing technique, the area of the semiconductor photoelectric conversion element can be reduced because the focusing magnification can be increased, but the light incident on the light at an angle deviating from the optical axis can be focused. In general, a tracking type equipped with a sun tracking mechanism is generally used so that the direct light always enters the optical system perpendicularly, because the light is easily deviated from the element. Furthermore, it is necessary to increase the allowable incident angle. Therefore, the only light that can be used is direct paraxial light, and almost all scattered light cannot be used.

本発明の目的は、 非追尾型での使用が可能で、 かつ半導体光電 変換素子の面積を平板型太陽電池のよう には大き く せずに済む 二軸集光型の光電変換装置およびその応用装置を提供する こ と にある。  An object of the present invention is to provide a biaxial concentrating photoelectric conversion device that can be used in a non-tracking type and does not need to have a semiconductor photoelectric conversion element having a large area as in a flat-panel solar cell, and its application. Equipment.

上記目的は、 半導体光電変換素子と、 こ の半導体光電変換素子 の半導体部分の最大径以上の開口径を有する二軸の屈折光学系 と、この二軸の屈折光学系に対向 して半導体光電変換素子の反対 側に二軸の屈折光学系の焦点よ り半導体光電変換素子側に配置 された二軸の反射光学系を構成単位と し、この構成単位が平面ま たは曲面状に複数個配列された光電変換モジュールを有してい る光電変換装置によ り達成できる。  The object is to provide a semiconductor photoelectric conversion element, a biaxial refractive optical system having an opening diameter equal to or larger than the maximum diameter of the semiconductor portion of the semiconductor photoelectric conversion element, and a semiconductor photoelectric conversion device facing the biaxial refractive optical system. A biaxial reflective optical system, which is located on the semiconductor photoelectric conversion element side from the focal point of the biaxial refractive optical system on the opposite side of the element as a structural unit, and a plurality of such structural units are arranged in a plane or curved surface This can be achieved by a photoelectric conversion device having a photoelectric conversion module configured as described above.

第 1 図では、符号 1 が半導体光電変換素子(以下、素子と略記)、 符号 2 が構成単位 (以下、 セルと称する) 、 符号 3が光電変換モ ジュール (以下、 モジュールと称する) 、 符号 4 が二軸の屈折光 学系を構成する屈折レ ンズのア レイ、符号 5 が素子 1 を搭載した 配線基板、 符号 6が二軸の反射光学系を構成するア レイである。  In FIG. 1, reference numeral 1 denotes a semiconductor photoelectric conversion element (hereinafter abbreviated as an element), reference numeral 2 denotes a constituent unit (hereinafter referred to as a cell), reference numeral 3 denotes a photoelectric conversion module (hereinafter referred to as a module), reference numeral 4 Is an array of refraction lenses forming a biaxial refracting optical system, reference numeral 5 is a wiring board on which the element 1 is mounted, and reference numeral 6 is an array forming a biaxial reflecting optical system.

本発明では、二軸の反射光学系および半導体光電変換素子を二 軸の屈折光学系の焦点の内側に配置するこ とによ り 、二軸の屈折 光学系による屈折光を二軸の反射光学系でさ らに収束して素子 に入射させるこ とができ、許容入射角度を広 く するこ とができる ので、 非追尾型での使用が可能となる。 また、 こ のよ う に高倍率 の集光が可能な二軸の屈折光学系と二軸の反射光学系を用いて 集光光学系を構成しているので、素子の面積を小さ く 保つこ とが でき る。 In the present invention, by disposing the biaxial reflecting optical system and the semiconductor photoelectric conversion element inside the focal point of the biaxial refractive optical system, the refracted light by the biaxial refractive optical system is reflected by the biaxial reflecting optical system. The system can be further converged and incident on the element, and the allowable incident angle can be widened Therefore, it can be used in a non-tracking type. In addition, since the condensing optical system is configured using a biaxial refracting optical system and a biaxial reflecting optical system capable of condensing light at a high magnification, the area of the element can be kept small. It can be.

なお、 本発明は追尾型にも使用できる。 図面の簡単な説明  Note that the present invention can also be used for a tracking type. BRIEF DESCRIPTION OF THE FIGURES

第 1 図は本発明の構成を説明するモジュールの部分断面模式 図である。  FIG. 1 is a schematic partial cross-sectional view of a module illustrating the configuration of the present invention.

第 2 図は従来の太陽電池モ ジュールを構成するセルの配列状 況を示す鳥瞰図である。  FIG. 2 is a bird's-eye view showing an arrangement of cells constituting a conventional solar cell module.

第 3 図は従来の集光型太陽電池モ ジュールの例を示した断面 および鳥瞰図である。  FIG. 3 is a cross-sectional view and a bird's-eye view showing an example of a conventional concentrating solar cell module.

第 4 図は本発明の素子の動作と大き さ との関係を従来ものも と対比して示す断面説明図である。  FIG. 4 is an explanatory sectional view showing the relationship between the operation and the size of the device of the present invention in comparison with the conventional device.

第 5 図は本発明の素子の光電変換動作を説明するための特性 関係図である。  FIG. 5 is a characteristic relation diagram for explaining the photoelectric conversion operation of the device of the present invention.

第 6 図は本発明の光電変換素子の集光系における屈折光学系 の集光動作を示す断面説明図および特性図である。  FIG. 6 is an explanatory sectional view and a characteristic diagram showing a light-condensing operation of a refractive optical system in the light-condensing system of the photoelectric conversion element of the present invention.

第 7 図は本発明の集光光学系の構成例を説明する平面および 断面模式図である。  FIG. 7 is a schematic plan view and a cross-sectional view illustrating an example of the configuration of a condensing optical system according to the present invention.

第 8 図は本発明の集光光学系での集光動作を説明するための セル断面と光路の一例である。 FIG. 8 is a view for explaining the light collecting operation in the light collecting optical system of the present invention. It is an example of a cell cross section and an optical path.

第 9 図は本発明のモジュールの構成およびその構成方法を説 明するための断面模式図である。  FIG. 9 is a schematic cross-sectional view for explaining the configuration of the module of the present invention and a method of configuring the module.

第 1 0 図は本発明のモジュールに関する 1 実施例を説明する モジュールの平面模式図である。  FIG. 10 is a schematic plan view of a module for explaining one embodiment of the module of the present invention.

第 1 1 図は本発明のモジュールを構成する集光系と配線基板 とセルの位置関係および配線状況を示す一実施例に関する平面 模式図である。  FIG. 11 is a schematic plan view of one embodiment showing a positional relationship between a light-collecting system, a wiring board, and cells constituting a module of the present invention and a wiring state.

第 1 2 図は本発明のモジュールに関する他の実施例を示すモ ジュールの平面模式図である。  FIG. 12 is a schematic plan view of a module showing another embodiment of the module of the present invention.

第 1 3 図は本発明の素子構造とセル構成に関する一実施例を 示す鳥瞰模式図である。  FIG. 13 is a schematic bird's-eye view showing one embodiment relating to the element structure and the cell configuration of the present invention.

第 1 4 図は第 1 3 図で例示した素子を適用 したモジュールの 構成を示す断面模式図である。  FIG. 14 is a schematic cross-sectional view showing the configuration of a module to which the element exemplified in FIG. 13 is applied.

第 1 5 図は本発明の素子に関する他の実施例とセル構成を説 明する鳥瞰模式図および素子断面図である。  FIG. 15 is a schematic bird's-eye view and a cross-sectional view of a device illustrating another embodiment and a cell configuration of the device of the present invention.

第 1 6 図は本発明の素子に関する他の実施例を示す断面模式 図である。  FIG. 16 is a schematic sectional view showing another embodiment of the device of the present invention.

第 1 7 図は第 1 6 図で示す実施例のモジュール化の一実施例 を説明するための配線および素子配列を説明する平面模式図で ある。  FIG. 17 is a schematic plan view for explaining wiring and element arrangement for explaining one embodiment of modularization of the embodiment shown in FIG.

第 1 8 図は本発明の素子およびモジュール化に関する他の実 施例を示す断面模式図である。 FIG. 18 shows another example of the device and modularization of the present invention. It is a cross section showing an example.

第 1 9 図は本発明の発電シ ステムへの適用に関する 1 実施例 を説明するための鳥瞰的模式図である。  FIG. 19 is a bird's-eye view schematic diagram for explaining one embodiment relating to the application of the present invention to a power generation system.

第 2 0 図は本発明の適用に関する 1 実施例におけるモ ジ ユ ー ルア レイの構成の平面的説明図である。  FIG. 20 is a plan explanatory view of the configuration of the module array in one embodiment relating to the application of the present invention.

第 2 1 図は本発明の民生機器適用に関する他の実施例の鳥瞰 的模式図である。  FIG. 21 is a schematic bird's-eye view of another embodiment related to the application of consumer equipment of the present invention.

第 2 2 図は本発明を適用 したモ ジ ュ ールの構成例を示す平面 模式図である。 発明を実施するための最良の形態  FIG. 22 is a schematic plan view showing a configuration example of a module to which the present invention is applied. BEST MODE FOR CARRYING OUT THE INVENTION

従来の平板型若し く は集光型で用いられた素子は第 4 図 ( A ) に示すよう な構造で、 通常、 素子の半導体部分の厚さは少数キ ヤ リ ャの拡散長よ り も短いが、素子の横方向の寸法はこれよ り も十 分長い。 このよう な素子では、 p型基板 4 0 0 の表面に極く 薄い n型拡散層 4 0 1 が形成された素子で、入射光 4 0 2 によ り形成 された電子 '正孔のう ち、 p型基板の少数キヤ リ ャである電子は、 拡散長領域 4 0 3 内にある n型拡散層 4 0 1 で捕集されるこ と によ り 出力と して寄与する。素子内の離れた領域で集光度が高い 光 4 0 4が入射した場合、 電子 ·正孔対の生成位置から拡散領域 内 4 0 5 にある n型領域に電子が捕集され、主に直近の負極 4 0 6から出力と して取り 出されるが、同電位の負極 4 0 7からは逆 に光照射の弱い部分に電流注入が生じ、その分が出力の損失とな る。 また、 正孔についても最終的には平均化され、 正極 4 0 8か ら出力されるが、そのときに P型領域 4 0 0 でのキヤ リ ャ再分布 によ り抵抗損失が発生する。 The element used in the conventional flat type or condensing type has a structure as shown in Fig. 4 (A), and the thickness of the semiconductor part of the element is usually smaller than the diffusion length of a small number of carriers. , But the lateral dimensions of the device are much longer. In such a device, an extremely thin n-type diffusion layer 401 is formed on the surface of a p-type substrate 400, and electrons and holes formed by incident light 402 are formed. On the other hand, electrons, which are minor carriers of the p-type substrate, are collected by the n-type diffusion layer 401 in the diffusion length region 403 and contribute as output. When light 404 with high light concentration is incident on a distant region in the device, electrons are collected from the electron-hole pair generation position to the n-type region in 405 in the diffusion region, and are mainly nearby Is taken out as an output from the negative electrode 406 of the negative electrode, Current injection occurs in the part where light irradiation is weak, and that loss results in output loss. Also, the holes are finally averaged and output from the positive electrode 408, but at this time, resistance loss occurs due to carrier redistribution in the P-type region 400.

これに対して、本発明で提案するよう に素子の半導体部分の最 大径が少数キヤ リ ャの拡散長に比べて 2倍程度またはそれよ り 短い場合には、 第 4 図 ( B ) に示すよう に、 光照射の不均一性に 起因する基板 4 1 0 でのキヤ リ ャ再分布は短距離移動で済み、ま た、 発生電子も弱い光 4 1 1 で発生したものも、 強い光 4 1 4 で 発生したものも、 その拡散領域 4 1 2 はほぼ重な り 、 近く に位置 する n型領域 4 1 3 を介して共通の負電極 4 1 5 で集電される。 出力は素子に入射する光の総量に依存し、入射の不均一性の影響 は小さ く なる。  On the other hand, when the maximum diameter of the semiconductor portion of the device is about twice or shorter than the diffusion length of the minority carrier as proposed in the present invention, FIG. As shown, the carrier redistribution on the substrate 410 caused by the non-uniformity of the light irradiation required only a short distance movement, and the electrons generated by the weak light 411 The diffusion region 4 12 almost overlaps with the one generated in 4 14, and is collected by the common negative electrode 4 15 via the nearby n-type region 4 13. The output depends on the total amount of light incident on the device, and the effect of incident non-uniformity is reduced.

上記の条件が満たされる場合には素子の半導体部分の形状の 影響も小さ く なる。 例えば第 4 図 ( C ) の様な球状や、 こ こ には 図示していないが不定形の塊状でも出力が入射光の総量に依存 するよう になる。このよう な特性は太陽電池を集光動作させる場 合には有利に働き、 均一な集光は要求されず、 また、 入射方向に もあま り依存しないので、 集光光学系の設計自由度が大きい。 こ のよう な効果は素子の半導体部分の最大径が少数キヤ リ ャの拡 散長の 2倍程度までは期待でき る。 また、 以上の説明から明 らか なよう に、本発明において素子寸法を半導体部分の厚さや横方向 の寸法で表示せず、 最大径で表示するのは、 本発明が少数キ ヤ リ ャの拡散長の観点から素子の半導体部分の形状を捉えている こ とによる。 When the above conditions are satisfied, the influence of the shape of the semiconductor portion of the device is reduced. For example, the output depends on the total amount of incident light even in a spherical shape as shown in Fig. 4 (C) or an irregular mass not shown here. These characteristics are advantageous when concentrating the solar cell, and uniform light collection is not required, and it does not depend much on the incident direction. large. Such an effect can be expected when the maximum diameter of the semiconductor portion of the element is about twice the diffusion length of the minority carrier. Further, as is apparent from the above description, in the present invention, the element dimensions are determined by the thickness of the semiconductor portion and the lateral direction. The reason why the maximum diameter is displayed instead of the dimension is that the present invention captures the shape of the semiconductor portion of the element from the viewpoint of the diffusion length of the minority carrier.

最大径は半導体材料の品質に依存 し、キヤ リ ャのライ フ タ イ ム が長い材料ほ ど大きな素子を作る こ とができ る。キヤ リ ャの拡散 長さ とキヤ リ ャラ イ フ タ イ ム との関係はシ リ コ ンを例に とれば 第 5 図 ( A ) に示すよ う な関係にある。 標準的な素材品質のラ イ フタ ィ 厶 1 O O ^ sの場合、 キ ヤ リ ャ拡散長 Ldは約 3 5 0 ^ m で、 最大径がその倍の 7 0 0 m程度までは上記の状況が実現さ れる。 現在得られる良質のシ リ コ ン結晶では、 素子に加工 した後 の拡散長が 1 mm位であ り 、 最大径が 2 mm程度までは上記状況が 実現される。 ま た、 太陽電池用途を想定 した品質 ( S 0 G ) の も のではライ フ タ イ ムは 3 0 s程度であ り 、 キヤ リ ャ拡散長は 2 0 0 μ m程度となる。 従っ て、 最大径が 4 0 0 m程度までの大 き さの素子については上記の条件が満たされるので、キヤ リ ャ収 集にはコ ンタ ク 卜が正負 1 対で済むこ とになる。 も ちろん、 コ ン タ ク 卜が複数対あ って も構わないが、 コ ンタ ク 卜でのキ ヤ リ ャ再 結合や、 電極によ る遮光等の損失が増加するので、 コ ンタ ク 卜の 面積は素子の直列抵抗増加が許容でき る範囲で小さ い方が望ま し く 、 ま た、 コ ンタ ク ト対の数も少ない程よい。  The maximum diameter depends on the quality of the semiconductor material, and the longer the carrier lifetime, the larger the device can be made. The relationship between the carrier diffusion length and the carrier life time is as shown in Fig. 5 (A), taking silicon as an example. In the case of a standard film quality of 1 OO ^ s, the carrier diffusion length Ld is about 350 ^ m, and the above-mentioned situation until the maximum diameter is about 700 m, which is twice as large. Is realized. In the currently available high-quality silicon crystal, the diffusion length after processing into a device is about 1 mm, and the above situation is realized up to a maximum diameter of about 2 mm. In the case of quality (S0G) for solar cell applications, the life time is about 30 s and the carrier diffusion length is about 200 μm. Therefore, the above condition is satisfied for an element whose maximum diameter is up to about 400 m, so that the carrier collection requires only one pair of positive and negative contacts. Of course, there may be more than one contact.However, loss of carrier recombination at the contact and light blocking by the electrode increases, so that the contact It is desirable that the area of the unit be small as long as the series resistance of the element can be increased, and the number of contact pairs is preferably small.

第 5 図 ( B ) には厚さ 5 0 0 μ mで標準的な高品質表面 (表面 再結合速度 : s 〜 1000cm/ s) を もつ素子の、 効率とキ ヤ リ ャラ イ フタ イ ム との関係を温度および集光倍率をパラ メ ータ と して示 した図である。 標準温度 ( 2 5 °C ) では、 通常の基板で非集光の 場合に 1 9 %程度の効率が得 られるが、 1 0 倍の集光によ り 2 1 %以上の効率が得られる。 ま た、 動作条件と して実際よ り は多 少温度の高い 7 5 °Cでも、 1 0 倍集光によ り 1 7 %程度の効率は 実現でき る。キヤ リ ャライ フタ イ ム力、' 3 0 μ s 程度の S O G シ リ コ ンでも、 7 5 °Cで 1 5 %以上の効率は期待でき る。 Fig. 5 (B) shows the efficiency and carrier characteristics of a device with a thickness of 500 μm and a standard high-quality surface (surface recombination speed: s to 1000 cm / s). FIG. 4 is a diagram showing the relationship with a film, with the temperature and the light collection magnification as parameters. At the standard temperature (25 ° C), the efficiency of about 19% can be obtained in the case of non-light-collecting with a normal substrate, but the efficiency of more than 21% can be obtained with 10 times the light-collection. In addition, even if the operating conditions are slightly higher than the actual temperature of 75 ° C, an efficiency of about 17% can be achieved by 10-fold focusing. Efficiency of more than 15% can be expected at 75 ° C even with a carrier film power of about 30 μs for SOG silicon.

第 5 図 ( C ) は同 じ 5 0 0 m厚さ の素子について、 素子温度 7 5 °Cにおいてキ ヤ リ ャラ イ フタ イ ム力 3 0 s の場合に得 ら れる効率を、 集光倍率をパラ メ 一夕 と して示 した図である。 集光 倍率の増加と と もに効率は増加するが、電極系の直列抵抗を 1 Ω と したため集光倍率 1 5 倍程度で効率は飽和 し、それ以上の集光 倍率では逆に効率は低下する。 したがっ て、実用上は 1 0 倍程度、 高々 2 0 倍程度の集光が望ま しい。  Fig. 5 (C) shows the efficiency obtained when the carrier temperature is 30 s and the carrier temperature is 75 CC for the same 500 m thick element. FIG. 4 is a diagram showing the magnification as a parameter. Although the efficiency increases with the increase in the light collection magnification, the efficiency is saturated at a light collection magnification of about 15 times because the series resistance of the electrode system is set to 1 Ω, and the efficiency decreases at higher light collection magnifications. I do. Therefore, in practice, it is desirable to collect light of about 10 times and at most about 20 times.

第 5 図 ( D ) は集光倍率 1 0 倍の場合の素子の効率を、 温度お よび表面再結合速度 S をパラ メ 一夕 と して示 してある。表面再結 合速度は対数で表示 してある。 効率は表面再結合速度が 1 0 0 0 c m Z s 以下では飽和する傾向があ り 、 ま た 1 0 0, 000 c m Z s と再 結合速度が大き く な って も、集光動作させた場合には効率の低下 は比較的小さ いといえる。一方、温度上昇の影響は大き く 、 2 δ °C から 7 5 °Cまで温度が上昇する こ とによ り 、効率は 5 ポイ ン 卜 も 低下する。 従って、 1 0 倍程度の集光でも素子温度の上昇を抑制 するセル設計が必要となるが、こ の点でも素子が小さいこ とが有 利となる。 すなわち、 素子が小さい程、 発熱源となる素子と吸熱 体となる周辺媒体の大き さの比が大き く な り、 また、 熱伝導距離 が短く なるので、 大きな素子よ り も冷却効果が大き く 、 素子の温 度上昇が抑制できる。 Fig. 5 (D) shows the efficiency of the device when the light-gathering power is 10 times, with the temperature and the surface recombination velocity S as parameters. The surface recombination rate is expressed in logarithm. Efficiency tends to saturate below the surface recombination velocity of 1000 cmZs, and even if the recombination velocity increases to 100,000 cmZs, the light was condensed. In this case, the decrease in efficiency is relatively small. On the other hand, the effect of the temperature rise is large, and the efficiency decreases by 5 points as the temperature rises from 2 δ ° C to 75 ° C. Therefore, the rise of the element temperature is suppressed even if the light concentration is about 10 times In this regard, it is advantageous that the element is small. In other words, the smaller the element, the larger the ratio of the size of the element as the heat source to the size of the surrounding medium as the heat absorber, and the shorter the heat conduction distance, the greater the cooling effect than the larger element. The temperature rise of the element can be suppressed.

次にセルを構成する集光系の考え方について、二軸の屈折光学 系と して半球状の屈折レ ンズ、二軸の反射光学系と して半球状の 反射鏡を用いた場合を例にと り述べる。 第 6 図 ( A ) は一般的な 球面レ ンズによる入射光の光路を示す断面図である。 レ ンズ 6 0 0 は半径 Rの半球状の上部 A — P — B と円筒状の下部 A— B — B ' - A ' を A— 〇— Bで接続した形状をしている。 簡単のため、 集光系の主軸 0 — Cに平行な入射光を考える。入射光 6 0 1 は集 光系の主軸から距離 r 離れた レ ンズ表面 P点に レ ンズ表面に対 して角度 0 で入射し、 屈折後、 レ ンズ内部を進行する。 この とき、 光路と半球レ ンズの下端面 A — 0 — B との交点を Q、集光系主軸 と半球レ ンズの仮想球 A — C 一 B との交点 Cを通り集光系主軸 に垂直な面 C — Q ' と光路との交点を Q ' と し、 それぞれ集光系 主軸までの距離、 0— Q、 C - Q ' を r ' 、 r " とする。 集光倍 率は半球レ ンズの下端面 0 — Bおよび Cの位置でそれぞれ( r / r ' ) 2、 および ( r / r " ) 2である。 屈折率 1 . 5 の媒質に ついて計算した集光倍率の入射角度 0依存性を第 6 図 ( B ) に示 す。 入射角 6>が 0 〜 4 5 ° の範囲では、 半球レ ンズの下端面位置 では集光倍率は入射角度によ らずほぼ 2 倍程度であるが、半球レ ンズの仮想球の下端位置では 9 〜 1 4 倍程度の集光率が得 られ る。 第 6 図 ( B ) には集光された場合の受光面の辺長 ( 2 r " ) を レ ンズ径 ( 2 R ) との比で示 してあるが、 入射角 0 が 4 5 ° の 場合でも受光部の辺長は レ ンズ半径の 2 0 %以下である。 Next, the concept of the light-collecting system that constitutes the cell will be described using a case where a hemispherical refractive lens is used as a biaxial refractive optical system and a hemispherical reflecting mirror is used as a biaxial reflective optical system. I will say. FIG. 6 (A) is a cross-sectional view showing an optical path of incident light by a general spherical lens. The lens 600 has a shape in which a hemispherical upper part A-P-B of radius R and a cylindrical lower part A-B-B'-A 'are connected by A-〇-B. For simplicity, consider the incident light parallel to the main axis 0-C of the condensing system. The incident light 61 enters the lens surface P at a distance r from the main axis of the light collection system at an angle of 0 with respect to the lens surface, travels through the lens after refraction. At this time, Q is the point of intersection of the optical path and the lower end surface A — 0 — B of the hemispheric lens, and it passes through the intersection C of the main axis of the condensing system and the virtual sphere A — C – B of the hemispheric lens and is perpendicular to the main axis of the condensing system. The intersection of the optical surface C — Q ′ and the optical path is Q ′, the distance to the main axis of the converging system, and 0 — Q and C-Q ′ are r ′ and r ″. The lower end face of the lens 0 — (r / r ') 2 and (r / r ") 2 at positions B and C, respectively. Figure 6 (B) shows the dependence of the light collection magnification on the incident angle 0 calculated for a medium with a refractive index of 1.5. When the incident angle 6> is in the range of 0 to 45 °, the position of the lower end face of the hemispherical lens Although the light-gathering magnification is about 2 times regardless of the incident angle, a light-gathering rate of about 9 to 14 times can be obtained at the lower end position of the virtual sphere of the hemispherical lens. In Fig. 6 (B), the side length (2r ") of the light-receiving surface when condensed is shown by the ratio to the lens diameter (2R). When the incident angle 0 is 45 °, Even in this case, the side length of the light receiving section is 20% or less of the lens radius.

屈折率 1 . 5 の場合、 レ ンズの焦点位置は レ ンズ中心 0か らほ ぼレ ンズ半径の 1 〜 2 倍離れた位置にあ り 、こ の近傍では更に高 倍率の集光、 ある いは受光面の縮小が可能であるが、 集光倍率が 高過ぎる と素子の温度上昇を招き、 ま た、 厳密な位置の制御が必 要になるな ど、 実用上好ま し く ない難点が増加する。 したがっ て、 素子は レ ンズの焦点位置か ら少 し離れた場所に配置する こ とが 望ま しい。  In the case of a refractive index of 1.5, the focal point of the lens is located at a distance of 1 to 2 times the lens radius from the center 0 of the lens, and in the vicinity of this point, the light is condensed at a higher magnification or Can reduce the size of the light-receiving surface, but if the light-gathering magnification is too high, the temperature of the element will increase, and precise control of the position will be required, increasing the disadvantages that are not preferred in practice I do. Therefore, it is desirable to arrange the element a little away from the focal point of the lens.

近軸光線に対 しては集光系の主軸にほぼ沿つ た集光が得 られ るが、 集光系主軸に対して角度を も って入射する光については、 1 0 倍程度の集光であ っ て も、 軸外れが大き く 、 小さ な受光部か らそれる。集光系主軸に対 して捻れの成分を持つ入射光に対して も同様である。 そこで、 素子を二軸の屈折光学系および二軸の反 射光学系の組み合わせによ る集光光学系内に配置 し、セルを構成 する こ とが必要となる。 まず、 二軸の屈折光学系で集光を行い、 近軸光については 1 0倍程度の中倍率で素子に直接入射させる。 入射する光と集光系の光軸の となす角度が大き い場合には光は 素子から外れるが、素子の背後に配置した二軸の反射光学系によ つて、 大部分の反射光が再び素子に導かれる よ う にする。 また、 当然ながら、 こ こで用いられる二軸の反射光学系は、 二軸の屈折 光学系の焦点よ り 素子に近い側に置かれる。ま たその光電変換が 有効に行われる波長域におけ る反射率は、搭載する素子表面よ り も反射率の高いものが望ま しい。 こ う する こ とによ って、 大きな 見込み角度で素子に光を取 り 込むこ とができ る。 また、 捻れ成分 をもつ入射光に対して も再集光効果を発揮させるには、二軸の反 射光学系の曲率半径は二軸の屈折光学系のそれよ り も小さ いこ とが望ま しい。 For a paraxial ray, light can be condensed almost along the main axis of the condensing system, but for light incident at an angle to the main axis of the condensing system, it is about 10 times higher. Even off-axis light has large off-axis and deviates from a small light receiving unit. The same applies to incident light having a twist component with respect to the main axis of the light-collecting system. Therefore, it is necessary to arrange the elements in a condensing optical system that is a combination of a biaxial refracting optical system and a biaxial reflecting optical system to form a cell. First, light is collected by a biaxial refractive optical system, and paraxial light is directly incident on the element at a medium magnification of about 10 times. If the angle between the incident light and the optical axis of the condensing system is large, the light will deviate from the element, but will be reflected by the biaxial reflecting optical system located behind the element. Thus, most of the reflected light is redirected to the device. Also, of course, the biaxial reflecting optical system used here is located closer to the element than the focal point of the biaxial refractive optical system. Further, it is desirable that the reflectance in the wavelength region where the photoelectric conversion is effectively performed is higher than the reflectance of the surface of the mounted element. This allows light to enter the element at a large expected angle. In addition, in order to exhibit a refocusing effect even for incident light having a torsional component, it is desirable that the radius of curvature of the biaxial reflection optical system be smaller than that of the biaxial refractive optical system. .

第 7 図はセルを構成する集光光学系の設計の一例で、 ( A ) は 上面からみた説明図、 ( B ) は ( A ) の X — X ' に沿っ た断面を 側面から見た説明図である。屈折光学系を構成する レ ンズ 7 1 の 表面は球面であ り 、 その曲率半径を R とする。 セル 7 2 は平面状 に細密充填で配列する ため、 上か ら見た外形は六角形であ り 、 そ の大き さ は、 レ ンズ球面の大円 7 1 に内接する四角形 7 3 に さ ら に内接する 円 7 4 に内接する如 く 決定される。 すなわち、 セルの 受光面側の単位 レ ンズは球を上記の如 く 決定された六角形で切 り 取っ た先の丸い六角柱状を している。こ のよ う な条件で形成す る と、セルを細密充填 したとき にセル表面が隣のセル表面とのな す角を直角 よ り 鈍角に形成でき、た とえばレ ンズア レイ を型押 し で形成する場合に、 容易に型抜きをする こ とができ、 かつ レ ンズ 面を一番広 く とれる。 一方、 反射面 7 5 は上記六角形に外接する 円 7 4 の半径と レ ンズの曲率半径との中間の曲率半径を もつ球 面 7 6 で構成される。 そ して、 屈折光学系を構成する球面レ ン ズ の仮想球 7 1 と、上記六角柱 7 2 の稜とが交差する点で同 じ く 交 差する よう に構成される。 素子は光軸上に中心を一致させ、 六角 柱の稜と球面レ ン ズの仮想球との各交点を含む面と光軸との交 点を中心と して、 六角柱の側壁間距離の 1 / 4 の長さを高さ 、 1 Z 2 の長さを縦横の辺長とする直方体空間 7 7 の中に置かれる。 反射光学系の位置は入射光の条件によ り 、 レ ンズ 7 1 の焦点と立 方体空間 7 7 の間で最適化される。 Fig. 7 shows an example of the design of the condensing optical system that composes the cell. FIG. The surface of the lens 71 constituting the refractive optical system is spherical, and the radius of curvature thereof is R. Since the cells 72 are arranged in a densely packed manner in a plane, the external shape viewed from above is a hexagon, and the size is a square 73 inscribed in the great circle 71 of the lens sphere. Is determined to be inscribed in circle 7 4. That is, the unit lens on the light-receiving surface side of the cell has a round hexagonal column shape obtained by cutting a sphere into a hexagon determined as described above. When formed under such conditions, the cell surface can form an obtuse angle with the adjacent cell surface at an obtuse angle rather than a right angle when the cells are densely packed.For example, a lens array can be embossed. In the case of forming by using a die, the die can be easily cut out and the lens surface can be widened most. On the other hand, the reflecting surface 75 circumscribes the hexagon. It is composed of a spherical surface 76 with a radius of curvature intermediate between the radius of the circle 74 and the radius of curvature of the lens. Then, it is configured such that the virtual sphere 71 of the spherical lens constituting the refractive optical system and the ridge of the hexagonal prism 72 intersect at the same point. The element is centered on the optical axis, and the distance between the side walls of the hexagonal prism is centered on the intersection of the optical axis with the plane containing the intersection of the ridge of the hexagonal prism and the virtual sphere of the spherical lens. It is placed in a rectangular parallelepiped space 77 whose height is 1/4 and height is 1Z2. The position of the reflecting optical system is optimized between the focal point of the lens 71 and the cubic space 77 depending on the conditions of the incident light.

こ こで、 以上の説明か ら明 らかなよ う に、 素子の半導体部分の 最大径は直方体空間 7 7 の外接球の直径を超え る こ とはない。す なわち、 レ ン ズの曲率半径との関係でいう と、 素子の半導体部分 の最大径はレ ン ズの曲率半径の 1 5 1 2 2 「) / 2倍を超える こ とは ない。 ま た、 素子の半導体部分の最大径は、 少数キ ヤ リ アの拡散 長の 2 倍以下にするのが望ま し く 、 レ ンズの曲率半径は最小で素 子の半導体部分の原料中での少数キ ヤ リ ァの拡散長の 2 7 / 1 5 1 / 2倍となる。 レ ンズは可能なかぎり小さ く 形成するのが望ま し く 、少数キ ャ リ アの拡散長が短い場合にはそれに応じて レ ンズ の曲率半径をよ り 小さ く でき るが、一方で少数キ ヤ リ ァの拡散長 が短 く なる と素子特性が低下する。 故に本発明では、 最も小さ く 形成でき る レ ンズの曲率半径の最大値は、素子の半導体部分の原 料中での少数キヤ リ アの拡散長の 2 7 / 2 / 1 5 1 2倍という こ とに なる。因みに、素子の半導体と してシ リ コ ンを用いた場合には(少 数キャ リ アの拡散長 l mm ) 、 レ ンズの曲率半径は 2 . 9 2 mm と なる。 Here, as is clear from the above description, the maximum diameter of the semiconductor portion of the element does not exceed the diameter of the circumscribed sphere of the rectangular parallelepiped space 77. In other words, in terms of the relationship with the radius of curvature of the lens, the maximum diameter of the semiconductor portion of the element does not exceed 15 1 2 2 ( ) / 2 times the radius of curvature of the lens. In addition, it is desirable that the maximum diameter of the semiconductor portion of the device be less than twice the diffusion length of the minority carrier, and the radius of curvature of the lens is minimum and the minority of the semiconductor portion of the device in the raw material is small. key ya is 2 7/1 5 1/2 times the diffusion length of Li §. lenses are possible as long rather is desired to small rather formed, it is when the diffusion length of the minority key turbocharger Li a short Accordingly, the radius of curvature of the lens can be made smaller, but on the other hand, as the diffusion length of the minority carrier becomes shorter, the element characteristics deteriorate. the maximum value of the radius of curvature of a few Canon Li 2 7/2/1 5 1 2 times trough the diffusion length of a in a raw material in the semiconductor portion of the device Everywhere Become. By the way, when silicon is used as the semiconductor of the element (diffusion length lmm of the minority carrier), the radius of curvature of the lens is 2.92 mm.

このよう なセルの構成における光路の様子を第 8 図に示す。な お、 同図ではセル側面で光が反射するよう に示してあるが、 実際 にはセル側面は反射構造である必要はな く 、セルが連続的に配置 されるので隣のセルからの入射と考えてよい。  Fig. 8 shows the optical path in such a cell configuration. In the figure, the light is reflected on the side of the cell. However, in practice, the side of the cell does not need to have a reflective structure. You can think.

第 8 図 ( A ) は、 光軸と平行に入射する光が、 球面レ ンズ上の 光軸上の位置 8 1 、 開き角 1 5度の位置 8 2 、 開き角度 3 0 度の 位置 8 3 でそれぞれセルに入射した場合の光路を示している。ァ ク リ ル樹脂のよう に屈折率 1 . 5 の材料を用いた場合には、 球面 レ ンズの入射点からほぼ曲率半径の 2 〜 3倍の位置に焦点があ る。 素子の半導体と してシ リ コ ンを用いた場合には、 レ ンズの曲 率半径の最大設計値が 2 . 9 2 mmであるから、 焦点距離は 5 . 8 4 〜 8 . 7 6 mm以下とな り 、 セルの厚さを 9 mm以下に薄 く す るこ とができ る。 入射光はレ ンズ内を収束しながら進行し、 大部 分は光電変換素子領域 7 7 を通過する。一部素子領域の外側を通 過した光は、 反射鏡で反射された後、 素子領域に到達する。 すな わち、セル受光部に入射する光軸平行光はすべて素子領域に捕捉 される。  Fig. 8 (A) shows the light incident parallel to the optical axis on the spherical lens at the position 81 on the optical axis, the position at an opening angle of 15 degrees 82, the position at an opening angle of 30 degrees 83 Shows the optical path when the light enters each cell. When a material with a refractive index of 1.5, such as acrylic resin, is used, the focal point is approximately two to three times the radius of curvature from the point of incidence of the spherical lens. When silicon is used as the semiconductor of the element, the focal length is 5.84 to 8.76 mm because the maximum design value of the lens radius of curvature is 2.92 mm. As described below, the thickness of the cell can be reduced to 9 mm or less. The incident light travels while converging in the lens, and mostly passes through the photoelectric conversion element region 77. Light that has passed through the outside of the element region partially reaches the element region after being reflected by the reflecting mirror. In other words, all the light beams parallel to the optical axis that enter the cell light receiving unit are captured in the element region.

第 8 図 ( B ) は同 じ入射点に 1 5度の角度で入射する光の光路 を示している。 この場合は、 入射光の一部が直接素子領域 7 7 に 到達し、 大部分は反射鏡で反射後、 素子領域に到達する。 Fig. 8 (B) shows the optical path of light entering the same incident point at an angle of 15 degrees. In this case, part of the incident light is directly Most of the light reaches the device area after being reflected by the reflector.

第 8 図 ( C ) は同じ入射点に 3 0 度の角度で入射する光の光路 の様子である。 この場合、 素子領域に直接到達する光は無く 、 光 の入射方向から見てレ ンズの手前側に入射する光は反射鏡によ つて反射された後、 素子領域に達するが、 レ ンズの向こ う側に入 射する光は隣のセルに進入し、隣のセルの素子領域の下側をすり ぬける形で通過し、さ らに反射鏡で反射された後に再びセル外部 に出射する。 ただし、 光の入射側から見て、 セルの向こ う 側の投 影面積は狭く 、 大部分は素子領域に到達する。  Fig. 8 (C) shows the optical path of light that enters the same incident point at an angle of 30 degrees. In this case, no light directly reaches the element region, and light incident on the near side of the lens when viewed from the light incident direction is reflected by the reflector and then reaches the element region, but the direction of the lens is changed. The light incident on this side enters the adjacent cell, passes through the lower side of the element region of the adjacent cell in such a way as to pass through, and after being reflected by the reflecting mirror, is emitted again to the outside of the cell. However, when viewed from the light incident side, the projection area on the side opposite to the cell is small, and most reaches the element region.

第 8 図 ( D ) は同 じ入射点に 4 5度の角度で入射する光の光路 を示したものである。 この場合、 入射光の大部分が隣のセルの素 子領域に到達し、 捕捉される。 当該セルは隣のセルに入射した光 を捕捉するこ とになる。  Fig. 8 (D) shows the optical path of light entering the same incident point at an angle of 45 degrees. In this case, most of the incident light reaches the element area of the adjacent cell and is captured. This cell captures light incident on the adjacent cell.

したがって、 このよう な集光光学系では、 受光面の開口角 9 0 度の領域に入射する光のう ち、集光光学系の光軸とのなす角度が 4 5度以内の入射光については、同角度が 3 0度近辺の一部での 低下を除いて、大部分を光電変換素子で捕捉するこ とが可能であ る。 集光光学系の光軸とのなす角度が 4 5 度以上になる と、 隣の セルによる遮蔽がセルの受光面で発生するが、モジュール全体の 受光量は平板の場合と同 じであ り 、 素子領域では、 当該セルの隣 のさ らに隣のセルからの入射光を捕捉する可能性も出る。  Therefore, in such a condensing optical system, of the light incident on the region of the light receiving surface having an aperture angle of 90 degrees, the incident light having an angle of 45 degrees or less with the optical axis of the condensing optical system is considered. However, most of the angle can be captured by the photoelectric conversion element except for a decrease at a part where the angle is around 30 degrees. When the angle between the optical axis of the condensing optical system and the optical axis exceeds 45 degrees, shielding by the adjacent cell occurs on the light-receiving surface of the cell, but the amount of light received by the entire module is the same as that of a flat plate. On the other hand, in the element region, there is a possibility that incident light from a cell next to the cell concerned may be captured.

モジュールはこのよう な六角柱の単位セルを細密充填し、素子 相互を適宜、 直並列に接続 して構成される。 こ のよう なモジ ユ ー ルを北緯 3 5 度の場所で南に向けて仰角 3 5 度で設置 した場合、 夏冬の太陽高度差によ る仰角変更無しに、およそ昼間の 6 時間は 直達太陽光をほぼ 4 〜 1 6 倍集光で捕捉でき、 さ らに開口角 9 0 度の範囲の散乱光を同 じ く 4 〜 1 6 倍集光で捕捉でき る。これは 太陽電池の実用動作上では十分な条件である。 ま た、 散乱光の捕 捉は直達光が捕捉できない時間帯でも可能である。 こ のこ とは、 逆に、 同一受光面積のモ ジ ュールについて、 太陽電池の所要量は 1 / 4 〜 1 Z 1 6 で済むこ とにな り 、高価な半導体材料の使用量 を大幅に削減でき る。 また。 セル製造にかかる設備 . 人件費、 そ の他の消耗品な どの費用 も同率で削減でき る。 The module closely packs such hexagonal prism unit cells, It is configured by connecting them in series and parallel as appropriate. If such a module is installed at an elevation of 35 degrees to the south at a position of 35 degrees north latitude, it will be direct for about 6 hours in the daytime without changing the elevation angle due to the difference in solar altitude in summer and winter. Sunlight can be captured by approximately 4- to 16-fold light collection, and scattered light with an aperture angle of 90 degrees can also be captured by 4- to 16-fold light collection. This is a sufficient condition for practical operation of solar cells. In addition, scattered light can be captured even during the time when direct light cannot be captured. Conversely, for modules with the same light receiving area, the required amount of solar cells is only 1/4 to 1Z16, which greatly reduces the amount of expensive semiconductor materials used. Can be reduced. Also. Equipment for cell manufacturing. Labor costs and other consumables can be reduced at the same rate.

モジュールは、 こ のよ う にセルを平面状に配列 し、 セル間を相 互配線する こ とによ って構成される。 こ の構造を実現する には、 各セルを形成したあ とで個々 のセルを集積する こ とによ つ て も 可能であるが、 よ り 生産的には、 セルを構成する屈折光学系、 素 子、 配線、 反射光学系の各要素をそれぞれま とめ、 第 1 図にある よう に、 屈折光学系を集積 した部材 4 、 素子を集積 して配置 した 配線基材 5 、 反射光学系を集積 した部材 6 を別個に形成 し、 これ らの部材を積層一体化する こ とによ っ てモジュール 3 が構成さ れる こ とが望ま しい。  The module is configured by arranging cells in a plane and interconnecting the cells. To realize this structure, it is possible to integrate individual cells after forming each cell, but more productively, the refractive optical system, As shown in Fig. 1, the elements, wiring, and reflective optics are grouped together, and as shown in Fig. 1, a member 4 with integrated refractive optics, a wiring substrate 5 with integrated elements, and a reflective optics are integrated. It is desirable that the module 3 be formed by separately forming the members 6 thus formed and by laminating and integrating these members.

素子を小さ く する こ とによ って、 以下の四つの効果が生 じる。 第一は、 セルを小さ く でき、 モジ ュール全体の厚みを薄 く 構成 する こ とができ る。 と く にセルの大き さ を 1 m m程度またはそれ 以下に し、屈折と反射を組み合わせた集光光学系で構成する こ と で、通常の平板モジュールの保護ガラ ス程度の厚さで集光動作モ ジュールを構成する こ とができ る。 ま た、 従来のセルを単に薄 く 構成する場合に比べ、セルの機械的強度を格段に大き く 改善する こ とができ る。 ま た、 こ の結果と してモ ジュールに可撓性を付与 する こ とが容易 となる。 発電単位が小さ いため、 モ ジ ュ ールの設 計自 由度が大き く 、 任意の形状に対応するため、 電力用か ら小型 民生用まで、 様々 な用途に柔軟に対応でき る よ う になる。 さ らに、 素子を粒子と して取 り扱う こ とが可能とな り 、粒子の流動性を前 提と した連続製造工程を構築する こ とができ るため、生産性を大 幅に改善する こ とが可能とな る。 By reducing the size of the element, the following four effects are produced. First, the cell can be made smaller and the overall thickness of the module can be reduced. can do. In particular, by making the cell size about 1 mm or less and using a condensing optical system that combines refraction and reflection, the light condensing operation can be performed with a thickness equivalent to the protective glass of an ordinary flat plate module. Modules can be configured. Also, the mechanical strength of the cell can be significantly improved compared to the conventional case where the cell is simply made thin. Further, as a result, it becomes easy to impart flexibility to the module. Since the power generation unit is small, there is a large degree of freedom in designing the module, and it is possible to flexibly cope with various applications from electric power to small consumer products in order to adapt to any shape. Become. In addition, the device can be handled as particles, and a continuous manufacturing process based on the fluidity of the particles can be constructed, greatly improving productivity. It is possible to do.

第二は、素子の半導体部の最大径が半導体内の少数キ ヤ リ ャの 拡散長の 2 倍程度 も し く はこれよ り 小さ い場合には、集光動作を させた場合に不可避とな る集光ムラ に起因する光電変換特性の 低下が小さ く 抑え られる。 これは、 半導体部の最大径が少数キ ヤ リ ャの拡散長の 2 倍よ り も小さ い場合には、励起された光生成キ ャ リ ャの分布は光の局部的な入射強度によ らず、素子に入射する 光の総量に依存 して素子内でほぼ均一になるためであ り 、 したが つて、従来の素子で見られた素子内のキヤ リ ャ再分布に伴う 抵抗 の影響が軽減され、ある いは特性の異な るセルを並列に接続する こ とによる特性低下の問題が軽減するためである。 従っ て、 特性 を損なう こ とな く 1 0 〜 2 0 倍の中倍率領域まで集光のメ リ ッ ト を引き出すこ とができ る。 Second, if the maximum diameter of the semiconductor portion of the element is about twice or less than the diffusion length of the minority carrier in the semiconductor, it is unavoidable when the light-collecting operation is performed. The deterioration of the photoelectric conversion characteristics due to the non-uniform light condensing is suppressed to a small extent. This is because, when the maximum diameter of the semiconductor portion is smaller than twice the diffusion length of the minority carrier, the distribution of the excited photogenerating carrier depends on the local incident intensity of the light. Therefore, the resistance is almost uniform in the element depending on the total amount of light incident on the element.Therefore, the influence of the resistance due to the carrier redistribution in the element observed in the conventional element. This is because the problem of characteristic degradation due to parallel connection of cells having different characteristics is reduced. Therefore, the characteristics The advantage of condensing light can be brought out to the medium magnification range of 10 to 20 times without deteriorating.

第三は、 セルから発生する電流が小さ く なるため、 素子に対す る コ ンタ ク 卜や配線、モジュールを構成するセル間の配線を小さ く 、 細 く 構成でき る。 こ のため、 配線材料を必要最小限に削減で き る o  Third, since the current generated from the cell becomes smaller, the contact and wiring for the element and the wiring between cells constituting the module can be made smaller and thinner. As a result, wiring materials can be reduced to the minimum necessary.o

第四はモジュールを多数のセルで構成するため、小さな面積で 高い電圧を得やす く 、 D C D C変換や D C A C変換時の電源装置構成 を簡略化でき、 ま た、 小型化する こ とができ る。  Fourth, since the module is composed of a large number of cells, it is easy to obtain a high voltage in a small area, and it is possible to simplify and reduce the size of the power supply device during DCDC conversion or DCAC conversion.

反面、 素子を小さ く する こ とによ っ て、 モ ジュールを構成する セルの数が増え、 組立て作業が増加するが、 これは、 同一の構成 あるいは作業の繰り 返しであ り 、 機械化が容易で、 自動化によ つ て克服する こ とが可能である。  On the other hand, by making the element smaller, the number of cells constituting the module increases, and the assembling work increases, but this is the same configuration or the repetition of the work, and the mechanization is easy. Can be overcome by automation.

以上によ り 、 本発明の光電変換装置を電力用に用いた場合、 太 陽追尾や季節による仰角調整も不要とな り 、ま た散乱光の利用が 可能となるため、従来の据え置き型平板モジュールと類似の形態 で同様に使用でき る非追尾方式のモ ジュールを構成する こ とが でき る。 ま た、 有効受光角度を大き く でき る ため、 小型民生用に 組み込んで用いた場合、 指向性が小さ く 、 方向による出力変動が 小さな発電装置が構成でき る。 以上の説明は、 本発明の効果が大 き い非追尾型について行っ たが、本発明は追尾型に も使用でき る こ とは云う までもない。 以下、 本発明を実施例に基づき説明する。 As described above, when the photoelectric conversion device of the present invention is used for electric power, it is not necessary to perform solar tracking or seasonal elevation angle adjustment, and it is possible to use scattered light. It is possible to construct a non-tracking type module that can be used similarly in a similar form to the module. In addition, since the effective light receiving angle can be increased, a power generation device having a small directivity and a small output fluctuation depending on the direction can be configured when used in a small consumer product. Although the above description has been made with respect to the non-tracking type in which the effect of the present invention is great, it goes without saying that the present invention can also be used in the tracking type. Hereinafter, the present invention will be described based on examples.

実施例 1  Example 1

第 9 図を参照 しながら、 実際の構成例について述べる。 光電変 換素子 9 1 は単結晶 シ リ コ ン太陽電池で、 厚さ 2 0 0 μ m、 辺の 長さ は 1 mmの略直方体である。 素子は通常の高効率太陽電池の 製造方法によ り製造された。その製造方法の詳細は本発明の範囲 外であるので、 以下簡単に記述する に止める。  An actual configuration example will be described with reference to FIG. The photoelectric conversion element 91 is a single-crystal silicon solar cell, and is a substantially rectangular parallelepiped having a thickness of 200 μm and a side length of 1 mm. The device was manufactured by the usual high-efficiency solar cell manufacturing method. Since the details of the manufacturing method are out of the scope of the present invention, only a brief description will be given below.

基板は 1 5 0 111111径の 卩 型 〇 2、 ( 1 0 0 ) 、 2 Q cmで、 固体 リ ン拡散源によ り 9 0 0 °Cで両面に厚さ 0 . 2 mの表面拡散を 行っ た。 次いで、 裏面の正極電極形成予定部を含む領域にある リ ン拡散層を除去して再酸化後、 裏面 リ ン拡散領域の一部に Agを 主成分とする負極コ ンタ ク 卜を印刷 と 7 5 0 °Cの焼成によ り 形 成し、 さ らに、 リ ン拡散層を除去 した領域の一部に Ag A1 を主成 分とする正極コ ンタ ク 卜 を同 じ く 印刷焼成によ り 形成 した。これ を幅 1 mmにダイ シ ングする と と も に、 P を含むエ ッ チ液によ り 切断面を軽 く 化学エ ッ チ し、 1 mm角の素子を多数得た。 各素子 9 1 の裏面の辺に近い部分には上記正極コ ンタ ク ト 9 2 および 負極コ ンタ ク ト 9 3 がそれぞれ 1 対設け られる よ う に した。  The substrate is a 150-111111 diameter -shaped 、 2, (100), 2 Qcm, and has a surface diffusion of 0.2 m thick on both sides at 900 ° C by a solid phosphorus diffusion source. went. Next, after removing the phosphorus diffusion layer in the region including the portion where the positive electrode is to be formed on the rear surface and reoxidizing, a negative electrode contact mainly composed of Ag is printed on a part of the rear surface phosphorus diffusion region. It is formed by firing at 50 ° C, and the positive electrode contact mainly composed of Ag A1 is also printed and fired in a part of the area where the phosphorus diffusion layer is removed. Formed. This was diced to a width of 1 mm, and the cut surface was lightly chemically etched with an etchant containing P to obtain a large number of 1 mm square elements. A pair of the positive electrode contact 92 and the negative electrode contact 93 is provided in a portion near the back side of each element 91.

ま た、 上記素子の形成と並行して、 素子を配列、 相互接続する ための配線基板 9 4 を形成した。基板材質は透明ポ リ エチ レ ン · テ レフタ レー ト ( P E T ) 樹脂製のフ ィ ルムで、 配線は Agを主 成分とするペース トでス ク リ ー ン印刷法によ り 形成し、 1 5 0 °C の焼成を行っ た ものである。 In addition, a wiring board 94 for arranging and interconnecting the elements was formed in parallel with the formation of the above elements. The substrate material is a film made of transparent polyethylene terephthalate (PET) resin, and the wiring is mainly Ag. It is formed by a screen printing method using a paste as a component and fired at 150 ° C.

素子 9 1 は第 1 0 図に示したよ う に、 頂点間距離 4 mmの六角 形の中心部にその中心部を一致させて配列 し、基板上に縦 2 0 0 行、 一行に 2 3 1 個配列 した。 なお、 第 1 0 図では中間部分は点 線で省略してある。 第 1 1 図で示すよう に、 素子 9 1 は正極配線 1 1 2 および負極配線 1 1 3 によ って行方向には互いに並列に 接続 し、行の両端部分で正極配線 1 1 2 および負極配線 1 1 3 を 短絡して、 行を単位と して直列に接続した。 ま た、 第 9 図のセル の屈折集光系を構成する六角柱状の球面レ ンズ 9 5 は加熱溶融 した硼珪酸ガラスを型に流 して形成 した。 レ ンズ面の曲率半径は 2 . 8 2 mmで、 配線基板 9 4 の各素子の位置に対応 して細密充 填構造で縦 2 0 2 行、 一行に 2 3 3 個集積 した。 第 1 0 図に示す よ う に、 レ ンズア レイ の最外周部分には対応する素子が無 く 、 こ の部分はセルを構成していない。 これは、 入射角度が大き く な つ た場合に発生する、隣のセルか らの入射光を考慮した ものである c すなわち、 レ ンズア レイ の最外周部分に もセルを構成する と、 こ の部分のセルはその周囲に他のセルが存在 しない為、他のセルが 存在するセルに比べて隣のセルか らの総入射光量が少な く 、出力 が低 く なる結果、モジュールを構成するセルの出力が不均一とな る。 これを防 ぐためにこ のよ う な構成に している。 ま た、 コーナ 一部の点線で示す部分には、 4 辺で隣接セルが無いため、 レ ンズ を形成していない。 この レ ンズア レイ は厚さが 4 . 5 mmで底面 は平坦である。こ の レ ンズア レイ には周辺に枠を形成するため幅 1 0 mmの平坦な余白領域が設け られている。 ま た、 第 9 図の、 セ ルの反射光学系を形成する反射鏡 9 6 は、球面レ ンズア レイ に反 射膜を被せた構造を もち、素子位置に対応して設け られた曲率半 径 2 . 4 mmの球面レ ンズを集積した形状のアク リ ル樹脂の表面 に、 厚さ約 1 μ mの A 1を被覆 したフ ィ ルムを積層 して形成した。 全体の厚さ は約 1 . 2 mmであ り 、 反射面の対向面は平坦である。 ま た、外形寸法は上記レ ンズア レイ の周辺余白を含めた形状と同 一である。 As shown in Fig. 10, the elements 91 are aligned with the center of a hexagon with a vertex distance of 4 mm, the center of which is aligned with the center, and 200 rows vertically and 2 3 1 rows on the substrate. Were arranged. In FIG. 10, the middle part is omitted by a dotted line. As shown in FIG. 11, the element 91 is connected in parallel in the row direction by a positive electrode wiring 112 and a negative electrode wiring 113, and the positive electrode wiring 112 and the negative electrode are connected at both ends of the row. The wires 1 1 and 3 were short-circuited and connected in series in units of rows. In addition, the hexagonal prism-shaped spherical lens 95 constituting the refractive condensing system of the cell in FIG. 9 was formed by flowing borosilicate glass melted by heating into a mold. The lens surface has a radius of curvature of 2.82 mm, and a densely packed structure corresponding to the position of each element on the wiring board 94 is arranged in a row with a vertical length of 202 rows and 23.3 rows. As shown in FIG. 10, there is no corresponding element in the outermost peripheral portion of the lens array, and this portion does not constitute a cell. This occurs when the incident angle is One Do rather large, c that is, in consideration of the cell or these incident light next, when forming the cell to the outermost peripheral portion of les Nzua Ray, this Since some cells do not have other cells around them, the total amount of incident light from the adjacent cells is smaller and the output is lower than the cells with other cells, resulting in the cells that make up the module Output becomes uneven. In order to prevent this, this configuration is used. In addition, the portion indicated by the dotted line at the corner has no adjacent cells on the four sides. Has not formed. This lens array has a thickness of 4.5 mm and a flat bottom surface. This lens array is provided with a flat margin area of 10 mm width to form a frame around the lens array. In addition, the reflecting mirror 96 forming the cell reflecting optical system in FIG. 9 has a structure in which a reflecting film is covered on a spherical lens array, and the radius of curvature provided corresponding to the element position is set. A film coated with A1 with a thickness of about 1 μm was formed on the surface of an acrylic resin with a 2.4 mm spherical lens. The overall thickness is about 1.2 mm, and the opposing surface of the reflecting surface is flat. The external dimensions are the same as the shape including the margin around the lens array.

レ ンズア レイ 9 5 、 素子を集積 した配線基板 9 4 、 反射鏡 9 6 を形成した反射板 9 7 の各部材は、 厚さ 0 . 2 m mのエチ レ ン - ビニル -アセテー ト ( E V A ) の如き熱可塑性の充填材で積層、 集積化し、 7 2 0 m m角の枠無 しモジ ュールを形成した。 さ らに、 ブチルゴムで周辺をシールする と共に、 A 1製の補強枠材で補強 した。 補強枠材の一部に端子板を と り つけ、 これに列出力を集電 する リ ー ドを引き 出 して接続し、出力取 り 出 し端子との間に直列 に逆流防止ダイォー ドを揷入 して全体を端子箱に納め、モジ ユ ー ルを完成した。 こ の出力の取 り 出 しは第 1 1 図の正極端子 1 1 2 ' ま たは 1 1 2 " 、 および、 負極端子 1 1 3 ' ま たは 1 1 3 " か ら可能であるが、その選択はモジ ュールを直並列に接続する都 合による。 端子は正極、 負極と も 2 系統あるが、 これは信頼性お よび接続の利便性から設け られたものであ り 、 1 系統とする場合 もある。 The components of the lens array 95, the wiring board 94 on which the elements are integrated, and the reflector 97 on which the reflector 96 is formed are made of a 0.2 mm-thick ethylene-vinyl-acetate (EVA). The module was laminated and integrated with a thermoplastic filler as described above to form a frameless module of 720 mm square. In addition, the periphery was sealed with butyl rubber, and reinforced with A1 reinforcement frames. A terminal board is attached to a part of the reinforcing frame material, a lead for collecting the column output is drawn out and connected to it, and a backflow prevention diode is connected in series with the output output terminal. It was inserted and the whole was put in a terminal box, and the module was completed. This output can be obtained from the positive terminal 1 1 2 ′ or 1 12 ″ and the negative terminal 1 13 ′ or 1 13 ″ in FIG. The choice depends on connecting the modules in series and parallel. There are two types of terminals, the positive electrode and the negative electrode. It is provided for convenience of connection and connection, and may be one system.

素子の面積は全部で 4 6 2 cm2であ り 、 モジュール面積 5 , 1 8 4 cm2の 8 . 9 %に相当する。 有効受光面積はモジュール面積 の 9 2 . 4 %である。 垂直入射の A M I . 5光に対して、 モジュ —ルの出力電圧は 1 1 6 Vであり 、 出力電流は 0 . 8 9 Aで、 変 換効率は 1 4 . 8 %であった。 非集光の場合に比べて素子面積で はおよそ 1 桁少な く なっているが、モジ ュール当たり の出力は約 7 7 Wで、 受光面積当た りの出力はほぼ同程度である。 The total area of the element is 462 cm 2 , which corresponds to 8.9% of the module area of 5,184 cm 2 . The effective light receiving area is 92.4% of the module area. For normal incidence AMI.5 light, the output voltage of the module was 116 V, the output current was 0.89 A, and the conversion efficiency was 14.8%. The device area is about an order of magnitude less than in the non-light-collecting case, but the output per module is about 77 W, and the output per light-receiving area is almost the same.

なお、 第 9 図の例では、 素子 9 1 は配線基板 9 4 の受光面側に コ ンタ ク ト部分を下向けに して配置してあるが、散乱光成分を重 視する場合には素子 9 1 を配線基板 9 4 の受光面とは反対側に 素子の主受光面を下向けに配置し、反射鏡に対向するよう 設けて も構わない。 また、 本実施例ではガラスと P E T との組み合わせ を用いたが、 レ ンズが P M M Aな どの透明樹脂で形成されても良 い。 レ ンズ材料と透明基板材料との境界での反射損失を低減する ためには屈折率が近いこ とが必要で、 実用的には ± 02 以内で一 致しているこ とが望ま しい。  In the example of FIG. 9, the element 91 is arranged on the light receiving surface side of the wiring board 94 with the contact part facing downward. The main light receiving surface of the element may be disposed on the opposite side of the light receiving surface of the wiring board 94 with the element 91 facing downward, and may be provided so as to face the reflecting mirror. In this embodiment, a combination of glass and PET is used. However, the lens may be formed of a transparent resin such as PMMA. In order to reduce the reflection loss at the boundary between the lens material and the transparent substrate material, it is necessary that the refractive indices be close to each other, and in practice, it is desirable that they match within ± 02.

実施例 2  Example 2

実施例 1 では細密充填するために搭載するセルの形状は六角 柱と したが、 本発明の趣旨に従えば、 と く にセル形状には拘らな い。第 1 2 図に示すよう に正方形のレ ンズ 1 2 5 を正方格子状に 配列 し、 その中央に素子 9 1 を配置 して も よい。 In the first embodiment, the shape of the cells to be mounted for fine packing is a hexagonal prism. However, according to the gist of the present invention, the shape of the cells is not particularly limited. As shown in Fig. 12, square lenses 1 2 5 are arranged in a square lattice. They may be arranged, and the element 91 may be arranged at the center.

素子は実施例 1 と同 じ方法で形成し、 辺の長さ は 1 mm、 厚さ は 2 0 0 β mである。 配線基板上に 4 mra ピ ッ チで縦横 2 0 0 個 ずつ配置し、 行方向は直列に、 ま た各行は並列に接続した。 レ ン ズはポ リ ' メ チノレ ' メ タ ク リ レー ト ( P M M A ) で形成し、 レ ン ズ面の曲率半径は 2 . 8 2 mmで、 縦横の ピ ッ チ 4 mmで縦 2 0 2 行、 一行に 2 0 2 個集積 した。 第 1 2 図に示すよ う に、 レ ン ズァ レイ の最外周部分には対応する素子が無い。こ の レ ン ズア レイ は 厚さ力 4 . 5 mmで底面は平坦である。 こ の レ ンズア レイ には周 辺に枠を形成するため幅 1 Ommの平坦な余白領域を設けた。 ま た、 第 9 図の、セルの反射光学系を形成する反射鏡 9 6 に相当する反 射鏡は、 素子位置に対応して配置された曲率半径 2 . 4 mmの P M M A製の球面レ ンズア レイ に厚さ約 1 μ mの A1 を被せた反射 膜を有する。 全体の厚さ は約 1 . 4 mmであ り 、 反射面の対向面 は平坦である。 ま た、 外形寸法は上記レ ンズア レイ の周辺余白を 含めた形状と同一である。  The element was formed in the same manner as in Example 1, the side length was 1 mm, and the thickness was 200 βm. Four hundred and four hundred mra pitches were arranged on the wiring board, each in a row and column, and the rows were connected in series and each row was connected in parallel. The lens is made of poly-methyl methacrylate (PMMA), the radius of curvature of the lens surface is 2.82 mm, and the vertical and horizontal pitch is 4 mm and the height is 202 Rows, 202 were accumulated in one row. As shown in FIG. 12, there is no corresponding element in the outermost peripheral portion of the lens array. This lens array has a thickness of 4.5 mm and a flat bottom surface. In this lens array, a flat margin area of 1 Omm width was provided to form a frame around the lens array. In addition, the reflecting mirror corresponding to the reflecting mirror 96 forming the reflecting optical system of the cell in FIG. 9 is a spherical lens made of PMMA having a radius of curvature of 2.4 mm arranged corresponding to the element position. It has a reflective film in which a ray is covered with A1 with a thickness of about 1 μm. The total thickness is about 1.4 mm, and the opposing surface of the reflecting surface is flat. The external dimensions are the same as those of the lens array including the margin around the lens array.

こ のモジュールは素子の面積 4 0 0 cm2で、 モジュール面積 6 , 8 5 6 cm2の 5 . 8 %であ り 、 A M I . 5 の垂直入射光に対して は出力電圧 1 1 5 V、 出力電流 1 . 2 8 Aで変換効率は 1 6 %で あ つ たが、 と く に斜め方向では入射光に対する 出力の低下が実施 例 1 の ものよ り 若干大き い。 This module in the area 4 0 0 cm 2 of the device 5 of the module area 6, 8 5 6 cm 2. 8% der Ri, AMI. 5 of the output voltage 1 1 5 V for normally incident light, The conversion efficiency was 16% at an output current of 1.28 A, but the output of incident light was slightly lower than that of Example 1 especially in oblique directions.

実施例 3 実施例 1 、 2 では、 素子を搭載する立方体空間の中に、 第 9 図 に示すよう に直方体の素子を平た く 、 すなわち、 1 番短い辺を垂 直方向に配置した例を示 したが、 本発明の趣旨に従えば、 素子の 配置の方向には拘 らない。 その実施例を第 1 3 図に示す。 Example 3 Embodiments 1 and 2 show examples in which a rectangular parallelepiped element is flattened in a cubic space in which the element is mounted, as shown in FIG. 9, that is, the shortest side is arranged in a vertical direction. However, according to the gist of the present invention, the arrangement of the elements is not limited. An example is shown in FIG.

素子 1 3 1 は矩形で、その一端に正極 1 3 2 および負極 1 3 3 の コ ンタ ク 卜を有する。 コ ンタ ク ト はそれぞれ透明樹脂基板 1 3 6 の上に形成した正極配線 1 3 4 および負極配線 1 3 5 に接続 されている。 素子は第 1 4 図に示すよ う に、 反射光学系ア レイ 1 4 1 に設けた開口部 1 4 3 に挿入され、反射光学系ア レイ 1 4 1 と素子 1 3 1 との空隙は樹脂によ っ て充填され、全体が屈折 レ ン ズア レイ 1 4 2 と一体化されている。  The element 1331 is rectangular, and has a positive electrode 132 and a negative electrode 133 at one end. The contacts are respectively connected to a positive electrode wiring 134 and a negative electrode wiring 135 formed on the transparent resin substrate 136. As shown in Fig. 14, the element is inserted into the opening 144 provided in the reflective optical system array 141, and the gap between the reflective optical system array 141 and the element 131 is made of resin. And the whole is integrated with the refractive lens array 142.

こ のモジュールを形成するのに使用 した基板は、 p 型、 ( 1 0 0 ) 、 2 Ω cm、 厚さ は 5 0 0 μ mで、 これを 1 m m角 に切断し、 全面に リ ン拡散 した。こ のチ ッ プの一端の両側に正極および負極 の コ ンタ ク トを形成し、これを透明樹脂製配線基板 1 3 6 上に形 成した正極および負極配線に立てる よ う な形態で接続した。反射 光学系ア レイ 1 4 1 に設けた凹みに素子を合わせ、 レ ンズア レイ 1 4 2 および配線基板 1 3 6 と粘性の低い充填剤で真空ラ ミ ネ — シ ョ ンによ り 一体化 した。  The substrate used to form this module was p-type, (100), 2 Ωcm, 500 μm thick, which was cut into 1 mm squares and phosphorus diffused throughout. did. Positive and negative contacts were formed on both sides of one end of this chip, and they were connected in such a way that they were erected on the positive and negative wires formed on the transparent resin wiring board 13 6 . The element was aligned with the recess provided in the reflective optical system array 141 and integrated with the lens array 144 and the wiring board 136 by vacuum lamination using a low-viscosity filler. .

こ のモジュールは反射板の近 く まで光の捕集領域を広げる こ とができ、 と く に斜め入射光に対する 出力が実施例 1 および 2 よ り も高力、つ た。 こ の設計の素子では直方体の厚み部分に 1 対の電極が形成さ れているが、 生産性を考慮した場合には、 電極の対象性が高い方 がマウ ン 卜の際の方向合わせの 自 由度が大き く 製造工程上有利 である。 第 1 5 図はそれらの一例である。 第 1 5 図 ( A ) は配線 とのコ ンタ ク 卜が 3 力所にな っている例で、 外側が正極 1 3 2、 中央が負極 1 3 3 であ り 、ぞれぞれ透明樹脂基板 1 3 6 の上に形 成された正極配線 1 3 4 および負極配線 1 3 5 に接続されてい る。 こ こ に用いられた素子 1 3 1 は同図 ( B — 1 ) に示すよ う に、 コ ンタ ク ト部分に対応して p '拡散領域 1 3 2 ' 、 n ·拡散領域 1 3 3 ' が設け られている。 こ の場合には、 配線基板に素子を接続 する際、 素子の方向が反転して も正極と n 拡散領域が誤っ て接 続される こ とが無い。 In this module, the light collection area could be extended to the vicinity of the reflector, and the output for obliquely incident light was higher than in Examples 1 and 2, especially. In the element of this design, a pair of electrodes is formed in the thickness of the rectangular parallelepiped.However, when productivity is taken into consideration, the electrode with higher symmetry is more likely to automatically adjust the orientation when mounting. It has great flexibility and is advantageous in the manufacturing process. Figure 15 is an example of them. Fig. 15 (A) shows an example in which the contact with the wiring is at three places. The outside is the positive electrode 132, the center is the negative electrode 133, and the transparent resin is used for each. It is connected to the positive electrode wiring 134 and the negative electrode wiring 135 formed on the substrate 136. The element 13 1 used here has p 'diffusion region 13 2' and n · diffusion region 13 3 'corresponding to the contact part, as shown in the same figure (B-1). Are provided. In this case, when the element is connected to the wiring board, the positive electrode and the n-diffusion region are not erroneously connected even if the direction of the element is reversed.

さ らに、 同図 ( B — 2 ) に示すよ う に、 4 辺に対して対称的に P '拡散領域 1 3 2 ' および n ·拡散領域 1 3 3 ' が設け られ、 四 隅に正極 1 3 2 辺の中央に負極 1 3 3 が設け られた場合には、 どの 4 辺が配線基板と接続されて も、極性が正 し く 接続される こ とになる。 従って、 工程的には、 正 し く 素子の" 辺" が配線基板 の配線上に接触する よ う 規制する手段を講じるだけで良い。ま た、 上記の例で、 正極と負極、 p '領域と n 領域が入れ替えて考えれ ば、 極性が反対でも同様に成り 立ちう る構造である。 ま た、 同図 ( B — 2 ) に示すよ う に、 配線の数よ り も多いコ ンタ ク 卜領域を 素子に設ける こ とは、コ ンタ ク 卜でのキ ヤ リ ャ再結合を考慮する と必ずし も望ま しいこ とではないが、第 1 5 図に示すよう に コ ン タ ク ト領域を 2 回以上の高い対称性で素子上に配置する こ とで、 セルを製造する上ではむしろ有利になる。 In addition, as shown in FIG. 4B, P ′ diffusion region 13 2 ′ and n · diffusion region 13 3 ′ are provided symmetrically with respect to the four sides, and the positive electrode is provided at the four corners. When the negative electrode 133 is provided at the center of the 132 side, the polarity is correctly connected regardless of which side is connected to the wiring board. Therefore, in the process, it is only necessary to take measures for regulating the "side" of the element so as to correctly contact the wiring of the wiring board. Also, in the above example, if the positive electrode and the negative electrode, and the p ′ region and the n region are exchanged, the structure is the same even if the polarities are opposite. In addition, as shown in the same figure (B-2), providing a contact area with more wires than the number of wires in the element takes into account carrier recombination at the contact. Do Although it is not always desirable, as shown in Fig. 15, by arranging the contact area on the device with high symmetry two or more times, it is difficult to manufacture cells. It is rather advantageous.

なお、 本実施例ではセル · モジュールを構成するにあた り 素子 を配線部分に対 して受光面と反対側に配置してあるが、受光面と 同 じ側に配置する こ とは妨げない。  In the present embodiment, the elements are arranged on the side opposite to the light receiving surface with respect to the wiring portion when configuring the cell / module, but it is not obstructed to arrange them on the same side as the light receiving surface. .

実施例 4  Example 4

これまでの実施例では、素子を搭載する立方体空間の中には直 方体の素子が用いられているが、 素子形状は直方体に限らない。 次に述べる顆粒状の素子用いた場合には素子の対称性がよ り 高 く なるため、 セル . モジュールを形成する際の素子の取 り 扱いが 簡単にな り 、 モジュールの生産性を向上させる こ とができ る。  In the embodiments described above, a rectangular parallelepiped element is used in the cubic space in which the element is mounted, but the element shape is not limited to a rectangular parallelepiped. When a granular element described below is used, the symmetry of the element becomes higher, so that the handling of the element when forming a cell / module is simplified, and the productivity of the module is improved. be able to.

第 1 6 図は搭載した顆粒状シ リ コ ンセルの断面模式図である。 基材 1 6 0 は p 型、 0 . 5 Ω c mの結晶で、 直径は 0 . 4 m mで ある。 その表面には拡散によ り n 型の領域 1 6 1 が形成され、 そ の一部に開口部 1 6 4 が設け られている。開口部 1 6 4 の露出 し た p領域には正極電極 1 6 3 が接続され、その接触部分は高濃度 の p領域 1 6 5 とな っている。 ま た、 表面 n領域 1 6 1 の一部に は負極電極 1 6 2 が接続されている。第 1 6 図では正極電極およ び負極電極はそれぞれの断面を円で示 しているが、これは細い線 条で形成されたメ ッ シュ との交点部分で断面を図示しているた めである。 n 型領域に接触する線条の表面には少な く と も Agを 主成分に した金属層を有 し、 ま た、 P 型領域に接触する線条の表 面には少な く と も A 1が含有された A gを含む金属層が形成されて いる。 メ ッ シュの線条間隔は 0 . 4 m mであ り 、 同種の線条の ピ ツ チは 1 . 2 m mである。 線条の ョ ビ径は 6 0 mで実際には複 線であるが、 図では簡単に示 してある。 Fig. 16 is a schematic cross-sectional view of the mounted granular silicon cell. The substrate 160 is a p-type, 0.5 Ωcm crystal and has a diameter of 0.4 mm. An n-type region 161 is formed on the surface by diffusion, and an opening 164 is provided in a part of the region. A positive electrode 163 is connected to the exposed p region of the opening 164, and the contact portion is a high concentration p region 165. Further, a negative electrode 162 is connected to a part of the surface n region 161. In Fig. 16, the cross section of each of the positive electrode and the negative electrode is indicated by a circle, but this is because the cross section is shown at the intersection with the mesh formed by a thin line. is there. At least Ag should be applied to the surface of the wire that contacts the n-type region. A metal layer having a metal layer as a main component and a metal layer containing Ag containing at least A1 is formed on the surface of the striated line in contact with the P-type region. The mesh line spacing is 0.4 mm, and the pitch of the same type of line is 1.2 mm. The diameter of the wire is 60 m, which is actually a double track, but is shown simply in the figure.

こ の素子が配線基板上に配置された様子を第 1 7 図に示す。顆 粒状の素子 1 6 0 は 1 . 2 m m間隔でマ ト リ ク ス状に配置されて いる。配線基板は基本的には絶縁線条 1 6 6 で形成された平織り ク ロ スであるが、 素子位置に交差する線条 1 6 7 (図中細い点線 で表示) は抜いてあるため実際には無い。 ま た、 素子位置の両側 の線条は負極電極線条 1 6 2 および正極電極線条 1 6 3 と置換 されている。したがって素子は縦方向には並列に接続されてお り 、 外側で正極線条と、当該素子列に隣接する素子列の負極線条 とを 直列に接続する こ とによ っ て、並列接続された素子列を単位と し た直列接続が実現されている。  FIG. 17 shows a state in which this element is arranged on a wiring board. The condylar granular elements 160 are arranged in a matrix at 1.2 mm intervals. The wiring board is basically a plain weave cross formed with insulating filaments 16 6, but the filaments 16 7 (indicated by the thin dotted lines in the figure) that intersect the element positions are actually removed. There is no. In addition, the lines on both sides of the element position are replaced with the negative electrode line 162 and the positive electrode line 163. Therefore, the elements are connected in parallel in the vertical direction, and are connected in parallel by connecting the positive electrode wire on the outside and the negative electrode wire of the element row adjacent to the element row in series. A series connection has been realized for each element row.

形成したモジュールは 6 0 0 m m角で、 厚さ は 6 m mあ り 、 周囲 は 1 4 m mのアル ミ ニウム枠で保護されている。 標準測定条件で の出力は 4 2 . 8 Wで、 出力電圧は 2 3 8 V、 短絡電流は 0 . 2 4 m Aで、 モジュール効率は 1 2 %である。  The formed module is 600 mm square, 6 mm thick, and its surroundings are protected by a 14 mm aluminum frame. Under standard measurement conditions, the output is 42.8 W, the output voltage is 238 V, the short-circuit current is 0.24 mA, and the module efficiency is 12%.

実施例 5  Example 5

本発明の趣旨に従えば、光電変換装置を構成する素子の種類に は拘わ らない。 次に薄膜太陽電池を素子に用いた場合について、 第 1 8 図を用いて説明する。 According to the gist of the present invention, the type of element constituting the photoelectric conversion device is not limited. Next, when a thin film solar cell is used for the element, This will be described with reference to FIG.

ガラ ス基板 1 8 0 に所望のパター ンで透明導電膜 1 8 1 を形 成し、 これに公知のプラ ズマ C V D法によ り 5 n mの p :ァモル フ ァ ス シ リ コ ン層 1 8 2 を形成する。 ρ +アモルフ ァ ス シ リ コ ン 層 1 8 2 は下地の透明導電膜 1 8 1 の一端を覆う よう にパター ン形成され、 こ の上に 4 0 0 n mの i 層 1 8 3、 5 0 n mの 層 1 8 4 のアモルフ ァ ス シ リ コ ン層がそれぞれ形成される。こ の 層は透明導電膜 1 8 1 を覆う 部分の ρ 1層 1 8 2 をさ らに覆い、 かつ反対側では透明導電膜 1 8 1 が露出する よう にパタ ー ン形 成される。 次いで、 アル ミ ニウムの蒸着によ り 、 1 '層 1 8 4 の 大部分には格子状のパター ンが、またこれに連続する よ う に i 層 1 8 3を覆って負極 1 8 5が形成され、さ らに透明導電膜 1 8 1 のみに接触する よ う に正極 1 8 5 ' が形成される。 通常の非集光 型の場合はこ の負極 1 8 5 および正極 1 8 δ ' は連続してお り 、 セルの直列接続が実現されているが、本発明の場合にはガラ ス基 板 1 8 0 と一緒にこれを分離 し、個々 のセルと して集光光学系に 搭載される。個々 のセルの大き さ は数 m m角ない し 1 m m角程度 である。 A transparent conductive film 18 1 is formed on a glass substrate 180 with a desired pattern, and a 5 nm p : amorphous silicon layer 18 is formed thereon by a known plasma CVD method. Form 2. The ρ + amorphous silicon layer 18 2 is formed so as to cover one end of the underlying transparent conductive film 18 1, and a 400 nm i-layer 18 3, 50 Amorphous silicon layers of nm layer 184 are respectively formed. Layers of this covers the is et a [rho 1 layer 1 8 2 parts covering the transparent conductive film 1 8 1, and on the opposite side of the transparent conductive film 1 8 1 are made patterns shaped to expose. Next, a lattice-like pattern is formed on most of the 1 'layer 184 by the deposition of aluminum, and a negative electrode 185 is formed covering the i-layer 183 so as to be continuous therewith. The positive electrode 185 'is formed so as to be in contact with only the transparent conductive film 181. In the case of a normal non-light-collecting type, the negative electrode 18 5 and the positive electrode 18 δ ′ are continuous, and a series connection of cells is realized. In the case of the present invention, however, the glass substrate 1 This is separated together with 80 and mounted on the focusing optics as individual cells. The size of each cell is several mm square or about 1 mm square.

こ の分離作業を容易にするため、ガラ ス基板 1 8 0 には切断し やすいよう に予め裏面よ り格子状の切れ 目を設けてお く のがよ い。集光光学系への搭載にあたっては前述の実施例と同様に取り 扱う こ とができ る。 実施例 6 In order to facilitate this separation work, it is preferable that the glass substrate 180 be previously provided with a grid-like cut from the back surface so that it can be easily cut. The mounting on the condensing optical system can be handled in the same manner as in the above-described embodiment. Example 6

次に本発明の光電変換装置を電力用に用いた実施例を述べる。 第 1 9 図は商用電源との連系を行つ た住宅への応用の一例であ る。 太陽電池モジュール 1 9 0 は実施例 1 で述べた もので、 モジ ユール当た り の定格出力は 1 1 5 V 、 1 . 2 8 Aである。 例では 1 支線 1 9 1 に 7 枚のモジュールが逆流防止ダイォ一 ド 1 9 2 を介して並列接続された もの と、他の 1 支線 1 9 3 に 1 4 枚のモ ジュールが並列接続された ものを、更に並列接続してイ ンバ一タ 入力に接続した。 ィ ンバ一夕以降の電力の制御、 利用に関 しては 公知であ り 、交流に変換 して交流側で商用電源と連系させる場合 や、 直流側で連系 し、 ィ ンバ一夕組み込みの電気機器 (図中点線 で示す) 、 例えば空調機やポ ンプな どの回転機器に利用 される。  Next, an embodiment using the photoelectric conversion device of the present invention for electric power will be described. Fig. 19 shows an example of application to a house connected to a commercial power source. The solar cell module 190 is as described in the first embodiment, and the rated output per module is 115 V and 1.28 A. In the example, seven modules are connected in parallel to one branch line 191, via a backflow prevention diode 1992, and 14 modules are connected in parallel to another single branch line 1993. Were connected in parallel and connected to the inverter input. The control and use of electric power after the integration is well-known, and it is known to convert to AC and connect it to commercial power on the AC side, or to connect to the DC side and install the integration It is used for electrical equipment (indicated by the dotted line in the figure), for example, rotating equipment such as air conditioners and pumps.

本実施例では小さ なセルを多数直列に接続する ため、モジ ュ 一 ル単位で容易に高電圧化する こ とができ、 1 0 0 Vに連系する た めに必要な電圧が単一のモジ ュールで得 られる。 反面、 モジ ユ ー ル単位の出力電流は小さ く なるため、所望の電力容量を得る ため にはモジュールを必要枚数並列に接続し、 ァ レイが構成される。 従来の同程度の大き さのモジュールは 1 0 c m角程度の大き なセルで構成されるため、モジュール内のセルをすベて直列に接 続して もその定格出力は 2 4 V 、 3 A程度である。 従っ て、 家庭 用電気機器用の電源に直接利用 した り 、商用電源と連系する ため には、 モジ ュールを 5 枚程度直列接続するか、 D C — D C変換に よ り 1 0 0 V以上に昇圧する必要がある。 ま た、 各モジュールか らの出カ リ 一 ドは 3 Aの電流負荷に耐える ほ どの太さが必要で あ り 、ま たモジュール内の各セルの接続も こ の電流容量の接続夕 ブが必要で、 全体の配線が太 く なる傾向があ っ た。 ま た、 一部の モジュール不良によ って、そのモジュールに直列接続されている 一群のモジュール (ス ト リ ング) が動作不良にな り 、 従って シス テムへの影響が大き く 、 緊急な修復が必要であ っ た。 In this embodiment, a large number of small cells are connected in series, so that the voltage can be easily increased in units of modules, and the voltage required for linking to 100 V is a single voltage. Obtained by module. On the other hand, the output current per module becomes smaller, so that the required number of modules are connected in parallel to form an array to obtain the desired power capacity. Conventional modules of the same size are composed of cells as large as 10 cm square, so even if all the cells in the module are connected in series, the rated output is 24 V, 3 A It is about. Therefore, in order to use it directly for power supply for home electric appliances or to link with commercial power supply, connect about 5 modules in series or use DC-DC conversion. It is necessary to boost to more than 100 V. In addition, the output from each module must be thick enough to withstand a 3 A current load, and the connection of each cell in the module must be connected to this current capacity. Necessary, the overall wiring tended to be thicker. In addition, some module failures cause a group of modules (strings) connected in series to the module to malfunction, thus greatly affecting the system and urgent repair. Was required.

これに対 し、本実施例のモジ ュールは電力利用に必要な高電圧 をモジュール単位で発生でき るので、集電系統をすベて並列接続 する こ とができ る。 そのため、 不良モジュールを系統から切 り 放 すだけでシステムの応急修理が可能であ り 、 ま た、 随時不良モジ ユールを良品 と交換し、光発電系統に再接続する こ とで復旧が可 能であ り 、 光発電ア レイ のメ ンテナ ンスが容易である。 ま た、 シ ステム容量の増加要求にはモ ジュール単位の増設で対応でき る ので、 システムの変更に対して極めて柔軟に対応でき る という 特 徴がある。本実施例では 1 支線に 1 4 のモジュールを接続 したァ レイが標準で、通常は支線の本数を減らすためにモジュールは支 線に対して対称に配置され、モジ ュールか ら支線までの総配線長 を短 く する工夫がなされている。 1 支線 1 9 1 に 7 つのモジ ユ ー ルを接続したア レイ は増設の概念を示すもので、増設はモ ジ ユ ー ル単位で可能である。同図では逆流防止ダイォー ド 1 9 2 はモジ ユールの外に示してあるが、 一般には第 2 0 図に示すよ う に、 モ ジ ュール 1 9 0 に設けた端子箱 2 0 1 にケーブル接続端子(図示 せず) と一緒に納め られ、 モ ジ ュールと一体化 した防水構造にな つ ている。 モジュール出力電圧が高ので、 出力ケーブルには同軸 構造を使う こ とが望ま し く 、同軸ケーブル 2 0 2 の一端はモ ジ ュ ールの接続端子に固定されてお り 、他の一端には集電線 2 0 3 に 接続するための防水コネ ク タ (図示せず) が接続されている。 集 電線はモ ジ ュール規格に合わせた間隔で防水接続点 2 0 4 を配 置 した集電ハーネ ス にな ってお り 、上記防水コネク タを介してヮ ンタ ツ チで接続される。 こ の構成が施工性を向上させ、 ま た、 不 良モジュールを交換する ときのメ ンテナ ンス性を確保 している。 On the other hand, the module of the present embodiment can generate a high voltage required for power use in units of modules, so that all the current collection systems can be connected in parallel. Therefore, emergency repair of the system can be performed simply by disconnecting the defective module from the system, and recovery can be performed by replacing the defective module with a good product at any time and reconnecting to the photovoltaic power system. Therefore, the maintenance of the photovoltaic array is easy. Another feature is that it can respond to demands for increased system capacity by increasing the number of modules, which makes it very flexible to respond to system changes. In this embodiment, an array in which 14 modules are connected to one branch line is standard.In general, the modules are arranged symmetrically with respect to the branch line to reduce the number of branch lines, and the total wiring from the module to the branch line is performed. Some measures have been taken to shorten the length. An array in which seven modules are connected to one branch line 191 shows the concept of expansion, and expansion can be performed on a module-by-module basis. In this figure, the backflow prevention diode 192 is shown outside the module, but in general, as shown in Fig. 20, It is housed in a terminal box 201 provided on the module 190 together with a cable connection terminal (not shown), and has a waterproof structure integrated with the module. Since the output voltage of the module is high, it is desirable to use a coaxial structure for the output cable. One end of the coaxial cable 202 is fixed to the connection terminal of the module, and the other end is connected to the other end. A waterproof connector (not shown) for connecting to the collector line 203 is connected. The current collection line is a current collection harness in which the waterproof connection points 204 are arranged at intervals according to the module standard, and are connected by the touch through the above-mentioned waterproof connector. This configuration improves the workability and maintains the maintenance when replacing a defective module.

さ らに、 本発明ではモ ジ ュ ー ル当た り の出力電流は小さ いが、 逆に、 モジュール内部の配線には細い導線が利用でき、 モ ジ ユ ー ル構成材料の節約を果た している。  Furthermore, in the present invention, the output current per module is small, but conversely, a thin conductive wire can be used for the wiring inside the module, which saves the material constituting the module. are doing.

実施例 7  Example 7

次に本発明の光電変換装置を民生用に用いた実施例を述べる。 第 2 1 図は携帯用衛星通信機器 (マニ ュ ーバブルステー シ ョ ン ) への応用の一例である。 独立 D C電源と して使用するため、 蓄電 池と併用する システムが組まれる。通信機器の送信時の所要電力 は 4 0 Wで蓄電電圧は 1 2 Vである。筐体 2 1 0 の主面 2 1 1 は 4 5 X 4 5 c m 2で、 効率 1 5 %の太陽電池によ って定格 3 0 W の発電は可能である。太陽電池を筐体の一主面に搭載する こ とで、 太陽に正対でき る場合には平均的な所要電力を賄う こ とはでき るが、 通常、 筐体の蓋部分には衛星追尾のア ンテナが配置される ので、 太陽電池は筐体の裏面に搭載する こ とが望ま しい。 こ の場 合、 筐体の主面だけでは実用上やや面積不足であ り 、 また通信時 に利用する こ とができないため、使用時に展開でき る こ とが必要 である。 こ の場合、 太陽電池モジ ュール 2 1 2 を奇数枚用いて、 収納時に もその一部が筐体の外側に受光面を露出 している状態 にする と、 移動時に も充電され、 非使用時の蓄電池の過放電を防 止する こ とができ る。 太陽電池と蓄電池の組み合わせ、 使い方は 公知の方法によ る。 Next, an embodiment using the photoelectric conversion device of the present invention for consumer use will be described. Fig. 21 shows an example of application to a portable satellite communication device (manufacturable station). A system will be set up for use as an independent DC power supply in combination with a battery. The power required for transmission by the communication equipment is 40 W and the storage voltage is 12 V. Face 2 1 1 of the housing 2 1 0 a 4 5 X 4 5 cm 2, the power generation efficiency 1 5% nominal 3 I by the solar cell of 0 W is possible. By mounting the solar cell on one main surface of the housing, it is possible to cover the average required power when facing the sun. However, since a satellite tracking antenna is usually placed on the lid of the case, it is desirable to mount the solar cell on the back of the case. In this case, only the main surface of the housing is practically somewhat insufficient in area, and cannot be used at the time of communication. In this case, if an odd number of solar cell modules 2 12 are used and a part of the module exposes the light-receiving surface outside the housing when stored, it will be charged even when moving and not used Over-discharge of the storage battery can be prevented. The combination and usage of the solar cell and the storage battery are based on known methods.

こ の場合、本発明を適用 した場合の利点を第 2 2 図を用いなが ら以下に述べる。 本実施例ではセルが小さ いため、 1 2 Vの電圧 を発生するにはモ ジ ュール 2 2 0 のう ちの 3 0 m m程度の発電 ュニ ッ ト領域 2 2 1 にわた つてセルア レイ 2 2 2 を直列に接続 すればよい。これはセル列の負極と隣のセル列の正極をセル配列 の外側で接続する こ とによ り 実現される。実施例 2 に述べた構造 では 4 5 0 m m幅のセルア レイ 1 本で定格約 1 9 0 m Aを発生 でき るので、 3 0 m m幅の発電ュニ ッ ト ごとに 2 . 3 Wの発電は 可能である。筐体の主面面積で 1 5 列の発電ュニ ッ 卜を配列でき る。各発電ュニ ッ 卜の並列接続はセル配列の外側に少な く と も正 負 1 対形成した電極 2 2 3、 2 2 3 * に上記発電ュニ ッ 卜の上下 から交互に接続を と る こ とによ っ て実現される。従っ てモ ジユー ル 1 枚あた り の発電容量は 3 5 Wで、その出力はモジ ュール端の 正負電極 2 2 4 、 2 2 4 ' か ら取 り 出 される。 モジュール 3 枚で 定格約 1 0 0 Wが得られる。 したがって、 太陽電池モジュールを 水平面に置いた状態でも、通常の用法で通信機器を動作させる場 合には十分な電力が供給でき る。 In this case, advantages of applying the present invention will be described below with reference to FIG. In this embodiment, since the cell is small, to generate a voltage of 12 V, a cell array 2 22 over a power generation unit area 2 21 of about 30 mm of the module 220 is generated. May be connected in series. This is achieved by connecting the negative pole of a cell row and the positive pole of an adjacent cell row outside the cell array. In the structure described in Example 2, a single cell array with a width of 450 mm can generate a rated power of about 190 mA, so that a power generation unit with a width of 2.3 W is generated for each power generation unit with a width of 30 mm. Is possible. 15 rows of power generation units can be arranged in the main surface area of the housing. In parallel connection of each power generation unit, at least one pair of positive and negative electrodes 223, 223 * formed outside the cell array are connected alternately from above and below the power generation unit. This is achieved. Therefore, the power generation capacity per module is 35 W, and the output is at the end of the module. It is taken out from the positive and negative electrodes 222, 224 '. A rating of about 100 W can be obtained with three modules. Therefore, even when the solar cell module is placed on a horizontal surface, sufficient power can be supplied when operating communication equipment in a normal usage.

従来方式の平板モジュールでは 1 2 Vの電圧を供給する ため に、ほぼ筐体主面に相当する面積のモ ジ ュールでは全セルが直列 に接続される。 こ の場合にはモ ジュールの一部が遮られた場合、 バイパスダイォー ドを設けていて も充電電圧が確保できな く な り 、 システムへの電力供給が停止する。 本発明の場合、 4 5 列の 発電ュニ ッ ト を並列に動作させてお り 、その一部が発電できない 状況にな っ て も、その部分の電流出力が低減するだけで電圧低下 は無 く 、遮蔽されなかっ た残 り の発電ュニ ッ ト によ り 電力供給が 継続される。  To supply a voltage of 12 V in a conventional flat panel module, all cells are connected in series in a module whose area is almost equivalent to the main surface of the housing. In this case, if a part of the module is interrupted, the charging voltage cannot be secured even if the bypass diode is provided, and the power supply to the system is stopped. In the case of the present invention, the power generation units of 45 rows are operated in parallel, and even if a part of the power generation units cannot be generated, the current output of the part is only reduced and there is no voltage drop. In addition, the power supply is continued by the remaining power generation unit that is not shielded.

以上、 本発明によれば、 素子に比較的高品質、 高価な半導体材 料を用いて も、モ ジュールの発電容量は従来の平板型モジ ュール とあま り 変わ らず、 コス トを大幅に低減する こ とが可能である。 これは、モジ ュール構造が自動化によ る量産によ り適した方式で あ り 、 ま た、 セルの製造量がほぼ集光倍率の逆数で済むためであ る。  As described above, according to the present invention, even if a relatively high-quality and expensive semiconductor material is used for the element, the power generation capacity of the module is not much different from that of the conventional flat module, and the cost is greatly reduced. It is possible to do so. This is because the module structure is more suitable for mass production by automation, and the production amount of cells can be almost the reciprocal of the light collection magnification.

本発明によれば、小さ なモジュール面積で容易に高電圧が得 ら れ、 商用電力電圧が単一モジュールで供給可能であ り 、 A C 出力 モジュールに用いて好適である。 ま た、 小電力民生用 と して も所 要電圧が小面積で得られる ほか、 可撓性、 局面対応性な ど設計の 柔軟性も優れてお り 、 多様な用途に対応でき る。 また、 いずれも 高角度で光を取 り込むこ とができ、ま た部分的な光遮蔽に対 して 出力低下を最小限に抑制する こ とが容易であ り 、全面一様に光入 力が得られない状況でも有効に発電電力を得る こ とができ る。 According to the present invention, a high voltage can be easily obtained with a small module area, a commercial power voltage can be supplied by a single module, and it is suitable for use in an AC output module. It is also suitable for low-power consumer use. The required voltage can be obtained in a small area, and it has excellent design flexibility such as flexibility and phase adaptability, and can be used in a variety of applications. In each case, light can be taken in at a high angle, and it is easy to minimize the decrease in output with respect to partial light shielding. Even in a situation where power cannot be obtained, it is possible to effectively obtain generated power.

なお、本発明は Ga A s、 Ga I nPな どの結晶化合物半導体や、 Cu I nSe2 な どのカルコパイ ライ 卜系材料な ど、他の材料を用いた太陽電池 について も、 同様に適用する こ とができ る。 また、 モジュール材 料にはガラ スの他に、 P M M Aやポ リ カーボネー ト な どの透明光 学プラ スチ ッ ク を用いて も よい。 これ らの材料の組み合わせや、 単独材料によ る成型一体化によ っ て構成される構造も含まれる。 The present invention and Ga A s, Ga I nP of any crystal compound semiconductor, etc. Cu I nSe 2 of which Karukopai Lai Bok based material, for the solar cell using other materials, and this is similarly applied to Can be done. In addition to glass, transparent optical plastics such as PMMA and polycarbonate may be used for the module material. It also includes structures composed of a combination of these materials and molding and integration of a single material.

Claims

δ冃 求 の 範 囲 δ 冃 range 1 . 半導体光電変換素子と、 該光電変換素子の半導体部分の最大 径以上の開口径を有する二軸屈折光学系と、該ニ軸屈折光学系に 対向 して上記光電変換素子の反対側に上記二軸屈折光学系の焦 点よ り 上記光電変換素子側に配置された二軸反射光学系を構成 単位と し、該構成単位が平面または曲面状に複数個配列された光 電変換モジュールを有しているこ とを特徴とする光電変換装置。1. a semiconductor photoelectric conversion element, a biaxial refractive optical system having an opening diameter equal to or larger than the maximum diameter of the semiconductor portion of the photoelectric conversion element, and a biaxial refractive optical system facing the biaxial refractive optical system and opposite to the photoelectric conversion element. A biaxial reflection optical system disposed on the photoelectric conversion element side from the focal point of the biaxial refractive optical system is a constituent unit, and a photoelectric conversion module in which a plurality of the constituent units are arranged in a plane or a curved surface is provided. A photoelectric conversion device characterized by: 2 . 上記二軸屈折光学系は第 1 の平板に作り込まれており 、 上記 二軸反射光学系は第 2 の平板に作り込まれてお り、上記第 1 およ び第 2 の平板は同一の平板も し く は異なる平板であるこ とを特 徴とする請求の範囲第 1 項記載の光電変換装置。 2. The biaxial refractive optical system is built in a first flat plate, the biaxial reflective optical system is built in a second flat plate, and the first and second flat plates are 2. The photoelectric conversion device according to claim 1, wherein the photoelectric conversion device is the same or a different flat plate. 3 . 上記構成単位における上記光電変換素子は上記二軸反射光学 系に設け られた開口部の内部に配置されてお り 、上記光電変換装 置は配線基板をさ らに有しており 、上記光電変換素子の各々から 上記構成単位の外部に延在する複数個の出力端子が出てお り 、該 複数個の出力端子は上記配線基板に接続されているこ とを特徴 とする請求の範囲第 1 項記載の光電変換装置。  3. The photoelectric conversion element in the structural unit is disposed inside an opening provided in the biaxial reflection optical system, and the photoelectric conversion device further has a wiring board. A plurality of output terminals extending from each of the photoelectric conversion elements to the outside of the structural unit, and the plurality of output terminals are connected to the wiring board. 2. The photoelectric conversion device according to claim 1. 4 . 上記光電変換素子の半導体部分の最大径は上記半導体部分の 少数キヤ リ ア拡散長の 2倍以下であるこ とを特徴とする請求の 範囲第 1 項記載の光電変換装置。  4. The photoelectric conversion device according to claim 1, wherein the maximum diameter of the semiconductor portion of the photoelectric conversion element is not more than twice the minority carrier diffusion length of the semiconductor portion. 5 . 上記光電変換素子の半導体部分の最大径は上記半導体部分の 少数キ ャ リ ア拡散長の 2 倍以下である こ とを特徴とする請求の 範囲第 2項記載の光電変換装置。 5. The maximum diameter of the semiconductor part of the photoelectric conversion element is 3. The photoelectric conversion device according to claim 2, wherein the photoelectric conversion device has a length equal to or less than twice the minority carrier diffusion length. 6 . 上記光電変換素子の半導体部分の最大径は上記半導体部分の 少数キャ リ ア拡散長の 2 倍以下である こ とを特徴とする請求の 範囲第 3 項記載の光電変換装置。  6. The photoelectric conversion device according to claim 3, wherein a maximum diameter of a semiconductor portion of the photoelectric conversion element is equal to or less than twice a minority carrier diffusion length of the semiconductor portion. 7 . 上記構成単位内の上記二軸屈折光学系を構成する レ ンズおよ び上記二軸反射光学系を構成する鏡は球面部を有 してお り 、該球 面部の曲率半径は上記鏡の方が上記レ ンズょ り 小さ いこ とを特 徴とする請求の範囲第 1 項記載の光電変換装置。  7. The lens constituting the biaxial refracting optical system and the mirror constituting the biaxial reflecting optical system in the structural unit have a spherical portion, and the radius of curvature of the spherical surface portion is the mirror. 2. The photoelectric conversion device according to claim 1, wherein said lens is smaller than said lens. 8 . 上記構成単位内において、 上記レ ンズの上記球面部を含む第 1 の仮想球と上記レ ンズの側面との交点を含む第 1 の平面と、上 記構成単位の光軸との交点を中心と し、上記 レ ンズの側面の対向 面間距離の 1 / 4 の長さ を高さ、 1 / 2 の長さ を縦横の辺長とす る直方体空間の中に、上記光電変換素子が配置されている こ とを 特徴とする請求の範囲第 7 項記載の光電変換装置。  8. In the structural unit, the intersection of the first plane including the intersection of the first virtual sphere including the spherical portion of the lens with the side surface of the lens and the optical axis of the structural unit is defined. The above-mentioned photoelectric conversion element is placed in a rectangular parallelepiped space with the height being 1/4 of the distance between the opposing surfaces of the lens and the length of the vertical and horizontal sides as the center. The photoelectric conversion device according to claim 7, wherein the photoelectric conversion device is arranged. 9 . 隣接する上記 レ ンズ同士の表面および隣接する上記鏡同士の 表面は鈍角で交差 している こ とを特徴とする請求の範囲第 7 項 記載の光電変換装置。  9. The photoelectric conversion device according to claim 7, wherein the surfaces of the adjacent lenses and the surfaces of the adjacent mirrors intersect at an obtuse angle. 1 0 . 上記構成単位内の上記二軸反射光学系の反射率は上記光電 変換素子の受光面の反射率よ り 大き いこ とを特徴とする請求の 範囲第 1 項記載の光電変換装置。  10. The photoelectric conversion device according to claim 1, wherein the reflectance of the biaxial reflection optical system in the structural unit is higher than the reflectance of a light receiving surface of the photoelectric conversion element. 1 1 . 上記光電変換素子は配線を有する透明基板に設置されてお り 、 該透明基板の屈折率は上記二軸屈折光学系の屈折率の ± 0 . 2以内であるこ とを特徴とする請求の範囲第 1 項記載の光電変 換装置。 1 1. The photoelectric conversion element is installed on a transparent substrate having wiring. 2. The photoelectric conversion device according to claim 1, wherein a refractive index of said transparent substrate is within ± 0.2 of a refractive index of said biaxial refractive optical system. 1 2 . 上記レ ンズ球面部の曲率半径は上記半導体部分の原料中で の少数キャ リ アの拡散長の 2 7/ 1 5 1/2倍以下であ り 、 上記光 電変換素子の半導体部分の最大径は上記レ ンズ球面部の曲率半 径の 1 5 1/2/ 2 5/2倍以下である こ とを特徴とする請求の範囲第1 2. The lenses a curvature radius of the spherical portion is Ri few calibration Re A 2 7/1 5 1/2 der following diffusion length in the material in the semiconductor portion, the semiconductor portion of the photoelectric conversion element maximum diameter of the first claims characterized by the this is less than 1 5 1/2 / 2 5/2 times the curvature radius of the lenses spherical portion 7項記載の光電変換装置。 Item 7. The photoelectric conversion device according to Item 7. 1 3 . 上記光電変換素子の半導体部分は S i で構成されている こ とを特徴とする請求の範囲第 1 2項記載の光電変換装置。  13. The photoelectric conversion device according to claim 12, wherein a semiconductor portion of the photoelectric conversion element is made of Si. 1 4 . 上記複数個の光電変換素子は行列方向に配置されており 、 上記複数個の光電変換素子は行方向および列方向の一方で並列 接続され、かつ他方で上記並列接続された光電変換素子群が直列 接続されているこ とを特徴とする請求の範囲第 1 項記載の光電 変換装置。  14. The plurality of photoelectric conversion elements are arranged in a matrix direction, and the plurality of photoelectric conversion elements are connected in parallel in one of a row direction and a column direction, and are connected in parallel in the other. 2. The photoelectric conversion device according to claim 1, wherein the groups are connected in series. 1 5 . 上記複数個の光電変換素子は行列方向に配置されており 、 上記複数個の光電変換素子は行方向および列方向の一方で直列 接続され、かつ他方で上記直列接続された光電変換素子群が並列 接続されているこ とを特徴とする請求の範囲第 1 項記載の光電 変換装置。  15. The plurality of photoelectric conversion elements are arranged in a matrix direction, and the plurality of photoelectric conversion elements are connected in series in one of a row direction and a column direction, and are connected in series in the other. 2. The photoelectric conversion device according to claim 1, wherein the groups are connected in parallel. 1 6 . 上記行列方向に配置された複数個の光電変換素子の中の最 外周に電気的接続のなされていない光電変換素子が配置されて いるこ とを特徴とする請求の範囲第 1 5項記載の光電変換装置。16. A photoelectric conversion element that is not electrically connected is arranged on the outermost periphery of the plurality of photoelectric conversion elements arranged in the matrix direction. 16. The photoelectric conversion device according to claim 15, wherein: 1 7 . 上記行列方向に配置された複数個の光電変換素子の外側に 上記構成単位の中の上記二軸屈折光学系および上記二軸反射光 学系のみが配されているこ とを特徴とする請求の範囲第 1 5項 記載の光電変換装置。 17. The biaxial refracting optical system and the biaxial reflecting optical system in the structural unit are arranged outside the plurality of photoelectric conversion elements arranged in the matrix direction. The photoelectric conversion device according to claim 15, wherein 1 8 . 請求の範囲第 1 項記載の光電変換装置を電源と して有 して いるこ とを特徴とする電気用品。  18. An electrical article comprising the photoelectric conversion device according to claim 1 as a power supply. 1 9 . 請求の範囲第 1 項記載の光電変換装置を複数個有し、 かつ 該複数個の光電変換装置は全て並列接続されているこ とを特徴 とする電源装置。  19. A power supply device comprising a plurality of the photoelectric conversion devices according to claim 1, wherein the plurality of photoelectric conversion devices are all connected in parallel.
PCT/JP1997/000049 1997-01-13 1997-01-13 Photoelectric transducer and device using the same WO1998031054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000049 WO1998031054A1 (en) 1997-01-13 1997-01-13 Photoelectric transducer and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000049 WO1998031054A1 (en) 1997-01-13 1997-01-13 Photoelectric transducer and device using the same

Publications (1)

Publication Number Publication Date
WO1998031054A1 true WO1998031054A1 (en) 1998-07-16

Family

ID=14179916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000049 WO1998031054A1 (en) 1997-01-13 1997-01-13 Photoelectric transducer and device using the same

Country Status (1)

Country Link
WO (1) WO1998031054A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520378A (en) * 2005-12-19 2009-05-21 コーニング インコーポレイテッド Method and apparatus for light collection
WO2009075195A1 (en) * 2007-12-10 2009-06-18 Toyota Jidosha Kabushiki Kaisha Solar cell module
WO2009098857A1 (en) 2008-02-06 2009-08-13 Fujikura Ltd. Dye-sensitized solar cell
JP2009246041A (en) * 2008-03-28 2009-10-22 Mitsubishi Electric Corp Solar battery and manufacturing method thereof
JP2009543376A (en) * 2006-07-07 2009-12-03 エナジー,リレイテッド,デバイシズ,インコーポレイテッド A micro-concentrator connected to a spherical solar cell in a telescopic manner
JP2010516048A (en) * 2007-01-08 2010-05-13 エドテック, インコーポレイテッド Conversion of solar energy to electrical energy and / or thermal energy
JP2010153552A (en) * 2008-12-25 2010-07-08 Fuji Electric Systems Co Ltd Method for ground fault test of solar cell array
WO2010084837A1 (en) * 2009-01-23 2010-07-29 トヨタ自動車株式会社 Solar cell module
WO2010102514A1 (en) * 2009-03-11 2010-09-16 Yang Zhenyu High-efficiency three-dimensional solar cell and method for manufacturing the same
JP2010212280A (en) * 2009-03-06 2010-09-24 Sumitomo Electric Ind Ltd Light guide structure for solar cell, solar cell unit and solar cell module
WO2011036802A1 (en) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 Solar cell module manufacturing method and precursor for solar cell module
JP2012533886A (en) * 2009-07-14 2012-12-27 エイ・ジィ・シィ・フラット・グラス・ノース・アメリカ・インコーポレイテッド Photovoltaic device with patterned glass concentrator
WO2013042086A1 (en) 2011-09-23 2013-03-28 Active Space Technologies, Actividades Aeroespaciais S.A. Passive heat source tracking system
TWI484115B (en) * 2012-08-31 2015-05-11 George Uh-Schu Liau A photovoltaic case
WO2018144619A1 (en) * 2017-01-31 2018-08-09 Glint Photonics, Inc. Sunlight collection system with asymmetric catadioptric optics
KR101892277B1 (en) * 2012-10-18 2018-10-04 엘지전자 주식회사 Solar cell module
WO2020217390A1 (en) * 2019-04-25 2020-10-29 市川 雅英 Energy conversion device and energy transmission system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123266U (en) * 1974-03-23 1975-10-08
JPS54130187A (en) * 1978-03-20 1979-10-09 Coulter Electronics Method and device for collecting radiant ray
US4893612A (en) * 1980-02-25 1990-01-16 Dawson Robert E Radiant energy collector
JPH04284034A (en) * 1991-03-12 1992-10-08 Sony Corp Optical IC package
JPH07231111A (en) * 1993-12-10 1995-08-29 Spectrolab Inc Concentrated photovoltaic module and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123266U (en) * 1974-03-23 1975-10-08
JPS54130187A (en) * 1978-03-20 1979-10-09 Coulter Electronics Method and device for collecting radiant ray
US4893612A (en) * 1980-02-25 1990-01-16 Dawson Robert E Radiant energy collector
JPH04284034A (en) * 1991-03-12 1992-10-08 Sony Corp Optical IC package
JPH07231111A (en) * 1993-12-10 1995-08-29 Spectrolab Inc Concentrated photovoltaic module and method of manufacturing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520378A (en) * 2005-12-19 2009-05-21 コーニング インコーポレイテッド Method and apparatus for light collection
JP2009543376A (en) * 2006-07-07 2009-12-03 エナジー,リレイテッド,デバイシズ,インコーポレイテッド A micro-concentrator connected to a spherical solar cell in a telescopic manner
JP2010516048A (en) * 2007-01-08 2010-05-13 エドテック, インコーポレイテッド Conversion of solar energy to electrical energy and / or thermal energy
JP5195764B2 (en) * 2007-12-10 2013-05-15 トヨタ自動車株式会社 Solar cell module
WO2009075195A1 (en) * 2007-12-10 2009-06-18 Toyota Jidosha Kabushiki Kaisha Solar cell module
WO2009098857A1 (en) 2008-02-06 2009-08-13 Fujikura Ltd. Dye-sensitized solar cell
JP2009246041A (en) * 2008-03-28 2009-10-22 Mitsubishi Electric Corp Solar battery and manufacturing method thereof
JP2010153552A (en) * 2008-12-25 2010-07-08 Fuji Electric Systems Co Ltd Method for ground fault test of solar cell array
JP4706759B2 (en) * 2009-01-23 2011-06-22 トヨタ自動車株式会社 Solar cell
WO2010084837A1 (en) * 2009-01-23 2010-07-29 トヨタ自動車株式会社 Solar cell module
JP2010171277A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Solar cell
JP2010212280A (en) * 2009-03-06 2010-09-24 Sumitomo Electric Ind Ltd Light guide structure for solar cell, solar cell unit and solar cell module
WO2010102514A1 (en) * 2009-03-11 2010-09-16 Yang Zhenyu High-efficiency three-dimensional solar cell and method for manufacturing the same
JP2012533886A (en) * 2009-07-14 2012-12-27 エイ・ジィ・シィ・フラット・グラス・ノース・アメリカ・インコーポレイテッド Photovoltaic device with patterned glass concentrator
WO2011036802A1 (en) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 Solar cell module manufacturing method and precursor for solar cell module
JP5381717B2 (en) * 2009-09-28 2014-01-08 トヨタ自動車株式会社 Manufacturing method of solar cell module
US8916019B2 (en) 2009-09-28 2014-12-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing solar cell module and precursor structure for solar cell module
WO2013042086A1 (en) 2011-09-23 2013-03-28 Active Space Technologies, Actividades Aeroespaciais S.A. Passive heat source tracking system
TWI484115B (en) * 2012-08-31 2015-05-11 George Uh-Schu Liau A photovoltaic case
KR101892277B1 (en) * 2012-10-18 2018-10-04 엘지전자 주식회사 Solar cell module
WO2018144619A1 (en) * 2017-01-31 2018-08-09 Glint Photonics, Inc. Sunlight collection system with asymmetric catadioptric optics
WO2020217390A1 (en) * 2019-04-25 2020-10-29 市川 雅英 Energy conversion device and energy transmission system

Similar Documents

Publication Publication Date Title
WO1998031054A1 (en) Photoelectric transducer and device using the same
Luque et al. Photovoltaic concentration at the onset of its commercial deployment
US5344497A (en) Line-focus photovoltaic module using stacked tandem-cells
US8039731B2 (en) Photovoltaic concentrator for solar energy system
US20160155873A1 (en) Flexible photovoltaic module
US20090293934A1 (en) Photoelectric Conversion Device
US20070095386A1 (en) Method and system for integrated solar cell using a plurality of photovoltaic regions
CN104597588B (en) Light-focusing type photovoltaic cells, light-focusing type photovoltaic module, light-focusing type photovoltaic panel and light-focusing type photovoltaic power generation apparatus
US9595627B2 (en) Photovoltaic panel
US9905718B2 (en) Low-cost thin-film concentrator solar cells
KR20120062431A (en) Solar cell
WO1999009601A1 (en) Reflective concentrating solar cell assembly
CN205754192U (en) CPV modules, CPV panels and CPV equipment
KR20080021652A (en) Integrated Solar Cell System and Method Using Multiple Photovoltaic Regions
US20090314327A1 (en) Photovoltaic module
US20140261627A1 (en) Power augmentation in concentrator photovoltaic modules by collection of diffuse light
JP2002222981A (en) Solar cell module
JP2023507632A (en) Solar cell comprising optical cavity lined with photovoltaic material with customized optical fill, method of making same, and solar panel comprising same
JP2006332113A (en) Concentrating solar power generation module and solar power generator
CN107359857B (en) Thin-film solar charging device
Piszczor et al. A novel space photovoltaic module using a linear Fresnel lens and a line-focus tandem cell receiver
KR102621290B1 (en) Shingled Module For High Efficiency Bifacial Generating Power And Method For Producing The Same
RU2436193C1 (en) Photovoltaic concentrator module
US20150030283A1 (en) Concentrating Thin Film Absorber Device and Method of Manufacture
CN102034884B (en) Device with solar cell unit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载