+

WO1998030833A1 - Procede de transfert de gaz liquefies entre des conteneurs - Google Patents

Procede de transfert de gaz liquefies entre des conteneurs Download PDF

Info

Publication number
WO1998030833A1
WO1998030833A1 PCT/JP1998/000044 JP9800044W WO9830833A1 WO 1998030833 A1 WO1998030833 A1 WO 1998030833A1 JP 9800044 W JP9800044 W JP 9800044W WO 9830833 A1 WO9830833 A1 WO 9830833A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
mixture
azeotropic mixture
gas
volume
Prior art date
Application number
PCT/JP1998/000044
Other languages
English (en)
French (fr)
Inventor
Masayoshi Imoto
Satoshi Ide
Takashi Shibanuma
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU53423/98A priority Critical patent/AU732822B2/en
Priority to EP98900186A priority patent/EP1008799A4/en
Priority to US09/341,571 priority patent/US6237348B1/en
Priority to BRPI9806898-9A priority patent/BR9806898A/pt
Priority to CA002277269A priority patent/CA2277269C/en
Publication of WO1998030833A1 publication Critical patent/WO1998030833A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases

Definitions

  • the present invention relates to the transfer and filling of a mixture used as a working medium for a vapor compression refrigeration cycle, particularly a non-azeotropic mixed liquefied gas containing two or more liquefied gases having different boiling points as essential components. About the method.
  • Vapor-compression refrigeration cycles that use fluids to cool, heat, etc., using changes in the state of substances such as evaporation and condensation, are widely used in heating and cooling equipment, refrigerators, hot water equipment, etc. .
  • various working media have been developed mainly for fluorocarbon-based refrigerants and put into practical use. ing. Among them, HFCFC22 (monochlorofluoromethane) is widely used as a refrigerant in air conditioning equipment used for air conditioning.
  • FIG. 1 is a diagram showing an outline of a liquefied gas transfer and filling system of the present invention
  • FIG. 2 is a diagram showing an outline of an example of a system for injecting and replenishing a liquid phase component of a non-azeotropic mixture into a first container
  • 1 is a drawing showing an outline of an example of a system for injecting and replenishing a gas phase component of a non-azeotropic mixture into a first container.
  • 1 is the first container for liquefied gas
  • 2 is the liquid side withdrawal pipe
  • 3 is the vapor side pressurizing pipe
  • 4 is the pressure regulating valve
  • 5 is the pressurizing gas container
  • 6 is the thermostat
  • 7 is Storage container for raw material components
  • 8 is premixer-9 is liquid piping
  • 10 is cooling means
  • 11 is liquid in first container Circulation piping
  • 12 is analytical means
  • 13 is a premix tank
  • 14 is a liquid drainage pipe from the premix tank
  • 15 is a pipe for refilling liquid injection
  • 16 is a pipe for liquid circulation in the premix tank
  • 17 is the second container
  • 18 is the transfer and filling pipe
  • 19 is the liquid level gauge
  • 20 is the gas extraction pipe of the premix tank
  • 21 is the gas circulation pipe of the premix tank
  • 22 is a supply gas injection pipe.
  • the inventor of the present invention transfers a non-azeotropic mixture containing two or more liquefied gases having different boiling points as essential components stored in a first closed container from a liquid side to a second separate container.
  • a mixture having the same composition as the non-azeotropic mixture stored in the first container As a result of studying the improvement of the pressurization method described in JP-A-8-49797, it was found that (A) a mixture having the same composition as the non-azeotropic mixture stored in the first container.
  • (B) (i) (a) The gas phase component of the liquefied gas mixture having the same composition as the non-azeotropic mixture stored in the first container. Or (b) at least one of the components of the non-azeotropic mixture, and the component having the lowest boiling point among the components Gas phase components containing more than the proportion in the non-azeotropic mixture, or
  • the present invention provides the following liquefied gas transfer and filling method.
  • replenishing liquid (A) or replenishing gas (B) is used to make up the volume of the first container, which is equivalent to the volume of the liquid phase of the non-co-mixture reduced by Of liquefied gas characterized by injecting liquid into the first container:
  • the liquid phase component of the mixture is extracted from the premixing tank in which the liquefied gas mixture having the same composition as the non-azeotropic mixture stored in the first container is stored, and reduced by transfer and filling.
  • the liquefied gas mixture having the same composition as the non-azeotropic mixture stored in the first container or at least one of the components of the non-azeotropic mixture, and the component having the lowest boiling point among the components is added to the non-azeotropic mixture.
  • the gas phase component is extracted from the premixing tank that stores the liquefied gas containing more than the proportion in the boiling mixture, and is equal to the volume of the liquid phase of the non-azeotropic mixture that is reduced by transfer and packing. 6.
  • step (ii) Simultaneously with step (i) or before or after step (i), at least a liquefied gas mixture having the same composition as the non-azeotropic mixture in the first container or at least a component of the non-azeotropic mixture.
  • a liquefied gas mixture having the same composition as the non-azeotropic mixture in the first container or at least a component of the non-azeotropic mixture.
  • the non-azeotropic mixture to be stored in the first container is a mixture of difluoromethan and 1,1,1,2—tetrafluoronorethane, difluoronormethan and pentaph.
  • Norre Rotan and 1, 1, 1, 1, 2 Mixture of tetrafluorophenol, 1, pentanone and 1,1,1,1-Trifluorene and 1,1,1,2 — Mixture of tetrafluorophenol, tri 1,4-, 1,2,3- Mixture of tetrahsoleolometane, mixture of diphnoleromethane and pentaphnololoetan, or black mouth 9.
  • the non-azeotropic mixture to be stored in the first container is composed of 23% by weight of difluoromethan, 25% by weight of penta-funoroletan, and 1,1,1,2—tetrafuronolone. 52% by weight mixture, pentafluorofluorethane 44% by weight, 1, 1, 1-Trifnoroletan 52% by weight and 1, 1, 1, 2-Tetra Fluoroethane 4% by weight, resulting mixture, or mouth diphnoleromethane 47% by weight, 1, 1, 1-trifluorene 46% by weight, and pentafluoroene 10.
  • the method according to the above item 9 wherein the mixture is composed of 7% by weight.
  • each of the first container for storing the non-azeotropic mixture and the second container for transferring and filling the non-azeotropic mixture may be a closed container, and is not particularly limited.
  • the non-azeotropic mixture to be subjected to transfer filling is a hydrogen source of a hydrocarbon such as methane, ethane, and propane.
  • a hydrocarbon such as methane, ethane, and propane.
  • Such liquefied gases include, for example, trifluorometan (HFC23) (boiling point-82 ° C), difluorometan (HFC32) (boiling point-52 ° C) ), Monofluoromethane (HFC41) (boiling point-79 ° C), pentafluoroethane (HFC125) (boiling point-49 ° C), 1,1,2,2 Trafluorene (HFC1334) (boiling point-20.
  • HFC23 trifluorometan
  • HFC32 difluorometan
  • HFC41 bifluoromethane
  • HFC125 pentafluoroethane
  • HFC1334 1,1,2,2 Trafluorene
  • HCFFC22 (boiling point-41 ° C), 1, 1-dichloro-1,2,2,2-trifnoleroethane (HCFFC122)
  • non-azeotropic mixtures suitable for the application of the present invention include (a) a mixture of diphnoleolomethane and 1,1,1,2—tetrafluoroethane, and (b) Mixture of difluoromethan and pentafluorophenol and 1,1,1,2—tetrafluorophenol, (c) pentafluorophenol and 1,1,1 trifluorophenol (D) Trifluoromethan and diphnolerometan and 1,1,1,2—tetrafnorolene Roetin's A mixture of (e) a mixture of diphnolelomethane and pentafluoroethan, (f) a diphnoleromethane with a black mouth and 1,1,1 -trifnoroleloethane And a mixture of pentafunoleurethane and the like.
  • the ratio between the constituent components of the mixture varies depending on the combination, and is not particularly limited.
  • Examples of specific compositions of non-azeotropic mixtures particularly suitable for the application of the present invention include:
  • a non-azeotropic mixture containing two or more liquefied gases having different boiling points as essential components which is stored in the first container, is extracted from the liquid phase and transferred to the second container.
  • the following (A) replenishment is performed so as to make up the volume of the first container, which is equivalent to the volume of the liquid phase of the non-azeotropic mixture, which is reduced by the transfer filling.
  • (B) (i) (a) a gas phase component of a liquefied gas mixture having the same composition as the non-azeotropic mixture stored in the first container, or (b) a small amount of constituent components of the non-azeotropic mixture A gas phase component containing a component having the lowest boiling point among the constituent components more than the proportion in the non-azeotropic mixture, or (ii) a compressed gas.
  • the liquid phase component of the non-azeotropic mixture having the same composition as the non-azeotropic mixture stored in the first container is used as the replenishing liquid.
  • the liquid phase component is continuously or intermittently added to the first container so that the volume of the first container is equal to the volume of the liquid phase of the non-azeotropic mixture, which is reduced by transfer and filling. inject.
  • the injection must be performed at such an interval that the composition of the non-azeotropic mixture does not substantially change.
  • the injection interval is not uniform depending on the specific composition of the non-azeotropic composition, but is usually injected before the volume of the first container decreases by about 10 to 30% by volume. This is preferred.
  • the gas to be injected is (i) (a) a liquefied gas mixture having the same composition as the non-azeotropic mixture stored in the first container.
  • the components of (i) and (b) consist of at least one component of the non-azeotropic mixture stored in the first container, and the component having the lowest boiling point It is only necessary for the gas phase component to contain more than the proportion in the non-azeotropic mixture, and it is preferable that the amount of the component having the lowest boiling point be as large as possible. Or just Non-azeotrope and (i)
  • As the compressed gas of (ii), for example, nitrogen, helium, argon, air and the like can be used.
  • the flow rate of the gas to be pressurized is the non-azeotropic
  • the pressure be such that the volume of the liquid phase in the first container of the liquefied gas is compensated for by the pressure.
  • the actual pressurizing pressure is 1.03 times to 1.10 times the vapor pressure of the non-azeotropic mixture, and if it deviates from this range. It becomes difficult to balance with the transfer and filling flow rate, and it becomes difficult to keep the composition constant.
  • the means for pressurization for this purpose is not particularly limited, and for example, methods such as heating, pressure increase by a pump, and pressure adjustment using a pressure reducing valve can be adopted.
  • the above-described refilling method using a replenishing gas is carried out in a state where the non-azeotropic mixture and the insoluble layer are present on the non-azeotropic mixture in the first container. Is also good. According to such a method, the presence of the non-dissolvable layer prevents the pressurizing gas from coming into contact with the non-azeotropic mixture, prevents the pressurizing gas from dissolving, and changes the composition. Is even more preferred as it is less.
  • the layer to be present on the upper layer of the non-azeotropic mixture in the first container is a substance which is insoluble in the non-azeotropic mixture and has a low specific gravity.
  • a substance which is insoluble in the non-azeotropic mixture There is no particular limitation if it exists.
  • mineral oil, synthetic oil, resin, rubber, metal material, and the like are examples of materials.
  • FIG. 1 is a drawing showing an outline of a method of injecting a replenishing gas into a first container in the liquefied gas transfer and filling system of the present invention.
  • (1) is the first container filled with the liquefied gas
  • (2) is the extraction pipe on the liquid side
  • (3) is the pressurization pipe on the vapor side
  • (4) is the pressure regulating valve
  • (5) is the The gas container for pressurization
  • (6) is a thermostat.
  • the first container 1 is filled with a non-azeotropic mixture composed of two or more liquefied gases having different boiling points.
  • the water is heated in the thermostat 6.
  • the valve When the valve is opened from the liquid side withdrawal pipe 2 and the liquefied gas is transferred and filled, while passing through the vapor side pipe 3 and simultaneously adjusting the pressurization pressure with the pressure adjustment valve 4, it is used for pressurization. Pressurize from the vapor side of the first container 1 with pressurized gas from the gas container 5.
  • the volume ratio between the capacity of the first container 1 and the amount of the pressurizing gas filled in the pressurizing gas container 5 is such that there is no liquid phase due to pressurization. Insufficient filling volume Therefore, it is sufficient that the pressure does not cause a change in the composition of the pressurizing gas.
  • the volume of the pressurizing gas relative to the capacity of the first container 1 is preferably about 1 Z 10 to 1 2.
  • FIG. 2 is a drawing showing an outline of an example of a system in which a liquid of a non-azeotropic mixture is injected and replenished into a first container during transfer and filling.
  • (1) is the first container filled with the liquefied gas
  • (2) is the liquid drainage piping of the first container
  • (7) is the storage container for the raw material components
  • (8) is the premixer
  • ( 9) is the liquid piping
  • (10) is a cooling means
  • (11) is a liquid circulation pipe of the first vessel
  • (12) is an analysis means
  • (13) is a premix tank
  • (14) is a liquid of the premix tank.
  • Withdrawal pipe (15) is a pipe for injecting replenishment liquid
  • (16) is a pipe for liquid circulation in the premix tank
  • (17) is a second vessel for transferring and filling liquefied gas
  • (18) Is a transfer and filling pipe
  • (19) is a liquid level gauge.
  • the raw material storage container 7 is filled with each raw material liquefied gas which is a component of the non-azeotropic mixture, and a certain amount of the raw material liquefied gas component is sent to the premixer 8 and mixed, and the liquid piping is
  • the mixture is sent to the first container 1 via 9, mixed there, and stored in the first container 1 as a non-azeotropic mixture having a predetermined O composition. Extract this non-azeotropic mixture as necessary. It is extracted from the pipe 2, cooled by cooling means 10 such as a cooling capacitor, and circulated to the first container 1 through the liquid circulation pipe 11. It is preferable to maintain the temperature at which composition fluctuation is small. At this time, it is preferable to install a temperature monitor (not shown) in an appropriate part of the first container 1. Further, if necessary, it is preferable that the composition of the mixture in the first container 1 is periodically confirmed by analysis means 12 such as gas chromatography or the like.
  • the replenishing liquid has the same composition as the non-azeotropic mixture in the first container 1 at the same time as the step of preparing the non-azeotropic mixture in the first container or at any time before or after this step.
  • a predetermined amount of the raw material liquefied gas component is sent from the raw material filling container 7 to the premixer 8 and mixed there.
  • the premixer 8 is used for refilling the first container 1.
  • the replenishing liquid mixed by the premixer 8 is passed through the liquid pipe 9.
  • the liquid may be directly injected into the first container 1, or after premixing after mixing by the premixer 8. After being sent to tank 13 and mixed here.
  • Pre-mix tank 13 is drained and extracted from pipe 14, and is injected into first container 1 via refilling liquid injection pipe 15 Is the preferred method. According to this method, after the respective components are uniformly mixed in the premixing tank 13, the composition is confirmed by analysis means 12 such as a gas chromatograph if necessary. hand. Since a mixture having the same composition as the non-azeotropic mixture in the first container 1 can be accurately prepared, when the replenishing liquid is injected into the first container 1, the composition fluctuation of the non-azeotropic mixture is substantially reduced. Can be prevented.
  • a temperature monitor 1 (not shown) is installed in an appropriate part of the premixing tank 13, and if necessary, withdrawn from the piping 14. It is taken out, cooled by a cooling means 10 such as a cooling capacitor, etc., and circulated to a premixing tank 13 through a liquid circulation pipe 16 to change the composition. It is preferable to keep the temperature low.
  • the non-azeotropic mixture when the non-azeotropic mixture is transferred and filled from the first container 1 to the second container 17, the non-azeotropic mixture is withdrawn from the liquid discharge and discharge pipe 2 of the first container 1.
  • the non-azeotropic mixture thus obtained is transferred to a predetermined transfer / refill container (second container) 17 via a transfer / refill pipe 18, and at the same time or after a partial transfer,
  • the replenishing liquid extracted from the premixing tank 1 3 and the replenishing liquid extracted from the refilling pipe 14 is the replenishing pipe 15 in an amount equivalent to the volume reduction of the non-azeotropic mixture in the first container 1 5 After that, it is poured into the first container 1.
  • a liquid level gauge 19 is installed in the first container 1 to monitor the liquid amount of the non-azeotropic mixture in the first container 1, and a corresponding amount of the non-azeotropic mixture is reduced according to the decrease amount of the liquid amount.
  • Fill the replenisher liquid continuously or intermittently from the premix tank 13 It is preferable to fill the first container 1.
  • an appropriate liquid level meter, a weight measuring device, etc. (not shown) be installed in the pre-mixing tank 13 to secure a certain amount of liquid.
  • FIG. 3 is a drawing showing an outline of an example of a system for replenishing and injecting a gas phase component of a liquefied gas into a gas phase side of a first container at the time of transfer filling.
  • (20) is a gas extraction pipe of the premix tank
  • (21) is a gas circulation pipe of the premix tank
  • (22) is a pipe of refill gas injection
  • the other figures are Same as 2.
  • the method of mixing and storing the raw material liquefied gas component of the non-azeotropic mixture in the first container 1 may be the same as the method in FIG. 2 described above.
  • the components for replenishment have the same composition as the non-azeotropic mixture in the first container 1 at the same time as the step of preparing the non-azeotropic mixture in the first container or at any time before or after this step.
  • the liquefied gas mixture or at least one of the components of the non-azeotropic mixture contains at least one component having the lowest boiling point among the components in the non-azeotropic mixture.
  • a predetermined amount of the raw material liquefied gas component is sent from the raw material filling container 7 to the premixer 8 so as to be a liquefied gas, mixed there, and then sent to the premixing tank 13.
  • the composition is confirmed using an analytical means 12 such as gas chromatography, and a mixture having a predetermined composition is accurately prepared.
  • the gas phase component is extracted from the gas extraction pipe 20, and the temperature is measured by a suitable temperature monitor (not shown). However, it is cooled by a cooling means 10 such as a cooling capacitor and circulated through the gas circulation pipe 21 from the liquid phase portion of the premix tank 13 to the premix tank. However, it is preferable to maintain a temperature at which composition fluctuation is small.
  • the non-azeotropic mixture is transferred from the first container 1 to the second container 17, the non-azeotropic mixture extracted from the liquid discharge pipe 2 of the first container 1 is removed.
  • the azeotropic mixture is transferred to a predetermined transfer / refill container (second container) 17 via a transfer / refill pipe 18, and at the same time or after a partial transfer / refill, the premix tank 1
  • the replenishment gas extracted from the gas extraction / exhaust pipe 20 installed on the gaseous phase side of (3), at a rate that compensates for the reduced volume of the liquid phase in the first container 1 with its pressure, It is injected into the gaseous phase side of the first container 1 via the supplementary gas injection pipe 22.
  • the gas phase component in the premix tank 13 is used as the replenishing gas.
  • the gas phase component is converted into the liquid phase component in the premix tank 13 by a method such as heating. It may be one that is forcibly vaporized.
  • the gas in the premix tank 13 is The pressure is adjusted to a predetermined level by heating, increasing the pressure by using a pump, or adjusting the pressure using a pressure reducing valve.
  • a liquid level meter 19 is installed in the first container 1 to monitor the liquid amount of the non-azeotropic mixture in the first container 1 and reduce the liquid amount. Accordingly, it is preferable to inject a corresponding amount of the supplementary gas continuously or intermittently from the pretransfer tank 13 into the first container 1.
  • the premixing tank 1 3, suitable liquid level meter, installed weighing device or the like (not shown), according to this and the preferred correct c present invention a method of ensuring a certain amount or more of liquid volume
  • a non-azeotropic mixed refrigerant used as a working fluid for a vapor compression refrigeration cycle is transferred and filled, and the performance of the refrigerant may be degraded.
  • the first container contains diphenylenelomethane (HFC32) and pentafluoroethane (HFC125) and 1, 1, 1, 2 — Tetra Funorollo 2 kg of a non-azeotropic mixture having a weight ratio of ethane (HFC13a) of 23 Z25Z52 is filled in a 1 liter pressurized container with HFC32 and HFC125. 800 g of a non-azeotropic mixture having a weight ratio of 23/25/52 of HFC134a was charged.
  • the first vessel and the steam side of the pressurization vessel were connected by piping, and a flow meter was installed for flow measurement.
  • the pressurizing vessel While the pressurizing vessel is heated to 30 ° C in a thermostatic chamber, the pressure of the first vessel is further increased to 0.08 MPa by the pressure regulating valve from the steam side, and at the same time, the pump is opened.
  • the non-azeotropic mixture was transferred to another empty container at a rate of 12 g / min from the liquid side of the first container. Transfer filling was performed at room temperature. A part of the gas being transferred and collected was sampled from a sampling valve provided in the middle of the liquid-side extraction pipe, and the component composition was analyzed by gas chromatography. The flow rate of the pressurized gas was 10.6 cm 3 per minute.
  • Table 1 shows the results of the transfer and filling ratios and the results of the component composition analysis of the sampled gas.
  • the vapor pressure of HFCSSZHFClSSZHFClSAa (23/25/52 wt%) at 25 ° C is 1.21MPa and the vapor pressure at 30 ° C is 1.37MPa. There was o table 1
  • HFC125 HFC134a 0 0 ⁇ 1 ⁇ 3 ⁇ 1 ⁇
  • a non-azeotropic mixture a mixture of HFC32, HFC125 and HFC134a in a weight ratio of 23 325 ⁇ 52, and as a pressurizing gas HFC32 and HFC125 as a pressurizing gas
  • a test was performed by applying a pressure of 0.06 MPa to the pressure of the first container using a mixture having a weight ratio of 50/50.
  • the pressurizing gas has a sufficiently high pressure as described below, so Heating was not performed.
  • the flow rate of the pressurized gas is approximately 10. ⁇ cm / min. Met.
  • Table 2 shows the analysis results of the transfer filling rate and the composition of the sampled gas.
  • the method for refilling the refilling liquid into the first container using the transfer and filling system shown in Fig. 2 was performed under the following conditions.
  • Volume 1 4. First vessel 6 m 3, HFC 3 2 and HFC 1 2 5 and HFC 1 3 4 a weight ratio of 2 3/2 5/5 2 of the non-azeotropic mixtures of the (R 4 0 7 C) One hundred and four thousand kilograms were charged, and the non-azeotropic mixture was transferred and filled into another empty container at a rate of 25 kg per minute from the liquid side of the first container.
  • the mixture in the premixing tank was replenished to the premixing tank via the premixer with a predetermined amount of liquefied raw material gas from the raw material storage container.
  • Such a transfer-filling method is continuously repeated, and a part of the non-azeotropic mixture during transfer-filling is collected from the sampling valve provided in the middle of the first container's liquid extraction / drainage piping.
  • the composition of the components was periodically analyzed by gas chromatography, the composition did not substantially fluctuate, and the non-azeotropic material stored in the first container was not observed.
  • the composition of the mixture was kept constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

明 細 書
液化ガスの移充填方法
技術分野
本発明は、 蒸気圧縮式冷凍サイ ク ル用作動媒体と して 使用 さ れる混合物、 特に 2 種以上の沸点の異な る液化ガ スを必須成分とする非共沸性の混合液化ガスの移充填方 法に関する。
背景技術
蒸発、 凝縮とい う 物質の状態変化を利用 して流体の冷 却、 加熱な どを行 う 蒸気圧縮式冷凍サイ ク ルは、 冷暖房 機器、 冷蔵庫、 給湯機器な どに広 く 利用 さ れている。 こ の よ う な蒸気圧縮式冷凍サイ ク ルに利用 さ れる作動媒体 と しては、 フルォ ロ カ 一ボ ン系冷媒を中心と して、 様々 な作動媒体が開発さ れ実用に供さ れている。 なかで も空 気調和に用いる冷暖房機器には、 H C F C 2 2 (モノ ク ロ ロ ジ フルォ ロ メ タ ン)が冷媒と して広 く 使用 さ れてい る。
しか しなが ら、 近年、 ク ロ 口 フ ルォ ロ炭化水素が大気 中に放出 さ れる と、 成層圏のオゾン層を破壊 し、 その結 果、 人類を含む地球上の生態系 に重大な悪影響を及ぼす 恐れがあ る と して、 国際的な取 り 決めによ り、 その使用 を制限 し捋来全廃する こ とが決定 している。 こ のよ う な 事情の も と、 オゾ ン層破壊問題を生 じ る危険性のな い新 たな冷媒の開発が緊急の課題とな っ ている。
そ こ で、 単一冷媒では満足 し得ない特性を、 冷媒を混 合 して使用する こ と によ り 補足 しょ う と い う 試みか ら、 最近では非共沸混合冷媒の提案が数多 く な されている
(例えば、 特開平 1 — 7 9 2 8 8 号公報、 特公平 6 — 5 5 9 4 2 号公報、 特開平 3 — 2 8 7 6 8 8 号公報な ど) c 非共沸混合物は、 蒸発、 凝縮の よ う に相変化する 際に、 低沸点の成分が蒸発 し易 く、 高沸点の成分が凝縮 し易い ために組成変化を生 じ、 こ の傾向は蒸発、 すなわち液か ら蒸気への相変化の場合に大き く、 特に混合物の構成成 分の沸点差が大き いほど著 しい。 したがっ て、 こ の よ う な非共沸混合物を容器か ら別の容器に移す場合には、 相 変化を伴わないよ う に、 液側か ら抜き 出すのが普通であ る。 と こ ろ力 液側か ら抜き 出す場合であ っ て も、 抜き 出 しに よ る圧力減少や気相部空間の増加に よ り、 液相中 の低沸点成分の蒸発を生 じ る為に、 混合物の構成成分の 沸点差が大き い と、 数パーセ ン ト 程度の組成変化を生 じ て しま う。
しか しなが ら、 組成変化が数パーセ ン ト 程度であ っ て も、 冷媒性能には大きな変化を生 じ、 能力や効率の低下 を及ぼすだけでな く、 燃焼性な どの冷媒の安全性に も大 きな影響を与える。 そ こ で、 非共沸混合物の移充填時に組成変化を生 じさ せない移充填方法と して、 非共沸混合物の最も沸点の低 い成分であ るか、 あ る いは 2 0 °Cにおける 非共沸混合物 の蒸気圧よ り も 1 . 1 倍よ り 高い蒸気圧を有 し、 該非共 沸混合物の成分液化ガスのみか らな る混合物であ る 低沸 点の液化ガス、 又は圧縮ガスを用いて、 非共沸混合物の 容器の蒸気側か ら加圧 しつつ、 液相か ら抜き 出 して第二 容器に移充填する方法が提案さ れている (特開平 8 — 4 9 9 7 公報参照) 。 しか しなが ら、 こ の方法では、 低沸 点の液化ガスま たは圧縮ガスに よ る加圧時に、 過度の加 圧状態に保持される こ と によ っ て、 低沸点成分の組成が 増加する と い う 欠点があ る。
図面の簡単な説明
図 1 は、 本発明の液化ガスの移充填システムの概要を 示す図面、 図 2 は、 第一容器に非共沸混合物の液相成分 を注入補充する システムの一例の概要を示す図面、 図 3 は、 第一容器に非共沸混合物の気相成分を注入補充する システムの一例の概要を示す図面であ る。 図中、 1 は液 化ガス用第一容器、 2 は液側抜き 出 し配管、 3 は蒸気側 加圧用配管、 4 は圧力調整弁、 5 は加圧用 ガス容器、 6 は恒温槽、 7 は原料成分の貯蔵容器、 8 はプレ ミ キサー- 9 は液体用配管、 1 0 は冷却手段、 1 1 は第一容器の液 循環用配管、 1 2 は分析手段、 1 3 は予備混合槽、 1 4 は予備混合槽の液抜き 出 し配管、 1 5 は補充液体注入用 配管、 1 6 は予備混合槽の液循環用配管、 1 7 は第二容 器、 1 8 は移充填用配管、 1 9 は液面計、 2 0 は予備混 合槽の気体抜き 出 し配管、 2 1 は予備混合槽の気体循環 用配管、 2 2 は補充気体注入用配管であ る。
発明の開示
本発明は、 組成変化を殆ど或いは全 く 起こ さ ない非共 沸性の混合液化ガスの移充填方法を提供する こ とを主な 目 的 とする。
本発明者は、 第一の密閉容器に貯蔵さ れた 2 種以上の 沸点の異な る液化ガスを必須成分とする非共沸混合物を、 液側か ら第二の別の容器に移充填する 際に生 じる組成変 化の問題を解決する ために、 液化ガスの移充填方法につ いて鋭意検討を重ねて き た。 そ して、 特開平 8 — 4 9 9 7 公報に記載された加圧方法について改良検討を行な つ た結果、 ( A ) 第一容器に貯蔵 した非共沸混合物 と 同一 組成を有する混合物の液相成分か らな る補充用液体、 或 いは、 ( B ) ( i ) ( a ) 第一容器中に貯蔵 した非共沸 混合物 と同一の組成を有する液化ガス混合物の気相成分 若 し く は ( b ) 該非共沸混合物の構成成分の少な く と も 一種か らな り、 構成成分の内で最も沸点の低い成分を該 非共沸混合物中での割合よ り も多 く 含む気相成分、 又は
( i i ) 圧縮ガスか らな る補充用気体を用いて、 移充填す る非共沸性の液化ガスの第一容器内での液相の体積減少 を補う 速度で、 該液体又は気体を第一容器に注入補充す る場合には、 非共沸性の混合物の移充填時に生 じる組成 変化を大幅に小さ く する こ とが可能とな る こ とを見出 し、 こ こ に本発明を完成する に至っ た。
即ち、 本発明は、 以下の液化ガスの移充填方法を提供 する も のであ る。
1 . 第一容器に貯蔵さ れた 2 種以上の沸点の異な る 液化 ガスを必須成分とする非共沸混合物を液相か ら抜き 出 し て第二容器に移充填する際に、 移充填によ り 減少す る非 共 ^混合物の液相の体積分と等 しい第一容器の容積分を 補う 量とな る よ う に、 下記の補充用液体 ( A ) 又は補充 用気体 ( B ) を第一容器に注入する こ とを特徴とす る 液 化ガスの移充填方法 :
( A ) 第一容器に貯蔵 した非共沸混合物 と 同一組成を有 する液化ガス混合物の液相成分か らな る補充用液体 ; ( B ) ( i ) ( a ) 第一容器中に貯蔵 した非共沸混合物 と 同一の組成を有する液化ガス混合物の気相成分若 し く は ( b ) 該非共沸混合物の構成成分の少な く と も一種か らな り、 構成成分の内で最 も沸点の低い成分を該非共沸 混合物中での割合よ り も多 く 含む気相成分又は ( ii) 圧 縮ガスか らな る補充用気体。
2. 第一容器に貯蔵された 2 種以上の沸点の異な る液化 ガスを必須成分とする非共沸混合物を液相か ら抜き 出 し て第二容器に移充填する際に、
第一容器に貯蔵 した非共沸混合物 と 同一組成を有す る液 化ガス混合物を貯蔵 した予備混合槽か ら、 該混合物の液 相成分を抜き 出 し、 移充填に よ り 減少する 非共沸混合物 の液相の体積分と等 しい第一容器の容積分を補 う 量 とな る よ う に、 該液相成分を第一容器に注入する上記 1 に記 載の方法。
3. ( i ) 2 種以上の沸点の異な る液化ガスを第一容器 で混合 して非共沸混合物とする工程、
( ii) 上記( i )工程と 同時に又は( i )工程 と前後 して、 第一容器に貯蔵 した非共沸混合物 と 同一組成を有す る 液 化ガス混合物を予備混合槽中で調製する工程、
( iii) 第一容器中の非共沸混合物を第二容器に移充填す る工程、
( iv) 上記 ( iii) 工程と 同時に又は ( iii) 工程によ つ て一部の非共沸混合物が移充填 さ れた後、 移充填に よ り 減少する非共沸混合物の液相の体積分と等 しい第一容器 の容積分を補う 量となる よ う に、 予備混合槽中の混合物 の液相成分を第一容器に注入する工程
を含む上記 1 又は 2 に記載の方法。
4 . 補充用気体を用いて第一容器の気相側から加圧し、 移充填によ り減少する非共沸混合物の液相の体積分と等 しい第一容器の容積分をその圧力で補う に等しい注入速 度で補充用気体を第一容器に注入する上記 1 に記載の方 法。
5 . 補充用気体を用いて、 移充填する非共沸混合物の蒸 気圧の 1 . 0 3倍から 1 . 1 0 倍の圧力で第一容器の気 相側から加圧し、 該補充用気体を第一容器に注入する上 記 4 に記載の方法。
6 . 第一容器に貯蔵された 2 種以上の沸点の異なる液化 ガスを必須成分とする非共沸混合物を液相から抜き 出 し て第二容器に移充填する際に、
第一容器に貯蔵 した非共沸混合物と同一組成を有する液 化ガス混合物又は該非共沸混合物の構成成分の少な く と も一種からな り、 構成成分の内で最も沸点の低い成分を 該非共沸混合物中での割合よ り も多 く 含む液化ガスを貯 蔵 した予備混合槽から、 気相成分を抜き 出 し、 移充填に よ り減少する非共沸混合物の液相の体積分と等しい第一 容器の容積分を補う量となる よ う に、 該気相成分を第一 容器に注入する上記 1、 4 又は 5 に記載の方法。 7. ( i ) 2 種以上の沸点の異な る液化ガスを第一容器 で混合 して非共沸混合物とする工程、
( ii ) 上記( i )工程と 同時に又は( i )工程と前後 して、 第一容器中の非共沸混合物と 同一組成を有する液化ガス 混合物又は該非共沸混合物の構成成分の少な く と も一種 か らな り、 構成成分の内で最も 沸点の低い成分を該非共 沸混合物中での割合よ り も多 く 含む液化ガスを予備混合 槽中で調製する工程、
( iii) 第一容器中の非共沸混合物を第二容器に移充填す る工程、
( iv) 上記 ( iii) 工程と同時に又は ( iii) 工程によ つ て一部の非共沸混合物が移充填さ れた後、 移充填に よ り 減少する非共沸混合物の液相の体積分と等 しい第一容器 の容積分を補う 量 とな る よ う に、 予備混合槽中の気相成 分を第一容器に充填する工程
を含む上記 1、 4、 5又は 6 に記載の方法。
8. 第一容器に貯蔵 した非共沸混合物の上層に、 こ れと 非溶解性の層を存在させた状態で行な う、 上記 1、 4、 5、 6 又は 7 に記載の方法。
9. 第一容器に貯蔵する非共沸混合物が、 ジフ ルォ ロ メ タ ン と 1, 1, 1, 2 — テ ト ラ フノレォ ロェタ ンの混合物、 ジ フ ノレオ ロ メ タ ン と ペ ン タ フ ノレォ ロ ェタ ン と 1, 1, 1 , 2 — テ ト ラ フノレォ ロエタ ンの混合物、 ペ ン タ フノレォ ロェ タ ン と 1, 1 , 1 一 ト リ フルォ ロェタ ン と 1, 1, 1, 2 — テ ト ラ フノレォ ロェタ ンの混合物、 ト リ フノレオ 口 メ タ ン と ジ フルォ ロ メ タ ン と 1, 1, 1 , 2 — テ ト ラ フソレオ ロェタ ンの混合物、 ジフノレオ ロ メ タ ン とペ ンタ フノレォ ロ ェタ ンの混合物、 又はク ロ 口 ジ フノレオ ロ メ タ ン と 1 , 1 , 1 - ト リ フノレォ ロェタ ン とペ ン タ フノレォ ロェタ ンの混合 物であ る上記 1 〜 8 のいずれかに記載の方法。
1 0 . 第一容器に貯蔵する非共沸混合物が、 ジ フルォ ロ メ タ ン 2 3 重量%、 ペンタ フノレォ ロェタ ン 2 5 重量%及 び 1, 1, 1, 2 — テ ト ラ フノレォ ロェタ ン 5 2 重量%か らな る混合物、 ペ ン夕 フルォ ロ ェタ ン 4 4 重量%、 1 , 1, 1 — ト リ フノレォ ロェタ ン 5 2 重量%及び 1, 1, 1 , 2 — テ ト ラ フルォ ロェタ ン 4 重量%力、 らな る混合物、 又 は ク ロ 口 ジフノレオ ロ メ タ ン 4 7 重量%、 1, 1, 1 — ト リ フルォ ロエタ ン 4 6 重量%、 及びペ ン タ フルォ ロエタ ン 7 重量%か らな る混合物であ る上記 9 に記載の方法。
本発明において、 非共沸混合物を貯蔵する第一容器、 及び該非共沸混合物を移充填する第二容器は、 いずれ も 密閉容器であればよ く、 特に限定はない。
本発明において、 移充填を行 う 対象と な る非共沸混合 物は、 メ タ ン、 ェタ ン、 プロパ ン等の炭化水素の水素原 子の一部をフ ッ 素又はフ ッ 素と塩素で置き換えたフ ッ 化 炭化水素又は塩素化フ ッ 化炭素であ っ て、 大気圧下で - 8 5 か ら 4 0 °Cの沸点を有する フ ッ 化炭化水素か らな る 群か ら選ばれる 2 種以上の液化ガスの非共沸性の混合物 乙 あ る ο
こ の様な液化ガス と しては、 例えば ト リ フルォロ メ タ ン ( H F C 2 3 ) (沸点一 8 2 °C ) 、 ジ フルォ ロ メ タ ン ( H F C 3 2 ) (沸点 — 5 2 °C ) 、 モノ フルォロ メ タ ン ( H F C 4 1 ) (沸点— 7 9 °C ) 、 ペン タ フルォ ロエタ ン ( H F C 1 2 5 ) (沸点 — 4 9 °C ) 、 1, 1, 2, 2 — テ ト ラ フルォ ロ ェタ ン ( H F C 1 3 4 ) (沸点一 2 0 。C ) 、 1, 1, 1, 2 — テ ト ラ フノレォ ロ ェ タ ン ( H F C 1 3 4 a ) (沸点 一 2 6 °C ) 、 1, 1, 2 — ト リ フ ルォ ロ ェタ ン ( H F C 1 4 3 ) (沸点 5 °C:) 、 1, 1, 1 - ト リ フルォロェタ ン ( H F C 1 4 3 a ) (沸点一 4 8 °C) 、 1, 2 — ジ フ ノレォ ロ ェタ ン ( H F C 1 5 2 ) (沸点 3 1 °C ) 、 1, 1 — ジ フ ノレォ ロ ェタ ン ( H F C 1 5 2 a ) (狒点 — 2 5 °C ) 、 モノ フルォ ロェタ ン ( H F C 1 6 1 ) (沸点 — 3 7 °C ) 、 1, 1 , 1 , 2, 2, 3, 3 — ヘプ タ フノレォ ロプロ ノ、0 ン ( H F C 2 2 7 c a ) (沸点一 1 5 °C ) 、 1, 1 , 1 , 2, 3, 3, 3 —ヘプ夕 フルォ ロ プ ロ ノ、。 ン ( H F C 2 2 7 e a ) (沸点一 1 5 °C ) 、 1 , 1, 1, 2, 3, 3 —へキサフルォ ロ プロ ノ、0 ン ( H F C 2 3 6 e a ) (沸点 6 °C ) 、 1 , 1, 2, 2, 3 —ペン タ フ ルォ ロ プロ ノ、0ン ( H F C 2 4 5 c a ) (沸点 2 5 。C:) 、 1, 1, 1 , 3, 3 —ペ ンタ フノレォ ロ プロパン ( H F C 2 4 5 f a ) (沸点 1 5 °C ) 、 ク ロ ロ ジフルォロ メ タ ン
( H C F C 2 2 ) (沸点— 4 1 °C ) 、 1, 1 — ジ ク ロ ロ 一 2, 2, 2 — ト リ フノレォ ロェタ ン ( H C F C 1 2 3 )
(沸点 2 7 °C ) 、 1 — ク ロ 口 — 1 , 2, 2, 2 — テ ト ラ フノレォ ロェタ ン ( H C F C 1 2 4 ) (沸点 一 1 0 °C ) 、 1, 1 — ジ ク ロ ロ 一 1 ー フノレォ ロェタ ン ( H C F C 1 4 l b ) (沸点 3 2 °C ) 、 1 一 ク ロ ロ ー 1, 1 — ジフノレオ 口ェタ ン ( H C F C 1 4 2 b ) (沸点 — 1 0 °C ) 等を挙 げる こ とができ、 これ らの 2 種以上を混合 して用いれば よい。
本発明の適用対象と して好適な非共沸混合物 と しては、 ( a ) ジ フノレオ ロ メ タ ン と 1, 1, 1, 2 —テ ト ラ フル ォ ロェタ ンの混合物、 ( b ) ジ フルォ ロ メ タ ン とペ ン 夕 フノレォ ロェタ ン と 1, 1, 1, 2 — テ ト ラ フノレォ ロエタ ンの混合物、 ( c ) ペ ンタ フノレォ ロェタ ン と 1, 1, 1 一 ト リ フノレオ ロェタ ン と 1, 1 , 1, 2 — テ ト ラ フノレオ ロニタ ンの混合物、 ( d ) ト リ フルォ ロ メ タ ン と ジ フノレ ォ ロ メ タ ン と 1 , 1, 1, 2 — テ ト ラ フノレォ ロェタ ンの 混合物、 ( e ) ジ フノレオ ロ メ タ ン とペ ン タ フ ルォ ロ エタ ンの混合物、 ( f ) ク ロ 口 ジ フ ノレオ ロ メ タ ン と 1, 1 , 1 - ト リ フノレォ ロ ェタ ン とペ ン タ フノレォ ロ ェタ ンの混合 物等が例示される。
上記混合物の各構成成分間の比率は、 各組合わせによ つ て異な り、 特に限定されない。 本発明の適用対象と し て特に好適な非共沸混合物の具体的な組成の例 と しては、
(ィ ) ジ フノレオ ロ メ タ ン 2 3 重量%、 ペ ン タ フ ノレォ ロ ェ タ ン 2 5 重量%及び 1, 1, 1, 2 — テ ト ラ フノレォ ロ ェ タ ン 5 2 重量%か らな る混合物 ( R 4 0 7 C ) 、 ( 口 ) ペ ン タ フソレオ 口 エタ ン 4 4 重量%、 1, 1, 1 — ト リ フ ルォ ロ ェタ ン 5 2 重量%及び 1, 1, 1, 2 — テ ト ラ フ ルォ ロ ェタ ン 4 重量%か ら な る 混合物 ( R 4 0 4 A ) 、
(ハ) ク ロ 口 ジ フ ノレオ ロ メ タ ン 4 7 重量%、 1 , 1 , 1 - ト リ フ ルォ ロェタ ン 4 6 重量%、 及びペ ン タ フルォ ロ ェタ ン 7 重量%か らな る混合物 ( R 4 0 8 A ) 等が例示 さ れる。
本発明方法では、 第一容器に貯蔵さ れた 2 種以上の沸 点の異な る液化ガスを必須成分 とする非共沸混合物を液 相か ら抜き 出 して第二容器に移充填する際に、 移充填に よ り 減少する非共沸混合物の液相の体積分 と等 しい第一 容器の容積分を補 う 量とな る よ う に、 下記の ( A ) 補充 用液体又は ( B ) 補充用気体を第一容器に注入する。
( A ) 第一容器に貯蔵した非共沸混合物と同一組成を有 する液化ガス混合物の液相成分、
( B ) ( i ) ( a ) 第一容器中に貯蔵 した非共沸混合物 と同一の組成を有する液化ガス混合物の気相成分若 し く は ( b ) 該非共沸混合物の構成成分の少な く と も一種か らな り、 構成成分の内で最も沸点の低い成分を該非共沸 混合物中での割合よ り も多 く 含む気相成分、 又は ( i i ) 圧縮ガス。
これらの方法の内で ( A ) の液体を補充注入する方法 では、 補充用液体と して、 第一容器に貯蔵 した非共沸混 合物と同一組成を有する非共沸混合物の液相成分を用い、 移充填によ り減少する非共沸混合物の液相の体積分と等 しい第一容器の容積分となる よ う に、 該液相成分を第一 容器に連続的又は断続的に注入する。 この際、 第一容器 に液面計を設置 し、 第一容器中の液面の変動に対応 して 注入量を設定する こ とが好ま しい。 断続的に注入する場 合には、 実質的に非共沸混合物の組成変化が生じない程 度の間隔で注入する必要がある。 注入間隔は、 非共沸組 成物の具体的な組成によ って一様ではないが、 通常、 第 一容器の液量の 1 0 〜 3 0 体積%程度が減少する前に注 入する こ とが好ま しい。 ( B ) の補充用気体を注入する方法では、 注入する気 体と して、 ( i ) ( a ) 第一容器中に貯蔵 した非共沸混 合物と同一の組成を有する液化ガス混合物の気相成分、 若し く は ( b ) 該非共沸混合物の構成成分の少な く と も 一種か らな り構成成分の内で最も沸点の低い成分を、 該 非共沸混合物中での割合よ り も多 く 含む気相成分、 又は
( ii) 圧縮ガスを用いて、 第一容器の気相側から加圧 し つつ気体を注入する。
( B ) の補充用気体の内で、 ( i ) ( b ) の成分は、 第一容器中に貯蔵 した非共沸混合物の構成成分の少な く と も一種からな り、 最も沸点の低い成分を、 該非共沸混 合物中での割合よ り も多 く 含む気相成分であればよ く、 最も沸点の低い成分の量ができ るだけ多いこ とが好ま し く、 一種類の成分だけでもよい。 非共沸混合物と ( i )
( b ) の混合物との好ま しい組合せの具体例は、 以下の 通り である。 # ^港 ' ( i ) ( b ) の混合物
R 4 0 7 C HFC32 (40~60重量%) + HFC125 ( 60〜40重量%) R 4 0 4 A HFC125 (40~60重量%) + HFC143a (60~40重量%) R 4 0 8 A HFC125 (40~60重量%) + HFC143a (60~40重量%) ( i i ) の圧縮ガス と しては、 例えば、 窒素、 ヘ リ ウ ム、 アルゴ ン、 空気等を用いる こ とができ る。
補充用気体を注入する方法では、 第一容器の気相側か ら上記 ( i ) 又は ( i i ) の補充用気体で加圧する 際に、 加圧する ガスの流量は、 移充填する非共沸性の液化ガス の第一容器内での液相の体積減少をその圧力で補う 速度 であ る こ とが好ま しい。 そのために、 実際の加圧圧力 と しては、 該非共沸混合物の蒸気圧の 1 . 0 3 倍か ら 1 . 1 0 倍とする こ とが適当であ り、 こ の範囲を逸脱する と 移充填流速とのバラ ンスがと り 難 く な り、 組成を一定に 保ち難 く な る。 こ のための加圧の手段は特に限定的では な く、 例えば、 加温、 ポ ンプに よ る増圧、 減圧弁を用い た圧力調整等の方法を採用する こ とができ る。
又、 本発明では、 第一容器内の非共沸混合物の上層に、 該非共沸混合物 と非溶解性の層を存在させた状態で、 上 記 した補充用気体を用いる移充填方法を行っ て も良い。 こ の様な方法によれば、 非溶解性の層の存在によ り、 加 圧用ガスが該非共沸混合物 と接触 しな く な り、 加圧用ガ スの溶け込みが防止さ れて、 組成変化がよ り 少な く な る ので、 更に好ま しい。
第一容器内の非共沸混合物の上層に存在させる層 と し ては、 該非共沸混合物に非溶解でかつ比重の軽い物質で あれば特に限定さ れない。 例えば鉱物油、 合成油、 樹脂、 ゴム、 金属材料な どが挙げ られる。
以下、 図面を参照 しつつ、 本発明の充填方法を説明す る o
図 1 は本発明の液化ガスの移充填システムの内で、 第 一容器に補充用気体を注入する方法の概要を示す図面で あ る。 図中 ( 1 ) は液化ガスを充填する第一容器、 ( 2 ) は液側の抜き 出 し配管、 ( 3 ) は蒸気側の加圧用配管、 ( 4 ) は圧力調整弁、 ( 5 ) は加圧用ガス容器、 ( 6 ) は恒温槽であ る。
2 種以上の沸点の異な る液化ガスよ り な る非共沸混合 物は第一容器 1 に充填される。 こ の非共沸混合物と 同 じ 組成、 も し く は こ の非共沸混合物の う ち沸点の低い構成 成分が同 じで蒸気圧が高い混合ガスは、 加圧用ガス容器 5 に充填さ れ、 恒温槽 6 で加温さ れる。 液側の抜き 出 し 配管 2 よ り バルブを開けて、 液化ガスを移充填する 際に、 同時に蒸気側配管 3 を通 じ、 圧力調整弁 4 で加圧圧力を 調整 しなが ら、 加圧用ガス容器 5 か ら加圧ガスで第一容 器 1 の蒸気側か ら加圧する。
加圧用ガスが液化ガスの場合には、 第一容器 1 の容量 と加圧用ガス容器 5 中に充填 した加圧用ガスの量と の容 積比は、 加圧によ っ て液相がな く な らない程度の充填量 か ら加圧用ガスの組成変化を生 じ させない量の範囲であ れば良 く、 通常、 第一容器 1 の容量に対する加圧用ガス の容量が 1 Z 1 0 〜 1 ノ 2程度が好ま しい。
次に、 本発明の移充填方法の好ま しい実施態様の よ り 詳 しい例について、 図面を参照 しつつ説明する。
図 2 は、 移充填の際に、 非共沸混合物の液体を第一容 器に注入補充する システムの一例の概要を示す図面であ る。 図 中、 ( 1 ) は液化ガスを充填する第一容器、 ( 2 ) は第一容器の液抜き 出 し配管、 ( 7 ) は原料成分の貯蔵 容器、 ( 8 ) はプ レ ミ キサー、 ( 9 ) は液体用配管、
( 1 0 ) は冷却手段、 ( 1 1 ) は第一容器の液循環用配 管、 ( 1 2 ) は分析手段、 ( 1 3 ) は予備混合槽、 ( 1 4 ) は予備混合槽の液抜き 出 し配管、 ( 1 5 ) は補充液 体注入用配管、 ( 1 6 ) は予備混合槽の液循環用配管、 ( 1 7 ) は液化ガスを移充填する第二容器、 ( 1 8 ) は 移充填用配管、 ( 1 9 ) は液面計であ る。
原料貯蔵容器 7 には、 非共沸混合物の構成成分であ る 各原料液化ガスが充填さ れ、 こ の原料液化ガス成分の所 定量がプレ ミ キサー 8 に送 られて混合され、 液体用配管 9 を経由 して第一容器 1 に送 られ、 こ こ で混合されて所 定 O組成の非共沸混合物と して第一容器 1 に貯蔵さ れる。 こ の非共沸混合物については、 必要に応 じて、 抜き 出 し 配管 2 よ り 抜き 出 し、 冷却 コ ンデ ンサ一等の冷却手段 1 0 に よ っ て冷却 し、 液循環用配管 1 1 を経て、 第一容器 1 に循環させる こ と によ っ て、 組成変動の少ない温度に 維持する こ とが好ま しい。 こ の際、 第一容器 1 の適当な 部分に温度モニタ ー (図示せず) を設置する こ とが好ま しい。 更に、 必要に応 じて、 第一容器 1 中の混合物は、 ガス ク ロマ ト グラ フ ィ ー等の分析手段 1 2 によ っ て定期 的に組成を確認する こ とが好ま しい。
一方、 補充用液体については、 第一容器において非共 沸混合物を調製する工程と 同時に又は こ の工程に前後 し た任意の時期に、 第一容器 1 中の非共沸混合物と 同一組 成とな る よ う に、 所定量の原料液化ガス成分が原料充填 容器 7 か らプレ ミ キサー 8 に送 られ、 こ こ で混合さ れて. 第一容器 1 への補充注入に用い られる。 こ の際、 プ レ ミ キサー 8 で混合 した補充用液体を、 液体用配管 9 を経て. 直接第一容器 1 に注入 して も よ いが、 プ レ ミ キサー 8 で 混合 した後、 予備混合槽 1 3 に送 り、 こ こ で混合 した後. 予備混合槽 1 3 の液抜き 出 し配管 1 4 よ り 抜き 出 して、 補充液体注入用配管 1 5 を経て、 第一容器 1 に注入する 方法が好ま しい。 こ の方法に よれば、 予備混合槽 1 3 で 各成分を均一に混合 した後、 必要に応 じて、 ガス ク ロマ ト グラ フ ィ 一等の分析手段 1 2 によ っ て組成を確認 して. 第一容器 1 中の非共沸混合物 と 同一組成の混合物を正確 に調製する こ とができ る ので、 第一容器 1 に補充用液体 を注入する 際に、 非共沸混合物の組成変動を実質的に防 止する こ とができ る。 予備混合槽 1 3 中の非共沸混合物 については、 予備混合槽 1 3 の適当な部分に温度モニタ 一 (図示せず) を設置 し、 必要に応 じて、 抜き 出 し配管 1 4 よ り 抜き 出 して、 冷却コ ンデ ンサ一等の冷却手段 1 0 に よ っ て冷却 し、 液循環用配管 1 6 を経て、 予備混合 槽 1 3 に循環させる こ と によ っ て、 組成変動の少な い温 度に維持する こ とが好ま しい。
図 2 に示 した移充填システム において、 非共沸混合物 を第一容器 1 か ら第二容器 1 7 に移充填する際には、 第 一容器 1 の液抜き 出 し配管 2 か ら抜き 出 さ れた非共沸混 合物は、 移充填用配管 1 8 を経て、 所定の移充填用容器 (第二容器) 1 7 に移充填さ れ、 それと 同時に又は一部 が移充填された後、 予備混合槽 1 3 の液抜き 出 し配管 1 4 か ら抜き 出 さ れた補充用液体は、 第一容器 1 中の非共 沸混合物の体積減少分に相当す る量だけ補充用配管 1 5 を経て、 第一容器 1 に注入さ れる。 こ の際、 第一容器 1 に液面計 1 9 を設置 して第一容器 1 中の非共沸混合物の 液量をモニタ ー し、 液量の減少量に応 じて、 相当する量 の補充用液体を連続的又は断続的に予備混合槽 1 3 か ら 第一容器 1 に注入する こ とが好ま しい。 又、 予備混合槽 1 3 に は、 適当な液面計、 重量測定装置等 (図示せず) を設置 して、 一定量以上の液量を確保する こ とが好ま し い。
図 3 は、 移充填の際に、 第一容器の気相側に液化ガス の気相成分を補充注入する システムの一例の概要を示す 図面であ る。 図中、 ( 2 0 ) は予備混合槽の気体抜き 出 し配管、 ( 2 1 ) は予備混合槽の気体循環用配管、 ( 2 2 ) は補充気体注入用配管であ り、 その他は、 図 2 と 同 様であ る。
非共沸混合物の原料液化ガス成分を第一容器 1 中で混 合 し貯蔵する方法は、 上記図 2 の方法と 同様とすればよ い。
補充用の成分については、 第一容器において非共沸混 合物を調製する工程と 同時に又は こ の工程に前後 した任 意の時期に、 第一容器 1 中の非共沸混合物 と 同一組成の 液化ガス混合物又は こ の非共沸混合物の構成成分の少な く と も一種か らな り、 構成成分の内で最も 沸点の低い成 分を該非共沸混合物中での割合よ り も多 く 含む液化ガス とな る よ う に、 所定量の原料液化ガス成分が原料充填容 器 7 か らプ レ ミ キサー 8 に送 られ、 こ こ で混合された後. 予備混合槽 1 3 に送 られる。 予備混合槽 1 3 では、 各成 分を均一に混合 した後、 必要に応 じて、 ガス ク ロマ ト グ ラ フ ィ 一等の分析手段 1 2 を用いて組成を確認 し、 所定 の組成の混合物を正確に調製する。 予備混合槽 1 3 では、 必要に応 じて、 気体抜き 出 し配管 2 0 か ら気相成分を抜 き 出 し、 適当な温度モニタ 一手段 (図示せず) によ っ て 温度測定を行いなが ら、 冷却 コ ンデンサ一等の冷却手段 1 0 に よ っ て冷却 して、 気体循環用配管 2 1 を経て、 予 備混合槽 1 3 の液相部分か ら予備混合槽に循環させて、 組成変動の少ない温度に維持する こ とが好ま しい。
図 3 の移充填 システムにおいて、 第一容器 1 か ら第二 容器 1 7 に非共沸混合物を移充填する際に は、 第一容器 1 の液体抜き 出 し配管 2 か ら抜き 出 された非共沸混合物 は、 移充填用配管 1 8 を経て、 所定の移充填用容器 (第 二容器) 1 7 に移充填さ れ、 それと同時に又は一部が移 充填さ れた後、 予備混合槽 1 3 の気相側に設置さ れた気 体抜き 出 し配管 2 0 か ら抜き 出 さ れた補充用気体は、 第 一容器 1 内での液相の体積減少をその圧力で補う 速度で、 補充気体注入用配管 2 2 を経て第一容器 1 の気相側に注 入される。 補充用気体と しては、 予備混合槽 1 3 中の気 相成分が用い られるカ、 こ の気相成分は、 加熱等の方法 に よ っ て、 予備混合槽 1 3 中で液相成分を強制的に気化 させた もので も よ い。 又、 予備混合槽 1 3 中の気体は、 加温、 ポ ンプによ る増圧、 減圧弁を用いた圧力調整等の 方法で所定の圧力 に調節さ れる。
こ の方法では、 図 2 の方法と 同様に、 第一容器 1 に液 面計 1 9 を設置 して第一容器 1 中の非共沸混合物の液量 をモニタ 一 し、 液量の減少量に応 じて、 相当する量の補 充用気体を連続的又は断続的に予備移混合槽 1 3 か ら第 一容器 1 に注入する こ とが好ま しい。 又、 予備混合槽 1 3 には、 適当な液面計、 重量測定装置等 (図示せず) を 設置 して、 一定量以上の液量を確保する こ とが好ま しい c 本発明方法によれば、 蒸気圧縮式冷凍サイ ク ル用作動 流体と して使用 さ れる非共沸性の混合冷媒の移充填時に 生 じ る組成変化を大幅に小さ く する こ とができ、 冷媒の 性能低下や、 燃焼の危険性の増大を防 ぐ こ とが可能 とな る。
発明を実施する ための最良の形態
以下、 実施例及び比較例を挙げて本発明を詳述す るが- 本発明の要旨を逸脱 しない限 り、 こ の実施例のみに限定 さ れる ものではな い。
実施例 1 及び比較例 1
2. 2 5 リ ッ ト ルの容器 (以下、 第一容器とい う ) に ジ フ ノレオ ロ メ タ ン ( H F C 3 2 ) とペ ン タ フ ルォ ロ エタ ン ( H F C 1 2 5 ) と 1, 1, 1, 2 — テ ト ラ フノレォ ロ ェタ ン ( H F C 1 3 4 a ) の重量比 2 3 Z 2 5 Z 5 2 の 非共沸混合物を 2 k g充填 し、 1 リ ッ トルの加圧用容器 に H F C 3 2 と H F C 1 2 5 と H F C 1 3 4 aの重量比 2 3 / 2 5 / 5 2 の非共沸混合物を 8 0 0 g充填 した。 蒸気加圧のために第一容器と加圧用容器の蒸気側は配管 でつなぎ、 流量測定のために流量計を設置 した。 加圧用 容器を恒温槽で 3 0 °Cに加温しながら蒸気側から圧力調 節弁で第一容器の圧力にさ らに 0. 0 8 M P aの加圧を する と同時に、 ポ ンプを使用 して第一容器の液側よ り毎 分 1 2 gの速度で非共沸混合物を別の空容器に移充填 し た。 移充填は室温で行った。 液側の抜き出 し配管の途中 に設けたサンプリ ングバルブよ り移充填中のガスを一部 採取 し、 成分組成をガスク ロマ ト グラ フ ィ ーによ り分析 した。 尚、 加圧ガスの流量は、 ほぼ毎分 1 0. 6 c m 3で め っ た。
比較例 1 と して、 第一容器の蒸気側の配管を閉 じたま ま、 同様に して移充填 した。
移充填率と採取ガスの成分組成分析結果を表 1 に示す。 なお、 H F C S S Z H F C l S S Z H F C l S A a ( 2 3 / 2 5 / 5 2 w t % ) の 2 5 °Cにおける蒸気圧は 1. 2 1 M P a 3 0 °Cにおける蒸気圧は 1. 3 7 M P a で あっ た o 表 1
成分組成 (w t %)
兀右植半 実施例 1 u ¾X T/'J 丄
HFC125 HFC134a ΠΓし 0乙 ΠΓし 1乙 3 ΠΓし 1 ^
25.0 52.0 0 C Λ
U 6 · U 60. ) Δ. U
1U Zo. U 25. 0 52. 0 Zo. U ϋ. U J - υ o n L * U 25.0 52.0 00 Q
Z4. b Ο . ζ U Zo. U 5. U 52.0
40 23.0 25.0 52.0 22.7 24.8 52. δ
50 23.0 25.0 52.0 22· 6 24.8 52· 6
60 23.0 25.0 52.0 22.5 24.7 52.8
70 23.0 25.0 52.0 22.4 24· 6 53.0
80 23.0 25.0 52.0 22.2 24.4 53.4
90 23.3 25.1 51.6 21.7 24.0 54.3 実旌例 2及び比較例 2
非共沸混合物と して H F C 3 2 と H F C 1 2 5 と H F C 1 3 4 a の重量比 2 3 Ζ 2 5 Ζ 5 2 の混合物、 加圧用 ガス と して H F C 3 2 と H F C 1 2 5 の重量比 5 0 / 5 0 の混合物を用いて、 実施例 1 と同様に、 第一容器の圧 力にさ らに 0. 0 6 M P a の加圧を して試験を行っ た。 加圧用ガスは、 下記のよ う に十分に高圧なので、 恒温槽 によ る加温は行わなかつた。 加圧ガスの流量は、 ほぼ毎 分 1 0. δ c m。であった。
比較例 2 と して第一容器の蒸気側の配管を閉 じたまま, 同様に して移充填を行っ た。
移充填率と採取ガスの成分組成の分析結果を表 2 に示 す。 なお H F C 3 2 / H F C 1 2 5 / H F C 1 3 4 a
( 2 3 / 2 5 / 5 2 w t % ) の 2 5 °Cにおける蒸気圧は 1. 2 1 M P a であ り、 H F C 3 2 Z H F C 1 2 5 ( 5 0 / 5 0 w t % ) の 2 5 °Cにおける蒸気圧は 1. 6 6 M P a であつた。
表 2
成分組成 (w t %)
移充填率 実施例 2 比較例 2
(%) HFC32 HFC125 HFC134a HFC32 HFC125 HFC134a
0 23.0 25.0 52.0 23.0 25.0 52.0
10 23.0 25.0 52.0 23.0 25.0 52.0
20 23.0 25.0 52.0 22.9 24.9 52.2
30 23.0 25.0 52.0 22.8 24.9 52.3
40 23.0 25.0 52.0 22.7 24.8 52.5
50 23.0 25.0 52.0 22.6 24.8 52.6
60 23.0 25.0 52.0 22.5 24.7 52.8
70 23.0 25.0 52.0 22.4 24.6 53.0 80 23.0 25.0 52.0 22.2 24.4 53.4
90 22.9 24.9 52.2 21.7 24.0 54.3 表 1 および表 2 の結果から明 らかなよ う に、 蒸気側か ら加圧を行う こ とによ り、 加圧を行わない場合と比較し て、 組成の変動を 1 Z 1 2 〜 2 Z 1 2 と大幅に小さ く す る こ とができ る。
実施例 3
図 2 に示 した移充填システムによ り、 補充用液体を第 一容器に補充注入する方法を以下の条件で実施した。
容量 1 4. 6 m 3の第一容器に、 H F C 3 2 と H F C 1 2 5 と H F C 1 3 4 a の重量比 2 3 / 2 5 / 5 2 の非共 沸混合物 ( R 4 0 7 C ) 1 4 0 0 0 k gを充填し、 第一 容器の液側よ り毎分 2 5 k gの速度で非共沸混合物を別 の空容器に移充填 した。
—方、 第一容器に充填 した非共沸混合物と同一組成の 混合物 2 0 0 0 k gを容量 2. 2 m 3の予備混合槽に充填 し、 第一容器に液面モニタ ーを設置 して、 第一容器中の 液量が 1 0容量%減少する毎に、 減少量に相当する非共 沸混合物を予備混合槽の液相から抜き出 して、 第一容器 に充填 した。
こ の操作の間、 第一容器中の混合物、 及び予備混合槽 中の混合物は、 それぞれ、 冷水で冷却 して約 2 5 °Cに維 持 した。
予備混合槽中の混合物は、 原料貯蔵容器か ら所定量の 原料液化ガスをプ レ ミ キサーを経由 して、 予備混合槽に 補充 した。
この様な移充填方法を連続 して繰 り 返 し実施 し、 第一 容器の液抜き 出 し配管の途中に設けたサ ンプ リ ングバル ブよ り 移充填中の非共沸混合物を一部採取 して、 定期的 に成分組成をガス ク ロマ ト グラ フ ィ ーによ り 分析 した と こ ろ、 実質的に組成変動が生 じ る こ とがな く、 第一容器 に貯蔵 した非共沸混合物の組成は、 一定に維持さ れた。

Claims

請 求 の 範 囲
1 . 第一容器に貯蔵さ れた 2 種以上の沸点の異な る液化 ガスを必須成分とする非共沸混合物を液相か ら抜き 出 し て第二容器に移充填する際に、 移充填によ り 減少する非 共 ^混合物の液相の体積分と等 しい第一容器の容積分を 補 う 量とな る よ う に、 下記の補充用液体 ( A ) 又は補充 用気体 ( B ) を第一容器に注入する こ とを特徴とする液 化ガスの移充填方法 :
( A ) 第一容器に貯蔵 した非共沸混合物と 同一組成を有 する液化ガス混合物の液相成分か らな る補充用液体 ;
( B ) ( i ) ( a ) 第一容器中 に貯蔵 した非共沸混合物 と 同一の組成を有する液化ガス混合物の気相成分若 し く は : b ) 該非共沸混合物の構成成分の少な く と も一種か らな り、 構成成分の内で最も沸点の低い成分を該非共沸 混合物中での割合よ り も多 く 含む気相成分又は ( i i ) 圧 縮ガスか らな る補充用気体。
2 . 第一容器に貯蔵さ れた 2 種以上の沸点の異な る液化 ガスを必須成分とする非共沸混合物を液相か ら抜き 出 し て第二容器に移充填する際に、
第一容器に貯蔵 した非共沸混合物 と同一組成を有する液 化ガス混合物を貯蔵 した予備混合槽か ら、 該混合物の液 相成分を抜き 出 し、 移充填によ り 減少する 非共沸混合物 の液相の体積分と等しい第一容器の容積分を補う量とな る よ う に、 該液相成分を第一容器に注入する請求項 1 に 記載の方法。
3. ( i ) 2 種以上の沸点の異なる液化ガスを第一容器 で混合 して非共沸混合物とする工程、
( ϋ) 上記( i )工程と同時に又は( i )工程と前後 して、 第一容器に貯蔵 した非共沸混合物と同一組成を有する液 化ガス混合物を予備混合槽中で調製する工程、
( iii) 第一容器中の非共沸混合物を第二容器に移充填す る工程、
( iv) 上記 ( iii) 工程と同時に又は ( iii) 工程によつ て一部の非共沸混合物が移充填された後、 移充填によ り 減少する非共沸混合物の液相の体積分と等しい第一容器 の容積分を補う 量となるよ う に、 予備混合槽中の混合物 の液相成分を第一容器に注入する工程
を含む請求項 1 又は 2 に記載の方法。
4. 補充用気体を用いて第一容器の気相側から加圧し、 移充填によ り減少する非共沸混合物の液相の体積分と等 しい第一容器の容積分をその圧力で補う に等しい注入速 度で補充用気体を第一容器に注入する請求項 1 に記載の 方法。
5. 補充用気体を用いて、 移充填する非共沸混合物の蒸 気圧の 1 . 0 3倍から 1 . 1 0 倍の圧力で第一容器の気 相側から加圧し、 該補充用気体を第一容器に注入する請 求項 4 に記載の方法。
6 . 第一容器に貯蔵された 2 種以上の沸点の異なる液化 ガスを必須成分とする非共沸混合物を液相から抜き 出 し て第二容器に移充填する際に、
第一容器に貯蔵 した非共沸混合物と同一組成を有する液 化ガス混合物又は該非共沸混合物の構成成分の少な く と も一種からな り、 構成成分の内で最も沸点の低い成分を 該非共沸混合物中での割合よ り も多 く 含む液化ガスを貯 蔵 した予備混合槽から、 気相成分を抜き出 し、 移充填に よ り減少する非共沸混合物の液相の体積分と等しい第一 容器の容積分を補う量となるよ う に、 該気相成分を第一 容器に注入する請求項 1、 4又は 5 に記載の方法。
7 . ( i ) 2 種以上の沸点の異なる液化ガスを第一容器 で混合 して非共沸混合物とする工程、
( ϋ ) 上記( i )工程と同時に又は( i )工程と前後して、 第一容器中の非共沸混合物と同一組成を有する液化ガス 混合物又は該非共沸混合物の構成成分の少な く と も一種 からな り、 構成成分の内で最も沸点の低い成分を該非共 沸混合物中での割合よ り も多 く 含む液化ガスを予備混合 槽 で調製する工程、 ' ( iii) 第一容器中の非共沸混合物を第二容器に移充填す る工程、
( iv) 上記 ( iii) 工程と同時に又は ( iii) 工程によ つ て一部の非共沸混合物が移充填された後、 移充填によ り 減少する非共沸混合物の液相の体積分と等しい第一容器 の容積分を補う量となるよ う に、 予備混合槽中の気相成 分を第一容器に充填する工程
を含む請求項 1、 4、 5又は 6 に記載の方法。
8. 第一容器に貯蔵 した非共沸混合物の上層に、 こ れ と 非溶解性の層を存在させた状態で行な う、 請求項 1、 4、 5、 6 又は 7 に記載の方法。
9. 第一容器に貯蔵する非共沸混合物が、 ジフルォロ メ タ ン と 1, 1, 1 , 2 —テ ト ラ フノレォ ロ ェタ ンの混合物、 ジ フノレオ ロ メ タ ン とペ ン タ フ ノレォ ロェタ ン と 1, 1 , 1, 2 — テ ト ラ フルォ ロェタ ンの混合物、 ペ ン タ フノレォ ロ ェ タ ン と 1, 1, 1 一 ト リ フ ノレォ ロ ェタ ン と 1, 1, 1,
2 — テ ト ラ フノレォ ロェタ ンの混合物、 ト リ フルォ ロ メ タ ン と ジ フノレオ ロ メ タ ン と 1, 1 , 1, 2 — テ ト ラ フ ノレオ ロ ニタ ンの混合物、 ジ フノレオ ロ メ タ ン と ペ ン タ フルォ ロ ェタ ンの混合物、 又は ク ロ 口 ジ フノレオ ロ メ タ ン と 1 , 1, 1 ― ト リ フノレォ ロ ェタ ン とペ ン タ フノレォ ロ ェタ ンの混合 物である請求項 1 〜 8 のいずれかに記載の方法。
1 0. 第一容器に貯蔵する非共沸混合物が、 ジ フ ルォ ロ メ タ ン 2 3 重量%、 ペ ンタ フルォ ロェタ ン 2 5 重量%及 び 1, 1, 1 , 2 —テ ト ラ フルォ ロェタ ン 5 2 重量%か らな る 混合物、 ペ ンタ フルォ ロェタ ン 4 4 重量%、 1, 1, 1 一 ト リ フノレオ ロェタ ン 5 2 重量%及び 1, 1, 1, 2 — テ ト ラ フルォ ロェタ ン 4 重量%か らな る混合物、 又 はク ロ 口 ジ フノレオ ロ メ タ ン 4 7 重量%、 1, 1, 1 — ト リ フ ノレオ口エタ ン 4 6 重量%、 及びペンタ フルォ ロエタ ン 7 重量%か らな る混合物であ る請求項 9 に記載の方法,
PCT/JP1998/000044 1997-01-14 1998-01-08 Procede de transfert de gaz liquefies entre des conteneurs WO1998030833A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU53423/98A AU732822B2 (en) 1997-01-14 1998-01-08 Method for transfer-filling of liquefied gases
EP98900186A EP1008799A4 (en) 1997-01-14 1998-01-08 METHOD FOR TRANSFERLING LIQUID GASES BETWEEN CONTAINERS
US09/341,571 US6237348B1 (en) 1997-01-14 1998-01-08 Process for transferring liquefied gases between containers
BRPI9806898-9A BR9806898A (pt) 1997-01-14 1998-01-08 Processo para enchimento por tranferência de gases liquefeitos
CA002277269A CA2277269C (en) 1997-01-14 1998-01-08 Method for transfer-filling of liquefied gases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/4366 1997-01-14
JP436697 1997-01-14
JP9235711A JPH10259898A (ja) 1997-01-14 1997-09-01 液化ガスの移充填方法
JP9/235711 1997-09-01

Publications (1)

Publication Number Publication Date
WO1998030833A1 true WO1998030833A1 (fr) 1998-07-16

Family

ID=26338113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000044 WO1998030833A1 (fr) 1997-01-14 1998-01-08 Procede de transfert de gaz liquefies entre des conteneurs

Country Status (12)

Country Link
US (1) US6237348B1 (ja)
EP (1) EP1008799A4 (ja)
JP (1) JPH10259898A (ja)
KR (1) KR20000070102A (ja)
CN (1) CN1103421C (ja)
AU (1) AU732822B2 (ja)
BR (1) BR9806898A (ja)
CA (1) CA2277269C (ja)
ID (1) ID22784A (ja)
MY (1) MY120015A (ja)
TW (1) TW359737B (ja)
WO (1) WO1998030833A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2217912A1 (es) * 1998-12-18 2004-11-01 Exxonmobil Upstream Research Company Proceso para desacargar de recipientes gas natural licuado a presion.

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574801B2 (ja) * 1999-08-27 2010-11-04 住友精化株式会社 液化ガスの混合装置
DE10118361A1 (de) * 2001-04-12 2002-10-24 Solvay Fluor & Derivate Verfahren und Vorrichtung zum Lagern von Flüssigkeiten und verflüssigten Gasen
AU2003251872A1 (en) * 2002-07-12 2004-02-02 Honeywell International, Inc. Method and apparatus to minimize fractionation of fluid blend during transfer
JP2005134333A (ja) * 2003-10-31 2005-05-26 Espec Corp 気体流量測定装置、及び気体流量測定方法
DE102005019413A1 (de) * 2005-04-25 2006-10-26 Messer Group Gmbh Verfahren und Vorrichtung zum Befüllen eines Behälters mit einem Füllgas oder Füllgasgemisch
EP1813855A1 (en) * 2006-01-27 2007-08-01 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and arrangement for filling a high pressure gas container with liquefied gas under hydrostatic pressure
JP2009024899A (ja) * 2007-07-17 2009-02-05 Showa Denko Kk エバポレータ
US7832222B2 (en) * 2007-12-07 2010-11-16 Spx Corporation Background tank fill based on refrigerant composition
KR101049151B1 (ko) 2008-12-10 2011-07-14 한국가스공사연구개발원 액화가스 혼합장치
JP5861727B2 (ja) * 2014-03-04 2016-02-16 ダイキン工業株式会社 トランス−1,3,3,3−テトラフルオロプロペンを含む混合冷媒の充填方法
CN104565807B8 (zh) * 2015-02-02 2019-04-26 山东赛普生物科技股份有限公司 无相变液态气体数字灌装装置
CN104964724B (zh) * 2015-07-21 2018-10-30 苏州市兴鲁空分设备科技发展有限公司 储液罐蒸发率测量装置及其采用的测量方法
CN107339606A (zh) * 2017-08-17 2017-11-10 丹阳市方蓝气体设备有限公司 一种可改变压力的充装系统
NO344169B1 (en) * 2018-06-04 2019-09-30 Waertsilae Gas Solutions Norway As Method and system for storage and transport of liquefied petroleum gases
EP3636982B1 (de) * 2018-10-09 2021-08-04 Weiss Technik GmbH Verfahren und vorrichtung zum bereitstellen zeotroper kältemittel
JP7011847B2 (ja) * 2019-12-27 2022-01-27 Cpmホールディング株式会社 混合冷媒製造装置及び混合冷媒製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137497A (ja) * 1985-12-05 1987-06-20 Sanken Setsubi Kogyo Kk フロン液の貯留方法
JPS62200099A (ja) * 1986-02-27 1987-09-03 Mitsubishi Electric Corp 極低温液体供給システム
JPH03170585A (ja) * 1989-11-30 1991-07-24 Matsushita Electric Ind Co Ltd 作動流体
JPH0512261Y2 (ja) * 1988-08-26 1993-03-29
JPH0593198A (ja) * 1991-06-28 1993-04-16 Idemitsu Kosan Co Ltd 圧縮式冷凍サイクルの潤滑方法
JPH084997A (ja) * 1994-06-16 1996-01-12 Daikin Ind Ltd 液化ガスの充填方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905719A (en) * 1987-12-30 1990-03-06 Lawless James C Flurocarbon pumping system
US5643492A (en) * 1990-12-17 1997-07-01 E. I. Du Pont De Nemours And Company Constant boiling compositions of HFC-32, HFC-125 and HFC-134 A
JPH0750640Y2 (ja) * 1991-04-19 1995-11-15 日本酸素株式会社 低温液化ガス供給装置
ES2148743T3 (es) * 1995-04-18 2000-10-16 Daikin Ind Ltd Procedimiento para la carga de una mezcla refrigerante.
JP3170585B2 (ja) 1996-03-25 2001-05-28 経済産業省産業技術総合研究所長 冷電子放出素子
US5709093A (en) * 1996-06-27 1998-01-20 Alliedsignal Inc. Process for minimizing compositional changes
JPH10160296A (ja) * 1996-11-28 1998-06-19 Daikin Ind Ltd 混合冷媒の充填方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137497A (ja) * 1985-12-05 1987-06-20 Sanken Setsubi Kogyo Kk フロン液の貯留方法
JPS62200099A (ja) * 1986-02-27 1987-09-03 Mitsubishi Electric Corp 極低温液体供給システム
JPH0512261Y2 (ja) * 1988-08-26 1993-03-29
JPH03170585A (ja) * 1989-11-30 1991-07-24 Matsushita Electric Ind Co Ltd 作動流体
JPH0593198A (ja) * 1991-06-28 1993-04-16 Idemitsu Kosan Co Ltd 圧縮式冷凍サイクルの潤滑方法
JPH084997A (ja) * 1994-06-16 1996-01-12 Daikin Ind Ltd 液化ガスの充填方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1008799A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2217912A1 (es) * 1998-12-18 2004-11-01 Exxonmobil Upstream Research Company Proceso para desacargar de recipientes gas natural licuado a presion.
ES2217912B1 (es) * 1998-12-18 2006-02-01 Exxonmobil Upstream Research Company Proceso para desacargar de recipientes gas natural licuado a presion.

Also Published As

Publication number Publication date
US6237348B1 (en) 2001-05-29
CA2277269C (en) 2005-03-29
CA2277269A1 (en) 1998-07-16
CN1103421C (zh) 2003-03-19
EP1008799A4 (en) 2004-06-09
AU5342398A (en) 1998-08-03
CN1243570A (zh) 2000-02-02
ID22784A (id) 1999-12-09
BR9806898A (pt) 2000-03-21
TW359737B (en) 1999-06-01
JPH10259898A (ja) 1998-09-29
KR20000070102A (ko) 2000-11-25
AU732822B2 (en) 2001-05-03
MY120015A (en) 2005-08-30
EP1008799A1 (en) 2000-06-14

Similar Documents

Publication Publication Date Title
WO1998030833A1 (fr) Procede de transfert de gaz liquefies entre des conteneurs
CN1102729C (zh) 填充三组分混合致冷剂的设备和方法
KR100190185B1 (ko) 디플루오로메탄; 1,1,1-트리플루오로에탄; 또는 프로판을 함유하는 비공비성 냉매 조성물들
JP5084986B2 (ja) ジフルオロメタン、ペンタフルオロエタン、1,1,1,2−テトラフルオロエタンおよび炭化水素の組成物
JPH10502960A (ja) 冷媒組成物
CN102634321A (zh) 2,3,3,3-四氟丙烯和氨的二元组合物
EP2675862A1 (en) Method for preparing a ternary or higher zeotropic refrigerant mixture
JP3186065B2 (ja) 混合冷媒の充填方法
JPH0681834B2 (ja) ペンタフルオロエタン;1,1,1―トリフルオロエタン;およびクロロジフルオロメタンの共沸混合物様組成物
JPH10160296A (ja) 混合冷媒の充填方法
EP0856571B1 (en) Process for producing mixed refrigerants
US7028488B2 (en) Method and apparatus to minimize fractionation of fluid blend during transfer
Yang et al. Measured and predicted thermodynamic properties of selected halon alternative/nitrogen mixtures
WO1998044288A1 (fr) Contenant de fourniture de liquide refrigerant
US5709093A (en) Process for minimizing compositional changes
JP3589247B2 (ja) 液化ガスの充填方法
KR20080080576A (ko) 냉매 조성물
WO1998030651A1 (fr) Procede de remplissage de refrigerant melange
JP3575089B2 (ja) 非共沸混合冷媒を形成する方法
WO2005118739A1 (ja) ジメチルエーテルと二酸化炭素の混合物冷媒
Bowles et al. Benzene–diethyl ether association. The excess molar enthalpy of (cyclohexane+ diethyl ether)(g) and (benzene+ diethyl ether)(g) from temperatures 353.2 K to 423.2 K
JP2010043821A (ja) 冷媒ガス液化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801809.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 53423/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998900186

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2277269

Country of ref document: CA

Ref document number: 2277269

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997006324

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09341571

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998900186

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997006324

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 53423/98

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1998900186

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019997006324

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载