WO1998030869A1 - Procede de mesure d'information portant sur la rotation d'un corps rotatif et instrument de mesure de l'information portant sur la rotation - Google Patents
Procede de mesure d'information portant sur la rotation d'un corps rotatif et instrument de mesure de l'information portant sur la rotation Download PDFInfo
- Publication number
- WO1998030869A1 WO1998030869A1 PCT/JP1998/000032 JP9800032W WO9830869A1 WO 1998030869 A1 WO1998030869 A1 WO 1998030869A1 JP 9800032 W JP9800032 W JP 9800032W WO 9830869 A1 WO9830869 A1 WO 9830869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotating body
- rotation
- rotation information
- time
- measured
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 22
- 230000001133 acceleration Effects 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims description 20
- 230000001678 irradiating effect Effects 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 13
- 238000000691 measurement method Methods 0.000 claims description 5
- 230000006399 behavior Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/04—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
- G01L3/10—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
- G01L3/12—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving photoelectric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/486—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by photo-electric detectors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/24—Devices for sensing torque, or actuated thereby
Definitions
- the present invention relates to a rotation information measuring method and a rotation information measuring device for non-contact and accurate measurement of rotation angle time information, angular velocity, angular acceleration, torque, and energy as rotation information when a small rotating body rotates.
- a rotation information measuring method for non-contact and accurate measurement of rotation angle time information, angular velocity, angular acceleration, torque, and energy as rotation information when a small rotating body rotates.
- a small torque or small energy during rotation can be used as the rotation information. Need to be measured.
- a method of measuring a small torque of a rotating body includes a method of estimating a generated torque of the rotating body by bringing a reference load torque generator into contact with the rotating body of the object to be measured, and a method of measuring a small torque of the rotating body.
- a method has been adopted in which a torque measuring instrument using a strain gauge or the like is connected to measure the torque generated by the rotating body.
- the present invention has been made in order to solve such a problem, and the rotation information at the time of rotation of the small rotating body as described above, that is, the time information of the rotation angle, the angular velocity, the angular acceleration, the torque, and the energy are obtained. It is an object of the present invention to provide a rotation information measurement method that enables accurate measurement without contact, and a rotation information measurement device for implementing the measurement method. Disclosure of the invention
- a reflection surface inclined with respect to the rotation axis is formed at the tip of the rotating shaft of the rotating body to be measured.
- the reflecting surface is irradiated with a light beam from a direction along the rotation axis.
- the light reflected by the reflecting surface is centered on the rotating axis.
- the angular velocity of the rotating body can be measured.
- the angular acceleration of the rotating body can be measured.
- the torque acting on the rotating body can be measured.
- the energy of rotation of the rotation body at the end of the rotation angle range can be measured. It can.
- the angular velocity measured at a certain time is ⁇ and the inertia moment of the rotating body is I
- the rotational energy ⁇ ⁇ of the rotating body at the time is
- ⁇ ( ⁇ / 2) ⁇ ⁇ ⁇ It can also be obtained and calculated by calculating ⁇ 2 .
- the rotation information measuring device for a rotating body measures a rotating body having a reflecting surface inclined at an end of a rotating shaft with respect to the rotating axis as a measurement object
- An apparatus for measuring rotation information of the rotating body comprising at least the following means.
- the respective means are a light beam irradiating means for irradiating the reflecting surface with a light beam during rotation of the rotating body from a direction along the rotation axis, and a light beam irradiating means on the same circumference around the rotation axis.
- Reflected light detecting means comprising a plurality of light detecting elements arranged so as to detect reflected light from the reflecting surface at an angular interval, and after the rotation of the rotator starts rotating, the reflected light from the reflecting surface is detected by the plurality of light detecting elements.
- Means for measuring the elapsed time from the reference time to the detection of the reflected light by each of the plurality of light detection elements as time information of the rotation angle of the rotating body. is there.
- an angular velocity calculating means for calculating an angular velocity by differentiating the measured time information of the rotation angle with respect to time is provided, the angular velocity of the rotating body can be measured.
- an angular acceleration calculating means for calculating the angular acceleration by differentiating the measured angular velocity with respect to time is provided, the angular acceleration of the rotating body can be measured.
- the torque of the rotating body can be measured.
- the end of the rotation angle range is provided.
- the rotation energy of the rotating body can be measured.
- the rotational energy ⁇ ⁇ ⁇ ⁇ ⁇ of the rotating body at the time is
- the rotation information of the rotating body having no rotating driving means can be measured.
- FIG. 1 is a block diagram showing an embodiment of a rotation information measuring device for a rotating body according to the present invention.
- FIG. 2 is a sectional view of a two-pole step motor having a rotor which is a rotating body to be measured according to the first embodiment of the present invention.
- FIG. 3 is a side view showing the arrangement of the light beam irradiation means and the reflected light detection means of the rotation information measuring device of the first embodiment with respect to the reflecting surface of the rotating shaft of the rotating body.
- FIG. 4 is a plan view showing the arrangement of each photodetector of the reflected light detecting means.
- FIG. 5 is a diagram showing a display example of rotation angle time information, angular velocity, and angular acceleration as the measurement result.
- FIG. 6 is a diagram showing a display example of the torque and the energy.
- FIG. 7 is a perspective view of a photodiode array used for reflected light detecting means in a second specific embodiment of the present invention.
- FIG. 8 shows a rotation information measuring device according to a third embodiment of the present invention together with a rotating body.
- FIG. 9 is a plan view of the annular photodiode array 38 in FIG.
- FIG. 10 is a block circuit diagram showing a specific example of the rotation angle time information measuring means and storage means in the third embodiment.
- FIG. 11 is a timing chart showing the relationship between the parallel pulse signal and the serial pulse signal in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 is a block diagram showing an embodiment of a rotation information measuring apparatus for a rotating body according to the present invention.
- This rotation information measuring device is a rotating object 1 having a reflecting surface 1b formed at a tip of a rotating shaft 1a and inclined with respect to a plane perpendicular to the rotating axis 1c. It is a device that measures information.
- a light beam irradiating means 2 for irradiating the reflecting surface 1b with a light beam from the direction along the rotation axis 1c while the rotating body 1 is rotating, and a predetermined light beam on the same circumference around the rotation axis 1c.
- Reflected light detecting means 3 composed of a plurality of light detecting elements arranged to detect the reflected light from the reflecting surface 1b at an angular interval, and the reflecting surface 1b after the rotation of the rotating body 1 starts By detecting the reflected light with the plurality of light detection elements of the reflected light detection means 3, the elapsed time from the reference time to the detection of the reflected light by each of the plurality of light detection elements is determined by the rotation of the rotating body 1.
- the rotation angle time information measuring means 4 for measuring the angle time information has a minimum required configuration.
- This example further includes a storage unit 5, a calculation unit 6, and a display unit 7, a drive unit 8 for driving the rotating body 1 to rotate, and a drive waveform generation unit 9 for generating an arbitrary drive waveform thereof.
- a storage unit 5 a calculation unit 6, and a display unit 7, a drive unit 8 for driving the rotating body 1 to rotate, and a drive waveform generation unit 9 for generating an arbitrary drive waveform thereof.
- the method for measuring rotation information of a rotating body according to the present invention can be implemented.
- the light beam irradiating means 2 emits light from the direction along the rotating axis 1 c of the rotating body 1 to the reflecting surface 1 b formed at the tip of the rotating shaft 1 a while being inclined.
- the reflected light from the reflecting surface 1b is separated by a predetermined angle on the same circumference around the rotation axis 1c constituting the reflected light detecting means 3.
- the rotation angle time information measuring means measures the elapsed time from the reference time to when the reflected light is detected by each of the plurality of light detection elements. It is measured as time information of the rotation angle of the rotating body 1.
- the calculating means 6 includes: an angular velocity calculating means for calculating angular velocity by differentiating the time information of the rotation angle with time; an angular acceleration calculating means for calculating angular acceleration by differentiating the angular velocity with time; It has the function of torque calculation means for calculating the torque acting on the rotating body 1 by multiplying the angular acceleration by the moment of inertia (also referred to as inertia) of the rotating body 1.
- the calculation results can be displayed on display means 7 such as a CTR display or a liquid crystal display.
- display means 7 such as a CTR display or a liquid crystal display.
- FIG. 2A and 2B are a cross-sectional view of a two-pole step motor having a rotor as the rotating body 1 and a perspective view of the rotor 1, and FIG. 3 is a reflection surface of the rotating shaft 1a of the rotating body 1.
- FIG. 4 is a side view showing the arrangement of the light beam irradiating means 2 and the reflected light detecting means 3 of the rotation information measuring device with respect to 1b, and FIG. 4 is also a plan view showing the arrangement of each photodetector of the reflected light detecting means 3. is there.
- the two-pole step motor 10 shown in FIG. 2A has a rotor 1 (hereinafter referred to as “rotor 1”) provided in a stator 12, and the stator 12 has a coil 1.
- the coil 3 is wound, and is excited by applying a drive pulse to the coil 13 to rotate the rotor 1 stepwise.
- the rotor 1 has a rotating shaft 1a penetrating the center of the rotor 1 and is provided on the body.
- a small gear (kana) 14 is fitted and fixed to the rotating shaft la. ing.
- the rotating shaft 1 a is rotatably supported by bearings of the train wheel receiver 15 and the base plate 16.
- the end surface of the rotating shaft 1a protruding from the train wheel receiver 15 is obliquely mirror-polished to form a reflecting surface 1b inclined at an angle 0 with respect to the rotating axis 1c.
- the tilt angle 0 is about 45 degrees.
- the reflecting surface lb is a light reflecting portion having a reflecting surface 1 b inclined with respect to the rotation axis 1 c on the tip surface of the rotating shaft 1 a instead of directly mirror-finishing the tip of the rotating shaft 1 a. It may be formed by sticking a material. However, in that case, it is desirable that the mass of the rotating body 1 be as small as possible so as not to affect the behavior of the rotating body 1. Considering that the installation position of the light reflecting member is on the rotation axis, in reality, the mass of the light reflecting member is If it is less than 1% of the mass of the rotor 1, there is almost no effect.
- the light beam irradiating means 2 has a holder 21 fixed to the upper part of a column 18 standing on a base plate 17 with mounting screws 22, and the holder 2 1
- a semiconductor laser 23 as a light source is mounted on the upper support piece 21a extending horizontally, and a condenser lens 24 is mounted on the lower support piece 21b so that the optical axis coincides with the rotation axis 1c of the rotation axis 1a.
- the semiconductor laser 23 emits laser light having a peak at a wavelength near 900 nm in the near infrared region.
- the laser light is condensed by a condensing lens 24 to form a thin laser beam LB, and is rotated from the through hole 21 c of the lower support piece 21 b along the rotation axis 1 c (vertically in the example shown). Irradiate the central part of the reflective surface 1b of the axis 1a.
- the reflection angle is also 45 degrees, and the reflected light LR is directed in a direction orthogonal to the rotation axis 1c (in the illustrated example, the horizontal direction). ) Is reflected in the plane of. If the angle of inclination of the reflecting surface 1b with respect to the rotation axis 1c is not 45 degrees, the light is reflected within the conical surface. These planes or conical surfaces are called the sweep surfaces formed by the reflected light.
- the reflected light detecting means 3 includes a photodetector 32 provided with a photodetecting element 31 such as a photo diode or a phototransistor, and a rotating axis 1 c of the rotating body 1.
- a photodetecting element 31 such as a photo diode or a phototransistor
- a rotating axis 1 c of the rotating body 1 On the same circumference (indicated by dashed-dotted line 33 in FIG. 4) on the above-mentioned sweeping surface as the center, a large number are arranged at predetermined angular intervals toward the center of the reflecting surface 1b.
- the point at which the reflected light arrives when the rotor 1 is stationary is the base point P.
- a total of 38 photodetectors 32 (channels CH1 to CH38) were arranged at 6-degree intervals.
- each photodetector 32 is non-rotatably supported by a column 34 standing on a base plate 17 and a feed screw 35 parallel thereto. By rotating 5, the height position can be adjusted according to the incident position of the reflected light LR.
- Reference numeral 36 denotes a coil spring for removing backlash between the feed screw 35 and the photodetector 32.
- a photodiode (PH-302, manufactured by NEC) is used, so that the wavelength of the laser light emitted from the semiconductor laser 23 can be adjusted.
- the light detection element only needs to be able to detect the reflected light L R, and therefore, other than the photo diode may be used depending on the compatibility with the light source of the light beam irradiation means 2.
- the rotor 1 is stepped by the step driving of the two-pole step motor 10. When it is rotated, it is the starting point of its drive or the base point P of the photodetector 32. When the photodetector 31 at the point where the reflected light L R is no longer detected (these
- the elapsed time (corresponding to the rotation time) until the photodetector 31 of each photodetector 32 detects the reflected light LR is measured sequentially by sweeping the reflected light LR.
- time information of the rotation angle of the rotor 1 that has started rotating can be obtained with high accuracy.
- the obtained time information on the rotation angle is temporarily stored in the storage means 5, and then converted by the calculation means 6 into the above-mentioned physical quantity of the angular velocity, angular acceleration, torque, or energy, which is known. Will be displayed.
- FIGS. 5 and 6 show display examples of the measurement results, that is, various kinds of rotation information when the rotor of the two-pole step motor is the measurement target.
- Curve 71 shown in (a) of FIG. 5 is time information with respect to the rotation angle measured by the rotation angle time information measuring means 4, the rotation time being represented by the rotation time on the horizontal axis and the rotation angle on the vertical axis. It is a curve which shows the time characteristic of an angle (rad).
- a curve 72 shown in (b) of the figure is a curve showing a time characteristic of an angular velocity (rad / sec) obtained by differentiating the time characteristic of the rotation angle with respect to time.
- a curve 73 shown in (c) of the figure is a curve showing the time characteristic of the angular acceleration (rad / sec 2 ) obtained by further differentiating the time characteristic of the angular velocity with time.
- the curve 74 shown in FIG. 6 shows the rotation angle characteristic of the torque (N ⁇ m) obtained by multiplying the value of the angular acceleration shown by the curve 73 by the inertia (mass) of the rotor 1. It is a curve shown in the rotation angle range from rad to ⁇ rad (180 degrees) (corresponding to the time until the angular velocity indicated by T in Fig. 5 reaches a peak).
- the rotor 1 overshoots and stops at the position of the rotation angle ⁇ rad while repeating the slight forward and reverse rotation.
- the light detecting elements 31 are arranged at intervals of 6 degrees in accordance with the movement of the rotor of the two-pole step motor, but the light detecting elements are arranged according to the movement of the rotating body.
- various applications are possible. For example, it is possible to grasp the movement of the hands of the clock.
- the second hand rotates 6 degrees per step, but since it is moving for less than 1 Oms, it has conventionally been possible to accurately determine the unsteady hand movement situation. I wouldn't figure out. However, if the rotation information measuring device and the rotation information measuring method according to the present invention are used, it is possible to grasp the hand movement status while the second hand is actually moving.
- the tip of the second hand shaft is formed on a slope inclined with respect to the rotation axis, and a micro mirror is installed as a light reflecting member there to form a reflecting surface.
- a micro mirror is installed as a light reflecting member there to form a reflecting surface.
- gold (Au) is vapor-deposited on a 100 micron thick Si surface, and then cut into a size of 100 microns vertically and horizontally as a micromirror.
- the weight of the micromirror is approximately 2.3 / z g, and the weight ratio of the fourth wheel and the second hand together is approximately 8 mg, but the weight ratio is at most less than 0.1%. Therefore, the effect on the rotation behavior of the second hand axis by attaching the micro mirror can be neglected.
- a sweep plane of the reflected light by the micromirror centered on the rotation axis of the second hand axis is used. Then, as shown in FIG. 7, a photodiode array 37 in which a plurality of photodiodes 37a are formed is arranged on the same circumference as shown in FIG.
- this photodiode array 37 By using this photodiode array 37, a large number of photodetectors such as photodiodes 3 can be set within a narrow range of 6 degrees, which is the rotation angle of the second hand in one step. 7a can be arranged, and as a result, it is possible to grasp the hand movement in a narrow angle area with sufficient accuracy.
- the photodiode array 37 used as the reflected light detecting means has a shape as shown in Fig. 7, and a photodiode 37a of 5 mm in length and 0.8 mm in width has a pitch of 1 mm in the horizontal direction. This is a configuration in which 35 elements are aligned.
- FIG. 8 is a side view showing the rotation information measuring device together with a rotating body as an object to be measured.
- the tip of the rotating shaft 1a of the rotating body 1 has an inclination angle ⁇ ⁇ ⁇ of about 85 degrees with respect to the rotating axis 1c of the rotating body 1 (with respect to a plane orthogonal to the rotating axis 1c.
- the reflection surface 1b was formed so as to have an inclination of about 5 degrees. Due to this inclination, the reflected light LR from the reflecting surface 1b is caused by the rotation of the rotating body 1 at an angle of about 10 degrees with respect to the laser beam LB irradiated from the light beam irradiation means 2 along the rotation axis 1c. It rotates and forms a conical sweep surface.
- the light beam irradiating means 2 is composed of a semiconductor laser, a condenser lens, and the like, similarly to the first embodiment shown in FIG.
- an annular photodiode array 38 as shown in FIG. 9 was arranged so as to surround the light beam irradiating means 2.
- the toroidal photodiode array 38 is a plurality of photodetectors that are equally divided in the circumferential direction by a straight line radiating from the center of the torus on the surface of a toroidal Si wafer. It forms a photodiode 38a.
- a reference circle passing through the center of each photodiode 38a has a radius of 30 mm, an element pitch is 3.1 mm, and 60 elements are arranged in a circle. It is arranged in the direction.
- the light beam irradiating means 2 can be united by aligning the laser beam irradiating optical axis with the central axis of the annular photodiode array 38 and integrally combining them. By doing so, there is no need to adjust the positional relationship between the light beam irradiating means 2 and the light detecting element, which was required in the first and second embodiments.
- the distance between the integrated light beam irradiation means 2 and the annular photodiode array 38 and the reflecting surface 1b on the rotation axis 1a is determined by the reflected light LR. It is necessary to make adjustments so that the light enters each photodiode 38 a of the annular photodiode array 38.
- the space required by the rotation information measuring device is reduced, and the device can be downsized. Further, when it is difficult to move the rotating body as the object to be measured, it becomes possible to carry the rotation information measuring device and perform the measurement.
- the direction of light beam irradiation by the light beam irradiation means can be easily set not only vertically but also horizontally or at an arbitrary angle.
- the rotation angle time information measuring means 4 includes a binarizing circuit group 41, a parallel / serial converter 42, and a counter 43.
- the storage means 5 is constituted by a decoder 50 and a memory 51 such as a RAM.
- the detection signal S d that is output by receiving light is Binarization circuit (comprising a comparator) 4 1a Binarizes with a and converts it to pulse signal Pd.
- Each of the detection signals S d of channels CH 1 to CH 60 by 60 photo diodes 38 a is binarized by each binarization circuit 41 a of the binarization circuit group 41 and is sequentially timed.
- the parallel pulse signal Pd which is shifted, is input to a parallel-serial converter (constituted by an OR circuit) 42 via all individual signal lines, where it is converted to a serial pulse signal Ps.
- FIG. 11 shows the relationship between the parallel pulse signal Pd and the serial pulse signal Ps.
- the parallel pulse signals Pd1 to Pd60 by the 60 signal lines of the channels CH1 to CH60 are converted into a serial pulse signal Ps by one signal line.
- This serial pulse signal Ps is input to the trigger terminal of a counter 43 for measuring time, which counts clock pulses cp.
- the counter 43 is used to start the rotation of the rotating body 1 shown in FIG. 8 (the time at which a drive pulse is output from the drive circuit 8 in FIG. 1) or the first falling edge of the serial pulse signal Ps. (These are referred to as “reference points.”)
- the trigger as a trigger, the count value is reset and the count operation of the clock pulse cp is started. Then, with the rising edge and the falling edge of the serial pulse signal Ps as a trigger, the count value at that time is output and stored in the memory 51. This count value corresponds to the elapsed time from the reference time or the rotation time of the rotating body 1.
- the decoder 50 simultaneously determines which of the photodiodes 38 a in the ring-shaped photodiode array 38 the triggering pulse was a pulse based on the detection signal Sd. Therefore, the pulse signal Pd from each binarization circuit 41 a of the binarization circuit group 41 is input to the decoder 50, similarly to the input to the parallel-serial converter 42, and an annular photo diode is input.
- the photodiode array Output an identification code indicating the element number of the node 38a to the memory 51. In this example, a 6-bit binary signal was used as the identification code.
- the data stored in the memory 51 is a total of three types: an identification code from the decoder 50, a code for distinguishing the rising and falling of the serial pulse signal Ps, and a count value from the counter 43.
- an identification code from the decoder 50 a code for distinguishing the rising and falling of the serial pulse signal Ps
- a count value from the counter 43 a code for distinguishing the rising and falling of the serial pulse signal Ps.
- the calculation method of the angular velocity, the angular acceleration, the torque, and the energy by the calculating means 6 thereafter is the same as in the above-described embodiment.
- the number of the binarizing circuits constituting the binarizing circuit group 41 is adjusted to the number of the light detecting elements constituting the reflected light detecting means 3 to thereby realize the first circuit. It can also be used as the rotation angle time information measuring means and the storage means of the second embodiment.
- the accuracy of the torque and energy measured by each embodiment of the present invention largely depends on the accuracy of the moment of inertia of the rotating body. Considering component tolerances and eccentricity during rotation, it is estimated that the measured values have an accuracy of about ⁇ 5% or less.
- the input energy can be calculated from the applied current and voltage, and the efficiency of the actual motor as a motor can be determined from the comparison with the measured rotational energy of the rotor. Errors and variations in characteristics can be confirmed as future development guidelines.
- the method and apparatus for measuring rotation information of a rotating body according to the present invention are particularly useful for measuring small torque and energy, which cannot be measured conventionally, and for measuring rotation information for a rotating body that moves in an unsteady manner. It is valid. As an application example other than the above, it is also applicable to an absolute encoder or a wow and flutter / jitter measuring instrument. Industrial applicability
- rotation information such as a minute torque and a minute energy of a small rotating body that cannot be accurately measured in the past can be obtained by rotating the rotating information. It can be measured in a non-contact manner without affecting the rotation behavior of the body, and is particularly effective for measurement when the rotating body moves in an unsteady manner.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
明 細 書 回転体の回転情報測定方法および回転情報測定装置 技 術 分 野
この発明は、 小さな回転体の回転時における回転情報として、 回転角の時間情報、 角速度、 角加速度、 トルク、 およびエネルギーを非接触で正確に測定するための回 転情報測定方法および回転情報測定装置に関する。 背 景 技 術
例えば、 時計の指針駆動用のァクチユエータとして使われているステップモータ やマイクロモータのロータのような小さな回転体の回転状況を把握するためには、 その回転情報として回転時の微小トルクや微小エネルギー等を測定する必要がある。 従来、 このような回転体の微小トルクを測定する方法としては、 被測定対象の回 転体に基準負荷トルク発生器を接触させることによってその回転体の発生トルクを 推定する方法や、 回転体に歪みゲージなどを用いたトルク測定器具を接続してその 回転体が発生したトルクを測定する方法などが採用されていた。
そのため、 回転体の発生トルクが基準負荷に対して十分大きな時はほぼ正確に発 生トルクを推定することができた。 しかし、 回転体の発生トルクが基準負荷に対し て小さい場合には、 基準負荷の接触の有無やトルク測定器具のイナ一シャの存在に よって、 その回転体の挙動が変化してしまう。 そして、 究極的には回転体が回転で きなくなってしまうため、 回転中のトルクを測定することは困難であった。
このため、 マイクロモータなどの性能評価を行いたいというニーズは多くありな がら、 従来の方法によっては、 小さな回転体の回転時における微小トルクを正確に 測定することはできなかった。 また、 同様にしてその回転時の微小エネルギーを精 度よく測定することも困難であった。
この発明は、 こような問題を解決するためになされたものであり、 上述のような 小さな回転体の回転時における回転情報、 すなわち回転角の時間情報、 角速度、 角 加速度、 トルク、 およびエネルギーを非接触で正確に測定できるようにする回転情 報測定方法と、 その測定方法を実施するための回転情報測定装置とを提供すること を目的とする。 発 明 の 開 示
この発明による回転体の回転情報測定方法は、 上記の目的を達成するため、 被測 定対象としての回転体の回転軸の先端にその回転軸線に対して傾斜した反射面を形 成しておく。
そして、 上記回転体の回転中に上記反射面に対して上記回転軸線に沿う方向から 光ビームを照射し、 その回転体の回転開始後、 上記反射面による反射光を上記回転 軸線を中心とする同一円周上に所定角度間隔を置いて設置した複数の光検出素子に よって検出することにより、 基準時点から上記複数の各光検出素子によって上記反 射光がそれぞれ検出されるまでの経過時間を、 上記回転体の回転角の時間情報とし て測定する。
その回転角の時間情報を時間で微分することによって、 上記回転体の角速度を測 定することができる。
その角速度をさらに時間で微分することによって、 上記回転体の角加速度を測定 することができる。
さらに、 その角加速度に上記回転体の慣性モーメント (イナ一シャともいう) を 乗ずることにより、 該回転体に作用するトルクを測定することができる。
そして、 そのトルクを、 上記回転体の回転開始後該トルクを測定した回転角度範 囲で積分することにより、 その回転角度範囲の終端で上記回転体が持つ回転のエネ ルギ一を測定することができる。
あるいは、 ある時点において測定された角速度を ω、 上記回転体の慣性モーメン トを Iとすると、 該時点における上記回転体が持つ回転のエネルギー Εを、
Ε = ( ΐ / 2 ) · Ι · ω 2 の演算によって求めて測定することもできる。
また、 この発明による回転体の回転情報測定装置は、 上記測定方法を実施するた め、 回転軸の先端にその回転軸線に対して傾斜した反射面を形成した回転体を被測 定対象とし、 その回転体の回転情報を測定する装置であって、 少なくとも次の各手 段を有する。
その各手段とは、 上記回転体の回転中に上記反射面に対して上記回転軸線に沿う 方向から光ビームを照射する光ビーム照射手段と、 上記回転軸線を中心とする同一 円周上に所定角度間隔を置いてそれぞれ上記反射面による反射光を検出するように 配置された複数の光検出素子からなる反射光検出手段と、 上記回転体の回転開始後、 上記反射面による反射光を上記複数の光検出素子によって検出することにより、 基 準時点から上記複数の各光検出素子によって上記反射光がそれぞれ検出されるまで の経過時間を、 上記回転体の回転角の時間情報として測定する手段である。
さらに、 上記測定された回転角の時間情報を時間で微分することによって角速度 を算出する角速度演算手段を設ければ、 上記回転体の角速度を測定することができ る。
さらにまた、 その測定された角速度を時間で微分することによって角加速度を算 出する角加速度演算手段を設ければ、 上記回転体の角加速度を測定することができ る。
そして、 その測定された角加速度に上記回転体の慣性モーメントを乗ずることに より、 該回転体に作用するトルクを算出するトルク演算手段を設ければ、 回転体の トルクを測定することができる。
さらに、 その測定されたトルクを上記回転体の回転開始後該トルクを測定した回 転角度範囲で積分するエネルギー演算手段を設ければ、 その回転角度範囲の終端で
上記回転体が持つ回転のエネルギーを測定することができる。
あるいは、 ある時点において測定された角速度 ωと、 上記回転体の慣性モ一メン ト I とから、 該時点における上記回転体が持つ回転のエネルギー Εを、
Ε = ( 1 / 2 ) · I · ω 2 の演算によって算出するエネルギー演算手段を設けるように してもよい。
上記回転体を回転駆動する駆動手段を設ければ、 回転駆動手段を持たない回転体 の回転情報も測定することが可能になる。
上記各回転情報測定装置において、 それぞれ各演算手段によって算出される トル クゃエネルギー等の回転情報を表示する表示手段を設ければ、 測定結果を目で確認 しながら測定することができる。 図面の簡単な説明
第 1図はこの発明による回転体の回転情報測定装置の一実施形態を示すプロック 構成図である。
第 2図はこの発明の具体的な第 1の実施形態の被測定対象とする回転体である口 —タを有する 2極ステップモータの断面図である。
第 3図はその回転体の回転軸の反射面に対する第 1の実施形態の回転情報測定装 置の光ビーム照射手段と反射光検出手段の配置を示す側面図である。
第 4図は同じくその反射光検出手段の各光検出器の配置を示す平面図である。 第 5図はその測定結果としての回転角の時間情報、 角速度、 および角加速度の表 示例を示す線図である。
第 6図は同じくそのトルクおよびエネルギーの表示例を示す線図である。
第 7図はこの発明の具体的な第 2の実施形態において反射光検出手段に使用する フォトダイォードアレイの斜視図である。
第 8図はこの発明の具体的な第 3の実施形態の回転情報測定装置を回転体と共に
示す側面図である。
第 9図は第 8図における円環状のフォトダイォ一ドアレイ 3 8の平面図である。 第 1 0図は同じく第 3の実施形態における回転角の時間情報測定手段および記憶 手段の具体例を示すプロック回路図である。
第 1 1図は第 1 0図におけるパラレルのパルス信号とシリアルのパルス信号の関 係を示すタイミング図である。 発明を実施するための最良の形態
以下、 この発明の実施の形態を図面に基づいて説明する。
第 1図は、 この発明による回転体の回転情報測定装置の一実施形態を示すプロッ ク構成図である。
この回転情報測定装置は、 回転軸 1 aの先端にその回転軸線 1 cに直交する平面 に対して傾斜した反射面 1 bを形成した回転体 1を被測定対象とし、 その回転体 1 の回転情報を測定する装置である。
そして、 回転体 1の回転中に反射面 1 bに対して回転軸線 1 cに沿う方向から光 ビームを照射する光ビーム照射手段 2と、 回転軸線 1 cを中心とする同一円周上に 所定角度間隔を置いてそれぞれ反射面 1 bによる反射光を検出するように配置され た複数の光検出素子からなる反射光検出手段 3と、 回転体 1の回転開始後、 その反 射面 1 bによる反射光を反射光検出手段 3の複数の光検出素子によって検出するこ とにより、 基準時点から上記複数の各光検出素子によって反射光がそれぞれ検出さ れるまでの経過時間を、 回転体 1の回転角の時間情報として測定する回転角の時間 情報測定手段 4とを、 最小限必要な構成としている。
この例ではさらに、 記憶手段 5、 演算手段 6、 および表示手段 7と、 回転体 1を 回転駆動するための駆動手段 8およびその任意の駆動波形を発生する駆動波形発生 手段 9とを備えている。 回転体 1側にその駆動手段を備えている場合には、 この測
定装置側に駆動手段 8および駆動波形発生手段 9を備える必要はない。
この測定装置を使用すれば、 この発明による回転体の回転情報測定方法を実施す ることができる。
すなわち、 回転体 1の回転中にその回転軸 1 aの先端に傾斜して形成された反射 面 1 bに対して、 光ビーム照射手段 2によって回転体 1の回転軸線 1 cに沿う方向 から光ビームを照射し、 その回転体 1の回転開始後、 その反射面 1 bによる反射光 を反射光検出手段 3を構成する回転軸線 1 cを中心とする同一円周上に所定角度間 隔を置いて設置された複数の光検出素子によって検出することにより、 回転角の時 間情報測定手段が、 基準時点から上記複数の各光検出素子によって反射光がそれぞ れ検出されるまでの経過時間を、 回転体 1の回転角の時間情報として測定する。 そして、 この所定回転角度ごとの回転時間の情報を記憶手段 5に一時記憶させた 後、 演算手段 6によって必要な回転情報を算出して表示手段 7に表示させる。 その演算手段 6は、 回転角の時間情報を時間で微分することによって角速度を算 出する角速度演算手段と、 その角速度を時間で微分することによって角加速度を算 出する角加速度演算手段と、 その角加速度に回転体 1の慣性モーメント (イナーシ ャともいう) を乗ずることにより回転体 1に作用するトルクを算出するトルク演算 手段の機能を有する。
さらに、 この演算手段 6に、 そのトルクを回転体 1の回転開始後該トルクを測定 した回転角度範囲で積分することによって、 その回転角度範囲の終端で上記回転体 が持つ回転のエネルギーを算出するエネルギー演算手段、 あるいは、 ある時点にお いて測定された角速度 ωと、 回転体 1の慣性モーメント I とから、 該時点における 回転体 1が持つ回転のエネルギー Εを、 Ε = ( ΐ Ζ 2 ) · Ι · ω 2 の演算によって算出 するエネルギー演算手段の機能も持たせることができる。
そして、 その算出結果をそれぞれ C T R表示器あるいは液晶表示器等による表示 手段 7に表示させることができる。
次に、 この発明の具体的な第 1の実施形態として、 この回転情報測定装置の被測 定対象である回転体 1が、 時計の針を回転させるためのァクチユエータとして使わ れている 2極ステップモータのロータである場合の例を、 第 2 A図乃至第 6図を参 照して説明する。
第 2 A図および第 2 B図は、 回転体 1であるロータを有する 2極ステップモータ の断面図およびそのロータ 1の斜視図、 第 3図はその回転体 1の回転軸 1 aの反射 面 1 bに対する回転情報測定装置の光ビーム照射手段 2と反射光検出手段 3の配置 を示す側面図、 第 4図は同じくその反射光検出手段 3の各光検出器の配置を示す平 面図である。
第 2 A図に示す 2極ステップモータ 1 0は、 回転体 1であるロータ (以下 「ロー タ 1」 という) がステ一タ 1 2内に設けられ、 そのステ一タ 1 2にはコイル 1 3が 卷装されており、 そのコイル 1 3に駆動パルスが印加されることによって励磁され、 ロータ 1をステップ回転させる。
そのロータ 1には、 第 2 B図にも示すようにその中心に回転軸 1 aを貫通させて —体に設けており、 その回転軸 l aに小歯車 (カナ) 1 4を嵌合固定している。 そ して、 この回転軸 1 aが輪列受け 1 5と地板 1 6の各軸受部によって回転自在に支 持されている。
さらに、 この回転軸 1 aの輪列受け 1 5から突出する先端面を斜めに鏡面加工す ることにより、 回転軸線 1 cに対して角度 0だけ傾斜した反射面 1 bを形成してい る。 この例では、 その傾斜角度 0はおよそ 4 5度である。
なお、 この反射面 l bは、 回転軸 1 aの先端を直接斜めに鏡面加工する代わりに、 回転軸 1 aの先端面に回転軸線 1 cに対して傾斜した反射面 1 bを有する光反射部 材を貼着して形成するようにしてもよい。 しかし、 その場合には、 回転体 1の挙動 に影響を与えないように、 できる限りその質量が小さいことが望ましい。 光反射部 材の設置位置が回転軸上であることを考慮すると、 現実的には光反射部材の質量は
ロータ 1の質量の 1 %未満であればほとんど影響はない。
光ビーム照射手段 2は第 3図に示すように、 ベ一スプレート 1 7上に立設された 支柱 1 8の上部にホルダ 2 1が取付ねじ 2 2によって固設され、 そのホルダ 2 1の 水平に延びる上支持片 2 1 aに光源として半導体レーザ 2 3を、 下支持片 2 1 bに 集光レンズ 2 4をそれぞれ回転軸 1 aの回転軸線 1 c と光軸を一致させて取り付け ている。
半導体レーザ 2 3は、 近赤外域の 9 0 0 n m付近の波長にピークを有するレーザ 光を発光する。 そのレーザ光を集光レンズ 2 4によって集光して細いレーザビーム L Bとし、 下支持片 2 1 bの透孔 2 1 cから回転軸線 1 cに沿って (図示の例では 鉛直方向に) 回転軸 1 aの反射面 1 bの中心部に照射する。
このとき、 反射面 1 bに対するレーザビーム L Bの入射角は 4 5度であるから、 反射角も 4 5度になり、 反射光 L Rは回転軸線 1 c と直交する方向 (図示の例では 水平方向) の平面内に反射される。 反射面 1 bの回転軸線 1 cに対する傾斜角度が 4 5度でない場合には、 円錐面内に反射されることになる。 これらの平面あるいは 円錐面を反射光が形成する掃引面という。
反射光検出手段 3は第 3図及び第 4図に示すように、 フォ トダイォード又はフォ ト トランジスタ等の光検出素子 3 1を備えた光検出器 3 2を、 回転体 1の回転軸線 1 cを中心とする上記掃引面上の同一円周 (第 4図に一点鎖線 3 3で示す) 上に、 所定の角度間隔を置いてそれぞれ反射面 1 bの中心に向けて多数配設している。 第 4図に示す例では、 ロータ 1が静止時に反射光が到達する地点を基点 P。 とし て、 6度間隔で計 3 8個 (チャネル C H 1から C H 3 8 ) の光検出器 3 2を配置し た。
それは、 時計用の 2極ステップモータによる 1ステップの駆動によるロータ 1の 回転角度が 1 8 0度であるから、 オーバシュート分の角度 αとして 4 2度とつて 2 2 2度の角度範囲での回転情報を測定するためである。
各光検出器 3 2は第 3図に示すように、 ベ一スプレート 1 7上に立設された支柱 3 4とそれに平行な送りねじ 3 5とによって回動不能に支持され、 送りねじ 3 5を 回転させることにより、 反射光 L Rの入射位置に合わせて高さ方向の位置を調整で きるようになっている。 3 6は送りねじ 3 5と光検出器 3 2との間のバックラッシ を除くためのコイルスプリングである。
各光検出器 3 2の光検出素子 3 1 としては、 フォ トダイオード (N E C製 P H— 3 0 2 ) を用いることにより、 半導体レ一ザ 2 3が発光するレ一ザ光の波長とのマ ツチングを図り、 高速応答を達成することができた。 しかし、 光検出素子は反射光 L Rを検出できればよいので、 光ビーム照射手段 2の光源との相性によりフォトダ ィォ一ド以外のものを用いてもよい。
この回転情報測定装置によれば、 反射光検出手段 3の各光検出素子 3 1の基点 P o からの角度位置は既知であるから、 2極ステップモータ 1 0のステップ駆動に よりロータ 1がステップ回転したとき、 その駆動開始時点あるいは光検出器 3 2の 基点 P。 にある光検出素子 3 1が反射光 L Rを検出しなくなった時点 (これらを
「基準時点」 とレヽう) から、 反射光 L Rの掃引により順次各光検出器 3 2の光検出 素子 3 1が反射光 L Rを検出するまでの経過時間 (回転時間に相当する) を測定す ることにより、 回転を始めたロータ 1の回転角の時間情報が精度よく得られる。 第 1図に示した回転角の時間情報測定手段 4としてマイクロコンピュータを用い て、 この装置全体の時間管理を行うことにより、 1 s程度の精度を有するロータ 回転角に対する時間情報が比較的容易に得られる。
その得られた回転角に対する時間情報は、 記憶手段 5に一時記憶された後、 演算 手段 6によって前述した角速度, 角加速度, トルク, またはエネルギーのうちの知 りたい物理量に変換され、 表示手段 7に表示される。
その測定結果、 すなわち 2極ステップモータのロータを被測定対象としたときの 各種回転情報の表示例を第 5図および第 6図に示す。
第 5図の (a ) に示す曲線 7 1は、 回転角の時間情報測定手段 4によって測定さ れた回転角に対する時間情報を、 回転時間を横軸に回転角を縦軸にして示した回転 角(rad) の時間特性を示す曲線である。
同図の (b ) に示す曲線 7 2は、 この回転角の時間特性を時間で微分することに より得られた角速度 (rad/sec)の時間特性を示す曲線である。
同図の (c ) に示す曲線 7 3は、 その角速度の時間特性をさらに時間で微分する ことにより得られた角加速度(rad/sec2)の時間特性を示す曲線である。
第 6図に示す曲線 7 4は、 曲線 7 3で示した角加速度の値にロータ 1のイナーシ ャ (質量) を乗ずることにより得られたトルク (N · m) の回転角特性を回転角 0 radから π rad ( 1 8 0度) までの回転角度範囲 (第 5図に Tで示す角速度がピー クになるまでの時間に相当する) で示した曲線である。
このトルクの値を、 それを測定した回転角 0 radから π radまでの回転角度範囲 で積分することにより、 この角度範囲の終端である π rad回転した時点における口 ータ 1の回転によるエネルギーを算出できる。 それを第 6図に斜線を施して示す部 分の面積で表わす。 トルクが 0より上側の部分は正のエネルギー、 0より下側の部 分は負のエネルギーを示し、 その差が π rad回転した時点でのエネルギーの大きさ を表す。
その後ロータ 1はオーバシュ一トして、 わずかな正逆回動を操り返しながら回転 角 π radの位置で停止する。
なお、 ある時点において測定された角速度を ω、 回転体 1の慣性モーメントを I とすると、 該時点における回転体 1が持つ回転のエネルギー Εを、
Ε = ( 1 / 2 ) · I · ω 2 の演算によって算出して、 それを表示することもできる。 このように、 この回転情報測定装置およびそれを使用した回転情報測定方法によ れば、 2極ステップモータのロータの実際の回転状況を把握するための各種の回転 情報を、 ロータに接触することなく、 したがってその回転挙動に影響を与えずにそ
の回転角度範囲にわたって正確に測定することができる。
次に、 この発明の具体的な第 2の実施形態について説明する。
上述の第 1の実施の形態においては、 2極ステップモータのロータの動きに合わ せて光検出素子 3 1を 6度間隔で設置したが、 光検出素子を回転体の運動に応じて 配置することにより多方面の応用が可能である。 たとえば、 時計の針の運針状況を 把握することも可能である。
ステップ運針を行う秒針に注目すると、 秒針は 1ステップ 6度という回転を行な つているが、 動いている時間は 1 O m s以下であるために、 従来はその非定常な運 針状況を正確に把握できなかった。 しかしこの発明による回転情報測定装置およぴ 回転情報測定方法を用いれば、 秒針が実際に動いている状態での運針状況の把握が 可能である。
そこで、 秒針軸の先端部をその回転軸線に対して傾斜した斜面に形成し、 そこに 光反射部材として微小ミラ一を設置して反射面を形成する。 例えば、 厚さ 1 0 0ミ クロンの S i ゥヱハー面上に金 (A u ) を蒸着した後、 縦横 1 0 0ミクロンの大き さに切り出したものを微小ミラーとする。
このときの微小ミラ一の重量はおよそ 2 . 3 /z gであり、 四番車と秒針を合わせ た重量がおよそ 8 m gであるのに対してその重量比は高々 0 . 1 %未満である。 そ のため、 微小ミラ一を取り付けたことによる秒針軸の回転挙動に与える影響は無視 しうる。
そして、 この実施形態においては、 第 1の実施形態における反射光検出手段 3の 各光検出器 3 2に代えて、 秒針軸の回転軸線を中心とする上記微小ミラ一による反 射光の掃引面内で同一円周上に、 第 7図に示すように S i ゥヱハー上に複数のフォ トダイォード 3 7 aを作り込んだフォ トダイォードアレイ 3 7を配設する。
このフォ トダイォードアレイ 3 7を使用することによって、 秒針の 1ステップの 回転角度である 6度の狭い範囲内にも多数の光検出素子であるフォトダイォード 3
7 aを配置でき、 結果的に狭い角度領域内の運針状況も十分精度よく把握すること が可能になる。
反射光検出手段として用いたフォトダイォードアレイ 3 7は、 第 7図に示すよう な形状で、 縦 5 m ni、 横 0 . 8 m mのフォトダイオード 3 7 aが横方向に 1 mmの ピッチで 3 5素子が整列している構成のものである。
なお、 このように多数のフォトダイォ一ド 3 7 aを平面に配列したフォトダイォ 一ドアレイ 3 7を用いても、 反射光を受光する角度範囲が 6度という狭い範囲であ るため、 どのフォトダイォード 3 7 aの受光面も反射面からの距離が殆ど変わらず、 精度上の問題は生じない。
次に、 この発明の具体的な第 3の実施形態について説明する。
第 8図は、 その回転情報測定装置を被測定物である回転体と共に示す側面図であ る。 この実施形態においては、 回転体 1の回転軸 1 aの先端部に、 回転体 1の回転 軸線 1 cに対して傾斜角 Θがおよそ 8 5度 (回転軸線 1 cに直交する平面に対して およそ 5度) の傾きをもつように反射面 1 bを形成した。 この傾きにより反射面 1 bからの反射光 L Rは、 光ビーム照射手段 2から回転軸線 1 cに沿って照射される レーザビーム L Bに対しておよそ 1 0度の角度をもって回転体 1の回転に伴なつて 回転し、 円錐状の掃引面を形成する。
光ビーム照射手段 2は、 第 3図に示した第 1の実施形態のものと同様に、 半導体 レーザおよび集光レンズ等によって構成されている。
そして、 反射光検出手段としては、 この光ビーム照射手段 2の周囲を囲むように、 第 9図に示すような円環形状のフォ トダイォードアレイ 3 8を配設した。 この円環 形状のフォトダイォ一ドアレイ 3 8は、 ドーナツのような円環形状の S i ゥヱハー の表面に、 円環中心から放射状に広がる直線によって円周方向に等分割された複数 の光検出素子であるフォトダイォード 3 8 aを形成している。
このようにフォトダイオード 3 8 aを円環形状に配列することによって、 全周に
おいて時間情報の測定が可能になる。 この実施形態における円環形状のフォトダイ ォードアレイ 3 8は、 各フォトダイォード 3 8 aの中心を通る基準円の半径が 3 0 m m , 素子間ピッチが 3 . l mm で 6 0素子が円周方向に配列されている。
光ビーム照射手段 2は、 そのレーザビーム照射光軸と円環形状のフォ トダイォー ドアレイ 3 8の中心軸とを一致させて一体に組み合わせてュニッ ト化することが可 能である。 そうすることにより、 前述の第 1, 第 2の実施形態で必要であった光ビ ーム照射手段 2と光検出素子との位置関係の調整を行う必要がなくなる。
ただし、 光ビーム照射手段 2と円環形状のフォ トダイォードアレイ 3 8とが一体 となったものと、 回転軸 1 a上の反射面 1 bとの間の距離を、 反射光 L Rが適切に 円環形状のフォトダイォ一ドアレイ 3 8の各フォトダイォード 3 8 aに入射するよ うに調整することは必要である。
このように、 反射光検出手段を光ビーム照射手段に近づけるか、 もしくは一体化 することにより、 回転情報測定装置が必要とする空間が小さくなり、 装置の小型化 が可能になる。 また、 被測定物である回転体を移動させることが困難な場合に、 回 転情報測定装置を持ち運んで測定を行うことが可能になる。
さらに、 光ビーム照射手段による光ビームの照射方向は鉛直方向だけでなく、 水 平方向あるいは任意の角度に設定することも容易になる。
ここで、 この第 3の実施形態に使用する第 1図における回転角の時間情報測定手 段 4と記憶手段 5に相当する部分の回路構成例を第 1 0図によって説明する。 この実施形態においては、 回転角の時間情報測定手段 4を 2値化回路群 4 1 とパ ラレルシリアル変換器 4 2とカウンタ 4 3とによって構成している。 また、 記憶手 段 5をデコーダ 5 0と R AM等のメモリ 5 1によって構成している。
円環形状のフォ トダイォードアレイ 3 8の各フォ ドダイォ一ド 3 8 aカ 、 第 8図 に示した回転体 1の回転時にその回転軸 1 aの反射面 1 bからの反射光 L Rを順次 受光することによって出力する検出信号 S dを、 'それぞれ 2値化回路群 4 1の各 2
値化回路 (コンパレータによって構成される) 4 1 aによって 2値化してパルス信 号 P dに変換する。
6 0個のフォ トダイォード 3 8 aによるチャネル C H 1〜C H 6 0の各検出信号 S dを、 それぞれ 2値化回路群 4 1の各 2値化回路 4 1 aによって 2値化し、 順次 タイ ミングがずれたパラレルのパルス信号 P dを、 全て個別の信号線によってパラ レルシリアル変換器 (O R回路によって構成される) 4 2に入力させ、 そこでシリ アルなパルス信号 P sに変換する。
このパラレルのパルス信号 P dとシリアルなパルス信号 P sの関係を第 1 1図に 示す。 この例ではチャネル C H 1〜C H 6 0の 6 0本の信号線によるパラレルのパ ルス信号 P d l〜P d 60 が 1本の信号線によるシリアルのパルス信号 P sに変換さ れる。
このシリアルのパルス信号 P sを、 クロックパルス c pをカウントする時間測定 用のカウンタ 4 3のトリガ端子に入力させる。
このカウンタ 4 3は、 第 8図に示した回転体 1の回転開始時点 (第 1図の駆動回 路 8からの駆動パルスの出力時点) 、 あるいはシリアルのパルス信号 P sの最初の 立下りエッジ (これらを 「基準時点」 とする) をトリガとして、 カウント値をリセ ッ トしてクロックパルス c pのカウント動作を開始する。 その後、 シリアルのパル ス信号 P sの立上りエッジと立下りエッジをトリガとして、 その時のカウント値を 出力してメモリ 5 1に記憶させていく。 このカウント値が、 基準時点からの経過時 間あるいは回転体 1の回転時間に相当する。
このとき、 デコーダ 5 0は、 トリガとなったパルスが円環形状のフォ トダイォー ドアレイ 3 8の中のどのフォトダイォ一ド 3 8 aからの検出信号 S dによるパルス であつたかを同時に判定する。 そのため、 デコーダ 5 0にはパラレルシリアル変換 器 4 2への入力と同じく 2値化回路群 4 1の各 2値化回路 4 1 aからのパルス信号 P dが入力され、 円環形状のフォ トダイォードアレイ 3 8の該当するフォトダイォ
—ド 3 8 aの素子番号を示す識別コードをメモリ 5 1に出力する。 この例において は、 その識別コードとして 6ビッ トのバイナリ信号を用いた。
したがって、 メモリ 5 1に記憶されるデータは、 デコーダ 5 0からの識別コード と、 シリアルのパルス信号 P sの立上りと立下りを区別するコードと、 カウンタ 4 3からのカウント値の合計 3種類のデータであり、 シリアルのパルス信号 P sの立 上り又は立下りエッジが発生する度に新しい 3種類のデータがメモリ 5 1に記憶さ れていく。 このようにすることにより、 記憶するデータ量を大幅に縮小することが できる。
なお、 シリアルのパルス信号 P sの立上り又は立下りの一方のエッジでのみ力ゥ ンタ 4 3のカウント値を記憶するようにしても、 一定回転角毎の回転時間情報を得 ることができる。 しかし、 立上り と立下りの両方のエッジでカウンタ 4 3のカウン ト値を記憶するようにすれば、 そのカウント値の平均値をとることによって、 各フ ォ トダイオード 3 8 aの中心で反射光を受光した時点までの回転時間情報を算出す ることができる。
その後の演算手段 6による、 角速度, 角加速度, トルク, およびエネルギーの算 出方法は前述の実施形態と同様である。
この第 1 0図に示した回路は、 2値化回路群 4 1を構成する 2値化回路の数を反 射光検出手段 3を構成する光検出素子の数に合わせることにより、 前述の第 1 , 第 2の実施形態の回転角の時間情報測定手段および記憶手段としても使用することが できる。
この発明の各実施形態によって測定したトルクおょぴエネルギーの精度について は、 回転体の慣性モーメントの精度に依存するところが大きい。 部品公差および回 転時の偏心などを考慮すると、 計測値 ± 5 %以内程度の精度は有していると推定さ れる。
この発明の具体的な実施形態を 3通り説明したが、 反射光検出手段の構成、 測定
角度範囲、 時間情報の処理方法など、 上述の実施の形態に示されたものに限定され ることなく、 種々の組み合わせあるいは変更が可能である。
この発明によれば、 従来は正確な把握ができなかった小さな回転体の回転時の運 動状況を定量的に測定できるようになり、 その回転体の性能評価が可能になる。 ステップモータに関していえば、 入力したエネルギーは印加した電流と電圧から 算出できるため、 測定されたロータの回転エネルギーとの比較からモータとして実 際に運動しているときの効率がわかり、 設計値との誤差や特性のパラツキなどが今 後の開発指針として確認できる。
また、 時計の針の動きに関しても、 人の目に美しく映る運針状況と現状との差異 が明確になるため、 今後の開発指針が得られる。
この発明による回転体の回転情報測定方法およぴその測定装置は、 従来計測でき なかった小さなトルクやエネルギーの測定おょぴ非定常的な動きをする回転体に対 する回転情報の測定に特に有効である。 上述以外の応用例としては、 アブソリュー トエンコーダあるいはワウフラッタゃジッタ測定器などにも適用可能である。 産業上 の利用性
この発明による回転体の回転情報測定方法およびその測定装置によれば、 従来は 正確な測定が不可能であつたような小さな回転体の微小なトルクおよび微小エネル ギ一等の回転情報を、 回転体の回転挙動に影響を与えることなく非接触で測定でき、 特に回転体が非定常な動きをする場合の測定に有効である。
また、 回転体が実際に運動している状況下での測定が可能で、 かつその結果とし て種々の回転情報が定量的に得られるために、 設計値と現実とのズレなども容易に 判り、 今後の開発指針が明確になるなど、 従来にない多くの利点がある。
Claims
1 . 被測定対象としての回転体の回転軸の先端にその回転軸線に対して傾斜した反 射面を形成しておき、
前記回転体の反射面に対して前記回転軸線に沿う方向から光ビームを照射し、 該 回転体の回転開始後、 前記反射面による反射光を前記回転軸線を中心とする同一円 周上に所定角度間隔を置いて設置した複数の光検出素子によって検出することによ り、 基準時点から前記複数の各光検出素子によって前記反射光がそれぞれ検出され るまでの経過時間を、 前記回転体の回転角の時間情報として測定することを特徴と する回転体の回転情報測定方法。
2 . 請求の範囲第 1項記載の回転体の回転情報測定方法によって測定した回転角の 時間情報を、 時間で微分することによって前記回転体の角速度を測定することを特 徴とする回転体の回転情報測定方法。
3 . 請求の範囲第 2項記載の回転体の回転情報測定方法によって測定した角速度を、 さらに時間で微分することによって前記回転体の角加速度を測定することを特徴と する回転体の回転情報測定方法。
4 . 請求の範囲第 3項記載の回転体の回転情報測定方法によつて測定した角加速度 に前記回転体の慣性モ一メントを乗ずることにより、 該回転体に作用するトルクを 測定することを特徴とする回転体の回転情報測定方法。
5 . 請求の範囲第 4項記載の回転体の回転情報測定方法によって測定したトルクを、 前記回転体の回転開始後該トルクを測定した回転角度範囲で積分することにより、 該回転角度範囲の終端で前記回転体が持つ回転のエネルギーを測定することを特徴 とする回転体の回転情報測定方法。
6 . 請求の範囲第 2項記載の回転体の回転情報測定方法によって測定したある時点 における角速度を ω、 前記回転体の慣性モーメントを I として、 該時点における前 記回転体が持つ回転のエネルギー Εを、 E = ( lノ 2 ) · Ι · ω 2 の演算によって求め て測定することを特徴とする回転体の回転情報測定方法。
7 . 回転軸の先端にその回転軸線に対して傾斜した反射面を形成した回転体を被測 定対象とし、 その回転体の回転情報を測定する装置であって、
該回転体の前記反射面に対して前記回転軸線に沿う方向から光ビームを照射する 光ビーム照射手段と、
前記回転軸線を中心とする同一円周上に所定角度間隔を置いてそれぞれ前記反射 面による反射光を検出するように配置された複数の光検出素子を備えた反射光検出 手段と、
前記回転体の回転開始後、 前記反射面による反射光を前記複数の光検出素子によ つて検出することにより、 基準時点から前記複数の各光検出素子によって前記反射 光がそれぞれ検出されるまでの経過時間を、 前記回転体の回転角の時間情報として 測定する手段と、
を有することを特徴とする回転体の回転情報測定装置。
8 . 請求の範囲第 7項記載の回転体の回転情報測定装置によって測定された回転角 の時間情報を、 時間で微分することによって前記回転体の角速度を算出する角速度 演算手段を設けたことを特徴とする回転体の回転情報測定装置。
9 . 請求の範囲第 8項記載の回転体の回転情報測定装置によって測定された角速度 を、 さらに時間で微分することによって前記回転体の角加速度を算出する角加速度 演算手段を設けたことを特徴とする回転体の回転情報測定装置。
1 0 . 請求の範囲第 9項記載の回転体の回転情報測定装置によって測定された角加 速度に前記回転体のイナーシャ (質量) を乗ずることにより、 該回転体に作用する トルクを算出するトルク演算手段を設けたことを特徴とする回転体の回転情報測定
1 1 . 請求の範囲第 1 0項記載の回転体の回転情報測定装置によって測定されたト ルクを、 前記回転体の回転開始後該トルクを測定した回転角度範囲で積分すること により、 該回転角度範囲の終端で前記回転体が持つ回転のエネルギーを算出するェ ネルギ一演算手段を設けたことを特徴とする回転体の回転情報測定装置。
1 2 . 請求の範囲第 8項記載の回転体の回転情報測定装置によって測定されたある 時点における角速度 ωと、 前記回転体の慣性モーメントを Iとから、 該時点におけ る前記回転体が持つ回転のエネルギー Εを、 E = ( l 2 ) · Ι · ω 2 の演算によって 算出するエネルギー演算手段を設けたことを特徴とする回転体の回転情報測定装置。
1 3 . 請求の範囲第 7項記載の回転体の回転情報測定装置において、
前記回転体を回転駆動する駆動手段を設けたことを特徴とする回転体の回転情報 測定装置。
1 4 . 請求の範囲第 1 0項記載の回転体の回転情報測定装置において、
前記トルク演算手段によって算出されたトルクを表示する表示手段を設けたこと を特徴とする回転体の回転情報測定装置。
1 5 . 請求の範囲第 1 1項記載の回転体の回転情報測定装置において、
前記エネルギー演算手段によって算出されたエネルギーを表示する表示手段を設 けたことを特徴とする回転体の回転情報測定装置。
1 6 . 請求の範囲第 1 2項記載の回転体の回転情報測定装置において、
前記エネルギー演算手段によって算出されたエネルギーを表示する表示手段を設 けたことを特徴とする回転体の回転情報測定装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9/1415 | 1997-01-08 | ||
JP00141597A JP2002122493A (ja) | 1997-01-08 | 1997-01-08 | 微小トルクとエネルギーの測定方法および測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998030869A1 true WO1998030869A1 (fr) | 1998-07-16 |
Family
ID=11500855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/000032 WO1998030869A1 (fr) | 1997-01-08 | 1998-01-08 | Procede de mesure d'information portant sur la rotation d'un corps rotatif et instrument de mesure de l'information portant sur la rotation |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002122493A (ja) |
WO (1) | WO1998030869A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6548922B1 (en) | 1998-06-11 | 2003-04-15 | Citizen Watch Co., Ltd. | 2-Pole stepper motor for timepiece |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5436774A (en) * | 1977-08-26 | 1979-03-17 | Toyota Motor Co Ltd | Transient torque measuring instrument |
JPS5977005U (ja) * | 1982-11-15 | 1984-05-24 | 株式会社フジクラ | 角度検出器 |
JPS6126818A (ja) * | 1984-07-17 | 1986-02-06 | Komatsu Ltd | 回転角検出装置 |
JPS61111433A (ja) * | 1984-10-02 | 1986-05-29 | Jeco Co Ltd | トルク測定装置 |
JPH049766A (ja) * | 1990-04-27 | 1992-01-14 | Takatsuki Denki Seisakusho:Kk | 光学式速度検出装置 |
JPH0498109A (ja) * | 1990-08-17 | 1992-03-30 | Toshiba Corp | 回転角測定装置 |
JPH05332886A (ja) * | 1989-12-22 | 1993-12-17 | Avl Ges Verbrennungskraftmas & Messtech Mbh | 内燃機関を診断する方法と装置 |
JPH0626948A (ja) * | 1992-07-12 | 1994-02-04 | Yasuo Odai | 仕事量測定装置 |
JPH06185957A (ja) * | 1992-06-15 | 1994-07-08 | Toshiba Corp | 回転角測定装置 |
JPH07134016A (ja) * | 1993-11-10 | 1995-05-23 | Toyota Motor Corp | 光学式回転角センサ |
-
1997
- 1997-01-08 JP JP00141597A patent/JP2002122493A/ja active Pending
-
1998
- 1998-01-08 WO PCT/JP1998/000032 patent/WO1998030869A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5436774A (en) * | 1977-08-26 | 1979-03-17 | Toyota Motor Co Ltd | Transient torque measuring instrument |
JPS5977005U (ja) * | 1982-11-15 | 1984-05-24 | 株式会社フジクラ | 角度検出器 |
JPS6126818A (ja) * | 1984-07-17 | 1986-02-06 | Komatsu Ltd | 回転角検出装置 |
JPS61111433A (ja) * | 1984-10-02 | 1986-05-29 | Jeco Co Ltd | トルク測定装置 |
JPH05332886A (ja) * | 1989-12-22 | 1993-12-17 | Avl Ges Verbrennungskraftmas & Messtech Mbh | 内燃機関を診断する方法と装置 |
JPH049766A (ja) * | 1990-04-27 | 1992-01-14 | Takatsuki Denki Seisakusho:Kk | 光学式速度検出装置 |
JPH0498109A (ja) * | 1990-08-17 | 1992-03-30 | Toshiba Corp | 回転角測定装置 |
JPH06185957A (ja) * | 1992-06-15 | 1994-07-08 | Toshiba Corp | 回転角測定装置 |
JPH0626948A (ja) * | 1992-07-12 | 1994-02-04 | Yasuo Odai | 仕事量測定装置 |
JPH07134016A (ja) * | 1993-11-10 | 1995-05-23 | Toyota Motor Corp | 光学式回転角センサ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6548922B1 (en) | 1998-06-11 | 2003-04-15 | Citizen Watch Co., Ltd. | 2-Pole stepper motor for timepiece |
US6774513B2 (en) | 1998-06-11 | 2004-08-10 | Citizen Watch Co., Ltd | Two-pole step motor for timepiece |
Also Published As
Publication number | Publication date |
---|---|
JP2002122493A (ja) | 2002-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4449191A (en) | Process and an apparatus for measuring an angle | |
EP0856718B1 (en) | Automatic surveying apparatus | |
EP0003288B1 (en) | Modular rotary shaft incremental encoder and a fixture and a method for pre-aligning an optical encoder stator | |
KR100693347B1 (ko) | 디지털 회전형 각속도 검출장치 | |
CN111587382A (zh) | 激光测量装置及无人飞行器 | |
JP3185613B2 (ja) | 距離測定装置 | |
US8637804B2 (en) | Rotary position encoder | |
US4326428A (en) | Two degree of freedom rate gyroscope | |
US4339959A (en) | Rate gyroscope having an optical sensor system | |
JPH07335962A (ja) | 光ビーム走査装置 | |
WO1998030869A1 (fr) | Procede de mesure d'information portant sur la rotation d'un corps rotatif et instrument de mesure de l'information portant sur la rotation | |
NL8202300A (nl) | Inrichting voor het bepalen van hoekverplaatsingen van een voorwerp. | |
US4334430A (en) | Device for metering the angular position of a direction indicator | |
JPS6123932A (ja) | 負荷量測定方式 | |
CN104655161A (zh) | 测距装置及其寻找测距起始点的方法 | |
JP2865337B2 (ja) | 光学測定装置 | |
US7460249B2 (en) | Measuring instrument of polygon-mirror motor | |
JPH0587589A (ja) | エンコーダ装置 | |
JPH0429571A (ja) | 回転検出器付きモータ | |
JPS63153425A (ja) | 回転量検出装置 | |
CN111751567A (zh) | 转速检测装置和车辆 | |
JPS62174718A (ja) | 走査光学装置 | |
JP3416740B2 (ja) | 変位計 | |
JP3150773B2 (ja) | ポリゴンミラー測定装置 | |
JPH09292407A (ja) | 角加速度検出器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 2000572550 Format of ref document f/p: F |