+

WO1998017813A1 - Procede de transformation de riz de type indica - Google Patents

Procede de transformation de riz de type indica Download PDF

Info

Publication number
WO1998017813A1
WO1998017813A1 PCT/JP1997/003806 JP9703806W WO9817813A1 WO 1998017813 A1 WO1998017813 A1 WO 1998017813A1 JP 9703806 W JP9703806 W JP 9703806W WO 9817813 A1 WO9817813 A1 WO 9817813A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
rice
acid
hygromycin
agrobacterium
Prior art date
Application number
PCT/JP1997/003806
Other languages
English (en)
French (fr)
Inventor
Yukoh Hiei
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to CA002240454A priority Critical patent/CA2240454C/en
Priority to KR1019980704510A priority patent/KR19990072163A/ko
Priority to AU47219/97A priority patent/AU736027B2/en
Priority to US09/091,666 priority patent/US6329571B1/en
Priority to EP97909573A priority patent/EP0897013A4/en
Publication of WO1998017813A1 publication Critical patent/WO1998017813A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation

Definitions

  • the present invention relates to a method for transforming rice by an agrobacterium method.
  • Electroporation and PEG methods via protoplasts have been developed as rice transformation methods, and they have been used in japonica rice, which is easy to culture.
  • this method is applicable only to cultivars that have established a redifferentiation system from protoplasts, and there are few examples of application to indica rice, which is difficult to culture.
  • the particle gun method does not require a protoplast culture system, it has been used by many research institutions as a new transformation method applicable to a wide variety of varieties. In general, it is considered difficult to cultivate Indy rice cultivars, but among them, a group of varieties called Groupl (Glaszma nn JC (1987) Isozymes and classification of Asian rice varieties) The or Appl. Genet. 74: 21-30) is considered difficult to culture.
  • the particle gun method reported by Ghris tou et al. (Christou P., Ford, TL and Kofron, M. (1992) The development of a variety-independent gene-transfer method for rice.
  • the agrobacterium method has been widely used as a simple and stable transformation method in dicotyledonous plants. In contrast, it has been considered that the agrobacterium method cannot be applied to monocotyledonous plants such as grasses (Potrykus I., (1990) Gene transter to cereals: an assessment Bio / technology). 8: 5 35-542).
  • transformation is possible in rice, a monocotyledonous plant (W094 / 00977; W095 / 06722; Hiei Y., Ohta, S., Komari, ⁇ . And Kumashi ro).
  • Ranee et al. Disclose an NB medium that is effective for inducing callus having regenerating ability from ripe seeds of indica rice (lann M. Ranee, I.. Et a I., Partial desiccation of mature embryo—der ived calli, a simple treatment that dramatically enhcnaces the regeneration ability of indica rice, Plant Cell Reports (1994) 13: 647-651).
  • the effect of the NB medium on the selection of transformed cells has not been investigated.
  • Li et al. Reported efficient transformation of Japonica rice using a medium similar to NB (without NAA, BA and L-glutamine) (Li L et al.
  • the method using protoplasts has a problem that it cannot be applied to varieties for which regeneration systems from protoplasts have not been established. Even with the particle gun method, the transformation efficiency of low-cultivation varieties such as indica rice is low with the methods reported so far.
  • the agrobacterium method as a transformation method for indica rice.
  • a method for transforming Japonica rice by the Agrobacterium method is known.
  • the inventors of the present application examined whether the method applied to Japonica rice could be applied to Indy rice.
  • a method for transforming rice with Agrobacterium a method using dedifferentiated tissue can be considered first, as reported in W094 / 00977 and Hiei et al. (1994). Therefore, using several kinds of indica rice classified into Group I, we attempted to introduce genes into calli by agrobacterium. As a result, it was found that a transformant was obtained, albeit slightly. However, a reproducible transformation system could not be established.
  • an object of the present invention is to provide a method capable of transforming indica rice with high efficiency.
  • the present inventors have conducted intensive studies and found that in the method described in W095 / 06722, EP-A-0672752 for transforming immature embryonic cells of rice with bacteria belonging to the genus Agrobacterium, The present inventors have found that by using a medium based on the NB medium of Ranee et al. As the medium used in the step, high transformation efficiency can be achieved even in indica rice, and thus completed the present invention.
  • the present invention provides a method for transforming rice, which comprises transforming immature embryo cells of Indy rice by the Agrobacterium method and selecting transformed cells.
  • FIG. 1 is a diagram showing the structures of the super binary vectors PT0K162 and pT0K233 that can be preferably used in the method of the present invention.
  • the cells used for the transformation method of the present invention are immature embryo cells of Indy rice.
  • the indy rice is not particularly limited, but is particularly effective when applied to those classified into Group I (Glaszmann, supra), which are particularly difficult to transform in the prior art.
  • Varieties belonging to Group I indica rice include IR8, IR24, IR26, IR36, IR54, IR64, IR72, Shinsei dwarf 1, Nanjing 11 and Suwon 258. It is possible, but not limited to these.
  • the immature embryo refers to an immature seed embryo that is in a ripening process after pollination.
  • the stage (ripening stage) of the immature embryo used in the method of the present invention is not particularly limited, and may be collected at any time after pollination. However, those after fertilization 2 are preferred.
  • the immature embryos are preferably immature embryos of inbred, F1 between inbreds, F1 between inbred and naturally pollinated varieties, and commercially available F1 varieties. Furthermore, among embryos, scutellum cells are preferred.
  • the immature embryo does not need to be subjected to dedifferentiation treatment before contact with the bacterium of the genus Agu.
  • the dedifferentiation treatment means that the differentiated cells of the plant tissue are cultured in a dedifferentiation medium, This is a process for obtaining a cell mass in an undifferentiated state such as callus that proliferates.
  • bacteria belonging to the genus Agrobacterium used for transformation those having Ding plasmid or R i plasmid and conventionally used for transformation of dicotyledonous plants can be used. Many of these have a vector containing a DNA region derived from the virulence region (vir region) of the Ti plasmid derived from Agrobacterium tumefaciens, and the gene responsible for the trait to be imparted to the plant is inserted into this vector. Or it is present in a plasmid separate from this vector, and is inserted in the Ti plasmid by homologous recombination or the like. Komari et al.
  • the virulence region of the Ti plasmid pTiBo542 contained in Agrobacterium tumefaciens A281, the left border and right border sequences of the Ti plasmid of the genus Agrobacterium or the T-DNA of the Ri plasmid are used.
  • the vector having the desired gene located between the left border and the right border is referred to as “super binary vector —”. In the present invention, such a super binary vector can be preferably used.
  • FIG. 1 An example of such a super-binary vector is pT0K162 (Japanese Patent Application Laid-Open No. Hei 4-222527, US Pat. No. 5,591,616, EP-A-0 604 662).
  • Figure 1 shows the structure.
  • This plasmid contains a plasmid called pT0K154 that can grow in E. coli and / ⁇ ra & acier / 'tumefac /' e "s (a known PGA472 plasmid derived from Ti plasmid and a known broad host called pVGK101). Plasmid containing the T region constructed from the plasmid in the following manner.
  • a kanamycin resistance gene is arranged as a gene to be introduced into Indy rice, between the two border sequences of the T region, and in this example, the gene to be introduced into Indy rice is pTiBo542 This is an example in which the DNA is located on a plasmid containing a cloned DNA fragment derived from the virulence region.
  • pT0K233 in which the hygromycin resistance gene (hpt) and the GUS gene with castor intron derived from pT0K162 and pGL2-IG (W095 / 06722) were incorporated by homologous recombination into the T-DNA region of pT0K162.
  • hpt hygromycin resistance gene
  • GUS gene with castor intron derived from pT0K162 and pGL2-IG W095 / 06722
  • Figure 1 also shows the structure of pT0K233.
  • the desired gene to be integrated into Indy rice can be integrated into a restriction enzyme site in the T-DNA region of the above-described plasmid by a conventional method, and an appropriate selection marker such as a drug resistance possessed by the plasmid is used. Can be selected based on the However, for large and multiple restriction sites, such as pT0K162 shown in Fig. 1, it may not always be easy to introduce the desired DNA into the T region by the usual subcloning method. . In such cases, homologous recombination in an in vivo system in Agrobacter; um tumefaciens cells (Herrera- Estrel la, L. et al., 1983; EMBO J.
  • pT0K162 is introduced into Agrobacterium tumefaciens, and a plasmid called pBR322 (including a similar plasmid) into which the desired DNA has been further introduced is introduced into this bacterium. Since the DNA of PT0K162 has a portion homologous to pBR322, the pBR322 derivative will be incorporated into PT0K162 by recombination via the homologous sequence.
  • Agrobacterium tumefaciens having the pT0K162 :: pBR322 derivative can be obtained.
  • transposon Tn7 (De Greve, H, H. et a, 1981; Plasmid 6: 235-248) was found to be superior. Therefore, if the desired gene has already been cloned into PBR322, inserting the SP gene into the plasmid will introduce the desired gene into the T region of PT0K162 by homologous recombination in Agrobacterium tumefaciens. be able to.
  • a method is also conceivable in which a plasmid comprising pBR322-derived DNA and the SP gene is prepared, and the desired gene is inserted into this.
  • the boundary sequence of the T region it is possible to finally arrange the kanamycin resistance gene and the desired gene in separate T regions on pT0K162.
  • both T regions can be introduced at a considerable rate, so that the objective gene can be sufficiently introduced.
  • both T regions may be integrated into separate chromosomes, it becomes possible to separate the target gene from the kanamycin resistance gene later.
  • the host bacterium belonging to the genus Agrobacterium is not particularly limited, but Agrobacterium tumefaciens can be used as a host and can be used as a host.
  • the operation of introducing a plasmid into a bacterium belonging to the genus Agrobacterium such as Agrobacterium tumefaciens can be performed by a conventional method.
  • a three-system hybridization method for bacteria (Ditta, G. et al., 1980; Pro. Natl. Acad. Sci. USA 77: 7347-7351).
  • the bacteria of the genus Agrobacterium prepared in this way contain DNA having high virulence ability derived from pT0K162, it is possible to transform Indica rice with high efficiency.
  • the gene to be introduced into the indy rice is a conventional gene. It is located between the border sequences of the T region as in the technology, but it may be located on the Ti plasmid in a bacterium belonging to the genus Agrobacterium, or may be located on another plasmid. Is also good.
  • a method for transforming an immature embryo of Indy rice with an Agrobacterium bacterium can be performed by simply contacting the immature embryo with an Agrobacterium bacterium. For example, a suspension of a bacterium belonging to the genus Agrobacterium having a cell concentration of about 10 6 to 10 11 cells Zm I is prepared, and the immature embryo is immersed in this suspension for about 3 to 10 minutes. It can be carried out by co-culturing on a solid medium for several days. The immature embryos to be transformed need not be subjected to dedifferentiation treatment such as culture in the presence of 2,4-D.
  • the transformed immature embryo is then subjected to selection and propagation of transformed cells in a dedifferentiated state.
  • Selection can be performed based on the expression of the desired gene and a marker (drug resistance or the like).
  • the cells in the dedifferentiated state are preferably calli having a normal individual regeneration ability.
  • cytokinins in the above composition include 6-benzylaminopurine.
  • sugar in the above composition include maltose, sucrose, glucose and a mixture thereof.
  • gelling agent include agar, agarose, gellan gum and the like. These are for gelling the medium, and the amount thereof is not particularly limited as long as it is appropriate for gelation, and is usually about 2 to 10 g ZI.
  • a medium can also be preferably used.
  • a medium further containing at least 100 to 3000 mg / l of casamino acid, 100 to 3000 mg / l of proline, 100 to 3000 mg / l of glutamine and 0.01 to 5 mg / l of ⁇ -naphthaleneacetic acid is also preferably used. be able to.
  • sugar alcohol in addition to the above components, 1000 to 60,000 mg / l sugar alcohol Can further be preferably used.
  • preferred examples of sugar alcohols include mentitol and sorbitol.
  • the drug is included in addition to the above composition.
  • the selection is preferably performed about 2 to 5 times.
  • the period of the primary selection is preferably about 2 to 3 weeks, and the period of the secondary selection is preferably about 2 weeks.
  • any of the selections is performed on the above-mentioned medium, and a medium having a different component content within the above-mentioned range may be used in different selection steps.
  • Regeneration of the plant body from the transformed cell can be performed by a known method (Ranee et al., 1994 (supra)). In this case, it is preferable to add a selection agent to the regeneration medium. As a result, a plant that has acquired the desired trait, preferably a transformed plant that has acquired the desired trait and has normal fertility can be regenerated. Examples of these specific operations are described in detail in the following examples.
  • LBA4404 (ATCC 37349) was used as a host bacterium, and the above pT0K233 (see FIG. 1) was used as a vector.
  • IR8 IR24, IR26, IR36, IR54, IR64, IR72, Shinsei dwarf 1, Nanjing 11 and Suwon 258 were used.
  • the immature seeds were removed from the seeds and sterilized with 70% ethanol for several seconds and a 1% aqueous solution of sodium hypochlorite containing Tween 20 for 15 minutes. After washing several times with sterile water, immature embryos with a length of 1.5 to 2 mm were excised under a stereoscopic microscope.
  • NB-AS medium used here was the same as that of the NB medium described in Ranee et al (1994) (supra) except that L-glutamine was removed, 100 ⁇ l of acetosyringone, and 20 g of sucrose / D-glucose. 10 g / l plus 12.5 g / l of Sea Plaque agarose.
  • the composition is, KN0 3 2830 mg / l, MgS0 4 -7H 2 0 185 mg / l, KH 2 P0 4 400 mg / l, CaCI 2 -2H 2 0 166 mg / l, (NH 4) 2 ⁇ S0 4 463 mg / l, Kl 0.7 mg / l, H 3 B0 3 3.0 mg / l, MnS0 4 -H 2 0 10 mg / l, ZnS0 4 -7H 2 0 2.0 mg / l, Na 2 Mo0 4 -2H 2 0 0.25 mg / U CuS0 4 '5H 2 0 0.025 mg / l, CoCI 2 -6H 2 0 0.
  • the elongated shoots were removed with a scalpel, transplanted onto NBM medium containing 3 mg / l hygromycin, and cultured in the dark at 30 ° C for 3-4 days.
  • immature embryos were subjected to primary selection medium containing NBM (Example 1), 2N6M (Comparative Example 1), CCM (Comparative Example 2), and MSM (Comparative Example 3) each containing 20-50 mg / l hygromycin. And cultured under light conditions at 30 ° C for 2-3 weeks.
  • Hygromycin-resistant callus formed on the scutellum of the immature embryo,
  • the cells were transplanted to NB2 medium containing 20 mg / l hygromycin or CGM medium containing 30 mg / l hygromycin and subjected to secondary selection under light conditions at 30 ° C for 2 weeks.
  • NB2 culture medium or CCM medium with a hygromycin concentration of 50 mg / l compact and spherical forms were repeated 1-3 times (3-5 selections) at 10-14 day intervals.
  • the genic callus was selected and propagated.
  • the compositions of the NBM, 2N6M, CCM, MSM, and NB2 media used here are shown below.
  • 250 mg / l of cefotaxime was further added to these selected media in the following composition.
  • N 6 inorganic salts N 6 vitamins (Chu C.-C. (1978) The N6 medium and its applications to anther culture of cereal crops.In proc.Symp.Plant Tissue Culture.Peking: Science Press, pp. 43-50) plus casamino acid 1 g / l 2,4 dichlorophenoxyacetic acid 2 mg / l, D-maltose 30 g / l, gellan gum (trade name: Gelrite, manufactured by Sigma) 2.5 g / l It is.
  • MS inorganic salts MS vitamins (Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures.Phy siol. Plant.15: 473-497) and casamino acid 1 g / l, D—Mal! ⁇ It is a mixture of 30 g / l, 2,4-dichlorophenoxyacetic acid 2 mg / l, and gellan gum (trade name: Gelrite, manufactured by Sigma) 2.5 g / l.
  • the selected calli were transplanted to an NBM pre-regeneration culture medium containing 40 mg / l hygromycin, and cultured under light conditions at 30 ° C for about 10 days.
  • the hygromycin resistant embryogenic force obtained by pre-regeneration culture was dried in a petri dish with filter paper (Ranee et al. 1994 (supra)), and the RN medium ( Ranee et al. 1994 (supra)) was placed on R ⁇ regeneration medium (containing 30 mg / l hygromycin) containing 30 g / l D-maltose.
  • the regenerated plants were treated with MSI containing 30 mg / l hygromycin (1/2 concentration MS major inorganic salt, MS trace inorganic salt, MS vitamin, 1 g / l casamino acid, 0.2 mg / l India Rubutyric acid, 15 g / l sucrose, 3 g / l gel rite, pH 5.8)
  • the cells were transplanted into a rooting medium and cultured at 25 ° C under light conditions for about 3 weeks. Leaves of the resulting hygromycin-resistant regenerated plant The pieces were examined for GUS expression by X-Glue treatment (Hiei et al. 1994, supra).
  • the redifferentiated individuals were further transplanted into a 500-fold aqueous solution of Hyponex, raised at 25 ° C under light conditions for 10 days, and then transplanted to a pot in a greenhouse.
  • DNA extracted from the leaves of the redifferentiated individuals showing GUS expression was treated with the restriction enzymes Hindi II or Kpnl and subjected to Southern analysis using the hpt or GUS gene as a probe.
  • Southern analysis the method described by Sambrook et al. (1990) is complete (Sambrook, J. et a, Molecular cloning: A Laboratory Manual, 2nd Edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press). ).
  • the seeds of the next generation of self-transformed transformants were sown on a hormone-free MS medium, and after germination, GUS expression was examined by X-Glue treatment of leaf segments. In addition, the seedlings were transplanted into hormone-free MS medium containing 50 mg / l hygromycin and examined for resistance to hygromycin.
  • NB2 medium (20 mg / l hygromycin) was used as the secondary selection medium.
  • NBM medium 40 mg / l hygromycin
  • RNM medium (30 mg / l) was used as the regeneration medium.
  • / l hygromycin
  • GGM medium (30 mg / l hygromycin) was used as the secondary selection medium (
  • NB medium 40mg / l hygromycin
  • R-related medium (30 mg / l hygromycin) was used as the regeneration medium.
  • the cultivation period of the primary selection is preferably 2-3 weeks, and if the culture is continued further, the callus formed on the scutellum of the immature embryo grows more than necessary, and multiple independent In addition to the difficulty in obtaining the selected callus, callus morphology tended to be poor.
  • MSI medium supplemented with IBA 0.2 mg / I
  • Addition of hygromycin (30 mg / l) to the rooting medium was effective in selecting hygromycin-resistant individuals at the plant stage.
  • the transgene was confirmed in all the investigated individuals as a result of Southern analysis, and T-DNA was introduced at random positions in the rice genome for each individual. It was confirmed. Investigations of GUS expression and hygromycin resistance in progeny showed that genetic segregation conforming to Mendel's law was observed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

明細書 インディカイネの形質転換方法
技術分野 本発明は、 ァグロパクテリゥ厶法によるイネの形質転換方法に関する。
背景技術
イネの形質転換方法には、 プロ卜プラストを介したエレク トロポレーシヨン法 や PEG 法が開発され、 培養が容易なジャポニカイネで、 用いられてきた。 しか しながら、 この方法は、 プロトプラストからの再分化系が確立されている品種の みに、 適用可能であり、 培養が困難なインディ力イネへの適用例は少ない。
パーティクルガン法はプロトプラス卜培養系を必要としないため、 広範な品種 に適用できる新たな形質転換方法として、 多くの研究機関で、 用いられるように なってきている。 一般的に、 インディ力イネ品種は、 培養が困難とされているが、 なかでも、 インディ力イネの大部分を占め、 Groupl と呼ばれる品種群 (Glaszma nn J. C. (1987) Isozymes and classification of Asian rice varieties. The or Appl. Genet. 74:21-30 ) は培養が困難とされている。 し力、しな力《ら、 Ghris touらが報告したパーティクルガン法 (Christou P. , Ford, T. L. and Kofron, M. (1992) The development of a variety - independent gene-transfer method for rice. TIB TECH 10: 239-246)による Group I 品種の形質転換効率は、 未 熟胚あたり 2-3 %と低く、 他の研究グループによる近年の報告においても、 ィ ンデイカイネでは、 効率の高い形質転換系は得られていない (Li L , Rongda, Q. , Kochko, A. , Fauquet, C. and Beachy, R. N. (1993) An improved rice tra nsformat ion system using the biol istic method. Plant Cel l Report 12: 250 - 255) o
他方、 ァグロパクテリゥム法は、 双子葉植物において、 簡便かつ安定的な形質 転換方法として、 広く用いられてきた。 これに対し、 これまで、 イネ科などの単 子葉植物には、 ァグロパクテリゥム法は適用できないと考えられてきた (Potryk us I. , (1990) Gene transter to cereals: an assessment Bio/technology 8:5 35-542) 。 近年になって、 単子葉植物であるイネにおいて、 形質転換が可能であ ることが明らかにされ (W094/00977; W095/06722; Hiei Y. , Ohta, S. , Komari, Τ. and Kumashi ro, T. (1994) Efficient transformation of rice (Oryza Sat i a L. ) mediated by transformation by Agrobacter ium and sequence analysi s of the boundaries of the T-DNA. The Plant Journal 6:271 - 282 ) 、 有用な 形質転換方法として、 今後の研究の進展が期待されている。
一方、 Raneeらは、 インディ力イネの完熟種子から再分化能を有するカルスを 誘導するのに有効な N B培地を開示している (lann M. Ranee, I . . et a I . , Par tial desiccation of mature embryo— der ived calli, a simple treatment that dramatical ly enhcnaces the regeneration ability of i nd i ca rice, Plant C el I Reports (1994) 13:647-651)。 しかしながら、 N B培地の形質転換細胞の選 抜に対する効果については、 調査していない。 パーティクルガン法では、 Li ら が、 NBに類似する培地 (NAA, BA および L- glutamine を含まない) を用いて、 ジャポニカイネにおける、 効率の高い形質転換を報告している (Li L et al., (1993) An improved rice transtormat ion system using the biohstic method. Plant Cell Report 12: 250-255 ) 。 しかしながら、 インディ力イネについて は、 効率よく形質転換体を得ることができなかったことを、 報告している。 また、 Li らは、 この培地のァグロパクテリゥム法への適用については、 調査していな い。
上述したように、 プロ卜プラストを介する方法では、 プロトプラストからの再 分化系が確立されていない品種には、 適用ができないという問題点がある。 パー ティクルガン法においても、 これまでに報告されている方法では、 インディカイ ネのような培養困難な品種での形質転換効率は低い。
そこで、 インディ力イネの形質転換方法として、 ァグロパクテリゥム法を適用 することが考えられる。 上記のように、 ァグロバク亍リウム法でジャポニカイネ を形質転換する方法は公知である。 本願発明者らは、 ジャポニカイネに適用され る方法をインディ力イネにも適用できないか検討した。 ァグロパクテリゥムによるイネの形質転換方法には、 W094/00977および H i e i et a l . (1994) で報告されているように、 脱分化組織を用いる方法が、 まず考え られる。 そこで、 Group I に分類される数種類のインディ力イネを用いて、 カル スへのァグロパクテリゥムによる遺伝子導入を試みた。 その結果、 わずかながら、 形質転換体が得られることがわかった。 しかしながら、 再現性を有する形質転換 系を確立するには至らなかった。 カルスを用いて形質転換を行う場合、 細胞分裂 活性が高く、 再分化能を持つカルスを材料として用いる必要がある。 しかしなが ら、 培養が困難なイネ品種では、 遺伝子導入に適した細胞分裂活性の高いカルス を誘導することは、 容易ではない。 このため、 カルスを供試組織とした場合には、 適用できる品種の幅が限られて、 培養が困難な品種では、 容易に形質転換体を得 ることはできないものと考えられた。
カルス以外の組織としては、 未熟胚を材料にする方法 (W095/06722、 EP-A - 0 6 72 752) も適用可能であると考えられる。 ところが、 ジャポニカイネに対しては 有効な W095/06722又は EP- A- 0 672 752に記載された方法をインディ力イネにそ のまま適用すると、 やはり、 形質転換効率が低く、 実用的な形質転換系を確立す ることはできなかった。
発明の開示
従って、 本発明の目的は、 インディ力イネを高効率で形質転換することができ る方法を提供することである。
本願発明者らは、 鋭意研究の結果、 W095/06722、 EP-A- 0672752に記載された、 イネの未熟胚細胞をァグロパクテリゥム属細菌により形質転換する方法において、 形質転換細胞の選抜工程において用いる培地として、 上記 Ranee らの N B培地 を基本とした培地を用いることにより、 インディ力イネにおいても高い形質転換 効率を達成することができることを見出し、 本発明を完成した。
すなわち、 本発明は、 インディ力イネ未熟胚細胞をァグロバク亍リウム法によ リ形質転換し、 形質転換された細胞を選抜する、 イネの形質転換方法において、 形質転換された細胞を選抜する培地として、 KN03 2000 〜4000 mg/ l 、 gS04 60 〜200 mg/ls KH2P04200〜600 mg/L CaCI2 100 〜450 mg/U (NH4)2-S04200〜60 0 mg/U H3BO31 ~7 mg/U MnS042 〜20 mg/l 、 EDTA又はその塩 20〜50mg/し Fe 3〜8 mg/し ミオイノシ! ^一ル 50〜200 mg/し 2, 4-ジクロロフエノキシ酢酸 0. 5 〜10 mg/l 、 サイトカイニン類 0.01〜5 mg/l及び糖類 5000〜 80000 mg/l並び にゲル化剤を含み、 p Hが 4.5 ~6.5 である培地を用いることを特徴とする、 ィンデイカイネの形質転換方法を提供する。
本発明により、 従来方法では形質転換効率が低く、 再現性のある形質転換を行 うことができなかったインディ力イネについて、 高効率で形質転換を行うことが できるようになった。
図面の簡単な説明
図 1は、 本発明の方法に好ましく用いることができるスーパーバイナリーべク ター PT0K162 及び pT0K233 の構造を示す図である。
発明を実施するための最良の形態
本発明の形質転換方法に供される細胞は、 インディ力イネの未熟胚細胞である。 インディ力イネとしては、 特に限定されないが、 従来技術において形質転換が特 に困難な Group I (Glaszmann 、 上掲) に分類されるものに適用した場合に特 に威力を発揮する。 Group I のインディ力イネに属する品種としては、 I R 8、 I R24、 I R26、 I R 36、 I R54、 I R64、 I R 72、 新青矮 1、 南 京 1 1、 水原 258等を挙げることができるがこれらに限定されるものではない。 本発明において、 未熟胚とは、 受粉後の登熟過程にある未熟種子の胚を言う。 また、 本発明の方法に供される未熟胚のステージ (熟期) は特に限定されるもの ではなく、 受粉後いかなる時期に採取されたものであってもよい。 もっとも、 受 精後 2曰以降のものが好ましい。 また、 未熟胚はインブレッド、 インブレッド間 の F 1、 インブレッドと自然受粉品種間の F 1、 市販 F 1品種の未熟胚であるこ とが好ましい。 さらに、 胚の中でも胚盤細胞が好ましい。 また、 未熟胚は、 ァグ 口パクテリゥム属細菌と接触させる前に脱分化処理を施す必要はない。 ここで、 脱分化処理とは、 植物組織の分化した細胞を脱分化培地において培養し、 無秩序 に増殖するカルス等の未分化状態の細胞塊を得るための処理である。
形質転換に用いられるァグロパクテリゥ厶属細菌は、 丁 i プラスミ ド又は R i プラスミドを持つ、 従来より双子葉植物の形質転換に用いられているものを用い ること力できる。 これらのものの多くは Agrobacterium tumefaciens由来の T i プラスミドのヴィルレンス領域 (vir 領域) 由来の DN A領域を含むベクターを 有しており、 植物に付与しょうとする形質を担う遺伝子はこのベクター中に挿入 されるか、 またはこのベクターとは別のプラスミ ド中に存在し、 相同組換え等に より T i プラスミド中に in で挿入されるものである。 また、 小鞠らは、 robacterium tumefaciens A 28 1 という強病原性の、 形質転換効率が極めて高 い株 (Hood, E. E. et a I . , 1984; Biotech. 2 :702 - 709、 Hood, E. E. et a I . , 1986; J. Bacter iol. 168: 1283 - 1290 、 Komar i , T. et al. , 1986; J. Bacterio I. 166:88 - 94、 Jin, S. et al. , 1987; J. Bacter iol. 169:4417 - 4425 、 Komar i, T. , 1989; Plant Science 60:223- 229、 ATCC 37349) に含まれる T i プラスミド ρΉΒο542のヴィルレンス領域 (vir 領域) 由来の DN A領域を含む ベクターを開発した (特開平 4一 222527号) 。 本発明では、 Agrobacteriu m tumefaciens A 281中に含まれる T i プラスミ ド pTiBo542のヴィルレンス 領域、 ァグロバク亍リウ厶属細菌の T i プラスミ ドまたは R i プラスミ ドの T一 DN Aの左ボーダー及び右ボーダー配列、 並びにこれら左ボーダーと右ボーダー との間に位置する所望の遺伝子を有するベクターを 「スーパーバイナリーベクタ —」 と呼ぶ。 本発明では、 このようなスーパーバイナリベクターを好ましく用い ることができる。
このようなスーパーバイナリ一ベクターの例として pT0K162 (特開平 4一 22 2527号、 米国特許第 5, 591, 616号、 EP - A- 0 604 662) を挙げることができる。 その構造を図 1に示す。 このプラスミドは、 大腸菌および /^ra&acier/' tumef ac/'e"s中で増殖可能である pT0K154と呼ばれるプラスミド (T i プラスミ ドか ら誘導された公知の PGA472プラスミドと pVGK101 と呼ばれる公知の広宿主域プ ラスミドから後述の方法により構築された、 T領域を含むプラスミド) に ρΉΒο 542のヴィルレンス領域由来の既にクローン化されていた上記 1 5. 2キロべ一 スの Kpnl断片 (virB, virG, VirG各遺伝子を含む) を組み込んだものである。 この PT0K154には、 T領域の 2つの境界配列とその間にインディ力イネに導入し ようとする遺伝子としてカナマイシン耐性遺伝子が配列されており、 この例は、 インディ力イネに導入しょうとする遺伝子が pTiBo542のヴィルレンス領域由来 のクローン化された DN A断片を含有するプラスミ ド上に配置されている例であ る。 また、 pT0K162と pGL2- IG (W095/06722)から誘導された、 ハイグロマイシン 抵抗性遺伝子 (hpt)およびヒマのイントロン付き GUS遺伝子を、 pT0K162の T-DN A領域中に相同組換えにより組み込んだ pT0K233 (Hiei et al. , 上掲) も好ま しいスーパーバイナリーベクターの 1例である。 pT0K233 の構造を同じく図 1に 示す。
インディ力イネに組み込もうとする所望の遺伝子は、 上記プラスミ ドの T一 D N A領域中の制限酵素部位に常法により組み込むことができ、 プラスミ ドが有す る薬剤耐性等の適当な選択マーカーに基づいて選択することができる。 もっとも、 図 1に示す pT0K162 のように、 大型で多数の制限部位を持つものは、 通常のサ ブクローンニングの手法では所望の DN Aを T領域内に導入することが必ずしも 容易でないことがある。 このような場合には Agrobacter ;um tumefaciens細胞 内の in vivo系での相同組換え (Herrera- Estrel la, L. et al. , 1983; EMBO J. 2:987—995、 Horsch, R, H. et al. , 1984; Science 223:496 - 498 ) を利用する ことにより、 目的の DNAを pT0K162 に導入することが可能になる。 すなわち、 例えば、 先ず、 pT0K162 を Agrobacterium tumefaciensに導入しておいて、 こ の菌をさらに所望 DNAを導入した pBR322と呼ばれるプラスミ ド (類似のブラ スミドを含む) を導入する。 PT0K162 の DNAには pBR322と相同な部分がある ので、 pBR322誘導体は相同配列を介した組換えにより PT0K162 に組み込まれる ことになる。 pBR322は pT0K162 と異なり Agrobacterium tumefaciens 中では複 製できないので、 このような組み込まれた状態 (pT0K162::PBR322 誘導体という ) でなければ Agrobacterium tumefaciens中で生存することができない。 そし て、 pT0K162 と pBR322誘導体の各々に特異的な特性 (薬剤耐性等) について選 抜すれば、 pT0K162: :pBR322 誘導体を有する Agrobacterium tumefaciens を得 ることができる。 さらに、 pT0K162 を有すも Agrobacterium tumefaciensに各 種のプラスミドを導入して研究したところ、 PBR322誘導体の選抜マーカ一とし ては、 トランスポゾン T n 7 (De Greve, H, H. et aに, 1981; Plasmid 6:235— 248 ) 由来のスぺクチノマイシン耐性遺伝子 (S P) が優れていることが判明し た。 従って、 すでに所望の遺伝子が PBR322にクローン化されている場合には、 S P遺伝子をそのプラスミドに揷入すれば、 Agrobacterium tumefaciens内の相 同組換えにより、 PT0K162 の T領域に所望の遺伝子を導入することができる。 ま たその他の場合には、 pBR322由来の DNAと S P遺伝子から構成されるプラス ミドを用意しておいて、 これに所望の遺伝子を挿入する方法も考えられる。 この 際、 T領域の境界配列を活用すれば、 最終的に、 pT0K162 上において、 カナマイ シン耐性遺伝子と所望の遺伝子を別々の T領域中に配置することも可能である。 カナマイシン耐性をマーカーとして植物を形質転換した場合、 両 T領域とも導入 される場合も相当の比率で生じるわけであるので、 目的遺伝子の導入は十分達成 できる。 また、 両 T領域が別々の染色体に組み込まれる場合もあり得るので、 後 に目的の遺伝子をカナマイシン耐性遺伝子から分離することも可能となる。
寄主となるァグロパクテリゥム属細菌としては、 特に限定されないが、 Agroba cterium tumefaciensをヌナましく用し、<&こと力《できる。
プラスミドを Agrobacterium tumefaciens等のァグロパクテリゥム属細菌に 導入する操作は従来法により行うことができ、 例えば、 細菌の三系交雑手法 (Di tta, G. et al. , 1980; Pro. Natl. Acad. Sci. USA 77 :7347 - 7351 ) により行う ことができる。
このようにして調製されるァグロパクテリゥム属細菌には、 pT0K162 由来のヴ ィルレンス能力の高い DN Aが含まれるので、 高い効率でインディ力イネの形質 転換を行うことが可能である。
尚、 本発明においては、 インディ力イネに導入しょうとする遺伝子は、 従来の 技術と同様に T領域の境界配列の間に配置されるものであるが、 ァグロパクテリ ゥ厶属細菌中で、 T i プラスミ ド上に配置されてもよく、 または他のプラスミ ド 上に配置されてもよい。
ァグロバク亍リウム属細菌でインディ力イネの未熟胚を形質転換する方法は、 未熟胚をァグロバク亍リウム属細菌と単に接触させることにより行うことができ る。 例えば、 1 0 6〜1 0 1 1細胞 Zm I程度の細胞濃度のァグロパクテリゥム 属細菌懸濁液を調製し、 この懸濁液中に未熟胚を 3〜1 0分間程度浸漬後、 固体 培地上で数日間共存培養することにより行うことができる。 形質転換に供する未 熟胚は、 2 , 4— D存在下での培養等の脱分化処理を行う必要はない。
形質転換した未熟胚は、 その後、 脱分化状態で形質転換細胞の選抜、 増殖を行 うことが好ましい。 選抜は、 前記所望の遺伝子の発現及びマーカー (薬剤耐性等 ) に基づいて行うことができる。 脱分化状態の細胞は、 正常個体再生能力を有す るカルスであることが好ましい。
本発明の方法では、 形質転換細胞の選抜を、 上記の組成及び p Hを有する培地 上で行う。 上記組成におけるサイ卜カイニン類の好ましい例として 6 —ベンジ ルァミノプリンを挙げることができる。 また、 上記組成における糖の好ましい例 としてマルトース、 ショ糖及びグルコース並びにこれらの混合物を挙げることが できる。 ゲル化剤としては、 寒天、 ァガロース、 ゲランガム等を挙げることがで きる。 これらは培地をゲル化させるためのものであり、 その配合量はゲル化を行 うのに適当な量であれば特に限定されず、 通常 2〜1 0 g Z I程度である。 前記 組成に加え、 少なくとも K I 0. 5〜2 mg/ k ZnS04 0. 7 〜5 mg/ U Na2 o04 0. 1 ~ 0. 3 mg/ U CuS04 0· 01〜0, 02 mg/ l 、 GoC I 2 0. 01〜0. 02 mg/ l 、 ニコチン酸 0, 25 〜10 mg/ l 、 ピリ ドキシン 0. 25〜5呵 / I及びチアミン 0. 05〜20 mg/ l をさらに 含む培地も好ましく用いることができる。 この組成に加え、 少なくともカザミノ 酸 100 〜3000 mg/ l 、 プロリン 100 〜3000 mg/ l 、 グルタミン 100 〜3000 mg/ I 及び α—ナフタレン酢酸 0. 01 ~5 mg/ l をさらに含む培地も好ましく用いるこ とができる。 さらに、 上記の各組成に加え、 1000〜60000 mg/ lの糖アルコール をさらに含むものも好ましく用いることができる。 ここで、 糖アルコールの好ま しい例としてマ二トール及びソルビトールを挙げることができる。 なお、 薬剤耐 性により選抜を行う場合には上記の組成に加えて当該薬剤を含むことは言うまで もない。 なお、 選抜は 2〜5回程度行うことが好ましい。 この場合、 一次選抜の 期間は 2〜3週間程度が好ましく、 2次選抜の期間は 2週間程度が好ましい。 選 抜を複数回行う場合、 いずれの選抜も上記培地上で行うが、 成分の含量が上記範 囲内で異なる培地を異なる選抜工程で用いてもよい。
形質転換細胞からの植物体の再生は公知の方法 (Ranee et a l . , 1994 (上掲) ) により行うことができる。 この場合、 再分化培地にも選抜薬剤を加えることが 好ましい。 これにより所望の形質を獲得した植物体、 好ましくは、 所望の形質を 獲得し、 正常稔性を有する形質転換植物体を再生することができる。 なお、 これ らの具体的操作の一例が下記実施例に詳述されている。
以下、 本発明を実施例に基づきより具体的に説明する。 もっとも、 下記実施例 は例示のためのみに記載するものであり、 如何なる意味においても限定的に解釈 してはならない。
実施例 1、 比較例 1 ~ 3
(1 ) ァグロバクテリウムの菌系およびプラスミ ド
宿主バクテリアには LBA4404 (ATCC 37349)を用い、 ベクターとして上記 pT0K2 33 (図 1参照) を用いた。
(2) 供試品種および組織
供試品種として、 I R8, I R24, I R26, I R36, I R54, I R64, I R72,新青矮 1 ,南京 1 1 , 水原 258 を用いた。 開花後 10- 14 日目の未熟種子の穎を除去し、 70%ェタノ ールで数秒、 ツイーン 20を含む 1 %次亜塩素酸ナトリウム水溶液で 15分間滅 菌処理を行った。 滅菌水で数回洗浄後、 実体顕微鏡下で、 長さ 1 . 5-2 mmの未熟 胚を摘出した。
(3) 接種および共存培養
50 mg/ l ハイグロマイシンおよび 50 mg/ l カナマイシンを含む AB培地 (Ch i l ton -D. et aに (1974) Agrobacter i urn tumef ac i ens DNA and PS8 bacter iopha ge DNA not detected in crown gal I tumors. Proc. Natl. Acad. Scに USA, 71 :3672-3676) 上で 3- 7 日間培養したァグロパクテリゥムのコロニーを白金耳で かきとり、 AAM 培地 (Hiei et al. 1994、 上掲) 中に懸濁し、 接種液とした。 菌 密度は 2〜3 X 1 08/mlに調整した。
摘出した未熟胚に、 1ml のバクテリア懸濁液を加え、 約 30秒間ポルテックス をかけた。 5-10分間静置した後、 バクテリア懸濁液が付着した未熟胚を、 共存 培養用の NB- AS 培地上に、 胚盤を上向きにして置床し、 25°C暗黒化で 4-5 日間 共存培養を行った。 なお、 ここで用いた NB— AS培地の組成は、 Ranee et a I (1994) (上掲) に記載の NB培地から L—グルタミンを除き、 ァセトシリンゴン 100 μ Μ、ショ糖 20g/し D -グルコース 10 g/l 、 シ一プラーク(Sea Plaque)ァ ガロース 12.5 g/l を加えたものである。 すなわち、 その組成は、 KN03 2830 m g/l 、 MgS04-7H20 185 mg/l 、 KH2P04400 mg/l 、 CaCI2-2H20 166 mg/l 、 (NH4) 2 ■S04463 mg/l 、 Kl 0.7 mg/l 、 H3B033.0 mg/l, MnS04-H20 10 mg/l 、 ZnS04-7H 20 2.0 mg/l , Na2Mo04-2H20 0.25 mg/U CuS04'5H20 0.025 mg/l 、 CoCI2-6H20 0. 025 mg/l 、 Na2-EDTA 37.3 mg/U Fe2S04-7H20 27.8 mg/l 、 ミオイノシ | ^一ル 1 00 mg/U ニコチン酸 1.0 mg/U 塩酸ピリ ドキシン 1.0 mg/l 、 塩酸チアミン 1 0 mg/U カザミノ酸 300 mg/l 、 L—プロリン 300 mg/l 、 2, 4 -ジクロロフエノ キシ酢酸 2 mg/l 、 α—ナフタレン酢酸 1 mg/l 、 6 -ベンジルァミノプリン 1 m g/U ァセトシリンゴン 100 μ Μ、ショ糖 20g/し D -グルコース 10 g/l 、 ジープ ラーク(Sea Plaque)ァガロース 12.5 g/l, pH5.2であった。
(4) 形質転換細胞の選抜
共存培養後、 伸長した苗条をメスで除去し、 3 mg/lハイグロマイシンを含む N BM培地上に移植し、 30°C暗黒下で 3 - 4 日間培養した。 次に未熟胚を 20 - 50 mg/l ハイグロマイシンを含む NBM (実施例 1 ) 、 2 N 6M (比較例 1 ) 、 CCM ( 比較例 2) 、 MSM (比較例 3) の各 1次選抜培地に移植し、 30°C明条件下で 2 -3 週間培養した。 未熟胚の胚盤上に形成されたハイグロマイシン耐性カルスを、 20 mg/l ハイグロマイシンを含む NB2 培地もしくは 30 mg/l ハイグロマイシン を含む CGM 培地に移植し、 2 週間 30°C明条件下で 2 次選抜を行った。 同 NB2 培 地もしくはハイグロマイシン濃度を 50 mg/l とした CCM 培地を用いて、 さらに、 10-14 日間隔で 1-3 回 (3-5 次選抜) にわたつて、 コンパク卜で球状のェンブ リオジェニックなカルスの選抜および増殖を行った。 なお、 ここで用いた NBM、 2 N 6M、 CCM、 MSM、 N B 2培地の組成を以下に示す。 なお、 これらの選 抜培地には、 下記組成にさらに 250 mg/lのセフォタキシムを添加した。
N Bi 咅地
KN03 2830 mg/l 、 gS04-7H20 185 mg/l 、 KH2P04400 mg/l 、 CaCI2-2H20 166 m g/l 、 (NH4)2-S04463 mg/l 、 Kl 0.75 mg/し H3B033, 0 mg/l、 MnS04-H20 10 mg/ I 、 ZnS04'7H20 2,0 mg/l 、 Na2Mo04-2H20 0.25 mg/U CuS04'5H20 0.025 mg/l 、 CoCI2-6H20 0.025 mg/l 、 Na2-EDTA 37.3 mg/し Fe2S04'7H20 27.8 mg/l 、 ミオ イノシトール 100 mg/U ニコチン酸 1.0 mg/l、 塩酸ピリ ドキシン 1.0 mg/l 、 塩酸チアミン 10 mg/l、 カザミノ酸 300 mg/l 、 L一プロリン 300 mg/l 、 L一 グルタミン 300 mg/l 、 2,4-ジクロロフエノキシ酢酸 2 mg/l 、 《—ナフタレン 酢酸 1 mg/l 、 6-ベンジルァミノプリン 1 mg/l、 D—マル! ス 30 g/l 、 ゲ ランガム (商品名 Gel rite, Sigma社製) 2.5 g/l 、 pH5.8
2 N 6M培地
N 6無機塩類、 N 6ビタミン (Chu C.-C. (1978) The N6 medium and its appl i cations to anther culture of cereal crops. In proc. Symp. Plant Tissue C ulture. Peking: Science Press, pp. 43—50) に、 カザミノ酸 1 g/l 2, 4ージク ロロフエノキシ酢酸 2 mg/l 、 D—マルトース 30 g/l 、 ゲランガム (商品名 G elrite, Sigma社製) 2.5 g/l を加えたものである。 すなわち、 KN03 2830 mg/l 、 MgS04-7H20 185 mg/l 、 KH2P04400 mg/l 、 CaCI2-2H20 166 mg/U (NH4)2-S04 463 mg/l 、 Kl 0.8 mg/l 、 H3B031.6 mg/し MnS04-4H20 3.3 mg/l 、 ZnS04-7H20 1.5 mg/l 、 Na2Mo04-2H20 0.25 mg/U CuS04'5H20 0.025 mg/l 、 Na2-EDTA 37.3 mg/し Fe2S04-7H,0 27.8 mg/l 、 ニコチン酸 0.5 mg/l、 塩酸ピリ ドキシン 0.5 mg/l 、 塩酸チアミン 1.0 mg/l 、 カザミノ酸 1 g/l、 グリシン 2 mg/L 2, 4-ジ クロ口フエノキシ酢酸 2 mg/l 、 D—マルトース 30 g/l 、 ゲランガム (商品名 Gel rite, Sigma社製) 2.5 g/l 、 pH5.8
CCM培地
CCtg地 (Potrykus I et a I (1979) Callus formation from cel l culture prot op lasts of corn (lea mays L). Theor. Appl. Genet. 54 :209 - 214; Hartke S. et a I (1989) Somatic embryogenes i s and plant regeneration from various indica r ice (Oryza Sati a L. ) genotypes. J. Genet & Breed. 43: 205-214) に D—マル! ^一ス 30 g/し 2, 4 -ジクロロフエノキシ酢酸 2 mg/l 、 ゲランガム (商品名 Gel rite, Sigma社製) 2.5 g/l を加えたものである。 すなわち、 KN03 1212 mg/U NH4N03640 mg/l 、 CaCI2-2H20 588 mg/l 、 gS04-7H20 247 mg/l 、 KH2P04136 mg/l 、 FeS04-7H20 27.8 mg/U Na2EDTA 37.3 mg/l 、 H3B033.1 mg/L MnS04-4H20 11.15 mg/l 、 ZnS04-7H20 5.76 mg/U Kl 0.83 mg/U Na2Mo04-2H20 0.24 mg/U CuS04-5H20 0.025 mg/l 、 CoS04-7H20 0.028 mg/l 、 ニコチン酸 6 m g/k 塩酸チアミン 8.5 mg/L 塩酸ピリ ドキシン 1 mg/し グリシン 2 mg/U ミ オイノシトール 90 mg/l 、 ココナッツ水 100 ml/1 (Gibco社製) 、 マ二! ^一ル 36. 43 g/し D—マル !《—ス 30 g/l、 2, 4 -ジクロロフエノキシ酢酸 2 mg/l 、 ゲラ ンガム (商品名 Gel rite, Sigma社製) 2.5 g/l 、 pH5.8
MSM培地
MS無機塩類、 MSビタミン (Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phy siol. Plant. 15: 473-497) に、 カザミノ酸 1 g/l、 D—マル! ^一ス 30 g/l、 2, 4 -ジクロロフエノキシ酢酸 2 mg/l 、 ゲランガム (商品名 Gelrite, Sigma社 製) 2.5 g/l を加えたものである。 すなわち、 NH4N031650 mg/l, KN03 1900 mg /I 、 MgS04-7H20 370 mg/l 、 KH2P04170 mg/l 、 CaCI2'2H20 440 mg/l 、 Kl 0,8 3 mg/ H3BO36.2 mg/U MnS04-4H20 22.3 mg/U ZnS04-7H20 8.6 mg/l 、 Na2Mo0 4-2H20 0.25 mg/l, CuS04-5H20 0.025 mg/l 、 CoCI2-6H20 0.025 mg/l 、 Na2-EDT A 37.3 mg/l, Fe2S04-7H20 27.8 mg/l 、 ミオイノシ! ^一ル 100 mg/し ニコチン 酸 0.5 mg/U 塩酸ピリ ドキシン 0.5 mg/l 、 塩酸チアミン 0.1 mg/l 、 グリシ ン 2.0 mg/U カザミノ酸 1 g /し 2, 4-ジクロロフエノキシ酢酸 2 mg/l 、 D— マルトース 30 g/l 、 ゲランガム (商品名 Gel rite, Sigma社製) 2.5 g/l 、 pH5. 8
N B 2培地
KN03 2830 mg/l 、 gS04-7H20 185 mg/l 、 KH2P04400 mg/l 、 CaCI2-2H20 166 m g/l 、 (NH4)2-S04463 mg/l 、 Kl 0.7 mg/l 、 H3B033.0 mg/U MnS04-H20 10 mg/ I 、 ZnS04-7H20 2.0 mg/l 、 Na2Mo04-2H20 0.25 mg/U CuS04-5H20 0.025 mg/l 、 CoCI2-6H20 0.025 mg/l 、 Na2-EDTA 37.3 mg/U Fe2S04-7H20 27.8 mg/l 、 ミオ イノシ! -ール 100 mg/U ニコチン酸 1.0 mg/l、 塩酸ピリ ドキシン 1· 0 mg/l 、 塩酸チアミン 10 mg/し カザミノ酸 300 mg/l 、 し一プロリン 300 mg/l 、 し一 グルタミン 300 mg/l 、 2,4-ジクロロフエノキシ酢酸 2 mg/l 、 α—ナフタレン 酢酸 1 mg/l 、 6-ベンジルァミノプリン 0.2 mg/l、 D—マルトース 30 g/l 、 D—マ二トール 30 g/l 、 ゲランガム (商品名 Gel rite, Sigma社製) 2.5 g/l 、 pH5.8
次に、 選抜されたカルスを 40 mg/l ハイグロマイシンを含む NBM 再分化前培 養培地に移植、 約 10日間 30°C明条件下で培養した。
(5) 形質転換体の再分化および GUS 発現の調査
再分化前培養により得られた、 hygromyc i n耐性のェンブリオジェニックな力 ルスを、 濾紙をひいたシャーレ中で乾燥処理を行った後 (Ranee et al. 1994 ( 上掲) ) 、 RN培地 (Ranee et al. 1994 (上掲) ) の糖源を 30 g/l D—マルト ースとした R刚再分化培地 (30 mg/l ハイグロマイシンを含む) 上に置床した。 2-3 週間後、 再分化植物を 30 mg/l ハイグロマイシンを含む MSI (1/2 濃度 MS 主要無機塩、 MS微量無機塩、 MSビタミン、 1 g/l カザミノ酸、 0.2 mg/lインド ール酪酸、 15 g/l ショ糖、 3 g/l Gel rite、 pH5.8 ) 発根培地に移植し、 25°C明 条件下で約 3 週間培養した。 得られたハイグロマイシン耐性の再分化植物の葉 片を、 X - Glue処理することにより、 GUS 発現を調査した (Hiei et al. 1994、 上掲) 。 再分化個体をさらに 500 倍の Hyponex 水溶液中に移植し、 25°C明条件 下で 10日間育苗した後、 温室内のポッ卜へ移植した。
(6) 形質転換体のサザン分析および後代における導入遺伝子の発現
GUS 発現を示した再分化個体の葉より抽出した DNA を、 制限酵素 Hindi I I ま たは Kpnlで処理し、 hpt または GUS遺伝子をプローブとしたサザン分析を行つ た。 サザン分析については、 Sambrookら (1990) が記載している方法によって if了つ (Sambrook, J. et aに, Molecular cloning: A Laboratory Manual, 2nd Edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press) 。 形質 転換体の自殖次世代の種子を、 ホルモンフリーの MS培地に播種し、 発芽後、 葉 片の X - Glue処理により、 GUS 発現を調査した。 さらに、 同実生を 50 mg/l ハイ グロマイシンを含むホルモンフリーの MS培地に移植し、 ハイグロマイシンに対 する抵抗性を調査した。
結果を表 1及び表 2に示す。
1次選抜における基本培地の比較 (品種: IR24、 菌系: LBA4404/pT0K233)
Figure imgf000017_0001
* :独立の GUS 陽性植物の系統数 (クローンは含まれていない) 。
2, 3 次選抜培地には NB2 培地 (20 mg/l ハイグロマイシン) を用いた 再分化前培養培地には NBM 培地 (40mg/l ハイグロマイシン) を用いた 再分化培地には RNM 培地 (30 mg/l ハイグロマイシン) を用いた。
表 2 1次選抜における基本培地の比較 (品種: IR36、 菌系: LBA4404/pT0K233)
Figure imgf000018_0001
* :独立の GUS 陽性植物の系統数 (クローンは含まれていない) 。
2次選抜培地には GGM培地 (30 mg/l ハイグロマイシン) を用いた (
3-5 次選抜培地には GCM培地 (50 m g/l ハイグロマイシン) を用い:
再分化前培養培地には NB培地 (40mg/l ハイグロマイシン) を用し、
再分化培地には R關培地 (30 m g/l ハイグロマイシン) を用いた。
表 3 LBA4404/pT0K233 によるインディ力イネの形質転換結果
Figure imgf000019_0001
* :独立の GUS 陽性植物の系統数 (クローンは含まれていない) 。
** : 2次選抜以降の培地には CCM 培地を用いた。
以下、 上記実験の結果についてさらに説明する。
(1 ) 形質転換細胞の選抜
1次選抜培地において、 2-3 週間培養した後、 NBM 培地では CGM, MSMおよび 2 N6M培地に比べ、 非常に高頻度でハイグロマイシン耐性カルスが得られた (表 1、 表 2 ) 。 1次選抜過程の未熟胚について、 X- G l ue処理による GUS 遺伝子の発現を 調査したところ、 NBM 培地で培養した未熟胚の胚盤上に形成された複数の細胞塊 が、 各々、 一様な GUS 発現を示していることを確認した。 CCM および MSM 培地で は、 胚盤全体が肥大しており、 GUS 発現領域の特異的な増殖は、 ほとんど見られ なかった。 すなわち、 NBM培地では、 遺伝子導入領域が選択的な増殖を示すため、 1 未熟胚あたり、 複数の独立なハイグロマイシン耐性の細胞塊を、 得ることがで きた。 これに対し、 CCM および MSM 培地では、 遺伝子導入領域の選択的な増殖は 見られず、 胚盤の表層細胞全体がカルス化する傾向があった。 このため、 CCM お よび MSM培地で 1 次選抜を行った場合、 ハイグロマイシン耐性の細胞塊を見きわ め、 選抜することは、 困難であった。 CC および MSM培地のハイグロマイシンの濃度を、 20, 30 mg/l と低くした場 合には、 ハイグロマイシンを添加しない場合と同様に、 胚盤全体が増殖を示した。 また、 2N6M培地では、 NBM 培地に比べ、 未熟胚から選抜されるカルスの数が少な く、 生長が遅い傾向が見られた。 Christouらは、 パーティクルガン法において、 MSおよび CC培地を形質転換細胞の選抜に用いているが (Ghristou P. et al. , (19 91) Production of transgenic rice (Oryza Sat i va L. ) plants from agronomic ally important indica and japonica varieties via electric discharge part i cle acceleration of exogenous DNA into immature zygotic embryos. Bio/tech no logy 9: 957-962; Christou P. , Ford, T. L. and Kofron, M. (1992) The dev e I opment of a var iety_ independent gene-transfer method for r ice. TIB TECH 10: 239-246) 、 本比較例における場合と同様に、 得られた形質転換体の数は少 なかった。
NBM 培地から NAA および BAを除去した 2,4-D 単独の培地では、 再分化能を有 するェンプリオジェニックな耐性カルスを得ることは、 困難であった。 このこと から、 BAなどのサイトカイニン類は、 再分化能を有する、 ェンプリオジェニック なカルスを誘導するために、 必要であると考えられた。 Li ら (1993) (上掲) は、 NB培地の NAA, BA および L- glutamine を含まない培地で、 形質転換細胞の選抜 を行ったが、 インディ力イネでは、 わずかな再生個体が得られたのみであること を報告しており、 本比較例における結果と一致している。
1次選抜の培養期間は、 2-3 週間が好適であり、 それ以上培養を続けると、 未 熟胚の胚盤上に形成されたカルスが必要以上に増殖し、 未熟胚あたり複数の独立 な選抜カルスを得ることが困難となるほか、 カルスの形態が不良となる傾向があ つた。
(2) 2次選抜以降の培養
供試した 10品種のうち 8 品種については、 NB2 培地上でカルスがェンブリオ ジエニックな状態で増殖した。 IR36, IR72の 2 品種については、 比較の結果、 NB 2 培地より CCM 培地 (30-50 mg/lハイグロマイシン、 250 mg/lセフオタキシム i y
) の方で、 形態の良好なカルスが維持できた。
NBM 培地で 1次選抜を行った試験区では、 他の培地に比べ、 2, 3次選抜におい ても非常に多くのカルスが耐性を維持していた (表 1、 2 ) 。 2次選抜以降の培 養はほぼ 2 週間毎に行ったが、 3 週間以上培養を継続すると、 カルスが褐変し、 形態が不良になる傾向があった。 選抜は、 3 次選抜もしくは 4, 5次選抜まで行つ た後、 再分化前培養を行った。
(3) 再分化培養
10品種すべてで効率よく再分化個体が得られ、 再分化が困難な品種等は、 特に 認められなかった。 また、 発根培地には I BA (0. 2 mg / I ) を添加した MS I 培地が、 ホルモンフリーの培地より、 発根を明らかに促進し、 好適であった。 また、 発根 培地へのハイグロマイシンの添加 (30mg/ l ) は、 植物体の段階でのハイグロマイ シン耐性個体の選抜に有効であつた。
(4) 形質転換効率
再分化した個体の大部分は、 葉において一様な GUS 発現を示した (表 3 ) 。 NB M培地で 1 次選抜を行う培養系を用いた場合、 供試した 10品種すベてから、 未 熟胚あたり 30%以上の非常に高い効率で、 ハイグロマイシン耐性かつ GUS 発現を 示す形質転換体が得られた (表 1、 2、 3 ) 。
(5) サザン分析および後代への遺伝
GUS発現を示した再生個体は、 サザン分析の結果、 調査した全個体で導入遺伝 子が確認されたとともに、 T-DNA は、 各個体ごとに、 イネゲノムのランダムな部 位に導入されていることを確認した。 また、 後代の GUS 発現およびハイグロマイ シン耐性の調査の結果、 メンデルの法則に適合する遺伝的分離が観察された。

Claims

請求の範囲
1. インディ力イネ未熟胚細胞をァグロパクテリゥム法により形質転換し、 形 質転換された細胞を選抜する、 イネの形質転換方法において、 形質転換された細 胞を選抜する培地として、 N03 2000 〜4000 mg/l 、 MgS0460〜200 mg /し KH2P04 200〜600 mg/U CaCI2100 〜450 mg/U (NH4) 2'S04200〜600 mg/し H3B031 〜7 mg/U MnS042 ~20 mg/l 、 EDTA又はその塩 20〜50mg/l、 Fe 3〜8 mg/U ミオイ ノシ! ^一ル 50〜200 mg/U 2, 4 -ジクロロフエノキシ酢酸 0.5 〜10 mg/l 、 サイト カイニン類 0.01〜5 mg/l及び糖類 5000〜80000 mg/l並びにゲル化剤を含み、 p Hが 4.5 〜6.5 である培地を用いることを特徴とする、 インディ力イネの形質転 換方法。
2. 前記サイ トカイニン類が 6-ベンジルァミノプリンである請求項 1記載の方 法。
3. 前記糖類がマルトース、 ショ糖及びグルコースから成る群より選ばれる少 なくとも 1種である請求項 1又は 2記載の方法。
4. 前記培地は、 少なくとも、 Kl 0.5〜2 mg/U ZnS040.7 〜5 mg/l, Na2Mo04 0.1 〜0.3 mg/し GuS040· 01〜0.02 mg/l 、 CoCI20.01〜0· 02 mg/l 、 ニコチン酸 0·25〜10 mg/l 、 ピリ ドキシン 0.25〜5 mg/l及びチアミン 0.05〜20 mg/l をさ らに含む請求項 1ないし 3のいずれか 1項に記載の方法。
5. 前記培地は、 少なくとも、 カザミノ酸 100 〜 3000 mg/l 、 プロリン 100 〜 3000 mg/l 、 グルタミン 100 〜3000 mg/l 及び α—ナフタレン酢酸 0.01〜5 mg/l をさらに含む請求項 4記載の方法。
6. 前記培地は、 1000〜60000 mg/lの糖アルコールをさらに含む請求項 1ない し 5のいずれか 1項記載の方法。
7. 前記糖アルコールはマ二トール又はソルビ I ^一ルである請求項 6記載の方 法。
8. 前記インディ力イネは Group I に属する、 請求項 1ないし 7のいずれか 1 項記載の方法。
PCT/JP1997/003806 1996-10-22 1997-10-22 Procede de transformation de riz de type indica WO1998017813A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002240454A CA2240454C (en) 1996-10-22 1997-10-22 Method for transforming indica rice
KR1019980704510A KR19990072163A (ko) 1996-10-22 1997-10-22 인디카벼의형질전환방법
AU47219/97A AU736027B2 (en) 1996-10-22 1997-10-22 Method for transforming indica rice
US09/091,666 US6329571B1 (en) 1996-10-22 1997-10-22 Method for transforming indica rice
EP97909573A EP0897013A4 (en) 1996-10-22 1997-10-22 METHOD FOR TRANSFORMING INDICA RICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/298039 1996-10-22
JP8298039A JPH10117776A (ja) 1996-10-22 1996-10-22 インディカイネの形質転換方法

Publications (1)

Publication Number Publication Date
WO1998017813A1 true WO1998017813A1 (fr) 1998-04-30

Family

ID=17854340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003806 WO1998017813A1 (fr) 1996-10-22 1997-10-22 Procede de transformation de riz de type indica

Country Status (7)

Country Link
US (1) US6329571B1 (ja)
EP (1) EP0897013A4 (ja)
JP (1) JPH10117776A (ja)
KR (1) KR19990072163A (ja)
AU (1) AU736027B2 (ja)
CA (1) CA2240454C (ja)
WO (1) WO1998017813A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123926A1 (en) 2004-06-18 2005-12-29 Thomas Schmulling Method for modifying plant morphology, biochemistry and physiology comprising expression of cytokinin oxydase in the seeds
EP2298919A1 (en) 2003-04-11 2011-03-23 CropDesign N.V. Method to increase stress tolerance in plants
US9187761B2 (en) 2006-09-25 2015-11-17 Thomas Schmulling Transcriptional repressors of cytokinin signaling and their use
CN110384043A (zh) * 2019-06-27 2019-10-29 遵义医科大学 一种基本培养基、半夏组织培养基及半夏组织培养方法

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987025B1 (en) * 1999-02-11 2006-01-17 The Arizona Board Of Regents On Behalf Of The University Of Arizona Dwf4 polynucleotides, polypeptides and uses thereof
EP1586645A3 (en) * 1999-02-25 2006-02-22 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
US7399850B2 (en) * 1999-06-18 2008-07-15 Ceres, Inc. Sequence-determined DNA fragments encoding AP2 domain proteins
US7485715B2 (en) * 1999-06-18 2009-02-03 Ceres, Inc. Sequence-determined DNA encoding AP2 domain polypeptides
US7479555B2 (en) * 1999-07-21 2009-01-20 Ceres, Inc. Polynucleotides having a nucleotide sequence that encodes a polypeptide having MOV34 family activity
US20060194958A1 (en) * 1999-11-10 2006-08-31 Nickolai Alexandrov Sequence-determined DNA fragments encoding AN1-like zinc finger proteins
AU2267201A (en) 1999-12-15 2001-06-25 Paula Olhoft Method to enhance agrobacterium-mediated transformation of plants
US7691991B2 (en) * 2000-04-17 2010-04-06 Ceres, Inc. Sequence-determined DNA fragments encoding cytochrome P450 proteins
CN1273604C (zh) 2000-08-03 2006-09-06 日本烟草产业株式会社 提高植物细胞转基因效率的方法
DK1306440T3 (da) * 2000-08-03 2007-04-02 Japan Tobacco Inc Fremgangsmåde til forbedring af gentransfer-effektivitet ind i planteceller
US7385046B2 (en) * 2001-01-03 2008-06-10 Ceres, Inc. Sequence-determined DNA fragments encoding ethylene responsive element binding proteins
US8519227B2 (en) 2002-03-12 2013-08-27 Hiroshi Tanaka Ultra-fast transformation technique for monocotyledons
US20060194959A1 (en) * 2002-07-15 2006-08-31 Nickolai Alexandrov Sequence-determined DNA fragments encoding SRF-type transcription factors
US7476777B2 (en) * 2002-09-17 2009-01-13 Ceres, Inc. Biological containment system
AU2003295333A1 (en) * 2002-09-17 2004-04-08 Ceres, Inc. Biological containment system
US7682829B2 (en) * 2003-05-30 2010-03-23 Monsanto Technology Llc Methods for corn transformation
KR20060057586A (ko) * 2003-08-13 2006-05-26 니뽄 다바코 산교 가부시키가이샤 구리이온의 첨가에 의해 식물의 형질전환 효율을향상시키는 방법
AU2004264463B2 (en) * 2003-08-13 2009-05-28 Kaneka Corporation Method of Introducing Gene into Plant Material
WO2005073396A1 (en) * 2004-01-16 2005-08-11 Ceres, Inc. Plant cells having receptor polypeptides
US7544858B2 (en) * 2004-03-25 2009-06-09 National Institute Of Agrobiological Sciences Method of transforming monocotyledonous seed
CA2564807A1 (en) * 2004-04-23 2005-11-10 Ceres Inc. Methods and materials for improving plant drought tolerance
WO2006023766A2 (en) * 2004-08-20 2006-03-02 Ceres Inc. P450 polynucleotides, polypeptides, and uses thereof
US20060059585A1 (en) * 2004-09-14 2006-03-16 Boris Jankowski Modulating plant sugar levels
WO2006031859A2 (en) 2004-09-14 2006-03-23 Ceres Inc. Modulation of amino acid and sugar content in plants
US7429692B2 (en) * 2004-10-14 2008-09-30 Ceres, Inc. Sucrose synthase 3 promoter from rice and uses thereof
US9758790B2 (en) 2004-12-08 2017-09-12 Ceres, Inc. Modulating the level of components within plants
WO2007087601A2 (en) * 2006-01-25 2007-08-02 Ceres, Inc. Modulating plant protein levels
US7329797B2 (en) * 2004-12-08 2008-02-12 Ceres, Inc. Modulating plant carbon levels
WO2007089610A1 (en) * 2006-01-26 2007-08-09 Ceres, Inc. Modulating plant oil levels
BRPI0519657A2 (pt) * 2004-12-16 2009-03-03 Ceres Inc modulaÇço dos nÍveis de nitrogÊnio em plantas
US7335760B2 (en) * 2004-12-22 2008-02-26 Ceres, Inc. Nucleic acid sequences encoding zinc finger proteins
US7795503B2 (en) * 2005-02-22 2010-09-14 Ceres, Inc. Modulating plant alkaloids
WO2006115575A1 (en) * 2005-04-20 2006-11-02 Ceres Inc. Regulatory regions from papaveraceae
US8124839B2 (en) 2005-06-08 2012-02-28 Ceres, Inc. Identification of terpenoid-biosynthesis related regulatory protein-regulatory region associations
US8551917B2 (en) * 2005-11-07 2013-10-08 Los Alamos National Security, Llc Use of prolines for improving growth and/or yield
US20070199090A1 (en) * 2006-02-22 2007-08-23 Nestor Apuya Modulating alkaloid biosynthesis
WO2007120989A2 (en) * 2006-02-24 2007-10-25 Ceres, Inc. Shade regulatory regions
US20100154082A1 (en) * 2006-05-10 2010-06-17 Ceres, Inc. Shade tolerance in plants
WO2007133804A2 (en) * 2006-05-15 2007-11-22 Ceres, Inc. Modulation of oil levels in plants
WO2007147068A2 (en) * 2006-06-14 2007-12-21 Ceres, Inc. Increasing uv-b tolerance in plants
US20090320165A1 (en) * 2006-06-21 2009-12-24 Steven Craig Bobzin Modulation of protein levels in plants
US20130191941A1 (en) 2006-07-05 2013-07-25 Shing Kwok Modulating light response pathways in plants, increasing light-related tolerances in plants, and increasing biomass in plants
US8344210B2 (en) * 2006-07-05 2013-01-01 Ceres, Inc. Increasing low light tolerance in plants
WO2008073617A2 (en) * 2006-11-03 2008-06-19 Ceres, Inc. Increasing tolerance of plants to low light conditions
WO2008064222A2 (en) * 2006-11-20 2008-05-29 Ceres, Inc. Shade tolerance in plants
US20110252501A1 (en) 2006-08-17 2011-10-13 Monsanto Technology Llc Transgenic plants with enhanced agronomic traits
EP2069510B1 (en) 2006-08-31 2013-07-24 Monsanto Technology, LLC Methods for rapidly transforming monocots
US8362322B2 (en) 2006-10-27 2013-01-29 Ceres, Inc. Modulating lignin in plants
WO2008064128A2 (en) * 2006-11-22 2008-05-29 Ceres, Inc. Broadly expressing regulatory regions
US20100151109A1 (en) * 2006-12-15 2010-06-17 Amr Saad Ragab Modulation of plant protein levels
AU2008231785A1 (en) 2007-03-23 2008-10-02 Basf Plant Science Gmbh Transgenic plant with increased stress tolerance and yield
AR066754A1 (es) 2007-05-29 2009-09-09 Basf Plant Science Gmbh Plantas transgenicas con tolerancia al estres y rendimiento aumentados
EP3567113A1 (en) 2007-06-06 2019-11-13 Monsanto Technology LLC Genes and uses for plant enhancement
US20110265221A1 (en) 2007-07-10 2011-10-27 Monsanto Technology Llc Transgenic plants with enhanced agronomic traits
EP2520655A3 (en) 2007-07-13 2012-12-26 BASF Plant Science GmbH Transgenic plants with increased stress tolerance and yield
CA2694142A1 (en) 2007-08-02 2009-02-05 Basf Plant Science Gmbh Transgenic plants with increased stress tolerance and yield
US8097712B2 (en) 2007-11-07 2012-01-17 Beelogics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
CN101889089B (zh) 2007-11-27 2013-10-23 巴斯夫植物科学有限公司 具有增加的胁迫耐受性和产率的转基因植物
EP2537937A3 (en) 2008-04-29 2013-04-10 Monsanto Technology LLC Genes and uses for plant enhancement
AU2009267007B2 (en) 2008-07-01 2016-02-25 Monsanto Technology, Llc Recombinant DNA constructs and methods for modulating expression of a target gene
US8419145B2 (en) * 2008-07-25 2013-04-16 Eastman Kodak Company Inkjet printhead and method of printing with multiple drop volumes
BRPI0917860A2 (pt) 2008-08-20 2019-09-24 Basf Plant Science Gmbh polinucleotídeo, cassete de expressão, vetor de expressão recombinante, célula de planta, produto agrícola, planta transgênica, semente, método para produzir uma planta transgênica com rendimento intensificado, e, uso de um polinucleotídeo.
AU2009296051A1 (en) 2008-09-23 2010-04-01 Basf Plant Science Gmbh Transgenic plants with increased yield
US8298794B2 (en) * 2008-10-09 2012-10-30 Ceres, Inc. Cinnamyl-alcohol dehydrogenases
US20110258735A1 (en) 2008-12-22 2011-10-20 Marie Coffin Genes and uses for plant enhancement
US20110239315A1 (en) 2009-01-12 2011-09-29 Ulla Bonas Modular dna-binding domains and methods of use
EP2206723A1 (en) 2009-01-12 2010-07-14 Bonas, Ulla Modular DNA-binding domains
US20120042418A1 (en) 2009-01-28 2012-02-16 Basf Plant Science Company Gmbh Engineering NF-YB Transcription Factors for Enhanced Drought Resistance and Increased Yield in Transgenic Plants
US20110283418A1 (en) 2009-01-28 2011-11-17 Basf Plant Science Company Gmbh Transgenic Plants Having Altered Nitrogen Metabolism
US20120277117A1 (en) 2009-02-27 2012-11-01 Adel Zayed Hydroponic apparatus and methods of use
EP2411524A1 (en) 2009-03-23 2012-02-01 BASF Plant Science Company GmbH Transgenic plants with altered redox mechanisms and increased yield
US20120297505A1 (en) 2009-07-20 2012-11-22 Chuan-Yin Wu Transgenic plants having increased biomass
US8962584B2 (en) 2009-10-14 2015-02-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Compositions for controlling Varroa mites in bees
AU2010327998B2 (en) 2009-12-10 2015-11-12 Iowa State University Research Foundation, Inc. TAL effector-mediated DNA modification
US20130047297A1 (en) 2010-03-08 2013-02-21 Robert D. Sammons Polynucleotide molecules for gene regulation in plants
US9441233B2 (en) 2010-05-06 2016-09-13 Ceres, Inc. Transgenic plants having increased biomass
JP6208580B2 (ja) 2010-05-17 2017-10-04 サンガモ セラピューティクス, インコーポレイテッド 新規のdna結合タンパク質及びその使用
CN105671108A (zh) 2010-06-02 2016-06-15 沃维公司 甜菊糖苷的重组生产
US8816153B2 (en) 2010-08-27 2014-08-26 Monsanto Technology Llc Recombinant DNA constructs employing site-specific recombination
BR112013010278B1 (pt) 2010-10-27 2020-12-29 Ceres, Inc método para produzir uma planta, método para modular a composição de biomassa em uma planta, ácido nucleico isolado e método para alterar a composição de biomassa em uma planta
EP2927323A3 (en) 2011-04-11 2015-12-09 Targeted Growth, Inc. Identification and the use of krp mutants in plants
KR20200057799A (ko) 2011-08-08 2020-05-26 에볼바 에스아 스테비올 글리코시드의 재조합 생산
KR101815063B1 (ko) 2011-08-08 2018-01-05 에볼바 에스아 사프란 화합물의 재조합 생성을 위한 방법 및 물질
CN108570464B (zh) 2011-08-08 2021-12-21 国际香料香精公司 用于香草醛或香草醛β-D-葡萄糖苷的生物合成的组合物和方法
BR112014003311B1 (pt) 2011-08-12 2020-11-10 Ceres, Inc. método para obtenção de uma célula vegetal, método de obtenção de uma planta, vetor
AU2012308659B2 (en) 2011-09-13 2017-05-04 Monsanto Technology Llc Methods and compositions for weed control
US9840715B1 (en) 2011-09-13 2017-12-12 Monsanto Technology Llc Methods and compositions for delaying senescence and improving disease tolerance and yield in plants
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
MX377067B (es) 2011-09-13 2025-03-07 Monsanto Technology Llc Métodos y composiciones para el control de malezas.
US10760086B2 (en) 2011-09-13 2020-09-01 Monsanto Technology Llc Methods and compositions for weed control
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
EP2756086B1 (en) 2011-09-13 2018-02-21 Monsanto Technology LLC Methods and compositions for weed control
WO2013040049A1 (en) 2011-09-13 2013-03-21 Monsanto Technology Llc Methods and compositions for weed control
US9920326B1 (en) 2011-09-14 2018-03-20 Monsanto Technology Llc Methods and compositions for increasing invertase activity in plants
KR101355922B1 (ko) * 2011-11-02 2014-01-28 세종대학교산학협력단 벼의 형질전환 방법
BR122020026845B1 (pt) 2011-11-02 2021-04-13 Ceres, Inc Método de aumento do rendimento de planta em solo contendo níveis elevados de al3+, método de aumento da tolerância de uma planta
US10323256B2 (en) 2011-12-09 2019-06-18 Ceres, Inc. Transgenic plants having altered biomass composition
KR101447118B1 (ko) * 2012-05-16 2014-10-06 한국생명공학연구원 인공 씨감자 배양용 고형 배지 조성물 및 이를 이용한 원-스텝 인공 씨감자 배양 방법
IN2014MN02404A (ja) 2012-05-24 2015-08-21 Seeds Ltd Ab
EP2861737B1 (en) 2012-06-19 2019-04-17 Regents Of The University Of Minnesota Gene targeting in plants using dna viruses
BR112015008706A2 (pt) 2012-10-18 2018-02-06 Monsanto Technology Llc métodos e composições para controle de praga de plantas
AU2013337832B2 (en) 2012-11-01 2019-04-04 Cellectis Plants for production of therapeutic proteins
WO2014067534A1 (en) 2012-11-05 2014-05-08 Evolva Sa Vanillin synthase
US20150307894A1 (en) 2012-11-28 2015-10-29 Monsanto Technology Llc Transgenic Plants With Enhanced Traits
US20140178561A1 (en) 2012-12-21 2014-06-26 Cellectis Potatoes with reduced cold-induced sweetening
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
CN105358695B (zh) 2013-01-01 2019-07-12 A.B.种子有限公司 将dsRNA引入植物种子以调节基因表达的方法
US10000767B2 (en) 2013-01-28 2018-06-19 Monsanto Technology Llc Methods and compositions for plant pest control
WO2014122227A2 (en) 2013-02-06 2014-08-14 Evolva Sa Methods for improved production of rebaudioside d and rebaudioside m
MX2015010098A (es) 2013-02-11 2016-04-19 Evolva Sa Producción eficiente de glicosidos de esteviol en huéspedes recombinantes.
UY35385A (es) 2013-03-13 2014-09-30 Monsanto Technology Llc ?métodos y composiciones para el control de malezas?.
MX364458B (es) 2013-03-13 2019-04-26 Monsanto Technology Llc Métodos y composiciones para el control de malezas.
US9290443B2 (en) 2013-03-14 2016-03-22 Los Alamos National Security, Llc Preparation of 4-amino-2,4-dioxobutanoic acid
US9045392B2 (en) 2013-03-14 2015-06-02 Los Alamos National Security, Llc Preparation of 4-amino-2,4-dioxobutanoic acid
US9290442B2 (en) 2013-03-14 2016-03-22 Los Alamos National Security, Llc Preparation of 4-amino-2,4-dioxobutanoic acid
US20140283211A1 (en) 2013-03-14 2014-09-18 Monsanto Technology Llc Methods and Compositions for Plant Pest Control
US10113162B2 (en) 2013-03-15 2018-10-30 Cellectis Modifying soybean oil composition through targeted knockout of the FAD2-1A/1B genes
US10568328B2 (en) 2013-03-15 2020-02-25 Monsanto Technology Llc Methods and compositions for weed control
US9850496B2 (en) 2013-07-19 2017-12-26 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
MX359191B (es) 2013-07-19 2018-09-18 Monsanto Technology Llc Composiciones y métodos para controlar leptinotarsa.
PT3044320T (pt) 2013-09-11 2020-04-13 Impossible Foods Inc Secreção de polipéptidos contendo heme
WO2015054106A1 (en) 2013-10-07 2015-04-16 Monsanto Technology Llc Transgenic plants with enhanced traits
DK3062606T3 (da) 2013-10-29 2019-06-24 Biotech Inst Llc Forædling, fremstilling, forarbejdning og anvendelse af speciel cannabis
MX390055B (es) 2013-11-04 2025-03-20 Monsanto Technology Llc Composiciones y metodos para controlar infestaciones de plagas y parasitos de los artropodos.
UA119253C2 (uk) 2013-12-10 2019-05-27 Біолоджикс, Інк. Спосіб боротьби із вірусом у кліща varroa та у бджіл
EP3116303B1 (en) 2014-01-15 2020-07-22 Monsanto Technology LLC Methods and compositions for weed control using epsps polynucleotides
EP3099802A1 (en) 2014-01-31 2016-12-07 The University of Copenhagen Biosynthesis of forskolin and related compounds
EP3099803A1 (en) 2014-01-31 2016-12-07 University of Copenhagen Methods for producing diterpenes
EP3125676A4 (en) 2014-04-01 2018-02-14 Monsanto Technology LLC Compositions and methods for controlling insect pests
US9101100B1 (en) 2014-04-30 2015-08-11 Ceres, Inc. Methods and materials for high throughput testing of transgene combinations
CA2952906A1 (en) 2014-06-20 2015-12-23 Cellectis Potatoes with reduced granule-bound starch synthase
AU2015280252A1 (en) 2014-06-23 2017-01-12 Monsanto Technology Llc Compositions and methods for regulating gene expression via RNA interference
WO2015197075A1 (en) 2014-06-23 2015-12-30 University Of Copenhagen Methods and materials for production of terpenoids
EP3161138A4 (en) 2014-06-25 2017-12-06 Monsanto Technology LLC Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression
CA3226788A1 (en) 2014-07-15 2016-01-21 Ceres, Inc. Methods of increasing crop yield under abiotic stress
UA125244C2 (uk) 2014-07-29 2022-02-09 Монсанто Текнолоджі Елелсі Спосіб умертвіння або припинення росту комахи
CN114410493A (zh) 2014-08-11 2022-04-29 埃沃尔瓦公司 在重组宿主中生产甜菊醇糖苷
AU2015314251A1 (en) 2014-09-09 2017-03-16 Evolva Sa Production of steviol glycosides in recombinant hosts
EP3215626A1 (en) 2014-11-07 2017-09-13 University of Copenhagen Biosynthesis of oxidised 13r-mo and related compounds
US10208326B2 (en) 2014-11-13 2019-02-19 Evolva Sa Methods and materials for biosynthesis of manoyl oxide
EP3256589B1 (en) 2015-01-22 2021-12-22 Monsanto Technology LLC Compositions and methods for controlling leptinotarsa
EP4148137A1 (en) 2015-01-30 2023-03-15 Evolva SA Production of steviol glycosides in recombinant hosts
EP3862426A3 (en) 2015-03-16 2021-11-17 DSM IP Assets B.V. Udp-glycosyltransferases
KR102229968B1 (ko) 2015-05-11 2021-03-22 임파서블 푸즈 인크. 메틸영양성 효모를 유전적으로 조작하는 발현 구축물 및 방법
US20180156800A1 (en) 2015-05-22 2018-06-07 Stcube & Co., Inc. Screening methods for targets for cancer therapy
WO2016196738A1 (en) 2015-06-02 2016-12-08 Monsanto Technology Llc Compositions and methods for delivery of a polynucleotide into a plant
CN108024517A (zh) 2015-06-03 2018-05-11 孟山都技术公司 用于将核酸引入到植物中的方法和组合物
CA2995067A1 (en) 2015-08-07 2017-02-16 Evolva Sa Production of steviol glycosides in recombinant hosts
US10837024B2 (en) 2015-09-17 2020-11-17 Cellectis Modifying messenger RNA stability in plant transformations
US9963423B2 (en) 2016-01-12 2018-05-08 Millennium Enterprises, Inc. Synthesis of 4-amino-2, 4-dioxobutanoic acid
WO2017134601A1 (en) 2016-02-02 2017-08-10 Cellectis Modifying soybean oil composition through targeted knockout of the fad3a/b/c genes
EP3442355A1 (en) 2016-04-13 2019-02-20 Evolva SA Production of steviol glycosides in recombinant hosts
CN109312378A (zh) 2016-05-16 2019-02-05 埃沃尔瓦公司 在重组宿主中产生甜菊醇糖苷
WO2018015512A1 (en) 2016-07-20 2018-01-25 Evolva Sa Biosynthesis of 13r-manoyl oxide derivatives
AU2017309313B2 (en) 2016-08-09 2023-11-02 River Stone Biotech, Inc. Biosynthesis of benzylisoquinoline alkaloids and benzylisoquinoline alkaloid precursors
WO2018083338A1 (en) 2016-11-07 2018-05-11 Evolva Sa Production of steviol glycosides in recombinant hosts
WO2018092072A1 (en) 2016-11-16 2018-05-24 Cellectis Methods for altering amino acid content in plants through frameshift mutations
EP4403637A3 (en) 2017-04-25 2024-10-30 Cellectis Alfalfa with altered lignin composition
WO2020190363A1 (en) 2019-03-19 2020-09-24 Massachusetts Institute Of Technology Control of nitrogen fixation in rhizobia that associate with cereals
WO2020219972A1 (en) 2019-04-25 2020-10-29 Impossible Foods Inc. Strains and methods for production of heme-containing proteins
US11473086B2 (en) 2019-06-19 2022-10-18 Ut-Battelle, Llc Loss of function alleles of PtEPSP-TF and its regulatory targets in rice
WO2022072833A2 (en) 2020-10-02 2022-04-07 Impossible Foods Inc. Expression constructs and methods of genetically engineering cells
WO2022072846A2 (en) 2020-10-02 2022-04-07 Impossible Foods Inc. Transgenic plants with altered fatty acid profiles and upregulated heme biosynthesis
AU2023337091A1 (en) 2022-09-09 2025-03-06 Eidgenössische Technische Hochschule Zürich Plant regulatory elements and uses thereof
US20240324538A1 (en) 2023-03-27 2024-10-03 Red Sea Farms Ltd Tomato plant designated 'x21-02'
US20250075226A1 (en) 2023-08-29 2025-03-06 University Of Freiburg Proteins for regulation of symbiotic infection and associated regulatory elements

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222527A (ja) 1990-12-19 1992-08-12 Japan Tobacco Inc トマトの形質転換方法
JPH04330234A (ja) 1991-03-20 1992-11-18 Japan Tobacco Inc キュウリモザイクウィルス抵抗性トマト及びその作出方法
US5591616A (en) 1992-07-07 1997-01-07 Japan Tobacco, Inc. Method for transforming monocotyledons
WO1995006722A1 (fr) 1993-09-03 1995-03-09 Japan Tobacco Inc. Procede permettant de transformer une monocotyledone avec un scutellum d'embryon immature

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHAN M.-T., LEE T.-M., CHANG H.-H.: "TRANFORMATION OF INDICA RICE (ORYZA SATIVA L.) MEDIATED BY AGROBACTERIUM TUMEFACIENS.", PLANT AND CELL PHYSIOLOGY, OXFORD UNIVERSITY PRESS, UK, vol. 33., no. 05., 1 January 1992 (1992-01-01), UK, pages 577 - 583., XP000562121, ISSN: 0032-0781 *
HIEI Y., ET AL.: "EFFICIENT TRANSFORMATION OF RICE (ORYZA SATIVA L.) MEDIATED BY AGROBACTERIUM AND SEQUENCE ANALYSIS OF THE BOUNDARIES OF THE T-DNA.", THE PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD., GB, vol. 06., no. 02., 1 January 1994 (1994-01-01), GB, pages 271 - 282., XP002922710, ISSN: 0960-7412, DOI: 10.1046/j.1365-313X.1994.6020271.x *
LI LIANGCAI ET AL: "An improved rice transformation system using the biolistic method", PLANT CELL REPORTS, SPRINGER INTERNATIONAL, DE, vol. 12, no. 5, 1 January 1993 (1993-01-01), DE, pages 250 - 255, XP002176239, ISSN: 0721-7714, DOI: 10.1007/BF00237129 *
POL VAN DE F. C. M., ET AL.: "A THERMO-PNEUMATIC ACTUATION PRINCIPLE FOR A MICROMINIATURE PUMP AND OTHER MICROMECHANICAL DEVICES.", SENSORS AND ACTUATORS., ELSEVIER SEQUOIA S.A. LAUSANNE., CH, no. 17., 1 January 1989 (1989-01-01), CH, pages 139 - 143., XP000560588 *
RANCE I. M. ET AL.: "Partial desiccation of mature embryo-derived calli, a simple treatment that dramatically enhances the regeneration ability of indica rice", PLANT CELL REPORTS, SPRINGER INTERNATIONAL, DE, vol. 13, 1 January 1994 (1994-01-01), DE, pages 647 - 651, XP002176238, ISSN: 0721-7714 *
RASHID H., ET AL.: "TRANSGENIC PLANT PRODUCTION MEDIATED BY AGROBACTERIUM IN INDICA RICE.", PLANT CELL REPORTS, SPRINGER INTERNATIONAL, DE, vol. 15., 1 January 1996 (1996-01-01), DE, pages 727 - 730., XP002924852, ISSN: 0721-7714, DOI: 10.1007/s002990050108 *
RHODORA, R.: "Agrobacterium tumefaciens-mdiated transformation of japonica and indica rice varieties", PLANTA., SPRINGER VERLAG., DE, vol. 199., 1 January 1996 (1996-01-01), DE, pages 612 - 617., XP002079226, ISSN: 0032-0935 *
See also references of EP0897013A4 *
VIJACHANDRA K, PALANICHELVAM, VELUTHAMBI K: "RICE SCUTELLUM INDUCES AGROBACTERIUM TUMEFACIENS VIR GENES AND T-STRAND GENERATION", PLANT MOLECULAR BIOLOGY, SPRINGER, DORDRECHT., NL, vol. 29, 1 January 1995 (1995-01-01), NL, pages 125 - 133, XP002926619, ISSN: 0167-4412, DOI: 10.1007/BF00019124 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2298919A1 (en) 2003-04-11 2011-03-23 CropDesign N.V. Method to increase stress tolerance in plants
EP2311964A1 (en) 2003-04-11 2011-04-20 CropDesign N.V. Method to increase stress tolerance in plants
WO2005123926A1 (en) 2004-06-18 2005-12-29 Thomas Schmulling Method for modifying plant morphology, biochemistry and physiology comprising expression of cytokinin oxydase in the seeds
US9187761B2 (en) 2006-09-25 2015-11-17 Thomas Schmulling Transcriptional repressors of cytokinin signaling and their use
CN110384043A (zh) * 2019-06-27 2019-10-29 遵义医科大学 一种基本培养基、半夏组织培养基及半夏组织培养方法
CN110384043B (zh) * 2019-06-27 2021-09-21 遵义医科大学 一种基本培养基、半夏组织培养基及半夏组织培养方法

Also Published As

Publication number Publication date
JPH10117776A (ja) 1998-05-12
EP0897013A4 (en) 2001-11-07
KR19990072163A (ko) 1999-09-27
AU736027B2 (en) 2001-07-26
CA2240454A1 (en) 1998-04-30
US6329571B1 (en) 2001-12-11
CA2240454C (en) 2003-06-03
AU4721997A (en) 1998-05-15
EP0897013A1 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
WO1998017813A1 (fr) Procede de transformation de riz de type indica
Olhoft et al. L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells
Rugini et al. Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes
Michelmore et al. Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens
US20140223607A1 (en) Transformation system in camelina sativa
Clarke et al. High-frequency transformation of Arabidopsis thaliana by Agrobacterium tumefaciens
Song et al. Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars
US20090151023A1 (en) Transformation system for Camelina sativa
Soh et al. Morphogenesis in plant tissue cultures
JP2001514009A (ja) 植物の改良されたアグロバクテリウム−媒介形質転換法
Solleti et al. Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation
Velcheva et al. A liquid culture system for Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. Mill.)
Rugini et al. Agrobacterium rhizogenes T-DNA genes and rooting in woody species
US6255559B1 (en) Methods for producing genetically modified plants, genetically modified plants, plant materials and plant products produced thereby
Huang et al. An improved procedure for transforming Arabidopsis thaliana (Landsberg erecta) root explant
WO2003041491A2 (en) Doubled haploid production and genetic transformation
Mitić et al. Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L.
Kishchenko et al. Production of transgenetic sugarbeet (Beta vulgaris L.) plants resistant to phosphinothricin
Lewi et al. Sunflower (Helianthus annuus L.)
Koroch et al. In vitro regeneration and Agrobacterium transformation of Echinacea purpurea leaf explants
CA2341781A1 (en) Methods for producing genetically modified plants, plant materials and plant products produced thereby
US7057090B1 (en) Agrobacterium-mediated transformation of turfgrass
Arrillaga et al. In vitro plant regeneration and gene transfer in the wild tomato Lycopersicon cheesmanii
Gürel et al. Evaluation of various sunflower (Helianthus annuus L.) genotypes for Agrobacterium tumefaciens-mediated gene transfer
Dovzhenko Towards plastid transformation in rapeseed (Brassica napus L.) and sugarbeet (Beta vulgaris L.)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191464.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019980704510

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2240454

Country of ref document: CA

Ref document number: 2240454

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1997909573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09091666

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997909573

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704510

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997909573

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980704510

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载