+

WO1998017577A1 - Vehicule robotise pour tache sur ligne sous tension - Google Patents

Vehicule robotise pour tache sur ligne sous tension Download PDF

Info

Publication number
WO1998017577A1
WO1998017577A1 PCT/JP1997/003734 JP9703734W WO9817577A1 WO 1998017577 A1 WO1998017577 A1 WO 1998017577A1 JP 9703734 W JP9703734 W JP 9703734W WO 9817577 A1 WO9817577 A1 WO 9817577A1
Authority
WO
WIPO (PCT)
Prior art keywords
manipulator
arm
work
boom
robot
Prior art date
Application number
PCT/JP1997/003734
Other languages
English (en)
French (fr)
Inventor
Hirofumi Inokuchi
Toshihide Tomiyama
Yosihiro Yurita
Shinji Murai
Yusuke Hirano
Shinji Harada
Kengo Tsuruta
Youichi Motomuray
Kazutoshi Imai
Yoshiaki Haga
Yoshikatsu Nakamura
Yukio Hashiguchi
Mitsuhiro Matsuzaki
Hiromichi Yamada
Akihiko Mishima
Yoshinaga Maruyama
Kyoji Yano
Moriyuki Nakashima
Osamu Yamashita
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to DE69739160T priority Critical patent/DE69739160D1/de
Priority to US09/284,674 priority patent/US6325749B1/en
Priority to EP97944138A priority patent/EP0940366B1/en
Priority to CA002268959A priority patent/CA2268959C/en
Priority to JP51920698A priority patent/JP4005639B2/ja
Publication of WO1998017577A1 publication Critical patent/WO1998017577A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/06Manipulators combined with a control cab for the operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/04Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • B66F11/044Working platforms suspended from booms
    • B66F11/046Working platforms suspended from booms of the telescoping type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T483/00Tool changing
    • Y10T483/15Tool changing with means to condition or adjust tool or tool support

Definitions

  • the present invention relates to a hot-bottom work bot vehicle used for uninterruptible power work in which high-voltage power transmission and distribution lines are connected without stopping power supply in wiring work and maintenance work.
  • the hot-line work robot car is equipped with a dual arm manipulator for work and a third arm for hanging electric wire supporting heavy objects on a manipulator base attached to the boom end of the aerial work vehicle. Wiring work and maintenance work are performed by operating the operation panel on the bucket provided at the tip of the operation cabin or booth in the robot car on the ground. -If the actuators that drive these dual-arm manipulators and the third arm are all composed of 5 hydraulic actuators, the dual-arm manipulators will not be able to achieve high positioning accuracy. And its correction function make automatic operation difficult, but on the other hand, it has a heavy lifting function and poor positioning accuracy
  • the third arm which is not required, is compact and lightweight.
  • the dual-arm manipulator and the drive mechanism of the third arm are all composed of electric actuators
  • the dual-arm manipulator provides high positioning accuracy, and can be used to control the work-object. Force that facilitates automatic compensation operation
  • the third arm is large and heavy.
  • the manipulator can be positioned with high precision, and the operator can perform remote operation and corrective automatic operation such as approaching to the work object.Heavy object-A small and lightweight third arm with a lifting function is available. There is a demand for five live-line work robots.
  • the boarding type hot-line work robot is one in which the operator rides on the tip packet of the aerial work vehicle and operates the manipulator.
  • the pattern It is conceivable that the operator 56 contacts the live wire 61 in the bucket 55 as shown in FIG. In this case, the leakage current is activated by the voltage between the hot wire 61 and the ground.
  • Hot wire 61 ⁇ operator 56 ⁇ bucket 55 ⁇ boom (3rd boom 54, 2nd boom-53, 1st boom) Boom 5 2) ⁇ Car 5 1 ⁇ Flow along the earth route.
  • 57 denotes an operation panel
  • 58 denotes a manipulator mounting section
  • 59 denotes a first insulating arm section
  • 60 denotes a second insulating-arm section.
  • the leakage current does not exceed 0.5 mA as the insulation performance of work platforms. Also, since the leakage current varies depending on the applied voltage, it is specified that a voltage equivalent to twice the circuit voltage be applied as the zero test voltage in this standard.
  • the hot-line working robot used in the present invention aims at working a hot wire of 23 kV. Therefore, in the case of a boarding operation type hot-work robot, the leakage current flowing to the operator must be less than 0.5 mA for an applied voltage of 46 kV-against an electric shock as shown in Fig. 7. For this reason, conventionally, as shown in FIG. 8, the distal end of the third boom 54 was formed of an FRP hollow cylinder 62 which is an insulating member to ensure insulation characteristics.
  • the third boom must always be kept at 2 m or more. It was necessary to be in an extended state. Therefore, it is necessary to extend and extend the third boom 54 to 2 m or more even in a rainy day, even when the working live line is at a relatively low position. In this case, due to the weight of the manipulator, the balance of the body that supports the manipulator may be degraded, or the body may fall over, making it difficult or impossible to work.
  • the third boom can be extended to 2 m or more and work can be performed, if rainwater continues to be applied to the third boom, the water repelling property of the third boom surface 5, that is, the water repellency is reduced, and The current cannot be reduced to less than 0.5 mA. Or, if a voltage is applied to the third boom and rain water is applied to the surface of the third boom, discharge occurs on the surface of the boom, and this discharge causes the FRP resin layer on the third boom-surface to rapidly deteriorate, and water repellency Decreases rapidly. Because of this -Leakage current cannot be reduced below 0.5 mA.
  • FIG. 8 is a sectional view showing the structure of a conventional boom section.
  • a third boom-54 is an insulator for supporting the manipulator, and is constituted by an FRP hollow cylinder 62. Since the FRP hollow cylinder 62 is an insulator, the third boom 54 extends 0.5 m even if the operator 56 contacts the live line in the situation shown in FIG. At a live voltage of 46 kV, the leakage current can be reduced to less than 0.5 mA.
  • the boom at the end of the boom must be installed in order to prevent electric shock accidents to humans. It is made of insulating material, and a generator that drives the manipulators is mounted on the gantry to ensure electrical insulation between the vehicle and the gantry. Also, in order to prevent ground-fault accidents caused by manipulators and inter-phase short-circuit accidents that occur when the tools attached to the tips of the two manipulators or the tips of the manipulators simultaneously touch live wires of different phases during work. In addition, an insulating part is provided on the front-arm part of the manipulator.
  • grounding work is performed to electrically connect the main unit and the grounding wire, but the grounding is established. However, it must be grounded at the work site every time • it is moved. This work is performed by an operator, and only the physical grounding state is determined visually. Therefore, it is desired to make sure that the worker does not forget to ground, and that the electrical grounding state can be determined in real time by an unmanned person.
  • a first object of the present invention is to enable high-precision positioning of a manipulator.-Remote operation and teaching by an operator '' Playback and the corresponding operation. Has heavy lifting function -To provide a small and lightweight robot for live line work equipped with a third arm.
  • a second object of the present invention is for 5-wire construction that can maintain water repellency for a long period of time and has no danger of electric shock when the boom is extended even when the robot for live-line work is used in rainy weather.
  • An object of the present invention is to provide a boom structure for a worker at a high place.
  • a third object of the present invention is to prevent a short-circuit accident between manipulators when two manipulators simultaneously contact different-phase live wires due to malfunction or malfunction.
  • -A fourth object of the present invention is to improve the safety by preventing the use of electric equipment when the ground is not taken.
  • -A seventh object of the present invention is to efficiently use a working tool used for a work of a dual-arm manipulator.
  • an eighth object of the present invention is to provide a socket exchange device used for attaching and detaching a nut with a dual-arm manipulator.
  • a ninth object of the present invention is to determine a position of a slide axis from a position and a posture of a hand provided as a target value in a hot-line work robot vehicle having a slide mechanism for attaching a manipulator. It is an object of the present invention to provide a control method capable of simultaneously controlling the slide shaft and the multi-pullet.
  • -A tenth object of the present invention is to automatically output an operation command without performing a manual adjustment operation when one of the dual-arm manipulators is desired to be aligned with the other position or posture.
  • the object is to improve operability.
  • the eleventh object of the present invention is to perform accurate calibration when absolute accuracy is required of the robot and determine the basic posture.However, calibration is required due to misalignment or replacement of parts. -In the event of a failure, there is no need to re-calibrate from the basic position, but in a short time and with high accuracy.
  • the present invention relates to an active 5-line working robot vehicle for performing live-line work on transmission and distribution lines, wherein the base end is turned, undulated, extended and retracted on a high-altitude work vehicle.
  • Possible-The tip of the supported multi-stage boom is an insulating boom made of insulating material, and a multi-axis dual arm manipulator that performs power distribution work is mounted on a stand provided at the end of the isolated boom.
  • a slide device that slides these dual-arm manipulators back and forth independently left and right, and a multi-axis lifting arm with a wire-supporting heavy-weight lifting function and 0 are mounted to enable remote control by an operator.
  • the actuator for driving the double-arm manipulator and the slide device is constituted by an electromechanical system, and the manipulator for driving the lifting arm is constituted by a hydraulic system.
  • the working part for wiring work is attached to the tip of the boom structure-The telescopic boom made of FRP or GFRP and the telescopic boom are guided-The storage side provided with the roller that supports it
  • the non-slidable portion of the telescopic boom that is not in contact with the roller is made of an insulating material and has a surface coated with a silicon compound 5 on its surface.
  • the two dual-arm manipulators In order to achieve the third object, in the above-mentioned hot-line work robot vehicle:-Two multi-axis electric dual-arm manipulators simultaneously contact different-phase hot wires-An interphase short-circuit accident that occurs when In order to prevent, the two dual-arm manipulators -The control panel for controlling the control panel and the generators for supplying power to these control panels are independently provided.- Further, those control panels and the generator are fixed to the gantry made of insulating material. The transmission and reception of signals between the divided control panels is performed by using an optical cable to electrically isolate the two manipulators.
  • connection fitting capable of being connected to and fixed to a ground wire is provided at a tip, and-two insulated from each other are provided.
  • connection fittings are connected to one or two probes and the two connection fittings are connected to a ground wire.
  • An electromagnetic contactor having a coil that is excited in the electrical device, and a contact capable of setting an operating circuit of the electric machine to an operating state by exciting the coil.
  • -A battery for supplying power to the electromagnetic contactor; and-a grounding interlock device in which the connection fitting, the electromagnetic contactor, and the battery are connected in series to the one conductor.
  • the mounting arrangement of the two slide devices is arranged so that the distance between the two sliding devices increases toward the tip end.
  • -It has a rack part provided with a cylinder that presses the clamp button when a tool is attached and detached, and-A pneumatic circuit part that can vary the thrust of the cylinder.
  • the intermediate base and the general-purpose base are removable, and the general-purpose base is angled and driven.
  • a tool that tightens and loosens bolts and the like using the dual-arm manipulator When attaching and detaching between the tool and the socket, the specified part of the attachment / detachment part is pressed in the axial direction. It has a socket exchange device for automatically exchanging the removable socket with the robot automatically.
  • a socket exchange device for automatically exchanging sockets that can be attached and detached by a robot is provided.
  • a multi-joint manipulator a base having a slide mechanism for attaching the multi-joint manipulator, and the multi-joint manipulator •
  • a manipulator comprising a control device for controlling a rotator and a slide mechanism.
  • Multi-joint • Determine the size of each joint angle of the articulated manipulator and the position of the base having the slide mechanism-and perform simultaneous trajectory control of the base having the slide mechanism and the multi-joint manipulator.
  • FIG. 1 is an overall configuration diagram of a first embodiment of the present invention.
  • Fig. 2 shows the layout of the operation panel and monitoring monitor.
  • (A) is a front view
  • (b) is a side view
  • (c) is a plan view.
  • FIG. 3 shows an example of a manipulator.
  • A) is a side view
  • (b) is a plan view
  • (c) is a front view.
  • FIG. 4 is a side view showing an example of the third arm.
  • FIG. 5 is a side view showing the storage posture of the third arm.
  • FIG. 6 is a sectional view showing the structure of the third boom of the present invention.
  • - Figure 7 shows an example of an operator getting an electric shock in a boarding operation type hot-line operation robot.
  • -It is the schematic which shows the electric current flow at the time of an electric shock.
  • FIG. 8 is a sectional view showing the structure of a conventional third boom.
  • FIG. 9 is a graph showing the change over time of the leakage current during the test of the third boom of the present invention.
  • FIG. 10 is a graph showing the change over time of the leakage current during the conventional third boom test.
  • FIG. 11 is a schematic diagram showing the configuration of the aerial work vehicle.
  • FIG. 12 is a side sectional view showing an example of an insulation system according to one embodiment of the present invention.
  • FIG. 13 is a perspective view showing an example of a bulk according to an embodiment of the present invention.
  • FIG. 14 is a perspective view of a bulk according to an embodiment of the present invention.
  • - Figure 15 is a graph showing the relationship between the insulation method and the leakage current.
  • FIG. 16 is a perspective view showing another example of the bulk of the embodiment according to the present invention.
  • FIG. 17 is a side sectional view showing an example of the insulation system according to one embodiment of the present invention.
  • FIG. 18 is an explanatory view showing another example of a bulk according to an embodiment of the present invention.
  • FIG. 19 is a side view showing an example of a conventional insulating protective cover.
  • FIG. 20 is a side view showing an example of the insulating protective cover of the present invention.
  • FIG. 21 is a plan view showing a system configuration on a gantry according to the second embodiment of the present invention.
  • FIG. 22 is a schematic diagram showing a first embodiment of the earth interlock device of the present invention.
  • FIG. 23 is a schematic view showing a second embodiment of the earth interlock device of the present invention.
  • Figure 24 shows the working posture of the distribution line work robot with the slide shaft of the conventional configuration.
  • -It is a top view.
  • FIG. 25 is a top view of the working posture of the robot having the slide shaft according to the present invention.
  • - Figure 26 is the link configuration of the articulated manipulator having a base with a slide mechanism.
  • FIG. 27 is an explanatory diagram showing a virtual link configuration and a coordinate system.
  • FIG. 28 is a flowchart showing the processing of the trajectory calculation unit.
  • Fig. 29 is an overall configuration diagram of the automatic tool changer and manipulator.
  • FIG. 30 is a front view and a sectional view showing the configuration of the manipulator-side connection portion.
  • -FIG. 31 is a side sectional view showing a tool attaching / detaching portion.
  • FIG. 32 is an explanatory view showing the operation state of the automatic tool changer.
  • FIG. 33 is a perspective view showing an embodiment of the work implement supply device.
  • FIG. 34 is a front view showing a driving unit of the work implement supply device.
  • FIG. 35 is a sectional side view showing the socket removal flow.
  • Figure 36 is a side sectional view showing the storage flow of the socket.
  • FIG. 37 is a configuration diagram and a flow chart showing a positioning / posture control method of the present invention.
  • FIG. 38 is an explanatory diagram showing an embodiment of position alignment and posture alignment.
  • FIG. 39 is a schematic view showing an embodiment of the robot posture calibration method.
  • FIG. 1 is an overall configuration diagram of the first embodiment.
  • an insulated boom 3 made of an insulating material is provided at the tip end of a multi-stage boom 2 having functions of turning, lifting, expanding and contracting an aerial work vehicle 1.
  • a gantry 4 provided at the end of the insulating boom 3 is used to perform power distribution work.
  • Mani-Piuretors 5 and 6 can automatically take out and return the materials required for the work-Automatic material transfer device (AMC) 9 and measure the distance to the work object 3D distance -Measuring device 11, multiple cameras 12 A, 12 B for shooting the work situation,
  • a monitoring monitor (CRT monitor device) 20 for displaying an image sent from the camera 12 through the optical cable 18 laid in the boom 2 and a boom 2 are laid in the boom 2.
  • 2 (a) is a front view, (b) is a side view, and (c) is a plan view.
  • the operator operates the joysticks 21, 22, 23 and the operation buttons 24 or the touch panel 26 provided on the operation panel 19 while watching the monitoring monitor 20. Remotely control the equipment 55, 6, 8, 9, 10, 11, 12 to perform hot-line work.
  • - Figure 3 is a diagram showing the dual-arm manipulators 5 and 6, (a) is a front view, (b) is-a side view, and (c) is a front view.
  • 31 is a pivot axis
  • 32 is a shoulder bending axis
  • 33- is an elbow rotation axis
  • 34 is an elbow bending axis
  • 35 is a wrist rotation axis
  • 36 is a wrist bending axis
  • 37 is a-flange rotation axis.
  • FIG. 4 is a side view showing the arm 10, 41 is a rotating shaft, 42 is an undulating shaft, 43-is an undulating shaft, 44 is a four-sided roller, and 45 is a winch.
  • FIG. 5 is a side view showing the stored state of the third arm.
  • the actuator for driving the dual-arm manipulators 5 and 6 and its slide device 7 is constituted by an electric type, and the manipulator 5 for driving the arm 10 is constituted by a hydraulic actuator.
  • the actuator for driving the rotating shaft of the arm 10 may be constituted by an electric system, and the actuator for driving the remaining shaft may be constituted by a hydraulic system.
  • the manipulator that performs fine work is composed of an electric actuator, and the arm (the third arm 10) that performs heavy-weight work such as lifting heavy loads is a hydraulic structure composed of a hydraulic actuator It is.
  • a boom is provided at the tip of the insulating boom with a rain gutter attached to the boom when water is injected.
  • the supply tool fixing part is gripped by the four-surface roller 44 of the third arm 10 and set.
  • the feeding tool adjusts the vertical and horizontal angles so that it comes to a predetermined position. Insert the machine into the left manipulator 5 and set the gripper into the right manipulator 6. At this time, the guide for attachment and the attachment for tool axis transmission are attached to the insertion machine, and the nail for poly pipe is attached to the gripper. Move the third arm 10 to the supply tool lifting position -Yes.
  • the third arm 10 is moved to the position where the poly tube collection bag is suspended.
  • Insertion machine mounting Hold the wire with the right gripper. Connect the left manipulator 5 importer to the electric wire. Hold the wire with the right gripper. Reverse the right gripper and tighten the inserter to the wire. Remove the left gripper from the gripper to avoid it.
  • FIG. 6 is a partial sectional view of the third boom showing the embodiment of the present invention.
  • -54 indicates a third boom made of an FRP hollow structure, and the third boom 54 is made up of a FR.P hollow cylindrical portion 62 and a silicon compound layer 64.
  • Table 1 shows the results of comparing the water repellency of the surface by measuring the contact angle between the present invention and the conventional one. The higher the contact angle, the higher the water repellency. It can be seen that the conventional one has a small contact angle of 70 °, and the one coated with the silicon compound of the present invention has a large contact-contact angle. That is, the water repellency of the surface is greatly improved by applying a silicon compound.
  • test conditions are: water injection volume 3 mmZ, water injection angle 45 degrees, water injection liquid resistance 1000 ⁇ cm, boom angle 30 degrees,-Leakage when 14 KV and 46 KV voltages are applied with boom length as lm.
  • the time course of the current was measured. The results are shown in FIG. 9 (the present invention) and FIG. 10 (conventional).
  • the leakage current is 0.5 mA or less at any voltage.
  • the leakage current is 0.5 mA or more from the start of the measurement, and the leakage current tends to increase.
  • the leakage current during rainfall is 0.5 mA or more with respect to the applied voltage of 46 kV.
  • the leakage current of the present invention is remarkably small as compared with the conventional example, and that the effect of the present invention is not remarkably increased over time, and the effect is remarkable.
  • the leakage current can be reduced in rainy weather by applying an applied voltage of 46 kV for a length of 1 m of the boom 54. 0.5 mA or less.
  • Table 2 shows the results of measuring the leakage current after expanding and contracting the third boom of the present invention 100 times.
  • the leakage current was measured with a water injection volume of 3 mmZ, a water injection angle of 45 degrees, a water injection resistance of 100 ⁇ cm, a boom angle of 30 degrees, and a voltage of 46 kV to a boom of 1 m. This was performed by applying a voltage.
  • the third boom has almost no flaws, and therefore no increase in leakage current due to a decrease in water repellency is observed.
  • the silicon compound having excellent water repellency and lubricity is applied to the third boom surface 0 of the live-line operation robot, whereby the third boom surface is repelled. Water is improved, and as a result, the leakage current flowing through the third boom during rainfall is reduced. •
  • the hot-line work robot performs work in rainy weather, it flows through the boom with the extension of the boom set to 1 'm.
  • the leakage current can be reduced to 0.5 mA or less-so that the operability of the hot-line work robot can be improved.
  • the lubricity of the surface of the third boom is improved, the damage generated on the surface of the third boom is significantly reduced, so that the water repellency of the surface of the third boom can be prevented from lowering. Electric shock accidents to the operator of the line work robot can be prevented. Even if rainwater is applied to the surface of the third boom while voltage is applied to the third boom, the third boom table is displayed. -It is possible to prevent the water repellency of the third boom from rapidly decreasing in order to suppress the discharge generated on the surface.
  • FIG. -FIG. 11 is a schematic diagram showing an example of the configuration of the aerial work vehicle.
  • a telescopic boom 72 with a diameter of 18 Omm on a part of the boom extending from the five cars 85, which extends and retracts while sliding over the rollers 75 in the storage boom 73.
  • the sliding surface 76 and the non-sliding surface 77 on the surface of the telescopic boom 72 are coated with a silicon compound (eg, KS63G, Shin-Etsu Chemical Co., Ltd.). There is.
  • Fig. 12 shows the structure of Fig. 11 in which the silicone compound layer 64 is not formed on the surface of the telescopic boom 72, and the bulk 79 is attached to the non-sliding surface 77 that does not contact the roller 75. It is.
  • the bulge 79 is retrofitted to the telescopic boom 72-in the case of a semi-circle with a diameter of 300 nim and a thickness of 5 mm as shown in Fig. 13- 90, 91 and an insulating bolt 92 made of an insulating material.
  • the method of mounting the shank 79 is as follows: align the shank parts 90 and 91 with the non-sliding surface 77 of the telescopic boom 72, and fix it through the insulating bolts 92 to the connecting plate made of an unshown insulating material. Then, the one-part R-TV silicone rubber (KE45W, Shin-Etsu Chemical Co., Ltd.) is filled in the joints between the force-parts 90 and 91, the holes, and the gaps between the telescopic boom 72 and the surface. A silicon compound is applied to form an insulating film 74 '.
  • a disc-shaped bulk 79 'with a center hole of 800mm in diameter and -5mm in thickness is used as shown in Fig.14.
  • Figure 15 shows the relationship between applied voltage and leakage current when the telescopic boom is extended by lm.
  • the leakage current is as large as 13 mA at 46 kV.
  • the bulk 79 is attached, it is considerably smaller at 0.24 mA. In this way, by attaching the bulk 79, the insulation distance on the non-sliding surface 77 of the telescopic boom 72 is extended, and the water repellency is improved, which is effective in reducing the leakage current. -I understand.
  • the height 79 used here is 60 m-m in the radial direction from the inner circumference to the outer circumference, and when 48 kV is applied, the length of 6 mm or more I just want it. -If the applied voltage is low, the creepage distance may be shorter.
  • the shape of the mounting part of the bevel parts 90 ′ and 90 • is rectangular as shown in FIG. Even in this case, the minimum length from the inside to the outside of the bulk is 6 O mm.
  • the shape of the bulk may be such that it covers the front surface of the telescopic boom 72.
  • first embodiment and the second embodiment may be combined. That is, it is also possible to apply a silicone compound to the surface of the expansion / contraction-side boom 72 and to use the bulk 79 to which the silicon-compound is applied.
  • the present invention is not limited to an aerial work vehicle equipped with a live line work robot 71 for distribution line construction 5 shown in Fig. 11 as well as a structure in which a packet is installed at the end of a telescopic boom 72- It can also be applied to high-rise working vehicles. Further, the present invention is also applicable to a ground control-work type live line work robot operated by a worker on the ground.
  • FIG. 19 shows a conventional example-shows the configuration of an insulating protective cover.
  • An insulating protective cover 104 is attached to a manipulator composed of insulating parts 103, 103 ', metal parts 102 and others.
  • the insulating and protective cover 104 is made of a material having excellent water repellency.
  • the creepage distance from the tip of the metal part 102 to the tip of the insulating protective cover 104 is 9550 mm, and the length of the air gap from the metal part 102 to the insulating protective cover 104 is 6 O mm.
  • FIG. 2-0 shows the configuration of the insulation protection cover according to one embodiment of the present invention.
  • the air gap between the protective cover 1 and 104 is only 6 O mm in the metal part 102 and the insulating cover 110. Secure the protective cover 104 to the area where there is danger of contact with the distribution line. Installation-It's a sign.
  • FIG. 21 is a plan view illustrating a system configuration on a gantry according to the second embodiment of the present invention.
  • 5 is an electric left manipulator with a 7-axis configuration
  • 6 is an electric right manipulator with a 7-axis configuration
  • 7 L is a left slide device with a left manipulator
  • 7 R is a right manipulator
  • the right slide device, 13 L and 13 R-are control panels that control the left and right manipulators, and 14 L and 14 R are generators that supply power to the left and right control panels.
  • the two manipulators have a symmetrical structure • but have the same configuration.
  • control panel and the generator are fixed on a stand made of insulating material, and the control panel is divided into two units.-Signal exchange between the two units is performed using an optical cable. Can be electrically insulated. Therefore, it is possible to commercialize a live-line work robot car that can be applied to the uninterruptible construction method of the power distribution maintenance work of the class (22 kV class) with high line voltage.
  • FIG. 22 shows the first embodiment
  • FIG. 23 shows the second embodiment
  • the interlock device 220 is composed of two conductors 222a and 2222b, a probe 230, a magnetic contactor 222 and a battery 222, and -The connection fitting 2 2 3 a, the coil 2 2 a of the magnetic contactor 2 2 4, and the battery 2 25 • are connected in series.
  • the conductor 222b and the battery 222 are connected to the -body 222 of the electrical equipment.
  • connection fittings 2 2 3a, conductors 2 2 2a, -Magnetic contactor 2 2 4 coil 2 2 4a, battery 2 2 5, electric equipment main body 2 2 6,-conductor 2 2 2 b, connection bracket 2 2 3 b circuit is formed.
  • connection fittings 2 2 3 a and 2 2 3 b have a structure that can be connected and fixed to the ground wire 2 2 8-and are provided at the ends of the conductors 2 2 2 a and 2 2 b.
  • the insulator 2 2 5 1 has a connection fitting cover 2 2-1 a and 2 2 1 b at the end of which the connection fittings 2 2 3 a and 2 2 3 b are inserted.
  • 21a and 221b are structured so that the connecting fittings 223a and 223b are further away from each other so as not to contact each other. Then, the conductors 2 2 a and 2 2 b connected to the connection fittings 2 2 3 a and 2 2 3 b are housed in the insulator 2 2 1.
  • the magnetic contactor 2 2 4 is energized when a current flows through the coil 2 24 a-has a contact 2 2 4 b that closes the circuit, and this contact 2 2 4 b is the operating circuit 2-2 7 of the electric device. It is connected to the.
  • the battery supplies power to the magnetic contactors 222. -For grounding, fix the connection fittings 2 2 3 a and 2 2 3 b to the grounding wire 2 2 8. As a result, the circuit is closed because the grounding wire 228 conducts between the connection fittings 2 2 3 a and 2 2 3 b, and the coil of the electromagnetic contactor 2 2 4 is supplied by the power supply from the battery 2 25.
  • FIG. 23 shows a second embodiment of the earth interlock device.
  • the probe 250 is a conductor 22 2 ′ a of the embodiment of FIG.
  • 2 2 b are connected to the fixed connection fitting 2 4 3 a provided in one insulator 2 4 1 and the movable connection fitting 2 4 3 b, respectively, and the movable connection fitting 2 4 3 b is insulated It is designed to be able to be tightened to the fixed connection fitting 2 4 3a with the flexible screw 5 2 4 5-.
  • a concave portion is provided for receiving the ground wire 2 28.
  • Other configurations are the same as those in FIG.
  • the grounding is made by tightening the insulating screw -3a, 2 4 3b sandwich the ground wire 2 2 8
  • the connection fittings 2 4 3a and -2 4 3b are conducted by the ground wire 2 2 8, so that the circuit is closed and the coil 2 2 of the electromagnetic contactor 2 2 4 is supplied by the power supply from the battery 2 25. 4 a is excited, the contact 2 2 4 b-is closed, the operation circuit 2 27 of the electric device is activated, and the electric device 2 26 can be used 5.
  • -Fig. 24 is a top view of the working posture of the distribution line working robot having the conventional configuration of the slide shaft.
  • -Fig. 25 is a top view of the working posture of the robot having the slide shaft of the present invention. .
  • the left manipulator 5 and the right manipulator 6 of the dual-arm robot are attached to the slide devices 7L and 7R independently of each arm.
  • the slide units 7L and 7R have guide rails 11 supported by a linear guide slide unit 114 mounted on a fixed base 121 or 122. 50 and a drive rack 1 16 are installed.
  • the slide operation is performed by the fixed motor 1 117 and the pinion gear 1 18 fixed to the fixed base 122 or 122.
  • the robot shall work at work point A of work object 1 19.
  • the robot slides parallel to the center of the base, and the distance between the robots does not change.
  • the slide axis is supported by the base 1-22 with the sliders 7L and 7R extending forward, and when the slide axis is operated, the distance between the robots increases.
  • the slide shaft configuration of the present invention can position the robot closer to the work point, and the robot can have a comfortable work posture. It is. Furthermore, when storing, a compact storage posture that is the same as before is possible. In addition, there is no additional number of shafts, so the weight and cost are unchanged.
  • the spread angle of the two slide axes is determined in consideration of the workability (the degree of overlap of the operating ranges of both arms)-and the interference with other components.
  • the work base does not need to be inserted between the robots 5 because the base is installed on the hydraulically driven boom, and the operating range of the double-mouthed bots is required. Can be operated as usual if the entire base is approached without moving the slide axis.
  • the slide axis of the dual-arm manipulator is extended in the forward direction.-It is configured to operate in a state, so there is no increase in the number of slide axes, an increase in cost associated therewith, and an increase in occupied space.
  • the workability can be improved such that it can be stored in a compact when storing it with only one axis, and if it is operated according to the work, the work object can be inserted between the dual-arm manipulators.
  • the configuration of the slide axis that can be performed can be realized.
  • FIG. 26 shows an example of a link configuration of an articulated manipulator having a five base 34 with a slide mechanism.
  • 7-axis multi-joint manipulator is attached to slide-axis 1 3 1.
  • the multi-joint manipulator • ⁇ ⁇ ⁇ 1 3 3 is the origin of the multi-joint manipulator.
  • 1 3 7 is the intersection of the wrist axis which determines the position of the articulated manipulator-yurator.
  • Articulated manipulator position The point to be determined depends on the link configuration of the manipulator and the number of axes, but here-7-axis manipulator is described as an example.
  • the position of the slide axis is S x
  • the angle of the virtual first axis is ⁇ 2
  • the angle 0 of the virtual second axis is ⁇ 3 .
  • FIG. 28 is a block diagram of the track-path calculation in which the relationship between / op and the slide is introduced into the track calculation.
  • the hand position P (X, ⁇ , Z, ⁇ , ⁇ , ⁇ 0 ⁇ , ⁇ ) of the base articulated manipulator having a slide mechanism is input.
  • is the value used for the redundant control of the 7-axis manipulator, and is unnecessary for the 6-axis manipulator. Step from this ⁇ point value
  • step S3 By changing the value of lop according to a certain condition in S2, the operation ratio of the re-slide axis is determined, and in step S3, the position of the slide axis is obtained by using equation (4). Then,-the obtained slide axis position and the position of P'5 point, which is the difference of the slide axis position from point P, are inversely transformed, respectively, so that the joint angles of the multi-joint manipulator- The position of the base with the mechanism is determined (step S4), and the same-time trajectory control is realized. The presence or absence of the functions of steps S1 to S4 in Fig. 28 can be switched by the parameter. The conventional method and the simultaneous trajectory control method can be selected. -D-
  • the relationship between / op in step S2 and the slide axis can be set in various ways.
  • the range in which the multi-joint manipulator can move sufficiently-the slide axis does not move, and when the multi-joint manipulator is about to be fully extended, it moves in the extension direction (Condition 1).
  • the following shows an example of how to determine / op so that the slide axis operates when moving in the 5 directions (condition 2) when it is unlikely to shrink.
  • the minimum value of Zop Zop m ⁇ and the maximum value of / op / op m are determined by the distance between the second and fourth axes • The distance between the fourth and sixth axes, and the operating range of the fourth axis .
  • c / op - is the current value of / op
  • d is the target value of / op
  • Zop h is the start value of the slide axis operation in the / op extension direction
  • / opz is the start value of the slide axis operation in the / op compression direction. .
  • / op can be obtained from the relationship between the current value of Zop and the target value.
  • it changes the / op h and / op, operation ratio of co-operation area ⁇ 0 beauty Suraido axis of shaft Li by the varying the value slide.
  • the position of the slide axis can be determined from the position and orientation of the hand given as the target value. • The simultaneous control of the slide axis and the articulated manipulator can be performed. An articulated manipulator having a base with a slide mechanism can be operated without inputting a position.
  • FIG. 29 is an overall configuration diagram of the automatic tool changer and the manipulator according to the present embodiment.
  • FIGS. 30 and 31 are side cross-sectional views showing the connection portion of the machine-to-nipulator and the tool attachment / detachment portion. Shows an operation state-is an explanatory view.
  • the tool attachment / detachment part 160 has a key 1659 for positioning the tool 162 in the manipulator-side key groove 1557, and a radially movable center. • It has a clamp button 15 4 for fixing the tool with a restoring force in the direction away from the axis.
  • the rack part 16 1 has a cylinder 15 3 that presses the clamp button 15 4 when the tool is attached and detached, and a position detection sensor 15 5-that detects the position of the cylinder 15 3. .
  • the control unit 15 1 outputs a pressure reduction command to the pneumatic circuit unit 15 2 and the cylinder 15 with reduced thrust is used.
  • the signal to turn on 3 is output to the pneumatic circuit section 15 2, and the cylinder 15 30 comes out. If there is a tool, it will hit the clamp button 15 4 and cylinder 15 3 will stop halfway. If there is no tool, cylinder 15 3 will come out to the stroke end.
  • the position is detected by the detection sensor 15 5, and the output of the position detection sensor 15 5 is input to the control unit 1. Determine the presence or absence of 16-2.
  • the position detection sensor 1555 senses the position of the cylinder 1553 at that time, and the output of the position detection sensor 1555 is input to the control unit 151, and the control unit 151 Check that the preparation for mounting the riyer has been completed. -Then, the manipulator tip 1 56 moves to the rack 16 1 where the tool 16 2 is placed-moves along the pre-programmed trajectory, and the attachment / detachment part 6 moves to the key groove 5 1 5 7 on the manipulator side The control key 15 1 outputs a signal to turn off the cylinder 15 3 to the pneumatic circuit 15 2. Next, the cylinder -153 is retracted, the clamp button 154 enters the hole -158 on the manipulator side, and the tool is clamped on the manipulator side.
  • the finger of the control unit 15 1 -The cylinder 1553 was retracted by the command, and the output signal of the position detection sensor 1555-The control unit 151 confirmed that the cylinder 1553 was securely retracted, and the pneumatic circuit- Outputs pressure reduction command.
  • the control unit 15 1 outputs a signal to turn on the cylinder having reduced thrust to the pneumatic circuit unit 15 2, and the cylinder 15 3 comes out. If the tool is securely clamped, the cylinder-15 3 will hit the clamp button 15 4 and stop halfway. In case of clamping failure, cylinders 15 3 come out further.
  • 1 confirms that the tool 16 2 has been securely fixed to the manifold by the output signal of the position detection sensor 15 5 at that time.
  • the control unit 15 1 confirms that the cylinder 15 has been securely retracted by the output signal of the position detection sensor 15 5, and that the re-cylinder 15 3 has been retracted. Part 1 56 leaves the rack and the tool installation is completed. If the-fixation to the manipulator is not successful, output a warning signal and stop the work.
  • the control-part 15 1 When returning the tool 162, before the manipulator enters the tool return operation, the control-part 15 1 outputs a pressure reduction command to the pneumatic circuit part 15 2 and the cylinder 15 with reduced thrust A signal to turn on 3 is output to the pneumatic circuit section 15 2, and the desired rack cylinder 15 3 comes out. If there is a tool, the cylinder 15-3 will come out to the stroke end if the cylinder-153 does not stop halfway against the clamp button 154. -This is detected by the position detection sensor 15 5, and the output of the position detection sensor 15 5 is input to the control unit-15 1, and the control unit 15 1 Is determined.
  • the control unit 15 1 confirms that there is no tool, the manipulator moves along the previously programmed trajectory, and the tool becomes free. Put on rack 1 6 1.
  • the control unit 15 1 outputs a pressure increase command to the pneumatic circuit unit 15 2, and a signal to turn on the cylinder 1 5 3 that has enough thrust to press the clamp button-15 4 is sent to the pneumatic 5 circuit. Output to section 15 2.
  • the cylinder 15 3 comes out and the clamp button-15 4 is pushed in, and the position of the cylinder 15 3 at that time is detected by the position detection sensor 15.
  • the output of the position detection sensor 15 5 is input to the control unit 15 1, and the control unit • 15 1 is securely pressed in the reclamation button 15 4 depending on the cylinder position. -Make sure that the manipulator comes off.
  • the cylinder-1 retracts according to the command of the control unit 15 1, the controller 15 1 outputs a pressure reduction command to the pneumatic circuit unit 15 2, and the signal to turn on the cylinder 15 3 having the reduced thrust is sent to the air pressure. Output to circuit section 152.
  • the control unit 15 1 confirms that the cylinder 15 has come out and the tool has been reliably returned from the position detection sensor 15 5 based on the output signal of the position detection sensor 15 5, and the tool return is completed. If the return to the rack is incomplete, a warning signal is output and the operation is stopped.
  • the tip of the manipulator is slimmer and the visibility of the operator is improved. • Tool attachment / detachment, tool attachment / detachment confirmation and tool presence / absence judgment are performed by the same device (cylinder with position detection 0 sensor). System reliability and system reliability
  • FIG. 33 is a perspective view showing an example in which the working tools are arranged on a base in the present embodiment
  • FIG. 34 is a side view showing a driving unit.
  • the stand 18 1 of the work implement 176 is shaped to match the shape of the work implement 176, and the position is determined if the work implement 176 stands on the stand 181.
  • the stand 18 2 for the work implement 17 7 is structured such that the position is determined when the work implement 7 is inserted.
  • the stands 18 1 and 18 2 are fixed in place on the intermediate base 17 2.
  • the general-purpose base 17-1 is positioned on the driving part 1 ⁇ 8 by the positioning hole 17 4 provided on the base and the position-determining pin 17 9 provided on the driving part 17 8, It is fixed in the same way as the intermediate base. Then, the general-purpose base 171, the middle base 172, and the stands 181, 182, which are mounted on the upper part by the driving unit 1778, rotate and stop at an equal angle.
  • FIG. 1 is a schematic view showing a first embodiment of the earth interlock device according to the present invention. You.
  • the drive unit is driven by a rotary motion.
  • a linear motion can be achieved by arranging intermediate bases at equal intervals so as to move at a specified distance.
  • -Fig. 35 is a side sectional view showing removal of the socket
  • Fig. 36 is a side sectional view showing storage of the socket.
  • the shape of the base 1993 is a U-shape with the upper part 200 widened so that the approach from the side of the base 193 is possible.
  • the sensor 1997 in the cylinder is used to determine whether the socket 1992 has been removed and stored normally.
  • socket 192 moves to the specified position as shown in Fig. 35 (c). For this reason, the position of the cylinder rod pushing the socket 19 2 is also determined. Therefore, if a limit switch sensor 1997 is provided at the position of the cylinder rod, the signal of the sensor 197 will be detected-the rotation of the tool will be stopped, and the socket 1992 will be taken out. it can. -The case where the socket 192 is stored will be described with reference to FIG.
  • the robot approaches the socket changer according to the teachings, and pushes the detachable part 191 against the base 1993 until the socket 192 comes off as shown in the figure. At this time, if the socket 1992 and the nut 1994 do not fit well, the rod 1996a of the cylinder supporting the shaft 1995 is pushed, and the shaft 1995 escapes.
  • the nut 1994 and the shaft 1995 can be removed by removing the pin 1998 on the side of the base 1993. If the nut 194 and the shaft 1995 are exchanged according to the socket size, it can be used for sockets with different bolt sizes and lengths. -Yes.
  • the socket at the tip of the screw tightening tool- can be reliably replaced only by the robot.
  • This embodiment can accommodate sockets of different sizes and lengths, so it is not necessary to arrange all the screws required for robot work-the same tools and storage space for the tools. There is only one space, and while the robot is performing the task, the largest number of socket changers can be provided-other tasks can be handled simply by replacing the socket changer parts. Thus, space and cost can be saved.
  • FIG. 37 shows a system configuration and a flow chart of this embodiment
  • FIG. 38 shows each execution of position adjustment and posture adjustment.
  • reference numeral 201 denotes an operator
  • reference numeral 202-de notes a controller of the work target axis 5
  • reference numeral 203 denotes a memory
  • reference numeral 204 denotes a memory 5 of the partner arm 6.
  • FIG. 38 (a) shows the posture adjustment of the dual-arm manipulator 5 with respect to the minus arm 6. Similarly, positioning with respect to the opponent's arm 6 in the dual-arm manipulator can be performed (Fig. 38 (b)).
  • the control panel compares the X component value of the partner arm position read from the memory with the matrix indicating the zero position of the control point. Substitute, perform calculations and commands, and operate the manipulator.
  • the posture is adjusted with respect to the basic frame (Fig. 38-(c)).
  • the control panel substitutes the value stored in the memory into the matrix indicating the posture of the control point in advance. Perform calculations and commands, and operate the manipulator.
  • the posture is adjusted with respect to the work object (work) frame (Fig. 38 (d)).
  • the operator has three items (posture, work object frame, •
  • X is selected as the target coordinate axis direction
  • the control panel substitutes the value stored in the memory into the matrix that indicates the attitude of the control point and, performs calculations and instructions, and executes the manipulator. Make it work.
  • the operation of the manipulator is performed using the elements of the five matrices in the known frame. Therefore, the positioning and the posture are automatically automated with respect to the known frame. And improve both operability-can.
  • Fig. 39 shows this embodiment.
  • 211a and 211b are axes, and the frames on both sides of the 0 axis 211a are stoppers 2 1 2a and 2 1 2 b is provided.
  • the robot was mounted on the motor for the axis 211a at the basic position of the axis 211a when the basic posture of the robot was determined.
  • Read the output value A of the position detector and move the axis from there until the stopper 2 12 a hits the stopper 2 12 b. If the motor is released and the brakes are released manually, the force applied to the stopper can be adjusted, and there is no worry about breakage.
  • the present invention can be used in the field of hot-working transmission and distribution lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Electric Cable Installation (AREA)
  • Manipulator (AREA)

Description

- 明 細 書
- 活線作業用ロボット車
- 技術分野
5 本発明は、 高電圧送配電線の配線工事や保守作業において、 電力の供給を停 - 止することなく作業を行う無停電作業に用いられる活線作業用口ボット車に関 - する。
- 背景技術
0 活線作業用ロボット車は、 高所作業車のブーム先端に取り付けたマニピユレ - ータベース上に、 作業用の双腕マニピュレータ及び電線支持重量物吊り下げ用 - の第 3アームを搭載し、 これらを地上のロボット車内の操作キャビンまたはブ - —ム先端に設けたバケツト上の操作盤を操作して配線工事や保守作業を行う。 - これらの双腕マニピュレータ及び第 3アームを駆動するァクチユエ一タを、5 全て油圧式ァクチユエ一タで構成した場合、 双腕マニピュレータでは高い位置 - 決め精度が得られず、 ティ一チング ' プレイバックとその補正機能による自動 - 運転が難しくなるが、 反面、 重量物吊り上げ機能を有し、 位置決め精度があま
- り要求されない第 3アームは小形 '軽量化が図れる。 その逆に、 双腕マニピュ - レータ及び第 3アームの駆動機構を全て電気式ァクチユエ一夕で構成した場合0 は、 双腕マニピュレータでは高い位置決め精度が得られ、 作業対象物へのアブ - ローチなど補正自動運転が容易になる力 第 3アームは大型、 大重量となる。 - そこで、 マニピュレータの高精度位置決めを可能とし、 オペレータによる遠 . 隔操作と作業対象物へのアプローチなどの補正自動運転が可能な、 かつ重量物 - 吊り上げ機能を有する小形 ·軽量な第 3アームを搭載した活線作業用ロボット5 車が望まれている。
- また、 活線作業用ロボットにおいて、 作業者が高所作業車の先端パケットに - 搭乗してマニピュレータを操作するものが搭乗型活線作業用ロボットである。 - 搭乗操作型活線作業用ロボットにおいて、 操作者が感電にいたるパターンの 1 - つは図 7に示すように操作者 5 6がバケツト 5 5の中で活線 6 1に接触するこ - とが考えられる。 この場合、 活線 6 1 と大地間の電圧によって、 漏洩電流が活 . 線 6 1→操作者 5 6→バケツト 5 5→ブーム部 (第 3ブーム 5 4、 第 2ブーム - 5 3、 第 1ブーム 5 2 ) →車 5 1→大地の経路で流れる。 図 7中、 5 7は操作 5 盤、 5 8はマニピュレータ取付部、 5 9は第 1絶縁アーム部、 6 0は第 2絶縁 - アーム部である。
- 操作者の安全のため (社) 日本自動車車体工業会の高所作業車安全基準があ - る。 この基準は高所作業車の絶縁性能として漏洩電流が 0 . 5 m Aを越えない - ことを規定している。 また、 漏洩電流は印加電圧によって異なるため本基準の0 試験電圧として、 電路電圧の 2倍に相当する電圧を印加することが規定されて - いる。 そして、 本発明に用いられる活線作業用ロボットは 2 3 k Vの活線を作 • 業することを目指している。 したがって搭乗操作型活線作業用ロボットにおい - て図 7に示すような感電に対し、 操作者に流れる漏洩電流は印加電圧 4 6 k V - に対し 0 . 5 mA以下でなければならない。 このため、 従来は図 8に示すよう5 に第 3ブーム 5 4先端を絶縁部材である F R P中空円筒 6 2で構成することで - 絶縁特性を確保していた。
• ところが、 上記のような構成で雨天時の漏洩電流を 0 . 5 mA以下とするた - めには絶縁沿面距離を長くする必要があり、 このため常に第 3ブームを 2 m以 - 上に伸長した状態にする必要があった。 したがって雨天時において、 作業する0 活線が比較的低い位置にあるときにおいても、 第 3ブーム 5 4を 2 m以上に伸 - 長する必要がある。 この場合、 マニピュレータ部の重量によって、 それを支え - る車体のバランスの悪化、 車体の転倒が考えられるため、 作業が困難なものに - なる力 もしくは不可能となる。 また第 3ブームを 2 m以上に伸長した状態に . して作業できたとしても、 第 3ブームに雨水がかかり続けると第 3ブーム表面5 の水をはじく性質、 すなわち撥水性が低下し、 漏洩電流を 0 . 5 m A以下にす • ることができなくなる。 或いは第 3ブームに電圧がかかった状態で第 3ブーム - 表面に雨水がかかるとブーム表面で放電が発生し、 この放電により第 3ブーム - 表面の F R Pの樹脂層が急速に劣化し、 撥水性が急速に低下する。 このため漏 - 洩電流を 0 . 5 m A以下にすることができなくなる。
- また第 3ブーム 4に砂等のごみが付着した場合、 ブームを伸縮する際に第 3 • ブーム 5 4を受けるロータ部分で第 3ブーム表面が傷つき、 長期的に第 3ブー • ムの撥水性が低下する。
5 図 8は従来のブーム部の構造を示す断面図である。 図 8において第 3ブーム - 5 4はマニピュレータ部を支持する絶縁物であり、 F R P中空円筒 6 2で構成 - されている。 F R P中空円筒 6 2は絶縁物であるため晴天時において図 7の状 - 況で操作者 5 6が活線に接触したとしても第 3ブーム 5 4を 0 . 5 m伸長した - 状態であれば活線電圧 4 6 k Vにおいて、 漏洩電流は 0 . 5 mA以下にするこ0 とができる。
• ところが、 この図 8に示す従来の構造では、 第 3ブーム 5 4に電圧が印加さ • れた状態で第 3ブーム 5 の表面に汚損水がかかると第 3ブーム 5 の漏洩電 - 流が急速に増加するという試験結果が得られた。 したがって、 この構造の第 3 - ブーム 5 4では、 雨天時の漏洩電流が 0 . 5 mA以上となり、 万一活線に接触5 した場合、 活線作業用ロボットの操作者に対して感電の危険がある。
- また、 配電線の電圧が 6 k V級であれば、 マニピュレータの金属露出部とァ - クチユエータを絶縁保護カバーで覆うことで、 相間短絡事故防止に必要な破壊 - 電圧に耐える絶縁の確保は可能であるが、 電圧が 2 2 k V級になると、 破壊電 - 圧に耐えるためには、絶縁保護カバーと金属部の絶縁距離が大きく必要となり、0 実用に供し得るマニピュレータが実現できないという問題も生じた。
- 一方、配電保守作業の無停電工法へ適用する活線作業用ロボット車において、 - マニピュレータに電気式ァクチユエータを使用したものは、 人への感電事故を - 防止するために、 ブームの先端ブームを絶縁物で構成し、 マニピュレータ等を - 駆動する発電機を架台上に搭載して、 車両と架台間の電気的絶縁を確保してい5 る。 また、 マニピュレータによる地絡事故および作業中に 2台のマニピユレ一 - タの先端部に取り付けた工具あるいはマニピュレータ先端部が異相の活線に同 - 時に触れた場合に生じる相間短絡事故を防止するために、 マニピュレータの前 - 腕部には絶縁部が設けられている。 - ところが、 従来技術では、 人への感電事故は防止できるが、 マニピュレータ、 - ブームのそれら自身による誤動作あるいはオペレータによる誤操作によって生 - じる 2台のマニピュレータの肘—肘間、 肘—上腕部間あるいは上腕部—上腕部 • 間が異相の活線に同時に接触した場合の相間短絡事故は、 2台のマニピユレ一 5 タの 部、 上腕部に配置された電気式ァクチユエ一タが制御盤を介して電気的 . につながっているため、 防ぐことができないという問題があった。
- さらに、 高電圧を取り扱う活線作業用ロボット車においては、 作業者の感電 - による人身事故、 短絡 '地絡による電気機器の損傷を防止して安全性を向上さ - せるために、 電気機器の本体と接地線を電気的に接続する接地作業を行うこと0 によってアースを取っているが、 移動する度に作業現場でアースを取らなけれ • ばならない。 この作業は、 作業者によって行われ、 物理的な接地状態のみ目視 • により判定されている。 そこで、 作業者がアースをとリ忘れないように、 また - 電気的な接地状態がリアルタイムでさらに無人で判定できるようにすることが - 望まれている。
5 さらに、 従来においては、 作業対象に近づけるために、 双腕ロボットに付加 - されるスライド軸は、 各ロボット単独動作で、 作業対象に対して、 前後方向に - 動くもの、 または双腕同時に前後スライドするものであった。 ところ力、 従来 - 技術では、 スライドは互いに平行に動くだけで、 2つのロボット間の距離が固 - 定であるため、 ロボット間に作業対象物を入れ込んでの作業は構成上、 困難で0 あった。 このため、 ロボット間の取り付け間隔を広げると占有スペースや重量 - が大きくなるという問題点があった。 また、 収納時ロボットの取付間隔を狭く . し、 作業中は、 作業対象を入れ込めるように間隔を広くするにはもう 1軸追加 • しなければならず、 軸追加は、 重量、 スペース、 コストなどが問題となる。 5 発明の開示
- そこで、 本発明の第 1の目的は、 マニピュレータの高精度位置決めを可能と - し、 オペレータによる遠隔操作とティ一チング ' プレイバックとそれに対する • 補正機能による自動運転が可能な、 かつ電線支持重量物吊り上げ機能を有する - 小形 ·軽量な第 3アームを搭載した活線作業用ロボット車を提供することにあ • る。
• 本発明の第 2の目的は、 撥水性を長期にわたって保持でき、 活線作業用ロボ - ットの雨天時の作業においてもブームを伸長させた状態で感電の恐れがない配 5 線工事用高所作業者のブーム構造を提供することにある。
- 本発明の第 3の目的は、 誤動作 ·誤操作により 2台のマニピュレータが同時 - に異相の活線に接触した場合のマニピュレータの相間短絡事故を防止すること - にある。
- 本発明の第 4の目的は、 アースを取らなかった場合は電気機器の使用ができ0 ないようにして安全性を向上させることにある。
• 本発明の第 5の目的は、 1軸のスライド軸だけで、 収納時はコンパクトに収 • 納でき、 作業に応じてスライド軸を操作すれは、 双腕マニピュレータの間に作 - 業対象を入れ込めるようにもできるスライド軸の構成を実現することにある。 - 本発明の第 6の目的は、 双腕マニピュレータの作業に必要な工具を自動交換5 する装置を提供することにある。
- 本発明の第 7の目的は、 双腕マニピュレータの作業に用いる作業具を効率的
- に取り出すことのできる作業具供給装置を提供することにある。
- 本発明の第 8の目的は、 双腕マニピュレータでのナットの着脱に用いるソケ - ット交換装置を提供することにある。
0 本発明の第 9の目的は、 マニピュレータを取り付けるスライド機構を有する - ベースを備えた活線作業用ロボット車において、 目標値として与えられた手先 - の位置と姿勢からスライド軸の位置を決めることが可能で、 スライド軸とマ二 - ピユレ一タの同時制御が可能な制御方法を提供することにある。
- 本発明の第 1 0の目的は、 双腕マニピュレータの一方を他方の位置や姿勢に5 揃えたい場合に、 手動調整操作を行うことなく自動的に動作指令が出力されて • 作業時間の短縮、 操作性の向上を図ることにある。
- 本発明の第 1 1の目的は、 ロボットに絶対精度が要求される場合に、 精度の - よい較正を行い、 基本姿勢を決定するが、 位置ずれや部品交換で較正が必要に - なった場合に、 基本姿勢からの較正をやり直すことなく、 短時間で精度のよい - 較正を行う方法を提供することにある。
- 前記第 1の目的を達成するために、 本発明は、 送配電線の活線作業を行う活 5 線作業用ロボット車であって、 高所作業車に基端部を旋回、 起伏、 伸縮可能に - 支持された多段ブームの先端段を絶縁物で構成された絶縁ブームとし、 この絶 - 縁ブームの先端に設けた架台に、 配電作業を行う多軸構成の双腕マニピユレ一 - タと、 これらの双腕マニピュレータを左右独立に前後にスライドさせるスライ • ド装置と、 電線支持重量物吊り上げ機能を有する多軸構成の吊り上げアームと0 を搭載し、 オペレータによる遠隔操作を行うようにした活線作業用ロボット車
- において、
- 前記双腕マニピュレータと前記スライド装置を駆動するァクチユエ一タを電 - 気式で構成し、 前記吊り上げアームを駆動するマニピュレータを油圧式で構成 • したものである。
5 前記第 2の目的を達成するために、 前記の活線作業用ロボット車において、 - 前記絶縁ブームの先端部に、 雨水を集水する樋を設けたかさを取り付ける。 - また、 前記ブームの構造を、 F R Pまたは G F R Pからなリ、 その先端に配 - 線工事を行う作業部が取リ付けられた伸縮側ブームと、 前記伸縮側ブームを案 - 内支持するローラを設けた収納側ブームとからなるものとし、 前記伸縮側ブ一0 ムの摺動面にシリコンコンパウンドを塗布する。
- あるいは、 前記ブームの構造を、 その先端に配線工事を行う作業部が取り付 - けられた F R Pまたは G F R P製の伸縮側ブームと、 前記伸縮側ブームを案内 - 支持するローラを設けた収納側ブームとからなるものとし、 前記伸縮側ブーム - のローラと接触しない非摺動部に絶縁物で構成されその表面にシリコンコンパ5 ゥンドが塗布されたかさを設ける。
- 前記第 3の目的を達成するため、 前記の活線作業用ロボット車において、 - 2台の多軸構成の電気式双腕マニピュレータが異相の活線に同時に接触した - 場合に生じる相間短絡事故を防止するために、 前記 2台の双腕マニピュレータ - を制御する制御盤とこれらの制御盤に電力を供給する発電機をそれぞれ独立に - 設け、 さらにそれらの制御盤と前記発電機を絶縁物で構成した前記架台に固定 - し、 2台に分割した制御盤間の信号の授受を光ケーブルを使って行うことで、 . 2台のマニピュレータ間を電気的に絶縁する。
5 前記第 4の目的を達成するため、 前記の活線作業用ロボット車において、 - 接地線への接続及び固定が可能な接続金具が先端に設けられており、 互いに - 絶縁された 2本の導体と、 前記 2本の導体を収納し、 前記接続金具が互いに絶 - 縁された構造になっている 1本又は 2本のプローブと、 前記 2本の接続金具が - 接地線と接続したときに励磁されるコイルと、 前記コイルの励磁により電気機0 器の動作回路を動作状態とすることができる接点とを有した電磁接触器と、 前
- 記電磁接触器に電源を供給するバッテリを備え、 前記一方の導体に前記接続金 - 具、 電磁接触器、 及びバッテリが直列に接続されている、 アースのインタ一口 • ック装置を備える。
- 前記第 5の目的を達成するため、 前記の活線作業用ロボット車において、5 前記 2つのスライド装置の取り付け配置を、 先端にいくにつれて互いの間隔 • 力広がるような配置にする。
• 前記第 6の目的を達成するため、 前記活線作業用ロボット車において、
- 前記架台に、 前記双腕マニピュレータの作業に必要な工具を自動交換する自
- 動工具交換装置を備え、 この自動工具交換装置は、
0 工具を被マニピュレータ側キ一溝に位置決めするためのキーと径方向に動作
• 可能で中心軸から離れる方向に復元力をもつた工具固定のクランプボタンとを - 備えた工具脱着部と、
- 工具の着脱の際前記クランプボタンを押すシリンダを備えたラック部と、 - 前記シリンダの推力を可変にできる空気圧回路部とを有する。
5 前記第 7の目的を達成するため、 前記の活線作業用ロボット車において、
- 前記架台に、
- 各作業具毎にその作業具を位置決め保持するスタンドと、
- 作業に合わせて必要な前記スタンドを予め配置した中間ベースと、 - 全作業に共通で複数の中間べ一スを等間隔又は等角度で位置決め及び取り外 - し可能な汎用ベースと、
- 前記中間ベースと汎用ベース共着脱可能で、 該汎用ベースを角度割り出し駆 - 動する駆動部
5 からなる作業具供給装置を備える。
- 前記第 8の目的を達成するため、 前記の活線作業用ロボット車において、
• 前記双腕マニピュレータにより、 ボルト等の締め付け、 緩めを行う工具であ - つて、 その工具とソケット間の脱着の際、 脱着部の規定の部分を軸方向に押す - ことによリエ具本体との脱着が可能なソケットをロボッ卜で自動で交換するた0 めのソケット交換装置を備え、 このソケット交換装置は、
- 前記脱着部を押すための円筒状のベースと、
- 前記ソケットの多角形穴と嵌め合うナットと、
- このナットがねじ込まれ、 ベース中にスプリングで支持され、 軸方向にスラ
- イド可能なシャフト
5 とから構成される。
- 前記第 8の目的を達成するため、 前記の活線作業用ロボット車において、
- 前記双腕マニピュレータに、 ボルト等の締め付け、緩めを行う工具であって、 - その工具とソケット間の脱着の際、 脱着部の規定の部分を軸方向に押すことに • よリエ具本体との脱着が可能なソケットをロボットで自動で交換するためのソ0 ケット交換装置を備え、 このソケット交換装置は、
- 工具先端の脱着部を押しつけるためのベースと、
- 前記ソケットの多角形穴と嵌め合う形状をもったナツ卜と、
- このナットが回転自由なように、 嵌め合ったシャフトと、
- 前記ナットとシャフトを規定の脱着位置に強制的に移動させるために前記シ5 ャフトと結合したシリンダ
- とから構成される。
• 前記第 9の目的を達成するため、 多関節マニピュレータと、 前記多関節マ二 - ピユレ一タを取り付けるスライド機構を有するベースと、 前記多関節マニピュ • レータ及びスライド機構を制御する制御装置とからなるマニピュレータを備え - た活線作業用ロボット車の制御方法において、
- 目標値として手先の位置と姿勢が与えられたときに前記多関節マニピユレ一 - タの各関節角の大きさ及びスライド機構を有するベースの位置を求める際に、 5 前記多関節マニピュレータの原点から多関節マニピュレータの位置を決定する • 点までの距離を軌道演算の制御条件に加え、 スライド機構を有するベースの位 - 置を決定することにより、 目標値として前記手先の位置と姿勢とを与えて多関 • 節マニピュレータの各関節角の大きさ及びスライド機構を有するベースの位置 - を求め、 スライド機構を有するベースと多関節マニピュレータを同時軌道制御0 する。
- 前記第 1 0の目的を達成するため、 双腕ロボットの一方の腕の位置や姿勢に
- 他方の腕の位置や姿勢を所望の関係に揃える場合に、 制御対象となる他方の腕 - と基準となる一方の腕の位置データ、 姿勢データを読み込み、 比較演算を行つ - て前記制御対象となる腕に対して動作指令を与える。
5 前記第 1 1の目的を達成するため、 ロボットの姿勢を較正する際に、 精度の
• よい較正を行ったときに決定した基本姿勢から各軸の動作領域に設けられたス - トツパにあたるまでのモータの位置検出器の出力値を記憶させておき、 ロボッ . トの姿勢を較正する必要が生じた場合に、 前記ストツバに当てた位置から前記 - 記憶させていた出力値だけ戻した位置を基本姿勢とする。
0
図面の簡単な説明
図 1は本発明の第 1実施例の全体構成図である。
図 2は操作盤及び監視モニタの配置を示すもので、 (a ) は正面図、 (b ) は 側面図、 (c ) は平面図である。
5 図 3はマニピュレータの例を示すもので、 (a ) は側面図、 (b ) は平面図、 ( c ) は正面図である。
図 4は第 3アームの例を示す側面図である。
図 5は第 3アームの収納姿勢を示す側面図である。 - 図 6は本発明の第 3ブームの構造を示す断面図である。
- 図 7は搭乗操作型活線作業用ロボットにおいて操作者が感電にいたる一例と
- 感電時の電流の流れを示す概略図である。
' 図 8は従来の第 3ブームの構造を示す断面図である。
5 図 9は本発明の第 3ブームの試験時における漏洩電流の経時変化を示すダラ • フである。
- 図 1 0は従来の第 3ブームの試験時における漏洩電流の経時変化を示すダラ - フである。
- 図 1 1は高所作業車の構成を示す概略図である。
0 図 1 2は本発明の一実施例である絶縁方式の例を示す側断面図である。 - 図 1 3は本発明の一実施例であるかさの例を示す斜視図である。
- 図 1 4は本発明の一実施例であるかさの斜視図である。
- 図 1 5は絶縁方式と漏洩電流の関係を示すグラフである。
- 図 1 6は本発明の一実施例になるかさの例の他の例を示す斜視図である。
5 図 1 7は本発明の一実施例になる絶縁方式の例を示す側断面図である。 - 図 1 8は本発明の一実施例になるかさの他の例を示す説明図である。
- 図 1 9は従来の絶縁保護カバーの例を示す側面図である。
- 図 2 0は本発明の絶縁保護カバーの例を示す側面図である。
- 図 2 1は本発明の第 2実施例における架台上のシステム構成を示す平面図で0 ある。
- 図 2 2は本発明のアースインタ一ロック装置の第 1実施例を示す概略図であ - る。
- 図 2 3は本発明のアースインタ一ロック装置の第 2実施例を示す概略図であ - る。
5 図 2 4は従来の構成のスライド軸を有する配電線作業ロボッ卜の作業姿勢の
- 上面図である。
- 図 2 5は本発明の構成のスライド軸を有するロボッ卜の作業姿勢の上面図で - ある。 - 図 2 6はスライド機構付ベースを有する多関節マニピュレータのリンク構成 - 図である。
- 図 2 7は仮想リンク構成と座標系を示す説明図である。
- 図 2 8は軌道演算部の処理を示すフローチャートである。
5 図 2 9は自動工具交換装置とマニピュレータの全体構成図である。
- 図 3 0は被マニピュレータ側接続部の構成を示す正面図及び断面図である。 - 図 3 1は工具脱着部を示す側断面図である。
• 図 3 2は自動工具交換装置の動作状態を示す説明図である。
- 図 3 3は作業具供給装置の実施例を示す斜視図である。
0 図 3 4は作業具供給装置の駆動部を示す正面図である。
- 図 3 5はソケットの取り出しフローを示す側断面図である。
• 図 3 6はソケットの収納フローを示す側断面図である。
- 図 3 7は本発明の位置合わせ ·姿勢合わせ制御方法を示す構成図及びフロー - チヤ一トである。
5 図 3 8は位置合わせ ·姿勢合わせの実施例を示す説明図である。
- 図 3 9はロボットの姿勢較正方法の実施例を示す概略図である。
- 発明を実施するための最良の形態
- 以下、 本発明の実施例を説明する。
0 図 1は第 1実施例の全体構成図である。図 1において、 高所作業車 1の旋回、 - 起伏、 伸縮機能を有する多段ブーム 2の先端段が絶縁物で構成された絶縁ブー - ム 3である。 この絶縁ブーム 3の先端に設けた架台 4に、 配電作業を行う冗長 - 軸付き 7軸構成の双腕マニピュレータ 5, 6と、 双腕マニピュレータ 5、 6を - 左右独立に前後にスライドさせるスライド装置 7と、 重量物吊り上げ機能と旋5 回、 起伏機能を有する 3軸構成のアーム 1 0と、 双腕マニピュレータ 5、 6が - 作業に必要な工具を自動的に交換する工具自動交換装置 (A T C ) 8と、 マ二 - ピユレ一タ 5、 6が作業に必要な材料を自動的に取り出し、 戻すことのできる - 材料自動授受装置 (AM C ) 9と、 作業対象物との距離を計測する 3次元距離 - 計測装置 1 1と、 作業状況を撮影する複数のカメラ 1 2 A, 12 Bと、 双腕マ
• ニピユレータ 5, 6、 スライド装置 7、 ATC8、 AMC9、 アーム 10、 3 - 次元距離計測装置 1 1、 カメラ 1 2A, 1 2 Bを制御する制御盤 1 3及び制御 - 盤 1 3に電力を供給する油圧ァクチユエータ駆動発電機 14が搭載されてい 5 る。
- 高所作業車 1の車両部 1 5には、 ブーム 2内に配管された油圧ホース油を通 - して架台 4に配置された機器を駆動する油圧ァクチユエ一タに油を供給する油 - 圧駆動源 1 7が設けられている。 また車両部 1 5内には、 ブーム 2内に敷設さ • れた光ケーブル 1 8を通してカメラ 1 2から送られた画像を表示する監視モニ0 タ (CRTモニタ装置) 20、 ブーム 2内に敷設された光ケーブル 1 8を通し - て制御盤 1 3に操作信号を送る操作盤 1 9を配置し、図 2 ((a)は正面図、(b) - は側面図、 (c) は平面図) に示すように、 オペレータは監視モニタ 20を見 - ながら操作盤 1 9に設けられたジョイスティック 2 1, 22, 23や操作ボタ • ン 24あるいはタツチパネル 26を操作することで架台 4上に配置された機器5 5、 6、 8、 9、 10、 1 1、 12を遠隔操作し、 活線作業を行う。
- 図 3は双腕マニピュレータ 5, 6を示す図であり、 (a) は正面図、 (b) は - 側面図、 (c) は正面図である。 図中、 3 1は旋回軸、 32は肩曲げ軸、 33 - は肘回転軸、 34は肘曲げ軸、 35は手首回転軸、 36は手首曲げ軸、 37は - フランジ回転軸である。
0 図 4はアーム 1 0を示す側面図であリ、 41は旋回軸、 42は起伏軸、 43 - は起伏軸、 44は 4面ローラ、 45はウィンチである。
- 図 5は第 3アームの収納状態を示す側面図である。
- 本実施例において、 双腕マニピュレータ 5、 6とそのスライド装置 7を駆動 - するァクチユエ一タは電気式で構成し、 アーム 10を駆動するマニピュレータ5 は油圧式ァクチェ一タで構成されている。 あるいは、 アーム 10の旋回軸駆動 . 用ァクチユエータを電気式で構成し、 残り軸駆動用ァクチユエ一タを油圧式で - 構成してもよい。 このように構成することで、 双腕マニピュレータの位置決め - 精度の向上とアームの小形 ·軽量化を図っている。 - また、 絶縁ブーム 3の先端には雨樋を設けたかさ 2 5を取り付けることで、 - 雨天時に絶縁ブーム 3にかかる雨水を減らしブームの絶縁特性の向上を図って - いる。
- この第 1実施例の特徴は次の通りである。
5 1 ) オペレータが地上から監視モニタを見ながらマニピュレータを操作する遠 - 隔操作機能とティ一チング · プレイバック及びそれに対する補正機能による自 - 動運転機能とを有している。
- 油圧式マニピュレータを使用した場合、 マニピュレータの繰り返し位置決め • 精度が悪く、 ティ一チング ' プレイバックによる自動運転が難しい。 そこで、0 高精度な位置決め精度が得られる電気式マニピュレータを使用することで、 テ
- ィーチング ' プレイバックによる自動運転を可能にした。
- 2 ) 細かい作業まで行うマニピュレータは電気式ァクチユエ一タで構成し、 重 - 量物吊り上げとか少し大まかな作業を行うアーム (第 3アーム 1 0 ) は油圧式 - ァクチユエ一タで構成したハイプリッド構成である。
5 3 ) 冗長軸付き 7軸マニピュレータとマニピュレータを前後にスライドさせる • スライド装置 ( 1軸) とを合わせた 8軸マニピュレータの最適制御方法の開発 • により作業性を向上させている。
- 4 ) 絶縁ブームの先端部に雨樋を設けたかさを取り付けて注水時のブーム部絶 - 縁特性を向上させている。
0 次に、 建設用防護管の取付作業を例にして、 本実施例の活線作業用ロボット - 車の使用方法を説明する。
• A. 建設用防護管取付作業
- 1 . 作業前の準備作業
- まず、 第 3アーム 1 0の 4面ローラ 4 4に供給工具固定部を把持させ、 セッ5 トする。 供給工具は、 所定の位置に来るように縦横の角度調整をする。 左側マ . ニピユレータ 5に揷入機、 右側マニピュレータ 6にグリッパをセットする。 こ • のとき、 挿入機には取付用ガイド及び工具軸伝達用アタッチメント、 グリッパ - にはポリ管用爪を取り付ける。 第 3アーム 1 0を供給工具吊上位置へ移動させ - る。
- 2 . ブーム上昇
- メインカメラの中央に取付対象電線が来るまで手動操作により上昇させる。 - ブーム 2を作業開始位置へ移動させる。
5 3 . ウィンチ吊り下げ
- 第 3アーム 1 0のウィンチ 4 5を手動操作で吊り下げる。 供給工具部吊上部 - を 1 . 5 m程吊り、 地上にて建設用防護管をセットする。
- 4 . 挿入機取付
- 右グリッパで電線を把持する。 左マニピュレータ 5の揷入機を電線にァプロ0 —チする。 右グリッパで締付部を把持する。 右グリッパを逆回転させ、 挿入機
- を電線に取り付ける。
- 5 . 供給工具吊り上げ
- 供給工具吊上部を固定部まで吊り上げる。
- 6 . 建設用防護管取付
5 ( 1 ) 1本目取付
- 右グリッパで建設用防護管を供給工具から取り出す。 建設用防護管を挿入機 - までアプローチさせる。 建設用防護管を挿入機のタイヤまで押し込む。 建設用 - 防護管を割り合わせガイドの中間まで送り込む。
- ( 2 ) 2〜4本目取付
0 右グリッパで建設用防護管を供給工具から取り出す。 建設用防護管を挿入機 - までアプローチさせる。 建設用防護管を先行管と結合するまで押し込む。 建設 - 用防護管を割り合わせガイドの中間まで送り込む。
- ( 3 ) 第 3アーム移動
- 第 3アーム 1 0を建設用防護管 5〜 8本目取出位置へ移動させる。
5 ( 4 ) 5〜 7本目
- ぉグリッパで建設用防護管を供給工具から取り出す。 建設用防護管を挿入機 - までアプローチさせる。 建設用防護管を先行管と結合するまで押し込む。 建設 - 用防護管を割り合わせガイドの中間まで送り込む。 - ( 5 ) 最終管取付
- 右グリッパで建設用防護管を供給工具から取り出す。 建設用防護管を揷入機 . までアプローチさせる。 建設用防護管を先行管と結合するまで押し込む。 建設 - 用防護管が、 挿入機のタイヤを通過するまで送り込む。
5 7 . 最終管送り
- 右グリッパで送り管を取り出す。 送り管を挿入機までアプローチさせる。 送 - リ管を揷入機タィャまで押し込む。最終管終端が電線に挿入するまで送リ込み、 - タイヤまで戻す。 送り管を挿入機から引き抜く。 送り管を回収袋に回収する。 - 8 . 挿入機撤去
0 右グリッパで締付部を把持する。 右グリッパを正回転させ揷入機を電線から - 緩める。 右グリッパで電線を把持する。 挿入機を電線から取り外す。 右グリツ • パを電線から回避させる。
- 9 . ポリ管止め具取付
- ブーム 2を取付位置まで移動させる。右ダリツバでポリ管止め具を取り出す。5 ポリ管止め具を取り付ける。
• 1 0 . ブーム移動
- 次の電線までブームを移動させる。
- 1 1 . ブーム下降
- ブームを地上まで移動させる。
0 B . 建設用防護管撤去作業
- 1 . 作業前の準備作業
• 左右のマニピュレータにグリッパをセットし、 左マニピュレータに挿入機を
- 把持させる。 第 3アーム 1 0をポリ管回収袋吊上位置に移動させる。
- 2 . ブーム上昇
5 メインカメラの中央に撤去対象電線のポリ管止め具が来るまで手動操作によ - リ上昇させる。 メインカメラを作業開始点へ移動させ、 ブーム 2を作業開始点 - へ移動させる。
• 3 . 挿入機取付 - 右グリッパで電線を把持する。 左マニピュレータ 5の揷入機を電線にァプロ - —チする。 右グリッパで電線を把持する。 右グリッパを逆回転させ、 挿入機を - 電線に締め付ける。 左グリッパを把持部から外し回避させる。
- 4 . ポリ管止め具回収
5 左グリッパでポリ管止め具を取り外す。 ポリ管止め具を回収袋に回収する。 - 5 . 建設用防護管撤去
- ( 1 ) ポリ管撤去準備
- 撤去 1本目を反転させ、 把持する。 撤去 1本目を挿入機のタイヤまで戻す。 - 左グリッパを回避させる。 左グリッパで揷入機回転操作部を把持する。 右ダリ0 ツバを挿入機締付部から外し、 撤去管把持位置へ移動させる。
- ( 2 ) 建設用防護管回収袋吊り上げ
- 第 3アームウィンチを吊り下げ、 建設用防護管回収袋を吊り上げ、 セットす - る。
- ( 3 ) 1本目撤去
5 左グリッパで回転操作部を操作し、 2本目との結合部が割り合わせガイド先 - 端に来るまで 1本目を戻す。 右グリッパで 1本目を把持し、 2本目結合部を切 - リ離す。 1本目を回収袋に回収する。 右グリッパを 2本目以降撤去管把持位置 - へ移動させる。
- ( 2 ) 2本目以降撤去
0 左グリッパで回転操作部を操作し、 結合部が割り合わせガイド先端に来るま - で戻す。 右グリッパで撤去管を把持し、 結合部を切り離す。 撤去管を回収袋に - 回収する。 右グリッパを次の撤去管把持位置へ移動させる。
- ( 3 ) 最終管撤去
- 左グリッパで回転操作部を操作し、 最終管終端部がタイヤに来るまで戻す。5 右グリッパで撤去管を把持し、 挿入機から引き抜く。 最終管を回収袋に回収す - る。
- 6 . 回収袋吊り降ろし
- 建設用防護管回収袋を地上まで吊り降ろす。 - 7. 挿入機撤去
- 右グリッパで締付部を把持する。 左グリッパを回転操作部から外し、 把持部 • を把持する。 右グリッパを正回転させ挿入機を電線から緩める。 右グリッパで - 電線を把持する。 揷入機を電線から取り外す。 右グリッパを電線から回避させ 5 る。
- 8. ブーム移動
- 次の電線までブームを移動させる。
- 9. ブーム下降
• ブームを地上まで下降させる。
0 図 6は本発明の実施例を示す第 3ブームの部分断面図である。 図 6において - 54は FRP中空構造物からなる第 3ブームを示し、 第 3ブーム 54は、 FR . P中空円筒部 62、 シリコンコンパウンド層 64からなる。
- 本発明のものと従来のものについて接触角を測定して表面の撥水性を比較し - た結果を表 1に示す。 接触角が大きいほど、 撥水性は高くなる。 従来のものは5 接触角が 70° と小さく、 本発明のシリコンコンパウンドを塗布したものは接 - 触角が大きくなることが分かる。 すなわち表面の撥水性はシリコンコンパゥン - ドを塗布することにより大幅に向上する。
- 表 1 0
Figure imgf000019_0001
• 次に、 この接触角の違いにより、 降雨中の漏洩電流がどの程度異なるか、 本
• 発明のものと従来のものについて評価した。 試験条件は、 注水量 3mmZ分、5 注水角度 45度、 注水液抵抗 1000 Ω · cm、 ブームの角度を 30度とし、 - ブーム長さを lmとして 14KVおよび 46 KVの電圧を印加した時の漏洩電 - 流の時間的変化を測定した。 その結果を図 9 (本発明) および図 10 (従来) - に示す。 本実施例の場合は、 いずれの電圧でも漏洩電流は 0 . 5 m A以下であること が分かる。 従来例では、 漏洩電流は測定開始時から漏洩電流が 0 . 5 mA以上 あり、 また漏洩電流は増加傾向にある。 すなわち、 第 3ブーム 4が l m伸長し た状態では印加電圧 4 6 k Vに対して、 降雨時の漏洩電流は 0 . 5 m A以上で ある。 このように、 本発明のものは、 従来例に比べると漏洩電流は著しく小さ くなつておリ、 また経時的にも増加傾向になく、 効果の著しいことが分かる。 このような構造において、 シリコンコンパゥンドの撥水性はフッ素塗料に比 較して著しく高いため、 雨天時において、 ブーム 5 4の長さ 1 mに対し 4 6 k Vの印加電圧で漏洩電流を 0 . 5 m A以下とすることができる。
0 また、 表 2は本発明の第 3ブームを 1 0 0 0回伸縮した後、 漏洩電流を測定 した結果である。 漏洩電流の測定は、 注水量 3 mmZ分、 注水角度 4 5度、 注 水液抵抗 1 0 0 0 Ω · c m、 ブームの角度を 3 0度とし、 電圧 4 6 k Vをブー ム 1 mに対して印加して行った。 第 3ブームには傷がほとんどなく、 したがつ て撥水性の低下にともなう漏洩電流の増加は認められない。
5 表 2
Figure imgf000020_0001
- 以上のように、 第 1の実施の形態では、 活線作業用ロボット第 3ブーム表面0 に撥水性と潤滑性の優れたシリコンコンパゥンドを塗布することにより、 第 3 - ブーム表面の撥水性が向上し、 その結果、 降雨中の第 3ブームを流れる漏洩電 • 流が減少し、 活線作業用ロボットの雨天時の作業において、 ブームの伸長を 1 ' mとした状態でブームを流れる漏洩電流を 0 . 5 m A以下とすることができる - ため活線作業用ロボットの操作性を向上させることができる。 また、 第 3ブー5 ム表面の潤滑性が向上することによって第 3ブーム表面に発生する傷が著しく - 減少するため、 第 3ブーム表面の撥水性の低下を防ぐことができ、 その結果活 - 線作業用ロボットの操作者に対する感電事故を防ぐことができる。 また第 3ブ - ームに電圧がかかった状態で第 3ブーム表面に雨水がかかっても第 3ブーム表 - 面で発生する放電を抑制するため、 第 3ブームの撥水性が急速に低下すること - を防ぐことができる。
- 次に、本発明の第 2の実施の形態を図 1 1および図 1 2に基づいて説明する。 - 図 1 1は、 高所作業車の構成の一例を示す概略図である。 同図において、 車 5 両 85から延びるブームの一部に直径 1 8 Ommの伸縮側ブーム 72があり、 - これは、収納側ブーム 7 3内のローラ 75の上をすベリながら前後に伸縮する。 - また、 伸縮側ブーム 72表面の摺動面 76および非摺動面 77には、 シリコン - コンパウンド (例えば KS 63 G、 信越化学工業 (株) 製) を塗布して形成し • た絶縁膜 74がある。
0 図 1 2は、 図 1 1の構造において、 伸縮側ブーム 72の表面にシリコンコン - パウンド層 64は形成せず、 ローラ 7 5と接触しない非摺動面 77にかさ 79 - を取り付けたものである。 このかさ 7 9は、 伸縮側ブーム 72に後付けする場 - 合では、 図 1 3に示すように、 直径が 300nim、 厚みが 5mmの半円形をし - ておリ、 GFRPで製作されたかさ部品 90、 9 1と、 絶縁材料により構成さ5 れた絶縁ボルト 92により構成されたものとなる。 かさ 79の取付方法は、 か - さ部品 90と 9 1を伸縮側ブーム 72の非摺動面 77に位置合わせし、 図示し - ない絶縁物からなる結合板に絶縁ボルト 92を通して固定する。 そして、 力さ - 部品 90と 9 1の合わせ部、 穴、 および伸縮側ブーム 72との隙間に一液型 R - TVシリコンゴム (KE45W、 信越化学工業 (株) 製) を充填し、 表面にシ0 リコンコンパウンドを塗布して絶縁膜 74' を形成する。 ブームの組立時に本 - 発明のかさを設ける場合は、 図 1 4に示すように、 直径が 800mm、 厚みが - 5mmの中心部に穴のあいた円板状のかさ 79' を用いる。
- 次に、 かさの効果について述べる。 図 1 5に伸縮側ブームを l m伸長した時 - の印加電圧と漏洩電流の関係を示す。 まず、 伸縮側ブーム 72の表面にかさ 75 9が無い場合、 漏洩電流は 46 kVにおいて 1 3mAと大きい。 これに対し、 - かさ 7 9を取り付けた場合、 0. 24 mAとかなり小さくなる。 このように、 - かさ 79を取り付けたことにより、 伸縮側ブーム 72の非摺動面 77における - 絶縁距離が延長され、 撥水性も向上して、 漏洩電流の低減に効果があることが - 分かる。
- ここで用いたかさ 7 9は、 内周側から外周側までの半径方向の長さは 6 0 m - mであり、 4 8 k V印加時においては、 この 6 O mm以上の長さがあれば良い。 - 印加電圧が低い場合では、 沿面距離はこれより短くて良い。
5 伸縮側ブーム 7 2の断面形状が矩形の場合、 かさ部品 9 0 ' と 9 Γ の取付 • 部の形状は図 1 6に示すように矩形のものとなる。 この場合においても、 かさ • の内側から外側までの最短長さは 6 O mmである。 かさの取付位置としては、 - 図 1 7に示すように、 かさ 7 9の片面を活線ロボットべ一ス部 7 8と密着させ - ても良い。 かさの形状としては、 図 1 8に示すように、 伸縮側ブーム 7 2の表0 面を覆うような形状でも良い。
- なお、 第 1の実施の形態と第 2の実施の形態を組み合わせてもよい。 すなわ - ち、 伸縮側ブ一ム 7 2の表面にシリコンコンパゥンドを塗布し、 かつシリコン - コンパウンドを塗布したかさ 7 9を併用することも可能である。
- また、 本発明は図 1 1に示す配電線工事用活線作業用ロボット 7 1を搭載し5 た高所作業車だけでなく、 伸縮側ブーム 7 2の先端にパケットが設置された構 - 造の高所作業車にも適用可能である。 さらに、 作業者が地上で操作する地上操 - 作型活線作業用ロボットにも適用可能である。
- 次に、 本発明の絶縁保護カバ一について説明する。 図 1 9は、 従来例になる - 絶縁保護カバーの構成を示す。 絶縁部 1 0 3, 1 0 3 '、 金属部 1 0 2他によ0 り構成されたマニピュレータに絶縁保護カバー 1 0 4が取り付けられる。 絶縁 - 保護カバ一 1 0 4は撥水性の優れた材料よりなる。 また、 金属部 1 0 2の先端 - から絶縁保護カバー 1 0 4の先端までの沿面距離は 9 5 0 mm、 金属部 1 0 2 - から絶縁保護カバー 1 0 4までの空気ギャップの長さは 6 O mmである。 図 2 - 0に、 本発明の一実施例になる絶縁保護カバ一の構成を示す。 金属部 1 0 2の5 ある部分のみにおいて絶縁保護カバ一 1 0 4との間の空気ギャップを 6 O mm • 確保した絶縁保護カバー 1 0 4を、 配電線との接触の危険がある部分に取り付 - けたものである。
- なお、 本発明は、 6 k V級配電線を取り扱う場合においても、 同様な考え方 - が適用できる。 また、 活線作業用ロボットを搭載した高所作業車だけでなく、 . バゲットを有し、 作業者が搭乗する方式の高所作業車にも適用可能である。 - このように、 金属部 1 0 2の外側にあたる絶縁保護カバ一 1 0 4の表面に配 - 電線が接触する場合においてもトラッキング、 さらに貫通方向の絶縁破壊を防 5 止することができる。 また、 配電系統及び高所作業車の機器の焼損を引き起こ - す短絡事故の発生を防止することができ、 常に安全を確保することができる。 - 図 2 1は、 本発明の第 2実施例における架台上のシステム構成を示す平面図 • である。 図 2 1において、 5は 7軸構成の電気式左マニピュレータ、 6は 7軸 - 構成の電気式右マニピュレータ、 7 Lは左マニピュレータを搭載した左スライ0 ド装置、 7 Rは右マニピュレータを搭載した右スライド装置、 1 3 L , 1 3 R - は左右のマニピュレータを制御する制御盤、 1 4 L, 1 4 Rは左右の制御盤に • 電力を供給する発電機である。 2台のマニピュレータは左右対称構造になって • いるが、 構成は同一である。
- このように、 2台の多軸構成の電気式マニピュレータが異相の活線に同時に5 接触した場合に生じる相間短絡事故を防止するために、 2台のマニピュレータ
- を制御する制御盤と電力を供給する発電機をそれぞれに別に設け、 さらにそれ
- らの制御盤と発電機を絶縁物で構成した架台に固定し、 2台に分割した制御盤 - 間の信号のやりとりは光ケ一ブルを使って行うことで、 2台のマニピュレータ • 間を電気的に絶縁できる。 従って、 線間電圧が高いクラス (2 2 k V級) の配0 電保守作業の無停電工法へ適用できる活線作業用ロボット車の実用化が図れ - る。
- 次に、 本発明のアースのインタ一ロック装置について説明する。 図 2 2はそ - の第 1実施例を示し、 図 2 3は第 2実施例を示している。
- 図 2 2において、 インタ一ロック装置 2 2 0は、 2本の導体 2 2 2 a、 2 25 2 bとプローブ 2 3 0と電磁接触器 2 2 4とバッテリ 2 2 5から構成され、 接 - 続金具 2 2 3 a , 電磁接触器 2 2 4のコイル 2 2 4 a , 及びバッテリ 2 2 5が • 直列に接続されたものである。 導体 2 2 2 bとバッテリ 2 2 5は、 電気機器の - 本体 2 2 6に接続される。 これにより、 接続金具 2 2 3 a、 導体 2 2 2 a、 電 - 磁接触器 2 2 4のコイル 2 2 4 a、 バッテリ 2 2 5、 電気機器の本体 2 2 6、 - 導体 2 2 2 b、 接続金具 2 2 3 bの回路が形成される。
- ここで、 接続金具 2 2 3 a , 2 2 3 bは、 接地線 2 2 8への接続及び固定が - 可能な構造を有し、 導体 2 2 2 a、 2 2 2 bの先端に設けられる。 絶縁物 2 2 5 1は、 その先端に接続金具 2 2 3 a、 2 2 3 bを入れる接続金具カバ一部 2 2 - 1 a、 2 2 1 bを有し、 この接続金具カバ一部 2 2 1 a、 2 2 1 bは、 接続金 . 具 2 2 3 a、 2 2 3 bが互いに接触しないよう距離をあけて、 さらに外側に向 • くような構造となっている。 そして、 接続金具 2 2 3 a、 2 2 3 bが接続され - た導体 2 2 2 a、 2 2 2 bを絶縁物 2 2 1内に収納する。 これをプローブ 2 30 0と呼ぶ。 電磁接触器 2 2 4は、 コイル 2 2 4 aに電流が流れると励磁されて - 回路を閉じる接点 2 2 4 bを有し、 この接点 2 2 4 bは電気機器の動作回路 2 - 2 7に接続されている。 バッテリは、 電磁接触器 2 2 4に電源を供給する。 - アースは、 接続金具 2 2 3 a、 2 2 3 bを接地線 2 2 8に固定する。 これに - より、 接続金具 2 2 3 a、 2 2 3 b間は接地線 2 2 8で導通するため回路が閉5 じ、 バッテリ 2 2 5からの電源供給により電磁接触器 2 2 4のコイル 2 2 4 a - が励磁されて接点 2 2 4 bが閉じ、 電気機器の動作回路 2 2 7が動作状態とな - り、 電気機器 2 2 6力使用可能となる。 なお、 電気機器を使用中、 接続金具 2 - 2 3 a , 2 2 3 bと接地線 2 2 8が外れる等の接触不良となった場合、 電磁接 - 触器 2 2 4のコイル 2 2 4 aへの電圧供給が停止して励磁状態が解除され、 接0 点 2 2 4 bは開の状態になる。 そして、 電気機器の使用ができなくなる。 - 図 2 3はアースインタ一ロック装置の第 2実施例を示すものであり、 本イン - ターロック装置 2 4 0では、 プローブ 2 5 0は、 図 2 2の実施例の導体 2 2 2 ' a、 2 2 2 bを 1つの絶縁物 2 4 1内に設けた固定側接続金具 2 4 3 aと可動 • 側接続金具 2 4 3 bにそれぞれ接続し、 可動側接続金具 2 4 3 bは絶縁性ネジ5 2 4 5で固定側接続金具 2 4 3 aの方に締め付けることができるようにしてい - る。 両接続金具 2 4 3 a、 2 4 3 bの対向面には、 接地線 2 2 8が入る凹部が - 設けられている。 その他の構成は図 2 2と同じである。
- 本実施例においては、 アースは、 絶縁性ネジ 2 4 5を締めて、 接続金具 2 4 - 3 a、 2 4 3 bで接地線 2 2 8を挟んで行う。 これにより、 接続金具 2 4 3 a、 - 2 4 3 bは接地線 2 2 8で導通するため、 回路が閉じ、 バッテリ 2 2 5からの - 電源供給により電磁接触器 2 2 4のコイル 2 2 4 aが励磁されて接点 2 2 4 b - が閉じ、 電気機器の動作回路 2 2 7が動作状態となり、 電気機器 2 2 6が使用 5 可能となる。
- 図 2 2及び図 2 3の実施例において、 作業者がアースをとることを忘れた場 - 合は、 2本の導体間が導通しないため、 コイルが励磁されず、 従って操作回路 - が入らない。 したがって電気機器の使用ができないため、 電気機器の使用前に • は必ずアースをとることになる。 また電気機器の本体と接地線の間の電気的な0 接地状態をリアルタイムで監視することが可能となるため、 常に安全を保つこ - とができる。
• 以下、 本発明の実施例を図に基づいて説明する。
- 図 2 4は従来の構成のスライド軸を有する配電線作業ロボットの作業姿勢の - 上面図、 図 2 5は本発明の構成のスライ ド軸を有するロボットの作業姿勢の上5 面図である。
- 図 2 4、 図 2 5とも、 双腕ロボットの左マニピュレータ 5及び右マニピユレ - ータ 6は、 各腕独立でスライド装置 7 L , 7 Rに取り付けられている。 このス - ライ ド装置 7 L, 7 Rには、 固定べ一ス 1 2 1、 または、 1 2 2に取り付けら . れたリニアガイドのスライドュニット 1 1 4で支持されたガイドレール 1 1 50 と駆動用のラック 1 1 6が取り付けられている。
- スライ ド動作は、 固定ベース 1 2 1、 または、 1 2 2に固定された駆動モー • タ 1 1 7とピニオンギア 1 1 8で行われる。
- ロボットは、 作業対象 1 1 9の作業点 Aに対して作業を行うものとする。 - 図 2 4では、 ロボットは、 ベースの中心に対して平行にスライドし、 両ロボ5 ットの間隔は変化しない。 作業対象 1 1 9に対して作業を行おうとすると、 そ - れぞれのロボットの構成部品 1 2 0の間隔が狭いため、 作業対象 1 1 9の Bの - 部分とロボットが干渉し、 ロボットを作業対象 1 1 9に近づけて位置決めでき - ない。 • 図 2 5では、 スライド軸は、 スライダ 7 L, 7 Rが前方が広がったベース 1 - 2 2に支持されており、 スライド軸を動作させるとロボットの間隔は広がって - い
• 作業対象 1 1 9に対しては、 図に示すようにロボットの部品 1 2 0と Bとが 5 干渉しないようにできるため、 ロボットのマニピュレータ 5, 6を作業対象 1 - 1 9に近づけて作業可能である。
• この結果、 本実施例では、 スライドのストロークは同じであっても、 本発明 - のスライド軸構成の方がロボットを作業点近くに位置決めでき、 ロボットにと - つて、 楽な作業姿勢が可能である。 さらに、 収納時は、 従来と変わらないコン0 パク卜な収納姿勢が可能である。 さらに、 軸数の追加はないので重量、 コスト • も従来と変わらない。
- 2つのスライド軸の広がり角度は、 作業性 (両腕の動作範囲の重なり具合) - と他の構成機器との干渉を考慮して決定する。 ただし、 配電線作業ロボットの - 場合、 架台が油圧駆動のブームの上に設置されているので、 作業対象をロボッ5 ト間に入れる必要がなく、 両口ボットの動作範囲の重なりが必要な場合は、 ス - ライド軸を動作させずに、 全体のベースごと作業対象に近づければ、 従来どお - りの作業が可能である。
- 本実施例によれば、 双腕マニピュレータのスライド軸が前方が広がるような - 状態で動作するように構成したので、 スライド軸の軸数追加やそれにともなう0 コストアップ、 占有スペースのアップなどなしに、 1軸だけで、 収納時はコン - パク卜に収納でき、 作業に応じて動作させれば、 双腕マニピュレータの間に作 • 業対象を入れ込めるようにもできるというような作業性ァップが可能なスライ - ド軸の構成を実現できる。
• 以下、 本発明の実施例を図に基づいて説明する。 図 2 6はスライド機構付き5 ベース 3 4を有する多関節マニピュレータのリンク構成の一例である。 スライ - ド軸 1 3 1に 7軸多関節マニピュレータをとりつけている。 この多関節マニピ • ユレータ 1 3 3は多関節マニピュレータの原点である。 1 3 7は多関節マニピ - ユレータの位置を決定する手首軸の交点である。 多関節マニピュレータ位置を - 決定する点はマニピュレータのリンク構成、 軸数によって異なるがここでは、 - 7軸マニピュレータを一例として説明する。 このマニピュレータの位置を決定 - する点 (以下 P点と称する) と多関節マニピュレータの原点 3間を /op として ■ みると、 スライド軸 13 1、 第 1車由 132、 第 2軸 133とアーム /op とから 5 なるマニピュレータ図 27と仮想する事ができる。
- この仮想したマニピュレータの P点の位置を Px, Py, P zとして運動学 - を解くと以下のようになりスライド軸の位置と /op の関係を導き出す事ができ
- る。
' この時スライド軸の位置を Sx、 仮想第 1軸の角度を Θ 2、 仮想第 2軸の角度0 を θ3とする。
- Px=c o s 02c o s 03/op ( 1
- P y = s i η θ 3 /op (2)
Figure imgf000027_0001
- ここで ( 1) 〜 (3) の両辺の 2乗の和を求めると
5 土 (/op2— (Px2+Py 2)) 1/2 (4) • 式 (4) より P点の位置が与えられている場合スライド軸の位置は /op によ - リ決定できる事がわかる。 この / op とスライドの関係を軌道演算に導入した軌 - 道演算のブロック図が図 28である。 図 28のステップ S 1でスライド機構を - 有するベース多関節マニピュレータの手先位置 P (X, Υ, Z, Τχ, Τγ, Τ0 ζ , Ε) を入力する。 ここで Εは 7軸マニピュレータの冗長制御に用いる値で . あり、 6軸マニピュレータの場合は不必要である。 この Ρ点の値よりステップ
• S 2で lop の値をある条件に従い変化させることによリスライド軸の動作比率 - を決定し、 ステップ S 3で式 (4) を用いスライド軸の位置を求める。 そこで - 求められたスライド軸の位置とそのスライド軸の位置を P点より差分した P'5 点の位置をそれぞれ、 逆変換することによリ多関節マニピュレータの各関節角 - の大きさ及びスライド機構を有するベースの位置を求め (ステップ S 4)、 同 - 時軌道制御を実現している。 この図 28のステップ S 1〜S 4の機能の有無は . パラメータで切り替えられ、 従来の方法と同時軌道制御の方法の選択が可能で - D -
• ある。 また、 ステップ S 2の / op とスライド軸の関係もいろいろ設定が可能で - ある。 ここでは操作性を考慮し、 多関節マニピュレータが十分動作可能な範囲 - はスライド軸は動作しないものとし、 多関節マニピュレータが伸び切りそうに • なった場合の伸び方向の動作時 (条件 1 )、 縮めなくなりそうな場合の縮み方 5 向への動作時 (条件 2 ) にスライド軸を動作するようにした /op の決定方法の - 一例を示す。 この時 Zopの最小値 Zop m π , /opの最大値 /op m は第 2軸第 4軸 • 間の長さ、 第 4軸第 6軸間の長さと、 第 4軸の動作範囲により決まる。 c /op - は /opの現在値、 d は /opの目標値、 Zop hは /op伸び方向スラィド軸動作加 - 味開始値、 /opzは/ op縮み方向スライド軸動作加味開始値である。
0 (条件 1 )
• a ^> /op 力、つ d し のとき
• /op = d ( c — d iop) X
• { ( d ;op― /op ) Z (/op — /op 5 )
- (条件 2 )
5 d く /op;力、つ d のとき
• /op = c — ( c — d X
• { ( d — /Op ) / ( Op/ — Op 6 )
- このように Zopの現在値と目標値の関係により /op を求めることができる。 - また、 /op h及び/ op,の値を変化させることによリスライド軸の同時動作領域及0 びスラィド軸の動作比率を変更できる。
- 本実施例によれば、 目標値として与えられた手先の位置と姿勢からスライド • 軸の位置が決めれることができ、 スライド軸と多関節マニピュレータの同時制 - 御ができるため、 スライド軸の位置を入力することなく、 スライド機構付べ一 - スを有する多関節マニピュレータを操作することができる。
5 次に、 自動工具交換装置の実施例について説明する。 図 2 9は本実施例に係 • る自動工具交換装置とマニピュレータの全体構成図、 図 3 0及び図 3 1は被マ - ニピユレータ側接続部と工具脱着部を示す側断面図、 図 3 2は動作状態を示す - 説明図である。 - 本実施例において、 工具着脱部 1 6 0には、 工具 1 6 2を被マニピュレータ - 側キ一溝 1 5 7に位置決めするためのキ一 1 5 9と、 径方向に移動可能で中心 - 軸から離れる方向に復元力をもった工具固定のクランプボタン 1 5 4とを備え • ている。 ラック部 1 6 1は、 工具の着脱の際、 クランプボタン 1 5 4を押すシ 5 リンダ 1 5 3とシリンダ 1 5 3の位置を検出するための位置検出センサ 1 5 5 - とを備えている。
- まず工具装着動作の場合は、 マニピュレータが工具装着動作にはいる前、 制 - 御部 1 5 1が空気圧回路部 1 5 2に減圧指令を出力し、 低下した推力をもつシ - リンダ 1 5 3を O Nする信号を空気圧回路部 1 5 2に出力し、 シリンダ 1 5 30 が出る。 工具が有る場合、 クランプボタン 1 5 4に当たりシリンダ 1 5 3が途 - 中で停止し、 無い場合、 シリンダ 1 5 3がストローク端まで出る。 それを位置 - 検出センサ 1 5 5が感知し、位置検出センサ 1 5 5の出力を制御部 1に入力し、 - 制御部 1 5 1がシリンダ位置の違いにより目的とするラック 1 6 1の工具 1 6 - 2の有無を判別する。
5 次に一旦、 制御部 1 5 1の指令によりシリンダ 1 5 3を 0 F Fし制御部 1 5 - 1が工具無しと判断した場合、 注意信号を作業者に出力し、 制御部 1 5 1がェ - 具有りと判断した場合、 制御部 1 5 1が空気圧回路部 1 5 2に増圧指令を出力 - し、 クランプボタン 1 5 4を押し込めるだけの推力をもつシリンダ 1 5 3を 0 - Nする信号を空気圧回路部 1 5 2に出力し、 シリンダ 1 5 3が出てクランプボ0 タン 1 5 4が押し込められる。 その時のシリンダ 1 5 3の位置を位置検出セン - サ 1 5 5が感知し、 位置検出センサ 1 5 5の出力を制御部 1 5 1に入力し、 制 • 御部 1 5 1がシリンダ位置によリエ具装着準備が完了したかどうか確認する。 - 次いで、 工具 1 6 2の置かれたラック 1 6 1にマニピュレータ先端部 1 5 6が - あらかじめプログラムされた軌道に沿って移動し、 被マニピュレータ側キ一溝5 1 5 7に脱着部 1 6 0のキ一 1 5 9をあわせて挿入し、 制御部 1 5 1がシリン - ダ 1 5 3を O F Fする信号を空気圧回路部 1 5 2に出力する。 次いでシリンダ - 1 5 3が引き込み、 クランプボタン 1 5 4が被マニピュレータ側の孔 1 5 8に - 入り、 工具が被マニピュレータ側にクランプされる。 次に、 制御部 1 5 1の指 - 令によリシリンダ 1 5 3が引っ込み、 位置検出センサ 1 5 5の出力信号により - シリンダ 1 5 3が確実に引っ込んだことを制御部 1 5 1が確認し、 空気圧回路 - 部 1 5 2に減圧指令を出力する。 制御部 1 5 1は、 低下した推力をもつシリン - ダを O Nする信号を空気圧回路部 1 5 2に出力し、 シリンダ 1 5 3が出る。 ェ 5 具が確実にクランプされている場合、 クランプボタン 1 5 4に当たりシリンダ - 1 5 3が途中で停止する。 クランプ失敗の場合、 シリンダ 1 5 3はさらに出る。 - そのときの位置検出センサ 1 5 5の出力信号によリエ具 1 6 2が確実にマニピ - ユレ一タに固定されたことを制御部 1 5 1カ¾|認し、 制御部 1 5 1の指令によ - リシリンダ 1 5 3が引つ込み、 位置検出センサ 1 5 5の出力信号によりシリン0 ダ 1 5 3が確実に引っ込んだことを制御部 1 5 1が確認し、 マニピュレータ先 • 端部 1 5 6がラックから離れ工具装着が終了する。 もし、 マニピュレータへの - 固定がうまくいつていない場合は、 注意信号を出力し作業を中止する。
- 工具 1 6 2を戻す場合は、 マニピュレータが工具返却動作にはいる前、 制御 - 部 1 5 1が空気圧回路部 1 5 2に減圧指令を出力し、 低下した推力をもつシリ5 ンダ 1 5 3を O Nする信号を空気圧回路部 1 5 2に出力し、 目的のラックのシ - リンダ 1 5 3が出る。 工具が有る場合、 クランプボタン 1 5 4に当たりシリン - ダ 1 5 3が途中で停止し無い場合、 シリンダ 1 5 3がストローク端まで出る。 - それを位置検出センサ 1 5 5が感知し、 位置検出センサ 1 5 5の出力を制御部 - 1 5 1に入力し、 制御部 1 5 1がシリンダ位置の違いにより目的とするラック0 の工具の有無を判別する。 次に一旦、 制御部 1の指令によリシリンダ 1 5 3を - O F Fし制御部 1 5 1が工具無しを確認し、 マニピュレータがあらかじめプロ - グラムされた軌道に沿って移動し、 工具をその空きラック 1 6 1に置く。 次い - で、 制御部 1 5 1が空気圧回路部 1 5 2に増圧指令を出力し、 クランプボタン - 1 5 4を押し込めるだけの推力をもつシリンダ 1 5 3を O Nする信号を空気圧5 回路部 1 5 2に出力する。 これにより、 シリンダ 1 5 3が出てクランプボタン - 1 5 4が押し込められ、 その時のシリンダ 1 5 3の位置を位置検出センサ 1 5
• 5が感知する。 位置検出センサ 1 5 5の出力を制御部 1 5 1に入力し、 制御部 • 1 5 1がシリンダ位置によリクランプボタン 1 5 4が確実に押し込められてい - ることを確認し、 マニピュレータが離れる。 制御部 1 5 1の指令によリシリン - ダが引っ込み、 制御部 1 5 1が空気圧回路部 1 5 2に減圧指令を出力し、 低下 - した推力をもつシリンダ 1 5 3を O Nする信号を空気圧回路部 1 5 2に出力す - る。 これにより、 シリンダ 1 5 3が出て、 位置検出センサ 1 5 5の出力信号に 5 より工具が確実に返却されたことを制御部 1 5 1が確認し、 工具返却が終了す - る。 もし、 ラックへの返却が不完全な場合は、 注意信号を出力し作業を中止す - る。
- この実施例によれば、 マニピュレータ先端部をスリム化し作業者の視認性を • アップし、 工具着脱、 工具着脱の確認と工具の有無の判別を同一機器 (位置検0 出センサ付きシリンダ) でおこなうことができ、 システムの信頼性アップと低
• コスト化, 装置の小型化を実現できる。
- 次に、 本発明の作業具供給装置の実施例について説明する。
- 図 3 3は本実施例で作業具をベース上に配置した例を示す斜視図、 図 3 4は - 駆動部を示す側面図である。 図において、 作業具 1 7 6と 1 7 7を供給する場5 合について説明する。 作業具 1 7 6のスタンド 1 8 1は作業具 1 7 6の形状に - 合わせた形状とし、 作業具 1 7 6をスタンド 1 8 1に立てかければ位置が決ま - るようにする。 また作業具 1 7 7用のスタンド 1 8 2は作業具 7を差し込めば - 位置が決まるような構造となっている。 スタンド 1 8 1及び 1 8 2は中間べ一 - ス 1 7 2の定位置に固定されている。
0 本実施例では、 ベース全体が回転運動するので、 同じ形状の中間ベース 3個 - は位置決めピン 1つ 5によって汎用ベース 1 7 1に等角度で位置決めされ、 蝶 - 番ゃプランジャー機構などによって容易に固定される。 さらに汎用べ一ス 1 7 - 1は、 ベースに設けられた位置決め穴 1 7 4と駆動部 1 7 8に設けられた位置 - 決めピン 1 7 9とで駆動部 1 Ί 8上に位置決めされ、 中間べ一ス同様に固定さ5 れる。 そして、 駆動部 1 7 8によって上に載せられた汎用ベース 1 7 1、 中間 . ベース 1 7 2、 スタンド 1 8 1, 1 8 2が回転運動し、 等角度で停止する。 . ロボットへの教示は、 中間ベース 1 7 2、 1組について作業具 1 7 6と作業 - 具 1 7 7の 2つを行えば、 他 2組の中間ベース 1 7 2は駆動部を規定の角度だ - け回転させれば最初の 1組の教示と同じもので、 作業具の取り出しが可能であ - 本発明のアースインターロック装置の第 1実施例を示す概略図である。 る。
- 本実施例は、 駆動部は回転運動によるが、 直線運動でも、 等間隔で中間べ一 - スを並べ、 規定の距離で動くようにすれば可能である。
5 次に、 ソケット交換装置の実施例について説明する。
- 図 3 5はソケットの取り出しを示す側断面図、 図 3 6はソケットの収納を示 - す側断面図を示す。
- 本実施例は、 ロボット先端に取り付けられたネジ締め工具とソケッ卜 1 9 2 - 間の脱着の際、 脱着部 1 9 1の規定の部分を軸方向に押せば工具本体との脱着0 が可能なソケット 1 9 2をロボットで自動で交換するためのソケット交換装置 . であり、 工具先端の脱着部 1 9 1を押しつけるためのベース 1 9 3と、 ソケッ - ト 1 9 2の多角形穴とはめあう形状をもったナット 1 9 4と、 このナット 1 9
• 4が回転自由なように、 はめ合ったシャフト 1 9 5と、 ナット 1 9 4とシャフ - ト 1 9 5を規定の脱着位置に強制的の移動させるためにシャフト 1 9 5と結合5 したシリンダ 1 9 6とからなる。
• このソケット交換装置において、 ベース 1 9 3の形状を上方 2 0 0が広がつ - た U字形として、 ベース 1 9 3側面からのアプローチを可能としている。 さら - に、 ソケット 1 9 2の取り出し、 収納が正常に行われたかどうかをシリンダ内 - 蔵のセンサ 1 9 7で行うようにしている。
0 次に、 図 3 5を参照してソケットを取り出す場合を説明する。
- 図 3 5 ( a ) に示すように、 最初にソケット 1 9 2をナツト 1 9 4にセット - し、 シリンダ 1 9 6のロッドを押し出す。
• ロボットは教示にしたがってソケット交換装置に近づき、 図 3 5 ( b ) に示 - すように、 ソケット 1 9 2が脱着できる位置まで脱着部 1 9 1をベース 1 9 35 に押しつける。 このとき、 脱着部 1 9 1の穴とソケット 1 9 2の後部がうまく - はめ合わないときは、 シャフト 1 9 5を押しているシリンダ 1 9 6がロボット - の力に負けて押され、 ナット 1 9 4にセットされたソケット 1 9 2が逃げる。 - 次に、 工具をゆっくり回転させると、 図 3 5 ( b ) に示すように、 脱着部 1 - 9 1とソケット 1 9 2がはまリ合う。 両者がはまリ合えば、 シリンダ 1 9 6の - ロッドが元に戻ろうとするので、 ソケット 1 9 2は工具側に着く位置まで移動 - する。
- ソケット 1 9 2の取り出しが正常なとき、 図 3 5 ( c ) に示すように、 規定 5 された位置までソケット 1 9 2は移動する。 このため、 ソケット 1 9 2を押し - ているシリンダのロッドの位置も決まる。 従って、 このシリンダロッドの位置 ' にリミットスィッチセンサ 1 9 7を設けておけば、 センサ 1 9 7の信号を検出 - して、工具の回転を止め、 ソケット 1 9 2を取り出すようにすることができる。 - 図 3 6を参照してソケット 1 9 2を収納する場合を説明する。
0 最初に、 図 3 6 ( a ) から (b ) に示すように、 シリンダロッド 1 9 6 aを - 押し出す。
- ロボットは教示にしたがってソケット交換装置に近づき、 図のようにソケッ - ト 1 9 2がはずれるような位置まで脱着部 1 9 1をベース 1 9 3に押しつけ - る。 このとき、 ソケット 1 9 2とナット 1 9 4がうまくはめ合わないとシャフ5 ト 1 9 5を支持したシリンダのロッド 1 9 6 aが押され、 シャフト 1 9 5が逃 - げる。
• 次に、 工具をゆっくり回転させると、 ソケット 1 9 2とナット 1 9 4がはま - り合っていないときはシリンダ 1 9 6の戻し力でソケット 1 9 2がナツト 1 9 - 4にはまり合う。 そして、 シリンダ 1 9 6を引き込めば、 図 3 6 ( c ) に示す0 ようにナツト 1 9 4に着いてソケット 1 9 2が脱着部 1 9 1からはずれる。 - 最後に、 図 3 6 ( d ) に示すように脱着部 1 9 1を後退させてソケット収納 - を終了する。
- ソケット 1 9 2がはずれたかどうかは、 取り出しと同様にベース 1 9 3側面 - にセンサ 1 9 7を設け、 規定の位置にソケット 1 9 2、 シリンダ 1 9 6のロッ5 ドが来たことで検出する。
• 本実施例では、 ベース 1 9 3側面のピン 1 9 8を抜けば、 ナット 1 9 4とシ - ャフト 1 9 5を取り外すことができる。 ナット 1 9 4とシャフト 1 9 5をソケ - ットサイズに合わせて交換すれば、 ボルトサイズ、 長さの異なるソケットに対 - 応できる。
- 以上述べたように、 本実施例によれば、 ロボットだけで、 ネジ締め工具先端 - のソケットの交換が確実にできるようになるので、 地上操作型配電線作業ロボ - ットのように、 人が直接ソケットの交換を行えないようなロボットシステムで 5 も多種のネジサイズを使用する作業が可能となる。本実施例は、異なるサイズ、 - 長さのソケットに対応できるので、 ロボット作業に必要なサイズ全てのネジ締 - め工具および工具の収納スペースを揃える必要はなく、 ネジ締め工具とその収 - 納スペースは 1つで、 ロボットが行う作業中、 最大の数のソケット交換装置を - 揃えれば、 他の作業にはソケット交換装置の部品の交換だけで対応できる。 こ0 のようにスペース及びコストの節約が可能となる。
- 次に、 本発明の位置合わせ、 姿勢合わせ制御方法について説明する。
- 図 3 7は本実施例のシステム構成及びフローチャート、図 3 8は位置合わせ、 - 姿勢あわせの各実施^ 1を示す。 図 3 7において、 2 0 1はオペレータ、 2 0 2 - は作業対象軸 5のコントローラ、 2 0 3はメモリ、 2 0 4は相手腕 6のメモリ5 である。
• 図 3 8の実施例において、 図 3 8 ( a ) は、 双腕マニピュレータ 5における - 相手腕 6に対する姿勢合わせである。 同様に双腕マニピュレータにおける相手 • 腕 6に対する位置合わせを行うことが出来る (図 3 8 ( b ) )。 オペレータが 3 • 項目 (位置, 相手腕, 対象座標軸として X ) を選択すると, 制御盤は制御点の0 位置を示すマトリックスに対して, メモリから読み込まれた相手腕位置の X成 - 分値を代入し, 計算と指令を行い, マニピュレータを動作させる。
- 本発明の第 2の実施例は, 基本フレームに対する姿勢合わせである (図 3 8 - ( c ) )。 オペレータが 3項目 (姿勢, 基本フレーム, 対象座標軸方向として Y ) - を選択すると, 制御盤は制御点の姿勢を示すマトリックスに対して, あらかじ5 めメモリに記憶されている値を代入し, 計算と指令を行い, マニピュレータを - 動作させる。
- 本発明の第 3の実施例は, 作業対象物 (ワーク) フレームに対する姿勢合わ - せである (図 3 8 ( d ) )。 オペレータが 3項目 (姿勢, 作業対象物フレーム, • 対象座標軸方向として X) を選択すると, 制御盤は制御点、 の姿勢を示すマト - リックスに対して, あらかじめメモリに記憶されている値を代入し, 計算と指 - 令を行い, マニピュレータを動作させる。
- この実施例によればマニピュレータ動作の演算に, 既知のフレームにおける 5 マトリックスの要素を利用した物であるから, 既知のフレームに対する位置合 - わせ, 姿勢合わせを自動化し, これによつて作業時間と操作性を共に改善する - ことが出来る。
- 次に、 ロボットの姿勢較正方法について説明する。
• 図 3 9はその実施例を示すものであり、 図中 2 1 1 a、 2 1 1 bは軸であり、0 軸 2 1 1 aの両側のフレームにはそれぞれストッパ 2 1 2 a、 2 1 2 bが設け - られている。 軸 2 1 1 aを例に取ると、 精度のよい較正を行い、 ロボットの基 - 本姿勢を決定した段階で軸 2 1 1 aの基本位置における軸 2 1 1 a用のモータ - に設けた位置検出器の出力値 Aを読み取り、 そこからストツバ 2 1 2 aがスト - ッパ 2 1 2 bに当たるまで軸を動かす。 ストツバに当てる際は、 モータのブレ5 —キを解放して手動で行えば、 ストツバに当てる力も加減でき、 破損等の心配 ■ もない。 そのときの位置検出器の出力値 Bを読み取り、 前に読み取った値を引 - くと、 その値 C ( = B— A) 、 基本位置からストツバが当たる位置までの位 • 置検出器の出力値になる。 その後、 位置ずれ部品交換によってロボットの姿勢 • の構成が必要となった場合には、 ストツバ 2 1 2 aと 2 1 2 bが当たる位置の0 位置検出器の出力値から Cの値だけ軸を動かし、 そこを基本位置とする。 また、 - ストツバの取付不可能な軸、 例えばエンドレス回転軸 2 1 1 bでは、 軸の両側 - のフレームにそれぞれストツバを取付可能にすることにより、 較正時にストッ - パを取り付けるようにすれば、 前記と同様に較正ができる。 なお、 ストツバの • 位置関係が変わるような部品の交換を行っても、 前記方法で構成が行えるよう5 にするために、 ストツバに位置決めピンを設けるなどして、 位置精度を管理す - る。
- 産業上の利用可能性 - 本発明は、 送配電線の活線作業を行う分野において利用可能である。
10
15
20
25

Claims

- 請 求 の 範 囲
- 1 . 送配電線の活線作業を行う活線作業用ロボット車であって、 高所作業車に - 基端部を旋回、 起伏、 伸縮可能に支持された多段ブームの先端段を絶縁物で構 5 成された絶縁ブームとし、 この絶縁ブームの先端に設けた架台に、 配電作業を - 行う多軸構成の双腕マニピュレータと、 これらの双腕マニピュレータを左右独 • 立に前後にスライドさせるスライド装置と、 重量物吊り上げ機能を有する多軸 - 構成の吊り上げアームとを搭載し、 オペレータによる遠隔操作を行うようにし - た活線作業用ロボット車において、
0 前記双腕マニピュレータと前記スライド装置を駆動するァクチユエ一タを電 - 気式で構成し、 前記吊り上げアームを駆動するマニピュレータを油圧式で構成 - したことを特徴とする活線作業用ロボッ卜車。
- 2 . 請求の範囲第 1項記載の活線作業用ロボット車において、
- 前記吊り上げアームの旋回軸駆動用ァクチユエ一タを電気式で構成し、 残り5 の吊り上げアームの軸駆動用ァクチユエータを油圧式で構成した活線作業用口 - ボット車。
- 3 . 請求の範囲第 1項記載の活線作業用ロボット車において、
- 前記絶縁ブームの先端部に、 雨水を集水する樋を設けたかさを取り付けた活
- 線作業用ロボット車。
0 4 . 請求の範囲第 1項記載の活線作業用ロボット車において、
- 2 0 k V級配電線を取り扱う活線作業用ロボット車の場合、 マニピュレータ - の金属露出部とァクチユエータを覆っている絶縁保護カバーの内壁と導電部と - の間の空気ギヤップを 6 0 mm以上確保した活線作業用口ボット車。
• 5 . 請求の範囲第 1項記載の活線作業用ロボット車において、
5 2台の多軸構成の電気式双腕マニピュレータが異相の活線に同時に接触した - 場合に生じる相間短絡事故を防止するために、 前記 2台の双腕マニピュレータ - を制御する制御盤とこれらの制御盤に電力を供給する発電機をそれぞれ独立に - 設け、 さらにそれらの制御盤と前記発電機を絶縁物で構成した前記架台に固定 • し、 2台に分割した制御盤間の信号の授受を光ケーブルを使って行うことで、 - 2台のマニピュレータ間を電気的に絶縁することを特徴とする活線作業用ロボ - ット車。
- 6 . 請求の範囲第 1項記載の活線作業用ロボット車において、
5 接地線への接続及び固定が可能な接続金具が先端に設けられており、 互いに - 絶縁された 2本の導体と、 前記 2本の導体を収納し、 前記接続金具が互いに絶 - 縁された構造になっている 1本又は 2本のプローブと、 前記 2本の接続金具が - 接地線と接続したときに励磁されるコイルと、 前記コイルの励磁により電気機 - 器の動作回路を動作状態とすることができる接点とを有した電磁接触器と、 前0 記電磁接触器に電源を供給するバッテリを備え、 前記一方の導体に前記接続金 - 具、 電磁接触器、 及びバッテリが直列に接続されている、 アースのインタ一口 - ック装置を備えた活線作業用ロボット車。
• 7 . 請求の範囲第 1項記載の活線作業用ロボット車において、
• 前記 2つのスライド装置の取り付け配置を、 先端にいくにつれて互いの間隔5 力 がるような配置にした活線作業用ロボット車。
• 8 . 請求の範囲第 1項記載の活線作業用ロボット車において、
- 前記架台に、 前記双腕マニピュレータの作業に必要な工具を自動交換する自 - 動工具交換装置を備え、 この自動工具交換装置は、
. 工具を被マニピュレータ側キー溝に位置決めするためのキーと径方向に移動0 可能で中心軸から離れる方向に復元力をもつた工具固定のクランプボタンとを - 備えた工具脱着部と、
- 工具の着脱の際前記クランプボタンを押すシリンダを備えたラック部と、
• 前記シリンダの推力を可変にできる空気圧回路部とを有している、 活線作業
- 用ロボット車。
5 9 . 請求の範囲第 1項記載の活線作業用ロボット車において、
• 前記架台に、
- 各作業具毎にその作業具を位置決め保持するスタンドと、
- 作業に合わせて必要な前記スタンドを予め配置した中間ベースと、 - 全作業に共通で複数の中間べ一スを等間隔又は等角度で位置決め及び取り外 - し可能な汎用ベースと、
- 前記汎用ベース毎、 着脱可能で該汎用ベースを角度割り出し駆動する駆動部
- からなる作業具供給装置を備えた活線作業用ロボット車。
5 1 0 . 請求の範囲第 1項記載の活線作業用ロボット車において、
• 前記双腕マニピュレータにより、 ボルト等の締め付け、 緩めを行う工具であ - つて、 その工具とソケット間の脱着の際、 脱着部の規定の部分を軸方向に押す • ことにより工具本体との脱着が可能なソケットをロボットで自動で交換するた - めのソケット交換装置を備え、 このソケット交換装置は、
0 前記脱着部を押すための円筒状のベースと、
- 前記ソケットの多角形穴と嵌め合うナットと、
- このナットがねじ込まれ、 ベース中にスプリングで支持され、 軸方向にスラ • イド可能なシャフト
- とから構成される、 活線作業用口ボッ卜車。
5 1 1 . 請求の範囲第 1項記載の活線作業用ロボッ卜車において、
- 前記双腕マニピュレータに、ボルト等の締め付け、緩めを行う工具であって、 - その工具とソケット間の脱着の際、 脱着部の規定の部分を軸方向に押すことに • よリエ具本体との脱着が可能なソケットをロボットで自動で交換するためのソ - ケット交換装置を備え、 このソケット交換装置は、
0 工具先端の脱着部を押しつけるためのベースと、
- 前記ソケッ卜の多角形穴と嵌め合う形状をもったナットと、
- このナットが回転自由なように、 嵌め合ったシャフトと、
- 前記ナツトとシャフトを規定の脱着位置に強制的に移動させるために前記シ - ャフトと結合したシリンダ
5 とから構成される、 活線作業用ロボット車。
- 1 2 . F R Pまたは G F R Pからなり、 その先端に配線工事を行う作業部が取 - り付けられた伸縮側ブームと、 前記伸縮側ブームを案内支持するローラを設け - た収納側ブームとを備えた配線工事用高所作業車のブーム構造において、 - 前記伸縮側ブームの摺動面にシリコンコンパゥンドを塗布した活線作業用口 - ボット車。
- 1 3 . F R Pまたは G F R Pからなリ、 その先端に配線工事を行う作業部が取 - リ付けられた伸縮側ブームと、 前記伸縮側ブームを案内支持するローラを設け 5 た収納側ブームとを備えた配線工事用高所作業車のブーム構造において、 - 前記伸縮側ブームのローラと接触しな 、非摺動部に絶縁物で構成されその表 - 面にシリコンコンパゥンドが塗布されたかさを設けたことを特徴とする活線作 • 業用ロボット車。
- 1 4 . 前記絶縁ブームの先端部に設けたかさの内側から外側までの長さを 5 0
W O mm以上確保した請求の範囲第 5項記載の活線作業用ロボット車。
- 1 5 . 多関節マニピュレータと、 前記多関節マニピュレータを取り付けるスラ - イド機構を有するベースと、 前記多関節マニピュレータ及びスライド機構を制 • 御する制御装置とからなるマニピュレータを備えた活線作業用ロボット車の制 - 御方法において、
15 目標値として手先の位置と姿勢が与えられたときに前記多関節マニピユレ一 - タの各関節角の大きさ及びスライド機構を有するベースの位置を求める際に、 - 前記多関節マニピュレータの原点から多関節マニピュレータの位置を決定する - 点までの距離を軌道演算の制御条件に加え、 スライ ド機構を有するベースの位 - 置を決定することにより、 目標値として前記手先の位置と姿勢とを与えて多関
20 節マニピュレータの各関節角の大きさ及びスライド機構を有するベースの位置 - を求め、 スライ ド機構を有するベースと多関節マニピュレータを同時軌道制御 - することを特徴とする活線作業用ロボット車の制御方法。
• 1 6 . 双腕ロボットの一方の腕の位置や姿勢に他方の腕の位置や姿勢を所望の - 関係に揃える場合に、 制御対象となる他方の腕と基準となる一方の腕の位置デ
25 —タ、 姿勢データを読み込み、 比較演算を行って前記制御対象となる腕に対し - て動作指令を与えることを特徴とする請求の範囲第 1 5項記載の活線作業用口 - ボット車の制御方法。
• 1 7 . ロボットの姿勢を較正する際に、 精度のよい較正を行ったときに決定し - た基本姿勢から各軸の動作領域に設けられたストツバにあたるまでのモータの - 位置検出器の出力値を記憶させておき、 ロボットの姿勢を較正する必要が生じ - た場合に、 前記ストツバに当てた位置から前記記憶させていた出力値だけ戻し - た位置を基本姿勢とすることを特徴とする請求の範囲第 1 5項記載の活線作業 5 用ロボット車の制御方法。
0
5
0
5
PCT/JP1997/003734 1996-10-18 1997-10-16 Vehicule robotise pour tache sur ligne sous tension WO1998017577A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69739160T DE69739160D1 (de) 1996-10-18 1997-10-16 Autonomes roboterfahrzeug für arbeiten and spannungsführenden stromleitungen
US09/284,674 US6325749B1 (en) 1996-10-18 1997-10-16 Robot vehicle for hot-line job
EP97944138A EP0940366B1 (en) 1996-10-18 1997-10-16 Robot vehicle for hot-line job
CA002268959A CA2268959C (en) 1996-10-18 1997-10-16 Robot vehicle for hot-line job
JP51920698A JP4005639B2 (ja) 1996-10-18 1997-10-16 活線作業用ロボット車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/276671 1996-10-18
JP27667196 1996-10-18

Publications (1)

Publication Number Publication Date
WO1998017577A1 true WO1998017577A1 (fr) 1998-04-30

Family

ID=17572701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003734 WO1998017577A1 (fr) 1996-10-18 1997-10-16 Vehicule robotise pour tache sur ligne sous tension

Country Status (9)

Country Link
US (2) US6325749B1 (ja)
EP (1) EP0940366B1 (ja)
JP (1) JP4005639B2 (ja)
KR (1) KR100494235B1 (ja)
CA (1) CA2268959C (ja)
DE (1) DE69739160D1 (ja)
ES (1) ES2321671T3 (ja)
TW (1) TW400272B (ja)
WO (1) WO1998017577A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268680A (zh) * 2014-07-07 2016-01-27 深圳市福田区青少年科技教育协会 高空清洗机
CN107601387A (zh) * 2017-11-06 2018-01-19 徐州海伦哲专用车辆股份有限公司 一种高空作业车的双层副车架结构
KR20190139517A (ko) * 2018-06-08 2019-12-18 한국전력공사 입상케이블 거치장치
CN113178814A (zh) * 2021-04-30 2021-07-27 国网陕西省电力公司安康供电公司 一种带电作业操作方法
CN113363864A (zh) * 2021-05-25 2021-09-07 杭州申昊科技股份有限公司 一种基于目标识别的带电作业机器人

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158599A (ja) * 1999-12-02 2001-06-12 Yaskawa Electric Corp 高所作業用ブームの位置決め装置
US6604305B2 (en) * 2001-09-28 2003-08-12 Caterpillar Inc Method and apparatus for controlling an extendable stick on a work machine
KR100454714B1 (ko) * 2002-02-16 2004-11-05 한국과학기술연구원 작업용 로봇, 작업용 로봇을 위한 액츄에이터 및 작업용 로봇의 제어방법
FR2848200B1 (fr) * 2002-12-04 2008-08-22 Air Nacelle Services Dispositif de manutention d'une charge
US7182173B2 (en) * 2003-06-25 2007-02-27 Bailey Jeffrey H Material-handling device for aerial work platform
WO2005009691A1 (en) * 2003-07-18 2005-02-03 Fanuc Robotics America, Inc. Handling large, heavy workpieces using gantry robots with two robot arms
JP3907649B2 (ja) * 2004-09-02 2007-04-18 ファナック株式会社 ロボット間の干渉防止制御装置
US8550211B2 (en) * 2005-02-10 2013-10-08 Altec Industries, Inc. Aerial work assembly using composite materials
JP2007015774A (ja) * 2005-07-05 2007-01-25 Aichi Corp 高所作業車
US20160024781A1 (en) * 2005-11-15 2016-01-28 Andrew Flessas Robotically controlled architectural elements
NO326416B3 (no) * 2006-05-08 2008-12-01 Rolls Royce Marine As Verktøy for håndtering av kjettinger, wire, etc. om bord på et fartøy
US8684333B2 (en) 2006-06-02 2014-04-01 Quanta Associates, L.P. Boom mountable robotic arm
US8573562B2 (en) * 2006-06-02 2013-11-05 Quanta Associates, L.P. Remote manipulator for manipulating live multiple sub-conductors in a single phase bundle
CN101626946B (zh) * 2006-11-13 2013-06-05 雷神萨科斯公司 用于轻型机器人车辆的悬架系统和该车辆的支承方法
DE602007007807D1 (de) 2006-11-13 2010-08-26 Raytheon Sarcos Llc Vielseitig verwendbares endlosband für leichte mobile roboter
EP2476604B1 (en) 2006-11-13 2013-08-21 Raytheon Company Tracked robotic crawler having a moveable arm
US8505878B2 (en) * 2007-04-05 2013-08-13 Lionel O. Barthold Apparatus and method for enhancing the reconductoring of overhead electric power lines
JP2010526590A (ja) 2007-05-07 2010-08-05 レイセオン・サルコス・エルエルシー 複合構造物を製造するための方法
EP2814125B1 (en) * 2007-05-16 2021-05-05 Quanta Associates, L.P. Boom mountable robotic arm
CN101784435B (zh) 2007-07-10 2013-08-28 雷神萨科斯公司 模块化机器人履带车
US20090143255A1 (en) * 2007-11-30 2009-06-04 Funkhouser Gary P Methods and Compositions for Improving Well Bore Stability in Subterranean Formations
FR2924703B1 (fr) * 2007-12-11 2010-01-15 Gimaex Internat Dispositif elevateur aerien et vehicule equipe d'un tel dispositif
US8170698B1 (en) * 2008-02-20 2012-05-01 Mark David Gusack Virtual robotic controller system with special application to robotic microscopy structure and methodology
NO332220B1 (no) * 2008-07-02 2012-07-30 Prezioso Linjebygg As Apparater for operasjoner i skvalpesonen
JP5228784B2 (ja) * 2008-10-15 2013-07-03 株式会社Ihi マニピュレータシステム
DE202008016578U1 (de) * 2008-12-15 2011-04-07 Liebherr-Werk Ehingen Gmbh Manipulator zur Montage von Rotorblättern einer Windkraftanlage
US8392036B2 (en) 2009-01-08 2013-03-05 Raytheon Company Point and go navigation system and method
DE102009026866A1 (de) * 2009-06-09 2010-12-16 Teupen Maschinenbau Gmbh Verfahren zum Einsetzen, Abnehmen oder Umsetzen einer Wartungsgondel an einer Überlandleitung
WO2010144820A2 (en) 2009-06-11 2010-12-16 Raytheon Sarcos, Llc Amphibious robotic crawler
US8935014B2 (en) 2009-06-11 2015-01-13 Sarcos, Lc Method and system for deploying a surveillance network
US8508590B2 (en) * 2010-03-02 2013-08-13 Crown Equipment Limited Method and apparatus for simulating a physical environment to facilitate vehicle operation and task completion
GB2479207B (en) * 2010-04-01 2013-07-31 Niftylift Ltd Convertible lift platform
JP5450223B2 (ja) * 2010-04-14 2014-03-26 株式会社ダイヘン 産業用ロボット
CN101947783B (zh) * 2010-05-28 2013-03-06 徐州海伦哲专用车辆股份有限公司 多功能高空作业机械臂
ITBO20100412A1 (it) * 2010-06-28 2011-12-29 Ferri Srl Dispositivo di attacco ad un braccio articolato di un attrezzo
CN102231483A (zh) * 2011-04-01 2011-11-02 河南省电力公司商丘供电公司 液压检修工具车
CN103608740B (zh) 2011-04-11 2017-06-30 克朗设备公司 使用经协调路径规划器有效调度多个自动非完整车辆的方法和设备
KR101467621B1 (ko) * 2011-05-12 2014-12-05 박대규 고소작업대의 직선이동제어 방법 및 장치
US8655588B2 (en) 2011-05-26 2014-02-18 Crown Equipment Limited Method and apparatus for providing accurate localization for an industrial vehicle
US20140058634A1 (en) 2012-08-24 2014-02-27 Crown Equipment Limited Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
US9056754B2 (en) 2011-09-07 2015-06-16 Crown Equipment Limited Method and apparatus for using pre-positioned objects to localize an industrial vehicle
DE102011084412A1 (de) * 2011-10-13 2013-04-18 Kuka Roboter Gmbh Robotersteuerungsverfahren
CN103066522B (zh) * 2011-10-19 2016-03-02 国网黑龙江省电力有限公司哈尔滨供电公司 带电高空接过引线自动机械手臂电子控制器
SE537318C2 (sv) * 2012-02-01 2015-04-07 Strihl Scandinavia Ab System för byte av gatubeslysningsarmatur
CN102615637B (zh) * 2012-04-01 2014-08-27 山东电力研究院 一种高压带电作业主从控制机器人作业平台
CN102615638B (zh) * 2012-04-01 2014-08-06 山东鲁能智能技术有限公司 高压带电作业机器人主从式液压机械臂系统
CN102601782B (zh) * 2012-04-01 2014-08-27 山东电力研究院 高压带电作业机器人装置
US9527713B2 (en) * 2012-05-23 2016-12-27 Altec Industries, Inc. Low power control system for an elevated work platform
US8393422B1 (en) 2012-05-25 2013-03-12 Raytheon Company Serpentine robotic crawler
US9031698B2 (en) 2012-10-31 2015-05-12 Sarcos Lc Serpentine robotic crawler
CN103111996B (zh) * 2013-01-29 2015-04-22 山东电力集团公司电力科学研究院 变电站带电作业机器人绝缘防护系统
JP5672322B2 (ja) * 2013-03-14 2015-02-18 株式会社安川電機 ロボット装置
KR101444392B1 (ko) 2013-03-15 2014-09-26 삼성중공업 주식회사 도막 형성 로봇
US9938117B2 (en) * 2013-07-24 2018-04-10 Fritel & Associates, LLC Mobile conductor lift
US9409292B2 (en) 2013-09-13 2016-08-09 Sarcos Lc Serpentine robotic crawler for performing dexterous operations
CN103683095B (zh) * 2013-11-27 2016-06-08 国家电网公司 用于带电检修作业的机械手
US9566711B2 (en) 2014-03-04 2017-02-14 Sarcos Lc Coordinated robotic control
CN103972821B (zh) * 2014-05-27 2015-11-11 国家电网公司 高压输电线路带电作业机器人
JP6468834B2 (ja) * 2014-12-19 2019-02-13 株式会社永木精機 防護管挿抜器
CN104600624B (zh) * 2015-01-23 2017-02-22 国家电网公司 一种野外带电巡检作业机器人
CN104691366B (zh) * 2015-02-28 2017-09-15 徐州徐工随车起重机有限公司 一种基座可左右平移的导线拨线装置
US10207412B2 (en) 2015-08-10 2019-02-19 Abb Schweiz Ag Platform including an industrial robot
KR101616484B1 (ko) * 2015-09-21 2016-04-28 (주)우신전기기술사사무소 활선 상태에서 배전선로 교체 방법
CN105281174B (zh) * 2015-11-25 2018-01-30 国家电网公司 架空高压设备接地杆辅助装拆系统
CN105252536A (zh) * 2015-11-30 2016-01-20 国网重庆市电力公司电力科学研究院 带电作业机器人及其绝缘防护结构
CN105291087A (zh) * 2015-11-30 2016-02-03 国网重庆市电力公司电力科学研究院 带电作业机器人
CN105384123A (zh) * 2015-12-18 2016-03-09 国家电网公司 绝缘升降平台
US10273132B2 (en) * 2015-12-21 2019-04-30 Altec Industries, Inc. Isolated electronic backbone architecture for aerial devices
US10794079B2 (en) 2016-02-24 2020-10-06 Terex Usa, Llc System and method for installing a cross arm on a utility pole
GB2552025B (en) 2016-07-08 2020-08-12 Sovex Ltd Boom conveyor
ES2899284T3 (es) 2016-07-15 2022-03-10 Fastbrick Ip Pty Ltd Vehículo que incorpora una máquina de colocación de ladrillos
KR102590183B1 (ko) * 2016-11-04 2023-10-18 주식회사 알에스큐브 고전압 배전선로의 활선작업용 로봇
US20180132477A1 (en) * 2016-11-16 2018-05-17 ADC Custom Products, LLC Transportable Observation Station
CN108202778B (zh) * 2016-12-19 2023-08-01 中国科学院沈阳自动化研究所 一种爬壁打磨机器人
CN106863258B (zh) * 2016-12-28 2019-05-03 深圳昱拓智能有限公司 一种电缆沟巡检机器人
WO2018176062A1 (en) * 2017-02-21 2018-09-27 Skypoint Usa Llc Modular mobile platform with robotic arms
CN107161922B (zh) * 2017-06-19 2019-02-22 太原理工大学 一种高空作业平台的载荷检测机构及检测方法
CN107650124A (zh) * 2017-10-10 2018-02-02 国家电网公司 一种高压带电作业机器人高空作业平台及其卸载金具螺丝的方法
CN109648303B (zh) * 2017-10-10 2021-03-12 国家电网公司 一种带电作业机器人的母线金具螺丝锁卸设备及其锁卸方法
JP7143993B2 (ja) * 2017-10-12 2022-09-29 株式会社関電工 作業工具支持装置
CN107605161A (zh) * 2017-10-25 2018-01-19 马义军 一种全地形建筑3d打印机
CN107982831A (zh) * 2017-12-29 2018-05-04 宣城市安工大工业技术研究院有限公司 一种新型云梯消防机器人
CN108714897A (zh) * 2018-06-08 2018-10-30 山东鲁能智能技术有限公司 变电站带电检修作业机器人绝缘臂位姿控制系统及方法
EP3823797A4 (en) 2018-07-16 2022-04-06 Fastbrick IP Pty Ltd BACKUP TRACKING FOR AN INTERACTION SYSTEM
JP7235480B2 (ja) * 2018-11-13 2023-03-08 株式会社中電工 高所作業車の間接活線工具支持装置
CN109346986B (zh) * 2018-11-20 2024-01-30 清研同创机器人(天津)有限公司 高压带电作业机器人自动搭火工具
CN109176534B (zh) * 2018-11-27 2021-04-20 国网智能科技股份有限公司 一种机器人多摄像机实时融合系统及方法
CN109936081B (zh) * 2019-04-09 2020-11-10 国网天津市电力公司 带电作业装置
CN110021898B (zh) * 2019-05-01 2020-07-31 山东乐普韦尔自动化技术有限公司 10kv线路带电作业机器人接引流线作业专用工具
WO2020233727A1 (zh) * 2019-05-17 2020-11-26 成都理工大学 一种带电作业拆卸和安装高压线t型线夹的装置
CN110509310B (zh) * 2019-09-03 2020-11-10 亿嘉和科技股份有限公司 一种室外带电作业机器人
CN110601081B (zh) * 2019-10-15 2024-04-05 国网湖南省电力有限公司 一种配网带电断、接引流线系统及其断、接引流线的方法
JP7326139B2 (ja) * 2019-12-09 2023-08-15 株式会社東芝 作業支援装置、作業支援方法、プログラム、および作業支援システム
CN111015731A (zh) * 2020-03-10 2020-04-17 贵州詹阳动力重工有限公司 一种扫雷车机械臂及其自动回位控制方法
US20210323459A1 (en) * 2020-04-16 2021-10-21 Deere & Company Mobile work station for robotic arm
US11945123B2 (en) * 2020-04-28 2024-04-02 Altec Industries, Inc. Head mounted display for remote operation of machinery
EP4161858A1 (en) * 2020-06-08 2023-04-12 RE2, Inc. Robotic manipulation of pv modules
CN112372646B (zh) * 2020-11-10 2022-02-18 广东电网有限责任公司 一种可升降旋转的双臂电力检修机器人
KR102317076B1 (ko) * 2020-11-16 2021-10-22 호원대학교산학협력단 다목적 작업차
CN114571432B (zh) * 2020-11-30 2023-06-20 沈阳新松机器人自动化股份有限公司 一种移动式灵巧作业机械臂
CN112551454B (zh) * 2020-12-11 2022-05-10 国网辽宁省电力有限公司电力科学研究院 适用复杂地形的电缆随吊装平台升降的旁路作业检修方法
US11075574B1 (en) * 2020-12-29 2021-07-27 Altec Industries, Inc. Non-conductive shaft generator
CN112855475B (zh) * 2021-01-12 2021-11-26 哈尔滨理工大学 一种可自动更换风力发电机主轴轴承的装置
CN112952513B (zh) * 2021-01-19 2022-10-28 贵州电网有限责任公司 一种高压带电作业机器人专用压接钳
CN112653053B (zh) * 2021-01-20 2022-06-10 国网重庆市电力公司市北供电分公司 一种可对线缆连接处进行加强保护的电缆架
CN113001569A (zh) * 2021-04-19 2021-06-22 国网上海市电力公司 一种基于vr技术的带电作业机械臂遥操系统和人机交互方法
KR102573082B1 (ko) * 2021-05-24 2023-09-01 한국전력공사 활선 작업용 로봇 시스템
CN113292023A (zh) * 2021-07-27 2021-08-24 徐州海伦哲特种车辆有限公司 一种全天候适应型绝缘高空作业平台
CN113681566A (zh) * 2021-09-10 2021-11-23 广东电网有限责任公司广州供电局 一种引流线作业机器人的控制方法及控制器
CN113982660A (zh) * 2021-10-22 2022-01-28 江阴长力科技有限公司 一种矿用退锚车
CN114347071B (zh) * 2021-11-29 2023-07-04 浙江大有实业有限公司带电作业分公司 一种配电带电作业机器人的遥控系统
CN114536325B (zh) * 2022-01-12 2023-08-18 慈溪市输变电工程有限公司 一种配网操作机器人的高温高湿环境作业控制方法
US12110218B2 (en) 2022-05-06 2024-10-08 Oshkosh Corporation Lift device with robotic welding attachment
WO2023215613A1 (en) * 2022-05-06 2023-11-09 Oshkosh Corporation Lift device with robotic welding attachment
KR102741715B1 (ko) * 2022-05-09 2024-12-12 주식회사 동해기계항공 시스템 비상정지용 에어실린더가 구비된 절연 고소 작업차
US11697209B1 (en) 2022-07-28 2023-07-11 Altec Industries, Inc. Coordinate mapping for motion control
US11742108B1 (en) 2022-07-28 2023-08-29 Altec Industries, Inc. Operation and insulation techniques
US11794359B1 (en) 2022-07-28 2023-10-24 Altec Industries, Inc. Manual operation of a remote robot assembly
US11717969B1 (en) * 2022-07-28 2023-08-08 Altec Industries, Inc. Cooperative high-capacity and high-dexterity manipulators
US11749978B1 (en) 2022-07-28 2023-09-05 Altec Industries, Inc. Cross-arm phase-lifter
US11997429B2 (en) 2022-07-28 2024-05-28 Altec Industries, nc. Reducing latency in head-mounted display for the remote operation of machinery
US11660750B1 (en) 2022-07-28 2023-05-30 Altec Industries, Inc. Autonomous and semi-autonomous control of aerial robotic systems
US11839962B1 (en) 2022-07-28 2023-12-12 Altec Industries, Inc. Rotary tool for remote power line operations
US11689008B1 (en) * 2022-07-28 2023-06-27 Altec Industries, Inc. Wire tensioning system
KR102775876B1 (ko) * 2022-08-30 2025-02-28 한국로봇융합연구원 고소 공간 볼트 체결 로봇
US12244262B2 (en) 2023-01-09 2025-03-04 Sarcos Corp. Capture and support mount for retaining installed solar panels
CN116021199B (zh) * 2023-02-14 2023-05-30 成都迈特利尔科技有限公司 钛板组坯焊接生产线及其压焊方法
EP4491345A1 (en) * 2023-07-12 2025-01-15 I-De Redes Eléctricas Inteligentes, S.A.U Six-degree-of-freedom parallel robot for tasks at heights and high voltage
CN117134252B (zh) * 2023-09-08 2024-02-13 载荣建设(山东)有限公司 一种输电线智能巡检机器人
US12122607B1 (en) 2023-10-20 2024-10-22 Walter Bynum Power transfer from main boom section to distal boom section in a conveyor assembly
US12199414B1 (en) 2023-12-26 2025-01-14 Altech Industries, Inc. Automatic bond on to energized power line for remote operations

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734237Y2 (ja) * 1978-02-03 1982-07-28
JPS6460210A (en) * 1987-08-26 1989-03-07 Shikoku Elec Power Arm of positioning method for hot-line robot for distribution work
JPH0318093U (ja) * 1989-06-30 1991-02-22
JPH0353999U (ja) * 1989-09-30 1991-05-24
JPH03106811U (ja) * 1989-12-27 1991-11-05
JPH0444296U (ja) * 1990-08-20 1992-04-15
JPH04365584A (ja) * 1991-06-13 1992-12-17 Tokyo Electric Power Co Inc:The 遠隔操作ロボット支援装置
JPH0595612A (ja) * 1991-10-01 1993-04-16 Sumitomo Electric Ind Ltd 配電線工事用マニピユレータ
JPH05147894A (ja) * 1991-10-03 1993-06-15 Sumitomo Electric Ind Ltd 配電作業用マニピユレータ
JPH0588894U (ja) * 1992-05-27 1993-12-03 株式会社安川電機 ロボット用絶縁カバー
JPH06287000A (ja) * 1993-04-01 1994-10-11 Sumitomo Electric Ind Ltd 配電作業用ロボットシステム
JPH07137997A (ja) * 1993-05-24 1995-05-30 Sumitomo Electric Ind Ltd 配電作業用ロボットシステム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508014A (en) * 1982-06-08 1985-04-02 U.S. Truck Cranes, Inc. Remote control apparatus for a machine such as a crane
US4909701A (en) * 1983-02-14 1990-03-20 Brooks Automation Inc. Articulated arm transfer device
JPS6443010A (en) * 1987-08-07 1989-02-15 Shikoku Elec Power Working robot for distribution work
JPS6466708A (en) * 1987-09-08 1989-03-13 Fujitsu Ltd Control system for two-arm cooperation type robot
US4890241A (en) * 1987-10-26 1989-12-26 Megamation Incorporated Robotic system
US4893254A (en) * 1988-04-20 1990-01-09 University Of British Columbia Manipulator arm position sensing
JPH01285597A (ja) * 1988-05-10 1989-11-16 Shin Meiwa Ind Co Ltd 高所作業車
JP2698660B2 (ja) * 1989-06-12 1998-01-19 株式会社日立製作所 マニピュレータの制御方法及び制御装置並びにマニピュレータ装置
US4917213A (en) * 1989-06-12 1990-04-17 Vickers, Incorporated Power transmission
JPH03126102A (ja) * 1989-10-12 1991-05-29 Sony Corp ロボット制御装置及び方法
JPH0441189A (ja) * 1990-06-04 1992-02-12 Mitsubishi Heavy Ind Ltd 関節形マニピュレータの制御装置
US5183168A (en) * 1990-09-05 1993-02-02 Aichi Sharyo Co. Ltd. Mobile vehicular apparatus with aerial cabin
US5215202A (en) * 1990-09-05 1993-06-01 Aichi Sharyo Co., Ltd. Mobile vehicular apparatus with aerial cabin
US5107954A (en) * 1990-10-31 1992-04-28 Aichi Sharyo Co. Ltd. Control device for mobile vehicular apparatus with aerial platform
US5286159A (en) * 1990-11-08 1994-02-15 Kabushiki Kaisha Aichi Corporation Mobile vehicular apparatus with aerial working device
US5200674A (en) * 1990-11-16 1993-04-06 Aichi Sharyo Co., Ltd. Electric power supply device for mobile vehicular apparatus with aerial cabin having force-feedback manipulator
JPH0816845B2 (ja) * 1990-11-29 1996-02-21 工業技術院長 多関節形アームロボットの軌跡制御方法
KR930007775B1 (ko) * 1990-12-28 1993-08-19 삼성전자 주식회사 로보트의 직선보간(補間)방법
US5237887A (en) * 1991-07-01 1993-08-24 Rockwell International Corporation Straight line mechanism
JP2895672B2 (ja) * 1992-01-28 1999-05-24 ファナック株式会社 複数ロボット制御方法
US5550953A (en) * 1994-04-20 1996-08-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration On-line method and apparatus for coordinated mobility and manipulation of mobile robots
JP2546139B2 (ja) * 1993-05-19 1996-10-23 日本電気株式会社 ロボットアーム制御回路
JPH07223180A (ja) * 1994-02-10 1995-08-22 Tescon:Kk 水平多関節ロボット
CA2134617C (en) * 1994-10-28 1998-01-06 Daniel Neil O'connell Boom-mountable robotic arm
JP3126102B2 (ja) 1995-08-11 2001-01-22 ヒロセ電機株式会社 Pcカード用ソケットコネクタ及びこれを有するpcカード
US6121743A (en) * 1996-03-22 2000-09-19 Genmark Automation, Inc. Dual robotic arm end effectors having independent yaw motion
US6004016A (en) * 1996-08-06 1999-12-21 Trw Inc. Motion planning and control for systems with multiple mobile objects
US5751610A (en) * 1996-10-31 1998-05-12 Combustion Engineering, Inc. On-line robot work-cell calibration

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734237Y2 (ja) * 1978-02-03 1982-07-28
JPS6460210A (en) * 1987-08-26 1989-03-07 Shikoku Elec Power Arm of positioning method for hot-line robot for distribution work
JPH0318093U (ja) * 1989-06-30 1991-02-22
JPH0353999U (ja) * 1989-09-30 1991-05-24
JPH03106811U (ja) * 1989-12-27 1991-11-05
JPH0444296U (ja) * 1990-08-20 1992-04-15
JPH04365584A (ja) * 1991-06-13 1992-12-17 Tokyo Electric Power Co Inc:The 遠隔操作ロボット支援装置
JPH0595612A (ja) * 1991-10-01 1993-04-16 Sumitomo Electric Ind Ltd 配電線工事用マニピユレータ
JPH05147894A (ja) * 1991-10-03 1993-06-15 Sumitomo Electric Ind Ltd 配電作業用マニピユレータ
JPH0588894U (ja) * 1992-05-27 1993-12-03 株式会社安川電機 ロボット用絶縁カバー
JPH06287000A (ja) * 1993-04-01 1994-10-11 Sumitomo Electric Ind Ltd 配電作業用ロボットシステム
JPH07137997A (ja) * 1993-05-24 1995-05-30 Sumitomo Electric Ind Ltd 配電作業用ロボットシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0940366A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268680A (zh) * 2014-07-07 2016-01-27 深圳市福田区青少年科技教育协会 高空清洗机
CN107601387A (zh) * 2017-11-06 2018-01-19 徐州海伦哲专用车辆股份有限公司 一种高空作业车的双层副车架结构
CN107601387B (zh) * 2017-11-06 2019-11-19 徐州海伦哲专用车辆股份有限公司 一种高空作业车的双层副车架结构
KR20190139517A (ko) * 2018-06-08 2019-12-18 한국전력공사 입상케이블 거치장치
KR102124183B1 (ko) 2018-06-08 2020-06-17 한국전력공사 입상케이블 거치장치
CN113178814A (zh) * 2021-04-30 2021-07-27 国网陕西省电力公司安康供电公司 一种带电作业操作方法
CN113178814B (zh) * 2021-04-30 2022-07-22 国网陕西省电力公司安康供电公司 一种带电作业操作方法
CN113363864A (zh) * 2021-05-25 2021-09-07 杭州申昊科技股份有限公司 一种基于目标识别的带电作业机器人

Also Published As

Publication number Publication date
ES2321671T3 (es) 2009-06-09
US20010055525A1 (en) 2001-12-27
TW400272B (en) 2000-08-01
EP0940366B1 (en) 2008-12-10
US6540473B2 (en) 2003-04-01
KR100494235B1 (ko) 2005-06-13
DE69739160D1 (de) 2009-01-22
CA2268959A1 (en) 1998-04-30
CA2268959C (en) 2005-07-26
EP0940366A1 (en) 1999-09-08
EP0940366A4 (en) 2006-11-15
JP4005639B2 (ja) 2007-11-07
KR20000049242A (ko) 2000-07-25
US6325749B1 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
WO1998017577A1 (fr) Vehicule robotise pour tache sur ligne sous tension
CN108683050B (zh) 一种带电作业机器人接引线方法
CN108616076B (zh) 一种带电作业机器人拆装避雷器的方法
US10906193B2 (en) Manufacturing system, method of constructing the manufacturing system, end effector, robot, and working method of robot
CN108616077B (zh) 一种带电作业机器人断引线方法
US10576627B1 (en) System and method for inspection and maintenance of hazardous spaces with track and roller
US9656394B2 (en) Robotic system with reconfigurable end-effector assembly
KR102370305B1 (ko) 항공기 구조체를 위한 이동할 수 있는 자동화 고가 어셈블리
CN106041971A (zh) 具有可重组端部操作器组件的机器人系统
CN108724158B (zh) 爬杆机器人
CN108801069B (zh) 一种火工品自动化装配系统
EP0836694B1 (en) Movable robot for internal inspection of pipes
US11351642B2 (en) Automatic tool head placement and assembly apparatus for a boring machine
US10207412B2 (en) Platform including an industrial robot
CN112928570A (zh) 一种接地线作业工具、挂拆接地线系统及方法
Tsuchihashi et al. Manipulator system for constructing overhead distribution lines
US12199414B1 (en) Automatic bond on to energized power line for remote operations
JPS6017509A (ja) 配電工事用活線ロボツトのア−ム位置決め方法
CN116892372B (zh) 一种自动扶正套管智能机械手
US12187589B2 (en) Boom attachment with rotation about multiple axes
JPH07328967A (ja) マニピュレータ
JPH08126143A (ja) 架空配電工事用ロボット
CN108544215A (zh) 一种基于力反馈主从控制的带电作业机器人避雷器更换方法
JP2025013322A (ja) 一次アームおよび二次工具の組み合わせシステム
JPS63277411A (ja) 活線作業用マニピュレ−タの位置検出方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997944138

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2268959

Country of ref document: CA

Ref country code: CA

Ref document number: 2268959

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019997003346

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09284674

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997944138

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997003346

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997003346

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载