+

WO1998016870A1 - Commande de dispositifs electrochromiques - Google Patents

Commande de dispositifs electrochromiques Download PDF

Info

Publication number
WO1998016870A1
WO1998016870A1 PCT/AU1997/000697 AU9700697W WO9816870A1 WO 1998016870 A1 WO1998016870 A1 WO 1998016870A1 AU 9700697 W AU9700697 W AU 9700697W WO 9816870 A1 WO9816870 A1 WO 9816870A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
current
voltage
charge
charging
Prior art date
Application number
PCT/AU1997/000697
Other languages
English (en)
Inventor
Igor Lvovich Skryabin
Marcus John Bell
Original Assignee
Sustainable Technologies Australia Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sustainable Technologies Australia Limited filed Critical Sustainable Technologies Australia Limited
Priority to AU45447/97A priority Critical patent/AU721514B2/en
Publication of WO1998016870A1 publication Critical patent/WO1998016870A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Definitions

  • This invention relates to apparatus and methods for controlling electrochromic devices. It is particularly, but not exclusively, concerned with devices commonly referred to as 'smart glass' or 'smart windows' used as switchable glazing in buildings. The transparency of such devices can be electrically controlled to regulate the solar-thermal load on a building.
  • the invention also relates to systems comprising electrochromic devices and their associated controls.
  • Electrochromic devices are electrolytic cells which have transparent electrodes, at least one of which changes transparency when it receives or releases ions (via an electrolyte) when external DC power of appropriate polarity is applied to the cell.
  • the reduction and increase of electrode transparency is called 'colouration' and 'bleaching' respectively.
  • An electrode which changes transparency is called the 'working' electrode and an opposing electrode which does not change transparency is called the 'counter' electrode.
  • An electrochromic cell which colours when ions are inserted into the working electrode is said to be 'charged' when coloured and 'discharged' when bleached.
  • the working (W0 3 ) electrode forms the cathode of the cell when it is being charged.
  • the working and counter electrodes are applied onto transparent ionicly-conducting oxide (TCO) electrodes which are formed on the inner faces of a juxtaposed glass panes, the electrodes being applied by sol- gel and/or sputtering techniques, for example.
  • TCO transparent ionicly-conducting oxide
  • a useful figure of merit for electrochromic cells designed for use as smart windows is the 'contrast ratio' of the cell; that is, the ratio of the light-transmittance of the cell when fully discharged (or bleached) to the light-transmittance of the cell when fully charged (or coloured). Contrast ratios of between 3:1 and 6:1 are desirable. Unlike electrochromic devices designed for display purposes, the switching time of a smart window is not critical, switching times of a few minutes being satisfactory.
  • the useful life of a typical electrochromic cell is still less than that desirable for a smart window.
  • the useful life of a cell can be measured, for example, by the number of cycles it takes to reduce its contrast ratio by 50%.
  • This invention is based upon the realisation that the increasing fall-off of the contrast ratio of an electrochromic cell during use indicates that the safe charge capacity of the cell decreases as it is cycled. Thus, even the best prior art controllers will overcharge the device more frequently and more severely as it ages. It is therefore not sufficient to simply limit the total charge delivered according to some preset level. The maximum charge deliverable must be somehow automatically reduced as the cell ages. This desirable feature is characteristic of the present invention. While reduction of the preset charge limit with cycle-count is envisaged, it is not preferred as it cannot take account of the variability of the large-area cells used for smart windows. According to this invention, the charge limit is automatically adjusted by voltage-limiting (in addition to current-limiting) during charging and, preferably, discharging.
  • the present invention is based upon the realisation that, in addition to excessive charge and/or current, an electrochromic cell is damaged by excessive voltage. Indeed, when a constant current source is used to deliver (or remove) a safe total charge, the voltage-drop across an old cell will reach damaging levels because cell resistance increases toward the end of the charge and discharge processes. This over-voltage causes a reduction of charge capacity because it leads, initially, to the loss of the sites in an electrode for the mobile charge carriers (eg, Li + ) and, then, to loss of charge carriers to parasitic side reactions within the electrolyte.
  • the mobile charge carriers eg, Li +
  • the present invention involves the use of a charging and/or discharging procedure for electrochromic cells wherein both the maximum rate of charge addition or removal and the maximum voltage across the cell are limited.
  • the maximum charge which can be delivered to the cell — when new — is desirably also limited.
  • the voltage (and, possibly, the current) limits will desirably be set differently for charging and discharging. Normally, as a new cell commences charging from a fully discharged state, current limitation will be effective and charging will occur at substantially constant current until charging is terminated by the charge-limiter.
  • the invention is, of course, concerned with both circuit means and methods of achieving this effect. From another aspect, the invention is also based upon the realisation that it is not safe practice to attempt to adjust the colour of a cell which has been left partially charged for some time. That is, it is always preferable to start with a fully discharged or a fully charged cell before setting the degree of desired colouration.
  • the fully charged or discharged state of the cell is signalled when the preset cut-off current is reached.
  • a minimum current limit of between 10% and 2%a the maximum safe current flow to be satisfactory.
  • Counter electrodes such as vanadium oxide are, in general, more tolerant to excessive charge than working electrodes such as tungsten oxide.
  • the safe cell-voltage levels will depend upon the particular materials chosen for the electrodes, the electrolyte and the mobile ions.
  • Experimental evidence and theoretical analysis of ion-transfer and associated electrode polarisation/depolarisation phenomena show that there is a stage toward the end of the charging and discharging process where the cell voltage, after plateauing, increases sharply. If the cell voltage is allowed to increase beyond these plateaus, cell damage will occur. While the actual voltages will differ according to the electrode and the electrolyte materials, this general phenomenon sets the desirable limits on the respective discharge and charge voltages for most practical electrochromic cells with application as smart windows.
  • Figure 1 is a diagrammatic representation of an electrochromic window and its associated control circuit formed in accordance with the present invention.
  • Figure 2A is graph depicting the variation of current density and voltage
  • Figure 2B is a graph depicting the variation of charge density and contrast ratio, for a cell of medium age used as a smart window.
  • Figures 3A, 3B and 3C are simplified current and voltage graphs for young, middle-aged and old cells used as smart windows.
  • the 'smart window' system of the chosen example essentially comprises an electrochromic window or cell 10 and a control circuit apparatus 12.
  • Window 10 comprises two closely-spaced panes of glass 14 and 16, the window being intended for mounting in a building so that pane 14 is on the outside and pane 16 is on the inside.
  • TCO transparent conducting oxide — eg, indium tin oxide
  • filmlike conductors 18 and 20 are formed on the opposing faces of panes 14 and 16 (respectively), conductor 18 being in turn coated with W0 3 to form a thin working electrode 22 and conductor 20 in turn being coated with V 2 0 5 to form a thin counter electrode 24.
  • a liquid polymer electrolyte 26 fills the narrow gap between electrodes 22 and 24 so that it forms a thin central layer of the cell.
  • suitable electrolytes are known in the art and available commercially.
  • a peripheral seal 28 is formed between the panes to stop leakage of electrolyte, and electrical leads 30 and 32 are attached to conductors 18 and 20 respectively. Lead 30 is connected to ground and lead 32 carries the output of control circuit apparatus 12.
  • Control apparatus 12 basically comprises a voltage-limiting source 34 and a current- limiting source 36 supplied from a balanced DC power supply 38.
  • Voltage-limiting source 34 and current-limiting source 36 can be manually or automatically switched, via control input 40 from a master controller unit 41 , to generate positive or negative outputs on their respective power output lines 42 and 44, either of which is selectable by a two-position relay 46 having a pole 46a which normally (ie, when not energised) selects current-limiting output line 44.
  • Master controller 41 generates a signal on line 40 indicating whether cell 10 is to be coloured or bleached (charged or discharged).
  • Controller 41 itself may be manually or automatically controlled by an input indicated at 43, the controller having the logic necessary to ensure that, if an input 43 requires cell 10 to be coloured to a certain level, the output on line 40 will initially be such as to effect complete cell discharge before the desired charge is applied. [Cell charge or discharge is determined by the polarity of power-supply 5 outputs 42 and 44.]
  • Relay 46 is connected in series with a double-pole off/on relay switch 48, one pole 48a of which being connected to electrode lead 32 of window cell 10 via a charge- measuring or detecting circuit 50 and a current measuring or sensing circuit 52, the
  • Charge detector 50 is arranged to measure the total amount of charge (by integrating current with respect to time) delivered to cell 10 and to energise relay switch 48 via control line 54 to open switch
  • a voltage measuring or sensing circuit is arranged to measure the electric current flowing to cell 10 and to energise relay switch 48 via control line 56 to open switch 48 when the current falls to a few percent, preferably about 5%, of the maximum current deliverable by source 36 for charging and for discharging.
  • a voltage measuring or sensing circuit is arranged to measure the electric current flowing to cell 10 and to energise relay switch 48 via control line 56 to open switch 48 when the current falls to a few percent, preferably about 5%, of the maximum current deliverable by source 36 for charging and for discharging.
  • 20 58 is connected between lead 32 and ground and is arranged to measure the voltage applied across cell 10 and to energise relay 46, via line 59, to switch from current source 36 to voltage source 34 when the voltage across cell 10 reaches a preset maximum during cell charging or discharging, the voltage delivered by source 34 during charging or discharging being substantially equal to this maximum voltage.
  • the preset values for charge, current and voltage may differ (i) between the charge and discharge cycles (that is, for positive and negative currents and voltages), (ii) according to the area of cell 10 and (iii) according to the electrode and electrolyte materials. It is desirable, therefore, that
  • voltage-limiting supply 34, current-limiting supply 36, charge detector 50, current detector 52 and voltage detector 58 have adjustable presets, indicated by inputs 60, 62, 64, 66 and 68 respectively. Additionally, input 64 which presets the charge to be delivered to window cell 10, and/or input 66 which sets the cut-off current, may be used (by controller 41 or by manual adjustment) to determine the degree of colouration of window 10.
  • presets 60 to 68 are set to the levels appropriate to the cell to be controlled.
  • Power supply 38 is energised to supply regulated and balanced DC to voltage-limiting and current-limiting circuits 34 and 36. Assuming that a signal on input 43 to controller 41 indicates that colourisation is required and that the degree of colourisation is indicated by adjustment of preset 64, controller 41 first effects the total discharge of cell 10.
  • Discharge (bleaching) of the cell then continues under constant voltage conditions until current detector 52 detects that the current has dropped to 5% of the current level to which source 36 is limited, whereupon current sensor 52 opens switch 48 (via line 56) to terminate the discharge process.
  • the fall in voltage across cell 10 is detected by sensor circuit 58 and causes the de-energisation of relay 46 so that it once again selects the output 44 of current source 36.
  • the charge-limiter (circuit 50) is not active during the discharge phase.
  • controller 41 Upon receiving the signal, via line 53, indicating that the discharge process is complete (ie, that switch 48 has opened), controller 41 (which is still programmed to effect cell colouration) applies a signal on line 40 to effect reversal of the polarity of the outputs of voltage and current circuits 34 and 36 and then closes switch 48 (via control line 55) to connect the positive (charging) current flow to cell 10. If the cell is new, current flows through the cell at the maximum preset rate of current-limiting circuit 36 until the charge limit set by circuit 50 is reached when charging is terminated by the opening of switch 48 via a signal on line 54.
  • master controller 41 receives a command via input 43 to bleach cell 10, it again switches supplies 34 and 36 to deliver negative-polarity voltage and current and again energises switch 48 to deliver constant current to cell 10. Again, this continues until voltage detector 58 energises relay 46 to select the voltage-limiting supply 34. Again, the discharge process continues until the discharge falls so low that current detector 50 de-energises switch 48 and disconnects the voltage supply from the cell. This time, however, the logic of master controller 41 does not signal subsequent charging or colourisation. Preferably, whenever the fall of discharge current indicates that the cell is fully bleached, controller 41 re-sets the charge counter 50 to zero.
  • controller 41 reverses the polarity of supplies 34 and 36 ready for discharge and re- closes switch 48, whereupon cell voltage rapidly falls and cell current rapidly increases to its (negative) maximum preset magnitude.
  • the magnitude of the cell voltage has increased to the (negative) limit set by sensor 58 and relay switch 46 is energised to connect the voltage-limited supply 34.
  • the magnitude of the current then falls away until the minimum preset level (for discharge) is reached at about 460 seconds (from the cycle start), whereupon switch 48 is opened.
  • the cell voltage is slightly negative, the current is zero, the charge density is zero and the contrast ratio is about 1.
  • Figures 3A, 3B and 3C show, in a diagrammatic and comparative manner, the voltage and current curves for a new cell which has completed 83 cycles, a middle- aged cell which has completed 4,207 cycles and an old cell which has completed 10,105 cycles.
  • the effective impedance of the old cell (Figure 3C) is so high and the voltage limiter on charging switches in so early that the current (broken line curve) has time to fall to its cut-off level well before the maximum charge has been delivered. While the colouration is certainly not so intense as for the young or middle-aged cells, the cell is not severely damaged by over-charging as would be the case in prior art.
  • the bleaching stage is similarly curtailed because the voltage (solid-line curve) quickly increases to its limit, causing the switch to the voltage-limited source and a rapid fa.ll- off in current until the preset minimum magnitude is reached.
  • the current-limiting source was set at 5 mA for both bleaching and colouration, while the voltage-limiting source was set at -1.5 V for bleaching and +1.8 V for colouration.
  • the minimum current trip level was set at 250 ⁇ A (2% of the 5 mA maximum current); and, the maximum safe charge limit was set at 14 mC/cm 2 .
  • the safe cell voltage (V d ) may be determined by subtracting the safe voltage (V c ) of the counter electrode upon cell discharge from the safe voltage (V of the working electrode upon cell charge and adding the effective voltage drop due to the electrolyte itself, as indicated in the following formula:
  • V d V w - V 0 + (j.p.d) where j is the current density through the electrolyte, p is the resistivity of the electrolyte and d is the distance between the working and counter electrodes across the electrolyte.
  • the working electrode is placed close to a reference electrode (voltage probe) and both are immersed in bulk electrolyte loaded with charge carriers (eg Li + ions).
  • a third metal electrode is also immersed in the electrolyte, but well away from the reference and working electrodes. Charging current is then passed between the working and the third electrode while the voltage of the reference electrode is monitored. It will be found that the voltage sensed by the reference probe will rise rapidly and then plateau before rising again quite steeply. The safe voltage of the working electrode is then the plateau voltage or slightly higher.
  • V c is determined in the same manner, except that the counter electrode is substituted for the working electrode and current flow in the cell is reversed (to effect transfer of the charge carriers to the counter electrode). Once again, the plateau voltage sets the approximate safe voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Cette invention se rapporte à un système de commande pour dispositifs électrochromiques, qui est conçu pour assurer le chargement de ces dispositifs en toute sécurité tandis qu'ils vieillissent. Ce système de commande est destiné à limiter le flux de courant pendant que la tension traversant la cellule est faible, à limiter la tension traversant la cellule à mesure que la résistance de la cellule augmente et à arrêter le flux de courant une fois que celui-ci est tombé à un niveau prédéterminé. Dans une forme de réalisation, ce système de commande (12) comprend des sources de limitation de courant et de limitation de tension séparées (34 et 36), qui peuvent être sélectionnées par un relai (46), lequel est actionné à partir d'un capteur de tension (58). Un capteur de courant (52) limite le régime de charge maximum, tandis qu'un capteur de charge (50) limite la charge totale délivrable au dispositif. A mesure que le dispositif vieillit et à mesure que son impédance interne effective augmente, le limiteur de tension (58) réduit efficacement la charge totale qui peut être délivrée au dispositif.
PCT/AU1997/000697 1996-10-16 1997-10-16 Commande de dispositifs electrochromiques WO1998016870A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU45447/97A AU721514B2 (en) 1996-10-16 1997-10-16 Control of electrochromic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPO3030 1996-10-16
AUPO3030A AUPO303096A0 (en) 1996-10-16 1996-10-16 Control of electrochromic devices

Publications (1)

Publication Number Publication Date
WO1998016870A1 true WO1998016870A1 (fr) 1998-04-23

Family

ID=3797339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1997/000697 WO1998016870A1 (fr) 1996-10-16 1997-10-16 Commande de dispositifs electrochromiques

Country Status (2)

Country Link
AU (1) AUPO303096A0 (fr)
WO (1) WO1998016870A1 (fr)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017704A1 (fr) * 1998-09-21 2000-03-30 Ppg Industries Ohio, Inc. Appareil de commande d'un dispositif electrochromique
US6297900B1 (en) 1997-07-22 2001-10-02 Sustainable Technologies Australia Limited Electrophotochromic smart windows and methods
WO2003036380A1 (fr) * 2001-09-18 2003-05-01 Koninklijke Philips Electronics N.V. Dispositif afficheur a matrice active electrophoretique
WO2005103807A3 (fr) * 2004-04-09 2006-01-12 Saint Gobain Procédé d'alimentation d'un dispositif électrocommandable à propriétés optiques et/ou énergétiques variables
WO2006053774A1 (fr) * 2004-11-19 2006-05-26 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Commande electronique de systemes electrochromes
WO2007089819A1 (fr) * 2006-01-30 2007-08-09 Briancon Alain C Dispositif mobile à sonnerie et habillage personnalisables et service associé
US8213074B1 (en) 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US8254013B2 (en) 2011-03-16 2012-08-28 Soladigm, Inc. Controlling transitions in optically switchable devices
CN101725317B (zh) * 2008-10-31 2013-04-10 比亚迪股份有限公司 一种调光玻璃及其制作方法
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US9348192B2 (en) 2012-04-17 2016-05-24 View, Inc. Controlling transitions in optically switchable devices
WO2016115166A1 (fr) * 2015-01-12 2016-07-21 Kinestral Technologies, Inc. Circuit d'attaque pour une unité en verre électrochrome
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US9523902B2 (en) 2011-10-21 2016-12-20 View, Inc. Mitigating thermal shock in tintable windows
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US9658508B1 (en) 2015-01-12 2017-05-23 Kinestral Technologies, Inc. Manufacturing methods for a transparent conductive oxide on a flexible substrate
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
WO2018009936A3 (fr) * 2016-07-08 2018-07-26 Dirtt Environmental Solutions, Inc. Verre intelligent basse tension
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US10316581B1 (en) 2015-01-12 2019-06-11 Kinestral Technologies, Inc. Building model generation and intelligent light control for smart windows
CN110005327A (zh) * 2019-03-05 2019-07-12 安徽千辉节能玻璃科技有限公司 一种调光玻璃及其制作方法
US10365531B2 (en) 2012-04-13 2019-07-30 View, Inc. Applications for controlling optically switchable devices
US10400448B2 (en) 2015-03-16 2019-09-03 Dirtt Environmental Solutions, Ltd. Reconfigurable wall panels
CN110431615A (zh) * 2016-08-24 2019-11-08 基内斯恰技术股份有限公司 用于电致变色设备的升压电路
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US10809589B2 (en) 2012-04-17 2020-10-20 View, Inc. Controller for optically-switchable windows
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US11030929B2 (en) 2016-04-29 2021-06-08 View, Inc. Calibration of electrical parameters in optically switchable windows
US11054713B2 (en) * 2017-08-01 2021-07-06 Continental Automotive Gmbh Method for controlling an assembly comprising multiple switchable electrochromic individual panes and also control device and motor vehicle
US11073800B2 (en) 2011-03-16 2021-07-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11085184B2 (en) 2014-02-20 2021-08-10 Dirtt Environmental Solutions Ltd. Interface for mounting interchangable components
US11093087B2 (en) 2016-06-10 2021-08-17 Dirtt Environmental Solutions Ltd. Glass substrates with touchscreen technology
USRE48722E1 (en) 2004-08-17 2021-09-07 Dirtt Environmental Solutions Ltd. Integrated reconfigurable wall system
US11175178B2 (en) 2015-10-06 2021-11-16 View, Inc. Adjusting window tint based at least in part on sensed sun radiation
US11237449B2 (en) 2015-10-06 2022-02-01 View, Inc. Controllers for optically-switchable devices
US11240922B2 (en) 2016-06-10 2022-02-01 Dirtt Environmental Solutions Ltd. Wall system with electronic device mounting assembly
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US11454854B2 (en) 2017-04-26 2022-09-27 View, Inc. Displays for tintable windows
US11467463B2 (en) * 2019-01-29 2022-10-11 Halio, Inc. Overcharge-aware driver for electrochromic devices
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US20230229051A1 (en) * 2022-01-18 2023-07-20 Furcifer Inc. Method and device for controlling states of dynamic glass
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11733660B2 (en) 2014-03-05 2023-08-22 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US12061404B2 (en) 2013-06-28 2024-08-13 View, Inc. Controlling transitions in optically switchable devices
US12298644B2 (en) 2011-03-16 2025-05-13 View Operating Corporation Controlling transitions in optically switchable devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017062639A1 (fr) * 2015-10-09 2017-04-13 View, Inc. Commande de transitions dans des dispositifs optiquement commutables

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512637A (en) * 1981-10-29 1985-04-23 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method and means for stepwise charge control of electrochromic layers
EP0445720A2 (fr) * 1990-03-06 1991-09-11 Bayerische Motoren Werke Aktiengesellschaft Procédé et assemblage pour fournir une tension d'alimentation à un système de couches électro-optiques
US5365365A (en) * 1992-04-30 1994-11-15 Saint Gobain Vitrage International Electrochromic system with measurement of charge to be transferred
WO1997028484A1 (fr) * 1996-02-02 1997-08-07 Pilkington Plc Dispositifs electrochromes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512637A (en) * 1981-10-29 1985-04-23 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method and means for stepwise charge control of electrochromic layers
EP0445720A2 (fr) * 1990-03-06 1991-09-11 Bayerische Motoren Werke Aktiengesellschaft Procédé et assemblage pour fournir une tension d'alimentation à un système de couches électro-optiques
US5365365A (en) * 1992-04-30 1994-11-15 Saint Gobain Vitrage International Electrochromic system with measurement of charge to be transferred
WO1997028484A1 (fr) * 1996-02-02 1997-08-07 Pilkington Plc Dispositifs electrochromes

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297900B1 (en) 1997-07-22 2001-10-02 Sustainable Technologies Australia Limited Electrophotochromic smart windows and methods
EP1012661B1 (fr) * 1997-07-22 2005-09-07 Dyesol Ltd Fenetres intelligentes electrophotochromiques
WO2000017704A1 (fr) * 1998-09-21 2000-03-30 Ppg Industries Ohio, Inc. Appareil de commande d'un dispositif electrochromique
WO2003036380A1 (fr) * 2001-09-18 2003-05-01 Koninklijke Philips Electronics N.V. Dispositif afficheur a matrice active electrophoretique
WO2005103807A3 (fr) * 2004-04-09 2006-01-12 Saint Gobain Procédé d'alimentation d'un dispositif électrocommandable à propriétés optiques et/ou énergétiques variables
US7652812B2 (en) 2004-04-09 2010-01-26 Saint-Gobain Glass France Method of powering an electrically-controlled device with variable optical and/or energy properties
USRE48722E1 (en) 2004-08-17 2021-09-07 Dirtt Environmental Solutions Ltd. Integrated reconfigurable wall system
WO2006053774A1 (fr) * 2004-11-19 2006-05-26 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Commande electronique de systemes electrochromes
WO2007089819A1 (fr) * 2006-01-30 2007-08-09 Briancon Alain C Dispositif mobile à sonnerie et habillage personnalisables et service associé
CN101725317B (zh) * 2008-10-31 2013-04-10 比亚迪股份有限公司 一种调光玻璃及其制作方法
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US10268098B2 (en) 2009-12-22 2019-04-23 View, Inc. Onboard controller for multistate windows
US12332533B2 (en) 2009-12-22 2025-06-17 View Operating Corporation Automated commissioning of controllers in a window network
US11016357B2 (en) 2009-12-22 2021-05-25 View, Inc. Self-contained EC IGU
US9128346B2 (en) 2009-12-22 2015-09-08 View, Inc. Onboard controller for multistate windows
US11067869B2 (en) 2009-12-22 2021-07-20 View, Inc. Self-contained EC IGU
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US10001691B2 (en) 2009-12-22 2018-06-19 View, Inc. Onboard controller for multistate windows
US11754902B2 (en) 2009-12-22 2023-09-12 View, Inc. Self-contained EC IGU
US9436055B2 (en) 2009-12-22 2016-09-06 View, Inc. Onboard controller for multistate windows
US9442341B2 (en) 2009-12-22 2016-09-13 View, Inc. Onboard controller for multistate windows
US9946138B2 (en) 2009-12-22 2018-04-17 View, Inc. Onboard controller for multistate windows
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US11668991B2 (en) 2011-03-16 2023-06-06 View, Inc. Controlling transitions in optically switchable devices
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US10908470B2 (en) 2011-03-16 2021-02-02 View, Inc. Multipurpose controller for multistate windows
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US11640096B2 (en) 2011-03-16 2023-05-02 View, Inc. Multipurpose controller for multistate windows
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US11520207B2 (en) 2011-03-16 2022-12-06 View, Inc. Controlling transitions in optically switchable devices
US10712627B2 (en) 2011-03-16 2020-07-14 View, Inc. Controlling transitions in optically switchable devices
US9927674B2 (en) 2011-03-16 2018-03-27 View, Inc. Multipurpose controller for multistate windows
US9482922B2 (en) 2011-03-16 2016-11-01 View, Inc. Multipurpose controller for multistate windows
US10948797B2 (en) 2011-03-16 2021-03-16 View, Inc. Controlling transitions in optically switchable devices
US12117710B2 (en) 2011-03-16 2024-10-15 View, Inc. Driving thin film switchable optical devices
US11073800B2 (en) 2011-03-16 2021-07-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US12153321B2 (en) 2011-03-16 2024-11-26 View, Inc. Controlling transitions in optically switchable devices
US12298644B2 (en) 2011-03-16 2025-05-13 View Operating Corporation Controlling transitions in optically switchable devices
US8213074B1 (en) 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US8864321B2 (en) 2011-03-16 2014-10-21 View, Inc. Controlling transitions in optically switchable devices
US8254013B2 (en) 2011-03-16 2012-08-28 Soladigm, Inc. Controlling transitions in optically switchable devices
US10254618B2 (en) 2011-10-21 2019-04-09 View, Inc. Mitigating thermal shock in tintable windows
US9523902B2 (en) 2011-10-21 2016-12-20 View, Inc. Mitigating thermal shock in tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US11735183B2 (en) 2012-04-13 2023-08-22 View, Inc. Controlling optically-switchable devices
US11687045B2 (en) 2012-04-13 2023-06-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US10365531B2 (en) 2012-04-13 2019-07-30 View, Inc. Applications for controlling optically switchable devices
US11592724B2 (en) 2012-04-17 2023-02-28 View, Inc. Driving thin film switchable optical devices
US9423664B2 (en) 2012-04-17 2016-08-23 View, Inc. Controlling transitions in optically switchable devices
US10520785B2 (en) 2012-04-17 2019-12-31 View, Inc. Driving thin film switchable optical devices
US10520784B2 (en) 2012-04-17 2019-12-31 View, Inc. Controlling transitions in optically switchable devices
US9348192B2 (en) 2012-04-17 2016-05-24 View, Inc. Controlling transitions in optically switchable devices
US11796886B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US9921450B2 (en) 2012-04-17 2018-03-20 View, Inc. Driving thin film switchable optical devices
US11927867B2 (en) 2012-04-17 2024-03-12 View, Inc. Driving thin film switchable optical devices
US10809589B2 (en) 2012-04-17 2020-10-20 View, Inc. Controller for optically-switchable windows
US10895796B2 (en) 2012-04-17 2021-01-19 View, Inc. Driving thin film switchable optical devices
US9081247B1 (en) 2012-04-17 2015-07-14 View, Inc. Driving thin film switchable optical devices
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US9454056B2 (en) 2012-04-17 2016-09-27 View, Inc. Driving thin film switchable optical devices
US9477131B2 (en) 2012-04-17 2016-10-25 View, Inc. Driving thin film switchable optical devices
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US11899331B2 (en) 2013-02-21 2024-02-13 View, Inc. Control method for tintable windows
US10802372B2 (en) 2013-02-21 2020-10-13 View, Inc. Control method for tintable windows
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US11940705B2 (en) 2013-02-21 2024-03-26 View, Inc. Control method for tintable windows
US12210261B2 (en) 2013-02-21 2025-01-28 View, Inc. Control method for tintable windows
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US10539854B2 (en) 2013-02-21 2020-01-21 View, Inc. Control method for tintable windows
US11126057B2 (en) 2013-02-21 2021-09-21 View, Inc. Control method for tintable windows
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US12326640B2 (en) 2013-06-28 2025-06-10 View Operating Corporation Controlling transitions in optically switchable devices
US10120258B2 (en) 2013-06-28 2018-11-06 View, Inc. Controlling transitions in optically switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US11829045B2 (en) 2013-06-28 2023-11-28 View, Inc. Controlling transitions in optically switchable devices
US10514582B2 (en) 2013-06-28 2019-12-24 View, Inc. Controlling transitions in optically switchable devices
US11835834B2 (en) 2013-06-28 2023-12-05 View, Inc. Controlling transitions in optically switchable devices
US10969646B2 (en) 2013-06-28 2021-04-06 View, Inc. Controlling transitions in optically switchable devices
US10401702B2 (en) 2013-06-28 2019-09-03 View, Inc. Controlling transitions in optically switchable devices
US12061404B2 (en) 2013-06-28 2024-08-13 View, Inc. Controlling transitions in optically switchable devices
US10451950B2 (en) 2013-06-28 2019-10-22 View, Inc. Controlling transitions in optically switchable devices
US11112674B2 (en) 2013-06-28 2021-09-07 View, Inc. Controlling transitions in optically switchable devices
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US11579509B2 (en) 2013-06-28 2023-02-14 View, Inc. Controlling transitions in optically switchable devices
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
US11085184B2 (en) 2014-02-20 2021-08-10 Dirtt Environmental Solutions Ltd. Interface for mounting interchangable components
US12130597B2 (en) 2014-03-05 2024-10-29 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11733660B2 (en) 2014-03-05 2023-08-22 View, Inc. Monitoring sites containing switchable optical devices and controllers
US9658508B1 (en) 2015-01-12 2017-05-23 Kinestral Technologies, Inc. Manufacturing methods for a transparent conductive oxide on a flexible substrate
US9563097B2 (en) 2015-01-12 2017-02-07 Kinestral Technologies, Inc. Driver for electrochromic glass unit
WO2016115166A1 (fr) * 2015-01-12 2016-07-21 Kinestral Technologies, Inc. Circuit d'attaque pour une unité en verre électrochrome
US10316581B1 (en) 2015-01-12 2019-06-11 Kinestral Technologies, Inc. Building model generation and intelligent light control for smart windows
US10400448B2 (en) 2015-03-16 2019-09-03 Dirtt Environmental Solutions, Ltd. Reconfigurable wall panels
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11175178B2 (en) 2015-10-06 2021-11-16 View, Inc. Adjusting window tint based at least in part on sensed sun radiation
US11709409B2 (en) 2015-10-06 2023-07-25 View, Inc. Controllers for optically-switchable devices
US10809587B2 (en) 2015-10-06 2020-10-20 View, Inc. Controllers for optically-switchable devices
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US12105395B2 (en) 2015-10-06 2024-10-01 View, Inc. Controllers for optically-switchable devices
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US11237449B2 (en) 2015-10-06 2022-02-01 View, Inc. Controllers for optically-switchable devices
US11300848B2 (en) 2015-10-06 2022-04-12 View, Inc. Controllers for optically-switchable devices
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US11030929B2 (en) 2016-04-29 2021-06-08 View, Inc. Calibration of electrical parameters in optically switchable windows
US11482147B2 (en) 2016-04-29 2022-10-25 View, Inc. Calibration of electrical parameters in optically switchable windows
US12073752B2 (en) 2016-04-29 2024-08-27 View, Inc. Calibration of electrical parameters in optically switchable windows
US11093087B2 (en) 2016-06-10 2021-08-17 Dirtt Environmental Solutions Ltd. Glass substrates with touchscreen technology
US11240922B2 (en) 2016-06-10 2022-02-01 Dirtt Environmental Solutions Ltd. Wall system with electronic device mounting assembly
US11550178B2 (en) 2016-07-08 2023-01-10 Dirtt Environmental Solutions Inc. Low-voltage smart glass
WO2018009936A3 (fr) * 2016-07-08 2018-07-26 Dirtt Environmental Solutions, Inc. Verre intelligent basse tension
CN110431615A (zh) * 2016-08-24 2019-11-08 基内斯恰技术股份有限公司 用于电致变色设备的升压电路
US11493819B2 (en) 2017-04-26 2022-11-08 View, Inc. Displays for tintable windows
US11513412B2 (en) 2017-04-26 2022-11-29 View, Inc. Displays for tintable windows
US11467464B2 (en) 2017-04-26 2022-10-11 View, Inc. Displays for tintable windows
US11454854B2 (en) 2017-04-26 2022-09-27 View, Inc. Displays for tintable windows
US11054713B2 (en) * 2017-08-01 2021-07-06 Continental Automotive Gmbh Method for controlling an assembly comprising multiple switchable electrochromic individual panes and also control device and motor vehicle
US11467463B2 (en) * 2019-01-29 2022-10-11 Halio, Inc. Overcharge-aware driver for electrochromic devices
CN110005327A (zh) * 2019-03-05 2019-07-12 安徽千辉节能玻璃科技有限公司 一种调光玻璃及其制作方法
US11882111B2 (en) 2020-03-26 2024-01-23 View, Inc. Access and messaging in a multi client network
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US20230229051A1 (en) * 2022-01-18 2023-07-20 Furcifer Inc. Method and device for controlling states of dynamic glass

Also Published As

Publication number Publication date
AUPO303096A0 (en) 1996-11-14

Similar Documents

Publication Publication Date Title
WO1998016870A1 (fr) Commande de dispositifs electrochromiques
JP7427288B2 (ja) エレクトロクロミックデバイスの制御方法、装置、デバイス及び記憶媒体
EP2161615B1 (fr) Processus et appareil de commutation des dispositifs électrochromiques à grande surface
AU2009208112B2 (en) Process and apparatus for switching large-area electrochromic devices
US5694023A (en) Control and termination of a battery charging process
US6366056B1 (en) Battery charger for lithium based batteries
US5747969A (en) Method of charging a rechargeable battery with pulses of a predetermined amount of charge
KR100280308B1 (ko) 배터리의 충전, 융해 및 포맷 방법 및 장치
EP1920517B1 (fr) Procede et appareil pour faire fonctionner une batterie afin d'eviter des dommages et de maximiser l'utilisation de la capacite de la batterie
KR20180132040A (ko) 일렉트로크로믹 디바이스를 제어하기 위한 방법 및 일렉트로크로믹 디바이스
JP2001511542A (ja) エレクトロフォトクロミックスマートウィンドウおよび方法
EP0691038A1 (fr) Procede et appareil utilises pour recharger des accumulateurs
AU710799B2 (en) Control and termination of a battery charging process
EP0879440A1 (fr) Dispositifs electrochromes
AU721514B2 (en) Control of electrochromic devices
GB2086674A (en) Battery charging apparatus
JP3435613B2 (ja) 組電池の充電装置
RU2655657C1 (ru) Способ и контроллер управления электрохромными светомодуляторами с тонкопленочными электрохромными и/или заряд-буферными слоями
JP3455979B2 (ja) 2次電池の電極間ショート検出方法及び検出装置
MXPA98000293A (en) Control and termination of the batching process
KR940010445A (ko) 납-산 배터리의 충전 최적화 방법 및 상호작용하는 충전기
JPH08186939A (ja) 電源装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载