WO1998016590A1 - Composition d'encre durcissant sous l'effet de radiations et son utilisation - Google Patents
Composition d'encre durcissant sous l'effet de radiations et son utilisation Download PDFInfo
- Publication number
- WO1998016590A1 WO1998016590A1 PCT/GB1997/002744 GB9702744W WO9816590A1 WO 1998016590 A1 WO1998016590 A1 WO 1998016590A1 GB 9702744 W GB9702744 W GB 9702744W WO 9816590 A1 WO9816590 A1 WO 9816590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- radiation
- actinic radiation
- ink
- exposure
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 84
- 230000005855 radiation Effects 0.000 title claims abstract description 68
- 239000000178 monomer Substances 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 15
- 238000004040 coloring Methods 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 230000008859 change Effects 0.000 claims abstract description 6
- 230000009471 action Effects 0.000 claims abstract description 3
- 239000000975 dye Substances 0.000 claims description 36
- -1 aromatic hydroxy compound Chemical class 0.000 claims description 11
- 239000003999 initiator Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 150000002148 esters Chemical class 0.000 claims description 5
- 125000005626 carbonium group Chemical group 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- 239000012949 free radical photoinitiator Substances 0.000 claims description 2
- 239000000976 ink Substances 0.000 description 64
- 239000002585 base Substances 0.000 description 19
- 238000009472 formulation Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000000049 pigment Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- IWRVPXDHSLTIOC-UHFFFAOYSA-N 4-phenyldiazenylbenzene-1,3-diamine Chemical compound NC1=CC(N)=CC=C1N=NC1=CC=CC=C1 IWRVPXDHSLTIOC-UHFFFAOYSA-N 0.000 description 4
- 239000000981 basic dye Substances 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 3
- DZNJMLVCIZGWSC-UHFFFAOYSA-N 3',6'-bis(diethylamino)spiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(N(CC)CC)C=C1OC1=CC(N(CC)CC)=CC=C21 DZNJMLVCIZGWSC-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- WNDULEJVCPEASN-UHFFFAOYSA-N (4-anilinonaphthalen-1-yl)-bis[4-(dimethylamino)phenyl]methanol Chemical compound C1=CC(N(C)C)=CC=C1C(O)(C=1C2=CC=CC=C2C(NC=2C=CC=CC=2)=CC=1)C1=CC=C(N(C)C)C=C1 WNDULEJVCPEASN-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- IPSIPYMEZZPCPY-UHFFFAOYSA-N new fuchsin Chemical compound [Cl-].C1=CC(=[NH2+])C(C)=CC1=C(C=1C=C(C)C(N)=CC=1)C1=CC=C(N)C(C)=C1 IPSIPYMEZZPCPY-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- AODQPPLFAXTBJS-UHFFFAOYSA-M victoria blue 4R Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C(C=C1)C2=CC=CC=C2C1=[N+](C)C1=CC=CC=C1 AODQPPLFAXTBJS-UHFFFAOYSA-M 0.000 description 2
- MCTQNEBFZMBRSQ-UHFFFAOYSA-N (3-amino-4-phenyldiazenylphenyl)azanium;chloride Chemical compound Cl.NC1=CC(N)=CC=C1N=NC1=CC=CC=C1 MCTQNEBFZMBRSQ-UHFFFAOYSA-N 0.000 description 1
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- IEORSVTYLWZQJQ-UHFFFAOYSA-N 2-(2-nonylphenoxy)ethanol Chemical compound CCCCCCCCCC1=CC=CC=C1OCCO IEORSVTYLWZQJQ-UHFFFAOYSA-N 0.000 description 1
- SFRDXVJWXWOTEW-UHFFFAOYSA-N 2-(hydroxymethyl)propane-1,3-diol Chemical class OCC(CO)CO SFRDXVJWXWOTEW-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- JMWGZSWSTCGVLX-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;2-methylprop-2-enoic acid Chemical class CC(=C)C(O)=O.CC(=C)C(O)=O.CC(=C)C(O)=O.CCC(CO)(CO)CO JMWGZSWSTCGVLX-UHFFFAOYSA-N 0.000 description 1
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 description 1
- 229940044192 2-hydroxyethyl methacrylate Drugs 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- AMPCGOAFZFKBGH-UHFFFAOYSA-N 4-[[4-(dimethylamino)phenyl]-(4-methyliminocyclohexa-2,5-dien-1-ylidene)methyl]-n,n-dimethylaniline Chemical compound C1=CC(=NC)C=CC1=C(C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 AMPCGOAFZFKBGH-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- PCDHSSHKDZYLLI-UHFFFAOYSA-N butan-1-one Chemical compound CCC[C]=O PCDHSSHKDZYLLI-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical class C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical class [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- LLWJPGAKXJBKKA-UHFFFAOYSA-N victoria blue B Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C(C=C1)C2=CC=CC=C2C1=[NH+]C1=CC=CC=C1 LLWJPGAKXJBKKA-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/36—Inkjet printing inks based on non-aqueous solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/101—Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
Definitions
- the present invention relates to a composition and to a method for using that composition, notably to an ink composition which is curable under ultra violet radiation and to a method for using that ink.
- Inks for use in an ink jet printer are predominantly formulated as solvent based or water based compositions containing a dye or pigment in a fluid carrier together with a film forming resin which provides a solid matrix containing the dye or pigment when the ink droplets dry after they have been printed.
- These compositions must meet stringent viscosity and other requirements in order that they should be capable of being ejected as discrete droplets through the nozzle of the printer or of being formed into uniformly sized and spaced apart droplets by the application of pressure or vibration pulses to a jet of the ink.
- the need to use low viscosity inks results in compositions which contain low amounts of non-volatile materials resulting in poor mechanical and chemical resistance properties.
- the formulations of the invention do not require the use of ingredients which are selected according to their UV absorption characteristics so as to enable radiation at selected wavelengths to pass, thus allowing greater flexibility in the selection of ingredients for the formulations.
- the formulations of the invention usually contain a reduced amount of polymerisation initiators as compared with prior art compositions. Since such initiators are often hazardous chemicals, the formulations of the invention are usually safer and more environmentally acceptable than prior art formulations.
- the present invention provides an ink composition
- a colouring agent dissolved or dispersed in a fluid carrier medium, characterised in that: a. the fluid carrier medium is provided at least in part by one or more polymerisable monomers or oligomers which are capable of being polymerised under the action of actinic radiation; and b. the colouring agent is initially translucent to the actinic radiation, but undergoes a change upon exposure of the composition to the actinic radiation to form a coloured form of the colouring agent .
- the composition preferably also contains one or more polymerisation initiators, notably free radical photo- initiators.
- a colouring agent which is initially translucent to the actinic radiation
- substantially the full energy of the radiation can penetrate the film of the fluid carrier laid down by the printer so that initiation of the polymerisation of the monomer or oligomer is more rapid and complete than where a coloured dyestuff or pigment is used which absorbs the radiation and can prevent polymerisation taking place in an acceptable time.
- a translucent colouring agent also enables radiation of a broad wavelength band width to be used, since it is no longer necessary to match the wavelength of the radiation to the materials being used so as to minimise absorption as required in prior proposals.
- the polymerisable monomer or oligomer for present use can be selected from a wide range of UV curable materials, that is materials which absorb UV or other actinic radiation.
- the invention can be applied to inks for use in a wide range of printing processes. However, it is of especial application with ink jet printers.
- the monomer or oligomer therefore, preferably has an initial viscosity of less than 25 Cps at 25°C so as to be suitable for use in a wide range of conventional ink jet printers.
- the invention will be described hereinafter in terms of ink compositions for use with ink jet printers.
- the monomer or oligomer will contain ethylenic unsaturation to provide the reactive groupings at which polymerisation takes place.
- preferred polymerisable ingredients for present use are acrylic or methacrylic acids or esters thereof.
- the nature of the ester group will also affect the speed of polymerisation and the hardness of the solid polymer produced. The optimum ester grouping can be determined by simple tests. However, we prefer to use esters containing a cyclo-aliphatic moiety, for example based upon a five, six, seven or eight membered ring carrying one or more saturated or unsaturated alkyl substituents .
- suitable polymerisable ingredients for present use include the monomers octyl acrylate, decyl acrylate, glycidyl methacrylate, N-vinyl pyrrolidone, phenoxyethyl acrylate, nonylphenol ethoxylate acrylate, ethyleneglycol- methacrylate, isobornyl acrylate, ethylhexyl acrylate, 2- hydroxyethyl methacrylate, oxyethylated phenol acrylate, lauryl acrylate, butanediol monoacrylate, b-carboxyethyl acrylate, isobutyl acrylate, polypropylene glycol monomethacrylate and mixtures or oligomers thereof.
- cycloaliphatic esters of acrylic acid notably isobornyl acrylate
- mixtures of monomers or oligomers may be used to produce solid co-polymers.
- polyfunctional polymerisable monomers and/or oligomers may be desirable to incorporate one or more polyfunctional polymerisable monomers and/or oligomers, since we have found that the presence of such polyfunctional materials aids rapid curing of the liquid carrier and also affects the properties, for example the chemical stability, hardness and brittleness, of the cured polymer.
- polyfunctional monomers include di-, tri- or tetra-functional polmerisable monomers, for example 1 , 6-hexanediol di- (meth) acrylate, tetraethylene glycol diacrylate, tripropylene glycol diacrylate, butanediol diacrylate, polyethylene glycol diacrylates, ethoxylated trimethylolpropane triacrylate and mixtures or oligomers thereof.
- the polymerisable materials for present use contain a total of from 90 to 100% by weight of the monofunctional and difunctional monomers, and up to 20% by weight of the tri- or tetrafunctional monomers and, for convenience, the term polymerisable monomers will be used herein to include such mixtures of mono- and poly- functional monomers and oligomers .
- the polymerisable monomers will usually provide all the fluid carrier for the other components of the ink.
- compositions may contain up to 10% by weight of a suitable organic solvent or co-solvent for the polymerisable monomers.
- the monomers undergo polymerisation upon exposure to UV radiation.
- polymerisation photo- initiators include, for example 2, 2-dimethoxy-l, 2-diphenylethan-l- on; 2-hydroxy-2-methyl- 1-phenyl-propan-l-one; benzyl-2-dimethylamino-l- (4-morpho- linophenyl) butan-1-one; 1-hydroxy-cyclohexyl-phenyl ketone; and mixtures thereof.
- the polymerisation initiator can be present in an amount of up to 10% by weight of the polymerisable monomer in the ink composition and the optimum amount can be determined by simple test.
- the colour forming component in the ink composition of the invention is a material which is initially substantially translucent to the UV radiation but which undergoes a change in its form upon exposure of the composition to UV radiation to generate a coloured image which is less translucent to the radiation.
- the colouring agent can be one which itself undergoes a change upon exposure to the actinic radiation to convert from a translucent form to a coloured or opaque form, for example by the loss of hydroxyl groups from a base form of a C I Basic dyestuff.
- the ink composition can contain a material which generates a component upon exposure to actinic radiation which component interacts with the colouring agent to convert the colouring agent to its coloured or opaque form, for example by the generation of hydrogen ions from an aromatic hydroxy compound which is sensitive to actinic radiation, the hydrogen ions then interacting with hydroxyl groups carried, for example, by the base form of the C I Basic dyestuff to develop a coloured form of the dyestuff.
- the colour forming component is a dyestuff which is soluble in the polymerisable monomer. Suitable dyestuffs include C I Basic dyes in the carbonium base form of the dye .
- Such base forms exhibit low absorbency in the UV and/or visual light spectrum, but undergo transformation to revert to the coloured Colour Index (CI) Basic form of the dye upon exposure to UV light.
- CI Colour Index
- Typical of the C I Basic dyes which form carbonium base forms are Basic Orange 2 (base form Solvent Orange 3) , Basic Violet 2 (base form Solvent Violet 8) , Basic Blue 8 (base form Solvent Blue 2) , Basic Blue 26 (base form Solvent Blue 4) and Basic Violet 10 (base form Solvent Red 49) .
- the carbonium base forms of such dyestuffs can readily be produced by treating commercially available C I Basic dyes with an organic or inorganic alkali or base and extracting excess alkali or base from such a treated dye by water washing.
- the alkali treated C I Basic dyes are often available commercially, for example from BASF under the Trade Mark Neptun, and can be used in the present invention after extraction of excess alkali.
- the colour forming component is typically present in from 0.1 to 3% by weight of the ink composition.
- the coloured form of the dye may be formed upon exposure to actinic radiation.
- materials which release hydrogen ions upon exposure to actinic radiation so as to provide a source of hydrogen ions in the composition which aid conversion of the base form of the dye to the coloured Basic form.
- materials include aromatic hydroxy compounds such as phenols or naphthols .
- Such materials are used in sufficient amount to provide at least the stoichiometric amount of hydrogen ions to cause conversion of the base form to the coloured form. It will usually be preferred to use an excess of from 10 to 100% of that stoichiometric amount. The optimum amount will depend upon the nature of the material, the nature of the dyestuff and the radiation which is used to cure the composition and can readily be determined by simple trial .
- the ink composition may contain other ingredients to enhance its properties for use in an ink jet printer.
- the ink desirably contains sufficient of an ionic material to render the ink conductive so that it can accept a charge.
- Typical salts which can be incorporated in the ink include ammonium, organic base or alkali-metal salts of organic acids, for example ammonium and/or potassium thiocyanates and lithium nitrate .
- compositions of the invention are made by mixing together the necessary ingredients using any suitable technique, for example stirring.
- the ink compositions of the invention have physical properties similar to conventional solvent or water based inks and can be applied to a wide range of substrates using conventional ink jet printers.
- the substrate can be a porous or non-porous material, for example paper, glass or metal.
- the monomer may interact with a plastic substrate to enhance the adhesion of the printed image to the substrate.
- the printed images are cured by exposing them to actinic radiation.
- the actinic radiation is preferably provided by UV light, notably TJV-A, B or C at wavelengths in the region of from 200 to 500 nm.
- a commercially available source of such UV light for example an H-type high pressure mercury vapour lamp, can be used which emits a broad band width of radiation and it is not necessary to use a narrow band width UV light source.
- the light source emits UV light at a power of from 20 to 150 watt/cm and the beam of such UV light can either illuminate the whole of the image which is printed, or can illuminate only a portion of the image.
- the substrate carrying the printed image can travel past a stationary source of the illumination, or the source of the illumination can traverse the area of the substrate to which the printed image has been supplied.
- a plurality of UV light sources can be used to achieve the illumination of the whole of the printed image.
- An ink composition was prepared by mixing together 85 parts of isobornyl acrylate monomer (IBOA), 5 parts of ethoxylated trimethylolmethane (ETMP) as a trifunctional monomer to assist curing of the composition, and 10 parts of 2-hydroxy-2-methyl-l-phenyl-propan-l-one as the free radical polymerisation photoinitiator to provide a colourless, clear fluid carrier medium having a viscosity of 9 Cps at 25°C.
- IBOA isobornyl acrylate monomer
- ETMP ethoxylated trimethylolmethane
- the dyestuff C I Basic Violet 2 was treated with aqueous sodium hydroxide to convert the dyestuff into its base form.
- the base form was extracted with water to remove excess alkali and 5 parts of the base form of the dye were mixed with 98.5 parts of the carrier medium prepared above to give a blue tinged ink composition.
- the ink composition was printed through the nozzle of a drop on demand ink jet printer to form a series of images on a range of plastic, glass and metal sheet substrates.
- the printed images were well defined, but clear and thus not readily perceived.
- the printed substrates were passed under a mercury vapour lamp operating at 100 Watt/cm and 300 to 450nm wavelength to give a total exposure time to the UV radiation of 0.5 seconds.
- This UV radiation caused the printed image to cure and form hard droplet images with an intense blue colour.
- the colour tended to develop in intensity upon standing for some 30 to 60 minutes after exposure to the
- Example 2 The process of Example 1 was repeated, except that 1.5 parts of the base form of the dye were mixed with 95 parts of the carrier medium and 2.5 parts of naphtha-2-ol , which releases hydrogen ions upon exposure to UV radiation. An intense blue colour developed immediately after exposure to the UV radiation and the droplets had the same physical properties as in Example 1.
- Example 3 An intense blue colour developed immediately after exposure to the UV radiation and the droplets had the same physical properties as in Example 1.
- Example 2 The process of Example 2 was repeated using a number of different dyes in an amount of 1.2% of the ink composition.
- the results of these tests were as follows:
- the initial ink composition had a viscosity of 12 Cps and a slight pink colour. After exposure to the UV radiation for 0.5 seconds, the printed droplets were hard and had a deep red colour.
- the ink composition had a viscosity of 10 Cps and an initial slightly blue colour. After exposure for 0.5 seconds to the UV radiation, the droplets were hard and had a navy blue colour.
- the ink composition had a viscosity of 11 Cps and an initial slightly green colour. After exposure for 0.5 seconds to the UV radiation, the droplets were hard and had a bright green colour.
- the ink composition had a viscosity of
- the ink composition had a viscosity of 11 and an initial dark red colour. Although the droplets cured to give hard droplets after 1 second exposure to the UV radiation, the droplets had lost all colour.
- Basic Blue 8 dye was used, the initial ink was dark blue but failed to cure, even after 10 minutes exposure to the UV radiation.
- Example 1 The process of Example 1 was repeated except that 2,2- dimethoxy-1, 2-diphenylethan-l-one was used as the polymerisation initiator.
- the initial ink had a viscosity of 14 Cps and satisfactory cured droplets as in Example 1 were produced after 1 second exposure to the UV radiation.
- Example 4 The process of Example 4 was repeated except that the carrier medium contained 90 parts of the monomer, 5 parts of the trifunctional oligomer and 5 parts of the polymerisation initiator to give a colourless ink composition having a viscosity of 13 Cps.
- the cured droplets after 1 second exposure to the UV radiation were as in Example 1.
- Example 6 The process of Example 5 was repeated except that the amount of trifunctional oligomer was raised to 10 parts. Satisfactory printed droplets were achieved after less than 0.1 seconds exposure to the UV radiation. However, the viscosity of the ink composition was 52 Cps.
- Example 5 The process of Example 5 was repeated except that the monomer and polyfunctional oligomer were as set out below.
- the cured droplets had good water resistance and very good hardness.
- the mixtures tested were: IBOA alone or in 1:1 admixture with N-vinyl pyrrolidone and the oligomer was glycerol triacryl- ate; and
- Glycidyl methacrylate as the sole monomer with ethoxylated trimethylolpropane trimethacrylate (ETMPTA) as the oligomer.
- EMPTA ethoxylated trimethylolpropane trimethacrylate
- Curing within from 1 to 5 seconds was achieved using a mercury vapour lamp operating at 20 Watt/cm.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU47853/97A AU4785397A (en) | 1996-10-16 | 1997-10-16 | Radiation curable ink composition and its use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9621533A GB2318356B (en) | 1996-10-16 | 1996-10-16 | Composition and method |
GB9621533.0 | 1996-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998016590A1 true WO1998016590A1 (fr) | 1998-04-23 |
Family
ID=10801489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1997/002744 WO1998016590A1 (fr) | 1996-10-16 | 1997-10-16 | Composition d'encre durcissant sous l'effet de radiations et son utilisation |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU4785397A (fr) |
GB (1) | GB2318356B (fr) |
WO (1) | WO1998016590A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999029787A3 (fr) * | 1997-12-05 | 1999-07-22 | Xaar Technology Ltd | Compositions d'encre pour l'impression a jet d'encre sous cuisson electronique |
US6558753B1 (en) | 2000-11-09 | 2003-05-06 | 3M Innovative Properties Company | Inks and other compositions incorporating limited quantities of solvent advantageously used in ink jetting applications |
US6630242B1 (en) | 1999-07-30 | 2003-10-07 | Dsm N.V. | Radiation-curable composition with simultaneous color formation during cure |
US7423072B2 (en) | 2000-11-09 | 2008-09-09 | 3M Innovative Properties Company | Weather resistant, ink jettable, radiation curable, fluid compositions particularly suitable for outdoor applications |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001288387A (ja) * | 2000-04-05 | 2001-10-16 | Sony Chem Corp | 電離放射線硬化型インクジェット用インク及びその印画物 |
FR2828203B1 (fr) * | 2001-08-01 | 2005-07-29 | Armor | Encre pigmentaire liquide sans solvant, pour impression par jet d'encre |
JP5236171B2 (ja) * | 2006-02-27 | 2013-07-17 | 富士フイルム株式会社 | インク組成物、インクジェット記録方法、印刷物、及び、平版印刷版の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2192006A (en) * | 1986-06-27 | 1987-12-31 | Plessey Co Plc | Irreversible photochromic markings |
EP0540203A1 (fr) * | 1991-10-30 | 1993-05-05 | Domino Printing Sciences Plc | Encre non-conductrice |
JPH05262996A (ja) * | 1992-03-18 | 1993-10-12 | Mitsui Toatsu Chem Inc | ソルダーレジスト用色素及びソルダーレジストインキ |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4931220A (en) * | 1987-11-24 | 1990-06-05 | Ppg Industries, Inc. | Organic photochromic pigment particulates |
GB9014299D0 (en) * | 1990-06-27 | 1990-08-15 | Domino Printing Sciences Plc | Ink composition |
-
1996
- 1996-10-16 GB GB9621533A patent/GB2318356B/en not_active Expired - Fee Related
-
1997
- 1997-10-16 WO PCT/GB1997/002744 patent/WO1998016590A1/fr active Application Filing
- 1997-10-16 AU AU47853/97A patent/AU4785397A/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2192006A (en) * | 1986-06-27 | 1987-12-31 | Plessey Co Plc | Irreversible photochromic markings |
WO1988000223A1 (fr) * | 1986-06-27 | 1988-01-14 | The Plessey Company Plc | Marquages photochromiques irreversibles |
EP0540203A1 (fr) * | 1991-10-30 | 1993-05-05 | Domino Printing Sciences Plc | Encre non-conductrice |
JPH05262996A (ja) * | 1992-03-18 | 1993-10-12 | Mitsui Toatsu Chem Inc | ソルダーレジスト用色素及びソルダーレジストインキ |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 018, no. 040 (C - 1155) 21 January 1994 (1994-01-21) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999029787A3 (fr) * | 1997-12-05 | 1999-07-22 | Xaar Technology Ltd | Compositions d'encre pour l'impression a jet d'encre sous cuisson electronique |
US6593390B1 (en) | 1997-12-05 | 2003-07-15 | Xaar Technology Limited | Radiation curable ink jet ink compositions |
US6630242B1 (en) | 1999-07-30 | 2003-10-07 | Dsm N.V. | Radiation-curable composition with simultaneous color formation during cure |
US7122247B2 (en) | 1999-07-30 | 2006-10-17 | Dsm Ip Assets B.V. | Radiation-curable composition with simultaneous color formation during cure |
US6558753B1 (en) | 2000-11-09 | 2003-05-06 | 3M Innovative Properties Company | Inks and other compositions incorporating limited quantities of solvent advantageously used in ink jetting applications |
US6730714B2 (en) | 2000-11-09 | 2004-05-04 | 3M Innovative Properties Company | Inks and other compositions incorporating limited quantities of solvent advantageously used in ink jetting applications |
US7423072B2 (en) | 2000-11-09 | 2008-09-09 | 3M Innovative Properties Company | Weather resistant, ink jettable, radiation curable, fluid compositions particularly suitable for outdoor applications |
US7943681B2 (en) | 2000-11-09 | 2011-05-17 | 3M Innovative Properties Company | Weather resistant, ink jettable, radiation curable, fluid compositions particularly suitable for outdoor applications |
Also Published As
Publication number | Publication date |
---|---|
GB2318356B (en) | 1999-03-10 |
AU4785397A (en) | 1998-05-11 |
GB2318356A (en) | 1998-04-22 |
GB9621533D0 (en) | 1996-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI468473B (zh) | 具有經改良附著性之紫外線可固化墨水 | |
US5275646A (en) | Ink composition | |
EP0465039B1 (fr) | Composition d'encre | |
JP6014626B2 (ja) | プリント用インク | |
EP0540203B1 (fr) | Encre non-conductrice | |
ES2488851T3 (es) | Sistemas híbridos curables por energía basados en agua con propiedades mejoradas | |
CN107513309B (zh) | 三维成型用光固化透明墨水组合物及其制备方法和应用 | |
CN102083923A (zh) | 紫外可固化喷墨记录油墨和彩色图像形成装置 | |
CN100471919C (zh) | 一种紫外光固化皱纹油墨 | |
WO1998016590A1 (fr) | Composition d'encre durcissant sous l'effet de radiations et son utilisation | |
EP3294818B1 (fr) | Procédé d'impression | |
US4925727A (en) | Curable temperature indicating composition | |
CA3047456C (fr) | Composition d`encre d`imprimerie offset traitable aux del | |
JP2002275403A (ja) | インク組成物およびその製造方法、インクジェット記録装置、記録方法、並びに記録媒体 | |
GB2520595A (en) | Printing method | |
EP0116584B1 (fr) | Composition thermochrome | |
JP7406364B2 (ja) | 紫外線硬化型インクジェットインクセットおよびプリント物の製造方法 | |
GB2554817A (en) | Method of printing | |
GB2501039B (en) | Printing ink | |
WO2009053751A1 (fr) | Encre d'impression durcissable par rayonnement | |
CA1195791A (fr) | Encres d'impression radiodurcissables anticroissances pour le revetement pelliculaire de matiere thermomoussable | |
JP2021105156A (ja) | 活性エネルギー線硬化型組成物、インクセット、組成物収容容器、並びに像形成装置及び像形成方法、印刷物 | |
GB2607660A (en) | Printing ink | |
JP2001311020A (ja) | インク | |
MXPA01001804A (en) | Method for coating a textile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09284677 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |