WO1998014969A1 - Multiple anode capacitors and methods of making the same - Google Patents
Multiple anode capacitors and methods of making the same Download PDFInfo
- Publication number
- WO1998014969A1 WO1998014969A1 PCT/US1996/015810 US9615810W WO9814969A1 WO 1998014969 A1 WO1998014969 A1 WO 1998014969A1 US 9615810 W US9615810 W US 9615810W WO 9814969 A1 WO9814969 A1 WO 9814969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode
- electrolyte
- layers
- capacitor
- foil
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims description 16
- 239000011888 foil Substances 0.000 claims abstract description 46
- 239000003792 electrolyte Substances 0.000 claims abstract description 32
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000007784 solid electrolyte Substances 0.000 claims description 9
- 239000000853 adhesive Substances 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims 3
- 230000005641 tunneling Effects 0.000 claims 2
- 238000006116 polymerization reaction Methods 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 5
- 230000000747 cardiac effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 44
- 238000010276 construction Methods 0.000 description 26
- 239000000123 paper Substances 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 239000011244 liquid electrolyte Substances 0.000 description 8
- 239000002655 kraft paper Substances 0.000 description 5
- 238000003466 welding Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3956—Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
Definitions
- This invention relates to electrolytic capacitors. More particularly it relates to compact electrolytic capacitors that have a plurality of electrically conductive anodes, an electrically conductive cathode, and an electrolyte between the anodes and cathode.
- the invention also concerns a method for making such capacitors. While the applicability of the present invention is broad and general, for the sake of an orderly presentation, and to facilitate the comprehension of the principles of the invention, the description focuses principally on the structural characteristics of and manufacturing methods for capacitors which are designed to be used in implantable biomedical electronic devices such as defibrillators.
- B ⁇ BACKGROUND ART Defibrillator designed for implantation inside the human body require associated power supplies which must be provided with a high capacitance in order to be able to deliver on demand intense bursts of current for very short time intervals.
- the battery used in defibrillator cannot deliver a large burst of energy, so an intermediate storage medium such as an electrolytic capacitor is used to accumulate the energy over a period of about 10 seconds and deliver it to the heart in about 5 milliseconds.
- Electrolytic capacitors are well suited for performing this function in biomedical electronic devices. Given the environment within which such a device is used, however, it is essential that the volume of the device be kept to an absolute minimum.
- Prior art electrolytic capacitors generally include a laminate comprising an etched aluminum foil anode, an aluminum foil or film cathode, and an interposed kraft paper or fabric gauze spacer impregnated with a solvent-based liquid electrolyte. A layer of oxide is formed on the aluminum anode, preferably during passage of a current through the anode.
- the oxide layer functions as a dielectric layer interposed between the anode and the charge carriers of the dielectric medium.
- the entire laminate is rolled up into the form of a substantially cylindrical body and encased, with the aid of suitable insulation, in an aluminum tube or can and sealed with a rubber material .
- Double layers - Tunnel etching Some capacitors that are incorporated in flash photography frequently utilize a double layer of anode foil between each pair of cathodes. See for example Siemens Electronic Components Bulletin Vlll(1973) No 4, pp. 96-99. Such an arrangement provides more anode surface area per unit volume.
- the foil used for such construction requires tunnel etching, in which some of the pores extend right through the foil. In this case the gain in surface area is not as high as that which can be achieved with etched films that have a remaining solid section in their center.
- Patent 5,055,975 to Behrend although concerned primarily with particular electrolytes proposes using foil that can be roughened to increase the overall capacitance before the formation of the oxide layer such that most of the etched surface is directed towards the cathode.
- Pless et al. U.S. patent 5,131,388, disclosed a flat structured capacitor made of layers of aluminum anode plates, aluminum cathode plates and paper separators all enclosed in a polymeric envelope containing an electrolyte. It essentially discloses a group of electrolytic capacitors connected in parallel. Each anode comprises two anode plates welded together with an aluminum strip between them for electrical contact. 5. Double tab connectors Conventional photo flash capacitors include a tab for connection to the anode foil.
- the capacitor for an implantable defibrillator incorporates triple anodes using a combination of tunnel etched anodes on the outer layer and a layer of highly etched foil with a solid core in the center. This arrangement allows the electrolyte and thus the conducting ions to reach the whole surface area of the triple anode layers, even pores which originate on the inner layer of the central foil, yet at the same time the ions are not able to penetrate all the way through the central foil. More layers of anode can be used in a sandwich configuration depending on the desired electrical performance.
- a capacitor containing an electrolyte formed from a polymer which may be a solid electrolyte.
- the capacitor may also include a single paper separator impregnated with an electrolyte.
- an adhesive electrolyte is applied in order to eliminate the need for additional adhesives or clamps in the construction. Further details of such adhesive electrolyte are provide in co-pending U.S. application U.S.S.N. 235,179, filed May 2, 1994, and assigned to the same assignee as the present invention.
- the invention provides a capacitor with a high energy storage per unit volume and additionally achieving a mechanical outline suitable for effective packing and space utilization in a defibrillator can. It is a further object of the present invention to provide a capacitor which may be formed in a circular, domed, or other shape suitable for packing neatly inside a chamber of a defibrillator can or other similar device.
- Fig. 1 and Fig 1A depict the construction of a conventional capacitor.
- Fig. 2 depicts in cross section the layer structure of a photo flash capacitor using a double layer anode construction.
- Fig. 3 depicts in cross section the layer structure of a capacitor incorporating triple anodes having a combination of tunnel etched anodes on the outer layer along with a layer of highly etched foil with a solid core in the center.
- FIG. 5 illustrates the use of a tab in a conventional capacitor construction.
- Fig. 5a illustrates a cross section of the tab and attached anode of Fig. 5.
- Fig. 6 illustrates an arrangement for saving space in a capacitor by the inclusion of the tab for an anode and cathode connection in the stack construction of the present invention.
- Fig. 6a illustrates a cross section of Fig. 6.
- Fig. 7. illustrates the construction of round capacitors of the present invention have shaped anode, paper separator and cathode.
- FIG. 1 and Fig. 1A depict the construction of a conventional capacitor.
- Anode foil 1 is wound together with cathode foil 2. These are separated by kraft paper usually in two layers 3, shown as double layers. Electrical connection is made by tab 4.
- Some present photo flash capacitors use double layer anode construction. This is described in Ermer et al, Siemens Electronic Components Bulletin Vlll(1973) No 4 p 96 and illustrated in cross sectional drawing Fig.2.
- the two anode plates .11 are shown separated from the cathode . 12 . by two layers of kraft paper ⁇ on each side of the anode layer. 2.
- the tab ( . 2J5) is included within the thickness of the anode stack (2 . 6) by a small cut out in any one of the layers of the triple anode.
- the method of the preferred embodiment employs joins between the foil material itself ⁇ 22 . ) , which is preferably accomplished in the construction by cold welding. This method is a unique feature of the capacitor construction as the highly etched oxidized anode foil is brittle and difficult to join. Other joining methods such as laser and arc welding can be used. 5.
- Flat constructions Most electrolytic capacitors use a cylindrical construction. The inventors have extended the idea of the flat construction to which reference has been made previously to allow any arbitrary shape to be fabricated, consisting of as many layers as needed.
- the conducting electrolyte of the present invention can also be used for conformal bonding together of the layers of the capacitor. D-shaped, elliptical or any other shape can be produced by this method. a. Domed constructions All of the plates of the structure do not have to be the same in size or shape. In this way it is possible to manufacture domed capacitors which fit into three dimensional spaces, allowing a great degree of flexibility in the internal packing of the components of the defibrillator . 6. Solid electrolytes The electrolyte used in the preferred capacitor may also be a solid electrolyte as disclosed in U.S. patents 4,942,501; 5,146,391 and 5,153,820 to MacFarlane.
- electrolytes disclosed in copending patent application S.N. 235,179 filed May 2, 1994 may be used to form an adhesive as described therein. 7. Plate stacking Plates of anodes can be stacked with the cathode and paper interweaving in many ways. Folding the cathode back and forth across layers of anode, which may also be folded, can also be used as depicted in Fig. 7. 8. Use of fewer layers of paper with solid electrolytes Most present capacitors use two layers of paper for the separator. This is to prevent the rough edges of the anode foil penetrating the paper and causing a short between cathode and anode.
- the sharp edges of the tabs attached to the surface of the anode and cathode also cause points of shorting.
- the paper when impregnated with a conventional electrolyte becomes swollen and soft.
- the paper when impregnated with the electrolyte and the electrolyte polymerized produces a much tougher material. This can be used as a single layer thus saving volume and still giving a reliable capacitor.
- Use of highly etched foil vs. tunnel etched foil The triple anode capacitor has a distinct advantage over any previous double anode capacitor in that it makes use of highly etched foil rather than solely tunnel etched foil. Highly etched foil which is not tunnel etched provides a higher level of capacitance per unit volume than tunnel etched material.
- present state of the art foil for 360 volt photo flash capacitors can be 0.87 ⁇ F /sq cm for highly etched, non porous foil and 0.76 ⁇ F / sq cm for tunnel etched foil for typical 360 volt capacitors.
- present state of the art foil for 360 volt photo flash capacitors can be 0.87 ⁇ F /sq cm for highly etched, non porous foil and 0.76 ⁇ F / sq cm for tunnel etched foil for typical 360 volt capacitors.
- the energy density obtainable considering just this core construction is 3.28 J/cc.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/015810 WO1998014969A1 (en) | 1996-10-02 | 1996-10-02 | Multiple anode capacitors and methods of making the same |
EP96936137A EP0875068A4 (en) | 1996-10-02 | 1996-10-02 | Multiple anode capacitors and methods of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/015810 WO1998014969A1 (en) | 1996-10-02 | 1996-10-02 | Multiple anode capacitors and methods of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998014969A1 true WO1998014969A1 (en) | 1998-04-09 |
Family
ID=22255897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/015810 WO1998014969A1 (en) | 1996-10-02 | 1996-10-02 | Multiple anode capacitors and methods of making the same |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0875068A4 (en) |
WO (1) | WO1998014969A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3812475A1 (en) * | 1988-04-14 | 1989-11-02 | Siemens Ag | Electrolytic capacitor with twin anode |
JPH03109711A (en) * | 1989-09-25 | 1991-05-09 | Nippon Chikudenki Kogyo Kk | Aluminum electrode foil for electrolytic capacitor and manufacture thereof |
JPH06168855A (en) * | 1992-11-30 | 1994-06-14 | Marcon Electron Co Ltd | Multilayer solid electrolytic capacitor and fabrication thereof |
-
1996
- 1996-10-02 EP EP96936137A patent/EP0875068A4/en not_active Withdrawn
- 1996-10-02 WO PCT/US1996/015810 patent/WO1998014969A1/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3812475A1 (en) * | 1988-04-14 | 1989-11-02 | Siemens Ag | Electrolytic capacitor with twin anode |
JPH03109711A (en) * | 1989-09-25 | 1991-05-09 | Nippon Chikudenki Kogyo Kk | Aluminum electrode foil for electrolytic capacitor and manufacture thereof |
JPH06168855A (en) * | 1992-11-30 | 1994-06-14 | Marcon Electron Co Ltd | Multilayer solid electrolytic capacitor and fabrication thereof |
Non-Patent Citations (1)
Title |
---|
See also references of EP0875068A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP0875068A1 (en) | 1998-11-04 |
EP0875068A4 (en) | 2001-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5584890A (en) | Methods of making multiple anode capacitors | |
US5628801A (en) | Electrolyte capacitor and method of making the same | |
US6833987B1 (en) | Flat capacitor having an active case | |
US6249423B1 (en) | Electrolytic capacitor and multi-anodic attachment | |
US6421226B1 (en) | High-energy capacitors for implantable defibrillators | |
US5660737A (en) | Process for making a capacitor foil with enhanced surface area | |
US6426864B1 (en) | High energy capacitors for implantable defibrillators | |
US7875087B2 (en) | Capacitors including interacting separators and surfactants | |
US6110233A (en) | Wound multi-anode electrolytic capacitor with offset anodes | |
US6409776B1 (en) | Implantable medical device having flat electrolytic capacitor formed with nonthrough-etched and through-hole punctured anode sheets | |
US6571126B1 (en) | Method of constructing a capacitor stack for a flat capacitor | |
US20060139850A1 (en) | Capacitors based on valve metal alloys for use in medical devices | |
WO2000019470A1 (en) | High-energy electrolytic capacitors for implantable defibrillators | |
US6815306B1 (en) | Floating anode DC electrolytic capacitor | |
WO2007100998A1 (en) | Separator systems for batteries | |
US20100010562A1 (en) | Electrolytic capacitor interconnect | |
US7385802B1 (en) | Electrolytic capacitor | |
EP0875068A1 (en) | Multiple anode capacitors and methods of making the same | |
US7404829B1 (en) | Electrode-separator combination for improved assembly of layered electrolytic capacitors | |
US7365963B2 (en) | Capacitor element, solid electrolytic capacitor, processes for their production and capacitor element combination | |
US7670716B2 (en) | Electrochemical cells employing expandable separators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996936137 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 1996936137 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998516463 Format of ref document f/p: F |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1996936137 Country of ref document: EP |