WO1998012344A1 - Human tumor necrosis factor receptor-like genes - Google Patents
Human tumor necrosis factor receptor-like genes Download PDFInfo
- Publication number
- WO1998012344A1 WO1998012344A1 PCT/US1996/015003 US9615003W WO9812344A1 WO 1998012344 A1 WO1998012344 A1 WO 1998012344A1 US 9615003 W US9615003 W US 9615003W WO 9812344 A1 WO9812344 A1 WO 9812344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- polypeptide
- seq
- trl
- acid sequence
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title description 162
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 title description 2
- 102000057041 human TNF Human genes 0.000 title description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 373
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 354
- 229920001184 polypeptide Polymers 0.000 claims abstract description 312
- 102000005962 receptors Human genes 0.000 claims abstract description 299
- 108020003175 receptors Proteins 0.000 claims abstract description 299
- 239000013598 vector Substances 0.000 claims abstract description 59
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 58
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 44
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 44
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 claims abstract description 18
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 claims abstract description 13
- 238000010188 recombinant method Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 130
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 123
- 239000002773 nucleotide Substances 0.000 claims description 86
- 125000003729 nucleotide group Chemical group 0.000 claims description 86
- 108091033319 polynucleotide Proteins 0.000 claims description 77
- 102000040430 polynucleotide Human genes 0.000 claims description 77
- 239000002157 polynucleotide Substances 0.000 claims description 77
- 239000012634 fragment Substances 0.000 claims description 72
- 239000002299 complementary DNA Substances 0.000 claims description 70
- 125000000539 amino acid group Chemical group 0.000 claims description 48
- 150000001413 amino acids Chemical class 0.000 claims description 47
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 32
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 230000000295 complement effect Effects 0.000 claims description 15
- 238000009396 hybridization Methods 0.000 claims description 11
- 238000012258 culturing Methods 0.000 claims description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 abstract description 49
- 102000003390 tumor necrosis factor Human genes 0.000 abstract description 26
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 abstract description 13
- 102000003298 tumor necrosis factor receptor Human genes 0.000 abstract description 13
- 210000004027 cell Anatomy 0.000 description 176
- 102000004169 proteins and genes Human genes 0.000 description 110
- 235000018102 proteins Nutrition 0.000 description 107
- 108020004414 DNA Proteins 0.000 description 65
- 235000001014 amino acid Nutrition 0.000 description 58
- 230000014509 gene expression Effects 0.000 description 57
- 229940024606 amino acid Drugs 0.000 description 49
- 230000000694 effects Effects 0.000 description 46
- 239000005557 antagonist Substances 0.000 description 44
- 230000027455 binding Effects 0.000 description 43
- 238000009739 binding Methods 0.000 description 41
- 239000000523 sample Substances 0.000 description 38
- 150000001875 compounds Chemical class 0.000 description 37
- 239000000556 agonist Substances 0.000 description 36
- 239000013612 plasmid Substances 0.000 description 36
- 241000282414 Homo sapiens Species 0.000 description 33
- 210000001519 tissue Anatomy 0.000 description 32
- 108091026890 Coding region Proteins 0.000 description 29
- 108020004999 messenger RNA Proteins 0.000 description 27
- 239000013615 primer Substances 0.000 description 25
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 24
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 24
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 23
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 23
- 206010028980 Neoplasm Diseases 0.000 description 22
- 238000003556 assay Methods 0.000 description 22
- 238000003752 polymerase chain reaction Methods 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 20
- 108091008146 restriction endonucleases Proteins 0.000 description 20
- 238000006467 substitution reaction Methods 0.000 description 20
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 19
- 210000000349 chromosome Anatomy 0.000 description 18
- 102000004190 Enzymes Human genes 0.000 description 17
- 108090000790 Enzymes Proteins 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 17
- 230000036755 cellular response Effects 0.000 description 17
- 238000003776 cleavage reaction Methods 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 17
- 229940088598 enzyme Drugs 0.000 description 17
- 239000013604 expression vector Substances 0.000 description 17
- 230000001404 mediated effect Effects 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- 230000007017 scission Effects 0.000 description 17
- 238000011534 incubation Methods 0.000 description 16
- 238000000746 purification Methods 0.000 description 16
- 230000000890 antigenic effect Effects 0.000 description 15
- 230000001580 bacterial effect Effects 0.000 description 15
- 210000004899 c-terminal region Anatomy 0.000 description 15
- 210000002950 fibroblast Anatomy 0.000 description 15
- 239000003446 ligand Substances 0.000 description 15
- 239000002609 medium Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 239000012472 biological sample Substances 0.000 description 14
- 201000010099 disease Diseases 0.000 description 14
- 210000004962 mammalian cell Anatomy 0.000 description 14
- 239000003550 marker Substances 0.000 description 14
- 239000000427 antigen Substances 0.000 description 13
- 108091007433 antigens Proteins 0.000 description 13
- 102000036639 antigens Human genes 0.000 description 13
- 230000002163 immunogen Effects 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 13
- 241000700605 Viruses Species 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 210000004408 hybridoma Anatomy 0.000 description 12
- 230000001177 retroviral effect Effects 0.000 description 12
- 241000701447 unidentified baculovirus Species 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 108020001507 fusion proteins Proteins 0.000 description 11
- 102000037865 fusion proteins Human genes 0.000 description 11
- 241000701022 Cytomegalovirus Species 0.000 description 10
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 10
- 238000000636 Northern blotting Methods 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 10
- -1 aliphatic amino acid Chemical class 0.000 description 10
- 230000002759 chromosomal effect Effects 0.000 description 10
- 238000012217 deletion Methods 0.000 description 10
- 230000037430 deletion Effects 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 238000007689 inspection Methods 0.000 description 10
- 238000013507 mapping Methods 0.000 description 10
- 229960000485 methotrexate Drugs 0.000 description 10
- 230000008488 polyadenylation Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 241000124008 Mammalia Species 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 210000001124 body fluid Anatomy 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 9
- 238000010367 cloning Methods 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 9
- 210000003527 eukaryotic cell Anatomy 0.000 description 9
- 244000005700 microbiome Species 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000002965 ELISA Methods 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 8
- 101000801232 Homo sapiens Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 8
- 239000011543 agarose gel Substances 0.000 description 8
- 238000004587 chromatography analysis Methods 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 230000002068 genetic effect Effects 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 8
- 230000006698 induction Effects 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 230000010076 replication Effects 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 7
- 241000238631 Hexapoda Species 0.000 description 7
- 101000801228 Homo sapiens Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 7
- 108091092195 Intron Proteins 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- 210000001744 T-lymphocyte Anatomy 0.000 description 7
- 230000002788 anti-peptide Effects 0.000 description 7
- 239000010839 body fluid Substances 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000005547 deoxyribonucleotide Substances 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000004806 packaging method and process Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 241000701161 unidentified adenovirus Species 0.000 description 7
- 208000023275 Autoimmune disease Diseases 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 108700026244 Open Reading Frames Proteins 0.000 description 6
- 206010040070 Septic Shock Diseases 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 238000004113 cell culture Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 210000002889 endothelial cell Anatomy 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 238000002372 labelling Methods 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000004952 protein activity Effects 0.000 description 6
- 230000036303 septic shock Effects 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 210000001541 thymus gland Anatomy 0.000 description 6
- 241001430294 unidentified retrovirus Species 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 238000001086 yeast two-hybrid system Methods 0.000 description 6
- 239000003155 DNA primer Substances 0.000 description 5
- 101710154606 Hemagglutinin Proteins 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 208000001715 Osteoblastoma Diseases 0.000 description 5
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 5
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 5
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 5
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 5
- 101710176177 Protein A56 Proteins 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 102000006601 Thymidine Kinase Human genes 0.000 description 5
- 108020004440 Thymidine kinase Proteins 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 229960000723 ampicillin Drugs 0.000 description 5
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 5
- 230000004663 cell proliferation Effects 0.000 description 5
- 239000003184 complementary RNA Substances 0.000 description 5
- 230000003013 cytotoxicity Effects 0.000 description 5
- 231100000135 cytotoxicity Toxicity 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000002939 deleterious effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000012737 fresh medium Substances 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 238000010369 molecular cloning Methods 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 239000013600 plasmid vector Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 230000003248 secreting effect Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 108020004491 Antisense DNA Proteins 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 4
- 206010063094 Cerebral malaria Diseases 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 4
- 241000725303 Human immunodeficiency virus Species 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 108010038807 Oligopeptides Proteins 0.000 description 4
- 102000015636 Oligopeptides Human genes 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 241000276498 Pollachius virens Species 0.000 description 4
- 101710182846 Polyhedrin Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 108091028664 Ribonucleotide Proteins 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- 230000006052 T cell proliferation Effects 0.000 description 4
- 206010052779 Transplant rejections Diseases 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 239000003816 antisense DNA Substances 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 4
- 238000012875 competitive assay Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 4
- 230000005860 defense response to virus Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 108020001096 dihydrofolate reductase Proteins 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 210000003917 human chromosome Anatomy 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 238000007901 in situ hybridization Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 230000005865 ionizing radiation Effects 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 230000004807 localization Effects 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 210000001672 ovary Anatomy 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 210000002826 placenta Anatomy 0.000 description 4
- 210000002381 plasma Anatomy 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 210000002307 prostate Anatomy 0.000 description 4
- 239000002464 receptor antagonist Substances 0.000 description 4
- 229940044551 receptor antagonist Drugs 0.000 description 4
- 239000002336 ribonucleotide Substances 0.000 description 4
- 125000002652 ribonucleotide group Chemical group 0.000 description 4
- 230000019491 signal transduction Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 210000002700 urine Anatomy 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 101150074155 DHFR gene Proteins 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- 230000005778 DNA damage Effects 0.000 description 3
- 231100000277 DNA damage Toxicity 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 3
- 238000012286 ELISA Assay Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241001131785 Escherichia coli HB101 Species 0.000 description 3
- 108700024394 Exon Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 102000000589 Interleukin-1 Human genes 0.000 description 3
- 108010002352 Interleukin-1 Proteins 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 3
- 206010028851 Necrosis Diseases 0.000 description 3
- 229930182555 Penicillin Natural products 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 108091034057 RNA (poly(A)) Proteins 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108020005091 Replication Origin Proteins 0.000 description 3
- 241000725643 Respiratory syncytial virus Species 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 230000003042 antagnostic effect Effects 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000001516 cell proliferation assay Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000037433 frameshift Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000000185 hemagglutinin Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 210000001320 hippocampus Anatomy 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 238000011503 in vivo imaging Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 230000003859 lipid peroxidation Effects 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000007423 screening assay Methods 0.000 description 3
- 210000002460 smooth muscle Anatomy 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 238000010532 solid phase synthesis reaction Methods 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000014621 translational initiation Effects 0.000 description 3
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- LLXVXPPXELIDGQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)benzoate Chemical compound C=1C=CC(N2C(C=CC2=O)=O)=CC=1C(=O)ON1C(=O)CCC1=O LLXVXPPXELIDGQ-UHFFFAOYSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 2
- RXGJTUSBYWCRBK-UHFFFAOYSA-M 5-methylphenazinium methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC=C2[N+](C)=C(C=CC=C3)C3=NC2=C1 RXGJTUSBYWCRBK-UHFFFAOYSA-M 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 101150013553 CD40 gene Proteins 0.000 description 2
- 206010006895 Cachexia Diseases 0.000 description 2
- 241000282461 Canis lupus Species 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 2
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 102100038385 Coiled-coil domain-containing protein R3HCC1L Human genes 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 108010015776 Glucose oxidase Proteins 0.000 description 2
- 239000004366 Glucose oxidase Substances 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 102000018997 Growth Hormone Human genes 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 102000002265 Human Growth Hormone Human genes 0.000 description 2
- 108010000521 Human Growth Hormone Proteins 0.000 description 2
- 239000000854 Human Growth Hormone Substances 0.000 description 2
- 108090000144 Human Proteins Proteins 0.000 description 2
- 102000003839 Human Proteins Human genes 0.000 description 2
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 208000029462 Immunodeficiency disease Diseases 0.000 description 2
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 2
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 2
- 102000015271 Intercellular Adhesion Molecule-1 Human genes 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000004195 Isomerases Human genes 0.000 description 2
- 108090000769 Isomerases Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 241000713869 Moloney murine leukemia virus Species 0.000 description 2
- 241000713862 Moloney murine sarcoma virus Species 0.000 description 2
- 241001602876 Nata Species 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 2
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 108091058545 Secretory proteins Proteins 0.000 description 2
- 102000040739 Secretory proteins Human genes 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- 108010022394 Threonine synthase Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Natural products O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 2
- 206010054094 Tumour necrosis Diseases 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 2
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000001270 agonistic effect Effects 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 238000005571 anion exchange chromatography Methods 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005277 cation exchange chromatography Methods 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 238000012761 co-transfection Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 229960002086 dextran Drugs 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 102000004419 dihydrofolate reductase Human genes 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 210000003989 endothelium vascular Anatomy 0.000 description 2
- 238000012869 ethanol precipitation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 108060003196 globin Proteins 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940116332 glucose oxidase Drugs 0.000 description 2
- 235000019420 glucose oxidase Nutrition 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 210000000224 granular leucocyte Anatomy 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000004754 hybrid cell Anatomy 0.000 description 2
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 2
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000007813 immunodeficiency Effects 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 210000005210 lymphoid organ Anatomy 0.000 description 2
- 239000012931 lyophilized formulation Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000031864 metaphase Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229940080469 phosphocellulose Drugs 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 108010066381 preproinsulin Proteins 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000005522 programmed cell death Effects 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 230000004853 protein function Effects 0.000 description 2
- 210000004879 pulmonary tissue Anatomy 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000026267 regulation of growth Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 210000001179 synovial fluid Anatomy 0.000 description 2
- 206010042863 synovial sarcoma Diseases 0.000 description 2
- 239000003104 tissue culture media Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- XMQUEQJCYRFIQS-YFKPBYRVSA-N (2s)-2-amino-5-ethoxy-5-oxopentanoic acid Chemical compound CCOC(=O)CC[C@H](N)C(O)=O XMQUEQJCYRFIQS-YFKPBYRVSA-N 0.000 description 1
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 1
- RMBMWXHVTXYPQN-UHFFFAOYSA-N 1-[3-[(1-hydroxy-2,5-dioxopyrrolidin-3-yl)methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1N(O)C(=O)CC1CC1=CC=CC(N2C(C=CC2=O)=O)=C1 RMBMWXHVTXYPQN-UHFFFAOYSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 241000701386 African swine fever virus Species 0.000 description 1
- 101100216424 African swine fever virus (strain E-70 MS44) LMW5-HL gene Proteins 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 101100238293 Arabidopsis thaliana MOR1 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 241001367049 Autographa Species 0.000 description 1
- 241000713826 Avian leukosis virus Species 0.000 description 1
- 108091007065 BIRCs Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 108700032588 Baculovirus p35 Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 101710134031 CCAAT/enhancer-binding protein beta Proteins 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 101100230428 Caenorhabditis elegans hil-5 gene Proteins 0.000 description 1
- 240000001432 Calendula officinalis Species 0.000 description 1
- 235000005881 Calendula officinalis Nutrition 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 101710199286 Cytosol aminopeptidase Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 102000015689 E-Selectin Human genes 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- 101710197780 E3 ubiquitin-protein ligase LAP Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 101900034680 Epstein-Barr virus Apoptosis regulator BHRF1 Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241001596967 Escherichia coli M15 Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 101150064015 FAS gene Proteins 0.000 description 1
- 108091006020 Fc-tagged proteins Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102000010029 Homer Scaffolding Proteins Human genes 0.000 description 1
- 108010077223 Homer Scaffolding Proteins Proteins 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101000756632 Homo sapiens Actin, cytoplasmic 1 Proteins 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000743767 Homo sapiens Coiled-coil domain-containing protein R3HCC1L Proteins 0.000 description 1
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 102000055031 Inhibitor of Apoptosis Proteins Human genes 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 108090000362 Lymphotoxin-beta Proteins 0.000 description 1
- 102100026894 Lymphotoxin-beta Human genes 0.000 description 1
- 101710204480 Lysosomal acid phosphatase Proteins 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 238000000719 MTS assay Methods 0.000 description 1
- 231100000070 MTS assay Toxicity 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010037274 Member 9 Tumor Necrosis Factor Receptor Superfamily Proteins 0.000 description 1
- 102000011769 Member 9 Tumor Necrosis Factor Receptor Superfamily Human genes 0.000 description 1
- 206010058858 Meningococcal bacteraemia Diseases 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 108010059724 Micrococcal Nuclease Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100278853 Mus musculus Dhfr gene Proteins 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 241000713883 Myeloproliferative sarcoma virus Species 0.000 description 1
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000012518 Poros HS 50 resin Substances 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 101710089118 Probable cytosol aminopeptidase Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- BFDMCHRDSYTOLE-UHFFFAOYSA-N SC#N.NC(N)=N.ClC(Cl)Cl.OC1=CC=CC=C1 Chemical compound SC#N.NC(N)=N.ClC(Cl)Cl.OC1=CC=CC=C1 BFDMCHRDSYTOLE-UHFFFAOYSA-N 0.000 description 1
- 101100379247 Salmo trutta apoa1 gene Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 108090000184 Selectins Proteins 0.000 description 1
- 102000003800 Selectins Human genes 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 102000011971 Sphingomyelin Phosphodiesterase Human genes 0.000 description 1
- 108010061312 Sphingomyelin Phosphodiesterase Proteins 0.000 description 1
- 241000713896 Spleen necrosis virus Species 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 101150039723 Trl gene Proteins 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- BOHZIDAXMMXRHL-UHFFFAOYSA-N [O-]C(COC1=CC=CC([N+]2=CN=NN2C(C=C2)=CC=C2S(O)(=O)=O)=C1)=O Chemical compound [O-]C(COC1=CC=CC([N+]2=CN=NN2C(C=C2)=CC=C2S(O)(=O)=O)=C1)=O BOHZIDAXMMXRHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical class C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- JLYXXMFPNIAWKQ-SHFUYGGZSA-N alpha-hexachlorocyclohexane Chemical compound Cl[C@H]1[C@H](Cl)[C@@H](Cl)[C@H](Cl)[C@H](Cl)[C@H]1Cl JLYXXMFPNIAWKQ-SHFUYGGZSA-N 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 238000003277 amino acid sequence analysis Methods 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002787 antisense oligonuctleotide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000008228 bacteriostatic water for injection Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000424 bronchial epithelial cell Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 108010079785 calpain inhibitors Proteins 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 210000003477 cochlea Anatomy 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 239000002852 cysteine proteinase inhibitor Substances 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005695 dehalogenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- OZRNSSUDZOLUSN-LBPRGKRZSA-N dihydrofolic acid Chemical compound N=1C=2C(=O)NC(N)=NC=2NCC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OZRNSSUDZOLUSN-LBPRGKRZSA-N 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- 229960002986 dinoprostone Drugs 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000804 electron spin resonance spectroscopy Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 102000018823 fas Receptor Human genes 0.000 description 1
- 108010052621 fas Receptor Proteins 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 101150056310 gem1 gene Proteins 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000006451 grace's insect medium Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 210000004524 haematopoietic cell Anatomy 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 108010027775 interleukin-1beta-converting enzyme inhibitor Proteins 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 210000003246 kidney medulla Anatomy 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 230000032476 lymphotoxin A production Effects 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 208000022089 meningococcemia Diseases 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 230000010807 negative regulation of binding Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000005009 osteogenic cell Anatomy 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 1
- 229960002695 phenobarbital Drugs 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- RXNXLAHQOVLMIE-UHFFFAOYSA-N phenyl 10-methylacridin-10-ium-9-carboxylate Chemical compound C12=CC=CC=C2[N+](C)=C2C=CC=CC2=C1C(=O)OC1=CC=CC=C1 RXNXLAHQOVLMIE-UHFFFAOYSA-N 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 108010073128 phosphatidylcholine-specific phospholipase C Proteins 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000005222 photoaffinity labeling Methods 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 1
- 102000021127 protein binding proteins Human genes 0.000 description 1
- 108091011138 protein binding proteins Proteins 0.000 description 1
- 230000030788 protein refolding Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 208000009305 pseudorabies Diseases 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- RYVMUASDIZQXAA-UHFFFAOYSA-N pyranoside Natural products O1C2(OCC(C)C(OC3C(C(O)C(O)C(CO)O3)O)C2)C(C)C(C2(CCC3C4(C)CC5O)C)C1CC2C3CC=C4CC5OC(C(C1O)O)OC(CO)C1OC(C1OC2C(C(OC3C(C(O)C(O)C(CO)O3)O)C(O)C(CO)O2)O)OC(CO)C(O)C1OC1OCC(O)C(O)C1O RYVMUASDIZQXAA-UHFFFAOYSA-N 0.000 description 1
- 238000012205 qualitative assay Methods 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000018866 regulation of programmed cell death Effects 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 210000003935 rough endoplasmic reticulum Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- YZHUMGUJCQRKBT-UHFFFAOYSA-M sodium chlorate Chemical compound [Na+].[O-]Cl(=O)=O YZHUMGUJCQRKBT-UHFFFAOYSA-M 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000001258 synovial membrane Anatomy 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 230000036964 tight binding Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 101150108727 trpl gene Proteins 0.000 description 1
- 239000000717 tumor promoter Substances 0.000 description 1
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241000701366 unidentified nuclear polyhedrosis viruses Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 230000007442 viral DNA synthesis Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70578—NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
Definitions
- the present inventors have discovered novel receptors in the Tumor Necrosis Factor (TNF) receptor family.
- TNF-RII type 2 TNF receptor
- Isolated nucleic acid molecules are also provided encoding the novel receptors of the present invention.
- Receptor polypeptides are further provided as are vectors, host cells and recombinant methods for producing the same.
- Tumor necrosis factors ⁇ TNF- ⁇ and ⁇ (TNF- ⁇ or lymphotoxin) are related members of a broad class of polypeptide mediators, which includes the interferons, interleukins and growth factors, collectively called cytokines (Beutler, B. and Cerami, A., Annu. Rev. Immunol., 7:625-655 (1989)).
- Tumor necrosis factor (TNF- ⁇ and TNF- ⁇ ) was originally discovered as a result of its anti-tumor activity, however, now it is recognized as a pleiotropic cytokine playing important roles in a host of biological processes and pathologies.
- TNF- ⁇ TNF-related cytokine family
- TNF- ⁇ lymphotoxin- ⁇
- LT- ⁇ LT- ⁇
- TRAIL ligands for the Fas receptor
- CD30, CD27, CD40, OX40 and 4- 1 BB receptors These proteins have conserved C-terminal sequences and variable N-terminal sequences which are often used as membrane anchors, with the exception of TNF- ⁇ .
- TNF- ⁇ and TNF- ⁇ function as homotrimers when they bind to TNF receptors.
- TNF is produced by a number of cell types, including monocytes, fibroblasts, T-cells, natural killer (NK) cells and predominately by activated macrophages.
- TNF- ⁇ has been reported to have a role in the rapid necrosis of tumors, immunostimulation, autoimmune disease, graft rejection, producing an anti-viral response, septic shock, cerebral malaria, cytotoxicity, protection against deleterious effects of ionizing radiation produced during a course of chemotherapy, such as denaturation of enzymes, lipid peroxidation and DNA damage (Nata et al, J. Immunol. 136(7):24S3 (1987)), growth regulation, vascular endothelium effects and metabolic effects.
- TNF- ⁇ also triggers endothelial cells to secrete various factors, including PAI-1, IL-1, GM-CSF and IL-6 to promote cell proliferation.
- TNF- ⁇ up-regulates various cell adhesion molecules such as E-Selectin, ICAM-1 and VCAM-1.
- TNF- ⁇ and the Fas ligand have also been shown to induce programmed cell death.
- TNF- ⁇ has many activities, including induction of an antiviral state and tumor necrosis, activation of polymorphonuclear leukocytes, induction of class I major histocompatibility complex antigens on endothelial cells, induction of adhesion molecules on endothelium and growth hormone stimulation (Ruddle, N. and Homer, R., Prog. Allergy, 40:162-182 (1988)).
- mice deficient in TNF- ⁇ production show abnormal development of the peripheral lymphoid organs and morphological changes in spleen architecture (reviewed in Aggarwal et al, Eur Cytokine Netw, 70:93-124 (1996)).
- the lymphoid organs the popliteal, inguinal, para-aortic, mesenteric, axillary and cervical lymph nodes failed to develop in TNF- ⁇ -/- mice.
- peripheral blood from TNF- ⁇ -/- mice contained a three fold reduction in white blood cells as compared to normal mice.
- Peripheral blood from TNF- ⁇ -/- mice contained four fold more B cells as compared to their normal counterparts.
- TNF- ⁇ in contrast to TNF- ⁇ has been shown to induce proliferation of
- TNF-RI The first step in the induction of the various cellular responses mediated by TNF or LT is their binding to specific cell surface or soluble receptors.
- TNF-RI Two distinct TNF receptors of approximately 55-KDa (TNF-RI) and 75-KDa (TNF- RII) have been identified (Hohman et al, J. Biol Chem., 26 :14927-14934 (1989)), and human and mouse cDNAs corresponding to both receptor types have been isolated and characterized (Loetscher et al, Cell, 67:351 (1990)). Both TNF-Rs share the typical structure of cell surface receptors including extracellular, transmembrane and intracellular regions.
- TNF-RI and TNF-RII share 28% identity and are characterized by four repeated cysteine-rich motifs with significant intersubunit sequence homology.
- the majority of cell types and tissues appear to express both TNF receptors and both receptors are active in signal transduction, however, they are able to mediate distinct cellular responses. Further, TNF-RII was shown to exclusively mediate human T-cell proliferation by TNF as shown in PCT WO
- TNF-RI dependent responses include accumulation of C-FOS, IL-6, and manganese superoxide dismutase mRNA, prostaglandin E2 synthesis, IL-2 receptor and MHC class I and II cell surface antigen expression, growth inhibition, and cytotoxicity.
- TNF-RI also triggers second messenger systems such as phospholipase A 2 , protein kinase C, phosphatidylcholine-specific phospholipase C and sphingomyelinase (Pfefferk etal, Cell, 73:457-467 (1993)).
- TNF-Rs Several interferons and other agents have been shown to regulate the expression of TNF-Rs.
- Retinoic acid for example, has been shown to induce the production of TNF receptors in some cells type while down regulating production in other cells.
- TNF- ⁇ has been shown effect the localization of both types of receptor.
- TNF- ⁇ induces intemalization of TNF-RI and secretion of TNF-RII (reviewed in Aggarwal et al, supra).
- the yeast two hybrid system has been used to identify ligands which associate with both types of the TNF-Rs (reviewed in Aggarwal et al, supra).
- TNF-R Several proteins have been identified which interact with the cytoplasmic domain of a murine TNF-R. Two of these proteins appear to be related to the baculo virus inhibitor of apoptosis, suggesting a direct role for TNF-R in the regulation of programmed cell death.
- TR1 receptors novel Tumor Necrosis Factor (TNF) family receptors of the present invention are referred to herein as "TR1 receptors".
- TR1 receptors novel Tumor Necrosis Factor family receptors of the present invention.
- isolated nucleic acid molecules encoding the TR1 polypeptides of the present invention, including mRNAs, DNAs, cDNAs, genomic DNA as well as antisense analogs thereof and biologically active and diagnostically or therapeutically useful fragments thereof.
- isolated nucleic acid molecules include polynucleotide molecules encoding the native TR1 receptor polypeptide having the amino acid sequence shown in
- Figure 1 SEQ ID NO:2 or the amino acid sequence encoded by the cDNA clone deposited in a bacterial host as ATCC Deposit Number 75899 on September 29 1994.
- the nucleotide sequence determined by sequencing the deposited native TR1 receptor clone which is shown in Figure 1 (SEQ ID NO: 1), contains an open reading frame encoding a polypeptide of 401 amino acid residues, including an initiation codon at positions 46-48 in Figure 1, with a leader sequence of about 21 amino acid residues, and a predicted molecular weight of about 46 kDa for the whole protein and about 44 kDa for the non-glycosylated mature protein.
- the amino acid sequence of the predicted mature native TR1 receptor protein is shown in Figure 1, amino acid residues about 22 to about 401 (SEQ ID NO:2).
- nucleic acid molecules encoding a carboxy terminus modified TR1 receptor polypeptide having the amino acid sequence shown in Figure 2 (SEQ ID NO:4).
- the nucleotide sequence encoding a carboxy terminus modified TRl receptor polypeptide, shown in Figure 2 (SEQ ID NO:3) contains an open reading frame encoding a polypeptide of 395 amino acid residues, including an initiation codon at positions 1-3 in Figure 2, with a leader sequence of about 21 amino acid residues, and a predicted molecular weight of about 43 kDa for the non-glycosylated mature protein.
- the amino acid sequence of the mature carboxy terminus modified TRl receptor protein is shown in Figure 2, amino acid residues from about 22 to about 395 (SEQ ID NO:4).
- the invention provides an isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a TRl receptor polypeptide having the complete amino acid sequence in Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4); (b) a nucleotide sequence encoding the predicted mature native TRl receptor polypeptide having the amino acid sequence at about position 22 to about position 401 in Figure 1 (SEQ ID NO:2) or the predicted mature carboxy terminus modified TRl receptor polypeptide having the amino acid sequence at about position 22 to about position 395 in Figure 2 (SEQ ID NO:4); (c) a nucleotide sequence encoding the native TRl receptor polypeptide having the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No.
- nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a), (b), (c), (d) or (e), above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a), (b), (c), (d) or (e), above.
- This polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues.
- An additional nucleic acid embodiment of the invention relates to an isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of an epitope-bearing portion of a TRl receptor polypeptide having an amino acid sequence in (a), (b), (c) or (d), above.
- novel mature polypeptides which are TRl receptors, as well as fragments, analogs and derivatives thereof.
- the polypeptides of the present invention are of human origin and have amino acid sequences selected from the group consisting of: (a) the amino acid sequence of the native TRl receptor polypeptide having the complete 401 amino acid sequence, including the leader sequence, shown in Figure 1 (SEQ ID NO:2), or the amino acid sequence of the carboxy terminus modified TRl receptor polypeptide having the complete 395 amino acid sequence, including the leader sequence, shown in Figure 2 (SEQ ID NO:2), or the amino acid sequence of the carboxy terminus modified TRl receptor polypeptide having the complete 395 amino acid sequence, including the leader sequence, shown in Figure 2 (SEQ ID NO:2), or the amino acid sequence of the carboxy terminus modified TRl receptor polypeptide having the complete 395 amino acid sequence, including the leader sequence, shown in Figure 2 (SEQ ID NO:2)
- polypeptides of the present invention also include polypeptides having an amino acid sequence with at least 90% similarity, and more preferably at least 95% similarity to those described in (a), (b), (c) or (d) above, as well as polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90%) identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those above.
- TRl receptor polypeptides are believed not to include amino acids comprising a transmembrane domain.
- the present invention provides TRl receptor polypeptides that include such a transmembrane domain-containing amino acid sequence.
- Such polypeptides may be native or constructed from the TRl receptors described herein.
- An additional embodiment of this aspect of the invention relates to a peptide or polypeptide which has the amino acid sequence of an epitope-bearing portion of a TRl receptor polypeptide having an amino acid sequence described in (a), (b), (c) or (d), above.
- Peptides or polypeptides having the amino acid sequence of an epitope-bearing portion of a TRl receptor polypeptide of the invention include portions of such polypeptides with at least six or seven, preferably at least nine, and more preferably at least about 30 amino acids to about 50 amino acids, although epitope-bearing polypeptides of any length up to and including the entire amino acid sequence of a polypeptide of the invention described above also are included in the invention.
- the invention provides an isolated antibody that binds specifically to a TRl receptor polypeptide having an amino acid sequence described in (a), (b), (c) or (d) above.
- the invention also provides functional domains of the soluble TRl receptor polypeptides of the present invention. These domains include amino acid residues from about 22 to about 261 in Figure 1 (SEQ ID NO:2) and Figure
- the inventors have discovered that amino acid residues from about 22 to about 261 in Figures 1 and 2 are homologous to the extracellular domain of a publically known TNF-RII ( Figure 3). Further included are amino acid residues from about 262 to about 401 in Figure 1 (SEQ ID NO:2) and amino acid residues from about 262 to about 395 in Figure 2 (SEQ ID NO:4), which the present inventors have discovered are homologous to the intracellular domain of the publically known TNF-RII ( Figure 3).
- the invention further provides methods for isolating antibodies that bind specifically to a TRl receptor polypeptide having an amino acid sequence as described herein. Such antibodies are useful diagnostically or therapeutical ly as described below.
- a process for producing such polypeptides by recombinant techniques which comprises culturing recombinant prokaryotic and/or eukaryotic host cells, containing a nucleic acid sequence encoding a polypeptide of the present invention, under conditions promoting expression of said protein and subsequent recovery of said protein.
- the present invention also relates to methods of making such vectors and host cells and for using them for production of TRl receptor polypeptides or peptides by recombinant techniques.
- a process for utilizing such polypeptides, or polynucleotide encoding such polypeptides to screen for receptor antagonists and/or agonists and/or receptor ligands involves contacting cells which express the TRl receptor with the candidate compound, assaying a cellular response, and comparing the cellular response to a standard cellular response, the standard being assayed when contact is made in absence of the candidate compound; whereby, an increased cellular response over the standard indicates that the compound is an agonist and a decreased cellular response over the standard indicates that the compound is an antagonist.
- nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to the polypeptide of the present invention.
- screening assays for agonists and antagonists involve determining the effect a candidate compound has on the binding of cellular ligands capable of either eliciting or inhibiting a TRl receptor mediated response.
- the methods involve contacting a TRl receptor polypeptide with a candidate compound and determining whether TRl receptor polypeptide binding to the cellular Iigand is increased or decreased due to the presence of the candidate compound. Further, if binding to the TRl receptor by the cellular Iigand is altered, the effect on TRl receptor activity is then determined.
- such assays may be used to identify compound which directly elicit a TRl receptor mediated response.
- a process of using such agonists for treating conditions related to insufficient TRl receptor activity for example, to inhibit tumor growth, to stimulate human cellular proliferation, e.g., T-cell proliferation, to regulate the immune response and antiviral responses, to protect against the effects of ionizing radiation, to protect against chlamidiae infection, to regulate growth and to treat immunodeficiencies such as is found in HIV.
- a process of using such antagonists for treating conditions associated with over-expression of the TRl receptor for example, for treating T-cell mediated autoimmune diseases such as AIDS, septic shock, cerebral malaria, graft rejection, cytotoxicity, cachexia, apoptosis and inflammation.
- T-cell mediated autoimmune diseases such as AIDS, septic shock, cerebral malaria, graft rejection, cytotoxicity, cachexia, apoptosis and inflammation.
- TRl receptor is expressed in pulmonary tissue, hippocampus, adult heart, kidney, liver, placenta, smooth muscle, thymus, prostate, ovary, small intestine and osteoblastoma and fibroblast cell lines. Further, the inventors have shown that a detectable quantity of TRl receptor mRNA is not present in fetal brain, synovium, synovial sarcoma, T-cells, endothlial cells, activated macrophages, lymph nodes, thymus, neutrophils, and activated neutrophils.
- TRl receptor gene expressions For a number of disorders, it is believed that significantly higher or lower levels of one or both of the TRl receptor gene expressions can be detected in certain tissues (e.g., cancer, apoptosis and inflammation) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" TRl receptor gene expression level, i.e., the TRl receptor expression level in tissue or bodily fluids from an individual not having one of the disorders associated with aberrant TRl receptor function.
- tissues e.g., cancer, apoptosis and inflammation
- bodily fluids e.g., serum, plasma, urine, synovial fluid or spinal fluid
- the invention provides a diagnostic method useful during diagnosis of a disorder associated with aberrant TRl receptor function, which involves: (a) assaying TRl receptor gene expression level in cells or body fluid of an individual; (b) comparing the TRl receptor gene expression level with a standard TRl receptor gene expression level, whereby an increase or decrease in the assayed TRl receptor gene expression level compared to the standard expression level is indicative of a disorder associated with aberrant TRl receptor function.
- Figure l(A-B) shows the cDNA sequence (SEQ ID NO:l) and corresponding deduced amino acid sequence (SEQ ID NO:2) of the native TRl receptor polypeptide of the present invention which is believed to lack a transmembrane domain.
- the initial 21 amino acids represent the putative leader sequence and are underlined.
- the standard one-letter abbreviations for amino acids are used. Sequencing was performed using a 373 automated DNA sequencer (Applied Biosystems, Inc.). Sequencing accuracy is predicted to be greater than 97% accurate.
- Figure 2(A-B) shows the cDNA sequence (SEQ ID NO:3) and corresponding deduced amino acid sequence (SEQ ID NO:4) of the carboxy terminus modified TRl receptor polypeptide of the present invention.
- the initial 21 amino acids represent the putative leader sequence and are underlined. Sequencing and abbreviations are as in Figure 1.
- FIG 3 illustrates an amino acid sequence alignment of the native TRl receptor polypeptide of the present invention (upper line) and the publically known human type 2 TNF receptor (human TNF-RII, shown on the lower line).
- Figure 4 shows an analysis of the native TRl receptor amino acid sequence. Alpha, beta, turn and coil regions; hydrophilicity and hydrophobicity; amphipathic regions; flexible regions; antigenic index and surface probability are shown.
- amino acid residues 20-52, 66-203, 229-279, 297-378 in Figure 1 correspond to the shown highly antigenic regions of the native TRl receptor protein.
- Figure 5 shows a binding assay of polyclonal antibodies specific for human TNF-RI and TNF-RII and the native TRl receptor of the present invention. Purified native TRl receptor (HSABH13 protein) was added to well in a 96-well plate (100 ⁇ l/well), and incubated for 2 hr. After incubation, the plate was washed three times and phosphatase-labeled goat polyclonal antibody to human TNF-RI and TNF-RII (200 ⁇ l) was added to each well. After a further
- Figure 6 shows a binding assay of the native TRl receptor to monoclonal antibodies specific for type I and II TNF receptors.
- Purified native TRl receptor HABH13 protein
- R&D system which was coated with mAbs to sTNFRI or sTNFRII, and incubated for
- phosphatase-labeled polyclonal antibody to sTNF RI or sTNF RII 200 ml was added. After 2 hr incubation and three times wash, 200 ml of substrate solution was added to each well and the plate was incubated for lhr. The OD was measured using a ELISA reader (test wavelength 450 nm, correction wavelength 590nm). All reagents were from R & D System.
- Figure 7 shows a competitive binding assay between the native TRl receptor of the present invention and a novel TNF ligand-like protein (HUVEO19) for TNF- ⁇ or TNF- ⁇ .
- Purified native TRl receptor protein 100 ⁇ l/well was added to wells of a 96-well plate, and incubated for 2 hr. After incubation, the plate was washed three times, 10 ng of either TNF- ⁇ or TNF- ⁇ was added to the wells and the plate was incubated for an additional 2 hr followed by an additional three washes.
- a novel TNF ligand-like protein (HUVEO19) was incubated first with native TRl receptor and after the initial three washes, 10 ng of either TNF- ⁇ or TNF- ⁇ was added to the wells for the second incubation.
- the wells were washed three times and phosphatase-labeled polyclonal antibody specific for either TNF- ⁇ or TNF- ⁇ (200 ⁇ l) was added.
- the wells were washed three times wash times and 200 ⁇ l of substrate solution was added to each well.
- the plates were then incubated for 1 hr and the O.D. was measured using a ELISA reader (test wavelength 450 nm, correction wavelength 590 nm). All reagents were obtained from R & D System, as above.
- Figure 8 shows a competitive binding assay between the native TRl receptor of the present invention and human TNF-RI and TNF-RII for TNF- ⁇ and the novel TNF ligand-like protein described above.
- Purified native TRl receptor protein 100 ⁇ l/well was added to wells of a 96-well plate which was precoated with TNF- ⁇ or novel TNF ligand-like protein (HUVEO19), and incubated for 2 hr. After incubation, the plate was washed three times, 10 ng of either human TNF-RI or TNF-RII was added to the plate. The plate was then incubated for an additional 2 hr. After the 2 hr incubation, the wells were washed three times.
- Figure 9 shows a screening assay (ELISA) of polyclonal rabbit anti-TRl antibodies.
- Polyclonal rabbit anti-TRl antibodies were prepared by Pocono Rabbit Farm & Laboratory, Inc. (Canadensis, PA 18325) according standard prptocol. The rabbit serum was tested by ELISA.
- the plates were coated with TRl (labeled as TNFr batch HG02900-1-B) for 2 hr at room temperature or overnight at 4°C. After washing with PBS, they were blocked with PBS with 1 % BSA and 0.5% sodium azide at 4 °C overnight. The PBS-BS A was flicked out of the well and test supematants were added and incubated for 1 hr at room temperature.
- nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc.), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of a DNA sequence determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art.
- a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.
- nucleotide sequence set forth herein is presented as a sequence of deoxyribonucleotides (abbreviated A, G , C and T).
- nucleic acid molecule or polynucleotide a sequence of deoxyribonucleotides
- RNA molecule or polynucleotide the corresponding sequence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U).
- RNA molecule having the sequence of SEQ ID NO: l set forth using deoxyribonucleotide abbreviations is intended to indicate an RNA molecule having a sequence in which each deoxyribonucleotide A, G or C of SEQ ID NO: 1 has been replaced by the corresponding ribonucleotide A, G or C, and each deoxyribonucleotide T has been replaced by a ribonucleotide U.
- gene or "cistron” means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).
- nucleic acid which encodes the predicted mature native TRl receptor polypeptide having the deduced amino acid sequence of
- Figure 1 SEQ ID NO:2 or for the mature native TRl receptor polypeptide encoded by the cDNA of the clone which was deposited on September 28, 1994 at the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, and given accession number 75899.
- the nucleotide sequence shown in Figure 1 was obtained by sequencing the HSABH13 clone deposited with the ATCC.
- the deposited clone is contained in the pBluescript SK(-) plasmid (Stratagene, LaJolla, CA).
- nucleic acid which encodes the mature carboxy terminus modified TRl receptor polypeptide having the deduced amino acid sequence of Figure 2 (SEQ ID NO:4), which includes a frame shift at a carboxy terminal amino acid residue shown in Figure 1 (SEQ ID NO:2). Due to the location of this frame shift, the inventors, as one skilled in the art would recognize, predict that a functional TRl ' receptor with a modified carboxy terminus is encoded by Figure 2 (SEQ ID NO:3). This conclusion is based on the fact that the remainder of the sequence remains substantially unaltered.
- a cDNA molecule comprising a polynucleotide encoding a polypeptide of the present invention may be obtained from numerous human tissues, including pulmonary tissue, hippocampus, adult heart, kidney, liver, placenta, smooth muscle, thymus, prostate, ovary, small intestinal tissue and osteoblastoma and fibroblast cell lines.
- the present inventors have discovered that the native TRl receptor of the present invention is expressed in each of the above tissues and cell types.
- the cDNA clone contained in ATCC Deposit No. 75899 was isolated from a cDNA library derived from human early passage fibroblasts (HSA 172 cells) and is structurally related to a prior art human TNF-RII receptor. See Figure 3 (SEQ ID NO:5).
- the determined nucleotide sequence of the TRl receptor cDNA of Figure 1 contains an initiation codon at positions 46-48 of the nucleotide sequence in Figure 1 (SEQ ID NO:l) and contains an open reading frame encoding a protein of 401 amino acid residues of which approximately the first 21 amino acids residues are the putative leader sequence such that the mature protein comprises about 380 amino acids.
- the protein exhibits the highest degree of homology to human TNF-R2 with about 27% identity and about 43% similarity over the entire length of the proteins.
- Six conserved cyteines present in modules of 40 residues in all TNF receptors are conserved in this receptor.
- the present invention also provides the mature form(s) of the
- TRl receptor proteins of the present invention According to the signal hypothesis, proteins secreted by mammalian cells have a signal or secretory leader sequence which is cleaved from the mature protein once export of the growing protein chain across the rough endoplasmic reticulum has been initiated. Most mammalian cells and even insect cells cleave secreted proteins with the same specificity. However, in some cases, cleavage of a secreted protein is not entirely uniform, which results in two or more mature species on the protein. Further, it has long been known that the cleavage specificity of a secreted protein is ultimately determined by the primary structure of the complete protein, that is, it is inherent in the amino acid sequence of the polypeptide.
- the present invention provides a nucleotide sequence encoding the mature TRl receptor polypeptides having the amino acid sequence encoded by the cDNA clone contained in the host identified as ATCC Deposit No. 75899 and as shown in Figure 1 (SEQ ID NO:2) and Figure 2 (SEQ ID NO:4).
- the mature TRl receptor having the amino acid sequence encoded by the cDNA clone contained in the host identified as ATCC Deposit No. 75899 is meant the mature form(s) of the TRl receptor protein produced by expression in a mammalian cell (e.g., COS cells, as described below) of the complete open reading frame encoded by the human DNA sequence of the clone contained in the vector in the deposited host.
- the mature TRl receptor having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 75899 may or may not differ from the predicted "mature" TRl receptor protein shown in Figure 1 (amino acids from about 22 to about 401) depending on the accuracy of the predicted cleavage site based on computer analysis.
- Methods for predicting whether a protein has a secretory leader as well as the cleavage point for that leader sequence are available because it is known that much of the cleavage specificity for a secretory protein resides in certain amino acid residues within the signal sequence and the N-terminus of the mature protein, particularly residues immediately surrounding the cleavage site. For instance, the method of McGeoch (Virus Res.
- TRl receptor polypeptides of the present invention were analyzed by a computer program ("PSORT").
- PSORT computer program
- This program is available from Dr. Kenta Nakai of the Institute for Chemical Research, Kyoto University (see K. Nakai and M. Kanehisa, Genomics 74:897-911 (1992)), which is an expert system for predicting the cellular location of a protein based on the amino acid sequence.
- the analysis by the PSORT program predicted the cleavage sites between amino acids 21 and 22 in Figure 1 (SEQ ID NO: 2) and Figure 2 (SEQ ID NO:4).
- the leader sequence for the native TRl receptor protein is predicted to consist of amino acid residues 1-21 in Figure 1 (SEQ ID NO:2), while the predicted mature native TRl receptor protein consists of residues 22-401, and the leader sequence for the carboxy terminus modified TRl receptor protein is predicted to consist of amino acid residues 1-21 in Figure 1 (SEQ ID NO:2)
- the actual leader sequence of the TRl receptor proteins of the present invention are predicted to be about 21 amino acids in length, but may be anywhere in the range of about 16 to about 27 amino acids.
- the TRl receptors of the present invention are soluble receptors and are secreted. However, they may also exist as membrane bound receptors having a transmembrane region and intra- and extracellular regions.
- the polypeptides of the present invention may bind TNF and lymphotoxin ligands or other TNF Iigand family members.
- polynucleotides which may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA.
- the DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand.
- the coding sequence which encodes the mature polypeptide may be identical to the coding sequence shown in Figure 1 (SEQ ID NO:l), Figure 2 (SEQ ID NO:3) or that of the deposited clone or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptide as the DNA of Figure 1 (SEQ ID NO:l), Figure 2 (SEQ ID NO:3) or the deposited cDNA.
- the polynucleotide which encodes for the mature polypeptide of Figure 1 (SEQ ID NO:2), Figure 2 (SEQ ID NO:4) or for the mature polypeptide encoded by the deposited cDNA may include: only the coding sequence for the mature polypeptide; the coding sequence for the mature polypeptide and additional coding sequence such as a leader or secretory sequence or a proprotein sequence; the coding sequence for the mature polypeptide (and optionally additional coding sequence) and non-coding sequence, such as introns or non- coding sequence 5' and/or 3' of the coding sequence for the mature polypeptide.
- polynucleotide encoding a polypeptide encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.
- the present invention further relates to variants of the hereinabove described polynucleotides which encode fragments, analogs and derivatives of the polypeptide having the deduced amino acid sequence of Figure 1 (SEQ ID NO:2), Figure 2 (SEQ ID NO:4), or the polypeptide encoded by the cDNA of the deposited clone.
- the variant of the polynucleotides may be naturally occurring allelic variant of the polynucleotide or non-naturally occurring variants of those polynucleotides.
- a fragment of an isolated nucleic acid molecule having the nucleotide sequence of the deposited cDNA or the nucleotide sequence shown in Figure 1 (SEQ ID NO: 1) or Figure 2 (SEQ ID NO:4) is intended fragments at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length which are useful as diagnostic probes and primers as discussed herein.
- fragments 50-1000 nt in length are also useful according to the present invention as are fragments corresponding to most, if not all, of the nucleotide sequence shown in Figure 1 (SEQ ID NO:l), Figure 2 (SEQ ID NO:3), of the deposited cDNA.
- a fragment at least 20 nt in length is intended fragments which include 20 or more contiguous bases from the nucleotide sequence of the deposited cDNA or the nucleotide sequence as shown in Figure 1 (SEQ ID NO: 1 ) or Figure 2 (SEQ ID NO:3).
- Preferred nucleic acid fragments of the present invention include nucleic acid molecules encoding epitope-bearing portions of the TRl receptor protein.
- nucleic acid fragments of the present invention include nucleic acid molecules encoding: a polypeptide comprising amino acid residues from about 20 to about 52 in Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4); a polypeptide comprising amino acid residues from about 66 to about 203 in Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4); a polypeptide comprising amino acid residues from about 229 to about 279 in Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4); and a polypeptide comprising amino acid residues from about 297 to about 378 in Figure 1 (SEQ ID NO:2).
- the present invention includes polynucleotides encoding the same mature polypeptide as shown in Figure 1 (SEQ ID NO:2) or the same mature polypeptide encoded by the cDN A of the deposited clone as well as variants of such polynucleotides which variants encode for a fragment, derivative or analog of the polypeptide of Figure 1 (SEQ ID NO:2) or the polypeptide encoded by the cDNA of the deposited clone.
- nucleotide variants include deletion variants, substitution variants and addition or insertion variants.
- the polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence shown in Figure 1 (SEQ ID NO:l), Figure 2 (SEQ ID NO:3), or of the coding sequence of the deposited clone.
- one particularly preferred variant is a TRl receptor containing a transmembrane domain inserted after amino acid residue about 260 or 261 in Figure 1 or Figure 2.
- an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide. Variants may occur naturally, such as a natural allelic variant.
- an "allelic variant” is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985). Non-naturally occurring variants may be produced using art-known mutagenesis techniques.
- variants include those produced by nucleotide substitutions, deletions or additions.
- the substitutions, deletions or additions may involve one or more nucleotides.
- the variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the TRl receptor proteins or portions thereof. Also especially preferred in this regard are conservative substitutions.
- nucleic acid molecules encoding the mature native TRl receptor protein having the amino acid sequence shown in Figure 1 (SEQ ID NO:2), the mature native TRl receptor amino acid sequence encoded by the deposited cDNA clone, or the mature carboxy terminus modified TRl receptor protein having the amino acid sequence shown in Figure 2 (SEQ ID NO:4).
- the present invention also includes polynucleotides, wherein the coding sequence for the mature polypeptide may be fused in the same reading frame to a polynucleotide sequence which aids in expression and secretion of a polypeptide from a host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell.
- the polypeptide having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to form the mature form of the polypeptide.
- the polynucleotides may also encode for a proprotein which is the mature protein plus additional 5' amino acid residues.
- a mature protein having a prosequence is a proprotein and is an inactive form of the protein. Once the prosequence is cleaved an active mature protein remains.
- Such isolated molecules, particularly DNA molecules are useful as probes for gene mapping, by in situ hybridization with chromosomes, and for detecting expression of the TRl receptor genes in human tissue, for instance, by Northern blot analysis.
- the polynucleotide of the present invention may encode for a mature protein, or for a protein having a prosequence or for a protein having both a prosequence and a presequence (leader sequence).
- isolated nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment
- recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention.
- DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution.
- Isolated RNA molecules include in vivo or in vitro RNA transcripts of the DNA molecules of the present invention.
- Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.
- the polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence which allows for purification of the polypeptide of the present invention.
- the marker sequence may be a hexa- histidine tag supplied by a pQE-9 vector to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or, for example, the marker sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g. COS-7 cells, is used.
- the HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al, Cell, 57:767 (1984)).
- the coding sequence may also be fused to a sequence which codes for a fusion protein such as an IgG Fc fusion protein.
- gene means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons). Fragments of the full length gene of the present invention may be used as a hybridization probe for a cDNA library to isolate the full length cDNA and to isolate other cDNAs which have a high sequence similarity to the gene or similar biological activity. Probes of this type preferably have at least 30 bases and may contain, for example, 50 or more bases.
- the probe may also be used to identify a cDNA clone corresponding to a full length transcript and a genomic clone or clones that contain the complete gene including regulatory and promotor regions, exons, and introns.
- An example of a screen comprises isolating the coding region of the gene by using the known DNA sequence to synthesize an oligonucleotide probe. Labeled oligonucleotides having a sequence complementary to that of the gene of the present invention are used to screen a library of human cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
- the present invention further relates to polynucleotides which hybridize to the hereinabove-described sequences if there is at least 80%, preferably at least
- the present invention particularly relates to polynucleotides which hybridize under stringent conditions to the hereinabove-described polynucleotides, for instance, the cDNA clone contained in ATCC Deposit 75899.
- stringent hybridization conditions is intended overnight incubation at 42 °C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 x SSC at about 65 °C.
- the polynucleotide may have at least 20 bases, preferably
- polynucleotide of the present invention 30 bases, and more preferably at least 50 bases which hybridize to a polynucleotide of the present invention and which has an identity thereto, as hereinabove described, and which may or may not retain activity.
- polynucleotides may be employed as probes for the polynucleotide of SEQ ID NO: 1 , for example, for recovery of the polynucleotide or as a diagnostic probe or as a PCR primer.
- polynucleotides hybridizing to a larger portion of the reference polynucleotide e.g., the deposited cDNA clone
- a portion 50-750 nt in length, or even to the entire length of the reference polynucleotide are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of the nucleotide sequence of the deposited cDNA or the nucleotide sequence as shown in Figure 1 (SEQ ID NO: 1 ) or Figure 2 (SEQ ID NO:3).
- such portions are useful diagnostically either as a probe according to conventional DNA hybridization techniques or as primers for amplification of a target sequence by the polymerase chain reaction (PCR), as described, for instance, in Molecular Cloning, A Laboratory Manual, 2nd. edition, Sambrook, J., Fritsch, E. F.
- restriction endonuclease cleavage or shearing by sonication of the TRl receptor cDNA clone could easily be used to generate DNA portions of various sizes which are polynucleotides that hybridize to a portion of the TRl receptor cDNA molecule.
- the hybridizing polynucleotides of the present invention could be generated synthetically according to known techniques.
- a polynucleotide which hybridizes only to a poly A sequence such as the 3' terminal poly(A) tract of the TRl receptor cDNA shown in Figure 1 (SEQ ID NO: 1 ), or to a complementary stretch of T (or U) resides, would not be included in a polynucleotide of the invention used to hybridize to a portion of a nucleic acid of the invention, since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).
- nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to (a) a nucleotide sequence encoding the full-length native TRl receptor polypeptide having the complete amino acid sequence in Figure 1 (SEQ ID NO:2) or a nucleotide sequence encoding the full-length carboxy terminus modified TRl receptor polypeptide having the complete amino acid sequence in Figure 2 (SEQ ID NO:4), including the predicted leader sequences; (b) a nucleotide sequence encoding the mature native TRl receptor polypeptide (full-length polypeptide with the leader removed) having the amino acid sequence at positions about 22 to about 401 in Figure 1 (SEQ ID NO:2) or a nucleotide sequence encoding the mature carboxy terminus modified TRl receptor polypeptide (full-length polypeptide wi the leader removed) having the amino acid sequence at
- a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence encoding a TRl receptor polypeptide is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the TRl receptor polypeptide.
- a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence.
- These mutations of the reference sequence may occur at the 5 ' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.
- nucleic acid molecule is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the nucleotide sequence shown in Figure 1 , Figure 2 or to the nucleotide sequence of the deposited cDNA clone can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package,
- the present application is directed to nucleic acid molecules at least 90%, 95%o, 96%o, 97%), 98% or 99%) identical to the nucleic acid sequence shown in Figure 1 (SEQ ID NO:l), or Figure 2 (SEQ ID NO:3), or to the nucleic acid sequence of the deposited cDNA, irrespective of whether they encode a polypeptide having TRl receptor activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having TRl receptor activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer.
- PCR polymerase chain reaction
- nucleic acid molecules of the present invention that do not encode a polypeptide having TRl receptor activity include, inter alia, (1) isolating the TRl receptor gene or allelic variants thereof in a cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the TRl receptor gene, as described in Verma et al, Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988); and Northern Blot analysis for detecting TRl receptor mRNA expression in specific tissues.
- FISH in situ hybridization
- nucleic acid molecules having sequences at least 90%), 95%, 96%, 97%), 98% or 99% identical to the nucleic acid sequence shown in Figure 1 (SEQ ID NO.T), Figure 2 (SEQ ID NO:3) or to the nucleic acid sequence of the deposited cDNA which do, in fact, encode a polypeptide having
- TRl receptor protein activity By “a polypeptide having TRl receptor activity” is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the TRl receptor protein of the invention (either the full-length protein or, preferably, the mature protein), as measured in a particular biological assay.
- TRl receptor protein activity can be measured using the binding affinity for a TRl- ⁇ Iigand or other molecule shown to bind to the native TRl receptor protein.
- the competitive binding assays shown in Figure 7 can be used to determine whether a candidate polypeptide has a binding affinity similar to that of the native TRl receptor described herein.
- a polypeptide having TRl receptor protein activity includes polypeptides that exhibit TRl receptor binding activity in the above-described assay.
- a polypeptide having TRl receptor protein activity will exhibit substantially similar activity as compared to the native TRl receptor protein.
- a polypeptide having TRl receptor protein activity will exhibit substantially similar activity as compared to the native TRl receptor protein.
- the nucleic acid sequence of the deposited cDNA or the nucleic acid sequence shown in Figure 1 (SEQ ID NO: 1 ) or Figure 2 (SEQ ID NO:3) will encode a polypeptide "having TRl receptor protein activity.”
- degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay.
- the first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection.
- the second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality.
- proteins are surprisingly tolerant of amino acid substitutions.
- the authors further indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described in Bowie et al, Science 247:1306-1310 (1990), and the references cited therein.
- the present invention further relates to a polypeptide which has the deduced amino acid sequence of Figure 1 (SEQ ID NO:2), Figure 2 (SEQ ID NO:4), or which has the amino acid sequence encoded by the deposited cDNA, as well as fragments, analogs and derivatives of such a polypeptide.
- fragment when referring to the polypeptide of Figure 1 (SEQ ID NO:2), Figure 2 (SEQ ID NO:4), or that encoded by the deposited cDNA, means a polypeptide which retains essentially the same biological function or activity as such a polypeptide.
- an analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.
- polypeptides of the present invention may be recombinant polypeptides, a natural polypeptides or synthetic polypeptides, preferably recombinant polypeptides. It will be recognized in the art that some amino acid sequences of the TRl receptor polypeptide can be varied without significant effect of the structure or function of the protein. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the protein.
- the invention further includes variations of the TRl receptor polypeptide which show substantial TRl receptor polypeptide activity or which include regions of TRl receptor protein such as the protein portions discussed below.
- Such mutants include deletions, insertions, inversions, repeats, and type substitutions (for example, substituting one hydrophilic residue for another, but not strongly hydrophilic for strongly hydrophobic as a rule). Small changes or such "neutral" amino acid substitutions will generally have little effect on activity.
- conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and He; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gin, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.
- amino acid residues may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence.
- a conserved or non-conserved amino acid residue preferably a conserved amino acid residue
- substituted amino acid residue may or may not be one encoded by the genetic code
- the TRl receptors of the present invention may include one or more amino acid substitutions, deletions or additions, either from natural mutations or human manipulation. Changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 1).
- Amino acids in the TRl receptors of the present invention that are essential for function can be identified by methods known in the art, such as site- directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as receptor binding or in vitro, or in vitro proliferative activity. Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al, J. Mol Biol 224:899-904 (1992) and de Vos et al Science 255:306-312 (1992)).
- polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
- a recombinantly produced version of the TRl receptor polypeptide can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988).
- polypeptides of the present invention include the polypeptide encoded by the deposited cDNA including the leader, the mature polypeptide encoded by the deposited cDNA minus the leader (i.e., the mature protein), the polypeptide of Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4) including the leader, the polypeptide of Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4) minus the leader, as well as polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 91%, 98% or 99%) similarity to those described above.
- polypeptides of the present invention include polypeptides at least 80% identical, more preferably at least 90% or 95% identical, still more preferably at least 96%, 91%, 98% or 99% identical to the polypeptide encoded by the deposited cDNA, to the polypeptide of Figure 1 (SEQ ID NO:2), the polypeptide of Figure 2 (SEQ ID NO:4), and also include portions of such polypeptides with at least 30 amino acids and more preferably at least 50 amino acids.
- similarity between two polypeptides is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one polypeptide to the sequence of a second polypeptide.
- % similarity for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, Wl 53711) and the default settings for determining similarity. Bestfit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2:482-489,
- a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a TRl receptor polypeptide is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of the TRl receptor polypeptides of the present invention.
- up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence.
- These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
- any particular polypeptide is at least 90%, 95%), 96%), 97%), 98%> or 99% identical to, for instance, the amino acid sequence shown in Figure 1 (SEQ ID NO:2), Figure 2 (SEQ ID NO:4), or to the amino acid sequence encoded by deposited cDNA clone can be determined conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 5371 1.
- the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.
- Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full-length polypeptides.
- Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention.
- the polypeptide of the present invention could be used as a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art.
- polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting TRl receptor protein expression as described below or as agonists and antagonists capable of enhancing or inhibiting TRl receptor protein function.
- polypeptides can be used in the yeast two-hybrid system to "capture" TRl receptor protein binding proteins which are also candidate agonist and antagonist according to the present invention.
- the yeast two hybrid system is described in Fields and Song, Nature 340:245-246 (1989).
- the present invention relates to the TRl receptor polypeptides of the present invention having an amino acid sequence further comprising a transmembrane domain.
- Such receptor polypeptides may be native or constructed from the TRl receptors described herein according to recombinant techniques.
- Methods for isolating a nucleotide sequence encoding a TRl receptor that contains a transmembrane domain include hybridizing nucleotide probes constructed from the sequence provided in Figure 1 (SEQ ID NO: 1 ) or Figure 2 (SEQ ID NO:3) with a cDNA library obtained from one or more of the above described tissue sources.
- transmembrane domains useful according to the present invention are the TNF-R2 transmembrane domain shown at amino acid residues from about 258 to about 287 in Figure 3 (bottom sequence) (SEQ ID NO:5).
- TNF-R2 transmembrane domain shown at amino acid residues from about 258 to about 287 in Figure 3 (bottom sequence) (SEQ ID NO:5).
- Other such TRl receptor transmembrane domains will be apparent to the those skilled in the art.
- the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention.
- the epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention.
- An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule.
- a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope.”
- the number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al, Proc. Natl Acad. Sci. USA 57:3998-4002 (1983).
- peptides or polypeptides bearing an antigenic epitope i.e., that contain a region of a protein molecule to which an antibody can bind
- relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe et al, Science 219:660-666 (1983).
- Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. Sutcliffe et al, supra, at 661.
- 18 of 20 peptides designed according to these guidelines containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.
- Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention.
- a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein.
- the antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing.
- the peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (e.g., about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays. See, for instance, Wilson et l, Cell 37:" ⁇ '6 ' '-778 (1984.
- the anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods well known in the art.
- Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention.
- peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30 to about 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein.
- the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.
- Non-limiting examples of antigenic polypeptides or peptides that can be used to generate TRl receptor-specific antibodies include: a polypeptide comprising amino acid residues from about 20 to about 52 in Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4); a polypeptide comprising amino acid residues from about 66 to about 203 in Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4); a polypeptide comprising amino acid residues from about 229 to about 279 in Figure 1 (SEQ ID NO:2) or Figure 2 (SEQ ID NO:4); a polypeptide comprising amino acid residues from about 297 to about 378 in Figure 1 (SEQ ID NO:2).
- the inventors have determined that the above polypeptide fragments are antigenic regions of the TRl receptor protein.
- the epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, a short epitope-bearing amino acid sequence may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis.
- Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks. Houghten, Proc. Natl Acad. Sci. USA 52:5131-5135 (1985). General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten et al. (1986).
- SMPS Simultaneous Multiple Peptide Synthesis
- Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al, supra; Chow et al, Proc. Natl Acad. Sci.
- mice may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid.
- KLH keyhole limpet hemacyanin
- peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde.
- Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 ⁇ g peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface.
- the titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.
- Immunogenic epitope-bearing peptides of the invention i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance,
- U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a Iigand which is complementary to the Iigand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten. et al (1996) on Peralkylated
- Oligopeptide Mixtures discloses linear C.- -alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest.
- non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.
- TRl Receptor Polypeptides and Fragments are hereby incorporated herein by reference.
- TRl receptor polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo.
- IgG immunoglobulins
- Vectors and Host Cells The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
- Host cells are genetically engineered (transduced, transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector.
- the vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc.
- the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the nucleic acid sequences of the present invention.
- the culture conditions such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
- the polynucleotides of the present invention may be employed for producing polypeptides by recombinant techniques.
- the polynucleotide may be included in any one of a variety of expression vectors for expressing a polypeptide.
- Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies.
- any other vector may be used as long as it is replicable and viable in the host.
- the appropriate DNA sequence may be inserted into the vector by a variety of procedures.
- the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.
- the DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis.
- promoter for example, LTR or SV40 promoter, the E. coli. lac or trp, the phage lambda P L promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses.
- the expression vector also contains a ribosome binding site for translation initiation and a transcription terminator.
- the vector may also include appropriate sequences for amplifying expression.
- the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.
- the vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.
- bacterial cells such as E. coli, Streptomyces, Salmonella typhimu um
- fungal cells such as yeast
- insect cells such as Drosophila S2 and Spodoptera Sf9
- animal cells such as CHO, COS or Bowes melanoma
- adenoviruses plant cells, etc.
- the selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein. More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above.
- the constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation.
- the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence.
- regulatory sequences including, for example, a promoter, operably linked to the sequence.
- Bacterial pQE70, pQE60, pQE-9 (Qiagen), pBS, pDIO, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNHl ⁇ a, pNH18A, pNH46A (Stratagene); pTRC99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia).
- Eukaryotic pWLNEO, pSV2CAT, pOG44, pXTl, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host. Promoter regions can be selected from any desired gene using CAT
- bacterial promoters include lad, lacZ, T3, T7, gpt, lambda P R , P L and tip.
- Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
- the present invention relates to host cells containing the above-described constructs.
- the host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
- Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis, L., Dibner, M., Battey, I., Basic Methods in Molecular Biology, (1986)).
- the constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence.
- the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.
- Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.
- Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference. Transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Examples including the SV40 enhancer on the late side of the replication origin bp 100 to
- a cytomegalovirus early promoter enhancer the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
- recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and 5". cerevisiae TRPl gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence.
- promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), ⁇ -factor, acid phosphatase, or heat shock proteins, among others.
- the heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium.
- the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.
- Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter.
- the vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host.
- Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.
- useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017).
- cloning vector pBR322 ATCC 37017
- Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.
- the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.
- Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well know to those skilled in the art.
- mammalian cell culture systems can also be employed to express recombinant protein.
- mammalian expression systems include the
- COS-7 lines of monkey kidney fibroblasts described by Gluzman, Cell 25:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.
- Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
- polypeptide of the present invention can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.
- HPLC high performance liquid chromatography
- polypeptides of the present invention may be a naturally purified product, or a product of chemical synthetic procedures, or produced by recombinant techniques from a prokaryotic or eukaryotic host (for example, by bacterial, yeast, higher plant, insect and mammalian cells in culture). Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.
- secretion signals may be incorporated into the expressed polypeptide.
- the signals may be endogenous to the polypeptide or they may be heterologous signals.
- the polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art.
- a preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to solubilize proteins.
- EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobin molecules together with another human protein or part thereof.
- the Fc part in a fusion protein is thoroughly advantageous for use in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232 262).
- Fc portion proves to be a hindrance to use in therapy and diagnosis, for example when the fusion protein is to be used as antigen for immunizations.
- human proteins such as, ML5- has been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See, Bennett et al , Journal of Molecular Recognition, 5:52-58 (1995) and Johanson e/ al, The Journal of
- the TRl receptor protein can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.
- Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells.
- polypeptides of the present invention may be glycosylated or may be non-glycosylated.
- polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.
- TRl Receptor Use for Detection of Disease States
- TRl receptor of the present invention binds both TNF- ⁇ and TNF- ⁇ but has a higher affinity for TNF- ⁇ . See Figure
- TNF- ⁇ a potent Iigand of the TNF receptor proteins
- TNF receptor proteins a potent Iigand of the TNF receptor proteins
- lymphocyte development tumor necrosis
- induction of an antiviral state activation of polymorphonuclear leukocytes
- induction of class I major histocompatibility complex antigens on endothelial cells induction of adhesion molecules on endothelium and growth hormone stimulation (Ruddle and Homer, Prog. Allergy, 40. 162-182 (1988)).
- TNF- ⁇ also a Iigand of the TRl receptors of the present invention, has been reported to have a role in the rapid necrosis of tumors, immunostimulation, autoimmune disease, graft rejection, producing an anti-viral response, septic shock, cerebral malaria, cytotoxicity, protection against deleterious effects of ionizing radiation produced during a course of chemotherapy, such as denaturation of enzymes, lipid peroxidation and DNA damage (Nata et al, J. Immunol. 756(7 ⁇ :2483 (1987)), growth regulation, vascular endothelium effects and metabolic effects.
- TNF- ⁇ also triggers endothelial cells to secrete various factors, including PAI-1, IL-1, GM-CSF and IL-6 to promote cell proliferation.
- TNF- ⁇ up-regulates various cell adhesion molecules such as E- Selectin, ICAM-1 and VCAM-1. TNF- ⁇ and the Fas Iigand have also been shown to induce programmed cell death.
- TRl receptor protein when compared to a corresponding "standard" mammal, i.e., a mammal of the same species not having the cancer.
- a mammal of the same species not having the cancer For example, the inventors have found that osteosarcoma, ovarian carcinoma, monocyte leukemia, and lung emphysemia cells express the TRl receptor protein of the present invention. Further, since this protein is secreted, it is believed that enhanced levels of the TRl receptor protein can be detected in certain body fluids (e.g., sera, plasma, urine, and spinal fluid) from mammals with cancer when compared to sera from mammals of the same species not having the cancer.
- body fluids e.g., sera, plasma, urine, and spinal fluid
- the invention provides a diagnostic method useful during tumor diagnosis and possibly other disease states, which involves assaying the expression level of the gene encoding the TRl receptor protein in mammalian cells or body fluid and comparing the gene expression level with a standard TRl receptor gene expression level, whereby an increase or decrease in the gene expression level over the standard is indicative of certain tumors.
- the present invention is useful as a prognostic indicator, whereby patients exhibiting significantly ehanced TRl receptor gene expression will experience a worse clinical outcome relative to patients expressing the gene at a lower level.
- testing the expression level of the gene encoding the TRl receptor protein is intended qualitatively or quantitatively measuring or estimating the level of the TRl receptor protein or the level of the mRNA encoding the TRl receptor protein in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the TRl receptor protein level or mRNA level in a second biological sample).
- the TRl receptor protein level or mRNA level in the first biological sample is measured or estimated and compared to a standard TRl receptor protein level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the cancer.
- a standard TRl receptor protein level or mRNA level is known, it can be used repeatedly as a standard for comparison.
- biological sample is intended any biological sample obtained from an individual, cell line, tissue culture, or other source which contains TRl receptor protein or mRNA.
- Biological samples include mammalian body fluids (such as sera, plasma, urine, synovial fluid and spinal fluid) which contain secreted mature TRl receptor protein, and thymus, prostate, heart, placenta, muscle, liver, spleen, lung, kidney and umbilical tissue. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source. The present invention is useful for detecting cancer and other disease states in mammals. In particular the invention is useful during diagnosis of cancer resulting from the proliferation of osteoblastoma cells.
- Total cellular RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol- chloroform method described in Chomczynski and Sacchi, Anal Biochem. 762:156-159 (1987). Levels of mRNA encoding the TRl receptor protein are then assayed using any appropriate method. These include Northern blot analysis, SI nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).
- PCR polymerase chain reaction
- RT-PCR reverse transcription in combination with the polymerase chain reaction
- RT-LCR reverse transcription in combination with the ligase chain reaction
- RNA is prepared from a biological sample as described above.
- an appropriate buffer such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer
- the filter is prehybridized in a solution containing formamide, SSC, Denhardt's solution, denatured salmon sperm, SDS, and sodium phosphate buffer.
- TRl receptor protein cDNA labeled according to any appropriate method such as the 32 P-multiprimed DNA labeling system (Amersham) is used as probe. After hybridization overnight, the filter is washed and exposed to x-ray film.
- cDNA for use as probe according to the present invention is described in the sections above and will preferably at least 15 bp in length.
- SI mapping can be performed as described in Fujita et al, Cell 49:357- 367 (1987).
- probe DNA for use in SI mapping, the sense strand of above-described cDNA is used as a template to synthesize labeled antisense DNA.
- the antisense DNA can then be digested using an appropriate restriction endonuclease to generate further DNA probes of a desired length.
- Such antisense probes are useful for visualizing protected bands corresponding to the target mRNA (i.e., mRNA encoding the TRl receptor protein).
- Northern blot analysis can be performed as described above.
- levels of mRNA encoding the TRl receptor protein are assayed using the RT-PCR method described in Makino et al,
- this method involves adding total RNA isolated from a biological sample in a reaction mixture containing a RT primer and appropriate buffer. After incubating for primer annealing, the mixture can be supplemented with a RT buffer, dNTPs, DTT, RNase inhibitor and reverse transcriptase. After incubation to achieve reverse transcription of the RNA, the RT products are then subject to PCR using labeled primers. Alternatively, rather than labeling the primers, a labeled dNTP can be included in the PCR reaction mixture.
- PCR amplification can be performed in a DNA thermal cycler according to conventional techniques. After a suitable number of rounds to achieve amplification, the PCR reaction mixture is electrophoresed on a polyacrylamide gel. After drying the gel, the radioactivity of the appropriate bands (corresponding to the mRNA encoding the TRl receptor protein)) is quantified using an imaging analyzer.
- RT and PCR reaction ingredients and conditions, reagent and gel concentrations, and labeling methods are well known in the art. Variations on the RT-PCR method will be apparent to the skilled artisan.
- oligonucleotide primers which will amplify reverse transcribed target mRNA can be used and can be designed as described in the sections above.
- TRl receptor protein levels in a biological sample can occur using any art-known method.
- Preferred for assaying TRl receptor protein levels in a biological sample are antibody-based techniques.
- TRl receptor protein expression in tissues can be studied with classical immunohistological methods. In these, the specific recognition is provided by the primary antibody
- tissue section for pathological examination is obtained.
- Tissues can also be extracted, e.g., with urea and neutral detergent, for the liberation of TRl receptor protein for Western-blot or dot/slot assay
- TRl receptor protein can be accomplished using isolated TRl receptor protein as a standard. This technique can also be applied to body fluids. With these samples, a molar concentration of TRl receptor protein will aid to set standard values of TRl receptor protein content for different body fluids, like serum, plasma, urine, spinal fluid, etc. The normal appearance of TRl receptor protein amounts can then be set using values from healthy individuals, which can be compared to those obtained from a test subject.
- the present invention further relates to a diagnostic assay which detects an altered level of a soluble form of the polypeptide of the present invention where an elevated level in a sample derived from a host is indicative of certain diseases.
- Assays available to detect levels of soluble receptors are well known to those of skill in the art, for example, radioimmunoassays, competitive-binding assays, Western blot analysis, and preferably an ELISA assay may be employed.
- An ELISA assay initially comprises preparing an antibody specific to an antigen to the polypeptide of the present invention, preferably a monoclonal antibody.
- a reporter antibody is prepared against the monoclonal antibody.
- a detectable reagent such as radioactivity, fluorescence or in this example a horseradish peroxidase enzyme.
- a sample is now removed from a host and incubated on a solid support, e.g. a polystyrene dish, that binds the proteins in the sample. Any free protein binding sites on the dish are then covered by incubating with a non-specific protein such as bovine serum albumen.
- the monoclonal antibody is incubated in the dish during which time the monoclonal antibodies attach to any proteins of the present invention which are attached to the polystyrene dish. All unbound monoclonal antibody is washed out with buffer.
- the reporter antibody linked to horseradish peroxidase is now placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to the polypeptide of the present invention. Unattached reporter antibody is then washed out.
- Peroxidase substrates are then added to the dish and the amount of color developed in a given time period is a measurement of the amount of the protein of interest present in a given volume of patient sample when compared against a standard curve.
- a competition assay may be employed wherein antibodies specific to the polypeptides of the present invention are attached to a solid support. Labeled TRl receptor polypeptides, and a sample derived from the host are passed over the solid support and the amount of label detected attached to the solid support can be correlated to a quantity in the sample.
- the soluble form of the receptor may also be employed to identify agonists and antagonists.
- Suitable enzyme labels include, for example, those from the oxidase group, which catalyze the production of hydrogen peroxide by reacting with substrate.
- Glucose oxidase is particularly preferred as it has good stability and its substrate (glucose) is readily available.
- Activity of an oxidase label may be assayed by measuring the concentration of hydrogen peroxide formed by the enzyme-labeled antibody/substrate reaction.
- radioisotopes such as iodine ( 125 I, ,2, I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium (' I2 In), and technetium ( 99m Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.
- TRl receptor protein can also be detected in vivo by imaging.
- Antibody labels or markers for in vivo imaging of TRl receptor protein include those detectable by X-radiography, NMR or ESR.
- suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject.
- Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.
- a TRl receptor protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety such as a radioisotope (for example, 131 I, 112 In, 99m Tc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for cancer.
- a radioisotope for example, 131 I, 112 In, 99m Tc
- a radio-opaque substance for example, parenterally, subcutaneously or intraperitoneally
- the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99m Tc.
- the labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain TRl receptor protein.
- In vivo tumor imaging is described in S.W. Burchiel et al, "Immunopharmacokinetics of Radiolabelled Antibodies and Their Fragments" (Chapter 13 in Tumor Imaging.The Radiochemical Detection of Cancer, S.W. Burchiel and B.A. Rhodes, eds., Masson Publishing Inc. (1982)).
- TRl receptor-protein specific antibodies for use in the present invention can be raised against the intact TRl receptor protein or an antigenic polypeptide fragment thereof, which may presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier.
- a carrier protein such as an albumin
- antibody As used herein, the term "antibody” (Ab) or “monoclonal antibody” (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab') 2 fragments) which are capable of specifically binding to TRl receptor protein.
- Fab and F(ab') 2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding of an intact antibody (Wahl et al, J. Nucl Med. 24:316-325 (1983)). Thus, these fragments are preferred.
- the antibodies of the present invention may be prepared by any of a variety of methods. For example, cells expressing the TRl receptor protein or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies.
- a preparation of TRl receptor protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.
- the antibodies of the present invention are monoclonal antibodies (or TRl receptor protein binding fragments thereof).
- Such monoclonal antibodies can be prepared using hybridoma technology (Kohler et al, Nature 256:495 (1975); Kohler et al, Eur. J. Immunol.
- Such procedures involve immunizing an animal (preferably a mouse) with a TRl receptor protein antigen or, more preferably, with a TRl receptor protein-expressing cell. Suitable cells can be recognized by their capacity to bind anti-TRl receptor protein antibody.
- Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/1 of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 ⁇ g/ml of streptomycin.
- the splenocytes of such mice are extracted and fused with a suitable myeloma cell line.
- Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP 2 O), available from the American Type Culture Collection, Rockville, Maryland.
- the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 50:225-232 ( 1981 )). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the TRl receptor protein antigen.
- TRl receptor-protein specific antibodies are used to immunize an animal, preferably a mouse.
- the splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the TRl receptor protein-specific antibody can be blocked by the TRl receptor protein antigen.
- Such antibodies comprise anti-idiotypic antibodies to the TRl receptor protein-specific antibody and can be used to immunize an animal to induce formation of further TRl receptor protein-specific antibodies.
- Fab and F(ab') 2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein.
- Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab') 2 fragments).
- enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab') 2 fragments).
- TRl receptor protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.
- chimeric monoclonal antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. See, for review, Morrison, Science 229:1202 (1985); Oi et al, BioTechniques 4:214 (1986); Cabilly et al, U.S. Patent No.
- suitable labels for the TRl receptor protein-specific antibodies of the present invention are provided below.
- suitable enzyme labels include malate dehydrogenase, staphylococcal nuclease, delta- 5 -steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterasc.
- radioisotopic labels examples include 3 H, '"In, l25 I, 131 1, 32 P, 5 S, »C, 51 Cr, 57 To, 58 Co, 59 Fe, 75 Se, ,52 Eu, 90 Y, 67 Cu, ,7 Ci, 2 "At, 212 Pb, 47 Sc, ,09 Pd, etc.
- '"In is a preferred isotope where in vivo imaging is used since its avoids the problem of dehalogenation of the l25 I or I31 I-labeled monoclonal antibody by the liver.
- this radionucleotide has a more favorable gamma emission energy for imaging (Perkins et al, Eur. J. Nucl Med.
- non-radioactive isotopic labels examples include ,57 Gd, 55 Mn, l62 Dy, 52 Tr, and 56 Fe.
- fluorescent labels examples include an 152 Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycoerythrin label, a phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, and a fluorescamine label.
- Suitable toxin labels include diphtheria toxin, ricin, and cholera toxin.
- chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.
- nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron-
- Typical techniques for binding the above-described labels to antibodies are provided by Kennedy et al, Clin. Chim. Ada 70:1-31 (1976), and Schurs et al , Clin. Chim. Ada 81 : 1 -40 ( 1977). Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.
- the present invention is directed to a method for enhancing an activity (e.g. cell proliferation, hematopoietic development, apoptosis) of a TRl receptor of the present invention, which involves administering to a cell which expresses a TRl receptor polypeptide an effective amount of an agonist capable of increasing TRl receptor mediated signaling.
- TRl receptor mediated signaling is increased to treat a disease.
- the present invention is directed to a method for inhibiting an activity of a TRl receptor of the present invention, which involves administering to a cell which expresses the TRl receptor polypeptide an effective amount of an antagonist capable of decreasing TRl receptor mediated signaling.
- TRl receptor mediated signaling is decreased to also treat a disease.
- agonist is intended naturally occurring and synthetic compounds capable of enhancing or potentiating an activity of a TRl receptor of the present invention.
- antagonist is intended naturally occurring and synthetic compounds capable of inhibiting an activity of a TRl receptor. Whether any candidate "agonist” or “antagonist” of the present invention can enhance or inhibit an activity can be determined using art-known TRl -family ligand/receptor cellular response assays, including those described in more detail below.
- Another method involves screening for compounds which inhibit activation of the receptor polypeptide of the present invention by determining inhibition of binding of labeled Iigand to cells which have the receptor on the surface thereof.
- a TRl receptor of the present invention which includes a transmembrane spanning amino acid sequence and involves transfecting a eukaryotic cell with DNA encoding the receptor such that the cell expresses the receptor on its surface and contacting the cell with a compound in the presence of a labeled form of a known Iigand.
- the Iigand can be labeled, e.g., by radioactivity.
- the amount of labeled Iigand bound to the receptors is measured, e.g., by measuring radioactivity of the receptors. If the compound binds to the receptor as determined by a reduction of labeled
- Iigand which binds to the receptors, the binding of labeled Iigand to the receptor is inhibited.
- a screening method for determining whether a candidate agonist or antagonist is capable of enhancing or inhibiting a cellular response to a TRl receptor Iigand.
- the method involves contacting cells which express the TRl receptor polypeptide with a candidate compound and a Iigand, assaying a cellular response, and comparing the cellular response to a standard cellular response, the standard being assayed when contact is made with the Iigand in absence of the candidate compound, whereby an increased cellular response over the standard indicates that the candidate compound is an agonist of the ligand receptor signaling pathway and a decreased cellular response compared to the standard indicates that the candidate compound is an antagonist of the ligand/receptor signaling pathway.
- saying a cellular response is intended qualitatively or quantitatively measuring a cellular response to a candidate compound and/or a TRl receptor Iigand (e.g., determining or estimating an increase or decrease in T-cell proliferation or tritiated thymidine labeling).
- a cell expressing the TRl receptor polypeptide can be contacted with either an endogenous or exogenously administered receptor Iigand.
- Agonist according to the present invention include naturally occurring and synthetic compounds such as, for example, TNF family Iigand peptide fragments, transforming growth factor ⁇ , neurotransmitters (such as glutamate, dopamine, N-methyl-D-aspartate), tumor suppressors (p53), cytolytic T-cells and antimetabolites.
- Preferred agonists include chemotherapeutic drugs such as, for example, cisplatin, doxorubicin, bleomycin, cytosine arabinoside, nitrogen mustard, methotrexate and vincristine. Others include ethanol and ⁇ -amyloid peptide. (Science 267:1457-1458 (1995)).
- agonists include polyclonal and monoclonal antibodies raised against the TRl receptor polypeptide, or a fragment thereof.
- Such agonist antibodies raised against a TNF- family receptors are disclosed in Tartaglia et al, Proc. Natl Acad. Sci. USA 88:9292-9296 (1991); and Tartaglia and Goeddel, J. Biol. Chem. 267(7):4304- 4307 (1992) See, also, PCT Application WO 94/09137.
- Antagonist according to the present invention include naturally occurring and synthetic compounds such as, for example, the CD40 Iigand, neutral amino acids, zinc, estrogen, androgens, viral genes (such as Adenovirus EIB, Baculovirus p35 and LAP, Cowpox virus crmA, Epstein-Barr virus BHRF1, LMP- /, African swine fever virus LMW5-HL, and Herpesvirus ⁇ l 34.5), calpain inhibitors, cysteine protease inhibitors, and tumor promoters (such as PMA, Phenobarbital, and ⁇ -Hexachlorocyclohexane).
- viral genes such as Adenovirus EIB, Baculovirus p35 and LAP, Cowpox virus crmA, Epstein-Barr virus BHRF1, LMP- /, African swine fever virus LMW5-HL, and Herpesvirus ⁇ l 34.5
- calpain inhibitors such as PMA, Phenobarbit
- antagonists include polyclonal and monoclonal antagonist antibodies raised against the TRl receptor polypeptides or a fragment thereof.
- Such antagonist antibodies raised against a TNF-family receptor are described in Tartaglia and Goeddel, J. Biol. Chem.
- Antisense molecules can be used to control gene expression through antisense DNA or RNA or through triple-helix formation. Antisense techniques are discussed, for example, in Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance Lee et al, Nucleic Acids Research 10-1573 (1979); Cooney et al, Science 247:456 (1988); and Dervan et al, Science 257:1360 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA.
- the 5' coding portion of a polynucleotide that encodes the mature polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length.
- a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of the receptor.
- the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into receptor polypeptide.
- the oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of the receptor.
- Further antagonist according to the present invention include soluble TRl receptor fragments, e.g., TRl receptor fragments that include the Iigand binding domain from the extracellular region of the full length receptor.
- TRl receptor fragments e.g., TRl receptor fragments that include the Iigand binding domain from the extracellular region of the full length receptor.
- Such soluble forms of the receptor which may be naturally occurring or synthetic, antagonize TRl receptor mediated signaling by competing with the cell surface forms of the TRl receptor for binding to TNF-family ligands.
- antagonists include soluble forms of the receptor that contain the Iigand binding domains of the polypeptides of the present invention.
- polyclonal and monoclonal antibody agonist or antagonist according to the present invention can be raised according to the methods disclosed in Tartaglia and Goeddel, J. Biol. Chem. 267(7):4304-4307(1992)); Tartaglia et al, Cell 75:213-216 (1993)), and PCT Application WO 94/09137.
- antibody or “monoclonal antibody” (mAb) as used herein is meant to include intact molecules as well as fragments thereof (such as, for example, Fab and F(ab') 2 fragments) which are capable of binding an antigen.
- TRl receptor immunogens include the full length TRl receptor polypeptide (which may or may not include the leader sequence) and TRl receptor polypeptide fragments such as the Iigand binding domain, the extracellular domain and the intracellular domain.
- antibodies according to the present invention are mAbs.
- Such mAbs can be prepared using hybridoma technology (Kohler and Millstein, Nature 256:495-497 (1975) and U.S. Patent No. 4,376,110; Harlow et al, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press,
- Thymocytes which have been shown to express the TRl receptor of the present invention, can be used in a proliferation assay to identify both ligands and potential agonists and antagonists to the polypeptide of the present invention.
- thymus cells are disaggregated from tissue and grown in culture medium. Incorporation of DNA precursors such as 3 H-thymidine or 5-bromo-2'- deoxyuridine (BrdU) is monitored as a parameter for DNA synthesis and cellular proliferation. Cells which have incorporated BrdU into DNA can be detected using a monoclonal antibody against BrdU and measured by an enzyme or fluorochrome-conjugated second antibody. The reaction is quantitated by fluorimetry or by spectrophotometry.
- TNF- ⁇ is added to all wells, while soluble receptors of the present invention are added to the experimental well. Also added to the experimental well is a compound to be screened. The ability of the compound to be screened to inhibit the interaction of TNF- ⁇ with the receptor polypeptides of the present invention may then be quantified. In the case of the agonists, the ability of the compound to enhance this interaction is quantified.
- a determination may be made whether a Iigand not known to be capable of binding to the polypeptide of the present invention can bind thereto comprising contacting a mammalian cell comprising an isolated molecule encoding a polypeptide of the present invention with a Iigand under conditions permitting binding of ligands known to bind thereto, detecting the presence of any bound Iigand, and thereby determining whether such ligands bind to a polypeptide of the present invention.
- a soluble form of the receptor may utilized in the above assay where it is secreted in to the extra-cellular medium and contacted with ligands to determine which will bind to the soluble form of the receptor.
- agonist and antagonist screening procedures involve providing appropriate cells which express the receptor on the surface thereof.
- a polynucleotide encoding a polypeptide of the present invention is employed to transfect cells to thereby express the polypeptide. Such transfection may be accomplished by procedures as hereinabove described.
- such assay may be employed for screening for a receptor antagonist by contacting the cells which encode the polypeptide of the present invention with both the receptor Iigand and a compound to be screened. Inhibition of the signal generated by the Iigand indicates that a compound is a potential antagonist for the receptor, i.e., inhibits activation of the receptor.
- Proteins and other compounds which bind the TRl receptor domains are also candidate agonist and antagonist according to the present invention.
- Such binding compounds can be "captured” using the yeast two-hybrid system (Fields and Song, Nature 540:245-246 (1989).
- a modified version of the yeast two- hybrid system has been described by Roger Brent and his colleagues (Gyuris, et al, Cell 75:791-803 (1993); Zervos,e/ ⁇ /., Cell 72:223 -232 (1993)). Briefly, a domain of the TRl receptor polypeptide is used as bait for binding compounds.
- yeast two-hybrid system is used according to the present invention to capture compounds which bind to either the TRl receptor Iigand binding domain or to the TRl receptor intracellular domain.
- Such compounds are good candidate agonist and antagonist of the present invention.
- This system has been used previously to isolate proteins which bind to the intracellular domain of the p55 and p75 TNF receptors (WO 95/31544).
- amino acid sequences are identified which bind to the TRl receptor, these sequences can be screened for agonist or antagonist activity using, for example, the thymocyte proliferation assay described above.
- Another assay which can be performed to identify agonists and antagonists of the TRl receptors of the present invention involves the use of combinatorial chemistry to produce random peptides which then can be screened for both binding affinity the TRl receptors and agonistic or antagonistic effects.
- One such assay has recently been performed using random peptides expressed on the surface of a bacteriophage. Wu, Nature Biotechnology 74:429-431. In this instance a phage display library was produced which displayed a vast array of peptides on the surface of the phage.
- the phage of this library were then injected into mice and phage expressing peptides which bound to various organs were then identified.
- the DNA contained in the phage bound to the organs was then sequenced to identify peptide motifs which are capable of interacting with the surfaces of cells in each organ.
- a random peptide library could also be screened for motifs which bind to the surface of the TRl receptors of the present invention. After such motifs are identified, these peptides can then be screened for agonistic or antagonistic activity using the assays described herein.
- screening techniques include the use of cells which express the polypeptide of the present invention (for example, transfected CHO cells) in a system which measures extracellular pH changes caused by receptor activation, for example, as described in Science, 246: 181-296 (1989).
- potential agonists or antagonists may be contacted with a cell which expresses the polypeptide of the present invention and a second messenger response, e.g., signal transduction may be measured to determine whether the potential antagonist or agonist is effective.
- TRl receptor antagonists also include a small molecule which binds to and occupies the TRl receptor thereby making the receptor inaccessible to ligands which bind thereto such that normal biological activity is prevented.
- small molecules include but are not limited to small peptides or peptide-like molecules.
- TRl receptor agonists may be employed to stimulate Iigand activities, such as inhibition of tumor growth and necrosis of certain transplantable tumors.
- the agonists may also be employed to stimulate cellular differentiation, for example, T-cell, fibroblasts and haemopoietic cell differentiation. Agonists to the TRl receptor may also augment TRl's role in the host's defense against microorganisms and prevent related diseases (infections such as that from L. monocytogenes) and Chlamidiae.
- the agonists may also be employed to protect against the deleterious effects of ionizing radiation produced during a course of radiotherapy, such as denaturation of enzymes, lipid peroxidation, and DNA damage.
- the agonists may also be employed to mediate an anti-viral response, to regulate growth, to mediate the immune response and to treat immunodeficiencies related to diseases such as HIV.
- Antagonists to the TRl receptor may be employed to treat autoimmune diseases, for example, graft versus host rejection and allograft rejection, and T- cell mediated autoimmune diseases. It has been shown that T-cell proliferation is stimulated via a type 2 TNF receptor. Accordingly, antagonizing the receptor may prevent the proliferation of T-cells and treat T-cell mediated autoimmune diseases.
- the antagonists may also be employed to prevent apoptosis, which is the basis for diseases such as viral infection, rheumatoid arthritis, systemic lupus erythematosus, insulin-dependent diabetes mellitus, and graft rejection. Similarly, the antagonists may be employed to prevent cytotoxicity.
- the antagonists to the TRl receptor may also be employed to treat B cell cancers which are stimulated by TRl .
- Antagonists to the TRl receptor may also be employed to treat and/or prevent septic shock, which remains a critical clinical condition. Septic shock results from an exaggerated host response, mediated by protein factors such as TNF and IL-1 , rather than from a pathogen directly. For example, lipopolysaccharides have been shown to elicit the release of TNF leading to a strong and transient increase of its serum concentration. TNF causes shock and tissue injury when administered in excessive amounts. Accordingly, it ib s believed that antagonists to the TRl receptor will block the actions of TNF and treat/prevent septic shock.
- TRl receptor antagonists may also be employed to treat meningococcemia in children which correlates with high serum levels of TNF.
- inflammation which is mediated by TNF receptor ligands
- bacterial infections cachexia and cerebral malaria.
- TRl receptor antagonists may also be employed to treat inflammation mediated by ligands to the receptor such as TNF.
- TRl receptors may also be useful for providing treatment for AIDS in that TNF- ⁇ is involved in the development of lymphocytes.
- compositions comprise a therapeutically effective amount of the soluble receptor or agonist or antagonist, and a pharmaceutically acceptable carrier or excipient.
- a carrier includes but is not limited to saline, buffered saline, dextrose, water, glycerol. ethanol, and combinations thereof. The formulation should suit the mode of administration.
- the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
- a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
- Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- the soluble form of the receptor and agonists and antagonists of the present invention may also be employed in conjunction with other therapeutic compounds.
- the pharmaceutical compositions may be administered in a convenient manner such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes.
- the pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 10 ⁇ g/kg body weight and in most cases they will be administered in an amount not in excess of about 8 mg/Kg body weight per day. In most cases, the dosage is from about 10 ⁇ g/kg to about 1 mg/kg body weight daily, taking into account the routes of administration, symptoms, etc.
- the TRl receptor polypeptide is also suitably administered by sustained- release systems.
- sustained-release compositions include semi -permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules.
- Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L- glutamate (Sidman. et al, Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (Langer et al, J. Biomed. Mater. Res.
- Sustained- release TRl receptor polypeptide compositions also include liposomally entrapped TRl receptor polypeptide. Liposomes containing TRl receptor polypeptide are prepared by methods known per se : DE 3 ,218 , 121 ; Epstein et al , Proc. Natl Acad. Sci. (USA) 52:3688-3692 (1985); Hwang et al, Proc. Nat Acad. Sci.
- the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal TRl receptor polypeptide therapy.
- the TRl receptor polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.
- a pharmaceutically acceptable carrier i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.
- the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.
- the formulations are prepared by contacting the TRl receptor polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation.
- the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non- aqueous vehicles such as fixed oils and ethyl oleate are also ⁇ seful herein, as well as liposomes.
- the carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability.
- additives such as substances that enhance isotonicity and chemical stability.
- Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbi
- TRl receptor polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of TRl receptor polypeptide salts.
- TRl receptor polypeptide to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic TRl receptor polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- a sterile access port for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- TRl receptor polypeptide ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution.
- a lyophilized formulation 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous TRl receptor polypeptide solution, and the resulting mixture is lyophilized.
- the infusion solution is prepared by reconstituting the lyophilized TRl receptor polypeptide using bacteriostatic Water-for-Injection.
- the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
- a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
- Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.
- TRl receptor and agonists and antagonists which are polypeptides may also be employed in accordance with the present invention by expression of such polypeptides in vivo, which is often referred to as "gene therapy.”
- cells from a patient may be engineered with a polynucleotide (DNA or RNA) encoding a polypeptide ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide.
- a polynucleotide DNA or RNA
- cells may be engineered by procedures known in the art by use of a retroviral particle containing RNA encoding a polypeptide of the present invention.
- cells may be engineered in vivo for expression of a polypeptide in vivo by, for example, procedures known in the art.
- a producer cell for producing a retroviral particle containing RNA encoding the polypeptide of the present invention may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo.
- the expression vehicle for engineering cells may be other than a retrovirus, for example, an adenovirus which may be used to engineer cells in vivo after combination with a suitable delivery vehicle.
- Retroviruses from which the retroviral plasmid vectors hereinabove mentioned may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus,
- the retroviral plasmid vector is derived from Moloney Murine Leukemia Virus.
- the vector includes one or more promoters.
- Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and the human cytomegalovirus (CMV) promoter described in Miller et al, Biotechniques, 7 9):980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, the histone, pol III, and ⁇ -actin promoters).
- Other viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein.
- the nucleic acid sequence encoding the polypeptide of the present invention is under the control of a suitable promoter.
- suitable promoters which may be employed include, but are not limited to, adenoviral promoters, such as the adenoviral major late promoter; or hetorologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs (including the modified retroviral LTRs hereinabove described); the ⁇ -actin promoter; and human growth hormone promoters.
- the promoter also may be the native promoter which controls the gene
- the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines.
- packaging cells which may be transfected include, but are not limited to, the PE501 , PA317, ⁇ -2, ⁇ -AM, PA 12,
- the vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP0 4 precipitation.
- the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
- the producer cell line generates infectious retroviral vector particles which include nucleic acid sequences encoding the polypeptides.
- retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo.
- the transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the polypeptide.
- Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothelial cells, and bronchial epithelial cells.
- sequences of the present invention are also valuable for chromosome identification.
- the sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome.
- Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking chromosomal location.
- the mapping of DNAs to chromosomes according to the present invention is an important first step in correlating those sequences with genes associated with disease.
- sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region is used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the primer will yield an amplified fragment. PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome.
- mapping strategies that can similarly be used to map to its chromosome include in situ hybridization, prescreening with labeled flow- sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.
- Fluorescence in situ hybridization of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step.
- This technique can be used with cDNA as short as 50 or 60 bases.
- Verma et al. Human Chromosomes:
- the present inventors have mapped the native TRl gene at the chromosomal region 8q23-24.1.
- a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes. (This assumes 1 megabase mapping resolution and one gene per 20 kb).
- the present invention will be further described with reference to the following examples; however, it is to be understood that the present invention is not limited to such examples. All parts or amounts, unless otherwise specified, are by weight. In order to facilitate understanding of the following examples certain frequently occurring methods and/or terms will be described.
- Plasmids are designated by a lower case p preceded and/or followed by capital letters and/or numbers.
- the starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures.
- equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.
- “Digestion” of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA.
- the various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan.
- For analytical purposes typically 1 ⁇ g of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 ⁇ l of buffer solution.
- For the purpose of isolating DNA fragments for plasmid construction typically 5 to 50 ⁇ g of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37°C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophorescd directly on a polyacrylamide gel to isolate the desired fragment.
- Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel, et al. Nucleic Acids Res., 5:4057 (1980).
- Oligonucleotides refers to either a single stranded polydeoxynucleotidc or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated. “Ligation” refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments.
- ligation may be accomplished using known buffers and conditions with 10 units of T4 DNA Iigase ("ligase”) per 0.5 ⁇ g of approximately equimolar amounts of the DNA fragments to be ligated. Unless otherwise stated, transformation was performed as described in the method of Graham and Van der, Virology, 52:456-457 (1973).
- ligase T4 DNA Iigase
- the DNA sequence encoding TRl receptor is initially amplified using PCR oligonucleotide primers corresponding to the 5' and 3' end sequences of the processed TRl receptor nucleic acid sequence (minus the signal peptide sequence). Additional nucleotides corresponding to TRl receptor gene are added to the 5' and 3' end sequences respectively.
- the 5' oligonucleotide primer has the sequence 5' GCCAGAGGATCCGAAACGTTTCCTCCAAAGTAC 3' and contains a
- CGGCTTCTAGAATTACCTATCATTTCTAAAAAT 3' contains complementary sequences to a Hind III site (bold) and is followed by 18 nucleotides of TRl receptor ( Figure 2).
- the restriction enzyme sites correspond to the restriction enzyme sites on the bacterial expression vector pQE-9 (Qiagen,
- pQE-9 encodes antibiotic resistance (Amp r ), a bacterial origin of replication (ori), an IPTG-regulatable promoter operator (P/O), a ribosome binding site (RBS), a 6-His tag and restriction enzyme sites.
- pQE-9 is then digested with BamHI and Xbal.
- the amplified sequences are ligated into pQE-9 and are inserted in frame with the sequence encoding for the histidine tag and the RBS.
- the ligation mixture is then used to transform E. coli strain M15/rep 4 (Qiagen, Inc.) by the procedure described in Sambrook et al.,
- M15/rep4 contains multiple copies of the plasmid pREP4, which expresses the lad repressor and also confers kanamycin resistance (Kan r ). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis. Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ⁇ g/ml) and Kan (25 ⁇ g/ml). The O N culture is used to inoculate a large culture at a ratio of 1 : 100 to 1 :250.
- the cells arc grown to an optical density 600 (O.D. 600 ) of between 0.4 and 0.6.
- IPTG Isopropyl-B-D-thiogalacto pyranoside
- IPTG induces by inactivating the lacl repressor, clearing the P/O leading to increased gene expression.
- Cells are grown an extra 3 to 4 hours.
- Cells are then harvested by centrifugation.
- the cell pellet is solubilized in the chaotropic agent 6 molar Guanidine HC1. After clarification, solubilized TRl receptor is purified from this solution by chromatography on a
- TRl receptor (90% pure) is eluted from the column in 6 molar guanidine HC1 pH 5.0 and for the purpose of renaturation adjusted to 3 molar guanidine HC1, 100 mM sodium phosphate, 10 mM glutathione (reduced) and 2 mM glutathione (oxidized). After incubation in this solution for 12 hours the protein is dialyzed to 10 mmolar sodium phosphate.
- TRl receptor 90% pure is eluted from the column in 6 molar guanidine HC1 pH 5.0 and for the purpose of renaturation adjusted to 3 molar guanidine HC1, 100 mM sodium phosphate, 10 mM glutathione (reduced) and 2 mM glutathione (oxidized). After incubation in this solution for 12 hours the protein is dialyzed to 10 mmolar sodium phosphate.
- Example 2
- the DNA sequence encoding the full-length native TRl receptor protein is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the gene.
- the 5' primer has the sequence 5' cgc GGA TCC gccatc ATGAACAAGTTGCTGTG 3' and contains a BamHI restriction site followed by the first 17 base pairs of the native TRl receptor coding sequence in Figure 1.
- the 3' primer has the sequence 5' cgc GGT ACC
- CAATTGTGAGGAAACAG 3' contains a Asp718 restriction site and, in reverse orientation, a sequence complementary to nucleotides 1270 to 1286 in Figure 1.
- the 5' primer has the sequence 5 * GCGCGG ATCCAIGAACAAGTTGCTGTGCTGC 3' and contains a BamHI restriction enzyme site (in bold) and which is just behind the first 21 nucleotides of the modified TRl receptor gene (the initiation codon for translation "ATG" is underlined) shown in Figure 2.
- the 3' primer has the sequence 5' GCGCTCTAGATTACCTATCATTTCTAAAAATAAC 3' and contains the cleavage site for the restriction endonuclease Xbal and 21 nucleotides complementary to the 3' sequence of the modified TRl receptor gene shown in Figure 2.
- the amplified modified TRl receptor sequences were isolated from a 1% agarose gel using a commercially available kit ("Geneclean", BIO 101 Inc., La
- the vector pRGl (modification of pVL941 vector, discussed below) was used for the expression of the TRl receptor proteins using the baculovirus expression system (for review see: Summers and Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agricultural Experimental Station Bulletin No. 1555 (1987)).
- This expression vector contains the strong polyhedrin promoter of the Autographa califomica nuclear polyhedrosis virus (AcMNPV) followed by the recognition sites for the restriction endonucleases BamHI and Xbal.
- the polyadenylation site of the simian virus (SV40) was used for efficient polyadenylation.
- beta-galactosidase gene from E. coli was inserted in the same orientation as the polyhedrin promoter followed by the polyadenylation signal of the polyhedrin gene.
- the polyhedrin sequences were flanked at both sides by viral sequences for the cell-mediated homologous recombination of cotransfected wild-type viral DNA.
- Many other baculovirus vectors could be used in place of pRGl such as pAc373, pVL941 and pAcIMl (Luckow and
- the plasmid was digested with the restriction enzymes BamHI and Xbal.
- the DNA was then isolated from a 1% agarose gel using the commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.). This vector DNA is designated V2.
- Fragment F2 and the dephosphorylated plasmid V2 were ligated with T4 DNA ligase.
- E. coli HB101 cells were then transformed and cells identified that contained the plasmid (pBac TRl receptor) with the TRl receptor genes using the enzymes BamHI and Xbal. The sequence of the cloned fragment was confirmed by DNA sequencing.
- 5 ⁇ g of the plasmid pBac TRl receptor was cotransfected with 1.0 ⁇ g of a commercially available linearized baculovirus ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA.) using the lipofection method (Feigner et al., Proc. Natl. Acad. Sci. USA, 54:7413-7417 (1987)).
- BaculoGoldTM virus DNA and 5 ⁇ g of the plasmid pBac TRl receptors were mixed in a sterile well of a microtiter plate containing 50 ⁇ l of serum free Grace's medium (Life Technologies Inc., Gaithersburg, MD).
- Gaithersburg, MD Gaithersburg, MD was used which allows an easy isolation of blue stained plaques.
- a detailed description of a "plaque assay" can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, MD, page 9-10).
- the viruses were added to the cells and blue stained plaques were picked with the tip of an Eppendorf pipette. The agar containing the recombinant viruses were then resuspended in an Eppendorf tube containing 200 ⁇ l of Grace's medium.
- the agar was removed by a brief centrifugation and the supernatant containing the recombinant baculoviruses was used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supematants of these culture dishes were harvested and then stored at 4°C.
- Sf9 cells were grown in Grace's medium supplemented with 10% heat- inactivated FBS.
- the cells were infected with the recombinant baculovirus V- TR1 receptor at a multiplicity of infection (MOI) of 2.
- MOI multiplicity of infection
- the medium was removed and replaced with SF900 II medium minus methionine and cysteine (Life Technologies Inc., Gaithersburg).
- 5 ⁇ Ci of 35 S- methionine and 5 ⁇ Ci 35 S cysteine (Amersham) were added.
- the cells are further incubated for 16 hours before they are harvested by centrifugation and the labelled proteins visualized by SDS-PAGE and autoradiography.
- vectors used for the transient expression of the TRl receptor protein gene sequences in mammalian cells should carry the SV40 origin of replication. This allows the replication of the vector to high copy numbers in cells (e.g., COS cells) which express the T antigen required for the initiation of viral DNA synthesis. Any other mammalian cell line can also be utilized for this purpose.
- a typical mammalian expression vector contains the promoter element, which mediates the initiation of transcription of mRNA, the protein coding sequence, and signals required for the termination of trancription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription can be achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV).
- LTRs long terminal repeats
- cellular signals can also be used (e.g., human actin promoter).
- Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146) and pBC12MI (ATCC 67109).
- Mammalian host cells that could be used include, human Hela, 283, H9 and Jurkart cells, mouse NIH3T3 and C127 cells. Cos 1 , Cos 7 and CV1 , African green monkey cells, quail QC1-3 cells, mouse L cells and Chinese hamster ovary cells.
- the gene can be expressed in stable cell lines that contain the gene integrated into a chromosome.
- a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.
- the transfected gene can also be amplified to express large amounts of the encoded protein.
- the DHFR dihydrofolate reductase
- GS glutamine synthase
- Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy etal, BiochemJ. 227:277-279 (1991); Bebbington etal, Bio/Technology 70:169-175 (1992)).
- GS glutamine synthase
- the mammalian cells are grown in selective medium and the cells with the highest resistance are selected.
- These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) cells are often used for the production of proteins.
- the expression vectors pC 1 and pC4 contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al. , Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al, Cell 41:521 -530 (1985)). Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, Xbal and Asp718, facilitate the cloning of the gene of interest.
- the vectors contain in addition the 3 ' intron, the polyadenylation and termination signal of the rat preproinsulin gene.
- TRl receptor HA The expression of plasmid, TRl receptor HA is derived from a vector pcDNAI/Amp (Invitrogen) containing: 1 ) SV40 origin of replication, 2) ampicillin resistance gene, 3) E.coli replication origin, 4) CMV promoter followed by a polylinker region, a SV40 intron and polyadenylation site.
- a DNA fragment encoding the entire TRl receptor precursor and a I LA tag fused in frame to its 3' end is cloned into the polylinker region of the vector, therefore, the recombinant protein expression is directed under the CMV promoter.
- the HA tag correspond to an epitope derived from the influenza hemagglutinin protein as previously described (Wilson et al, Cell 37:161 (1984)).
- the infusion of HA tag to the target protein allows easy detection of the recombinant protein with an antibody that recognizes the HA epitope.
- the native TRl receptor Figure 1
- the plasmid construction strategy is described as follows:
- the DNA sequence encoding native TRl receptor is constructed by PCR using two primers:
- the 5' primer has the sequence 5' cgc GGA TCC gccatc ATGAACAAGTTGCTGTG 3' and contains a BamHI restriction site followed by the first 17 base pairs of the native TRl receptor coding sequence in Figure 1.
- the 3' primer has the sequence 5' cgc GGT ACC CAATTGTGAGGAAACAG 3' and contains a ⁇ sp718 restriction site and, in reverse orientation, a sequence complementary to nucleotides 1270 to 1286 in Figure 1.
- the PCR product contains a BamHI site, a TRl receptor coding sequence followed by HA tag fused in frame, a translation termination stop codon next to the HA tag, and an Asp718 site.
- the PCR amplified DNA fragment and the vector, pcDNAI/Amp are digested with BamHI and Asp718 restriction enzymes and ligated.
- the ligation mixture is transformed into E. coli strain
- Cells are labeled for 8 hours with 35 S-cysteine two days post transfection. Culture media are then collected and cells are lysed with detergent (RIPA buffer (150 mM NaCl, 1 % NP- 40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM Tris, pH 7.5) (Wilson et al, supra). Both cell lysate and culture media are precipitated with a HA specific monoclonal antibody. Proteins precipitated are analyzed on 15% SDS-PAGE gels.
- RIPA buffer 150 mM NaCl, 1 % NP- 40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM Tris, pH 7.5
- Plasmid pCl is used for the expression of native TRl receptor protein.
- Plasmid pCl is a derivative of the plasmid pSV2-dhfr [ATCC Accession No.
- Both plasmids contain the mouse DHFR gene under control of the SV40 early promoter.
- Chinese hamster ovary- or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate.
- a selective medium alpha minus MEM, Life Technologies
- methotrexate methotrexate
- the amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented (see, e.g., Alt, F.W., Kellems, R.M., Bertino, J.R., and Schimke, R.T., 1978, J. Biol Chem.
- Plasmid pC 1 contains for the expression of the gene of interest a strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus (Cullen, et al, Molecular and Cellular Biology, March 1985:438-4470) plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV) (Boshart et al, Cell 47:521-530, 1985). Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes: BamHI, Pvull, and Nrul.
- LTR long terminal repeat
- CMV cytomegalovirus
- the plasmid contains translational stop codons in all three reading frames followed by the 3' intron and the polyadenylation site of the rat preproinsulin gene.
- Other high efficient promoters can also be used for the expression, e.g., the human ⁇ -actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI.
- the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well.
- Stable cell lines carrying a gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.
- the plasmid pCl is digested with the restriction enzyme BamHI and then dephosphorylated using calf intestinal phosphates by procedures known in the art.
- the vector is then isolated from a 1% agarose gel.
- the DNA sequence encoding the native TRl receptor, ATCC 75899, is amplified using PCR oligonucleotide primers corresponding to the 5' and 3 ' sequences of the gene:
- the 5' primer has the sequence 5' cgc GGA TCC gccatc ATGAACAAGTTGCTGTG 3' and contains a BamHI restriction site followed by the first 17 base pairs of the native TRl receptor coding sequence in Figure 1.
- the 3' primer has the sequence 5' cgc GGT ACC CAATTGTGAGGAAACAG 3' and contains a Asp718 restriction site and, in reverse orientation, a sequence complementary to nucleotides 1270 to 1286 in Figure 1.
- the 5' end of the amplified fragment encoding human TRl receptor provides an efficient signal peptide.
- An efficient signal for initiation of translation in eukaryotic cells, as described by Kozak, Mol Biol 796:947-950 (1987) is appropriately located in the vector portion of the construct.
- amplified fragments are isolated from a 1% agarose gel as described above and then digested with the endonucleases BamHI and Asp718 and then purified again on a 1% agarose gel.
- the isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase.
- E. coli HB101 cells are then transformed and bacteria identified that contained the plasmid pCl inserted in the correct orientation using the restriction enzyme BamHI. The sequence of the inserted gene is confirmed by DNA sequencing.
- Chinese hamster ovary cells lacking an active DHFR enzyme are used for transfection.
- 5 ⁇ g of the expression plasmid Cl are cotransfected with 0.5 ⁇ g of the plasmid pSVneo using the lipofecting method (Feigner et al , supra).
- the plasmid pSV2-neo contains a dominant selectable marker, the gene neo from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418.
- the cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418.
- the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) and cultivated from 10-14 days. After this period, single clones are trypsinized and then seeded in 6-well petri dishes using different concentrations of methotrexate (25 nM, 50 nM, 100 nM, 200 nM, 400 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (500 nM, 1 ⁇ M, 2 ⁇ M, 5 ⁇ M). The same procedure is repeated until clones grow at a concentration of 100 ⁇ M.
- the expression of the desired gene product is analyzed by Western blot analysis and SDS-PAGE.
- Fibroblasts are obtained from a subject by skin biopsy.
- the resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask.
- the flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. This is then incubated at 37°C for approximately one week. At this time, fresh media is added and subsequently changed every several days.
- fresh media e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin
- pMV-7 (Kirschmeier et al, DNA, 7:219-25 ( 1988) flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and Hindlll and subsequently treated with calf intestinal phosphatase.
- the linear vector is fractionated on agarose gel and purified, using glass beads.
- the cDNA encoding a polypeptide of the present invention is amplified using PCR primers which correspond to the 5' and 3' end sequences respectively.
- the 5' primer containing an EcoRI site and the 3' primer further includes a Hindlll site.
- Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and Hindlll fragment are added together, in the presence of T4 DNA ligase.
- the resulting mixture is maintained under conditions appropriate for ligation of the two fragments.
- the ligation mixture is used to transform E. coli strain HB101 , which are then plated onto agar- containing kanamycin for the purpose of confirming that the vector had the gene of interest properly inserted.
- the amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10%) calf serum (CS), penicillin and streptomycin.
- DMEM Dulbecco's Modified Eagles Medium
- CS calf serum
- penicillin and streptomycin The MSV vector containing the gene is then added to the media and the packaging cells are transduced with the vector.
- the packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).
- Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells.
- the spent media containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells.
- Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his.
- the engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.
- the fibroblasts now produce the protein product.
- osteobast cell line HG63 An assay for proliferatory effect of candidate agonists and antagonists of TRl receptor function was performed using osteobast cell line HG63 as follows: A two-fold serial dilution of purified native TRl receptor protein starting from 1000 ng/ml was made in RPMI 1640 medium with 0.5 to 10 % FBS. Adherent target cells were prepared from confluent cultures by trypsinization in PBS, and non-adherent target cells were harvested from stationary cultures and washed once with fresh medium.
- Target cells were suspended at 1 X 10 5 cells/ml in medium containing 0.5 % FBS and 0.1 ml aliquots were dispensed into 96-well flat-bottomed microtiter plates containing 0.1 ml serially diluted test samples. Incubation was continued for 70 hr. The activity was quantified using an MTS [3(4,5-dimethyl-thiazoyl-2-yl) 5 (3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2H-tetrazolium)] Assay or any other assay for cell numbers and/or activity.
- MTS 3(4,5-dimethyl-thiazoyl-2-yl) 5 (3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2H-tetrazolium
- MTS assay was performed by the addition of 20 ⁇ l of MTS and phenazine methosulfate (PMS) solution to 96 well plates (Stock solution was prepared as described by Promega Technical Bulletin No. 169). During a 3 hr incubation, living cells convert the MTS into a the aqueous soluble formazan product. Wells with medium only (no cells) were processed in exactly the same manner as the rest of the wells and were used for blank controls. Wells with medium and cells were used as baseline controls. The absorbence at 490 nm was recorded using an ELISA reader and is proportional to the number of viable cells in the wells.
- PMS phenazine methosulfate
- Northern blot analysis is carried out to examine TRl receptor gene expression in human tissues.
- a cDNA probe containing the sequence shown in Figure 1 was labeled with 32 P using the redip ⁇ me DNA labelling system from Amersham Life Science, according to manufacturer's instructions. Unincorporated nucleotide was removed from labled probe using CHROMA SPIN- 100 (Clontech).
- Two human Multiple Tissue Northern (MTN) blots (one labaled as H for human tissue, the other labaled as H 2 for human immune system) containing approximately 2 mg of poly (A)+ RNA per lane from various human tissues were purchased from Clontech. Also used were two Cellline blots containing 20 ng total RNA from different cell lines.
- Northern blotting was performed with the Expresshyb Hybridization Solution (PTl 190-1) from Clontech according to the manufacture's manual.
- Gene expression was detected in heart, placenta, lung, liver, and kidney tissue. Lower levels of the mRNA was detected in thymus, prostate, testis, ovary, and small intestine. Expression was also detected in osteoblastoma, smooth muscle, fibroblasts, ovarian cancer, venous endothelial cells, monocyte lukemia cells, liver cells, and lung emphysemia cells. Expression can also be detected in the following cell types: human hippocampus, kidney medulla, macrophage, osteoblasts, human pancreas tumor, fetal cochlea, and adult pulmonary.
- the applicant hereby request that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.
- the request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.
- the applicant hereby request that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.
- the request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the pbulic under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/015003 WO1998012344A1 (en) | 1996-09-18 | 1996-09-18 | Human tumor necrosis factor receptor-like genes |
EP96935862A EP0961832A4 (en) | 1996-09-18 | 1996-09-18 | Human tumor necrosis factor receptor-like genes |
JP51461098A JP2001509663A (en) | 1996-09-18 | 1996-09-18 | Human tumor necrosis factor receptor-like gene |
AU73646/96A AU7364696A (en) | 1996-09-18 | 1996-09-18 | Human tumor necrosis factor receptor-like genes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/015003 WO1998012344A1 (en) | 1996-09-18 | 1996-09-18 | Human tumor necrosis factor receptor-like genes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998012344A1 true WO1998012344A1 (en) | 1998-03-26 |
Family
ID=22255819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/015003 WO1998012344A1 (en) | 1996-09-18 | 1996-09-18 | Human tumor necrosis factor receptor-like genes |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0961832A4 (en) |
JP (1) | JP2001509663A (en) |
AU (1) | AU7364696A (en) |
WO (1) | WO1998012344A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998051346A1 (en) * | 1997-05-12 | 1998-11-19 | Smithkline Beecham Corporation | Human tumor necrosis factor receptor-like 2 (tr2) antibodies |
WO2000021554A1 (en) * | 1998-10-09 | 2000-04-20 | Sankyo Company, Limited | Preventives or remedies for cachexia |
WO2002097033A2 (en) | 2001-05-25 | 2002-12-05 | Human Genome Sciences, Inc. | Antibodies that immunospecifically bind to trail receptors |
EP1803730A1 (en) * | 2000-04-12 | 2007-07-04 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US7410779B2 (en) | 1992-01-31 | 2008-08-12 | Novozymes Biopharma Uk Limited | Fusion polypeptides of human serum albumin and a therapeutically active polypeptide |
US7507413B2 (en) | 2001-04-12 | 2009-03-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US7550432B2 (en) | 1995-12-30 | 2009-06-23 | Novozymes Biopharma Uk Limited | Recombinant fusion proteins to growth hormone and serum albumin |
US7569384B2 (en) | 2004-02-09 | 2009-08-04 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US7592010B2 (en) | 2001-12-21 | 2009-09-22 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US7632922B1 (en) | 1995-12-22 | 2009-12-15 | Amgen, Inc. | Osteoprotegerin |
US8287859B2 (en) | 2001-12-21 | 2012-10-16 | Human Genome Sciences, Inc. | Methods of reducing toxicity and effects of cocaine by administering a butyrylcholinesterase (BChE)-albumin fusion protein |
US8334365B2 (en) | 2006-06-07 | 2012-12-18 | Human Genome Sciences, Inc. | Albumin fusion proteins |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL117175A (en) * | 1995-02-20 | 2005-11-20 | Sankyo Co | Osteoclastogenesis inhibitory factor protein |
WO1996028546A1 (en) * | 1995-03-15 | 1996-09-19 | Human Genome Sciences, Inc. | Human tumor necrosis factor receptor |
-
1996
- 1996-09-18 WO PCT/US1996/015003 patent/WO1998012344A1/en not_active Application Discontinuation
- 1996-09-18 AU AU73646/96A patent/AU7364696A/en not_active Abandoned
- 1996-09-18 EP EP96935862A patent/EP0961832A4/en not_active Withdrawn
- 1996-09-18 JP JP51461098A patent/JP2001509663A/en not_active Withdrawn
Non-Patent Citations (8)
Title |
---|
DATABASE A-GENESEQ24 ON MASPAR, Acc. No. R38859, ARUFFO et al., "CD40CR Receptor and It's Ligands Used to Inhibit B-Cell Activation in Allergy and Auto-Immune Disease", (07 February 1994); & EP,A,555 880, (18 August 1993). * |
DATABASE EMBL/GENBANK/DDBJ ON MASPAR, Genetique Moleculaire et Biologie Du Developpement (Villejuif Cedex, France), Acc. No. Z38433, GENEXPRESS, Direct Submission, (26 October 1994). * |
DATABASE EMBL-NEW3 ON MASPAR, Acc. No. L23876, GLASCOW et al., "Nucleotide Sequence of a GFAP-Like Intermediate Filament cDNA from Goldfish Retina", (01 September 1993). * |
DATABASE EMBL-NEW3 ON MASPAR, Acc. No. X60370 X60371 X60550, ZAUNER et al., "Identification of Two Distinct Microtubule Binding Domains on Recombinant Rat Map 1B", (21 October 1992). * |
DATABASE EMBL-NEW3 ON MASPAR, Acc. No. X75491, ASLANIDIS et al., "Genomic Organization of the Human Lysosomal Acid Lipase Gene (LIPA)", (01 March 1994). * |
DATABASE EST-STS ON MASPAR, (St Louis Mo, USA), Acc. No. H14106, HILLIER et al., "WashU-Merck EST Project", (10 July 1995). * |
DATABASE EST-STS ON MASPAR, Whitehead Institute/MIT Center for Genome Research (Cambridge, Mass, USA), Acc. No. G11923, HUDSON T., "Whitehead Institute/MIT Center for Genome Research; Physically Mapped STSs", (23 October 1995). * |
See also references of EP0961832A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7410779B2 (en) | 1992-01-31 | 2008-08-12 | Novozymes Biopharma Uk Limited | Fusion polypeptides of human serum albumin and a therapeutically active polypeptide |
US7632922B1 (en) | 1995-12-22 | 2009-12-15 | Amgen, Inc. | Osteoprotegerin |
US8642542B2 (en) | 1995-12-30 | 2014-02-04 | Novozymes Biopharma Dk A/S | Recombinant fusion proteins to growth hormone and serum albumin |
US7550432B2 (en) | 1995-12-30 | 2009-06-23 | Novozymes Biopharma Uk Limited | Recombinant fusion proteins to growth hormone and serum albumin |
WO1998051346A1 (en) * | 1997-05-12 | 1998-11-19 | Smithkline Beecham Corporation | Human tumor necrosis factor receptor-like 2 (tr2) antibodies |
WO2000021554A1 (en) * | 1998-10-09 | 2000-04-20 | Sankyo Company, Limited | Preventives or remedies for cachexia |
EP1832599A3 (en) * | 2000-04-12 | 2007-11-21 | Human Genome Sciences, Inc. | Albumin fusion proteins |
EP1803730A1 (en) * | 2000-04-12 | 2007-07-04 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US8946156B2 (en) | 2000-04-12 | 2015-02-03 | Human Genome Sciences, Inc. | Albumin Fusion Proteins |
US7507414B2 (en) | 2000-04-12 | 2009-03-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
EP1832599A2 (en) * | 2000-04-12 | 2007-09-12 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US7482013B2 (en) | 2000-04-12 | 2009-01-27 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US7507413B2 (en) | 2001-04-12 | 2009-03-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
WO2002097033A2 (en) | 2001-05-25 | 2002-12-05 | Human Genome Sciences, Inc. | Antibodies that immunospecifically bind to trail receptors |
US7592010B2 (en) | 2001-12-21 | 2009-09-22 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US7799759B2 (en) | 2001-12-21 | 2010-09-21 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US8287859B2 (en) | 2001-12-21 | 2012-10-16 | Human Genome Sciences, Inc. | Methods of reducing toxicity and effects of cocaine by administering a butyrylcholinesterase (BChE)-albumin fusion protein |
US7569384B2 (en) | 2004-02-09 | 2009-08-04 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US8143026B2 (en) | 2004-02-09 | 2012-03-27 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US8334365B2 (en) | 2006-06-07 | 2012-12-18 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US8969538B2 (en) | 2006-06-07 | 2015-03-03 | Human Genome Sciences, Inc. | Albumin fusion proteins |
Also Published As
Publication number | Publication date |
---|---|
AU7364696A (en) | 1998-04-14 |
JP2001509663A (en) | 2001-07-24 |
EP0961832A1 (en) | 1999-12-08 |
EP0961832A4 (en) | 2003-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU768475B2 (en) | Interleukin 17-like receptor protein | |
US6635443B1 (en) | Polynucleotides encoding a novel interleukin receptor termed interleukin-17 receptor-like protein | |
US6261801B1 (en) | Nucleic acids encoding tumor necrosis factor receptor 5 | |
US7094564B1 (en) | Human tumor necrosis factor receptor | |
US20080261252A1 (en) | Soluble Interleukin-1 Receptor Accessory Molecule | |
CA2211003A1 (en) | Human tumor necrosis factor receptor | |
EP0961832A1 (en) | Human tumor necrosis factor receptor-like genes | |
US20030166097A1 (en) | Human tumor necrosis factor receptor | |
US20020150992A1 (en) | Chemokine alpha-5 | |
US6232100B1 (en) | Cortistatin Polypeptides | |
US6586210B1 (en) | Polynucleotides encoding T1 receptor like ligand II | |
US6537539B2 (en) | Immune cell cytokine | |
WO1998029438A9 (en) | Cortistatin polypeptides | |
JP2001504336A (en) | Connective tissue growth factor-3 | |
WO1998008969A1 (en) | Soluble interleukin-1 receptor accessory molecule | |
US8110659B1 (en) | Human tumor necrosis factor receptor-like genes | |
US6979443B2 (en) | Chemokine α-6 | |
US20040224357A1 (en) | Human parotid secretory protein | |
US5962268A (en) | DNA encoding an immune cell cytokine | |
US20030129643A1 (en) | T1 receptor-like ligand I | |
CA2215383A1 (en) | Human tumor necrosis factor receptor | |
EP1114142A1 (en) | Interleukin 17-like receptor protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG KE |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1998 514610 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996935862 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1996935862 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1996935862 Country of ref document: EP |