WO1998011192A1 - Laundry bleaching processes and compositions - Google Patents
Laundry bleaching processes and compositions Download PDFInfo
- Publication number
- WO1998011192A1 WO1998011192A1 PCT/US1997/015976 US9715976W WO9811192A1 WO 1998011192 A1 WO1998011192 A1 WO 1998011192A1 US 9715976 W US9715976 W US 9715976W WO 9811192 A1 WO9811192 A1 WO 9811192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- solvent
- hydrophilic
- mixtures
- stains
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2003—Alcohols; Phenols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2068—Ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/43—Solvents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2003—Alcohols; Phenols
- C11D3/2006—Monohydric alcohols
- C11D3/2034—Monohydric alcohols aromatic
Definitions
- the present invention relates to the bleaching of fabrics.
- a great variety of cleaning compositions have been described in the art.
- An advantage of the present invention is that excellent performance is provided in a variety of laundry applications, e.g., laundry detergent, or laundry additive, and preferably laundry pretreater.
- the liquid compositions used herein may also comprise a bleach activator, which will react in an aqueous medium with hydrogen peroxide to form the corresponding peracid. It has been observed that this peracid is more effective at lower temperatures, e.g., at those temperatures where the pretreatment operation is usually performed (20°C-25°C), and thus allows the compositions herein to deliver more effective bleaching performance across a wider range of temperatures.
- Another advantage of a particular embodiment of the present invention is that when such a solvent system, as described herein, is added in a liquid bleaching composition of the present invention formulated as an emulsion or a microemulsion, the viscosity of said composition is reduced, whatever the viscosity was before the addition of said solvent system.
- the present invention also provides liquid emulsions or microemulsions comprising a peroxygen bleach and a solvent system, as described herein, wherein the viscosity can be conveniently controlled while maintaining adequate physical stability, without the need to add any viscosity control agent which would raise the formula cost, and add bulk to the compositions without contributing to the bleaching/cleaning performance of said compositions.
- EP-A-126545 discloses liquid scouring cleaners comprising an abrasive, at least 0.1 % of terpene (e.g., d-limonene), at least 0.1 % of benzyl alcohol and optionally surfactants, builders and the like.
- the compositions clean both greasy and particle soils from hard surfaces. No bleaches are disclosed. No laundry application is disclosed.
- EP-A-21 641 6 discloses liquid scouring cleansers (pH 8-1 2) with paraffin sulfonate and alkyl benzene sulfonate, 0.5%-10% of a mono- or sesquiterpene, 0.5%-3% of a polar solvent, an acrylic polymeric thickener, an abrasive and a viscosity enhancing compound. No bleaches are disclosed. No laundry application is disclosed.
- EP-A-1 3761 6 discloses laundry liquid compositions formulated in the form of an emulsion having a pH of 6.5 or above and comprising at least 5 % by weight of solvents.
- solvents include terpene and terpenoid solvents (e.g., pinene, d-limonene) as well as other solvents like benzyl alcohol, n- hexanol, paraffins. Mixtures of orange terpenes and benzyl alcohol are especially suitable for removing certain types of stains like dirty motor oil.
- the addition of non-polar solvents like benzyl alcohol, n-hexanol, mixed fatty alcohols increases the stability. Pretreating of fabrics and through the wash treatment with such compositions are disclosed. No bleaches are disclosed.
- the present invention encompasses a process of bleaching a fabric with a liquid composition comprising a peroxygen bleach and a solvent system comprising a hydrophilic solvent having a hydrophilic index of more than 1 8, and a hydrophobic solvent having a hydrophilic index of less than 18, wherein the hydrophilic index is defined by the equation
- the present invention also encompasses a process of bleaching fabrics which includes the steps of diluting in an aqueous bath a liquid composition in its neat form, comprising a peroxygen bleach and a solvent system as defined hereinabove, contacting said fabrics with said aqueous bath comprising said liquid composition, and subsequently rinsing, or washing then rinsing said fabrics.
- the present invention encompasses a liquid composition suitable for bleaching fabrics, comprising a peroxygen bleach, and a solvent system comprising from 0.05% to 20% by weight of the total composition of a hydrophilic solvent having a hydrophilic index of more than 18, and from 0.05% to 10% by weight of the total composition of a hydrophobic solvent having a hydrophilic index of less than 18, wherein the hydrophilic index is defined by the equation
- the present invention encompasses processes of bleaching fabrics, starting from a liquid bleaching composition comprising a peroxygen bleach and a solvent system comprising a hydrophobic solvent and a hydrophilic solvent, as described herein.
- the present invention is based on the finding that by adding the present solvent system, in a liquid composition comprising a peroxygen bleach, improved stain removal performance is obtained with said composition when used to treat a soiled fabric, especially in pretreatment application, as compared to the stain removal performance delivered with the same composition without said solvent system, or comprising only one type of solvent, i.e., a hydrophilic solvent or a hydrophobic solvent as described herein, instead of said solvent system comprising both a hydrophilic solvent and a hydrophobic solvent.
- a hydrophilic solvent or a hydrophobic solvent as described herein
- stain removal performance it is meant herein stain removal performance on a variety of stains/soils such as greasy/oily stains, and/or enzymatic stains and/or mud/clay stains as well as on bleachable stains.
- greasy/oily stains any soil and stain of greasy nature that can be found on a fabric like dirty motor oil, mineral oil, make-up, lipstick vegetal oil, spaghetti sauce, mayonnaise and the like. Indeed, the liquid compositions herein have been found to be particularly effective on make-up and spaghetti sauce.
- Examples of enzymatic stains include grass, chocolate and blood.
- Examples of bleachable stains include tea, coffee, wine and the like.
- the stain removal performance of a given composition on a soiled fabric may be evaluated by the following test method.
- a composition according to the present invention is first applied neat on the stained portion of a fabric, left to act thereon from about 1 to about 10 minutes, preferably 5 minutes, after which the pretreated fabric is washed according to common washing conditions with a conventional detergent composition, at a temperature of from 30°C to 70°C for a period of time sufficient to bleach said fabric.
- typical soiled fabrics to be used in this stain removal performance test may be commercially available from EMC (Empirical Manufacturing Company) Cincinnati, Ohio, USA, such as clay, grass, spaghetti sauce, gravy, dirty motor oil, make-up, barbecue sauce, tea, blood on two different substrates: cotton (CW120) and polycotton (PCW28).
- EMC Electronic Manufacturing Company
- CW120 cotton
- PCW28 polycotton
- the stain removal performance may be evaluated by comparing side by side the soiled fabrics pretreated with the composition according to the present invention with those pretreated with the reference, e.g. the same composition without such a solvent system according to the present invention.
- a visual grading scale may be used to assign differences in panel score units (psu), in a range from 0 to 4.
- the processes of bleaching fabrics of the present invention include the steps of contacting fabrics with a liquid bleaching composition comprising a peroxygen bleach and a solvent system, as described herein, neat or diluted, and subsequently rinsing said fabrics.
- the fabrics are "pretreated"
- the composition is applied neat on the fabrics, and the fabrics are subsequently rinsed, or washed and then rinsed in a normal wash cycle.
- We have observed that the stain removal performance improvement is particularly noticeable with the compositions used herein when contacted directly with the soiled portion of fabrics, before they are washed/rinsed.
- the liquid compositions used according to the present invention comprise a peroxygen bleach or mixtures thereof.
- peroxygen bleaches include hydrogen peroxide, or a water soluble source thereof, or mixtures thereof.
- a peroxygen bleach preferably hydrogen peroxide and/or hydroperoxide and/or aliphatic diacyl peroxide, contributes to the excellent cleaning and bleaching benefits of the compositions of the present invention.
- a hydrogen peroxide source refers to any compound which produces perhydroxyl ions when said compound is in contact with water.
- Suitable water-soluble sources of hydrogen peroxide for use herein include percarbonates, persilicate, persulphate such as monopersulfate, perborates, peroxyacids such as diperoxydodecandioic acid (DPDA), magnesium perphtalic acid, perbenzoic and alkylperbenzoic acids, alkyl hydroperoxides, peroxides, aliphatic diacyl peroxides and mixtures thereof. Hydrogen peroxide and/or alkyl hydroperoxides and/or aliphatic diacyl peroxides are preferred to be used in the compositions according to the present invention.
- Suitable hydroperoxides for use herein are tert-butyl hydroperoxide, cumyl hydroperoxide, 2,4,4-trimethylpenty!-2-hydroperoxide, di-isopropylbenzene- monohydroperoxide, tert-amyl hydroperoxide and 2,5-dimethyl-hexane-2,5- dihydroperoxide.
- Such hydroperoxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance.
- Suitable aliphatic diacyl peroxides for use herein are dilauroyl peroxide, didecanoyl peroxide, dimyristoyl peroxide or mixtures thereof. Such aliphatic diacyl peroxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance.
- compositions herein comprise from 0.01 % to 20% by weight of the total composition of a peroxygen bleach, or mixtures thereof, preferably from 1 % to 10%, and more preferably from 4% to 7%.
- the liquid compositions used according to the present invention comprise a solvent system comprising a hydrophobic solvent and a hydrophilic solvent.
- solvent it is meant herein any hydrocarbon including aliphatic saturated or unsaturated hydrocarbons or aromatic hydrocarbons that contain or not, one or more alcoholic groups, one or more ether groups and/or one or more ketone groups.
- hydrophilic index HI
- hydrophilic part of a given solvent it is meant herein all the groups O, CO, OH, of a given solvent.
- molecular weight of the hydrophilic part of a solvent it is meant herein the total molecular weight of all the hydrophilic parts of a given solvent.
- the hydrophilic solvents to be used herein have a hydrophilic index of more than 18, preferably more than 25, and more preferably more than 30, and the hydrophobic solvents to the used herein have a hydrophilic index of less than 18, preferably less than 17 and more preferably 16 or less.
- the combination of these solvents provides improved overall stain removal performance when added in a liquid peroxygen bleach-containing composition on various type of stains like greasy stains (e.g. dirty motor oil), enzymatic stains (e.g. blood) and clay stains.
- this solvent system when added in a liquid peroxygen bleach-containing composition, further provides improved bleaching efficacy.
- the hydrophobic solvent can be a vehicle for hydrophobic active ingredients like hydrophobic bleaches (e.g., dilauroyl peroxide), while the hydrophilic solvent can be a vehicle for hydrophilic bleaches like hydrogen peroxide.
- Suitable hydrophobic solvents to be used herein include paraffins, terpenes or terpene derivatives, as well as alkoxylated aliphatic or aromatic alcohols, aliphatic or aromatic alcohols, glycols or alkoxylated glycols, and mixtures thereof, all these solvents have a hydrophilic index of less than 18.
- Suitable terpenes are mono-and bicyclic monoterpenes, especially those of the hydrocarbon class, which include the terpinenes, terpinolenes, limonenes and pinenes and mixtures thereof. Highly preferred materials of this type are d-limonene, dipentene, alpha- pinene and/or beta-pinene.
- pinene is commercially available form SCM Glidco (Jacksonville) under the name Alpha Pinene P&F®.
- Terpene derivatives such as alcohols, aldehydes, esters, and ketones which have a hydrophilic index of less than 18 can also be used herein.
- Such materials are commercially available as, for example, the ⁇ and ⁇ isomers of terpineol and linalool.
- paraffins hydrophilic index of 0
- octane octane is commercially available for example from BASF.
- Suitable hydrophobic alkoxylated aliphatic or aromatic alcohols to be used herein are according to the formula R (A) n -OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non- alkyl substituted aryl group of from 1 to 20 carbon atoms, preferably from 2 to 1 5 and more preferably from 2 to 10, wherein A is an alkoxy group preferably butoxy, propoxy and/or ethoxy, and n is an integer of from 1 to 5, preferably 1 to 2.
- Suitable hydrophobic aliphatic or aromatic alcohols to be used herein are according to the formula R-OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20 carbon atoms, preferably from 2 to 1 5 and more preferably from 2 to 10.
- Suitable hydrophobic alkoxylated glycols to be used herein are according to the formula R-(A)n-R1 -OH wherein R is H, OH, a linear saturated or unsaturated alkyl of from 1 to 20 carbon atoms, preferably from 2 to 1 5 and more preferably from 2 to 10, wherein R1 is H or a linear saturated or unsaturated alkyl of from 1 to 20 carbon atoms, preferably from 2 to 1 5 and more preferably from 2 to 10, and A is an alkoxy group preferably ethoxy, methoxy, and/or propoxy and n is from 1 to 5, preferably 1 to 2.
- hydrophobic solvents to be used herein include d- limonene, dipentene, alpha-pinene, beta-pinene, octane, benzyl alcohol, or mixtures thereof.
- Suitable hydrophilic solvents to be used herein include alkoxylated aliphatic or aromatic alcohols, aliphatic or aromatic alcohols, glycols or alkoxylated glycols, and mixtures thereof, all these solvents having a hydrophilic index of more than 18.
- Suitable hydrophilic alkoxylated aliphatic or aromatic alcohols to be used herein are according to the formula R (A) n -OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non- alkyl substituted aryl group of from 1 to 20 carbon atoms, preferably from 2 to 15 and more preferably from 2 to 10, wherein A is an alkoxy group preferably butoxy, propoxy and/or ethoxy, and n is an integer of from 1 to 5, preferably 1 to 2.
- Suitable hydrophilic aliphatic or aromatic alcohols to be used herein are according to the formula R-OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20 carbon atoms, preferably from 2 to 1 5 and more preferably from 2 to 10.
- Suitable hydrophilic alkoxylated glycols to be used herein are according to the formula R-(A)n-R1 -OH wherein R is H, OH, a linear saturated or unsaturated alkyl group of from 1 to 20 carbon atoms, preferably from 2 to 1 5 and more preferably from 2 to 10, wherein R1 is H or a linear saturated or unsaturated alkyl group of from 1 to 20 carbon atoms, preferably from 2 to 1 5 and more preferably from 2 to 10, and A is an alkoxy group preferably ethoxy, methoxy, and/or propoxy and n is from 1 to 5, preferably 1 to 2.
- the compositions to used herein comprise from 0.05% to 10% by weight of the total composition of said hydrophobic solvent or mixtures thereof, preferably from 0.1 % to 5% and more preferably from 0.2% to 2%, and from 0.05% to 20% by weight of the total composition of said hydrophilic solvent or mixtures thereof, preferably from 0.5% to 1 5% and more preferably from 1 % to 10%.
- best overall stain removal performance has been obtained on different stains including bleachable stains, greasy stains, mud/clay stains and enzymatic-type stains, when said solvents are present in a weight ratio of said hydrophobic solvent to said hydrophilic solvent of from 1 :20 to 1 : 1 , more preferably from 1 : 14 to 1 : 2.
- liquid includes “pasty” compositions, and liquid compositions herein preferably have a viscosity of from 1 cps to 10000 cps, preferably from 100 cps to 1000 cps, more preferably from 200 cps to 600 cps, at 50 rpm shear rate and at 20 °C temperature.
- compositions to be used herein are aqueous.
- Said aqueous compositions have a pH as is of from 1 to 1 2, preferably from 2 to 6, and more preferably from 3 to 5, where optimum chemical stability is achieved.
- the pH of the compositions can be adjusted for instance by using organic or inorganic acids, or alkalinizing agents.
- compositions used in the present invention may further comprise optional ingredients like surfactants including nonionic, anionic, cationic, zwitterionic and/or amphotheric surfactants, builders, stabilizers, chelants, soil suspending polyamine polymers, polymeric soil release agents, dye transfer agents, radical scavengers, solvents, brighteners, catalysts, foam suppresors, bleach activators, perfumes and dyes.
- surfactants including nonionic, anionic, cationic, zwitterionic and/or amphotheric surfactants, builders, stabilizers, chelants, soil suspending polyamine polymers, polymeric soil release agents, dye transfer agents, radical scavengers, solvents, brighteners, catalysts, foam suppresors, bleach activators, perfumes and dyes.
- the liquid bleaching composition comprising a peroxygen bleach and said solvent system needs to be contacted with the fabrics to be bleached.
- This can be done either in a so-called “pretreatment mode", where the composition is applied neat onto said fabrics before the fabrics are rinsed, or washed then rinsed, or in a "soaking mode” where the liquid composition is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are rinsed, or in a "through the wash mode", where the liquid composition is added on top of a wash liquor formed by dissolution or dispersion of a typical laundry detergent.
- the composition to perform the processes herein is in the form of a liquid as opposed to a solid or a gas.
- the fabrics be rinsed after they have been contacted with said composition, before said composition has completely dried off.
- water evaporation contributes to increase the concentration of free radicals onto the surface of the fabrics and, consequently, the rate of chain reaction.
- free radicals typically result from the decomposition of peroxygen bleach that may be catalyzed due to the presence of metal ions on the surface of a fabric and/or to the exposure of the fabrics to UV radiation from sunlight.
- an auto-oxidation reaction occurs upon evaporation of water when liquid peroxygen-bleach containing compositions are left to dry onto the fabrics.
- the process comprises the steps of applying said liquid composition in its neat form onto said fabrics, or at least soiled portions thereof (i.e., directly applying said liquid composition as described herein onto said fabrics without undergoing any dilution), and subsequently rinsing, or washing then rinsing said fabrics.
- the neat compositions can optionally be left to act onto said fabrics for a period of time ranging from 1 min. to 1 hour, preferably from 1 minute to 30 minutes, before the fabrics are rinsed, or washed then rinsed, provided that the composition is not left to dry onto said fabrics.
- the process comprises the steps of diluting said liquid composition in its neat form in an aqueous bath so as to form a diluted composition.
- the dilution level of said liquid composition in an aqueous bath is typically up to 1 :85, preferably up to 1 :50 and more preferably about 1 :25 (composition: water).
- the fabrics are then contacted with the aqueous bath comprising the liquid composition, and the fabrics are finally rinsed, or washed then rinsed.
- the fabrics are immersed in the aqueous bath comprising the liquid composition, and also preferably, the fabrics are left to soak therein for a period of time ranging from 30 minutes to 48 hours, preferably from 1 hour to 24 hours.
- the liquid composition is used as a so-called laundry additive.
- the aqueous bath is formed by dissolving or dispersing a conventional laundry detergent in water.
- the liquid composition in its neat form is contacted with the aqueous bath, and the fabrics are then contacted with the aqueous bath containing the liquid composition. Finally, the fabrics are rinsed.
- the present invention also encompasses a liquid composition suitable for bleaching fabrics, comprising a peroxygen bleach, and a solvent system comprising from 0.05% to 20% by weight of the total composition of a hydrophilic solvent having a hydrophilic index of more than 18, and from 0.05% to 10% by weight of the total composition of a hydrophobic solvent having a hydrophilic index of less than 18, wherein the hydrophilic index is defined by the equation
- the liquid compositions of the present invention preferably further comprise a surfactant or mixtures thereof.
- a surfactant Any surfactant known to those skilled in the art may be suitable herein including nonionic, anionic, cationic, zwitterionic, and/or amphoteric surfactants up to 50% by weight of the total composition. Surfactants allow to further improve the stain removal properties of the compositions according to the present invention.
- Nonionic surfactants are highly preferred herein for performance reasons.
- the liquid compositions herein may comprise up to 50% of a nonionic surfactant or mixtures thereof, preferably from 0.3 % to 30 % and more preferably from 0.4 % to 25 %.
- Suitable nonionic surfactants to be used herein are fatty alcohol ethoxylates and/or propoxylates which are commercially available with a variety of fatty alcohol chain lengths and a variety of ethoxylation degrees. Indeed, the HLB values of such alkoxylated nonionic surfactants depend essentially on the chain length of the fatty alcohol, the nature of the alkoxylation and the degree of alkoxylation.
- Surfactant catalogues are available which list a number of surfactants, including nonionics, together with their respective HLB values.
- Suitable chemical processes for preparing the nonionic surfactants for use herein include condensation of corresponding alcohols with alkylene oxide, in the desired proportions. Such processes are well-known to the man skilled in the art and have been extensively described in the art. As an alternative, a great variety of alkoxylated alcohols suitable for use herein is commercially available from various suppliers.
- nonionic surfactants Particularly suitable to be used herein as nonionic surfactants are hydrophobic nonionic surfactants having an HLB (hydrophilic-lipophilic balance) below 16, preferably below 15, more preferably below 12, and most preferably below 10. Those hydrophobic nonionic surfactants have been found to provide good grease cutting properties.
- HLB hydrophilic-lipophilic balance
- Preferred hydrophobic nonionic surfactants to be used in the compositions according to the present invention are surfactants having an HLB below 1 6 and being according to the formula O-(C2H4 ⁇ ) n (C3H ⁇ O) m H, wherein R is a C ⁇ to C22 a'ky' chain or a C ⁇ to C 8 alkyl benzene chain, and wherein n + m is from 0 to 20 and n is from 0 to 1 5 and is from 0 to 20, preferably n + m is from 1 to 1 5 and, n and m are from 0.5 to 1 5, more preferably n + m is from 1 to 10 and, n and m are from 0 to 10.
- R chains for use herein are the C8 to C22 a'ky' chains.
- Dobanol R 91 -2.5 or Lutensol TO3, or Lutensol R AO3, or Tergitol R 25L3, or Dobanol R 23-3, or Dobanol R 23-2, or mixtures thereof.
- Dobanol surfactants are commercially available from SHELL.
- Lutensol R surfactants are commercially available from BASF and these Tergitol surfactants are commercially available from UNION CARBIDE.
- nonionic surfactants for use herein include polyhydroxy fatty acid amide surfactants, or mixtures thereof, according to the formula R 2 - C(O) - N(R 1 ) - Z,
- R 1 is H, or C1.C4 alkyl, C 1 -C4 hydrocarbyl, 2-hydroxy ethyl, 2- hydroxy propyl or a mixture thereof
- R ⁇ is C5 31 hydrocarbyl
- Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
- R 1 is C1 4 alkyl, more preferably Ci or C2 alkyl and most preferably methyl
- R2 is a straight chain C7.C1 9 alkyl or alkenyi, preferably a straight chain CQ.C ⁇ Q alkyl or alkenyi, more preferably a straight chain •Cl 1 -Cl 8 alkyl or alkenyi, and most preferably a straight chain C1 1 -C14 alkyl or alkenyi, or mixtures thereof.
- Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
- Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose and xylose.
- high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilised as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
- Z preferably will be selected from the group consisting of -CH2-(CHOH) n - CH 2 OH, -CH(CH2OH)-(CHOH) n .-i -CH 2 OH, -CH 2 -(CHOH)2-(CHOR')(CHOH)- CH2OH, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly CH2-(CHOH) -CH2OH.
- R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
- R 2 - C(O) - N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide and the like.
- Z can be 1 -deoxyglucityl, 2-deoxyfructityl, 1 -deoxymaltityl, 1 -deoxylactityl, 1 -deoxygalactityl, 1 -deoxymannityl, 1 -deoxymaltotriotityl and the like.
- Suitable polyhydroxy fatty acid amide surfactants to be used herein may be commercially available under the trade name HOE® from Hoechst. Methods for making polyhydroxy fatty acid amide surfactants are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N- alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
- compositions containing polyhydroxy fatty acid amides are disclosed for example in GB patent specification 809,060, published February 18, 1 959, by Thomas Hedley & Co., Ltd., US patent 2,965,576, issued December 20, 1960 to E.R. Wilson, US patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, US patent 1 ,985,424, issued December 25, 1 934 to Piggott and WO92/06070, each of which is incorporated herein by reference.
- the liquid compositions according to the present invention may further comprise other surfactants like an anionic surfactant, or mixtures thereof on top of nonionic surfactants.
- Anionic surfactants are preferred herein as optional ingredient as they act as wetting agent, i.e., in a laundry application they wet the stains on the fabrics, especially on hydrophilic fabrics, and thus help the peroxygen bleach perform its bleaching action thereby contributing to improved laundry performance on bleachable stains.
- anionic surfactants allow to obtain clear compositions even when said compositions comprise hydrophobic ingredients such as hydrophobic surfactants.
- the compositions herein may comprise from 0.1 % to 20 % by weight of the total composition of said anionic surfactant, or mixtures thereof, preferably from 0.2 % to 1 5 % and more preferably from 0.5 % to 13 % .
- anionic surfactants are well-known in the art and have found wide application in commercial detergents. These anionic surfactants include the C8-C22 alkyl benzene sulfonates (LAS), the C8-C22 alkyl sulfates (AS), unsaturated sulfates such as oleyl sulfate, the C10-C 1 8 alkyl alkoxy sulfates (AES) and the C10-C18 alkyl alkoxy carboxylates.
- LAS C8-C22 alkyl benzene sulfonates
- AS C8-C22 alkyl sulfates
- unsaturated sulfates such as oleyl sulfate
- AES C10-C 1 8 alkyl alkoxy sulfates
- the neutralising cation for the anionic synthetic sulfonates and/or sulfates is represented by conventional cations which are widely used in detergent technology such as sodium, potassium or alkanolammonium.
- Preferred herein are the alkyl sulphate, especially coconut alkyl sulphate having from 6 to 18 carbon atoms in the alkyl chain, preferably from 8 to 1 5, or mixtures thereof.
- anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cs-C22 primary or secondary alkanesulfonates, C8-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
- salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts
- Cs-C22 primary or secondary alkanesulfonates C8-C24 olefinsulfonates
- sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrate
- alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulfonates such as C 14.16 methyl ester sulfonates; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C-
- Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1 975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
- acyl sarcosinate or mixtures thereof, in its acid and/or salt form preferably long chain acyl sarcosinates having the following formula:
- M is hydrogen or a cationic moiety and wherein R is an alkyl group of from 1 1 to 1 5 carbon atoms, preferably of from 1 1 to 13 carbon atoms.
- M are hydrogen and alkali metal salts, especially sodium and potassium.
- Said acyl sarcosinate surfactants are derived from natural fatty acids and the amino-acid sarcosine (N-methyl glycine). They are suitable to be used as aqueous solution of their salt or in their acidic form as powder. Being derivatives of natural fatty acids, said acyl sarcosinates are rapidly and completely biodegradable and have good skin compatibility.
- particularly preferred long chain acyl sarcosinates to be used herein include C1 2 acyl sarcosinate (i.e. an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 1 1 carbon atoms) and C-
- 2 acyl sarcosinate is commercially available, for example, as Hamposyl L-30® supplied by Hampshire.
- C14 acyl sarcosinate is commercially available, for example, as Hamposyl M-30® supplied by Hampshire.
- liquid compositions according to the present invention may further comprise other surfactants known to those skilled in the art like an amine oxide surfactant according to the formula R1 R2R3NO, wherein each of R1 , R2 and R3 is independently a C1 -C30, preferably a C1 -C2O' most preferably a C1 -C1 6 hydrocarbon chain.
- Amine oxides may be present in amounts up to 10 % by weight of the total composition, more preferably from 1 % to 3%.
- compositions according to the present invention may further comprise other optional ingredients like builders, stabilizers, chelants, dye transfer agents, radical scavengers, solvents, brighteners, foam suppresors, bleach activators, perfumes, soil suspending polyamine polymers, polymeric soil release agents, catalysts and dyes.
- a bleach activator it is meant herein a compound which reacts with hydrogen peroxide to form a peracid. The peracid thus formed constitutes the activated bleach.
- Particularly suitable bleach activators to be used herein are hydrophobic bleach activators, i.e., a bleach activator which is not substantially and stably miscible with water.
- hydrophobic bleach activators typically have a secondary HLB (hydrophilic lipophilic balance) below 1 1 , preferably below 10.
- Secondary HLB is known to those skilled in the art and is defined for example in “Emulsions theory and practice” by P. Becher, Reinhold, New York, 1957, or in “Emulsion science” by P. Sherman, Academic Press, London, 1969.
- Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides, or anhydrides. Examples of suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231 and a method for their formation into a prilled form is described in European Published Patent Application EP-A-62 523.
- Suitable examples of such compounds to be used herein are tetracetyl ethylene diamine (TAED), sodium 3,5,5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and ⁇ onylamide of peroxyadipic acid as described for instance in US 4 259 201 and n-nonanoyloxybenzenesulphonate (NOBS).
- TAED tetracetyl ethylene diamine
- NOBS n-nonanoyloxybenzenesulphonate
- N-acyl caprolactams selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanoyi caprolactam, nonanoyi caprolactam, hexanoyi caprolactam, decanoyi caprolactam, undecenoyi caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam or mixtures thereof.
- a particular family of bleach activators of interest was disclosed in EP 624 154, and particularly preferred in that family is acetyl triethyl citrate (ATC).
- Acetyl triethyl citrate has the advantage that it is environmental- friendly as it eventually degrades into citric acid and alcohol. Furthermore, acetyl triethyl citrate has a good hydrolytical stability in the product upon storage and it is an efficient bleach activator. Finally, it provides good building capacity to the composition.
- the compositions according to the present invention may comprise from 0. 1 % to 20% by weight of the total composition of said bleach activator, or mixtures thereof, preferably from 1 % to 10%, and more preferably from 2% to 7%.
- compositions herein may be formulated as solutions, emulsions or microemulsions depending on the respective optional ingredients present and respective levels thereof.
- the compositions according to the present invention that typically comprise a bleach activator are preferably formulated either as aqueous emulsions of said bleach activator in a matrix comprising water, the peroxygen bleach, the solvent system and an emulsifying surfactant system, or as microemulsions of said bleach activator in a matrix comprising water, the peroxygen bleach, the solvent system and a hydrophilic surfactant system.
- Preferred peroxygen bleach-containing emulsions herein comprise an emulsifying surfactant system of at least two different surfactants.
- said two different surfactants should have different HLB values (hydrophilic / lipophilic balance) in order to form stable emulsions, and preferably the difference in value of the HLBs of said two surfactants is at least 1 , preferably at least 2. Indeed, by appropriately combining at least two of said surfactants with different HLBs in water, emulsions will be formed which do not substantially separate into distinct layers, upon standing for at least two weeks at 40°C.
- the emulsions according to the present invention may further comprise other surfactants on top of said emulsifying surfactant system, which should however not significantly alter the weighted average HLB value of the overall emulsion.
- an adequate surfactant system would comprise a hydrophobic nonionic surfactant with for instance an HLB of 6, such as a Dobanol 23-2 and a hydrophilic nonionic surfactant with for instance an HLB of 1 5, such as a Dobanol R 91 -10.
- compositions are formulated as emulsions
- said compositions are opaque.
- centrifugation examination it was observed that said emulsions herein showed no phase separation after 1 5 minutes at 6000 rpm. Under microscopic examination, said emulsions appeared as a dispersion of droplets in a matrix.
- said bleaching microemulsions according to the present invention comprise a hydrophilic surfactant system comprising at least two different surfactants like a nonionic surfactant and an anionic surfactant.
- Suitable hydrophilic surfactants to be used herein are those hydrophilic surfactants mentioned herein.
- the microemulsions herein comprise a peroxygen bleach and a bleach activator
- a key factor in order to stably incorporate the bleach activator in said microemulsions is that at least one of said surfactants of the hydrophilic surfactant system must have a different HLB value to that of the bleach activator.
- At least one of said surfactants has an HLB value which differs by at least 1 .0 HLB unit, preferably 2.0 to that of said bleach activator.
- compositions are macroscopically transparent in the absence of opacifiers and dyes.
- said microemulsions In centrifugation examination, it was observed that said microemulsions herein showed no phase separation after 1 5 minutes at 6000 rpm. Under microscopic examination, said microemulsions appeared as a dispersion of droplets in a matrix. We have observed that the particles had a size which is typically around or below 3 micron diameter.
- the bleaching compositions of the present invention especially those formulated in the form of emulsions or microemulsions are chemically stable.
- compositions of the present invention comprising a peroxygen bleach do not undergo more than 1 0% available oxygen loss at 50°C in 2 weeks.
- concentration of available oxygen can be measured by chemical titration methods known in the art, such as the iodimetric method, the permanganometric method and the cerimetric method. Said methods and the criteria for the choice of the appropriate method are described for example in “Hydrogen Peroxide", W. C. Schumb, C. N. Satterfield and R. L. Wentworth, Reinhold Publishing Corporation, New York, 1 955 and "Organic Peroxides", Daniel Swern, Editor Wiley Int. Science, 1 970.
- the stability of said compositions may also be evaluated by a bulging test method.
- said bleaching compositions of the present invention may be packaged in a given deformable container/bottle without compromising the stability of said container/bottle comprising it upon standing, for long periods of time.
- Suitable chelating agents to be used herein include chelating agents selected from the group of phosphonate chelating agents, amino carboxylate chelating agents, polyfunctionally-substituted aromatic chelating agents, and further chelating agents like glycine, salicylic acid, aspartic acid, glutamic acid, malonic acid, or mixtures thereof. Chelating agents when used, are typically present herein in amounts ranging from 0.001 % to 5% by weight of the total composition and preferably from 0.05% to 2% by weight.
- Suitable phosphonate chelating agents to be used herein may include ethydronic acid as well as amino phosphonate compounds, including amino alkylene poly (alkylene phosphonate), alkali metal ethane 1 -hydroxy diphosphonates, nitrilo trimethylene phosphonates, ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates.
- the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
- Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonates. Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®-
- ATMP aminotri(methylene phosphonic acid)
- a liquid composition of the present invention considerably reduces the damage otherwise associated with the pretreatment of fabrics with peroxygen bleach-containing compositions, especially those fabrics which contain metal ions, such as copper, iron, chromium, and manganese.
- Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,81 2,044, issued May 21 , 1 974, to Connor et al.
- Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy -3,5-disulfobenzene.
- a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
- Ethylenediamine N,N'- disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins.
- Ethylenediamine N,N'- disuccinic acids is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
- Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA),N- hydroxyethylethylenediamine triacetates, nitrilotri- acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa- acetates, ethanol-diglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
- PDTA propylene diamine tetracetic acid
- MGDA methyl glycine di-acetic acid
- Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
- PDTA propylene diamine tetracetic acid
- MGDA methyl glycine di-acetic acid
- Another preferred chelating agent for use herein is of the formula:
- , R2, R3, and R4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO2, -C(O)R ⁇ and - SO2 "; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy; R" is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy; and R5, RQ, R7, and Rs are independently selected from the group consisting of -H and alkyl.
- Particularly preferred chelating agents to be used herein are ATMP, diethylene triamine methylene phosphonate, ethylene N,N'-disuccinic acid, diethylene triamine pantaacetate, glycine, salicylic acid, aspartic acid, glutamic acid, malonic acid or mixtures thereof and highly preferred is ATMP.
- Suitable radical scavengers for use herein include the well-known substituted mono and dihydroxy benzenes and their analogs, alkyl and aryl carboxylates and mixtures thereof.
- Preferred such radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), hydroquinone, di-tert-butyl hydroquinone, mono-tert-butyl hydroquinone, tert-butyl-hydroxy anysole, benzoic acid, toluic acid, catechol, t-butyl catechol, benzylamine, 1 ,1 ,3- tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-propyl-gallate or mixtures thereof and highly preferred is di-tert-butyl hydroxy toluene.
- Radical scavengers when used, are typically present herein in amounts ranging from 0.001 % to 2% by weight
- compositions of the present invention suitable for pretreating a soiled colored fabric upon prolonged contact times before washing said fabric.
- compositions according to the present invention may further comprise a soil suspending polyamine polymer or mixtures thereof, as optional ingredient.
- a soil suspending polyamine polymer known to those skilled in the art may also be used herein.
- Particularly suitable polyamine polymers for use herein are polyalkoxylated polyamines. Such materials can conveniently be represented as molecules of the empirical structures with repeating units :
- R is a hydrocarbyl group, usually of 2-6 carbon atoms;
- R ' may be a C-J -C20 hydrocarbon;
- the alkoxy groups are ethoxy, propoxy, and the like, and y is 2-30, most preferably from 10-20;
- n is an integer of at least 2, preferably from 2-20, most preferably 3-5;
- X " is an anion such as halide or methylsulfate, resulting from the quaternization reaction.
- the most highly preferred polyamines for use herein are the so-called ethoxylated polyethylene amines, i.e., the polymerized reaction product of ethylene oxide with ethyleneimine, having the general formula :
- ethoxylated polyethylene amine in particular ethoxylated tetraethylenepentamine, and quaternized ethoxylated hexamethylene diamine.
- said soil suspending polyamine polymers contribute to the benefits of the present invention, i.e., that when added on top of said solvent system in a liquid composition comprising a peroxygen bleach, they further improve the stain removal performance of said composition, especially under laundry pretreatment conditions. Indeed, they allow to improve the stain removal performance on a variety of stains including greasy stains, enzymatic stains, clay/mud stains as well as on bleachable stains.
- compositions comprise up to 10% by weight of the total composition of such a soil suspending polyamine polymer or mixtures thereof, preferably from 0.1 % to 5% and more preferably from 0.3% to 2%.
- compositions herein may also comprise other polymeric soil release agents known to those skilled in the art.
- polymeric soil release agents are characterised by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibres, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibres and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
- the polymeric soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or
- the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from about 1 to about 200, although higher levels can be used, preferably from 3 to about 1 50, more preferably from 6 to about 100.
- Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as MO3S(CH2)nO H2CH2O-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721 ,580, issued January 26, 1 988 to Gosselink.
- Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellulosic polymers, co-polymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1 -C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1 976 to Nicol, et al.
- Soil release agents characterised by poly(vinyl ester) hydrophobe segments include graft co-polymers of poly(vinyl ester), e.g., C-
- poly(vinyl ester) e.g., C-
- poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
- Commercially available soil release agents of this kind ' include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (West Germany).
- One type of preferred soil release agent is a co-polymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate.
- the molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1 976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1 975.
- Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units which contains 10-1 5% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
- this polymer include the commercially available material ZELCON 51 26 (from Dupont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1 987 to Gosselink.
- Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
- These soil release agents are fully described in U.S. Patent 4,968,451 , issued November 6, 1 990 to J.J. Scheibel and E.P. Gosselink.
- Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,71 1 ,730, issued December 8, 1 987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent 4,721 ,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702 857, issued October 27, 1 987 to Gosselink.
- Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31 , 1 989 to Maldonado et al, which discloses anionic, especially sulfoaroyl, end-capped terephthalate esters.
- Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy- 1 ,2-propylene units.
- the repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps.
- a particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1 ,2- propyleneoxy units in a ratio of from about 1 .7 to about 1 .8, and two end- cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
- Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
- a crystalline-reducing stabilizer preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
- soil release agents will generally comprise from about 0.01 % to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1 % to about 5%, preferably from about 0.2% to about 3.0%.
- compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one dyed surface to another during the cleaning process.
- dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, co-polymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from about 0.01 % to about 10% by weight of the composition, preferably from about 0.01 % to about 5%, and more preferably from about 0.05% to about 2%.
- Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
- the N-O group can be represented by the following general structures:
- R-j , R2, R3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1 ; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups.
- the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
- Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
- suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block co-polymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
- the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10: 1 to 1 : 1 ,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate co- polymerization or by an appropriate degree of N-oxidation.
- the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1 ,000,000; more preferred 1 ,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
- the most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
- Co-polymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred for use herein.
- PVPVI N-vinylpyrrolidone and N-vinylimidazole polymers
- PVPVI has an average molecular weight range from 5,000 to 1 ,000,000, more preferably from 5,000 to 200,000 and most preferably from 1 0,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis, Vol 1 1 3. "Modern Methods of Polymer Characterization", the disclosures of which are incorporated herein by reference.)
- the PVPVI co-polymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 : 1 to 0.2: 1 , more preferably from 0.8: 1 to 0.3: 1 , most preferably from 0.6: 1 to 0.4: 1 .
- compositions may also employ a polyvinylpyrrolidone ("PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000.
- PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A- 256,696, incorporated herein by reference.
- Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from about 500 to about 100,000, preferably from about 1 ,000 to about 1 0,000.
- PEG polyethylene glycol
- the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2: 1 to about 50:1 , and more preferably from about 3:1 to about 10:1 .
- suds boosters such as C ⁇ o ⁇ i 6 alkanolamides can be incorporated into the compositions, typically at 1 %-10% levels.
- 4 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
- Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
- soluble magnesium salts such as MgCl2, MgSO4, and the like, can be added at levels of, for example, 0.1 %-2%, to provide additional suds and to enhance grease removal performance.
- optical brighteners fluorescent whitening agents or other brightening or whitening agents known in the art can be incorporated in the instant compositions when they are designed for fabric treatment or laundering, at levels typically from about 0.05% to about 1 .2%, by weight, of the detergent compositions herein.
- Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acids, methinecyanines, dibenzothiophene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocyclic brighteners, this list being illustrative and non-limiting. Examples of such brighteners are disclosed in
- optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona.
- Tinopal UNPA Tinopal CBS and Tinopal 5BM
- Ciba-Geigy Artie White CC and Artie White CWD, available from Hilton-Davis, located in Italy
- 2-(4-styryl-phenyl)-2H-naphthol[1 ,2- dltriazoles 4,4 * -bis- (1 ,2,3-triazol-2-yl)-stil- benes
- 4,4'- bis(styryl)bisphenyls and the aminocoumarins.
- these brighteners include 4-methyl-7-diethyl- amino coumarin; 1 ,2-bis(- benzimidazol-2-yl)ethylene; 2, 5-bis(benzoxazol-2-yl)thiophene; 2-styryl- napth-[1 ,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [1 ,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972, to Hamilton. Anionic brighteners are typically preferred herein.
- compositions herein may additionally incorporate a catalyst or accelerator to further improve bleaching or soil removal.
- a catalyst or accelerator can be used.
- the composition will typically deliver a concentration of from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 50 ppm, or less, of the catalyst species in the wash liquor.
- Bleach catalysts may also be used herein.
- Typical bleach catalysts comprise a transition-metal complex, for example one wherein the metal co-ordinating ligands are quite resistant to labilization and which does not deposit metal oxides or hydroxides to any appreciable extent under the typically alkaline conditions of washing.
- Such catalysts include manganese-based catalysts disclosed in U.S. Pat. 5,246,621 , U.S. 5,244,594; U.S. 5,194,416; U.S. 5,1 14,606; and EP Nos.
- catalysts include Mn' ⁇ ⁇ - O) 3 (TACN) 2 -(PF6)2' MnlH 2 ( ⁇ -O) 1 ( ⁇ -OAc)2(TACN)2(Cl ⁇ 4)2, Mn'V 4 ( ⁇ - O) 6 (TACN) 4 (CIO4)4, Mn m Mn lv 4 -( ⁇ -O) ⁇ ( ⁇ -OAc) 2 -(TACN)2-(Cl ⁇ 4) 3 , Mn ⁇ v" (TACN)-(OCH3)3(PF6>, and mixtures thereof wherein TACN is trimethyl- 1 ,4,7-triazacyclononane or an equivalent macrocycle; though alternate metal-co-ordinating ligands as well as mononuclear complexes are also possible and monometallic as well as di- and polymetallic complexes and complexes of alternate
- metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5, 1 14,61 1 .
- the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280, 1 1 7; 5,274, 147; 5,1 53, 161 ; and 5,227,084.
- Transition metals may be precomplexed or complexed in-situ with suitable donor ligands selected in function of the choice of metal, its oxidation state and the denticity of the ligands.
- suitable donor ligands selected in function of the choice of metal, its oxidation state and the denticity of the ligands.
- Other complexes which may be included herein are those of U.S. Application Ser. No. 08/210, 1 86, filed March 1 7, 1994.
- compositions herein can be packaged in a variety of containers including conventional bottles, bottles equipped with roll-on, sponge, brusher or sprayers, or sprayers.
- liquid compositions described herein are laundry application, as a laundry detergent or as a laundry additive and especially as a pretreater such compositions may also be used to clean hard-surfaces.
- Example 1 A liquid composition is prepared which comprises: (weight %)
- this composition is applied neat on the stained portion of a fabric and left to act thereon for 5 minutes. Then the fabric is washed with a conventional detergent and rinsed. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- a liquid composition is prepared which comprises: (weight %)
- this composition is applied neat on the stained portion of a fabric and left to act thereon for 5 minutes. Then the fabric is washed with a conventional detergent and rinsed. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- this composition is contacted with an aqueous bath formed by dissolution of a conventional detergent in water. Fabrics are then contacted with the aqueous bath comprising the liquid detergent, and the fabrics are rinsed.
- This composition can also be used in a pretreatment mode, where it is poured neat on the stains on the fabrics, and left to act for 5 minutes, and the fabrics are washed. Excellent stain removal is obtained on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- Example 4 The following liquid composition is prepared: (weight %)
- This composition can be used in a pretreatment mode, or in a bleaching- through-the-wash mode, as described in previous examples. It can also be used in a soaking mode, where 100 ml of the liquid compositions are diluted in 10 liters of water. The fabrics are then contacted with this aqueous bath containing the composition, and left to soak therein for a period of time of 24 hours. The fabrics are eventually rinsed. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- This composition can be used in a pretreatment mode, or in a bleaching- through-the-wash mode, as described in previous examples. It can also be used in a soaking mode, where 100 ml of the liquid compositions are diluted in 10 liters of water. The fabrics are then contacted with this aqueous bath containing the composition, and left to soak therein for a period of time of 24 hours. The fabrics are eventually rinsed. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- This composition can be used in a pretreatment mode, or in a bleaching- through-the-wash mode, as described in examples 1 and 2. It can also be used in a soaking mode, where 100 ml of the liquid compositions are diluted in 10 liters of water. The fabrics are then contacted with this aqueous bath containing the composition, and left to soak therein for a period of time of 24 hours. The fabrics are eventually rinsed. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- a liquid detergent composition is prepared as follows: (weight %)
- This composition is used in a pretreatment mode, as described in the examples above. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- This composition is used in a pretreatment mode as described in the previous examples. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- This composition is used in a pretreatment mode as described in the previous examples. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- ATC stands for acetyl triethyl citrate.
- This composition is used in a pretreatment mode as described in the previous examples. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
- This composition can be used in a pretreatment mode, or in a bleaching- through-the-wash mode, as described in previous examples. Excellent stain removal is obtained therewith on various stains including greasy stains, enzymatic stains, clay stains and bleachable stains.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/254,837 US6087312A (en) | 1996-09-13 | 1997-09-10 | Laundry bleaching processes and compositions |
SK333-99A SK33399A3 (en) | 1996-09-13 | 1997-09-10 | Laundry bleaching processes and compositions |
AU42637/97A AU4263797A (en) | 1996-09-13 | 1997-09-10 | Laundry bleaching processes and compositions |
BR9711830-3A BR9711830A (en) | 1996-09-13 | 1997-09-10 | Laundry bleaching process and compositions. |
JP51380298A JP3212617B2 (en) | 1996-09-13 | 1997-09-10 | Laundry bleaching method and composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96870115.1 | 1996-09-13 | ||
EP96870115A EP0829532B1 (en) | 1996-09-13 | 1996-09-13 | Laundry bleaching processes and compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998011192A1 true WO1998011192A1 (en) | 1998-03-19 |
Family
ID=8226164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/015976 WO1998011192A1 (en) | 1996-09-13 | 1997-09-10 | Laundry bleaching processes and compositions |
Country Status (15)
Country | Link |
---|---|
EP (1) | EP0829532B1 (en) |
JP (1) | JP3212617B2 (en) |
CN (1) | CN1237202A (en) |
AR (1) | AR008183A1 (en) |
AT (1) | ATE239070T1 (en) |
AU (1) | AU4263797A (en) |
BR (1) | BR9711830A (en) |
CZ (1) | CZ87699A3 (en) |
DE (1) | DE69627847T2 (en) |
ES (1) | ES2193231T3 (en) |
PL (1) | PL332246A1 (en) |
SK (1) | SK33399A3 (en) |
TR (1) | TR199900559T2 (en) |
WO (1) | WO1998011192A1 (en) |
ZA (1) | ZA978251B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8871807B2 (en) | 2008-03-28 | 2014-10-28 | Ecolab Usa Inc. | Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1001008A1 (en) * | 1998-11-10 | 2000-05-17 | The Procter & Gamble Company | Liquid aqueous bleaching compositions comprising a sulphonated anionic surfactant |
EP1290265B1 (en) * | 2000-06-05 | 2008-04-30 | The Procter & Gamble Company | Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning |
DE60144088D1 (en) * | 2000-06-05 | 2011-04-07 | Procter & Gamble | METHOD OF BLEACHING USING A LIPOPHILIC LIQUID |
CN103146507B (en) * | 2013-03-22 | 2014-07-16 | 于文 | Environment-friendly faintly acid washing-free stain-removing liquor and preparation method thereof |
AU2014357506B2 (en) * | 2013-12-05 | 2018-06-14 | Rohm And Haas Company | Cleaning composition with rapid foam collapse |
EP3418368A1 (en) | 2017-06-21 | 2018-12-26 | The Procter & Gamble Company | Solvent containing hard surface cleaning compositions |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4772412A (en) * | 1985-09-30 | 1988-09-20 | Lever Brothers Company | Non-aqueous liquid detergent composition comprising perborate anhydrous |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8712430D0 (en) * | 1987-05-27 | 1987-07-01 | Procter & Gamble | Liquid detergent |
GB8810195D0 (en) * | 1988-04-29 | 1988-06-02 | Unilever Plc | Liquid cleaning products |
DE4030850A1 (en) * | 1990-09-29 | 1992-04-02 | Henkel Kgaa | Pasty bleaching agent compsn. - comprising perborate mono:hydrate in liq. medium comprising addn. prod. of ethylene oxide with long chain satd. alcohol |
ES2090118T3 (en) * | 1990-10-22 | 1996-10-16 | Procter & Gamble | LIQUID AND STABLE DETERGENT COMPOSITIONS CONTAINING BLEACH. |
EP0629693B1 (en) | 1993-06-09 | 1998-08-19 | The Procter & Gamble Company | Process for the bleaching of fabrics |
EP0666308B1 (en) * | 1994-02-03 | 2000-08-09 | The Procter & Gamble Company | Multi-purpose liquid cleaning compositions |
US5492540A (en) * | 1994-06-13 | 1996-02-20 | S. C. Johnson & Son, Inc. | Soft surface cleaning composition and method with hydrogen peroxide |
-
1996
- 1996-09-13 EP EP96870115A patent/EP0829532B1/en not_active Expired - Lifetime
- 1996-09-13 DE DE69627847T patent/DE69627847T2/en not_active Expired - Lifetime
- 1996-09-13 AT AT96870115T patent/ATE239070T1/en not_active IP Right Cessation
- 1996-09-13 ES ES96870115T patent/ES2193231T3/en not_active Expired - Lifetime
-
1997
- 1997-09-10 BR BR9711830-3A patent/BR9711830A/en not_active Application Discontinuation
- 1997-09-10 TR TR1999/00559T patent/TR199900559T2/en unknown
- 1997-09-10 CZ CZ99876A patent/CZ87699A3/en unknown
- 1997-09-10 AU AU42637/97A patent/AU4263797A/en not_active Abandoned
- 1997-09-10 PL PL97332246A patent/PL332246A1/en unknown
- 1997-09-10 WO PCT/US1997/015976 patent/WO1998011192A1/en not_active Application Discontinuation
- 1997-09-10 JP JP51380298A patent/JP3212617B2/en not_active Expired - Fee Related
- 1997-09-10 CN CN97199585A patent/CN1237202A/en active Pending
- 1997-09-10 SK SK333-99A patent/SK33399A3/en unknown
- 1997-09-12 AR ARP970104204A patent/AR008183A1/en unknown
- 1997-09-12 ZA ZA9708251A patent/ZA978251B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4772412A (en) * | 1985-09-30 | 1988-09-20 | Lever Brothers Company | Non-aqueous liquid detergent composition comprising perborate anhydrous |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8871807B2 (en) | 2008-03-28 | 2014-10-28 | Ecolab Usa Inc. | Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids |
Also Published As
Publication number | Publication date |
---|---|
AU4263797A (en) | 1998-04-02 |
AR008183A1 (en) | 1999-12-09 |
ES2193231T3 (en) | 2003-11-01 |
DE69627847D1 (en) | 2003-06-05 |
EP0829532A1 (en) | 1998-03-18 |
BR9711830A (en) | 1999-08-31 |
PL332246A1 (en) | 1999-08-30 |
JP2000502763A (en) | 2000-03-07 |
ZA978251B (en) | 1998-08-26 |
CN1237202A (en) | 1999-12-01 |
ATE239070T1 (en) | 2003-05-15 |
JP3212617B2 (en) | 2001-09-25 |
TR199900559T2 (en) | 1999-06-21 |
DE69627847T2 (en) | 2004-03-11 |
SK33399A3 (en) | 2000-03-13 |
CZ87699A3 (en) | 1999-07-14 |
EP0829532B1 (en) | 2003-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6087312A (en) | Laundry bleaching processes and compositions | |
RU2168578C2 (en) | Process of preliminary treatment of fabric before washing, and bleaching composition | |
US6310025B1 (en) | Laundry pretreatment process and bleaching compositions | |
EP0839903B1 (en) | Liquid aqueous bleaching compositions and pretreatment process | |
EP0925350A1 (en) | Laundry pretreatment process and bleaching compositions | |
US5968885A (en) | Bleaching compositions | |
EP0751210A1 (en) | Bleaching compositions | |
WO1999018183A1 (en) | Liquid aqueous bleaching compositions | |
EP0829532B1 (en) | Laundry bleaching processes and compositions | |
US20030224960A1 (en) | Liquid bleaching compositions packaged in spray-type dispenser and a process for pretreating fabrics therewith | |
EP0776966B1 (en) | Liquid bleaching compositions packaged in spray-type dispenser and a process for pretreating fabrics therewith | |
WO1997002332A1 (en) | Peroxygen bleach-containing prespotting compositions with polyamine stabilizers providing improved fabric/color safety | |
WO1997030139A1 (en) | Bleaching compositions | |
US6071870A (en) | Bleaching compositions which contain a peroxygen bleach, a hydrophobic bleach activator, and a long chain alkyl sarcosinate | |
WO2000012666A1 (en) | The use of an aliphatic-aromatic diacyl peroxide in a bleaching composition | |
KR20000036091A (en) | Laundry pretreatment process and bleaching compositions | |
AU6395596A (en) | Bleaching compositions | |
KR19990087531A (en) | Laundry pretreatment method and bleaching composition | |
MXPA99004126A (en) | Liquid aqueous bleaching compositions and pretreatment process | |
MXPA01002200A (en) | The use of an aliphatic-aromatic diacyl peroxide in a bleaching composition | |
CA2246380A1 (en) | Bleaching compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97199585.0 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1999/002463 Country of ref document: MX Ref document number: 33399 Country of ref document: SK Ref document number: PV1999-876 Country of ref document: CZ Ref document number: 1999/00559 Country of ref document: TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09254837 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: PV1999-876 Country of ref document: CZ |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWR | Wipo information: refused in national office |
Ref document number: PV1999-876 Country of ref document: CZ |