+

WO1998010751A1 - Groupe de particules spheriques, son procede de production et produits pharmaceutiques particulaires spheriques constitues desdits groupes de particules - Google Patents

Groupe de particules spheriques, son procede de production et produits pharmaceutiques particulaires spheriques constitues desdits groupes de particules Download PDF

Info

Publication number
WO1998010751A1
WO1998010751A1 PCT/JP1997/003134 JP9703134W WO9810751A1 WO 1998010751 A1 WO1998010751 A1 WO 1998010751A1 JP 9703134 W JP9703134 W JP 9703134W WO 9810751 A1 WO9810751 A1 WO 9810751A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
powder
particle size
particle
particles
Prior art date
Application number
PCT/JP1997/003134
Other languages
English (en)
French (fr)
Inventor
Yasutoyo Fusejima
Yasuhiro Takemura
Nagayoshi Myo
Hisayoshi Kato
Original Assignee
Freund Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freund Industrial Co., Ltd. filed Critical Freund Industrial Co., Ltd.
Priority to EP97939197A priority Critical patent/EP0958812B1/en
Priority to DE69736396T priority patent/DE69736396T2/de
Priority to US09/254,438 priority patent/US6171619B1/en
Publication of WO1998010751A1 publication Critical patent/WO1998010751A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/14Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating dishes or pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/10Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets

Definitions

  • the present invention relates to a spherical particle group having a uniform particle size and a uniform density, which is suitable for a dissolution controlling preparation.
  • DDS drug delivery systems
  • elution control technology of oral drugs is one of the main ones.
  • Drugs using this dissolution control technology can be classified into single unit type and multiple unit type according to the structure of the drug product, each of which has its own characteristics. Knit type is excellent.
  • multi-brunet type preparations many of which use several types of granules with a specified dissolution performance as components.
  • a medicinal effect is formed on spherical particles of an inert substance such as sucrose, starch powder, microcrystalline cellulose and the like, which generally have a particle size of about 200 to 1,000 / m. It is common to coat components and elution control substances.
  • inert spherical particles are commercially available under the trade names such as "Non-barrel” (Freund Sangyo Co., Ltd.) and “Selfia” (Asahi Kasei Kogyo Co., Ltd.).
  • “Non-barrel” Fluorous Materials
  • Selfia Aligni Kasei Kogyo Co., Ltd.
  • the spherical particles need not only be capable of forming a coating layer capable of imparting a desired elution behavior to the medicinal component on the surface thereof, but also have accuracy, no variation between lots, and weighing and filling. Many requirements must be met, such as ease of operation and no segregation during handling. Therefore, for spherical particles themselves, the particle size, hardness, friability, sphericity, solubility, water absorption, etc., and for the aggregate of spherical particles, the particle size distribution, kaza density, angle of repose, etc. affect the above required performance. And several proposals to improve them have been made.
  • JP-A-6-205959 discloses a composition containing lactose at 95% by weight or more
  • JP-A-4-283520 discloses a composition containing 10-70% of crystalline cellulose having an average degree of polymerization of 60-375 and 10-90% of a water-soluble additive
  • JP-A-7-173050 proposes a composition containing 50% or more of crystalline cellulose having an average degree of polymerization of 60 to 375.
  • Japanese Patent Publication No. Hei 5-229961 discloses a composition mainly composed of lactose and cellulose
  • Japanese Patent Publication No. Hei 7-2761 discloses a composition containing microcrystalline cellulose at 20% or more. Strongly related to equipment and manufacturing method.
  • component-independent V common properties include particle size and particle size distribution.
  • particle size the above Japanese Patent Publication No. Hei 7-2761 discloses that the fraction passing through a 24 mesh (710 ⁇ m) becomes 90% or more. It is described that spherical granules with a size of 500 m or less are good for satisfying the regulations of the Japanese Pharmacopoeia and for suppressing the dispersion of the formulation.
  • particle size distribution see, for example, Mizunaga et al., The 7th Pharmaceutical Preparation and Particle Design Symposium Abstracts, p. 89-93 (October, 1990), which covered spherical particles with drugs, etc. It is described that a spherical particle having a spherical particle size distribution is preferable from the viewpoint of coating efficiency when coating is further applied ⁇ reproducibility of coating.
  • a method for obtaining spherical particles having a sharp particle size distribution is disclosed in Japanese Patent Application Laid-Open No. 63-23731, in which a raw material is continuously charged using a rotor granulator and the product is continuously discharged. A method is disclosed. Although this method has the advantage of a continuous production method, it is unclear what particle size distribution was actually obtained. Slightly, the "very good particle size distribution width obtained by continuous discharge, e.g., to 1.0-1.2 mm, must be further improved. There is no description about the particle size distribution of the actual product.
  • this method merely classifies the desired particle size by sieving, but sieving of spherical particles has poor classification efficiency depending on the particle size distribution of the raw material, and many sieved products are contained in the product. And the yield is low, which is not practical.
  • the most basic characteristics of a controlled release formulation using spherical particles are that the dissolution pattern is the same for each particle, that there is no variation, and that there is no variation in measurement or filling.
  • the properties of are determined by the above universal physical properties. If spherical granules produced by conventional methods or commercially available spherical granules were used, this variation could not be reduced to a certain limit, and the formulation had to be designed based on this premise. It is.
  • spherical particles containing medicinal ingredients are also required to be free of measurement and filling variations. Since spherical particles containing a medicinal ingredient can contain a larger amount of medicinal ingredient per the same weight than spherical particles that do not contain a medicinal ingredient and are coated with the medicinal ingredient. Using small capsules Therefore, it is easy to swallow and is useful for geriatric medicine that will continue to increase in the future.To respond to this, it is necessary to obtain spherical particles with a uniform particle size distribution and uneven packing. is necessary.
  • An object of the present invention is to reduce the variation and improve the performance of the dissolution controlling preparation. Disclosure of the invention
  • the present invention comprises one or more pharmaceutical substances, and has an average particle diameter of 100 to 100 ⁇ m as a particle group, and 90% by weight or more of all particles.
  • spherical particles but characterized by the upper limit of the particle size range is 1. twice or less of the particle diameter of the lower limit, the density difference between the particles comprise 0. 0 5 g / cm 3 less than the a particles
  • the present invention also relates to a spherical particle group, characterized in that the substance for preparation is composed of only a non-medicinal component and a substance containing a pharmaceutically active ingredient.
  • the present invention provides a method of moistening a powder comprising one or more pharmaceutical substances having an average particle diameter of 1 to 100 im and charging the powder into a centrifugal flow granulation apparatus.
  • the liquid is sprayed on the powder while rotating the rotating disk at a rate of less than 3% Z of the plastic limit until the powder reaches the plastic limit of 751-220%, and then dried.
  • a method for producing a group of spherical particles is produced by rotating the rotating disk at a rate of less than 3% Z of the plastic limit until the powder reaches the plastic limit of 751-220%.
  • the present invention also relates to a spherical particle preparation comprising the spherical particles constituting the spherical particle group coated with a medicinal ingredient and Z or a film-forming component, wherein the film-forming component is a spherical particle which is an elution controlling component. It relates to a particle preparation.
  • FIG. 1 is a diagram showing a hopper used to analyze the change over time of the content of acetaminophen in the coated spherical particles.
  • the average particle size of the spherical particle group of the present invention is 100 to 100 ⁇ m. It is difficult to control elution at less than 100 ⁇ m, and the dispersion of packing becomes large at more than 100 jam. In addition, since the surface area per weight is small, if the coating layer has a medicinal component, the weight of the medicinal component is undesirably increased.
  • 90% by weight or more of all particles must have a particle size with the upper limit of the particle size range less than 1.2 times the lower limit, and the difference in density between the particles Must be less than 0.05 g / cm 3 .
  • a spherical particle aggregate having such characteristics segregation is prevented in a step of coating thereon, a step of transporting and discharging from a hopper, and a coating with a uniform film thickness is performed. And dispersion during filling can be prevented.
  • a conventional method is used in which powder is adhered to a core using a nucleus and granulated, or a columnar granule obtained by extrusion granulation is centrifugally rolled.
  • the method of sizing is not suitable. In the former, the density of the nucleus and the attached powder layer is different, so that the particles having different weight ratios between the nucleus and the attached powder have different densities.
  • the granulation method suitable for the present invention is the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-22961, with further limited conditions applied.
  • the average particle size of the powder used in the method of the present invention needs to be 1 to 100 m. If it is less than 1 m, the powder may be broken or adhered, causing inconvenience in handling, and there is no advantage in making the powder fine. If it is 100 or more, the roughness of the generated particle surface becomes large, which is not preferable.
  • the amount of liquid to be added (in the case of a mixed liquid of two or more liquids having different boiling points, the amount of liquid remaining at the end of granulation) is 75 to 120% of the plastic limit of the powder. For this amount, it is necessary to use more liquid for the plastic limit as the target particle size of the granulated product is larger, and the particle size is controlled accordingly. At this time, since the addition rate of the liquid to be added greatly affects the particle size distribution, in order to obtain a good particle size distribution, the above-mentioned addition rate of the liquid remaining at the end of the granulation is used to calculate the plasticity limit of the powder. Less than 3%, preferably less than 2% Z.
  • the addition rate is high, for example, 5.3% ⁇ / min in Example 1 of the above-mentioned Japanese Patent Application Laid-Open No. 5-229969, 3.2% in Example 2, and Is calculated to be 4.0%, and it can be seen from the result that all the obtained spherical particles have a wide particle size distribution.
  • the spherical particle preparation of the present invention includes a form in which the medicinal component and the film-forming component are coated on the spherical particle of the present invention composed of only the non-medicinal component, a form in which the film-forming component is coated on the spherical particle containing the medicinal component, It is arbitrarily selected according to the purpose, for example, from a form in which both the medicinal component and the film-forming component which are the same as or different from the medicinal component are coated on spherical particles containing the medicinal component.
  • both the medicinal component and the film-forming component are coated, either a method of forming a coating layer by mixing them or a method of forming a multilayer structure in which the medicinal component is an inner layer and the film-forming component is an outer layer may be used. .
  • Non-medicinal components of the spherical particles constituting the spherical particle group of the present invention include, but are not limited to, lactose, starch, crystalline cellulose, powdered cellulose, hardened oil, wax and the like.
  • the medicinal ingredient is not limited, and any drug such as water-soluble, oil-soluble, or hardly soluble in any of them can be used.
  • dissolution controlling components such as matrix forming agents, non-crystallizing agents such as clathrates and solid solution forming agents, and auxiliaries such as penetrants, dissolution promoters, PH regulators, and stabilizers can be used. .
  • water or a liquid containing water as a main component is usually used to wet the powder as a raw material.
  • the amount of the liquid for wetting should be 35 to 75%, preferably 40 to 70% of the plastic limit of the powder.
  • the liquid should have a large force against the plastic limit of the powder, and when the target particle size is small, it should be applied with a small force. It is controlled by the total amount of added liquid, and the amount of liquid in this step is an auxiliary control factor.
  • the rate of addition of this liquid there is no particular lower limit to the rate of addition of this liquid from the viewpoint of the physical properties of the granulated spherical particles.
  • the addition rate is too low, the production takes too much time to increase the production cost, which is not practical, and if the addition rate is extremely slow, the improvement in the physical properties is not remarkable.
  • the plasticization limit is 0.05% or more, preferably 0.1% Z or more.
  • An arbitrary device such as a ribbon blender, a kneader, and a high-speed stirrer is used for the wet operation.
  • the centrifugal flow granulation apparatus used in the method of the present invention is manufactured by Freund Sangyo Co., Ltd. Equipped with a rotating disk with a smooth surface at the bottom of a cylindrical can body, such as a CF granulator, and sends air through the gap between the edge of the rotating disk and the can body to prevent powder and granules from falling
  • a rotating disk with a smooth surface at the bottom of a cylindrical can body such as a CF granulator
  • the rotation speed of the rotating disk varies depending on the size of the apparatus, but is usually 20 to 400 RPM, preferably 40 to 300 RPM.
  • the liquid to be sprayed on the powder is not particularly limited, and may be water or a volatile liquid such as ethanol, methanol, ethyl acetate, methyl acetate, and acetone, or a non-volatile liquid such as ethylene glycol, propylene glycol, and glycerin. Liquids may be used, but those containing water or non-volatile liquids are preferred. Further, it may contain a binder such as hydroxypropyl cell mouth, hydroxypropylmethylcellulose, polyvinylpyrrolidone, pullulan, gum arabic, hemicellulose and the like. Usually, it is preferable to use water alone or a mixed liquid containing water as a component.
  • the amount of the liquid to be added is 75 to 120% of the plastic limit of the raw material powder.
  • the plasticity limit is described in detail in Funakoshi's "Compacting and Granulating Drugs", but in this paper, the optimal water content was 55-65% of the plasticity limit. Further, in Japanese Patent Application Laid-Open No. 5-229969, the plastic limit of 95 to 110% is considered to be suitable.
  • the method of the present invention not only is it possible to sharpen the particle size distribution by making the addition rate of the liquid less than 3% of the plastic limit, but also to make the final liquid amount 75 to 1 of the plastic limit. It is possible to make it up to the range of 20%, and the particle size can be easily adjusted.
  • the added amount of the liquid is the amount of liquid remaining at the end of granulation, and when a mixture of volatile liquids is used, This volatile liquid is calculated as not remaining.
  • the spherical particles after the completion of granulation are dried to obtain a product.
  • Any drying method such as a fluidized bed apparatus and a tray dryer can be used.
  • the spherical particle group of the present invention can be basically obtained only by the above granulation, but in some cases, it may be dried and sieved to obtain a product.
  • the particle size distribution is sharp, the efficiency of sieving is high and the content of the sieved product is small, so that those containing 90% or more of particles in the target particle size range can be easily prepared.
  • the medicinal component coated on the spherical particles constituting the spherical particle group of the present invention is not particularly limited.
  • the film-forming component examples include hydroxypropylcellulose, hydroxybutylpyrmethylcellulose, brulan, gum arabic, hemicellulose, and the like.
  • Water-soluble polymers such as polyvinylpyrrolidone and polyvinyl alcohol, and hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, carboxymethylethylcellulose, cellulose acetate phthalate, and methacrylic acid copolymer for controlling elution
  • enteric polymers such as, for example, poorly soluble polymers such as shellac and ethylcellulose, and mixtures thereof.
  • Spherical particles containing the medicinal ingredient of the present invention may be used as preparations as they are, but they are filled into capsules or together with excipients, etc.
  • a tablet may be formed into a preparation.
  • the medicinal ingredient per weight can be increased as compared with a conventional coating layer containing the medicinal ingredient.
  • Capsules and tablets can be made, making it easier to take.
  • CF-360 Fast-centrifugal flow granulator
  • This powder contains 103.5% of water at the plastic limit, and the spray rate of water is 1.51% of the plastic limit.
  • the obtained spherical particles were fluid-dried.
  • This spherical particle group has a sieve passing through a sieve of 4 25 m, 0.7%, and 4 25 to 500 tm fraction 92.2%, with 50 oversize fraction 7.1%, was measured 20 density particles, up to 1. 454 gZcm 3, at minimum 1. 427 gZ cm 3, it is the difference zero. 027 g / cm 3 .
  • the density was measured by a floating / sedimentation method using a mixed solvent of carbon tetrachloride and methylene chloride.
  • a mixture of lactose, a Japanese Pharmacopoeia having an average particle diameter of about 10 m (manufactured by DMV) l OOO g, and Avicel PH—101, 11,000 g having an average particle diameter of about 40 ⁇ was charged into a ribbon blender, and water 600 m 1 And stirred for 30 minutes (water is 42.6% of the plastic limit of the powder).
  • This was charged into a fast-flow fluidizing granulator CF-360, and the rotating disk was cultivated at 200 RPM and sprayed with 750 ml of water-containing ethanol containing 30% by weight of ethanol for 35 minutes.
  • This powder contains 79.8% of water at the plastic limit, and the spray rate of water is 1.06% of the plastic limit.
  • This spherical particle group had a particle size of 250% through a 250 zm sieve 2.3%, a 250-300 ⁇ fraction 90.7 ° C., a 300 ⁇ fraction on a sieve 7.0%, and the density of 20 particles was measured. gZcm 3 , minimum 428 g / cm 3 , the difference was 0.031 g / cm 3 .
  • Spherical particles were produced in the same manner as in Example 1 except that aqueous ethanol 60 OmI was sprayed for 8 minutes. The spray rate of water at this time was 5.7% of the plastic limit.
  • the dried particles of the spherical particles obtained were 1.3% passed through 425 zm, 71.0% of a 425-500 ⁇ m fraction, and 27.7% passed through a 500 ⁇ sieve, and the density of 20 particles was measured. As a result, the maximum was 1.473 gZcm 3 and the minimum was 1.425 cm 3 , and the difference was 0.048 g / cm 3 .
  • Spherical particles were produced in the same manner as in Example 1, except that lactose powder having an average particle diameter of 120 ⁇ was used.
  • the resulting spherical particles had large irregularities on the surface and were unsuitable for pharmaceutical preparations.
  • This group of spherical particles consisted of 0.5% of the particles passed through a 710 m sieve, 91.2% of a 710 to 850 ⁇ fraction, and 8.3% of the fraction on a 850 ⁇ sieve.
  • the difference was 421 g / cm 3 and the minimum was 383 g / cm 3 , and the difference was 0.038 gZcm 3 .
  • Example 1 1 kg of the spherical particles obtained in Example 1 was charged into a rapid-flow fluidizing granulator CF-360, and the rotating disk was rotated at 200 RPM to obtain 300 g of acetoaminophen, 300 g of corn starch, and 400 g of the lactose. While spraying the mixed powder, 520 g of a 5% aqueous solution of hydroxypropyl cellulose HPC-L (manufactured by Nippon Soda Co., Ltd.) was sprayed over 50 minutes to obtain acetoaminophen-coated spherical particles.
  • a rapid-flow fluidizing granulator CF-360 While spraying the mixed powder, 520 g of a 5% aqueous solution of hydroxypropyl cellulose HPC-L (manufactured by Nippon Soda Co., Ltd.) was sprayed over 50 minutes to obtain acetoaminophen-coated spherical particles.
  • Example 4 Same as in Example 4 except that a commercially available non-parel 105 (manufactured by Freund Corporation) having the same composition as Comparative Example 1 and a particle size of 355 to 500 ⁇ was used. Operated. This was sieved at 500 m and the acetaminophen content of the upper and lower sieve fractions was measured. The 2%, 500 ⁇ sieve fraction contained I 2.2% of acetoaminophen. Further, the 500 / xm fraction on the sieve was further sieved at 600 ⁇ , and the acetaminophen content of the fraction on the sieve was measured at 600 m. As a result, it was 16.3%.
  • Example 4 has a more uniform content of acetoaminophen.
  • Example 4 The coating operation was performed in the same manner as in Example 4 except that the re-sieve fraction of Comparative Example 3 was used, to obtain acetomaminophen-coated spherical particles. This was sieved with 71 O tm, and the acetoaminophen content of the upper and lower sieved fractions was measured. The lower distillate contained 12.1% acetaminophen. That is, even if the particle size distribution is sharpened, the content of acetaminophen becomes non-uniform if there is a density difference.
  • This spherical particle group had a flow rate of 7 10 / im of 0.8% and a fraction of 7 10 to 850 ⁇ 93.6.
  • the density of 20 particles was measured at 5.6% on the 85 0 im sieve, the maximum was 432 g / cm 3 and the minimum was 1.40 1 gZcm 3 , and the difference was 0.03 1 gZ cm 3 . Atsushi.
  • Example 2 The same operation as in Example 2 was performed, except that 68 Om1 of aqueous ethanol was sprayed for 30 minutes.
  • the powder after granulation contains water of 76.3% of the plastic limit, and the spraying rate of water is 1.1% of the plastic limit.
  • the obtained spherical particle group has a particle size of 180% through a 180 ⁇ sieve, a fraction of 180 to 212 ⁇ 78.4%, a fraction on a 212 zm sieve, 18.0 ° / 0 , and 20 particles. And measured the density of The maximum was 1.479 gZcm 3 and the minimum was 1.452 gZcm 3 , and the difference was 0.027 g / cm 3 . The particles were sieved with a 21 2 ⁇ sieve to remove the upper part of the 212 ⁇ sieve. However, the content of the upper sieve was small, so that the particles could be efficiently sieved. The maximum was 1.480 gZcm 3 and the minimum was 1.459 gZcm 3 , and the difference was 0.021 gZcm 3 .
  • Indomethacin (measurement value of plasticity 0.63 gZcm 3 ) 334 g, the above-mentioned Avicel PH-1 800 g, and lactose 866 g were mixed with water for 100 minutes using a kneader while mixing with water for 100 minutes. (Water is 74.1% of the plastic limit).
  • 2,000 g of the wet powder was charged into a centrifugal fluidized-bed granulator CF-360, and 40 Om1 of water-containing ethanol having an ethanol content of 30% by weight was sprayed for 20 minutes while rotating a rotating disk at 200 RPM. This powder contains 104.1% of water at the plastic limit, and the jet velocity of water is 1.5% of the plastic limit.
  • the obtained spherical particles were dried in a tray.
  • This group of spherical particles has a density of 20 particles measured at 710% of the 70 110 ⁇ sieve, 93.0% of the 70-850 m fraction, and 5.1% of the 850 / m sieve.
  • the maximum was 1.415 gZcm 3 and the minimum was 1.38 gZcm 3 , and the difference was 0.034 g / cm 3 .
  • the spherical particles contained 16.5% indomethacin.
  • This coated spherical particle group has a sharp particle size distribution at 10.1% on a 600 ⁇ m sieve, 89.5% on a 500 to 600 ⁇ m fraction, and 0.4% on a 500 m sieve.
  • the acetaminophen content of the 500-600 cut was 5.68%.
  • 1 kg of the coated spherical particle group was put into a hopper shown in FIG. 1, and changes in the content of acetaminophen in the coated spherical particles flowing out from the lower outlet were prayed over time. Table 1 shows the results.
  • a commercially available non-barrel 103 of 355-500 m product was operated in the same manner as in Example 8 to obtain acetaminophen-coated spherical particles.
  • the coated spherical particles had a 600 zm sieve fraction of 25.6%, a 500-600 Atm fraction of 51.6%, and a 500 ⁇ m sieve fraction of 22.8%, with 500-600 im
  • the acetaminophen content of the fraction was 5.70%, and the acetaminophen content of the fraction passed through the 500 sieve was 5.01%.
  • 1 kg of the coated spherical particles The hopper outflow particles were analyzed for acetaminophen content in the same manner as in Example 8. Table 1 shows the results.
  • the spherical particle group of the present invention has a uniform particle size and a uniform density with extremely small bias due to passage through the hopper, and has a uniform density. Since there is no variation in the particle size and it is possible to make a large amount of medicinal ingredient contained in spherical particles of a certain particle size, if it is possible to design a small capacity of the capsule formed by filling the particles, It is a thing to tighten.
  • the dissolution of an oral drug can be appropriately controlled, and the effectiveness of the drug can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Preparation (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Glanulating (AREA)

Description

明 細 書 球形粒子群、 その製造方法及びそれを用いた球形粒子製剤 技術分野
この発明は溶出制御製剤に適した、 均一な粒度及び均一な密度を有する球形粒 子群に関する。 背景技術
近年、 ドラッグ ·デリバリーシステム (D D S ) が盛んに研究され、 或るもの はすでに実用化されており、 経口薬剤の溶出制御技術もその主な一つである。 こ の溶出制御技術を用いた薬剤を製剤の構造上から分類すると、 シングルュニット 型とマルチブルユニット型があり、 それぞれに特徴があるが、 製剤設計の容易さ や自由度の点ではマルチプルュニット型がすぐれている。 マルチブルュニット型 の製剤にも多くの種類があって、 その多くのものは、 所定の溶出性能を付与した 何種類かの顆粒を構成要素として用いている。
このような顆粒を製するには、 一般に 2 0 0〜 1 , 0 0 0 / m程度の粒径を有 する蔗糖、 デン粉、 微結晶セルロース等の不活性な物質の球形粒子上に、 薬効成 分と溶出制御物質とを被覆するのが普通である。 この、 不活性な物質の球形粒子 は 「ノンバレル」 (フロイント産業 (株) 製) 、 「セルフィァ」 (旭化成工業 (株) 製) 等の商品名で市販されていて、 製剤原料として有用な商品であるが、 性能的にはさらに改善の余地がある。
即ち、 上記球形粒子は、 その表面に薬効成分に対して所望の溶出挙動を付与で きるコーティング層が形成できることが必要なだけでなく、 その正確性、 ロット 間のバラツキのないこと、 計量 '充填の容易性、 取扱い中における偏析のないこ と、 など多くの要求を満たさなければならない。 そのため、 球形粒子そのものに ついては、 粒度、 硬度、 摩損度、 真球度、 溶解性、 吸水性などが、 また球形粒子 の集合物としては粒度分布、 カザ密度、 安息角などが上記要求性能に影響を及ぼ す因子とされ、 それらを改良する提案がレ、くつかなされてきた。 球形粒子を構成する物質の種類は、 上記物性のうち、 硬度、 摩損度、 溶解性、 吸水性等に対して支配的な要因となるから、 その研究は多い。 例えば特開平 6— 205959号公報は乳糖 95重量%以上の組成を、 特開平 4— 283520号 公報は平均重合度 60〜 375の結晶セルロース 10〜 70 %、 水溶性添加剤 1 0〜90%の組成を、 また特開平 7— 173050号公報は平均重合度 60〜 3 75の結晶セルロースを 50%以上含む組成をそれぞれ提案している。 また、 特 開平 5— 22996 1号公報は、 主として乳糖とセルロースから成る組成を、 特 公平 7— 276 1号公報は微結晶セルロースを 20%以上含むものを開示してお リ、 球形粒子の製造装置や製造方法との関連性が強い。
他方、 構成成分に依存しな V、普通的な特性としては粒度と粒度分布がある。 粒度については、 前記特公平 7— 276 1号公報に、 24メッシュ (7 1 0μ m) を通過する留分が 90%以上となるもの力 特開平 5— 929 1 8号公報に 薬剤を被覆後 500 m以下になる球形顆粒等が、 それぞれ日本薬局方の規定を 満たすためや配合のバラツキを抑えるために良好であることが記されている。 粒度分布については、 例えば水永ら、 第 7回製剤と粒子設計シンポジウム講演 要旨集 p. 89-93 (平成 2年 1 0月) に、 球形粒子そのものではないが、 球形粒子に薬剤等を被覆した粒子の粒度分布がシヤープで球形のものが、 これに さらにコーティングを施すときのコ一ティング効率ゃコ一ティングの再現性の点 で好ましいことが記載されている。
しかし、 この報文には粒度分布とコーティング効率との関係を示すデータや、 粒度分布がどのようになれば製剤用として好ましいのか等については何の記載も ない。
造粒して球形粒子を製したときの粒度分布については、 いくつかの報告がある。 例えば、 船越、 「薬剤の圧縮成形と造粒」 、 昭和 5 1年 8月 4日、 国立国会図害 館受入の学位論文、 p. 1 14、 坂元、 第 7回製剤と粒子設計シンポジウム講演 要旨集、 p. 1 1 8〜 12 1 (平成 2年 10月) 、 B. Gajdos, Pharm. Ind. , 45,
No, 7, 722〜 728 (1 983) 、 特開昭 62— 269739号公報等があ るが、 、ずれも本発明において必要とされるシャ一ブな粒度分布は得られていな いし、 粒子の密度差については記載がない。 また、 これらの球形粒子を製剤に用 いてどのような結果が得られるのかについても触れるところがない。
粒度分布がシャープな球形粒子を得る方法としては、 特開昭 6 3 - 2 3 7 3 1 号公報に、 ローター造粒機を用い原料を連続的に投入して製品を連続的に排出す る方法が開示されている。 この方法は、 連続的な製造法という利点はあるものの、 実際にどのような粒度分布の粒子が得られたのかは不明である。 僅かに、 連続排 出によって得られた 「既にきわめて良好な粒度分布幅を、 たとえば 1 . 0〜1 . 2 mmに、 さらに一層向上させなければならない場合は ' · '連続的に分別装置 中に供給する」 と記されているのみで、 実際の製品の粒度分布に関する記載はな い。 その上、 この方法は篩別で所望の粒度に分級しているに過ぎないが、 球状粒 子の篩別は、 原料の粒度分布によっては分級効率が不良で、 製品中に多くの篩下 品を含み、 かつ収率も低く、 実際的ではない。
また、 球形粒子に薬効成分を含有させることは、 前記特開平 6— 2 0 5 9 5 9 号公報に開示されているが、 この場合も粒径分布はシャープではなかった„ 以上述べてきたように、 マルチブルュニット型の溶出制御製剤を製するために 球形粒子上に薬効成分と溶出制御成分とを被覆し、 あるいは薬効成分を含有する 球形粒子を製造することは工業的に実施され、 研究も行われているが、 所望の溶 出挙動を付与するのに必要な条件の解明が十分なされているとは言い難い。 特に、 構成物質の種類に依存しない普遍的な物性については有効な提案はほとんどなさ れていない。
球形粒子を用いた溶出制御製剤におレ、ては溶出パタ一ンが各粒子について同一 で、 バラツキがないことと、 計量や充填のバラツキが生じないことが最も基本的 な特性とされ、 これらの特性は上記普遍的な物性によって決ってくる。 従来の方 法で製した球形顆粒や市販の球形顆粒を用いたのでは、 どうしてもこのバラツキ を一定の限界よリ小さくすることはできず、 これを前提として製剤設計せざるを 得ないのが現状である。
また、 薬効成分を含有する球形粒子にあっても同様に計量や充填のパラツキの ないことが要請される。 薬効成分を含有する球形粒子は薬効成分を含有しない球 形粒子上に薬効成分を被覆したものに比して同一重量当り多量の薬効成分を含有 させることができるから、 カブセルに充填する際、 ょリ小さなカプセルを使用し 得るので、 嚥下し易く、 今後増加の一途をたどる老人医療に有用であるが、 これ に対応するためにも粒径分布がシャ一ブで、 充填のバラツキのな 、球形粒子を得 ることが必要である。
本発明は、 このバラツキを低減させ、 溶出制御製剤の性能を向上せしめること を目的とする。 発明の開示
本発明は、 1種又は 2種以上の製剤用物質から成るものであって、 その粒子群 として平均粒子径が 1 0 0〜 1 0 0 0 μ mであり、 全粒子の 9 0重量%以上が、 粒度範囲の上限がその下限の 1 . 2倍以下の粒子径であって、 各粒子の密度差が 0 . 0 5 g / c m 3 未満である粒子群からなることを特徴とする球形粒子群に関 するものであり、 また上記製剤用物質が、 非薬効成分のみから成るもの、 及び薬 効成分を含むものであることを特徴とする球形粒子群に関するものである。 また本発明は、 平均粒子径が 1〜 1 0 0 i mである 1種または 2種以上の製剤 用物質から成る粉体を湿潤させて遠心流動造粒装置に仕込み、 該遠心流動造粒装 置の回転円盤を回転させつつ前記粉体に液体を、 前記粉体の可塑限界の 7 5 - 1 2 0 %になるまで、 前記可塑限界の 3 %Z分未満の速度で噴霧した後乾燥するこ とを特徴とする球形粒子群の製迨法に関するものである。
また本発明は、 前記球形粒子群を構成する球形粒子上に薬効成分及び Z又は被 膜形成成分を被覆した球形粒子製剤に関するものであリ、 さらにこの被膜形成成 分が溶出制御成分である球形粒子製剤に関するものであ.る。 図面の簡単な説明
第 1図は、 被覆球形粒子中のァセトァミノフェン含有量の経時の変化を分析す る為に用いるホッパーを示す図である。 発明を実施するための最良の形態
本発明球形粒子群の平均粒子径は 1 0 0〜 1 0 0 0 μ mである。 1 0 0 μ m未 満では溶出制御が困難であリ、 1 0 0 0 ja m以上では充填のバラツキが大きくな リ、 また重量当りの表面積が小さくなるので、 被覆層に薬効成分がある場合は、 薬効成分当リの重量が大きくなって好ましくない。
溶出制御製剤の、 溶出のバラツキを低減させるためには、 全粒子の 9 0重量% 以上が、 粒度範囲の上限がその下限の 1 . 2倍未満の粒子径であり、 かつ各粒子 の密度差が 0 . 0 5 g / c m 3 未満である粒子群からなることを要する。 このよ うな特性の球形粒子集合物を用いると、 その上に被覆を行う工程、 移送やホッパ 一からの排出等の工程における偏析が防止され、 均一な膜厚の被覆が行われ、 ま た計量や充填時におけるバラツキが防止できる。
このような球形粒子群を製するには、 従来から行われている、 核を用いてこの 上に粉末を付着させて造粒する方法や、 押出し造粒によって得た柱状顆粒を遠心 転動させて整粒する方法は不適当である。 前者は、 核と付着粉末層の密度が異な るため、 核と付着粉末との重量比が異なる粒子では密度が異なってくるし、 後者 はシャ一ブな粒度分布が得られな 、。
本発明に適した造粒方法は、 前記特開平 5— 2 2 9 9 6 1号公報に開示された 方法において、 さらに限定された条件を適用したものである。
即ち、 本発明方法に使用される粉末の平均粒子径は 1 ~ 1 0 0 mであること を要する。 1 m未満では粉末の粉立ちや付着など力起り、 取り扱いに不便であ るし、 またこのように微細にする利点もない。 1 0 0 以上になると、 生成粒 子表面の粗度が大きくなリ、 好ましくない。
次に、 加える液の量 (沸点の異なる 2種以上の液体の混合液体の場合は、 造粒 終了時に残存する液の量) は、 粉末の可塑限界の 7 5 ~ 1 2 0 %とする。 この量 は、 造粒物の目標粒子径が大きいほど可塑限界に対して多くの液を用いるように することが必要であり、 これによつて粒径管理を行う。 この際、 加える液の添加 速度が粒度分布に大きく影響することから、 良好な粒度分布を得るには、 前記し た造粒終了時に残存する液の添加速度で計算して、 粉体の可塑限界の 3 % 分未 満、 好ましくは 2 %Z分未満とする。 従来は、 この添加速度が大きく、 例えば前 記特開平 5— 2 2 9 9 6 1号公報の実施例 1では 5 . 3 %^ /分、 実施例 2では 3 . 2 % 分、 実施例 3では 4 . 0 % 分と計算され、 得られた球形粒子はいずれも 粒度分布が広いことがその結果からわかる。 本発明の球形粒子製剤は、 非薬効成分のみから成る本発明球形粒子上に、 薬効 成分と被膜形成成分とを被覆する形態、 薬効成分を含む球形粒子上に被膜形成成 分を被覆する形態、 及び薬効成分を含む球形粒子上に、 該薬効成分と同一の又は 異なる薬効成分と被膜形成成分の双方を被覆する形態等から目的に応じて任意に 選択される。 薬効成分と被膜形成成分の両者を被覆する場合は、 これらを混合し て被覆層を形成する方法と、 薬効成分を内層とし、 被膜形成成分を外層とする重 層構造とする方法のいずれでもよい。
本発明の球形粒子群を構成する球形粒子の非薬効成分としては、 乳糖、 殿粉、 結晶セルロース、 粉末セルロース、 硬化油、 ワックス等が例示されるが、 これら に限定されない。 球形粒子中に薬効成分を含有させる場合も、 この薬効成分につ いては限定はなく、 水溶性、 油溶性、 あるいはいずれにも難溶なものなど、 任意 の薬物が利用可能である。 この場合、 マトリックス形成剤などの溶出制御成分、 包接剤、 固溶体形成剤などの非晶化剤、 浸透剤、 溶解促進剤、 P H調節剤、 安定 剤等の補助剤を配合しても差支えない。
本発明の球形粒子群の製造方法において、 原料となる粉体を湿潤させるには、 通常水又は水を主成分とする液体を用いる。 湿潤のための液体の量は、 粉体の可 塑限界の 3 5〜7 5 %、 好ましくは 4 0〜 7 0 %とするのがよい。
この液体は、 目標とする球形粒子の粒径が大きいときは、 粉体の可塑限界に対 して多く、 小さいときは少く加えるようにするのがよい力、 粒度は最終的には、 後述の添加液総量によって制御し、 この工程における液体量は補助的な制御因子 とされる。
この液の添加速度には、 造粒した球形粒子の物性上からは特に下限はない。 し かし、 添加速度が小さすぎると、 製造に時間が掛リすぎて生産コストが上昇し、 実用的でないし、 また極端に遅くしても物性の向上は顕著ではないので、 通常は 粉体の可塑限界の 0 . 0 5 %ノ分以上、 好ましくは 0 . 1 %Z分以上とするのが よい。
湿潤操作にはリボンプレンダー、 ニーダー、 高速攪拌機等任意の装置が用いら れる。
本発明方法に用いられる遠心流動造粒装置としては、 フロイント産業 (株) 製 の C F造粒装置などの、 円筒形の缶体の底部に平滑な表面を有する回転円盤を備 え、 この回転円盤の縁と缶体との隙間から空気を送って粉粒体の落下を防止する と共に、 粉粒体の流動化、 混合及び乾燥を行い、 回転円盤の上方に噴霧器を設け た装置が挙げられるが、 回転円盤の形状や表面の凹凸、 攪拌部材 (バッフル) 等 の設置等、 これと異つていても、 同様の機能を有する装置であれば利用可能であ る。
回転円盤の回転数は装置の大きさによって異るが通常 2 0〜4 0 0 R PM、 好 ましくは 4 0〜3 0 0 R P Mである。
粉体に噴霧する液体は、 特に限定されず、 水、 あるいはエタノール、 メタノー ル、 酢酸ェチル、 酢酸メチル、 アセトン等の揮発性の液体でも、 エチレングリコ —ル、 プロピレングリコール、 グリセリン等の非揮発性の液体でもよいが、 水ま たは非揮発性の液体を含有しているものがよい。 またヒドロキシプロビルセル口 —ス、 ヒドロキシプロピルメチルセルロース、 ポリビニルピロリドン、 プルラン、 アラビアガム、 へミセルロース等の結着剤を含有していてもよい。 通常は水単独、 または水を一成分とする混合液体を用いるのがよい。
この液体の添加量は、 原料粉体の可塑限界の 7 5〜 1 2 0 %となる量とする。 この可塑限界に関しては、 前記船越 「薬剤の圧縮成形と造粒」 に詳述されている が、 この論文においては、 最適な水分量は可塑限界の 5 5〜 6 5 %とされていた。 また、 特開平 5— 2 2 9 9 6 1号公報においては可塑限界の 9 5〜 1 1 0 %が好 適とされている。
本発明方法においては、 液体の添加速度を可塑限界の 3 %ノ分未満 すること によって、 粒度分布をシャープにすることを可能にしただけでなく、 最終の液体 量を可塑限界の 7 5〜 1 2 0 %の範囲まで可能とし、 粒度調節を容易にすること ができる。
なお、 前記液体の添加量と可塑限界との比をとる場合、 液体の添加量は造粒終 了時に残存する液体の量であって、 揮発性の液体を混合したものを用いた場合は、 この揮発性液体は残存しないものとして計算する。
本発明方法において、 造粒終了後の球形粒子は乾燥して製品とする。 乾燥方法 は、 流動層装置、 棚段乾燥器等任意のものが用いられる。 本発明球形粒子群は、 基本的には上記造粒のみによって取得可能であるが、 場 合によっては、 乾燥後篩分して製品としてもよい。 本発明方法によれば、 粒度分 布がシャープとなるため、 篩分の効率がよく、 篩下品の含有量が少くなるので、 容易に目標の粒度範囲の粒子を 9 0 %以上含有するものを得ることができる。 本発明球形粒子群を構成する球形粒子上に被覆する薬効成分には特に制限はな く、 また被膜形成成分としては、 ヒドロキシプロピルセルロース、 ヒドロキシブ 口ピルメチルセルロース、 ブルラン、 アラビアガム、 へミセルロース、 ポリビニ ルピロリドン、 ポリビニルアルコールなどの水溶性高分子や、 溶出制御を行うた めのヒドロキシプロピルメチルセルロースフタレート、 ヒドロキシプロピルメチ ルセルロースアセテートサクシネート、 カルボキシメチルェチルセルロース、 セ ルロースアセテートフタレート、 メタクリル酸コポリマ一などの腸溶性高分子や シェラック、 ェチルセルロースなどの難溶性高分子、 あるいはこれらの混合物な ど力 «J示される。
本発明の薬効成分を含有する球形粒子、 あるいは本発明球形粒子上に薬効成分 を被覆したものは、 そのま、製剤として用いてもよいが、 カブセルに充填し、 あ るいは賦形剤などと共に打錠成形して製剤としてもよい。 これらの製剤において 薬効成分を含有する球形粒子を用いた場合は、 重量当りの薬効成分量を、 従来の 被覆層に薬効成分を含有させたものに比して多くできる利点があリ、 より小さな カプセルや錠剤にすることができるので、 服用が容易となる。
実施例 1
平均粒子径約 2 O i mの日本薬局方粉末乳糖 (D MV社製) 1 4 0 0 gと平均 粒子径約 4 0 mの日本薬局方結晶セルロース (アビセル P H— 1 0 1、 旭化成 工業 (株) 製) 6 0 0 gの混合物を練合機に仕込み、 水 6 5 O m 1 を加えて 2 0 分間練合した (水は粉末の可塑限界の 6 5 . 7 %となっている) 。 これを速心流 動造粒装置 C F— 3 6 0型 (フロイント産業 (株) 製) に仕込んで、 回転円盤を 2 0 0 R P Mで回転し、 エタノール含有量 2 5重量%の含水エタノール 5 0 0 m 1を 2 5分間で噴霧した。 この粉末は可塑限界の 1 0 3 . 5 %の水分を含有して ぉリ、 水の噴霧速度は可塑限界の 1 . 5 1 % 分となる。 得られた球形粒子群を 流動乾燥した。 この球形粒子群は 4 2 5 m篩通過分 0 . 7 %、 4 2 5〜 5 0 0 tm留分 92. 2%、 50 篩上分 7. 1 %で、 粒子 20個の密度を測定し たところ、 最大 1. 454 gZcm3 、 最小 1. 427 gZ cm3 で、 その差は 0. 027 g/cm3 であった。 なお、 密度の測定は、 四塩化炭素と塩化メチレ ンの混合溶媒を用 、た浮沈法によった。
実施例 2
平均粒子径約 10 mの日本薬局方乳糖 (DMV社製) l O O O gと、 平均粒 子径約 40 μπιの前記アビセル PH— 10 1 1 000 gの混合物をリボンブレ ンダ一に仕込み、 水 600m 1を加えて 30分間撹拌した (水は粉末の可塑限界 の 42. 6%となっている。 ) 。 これを速心流動造粒装置 CF— 360型に仕込 んで、 回転円盤を 200 RPMで回耘し、 エタノール含有量 30重量%の含水ェ タノール 750m 1を 35分間で噴霧した。 この粉末は可塑限界の 79. 8 %の 水分を含有しており、 水の噴霧速度は可塑限界の 1. 06%Z分となる。 得られ た球形粒子群は棚段乾燥した。 この球形粒子群は、 250 zm篩通過分 2. 3%、 250〜300 μπι留分 90. 7 °ん 300 μπι篩上分 7. 0%で、 粒子 20個 の密度を測定したところ、 最大 459 gZcm3 、 最小 428 g/cm 3 で、 その差は 0. 03 1 g/cm3 であった。
比較例 1
含水エタノール 60 Om Iを 8分間で噴霧した以外は実施例 1と同様にして球 形粒子を製造した。 このときの水の噴霧速度は可塑限界の 5. 7% 分であった。 得られた球形粒子群の乾燥物は 425 zm通過分 1. 3 %、 425〜 500 μ m 留分 7 1. 0%、 500 μπι篩上分 27. 7 %で、 粒子 20個の密度を測定した ところ、 最大 1. 473 gZcm3 、 最小 1. 425 cm3 で、 その差は 0. 048 g/c m3 であった。
比較例 2
平均粒子径 1 20 μιηの乳糖粉末を用いた以外は、 実施例 1と同様にして球形 粒子を製造した。 得られた球形粒子は表面の凹凸が大きく、 製剤用に不適当なも のであった。
比較例 3
市販のノンバレル 1 03 (フロイント産業 (株) 製、 蔗糖結晶を核として、 こ れに蔗糖粉末を蔗糖シロッブで結着した球形粒子) を再篩分して 500〜 600 Atmの留分を得た。 この粒子 20個の密度を測定したところ、 最大 559 g /cm3 , 最小 1. 506 gZ cm3 で、 その差は 0. 053 gZcm3 であつ た。
実施例 3
ァスコルビン酸 (可塑限界測定値 0. 17 gZcm3 ) 1, 200 gと前記ァ ビセル PH— 101 800 gの混合粉末に水 750m lを加えてリボンプレン ダ一で 1 5分間混合した (水は可塑限界の 63. 1%) 。 この湿潤粉末 2, 00 0 gを遠心流動造粒装置 CF— 360に仕込み、 回転円盤を 180 RPMで回転 しつつ、 水 240m 1を 20分間で噴霧した。 この粉末は可塑限界の 91 %の水 分を含有してぉリ、 水の喷霧速度は可塑限界の 1. 39% 分であった。 得られ た粒子を流動乾燥した。 この球形粒子群は 7 10 m篩通過分 0. 5%、 7 10 〜850 μιη留分 91. 2%、 850 μπι篩上分 8. 3%で、 粒子 20個の密度 を測定したところ、 最大 421 g/cm3 、 最小し 383 g/cm3 で、 その差は 0. 038 gZcm3 であった。
実施例 4
実施例 1で得た球形粒子 1 k gを速心流動造粒装置 C F— 360に仕込んで回 転円盤を 200 RPMで回転し、 ァセトァミノフェン 300 g、 コーンスターチ 300 g、 及び前記乳糖 400 gの混合粉末を散布しつつヒドロキシプロピルセ ルロース H PC— L (日本曹達株式会社製) 5%水溶液 520 gを 50分間にわ たって噴霧し、 ァセトァミノフェン被覆球形粒子を得た。 これを 600 mで篩 分し篩上留分と篩下留分のァセトァミノフェン含有量を測定したところ、 600 m篩上留分は 14. 2%、 600 μπι篩下留分は 12. 4%のァセトアミノフ ェンを含有していた。
比較例 4
比較例 1と同一の組成を有し、 同一の噴霧速度によって製した市販のノンパレ ル 105 (フロイント産業 (株) 製) の 355〜500 μπιの粒度品を用いたほ か、 実施例 4と同様に操作した。 これを 500 mで篩分して篩上留分と篩下留 分のァセトァミノフェン含有量を測定したところ、 500 m篩上留分は 1 5. 2%、 500 μπι篩下留分は I 2. 2 %のァセ卜ァミノフェンを含有していた。 また、 500 /xm篩上留分をさらに 600 μπιで篩分して 600 mで篩上留分 のァセトァミノフェン含有量を測定したところ、 1 6. 3%であった。
本比較例と、 本発明の球形粒子群を用いた実施例 4を比較すると、 実施例 4の 方がァセトアミノフェンの含有量が均一であることがわかる,
比較例 5
比較例 3の再篩分留分を用いた他は実施例 4と同様に被覆操作を行い、 ァセト ァミノフェン被覆球形粒子を得た。 これを 7 1 O tmで篩分し、 篩上留分と篩下 留分のァセトァミノフェン含有量を測定したところ、 7 1 0 μπι篩上留分は 14. 9%、 7 10 m篩下留分は 1 2. 1 %のァセトァミノフェンを含有していた。 即ち、 粒度分布をシャープにしても、 密度差がある場合はァセトァミノフェン の含有量が不均一となることがわかる。
実施例 5
アビセルに替えて平均粒子径約 30 /mの粉末セルロース (W— 300G、 日 本製紙 (株) 製) を用い、 含水エタノールを 1, 1 00 m 1 とし、 喷霧時間を 5 0分としたほか実施例 1と同様に操作した。 CF— 360仕込時の水分含有量は 粉末の可塑限界の 51. 1 %、 造粒終了時は同じく可塑限界の 1 1 6. 0%、 水 の噴霧速度は可塑限界の 0. 97% 分であった。 なお、 粉末セルロースの可塑 限界の測定は困難であつたが 5回測定の平均値を用い 1. 70とした。 この球形 粒子群は 7 10 /im通過分 0. 8%、 7 10〜850 μπι留分 93. 6。ん 85 0 im篩上分 5. 6%で、 粒子 20個の密度を測定したところ、 最大 432 g/cm3 、 最小 1. 40 1 gZcm3 で、 その差は 0. 03 1 gZ cm3 であ つた。
実施例 6
含水エタノール 68 Om 1を 30分間で噴霧したほか実施例 2と同様に操作し た。 造粒後の粉末は可塑限界の 76. 3%の水を含有しており、 水の噴霧速度は 可塑限界の 1. 1 3%ノ分となる。
得られた球形粒子群は、 1 80μπι篩通過分 3. 6%、 1 80~2 1 2μπι留 分 78. 4%、 2 1 2 zm篩上分 1 8. 0°/0で、 粒子 20個の密度を測定したと ころ最大 1. 479 gZcm3 、 最小 1. 452 gZcm3 で、 その差は 0. 0 27 g/cm3 であった。 この粒子群を 21 2 μπι篩で篩分して 21 2 μπι篩上 分を除去したが、 篩上分の含有量が少いため能率よく篩分可能であった, 篩分後 の粒子の密度は最大 1. 480 gZcm3 、 最小 1. 459 gZcm3 で、 その 差は 0. 021 gZcm3 であった。
実施例 7
インドメタシン (可塑限界測定値 0. 63 gZcm3 ) 334 g、 前記アビセ ル PH— 1 0 1 800 g、 及び乳糖 866 gの混合粉末に水 1 00 Om 1を力 Π えて練合機で 20分間混合した (水は可塑限界の 74. 1 %) 。 この湿潤粉末 2, 000 gを遠心流動造粒装置 CF— 360に仕込み、 回転円盤を 200 RPMで 回転しつつエタノール含有量 30重量%の含水エタノール 40 Om 1を 20分間 で噴霧した。 この粉末は可塑限界の 1 04. 1 %の水分を含有しており、 水の噴 S速度は可塑限界の 1. 50%ノ分である。 得られた球状粒子群は棚段乾燥した。 この球形粒子群は、 7 1 0 μιη篩通過分 1. 9 %、 7 1 0 ~ 850 m留分 93. 0%、 850/ m篩上分 5. 1 %で、 粒子 20個の密度を測定したところ、 最大 1. 4 1 5 gZc m3 、 最小 1. 38 1 gZc m3 で、 その差は 0. 034 g/ cm3 であった。
この球形粒子群はインドメタシンを 16. 5%含有していた。
インドメタシンの 25m g入カブセルを製するには、 この球形粒子 0. 1 52 gが必要であるが、 これは 5号カプセル (4. 5mm0 X 1 1. Omm) に充填 することができた。
比較例 6
市販ノンバレル 103の 7 10〜850μπι品 (篩分により粒度を揃えてぁリ、 7 1 0 111通過分1. 5%、 7 1 0〜850 m¾分 98. 1 %、 850 m篩 上分 0. 4%、 20個測定による密度最大 1. 547 gノ cm3 、 最小 1. 49 2 gZcm3 、 密度差 0. 055 gZcm3 ) 1 k gにインドメタシン 250 g、 コーンスターチ 500 g及び乳糖 200 gの混合粉末を散布したほか、 実施例 4 と同様に操作して、 インドメタシン被覆球形粒子を得た。 この球形粒子群はイン ドメタシンを 1 2. 1 %含有していた。 インドメタシンの 25m g入カプセルを製するには、 この球形粒子 0. 207 gが必要であるが、 これは前記 5号カブセルには充填することができず、 4号力 ブセル (5mm0 X 14mm) が必要であった。
実施例 8
実施例 1で得た球形粒子 1 k gを遠心流動造粒装置 C F- 360に仕込んで回 転円盤を 200RPMで回転し、 ァセトァミノフェン 1 008及び前記乳糖58 0 gの混合粉末を散布しつつヒドロキシプロピルセルロース HPC— L (日本曹 達株式会社製) 5%水溶液 340 gを 60分間にわたって噴霧し、 ァセトァミノ フェン被覆球形粒子を得た。
この被覆球形粒子群は、 600 μ m篩上分 1 0. 1 %、 500〜 600 μ m留 分 89. 5%、 500 m篩通過分 0. 4 %でシャープな粒度分布を示しており、 500〜600 留分のァセトァミノフェン含有量は 5. 68%であった。 つぎに、 この被覆球形粒子群 1 k gを図 1に示すホッパーに入れ、 下部の排出口 から流れ出した被覆球形粒子中のァセトァミノフエン含有量の変化を経時的に分 祈した。 結果を表 1に示す。
比較例 7
市販のノンバレル 1 03の 355〜500 m品を実施例 8と同様に操作して ァセトァミノフェン被覆球形粒群を得た。 この被覆球形粒群は、 600 zm篩上 留分は 25. 6%、 500〜600 Atm留分 5 1. 6 %、 500 μ m篩通過留分 は 22. 8%であり、 500〜600 im留分のァセトァミノフェン含有量は 5. 70%、 500 篩通過分のァセトァミノフェン含有量は 5. 0 1 %であった。 この被覆球形粒群 1 k g実施例 8と同様にしてホッパー流出粒子のァセトアミ ノフェン含有量を分析した。 結果を表 1に示す。
表 1から、 本発明の被覆球形粒子群はホッパー通過による偏祈が極めて小さい ことが分かる。 表 1
Figure imgf000016_0001
産業上の利用可能性
以上、 詳述したとおり、 本発明の球形粒子群は、 ホッパー通過による偏祈が極 めて小さい均一な粒度のものであり、 かつ均一な密度を有しているこ.とから、 溶 出速度にバラツキがないし、 また、 一定の粒度の球形粒子に大量の薬効成分を含 有せしめることが可能であることから、 該粒子を充填して形成されるカブセルの 容量を小さく設計することを可能ならしめるものである。
すなわち、 本発明により、 例えば経口薬剤の溶出を適切に制御し、 薬剤の有効 性をよリ向上せしめることができる。

Claims

請 求 の 範 囲
1 . 平均粒子径が 1 0 0〜 1 0 0 0 mであり、 全粒子の 9 0重量%以上が、 粒 度範囲の上限がその下限の 1 . 2倍以下の粒子径であつて、 各粒子の密度差が 0. 0 5 g X c m 3 未満である粒子群からなることを特徴とする、 1種または 2種以 上の製剤用物質から成る球形粒子群。
2 . 製剤用物質が、 非薬効成分のみから成ることを特徴とする請求項 1記載の球 形粒子群。
3 . 製剤用物質が薬効成分を含むことを特徴とする請求項 1記載の球形粒子群。
4 . 平均粒子径が 1〜 1 0 0 mである 1種または 2種以上の製剤用物質から成 る粉体を湿潤させて遠心流動造粒装置に仕込み、 該遠心流動造粒装置の回転円盤 を回転させつつ前記粉体に液体を、 前記粉体の可塑限界の 7 5〜 1 2 0 %になる まで、 前記可塑限界の 3 %Z分未満の速度で噴霧した後乾燥することを特徴とす る球形粒子群の製造方法。
5 . 球形粒子群の平均粒子径が 1 0 0〜 1 0 0 0 / mであり、 全粒子の 9 0重量 %以上が、 粒度範囲の上限がその下限の 1 . 2倍以下の粒子径であって、 各粒子 の密度差が 0 . 0 5 g / c m 3 未満である粒子群からなることを特徴とする請求 項 4記載の球形粒子群の製造方法。
6 . 請求項 1〜 3記載の球形粒子群を構成する各球形粒子上に薬効成分及び Z又 は被膜形成成分を被覆したことを特徴とする球形粒子製剤。
. 被膜形成成分が溶出制御成分である請求項 6記載の球形粒子製剤。
PCT/JP1997/003134 1996-09-10 1997-09-05 Groupe de particules spheriques, son procede de production et produits pharmaceutiques particulaires spheriques constitues desdits groupes de particules WO1998010751A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97939197A EP0958812B1 (en) 1996-09-10 1997-09-05 Spherical particle groups, process for preparing the same and spherical particulate pharmaceuticals using the same
DE69736396T DE69736396T2 (de) 1996-09-10 1997-09-05 Sphärische Teilchen, Verfahren zu deren Herstellung und pharmazeutische Zusammensetzungen mit diesen
US09/254,438 US6171619B1 (en) 1996-09-10 1997-09-05 Spherical granule, process for producing the same, and spherical granule preparations using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP26016796 1996-09-10
JP8/260167 1996-09-10
JP9/218989 1997-07-31
JP9218989A JPH10139659A (ja) 1996-09-10 1997-07-31 球形粒子群、その製造方法及びそれを用いた球形粒子製剤

Publications (1)

Publication Number Publication Date
WO1998010751A1 true WO1998010751A1 (fr) 1998-03-19

Family

ID=26522860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003134 WO1998010751A1 (fr) 1996-09-10 1997-09-05 Groupe de particules spheriques, son procede de production et produits pharmaceutiques particulaires spheriques constitues desdits groupes de particules

Country Status (5)

Country Link
US (1) US6171619B1 (ja)
EP (1) EP0958812B1 (ja)
JP (1) JPH10139659A (ja)
DE (1) DE69736396T2 (ja)
WO (1) WO1998010751A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043303A1 (de) * 1998-02-24 1999-09-02 Schering Aktiengesellschaft Verfahren zur herstellung von ummantelten, sphärischen granulatkörnern

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2243082T3 (es) * 1998-10-01 2005-11-16 Powderject Research Limited Microparticulas con revestimiento aplicado por pulverizacion utilizadaen una jeringa sin aguja.
TWI256309B (en) * 1999-10-13 2006-06-11 Akzo Nobel Nv New formulation of mirtazapine
ATE327737T1 (de) 2001-03-07 2006-06-15 Dainippon Sumitomo Pharma Co Verfahren zur herstellung von arzneistoffgranulatkörnern, die arzneistoffgranulatkörner sowie diese enthaltende pharmazeutische zubereitungen
JP4848101B2 (ja) * 2001-08-17 2011-12-28 株式会社フジモト・コーポレーション 徐放性マイクロペレット
ES2266496T3 (es) * 2002-04-29 2007-03-01 Egis Gyogyszergyar Nyrt Procedimiento para la preparacion de comprimidos a partir de sustancias farmaceuticamente activas que presentan propiedades de compresion desfavorables con un liquido de granulacion que comprende la celulosa microcristalina.
US9107804B2 (en) 2002-12-10 2015-08-18 Nortec Development Associates, Inc. Method of preparing biologically active formulations
JP4919801B2 (ja) 2003-09-26 2012-04-18 アルザ・コーポレーシヨン 高い薬剤配合量を提供する薬剤コーティング及びそれを提供する方法
US20070224269A1 (en) * 2004-06-10 2007-09-27 Rubino Orapin P Controlled Release Pharmaceutical Formulation
EP1862184A4 (en) 2005-03-24 2012-12-19 Daiichi Sankyo Co Ltd PHARMACEUTICAL COMPOSITION
JP4944467B2 (ja) * 2005-03-24 2012-05-30 第一三共株式会社 医薬用組成物
CN101495097A (zh) * 2006-07-26 2009-07-29 旭化成化学株式会社 球形素颗粒及其制造方法
DE102012007671A1 (de) 2012-04-16 2013-10-17 Acino Pharma Ag Pellets mit hohem Wirkstoffgehalt
JP6251667B2 (ja) 2014-06-03 2017-12-20 アサヒカルピスウェルネス株式会社 錠剤型即放性製剤及びその製造方法
CN109529716A (zh) * 2017-09-22 2019-03-29 霍尼韦尔国际公司 将粉末造粒的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229961A (ja) * 1991-05-28 1993-09-07 Freunt Ind Co Ltd 球形粒子、その製造方法およびそれを用いた医薬品
JPH06205959A (ja) * 1993-01-12 1994-07-26 Freunt Ind Co Ltd 球形顆粒、その製造方法およびそれを用いた医薬品
JPH072761B2 (ja) * 1985-03-20 1995-01-18 不二パウダル株式会社 微結晶セルロ−ス球形顆粒及びその製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232932B2 (ja) * 1986-05-16 1990-07-24 Fuji Sangyo Kk Ryushikakohohooyobisochi
DE3623321A1 (de) * 1986-07-11 1988-01-21 Bayer Ag Verfahren zur kontinuierlichen herstellung von sphaerischen granulaten
US5026560A (en) * 1987-01-29 1991-06-25 Takeda Chemical Industries, Ltd. Spherical granules having core and their production
JP2542122B2 (ja) * 1990-04-18 1996-10-09 旭化成工業株式会社 球状核、球形顆粒およびその製造方法
JP2820829B2 (ja) * 1991-03-07 1998-11-05 武田薬品工業株式会社 有核散剤およびその製造方法
JPH04283520A (ja) * 1991-03-12 1992-10-08 Asahi Chem Ind Co Ltd 球状核および球形顆粒
JPH06205955A (ja) * 1993-01-07 1994-07-26 Sanden Corp オゾン溶解装置
ZA94614B (en) * 1993-02-11 1994-08-12 Sasol Chem Ind Pty Solvent extraction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072761B2 (ja) * 1985-03-20 1995-01-18 不二パウダル株式会社 微結晶セルロ−ス球形顆粒及びその製造法
JPH05229961A (ja) * 1991-05-28 1993-09-07 Freunt Ind Co Ltd 球形粒子、その製造方法およびそれを用いた医薬品
JPH06205959A (ja) * 1993-01-12 1994-07-26 Freunt Ind Co Ltd 球形顆粒、その製造方法およびそれを用いた医薬品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043303A1 (de) * 1998-02-24 1999-09-02 Schering Aktiengesellschaft Verfahren zur herstellung von ummantelten, sphärischen granulatkörnern
US6723372B1 (en) 1998-02-24 2004-04-20 Schering Aktiengesellschaft Method for producing encased spherical granular grains

Also Published As

Publication number Publication date
US6171619B1 (en) 2001-01-09
JPH10139659A (ja) 1998-05-26
DE69736396D1 (de) 2006-09-07
EP0958812A4 (en) 2003-07-02
EP0958812B1 (en) 2006-07-26
DE69736396T2 (de) 2007-08-09
EP0958812A1 (en) 1999-11-24

Similar Documents

Publication Publication Date Title
JP3447042B2 (ja) 単一物質球形粒の製造方法
JP3732508B2 (ja) 粉末状薬剤の製造方法
EP0475536B1 (en) Spherical granules having core and their production
EP0619731B1 (en) Microcrystalline cellulose spheronization composition
Davies et al. Batch production of pharmaceutical granulations in a fluidized bed II: Effects of various binders and their concentrations on granulations and compressed tablets
WO1998010751A1 (fr) Groupe de particules spheriques, son procede de production et produits pharmaceutiques particulaires spheriques constitues desdits groupes de particules
CA2172055C (en) Process (ii) for the preparation of powdered medicament
JP3349535B2 (ja) 球形顆粒の製造方法
JPH09263589A (ja) 乳糖の球形粒及びその製造方法
JPH06508779A (ja) ビーズレット形の医薬物質の製法
JPH072761B2 (ja) 微結晶セルロ−ス球形顆粒及びその製造法
Vuppala et al. Application of powder-layering technology and film coating for manufacture of sustained-release pellets using a rotary fluid bed processor
CN100475215C (zh) 头孢呋辛酯掩味微丸及制备方法
JP3219787B2 (ja) 球形粒子の製造方法
JP3910939B2 (ja) 単一物質球形粒、それらを用いた食品、医薬及びそれらの製法
Kunam et al. Solubility and dissolution rate enhancement of ezetimibe by solid dispersion and pelletization techniques using soluplus as carrier
WO2009133774A1 (ja) 球形顆粒及びその製造方法
JP2888581B2 (ja) 固形医薬製剤の製造方法
JPH09175999A (ja) 球形顆粒およびその製造方法
JP3354172B2 (ja) 高薬物含量粉体の重質造粒法
Zema et al. The use of ß-cyclodextrin in the manufacturing of disintegrating pellets with improved dissolution performances
Summers CHAPTER CONTENTS Introduction..... 466 Reasons for granulation.. 466 Powdered and granulated products as dosage forms..... 467
Summers Powders, granules and granulation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997939197

Country of ref document: EP

Ref document number: 09254438

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997939197

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997939197

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载