WO1998009145A1 - Procede de fabrication de capteurs de pression - Google Patents
Procede de fabrication de capteurs de pression Download PDFInfo
- Publication number
- WO1998009145A1 WO1998009145A1 PCT/DE1997/001800 DE9701800W WO9809145A1 WO 1998009145 A1 WO1998009145 A1 WO 1998009145A1 DE 9701800 W DE9701800 W DE 9701800W WO 9809145 A1 WO9809145 A1 WO 9809145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure sensor
- sensor elements
- thin layer
- resistive thin
- benefit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000012528 membrane Substances 0.000 claims abstract description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 20
- 239000010959 steel Substances 0.000 claims description 20
- 230000008901 benefit Effects 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000010935 stainless steel Substances 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 5
- 238000003698 laser cutting Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 2
- 229910000639 Spring steel Inorganic materials 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L7/00—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
- G01L7/02—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
- G01L7/08—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49099—Coating resistive material on a base
Definitions
- the invention relates to a method for producing pressure sensor elements according to the preamble of claim 1.
- pressure sensor elements are known. Because of their diverse possible uses and their suitability for a wide pressure range from, for example, 10 to 2000 bar, pressure sensor elements with a metal membrane and a resistive thin layer arranged thereon have proven to be particularly suitable. In the following we speak of a resistive thin layer, it being clear that this consists of a plurality of individual layers with different functions, which together form the resistive thin layer.
- These pressure sensor elements have a base body that has a measuring opening that extends from the metal membrane (bottom of the measuring Opening) is spanned. By applying a pressure to the measuring opening, the metal membrane and thus the resistive thin layer applied to the metal membrane undergoes a deflection that can be detected by suitable evaluation means.
- the pressure sensor elements In order to enable a more effective production of the pressure sensor elements, it is known to process a larger number of pressure sensor elements, for example 50 to 70 pieces, using the so-called carrier technology.
- the previously individually rotated and polished base bodies having the bag openings are inserted into a carrier structure, for example a perforated plate, and these are subsequently provided with the resistive thin layer.
- the support element is simultaneously contaminated by the layer deposition processes for applying the resistive thin layer, so that the carrier element must be subjected to extensive cleaning before it can be used again.
- the carrier elements have to be equipped with the base bodies and then the finished processed pressure sensor elements are removed from the carrier element again Need to become.
- Another disadvantage is that different carrier systems are also required for the different processes, such as coating and photolithography. The accuracy of the carriers goes directly into the geometric accuracy of the individual element.
- the method according to the invention with the features mentioned in claim 1 offers the advantage that a large number of pressure sensors can be produced simultaneously in a simple manner.
- a large number of pressure sensor elements are produced in one panel (multiple panels) of base bodies and that this is separated into the base body resulting from the application of the resistive thin layer in the pressure sensor elements makes it advantageously possible to produce the pressure sensor elements with high accuracy without complex additional aids . Additional work steps such as the insertion into and removal from a carrier element are completely eliminated.
- the deposition processes of the resistive thin film can be mastered much more easily in terms of process technology, which is then separated into the pressure sensor elements.
- the finished processed pressure sensor elements can be separated using highly precise techniques, preferably using laser cutting, water jet cutting or wire EDM, so that after the separation, Further processing of the pressure sensor elements is not necessary.
- pressure sensor elements By optimizing the arrangement of the pressure sensor elements on the common use, the available space can be used as much as possible, so that only a minimal drop remains after separating the pressure sensor elements. Overall, pressure sensor elements can thus be produced very advantageously in a large number with a consistently high quality in a manner suitable for mass production.
- Figure 1 is a plan view and a sectional view through a single pressure sensor element
- FIG. 2 shows a plan view and a sectional illustration through a use for producing the pressure sensor elements according to the invention
- FIG. 3 is a plan view of a benefit in a further embodiment and FIG. 4 shows a sectional view through a pressure sensor (pressure sensor element on pressure connection).
- FIG. 1 shows a pressure sensor element 10 in a plan view and a sectional view.
- the pressure sensor element 10 has a base body 12, which is circular, for example. According to other exemplary embodiments (not shown), the base body 12 can also have other geometrical shapes on it.
- the base body 12 has a measuring opening 14 which is delimited on one side by a measuring membrane 16, so that there is a blind opening.
- the measuring membrane 16 is formed by the bottom of the measuring opening 14, so that the base body 12 and the measuring membrane 16 are formed in one piece.
- a resistive thin layer in the form of a Wheatstone bridge 18 is formed on the measuring membrane 16, the description of the layer deposition process to be carried out in order to achieve the resistive thin layer not to be discussed in more detail in the present description.
- the base body 12 usually consist of a high-strength stainless steel.
- the structure and mode of operation of the pressure sensor element 10 shown in FIG. 1 are generally known.
- a pressure sensor element 10 is illustrated by way of example in FIG. This is arranged on a pressure connection 20, which has a through opening 24 in a housing 22, which with a medium to be measured, for example a gaseous or liquid medium.
- the through opening 24 is closed by the pressure sensor element 10, the base body 12 being fastened on a mounting flange 26 of the housing 22.
- the base body 12 can be glued, welded, soldered, etc. to the flange 22, the joining technology being based on the quality requirements of the measurement result obtained with the pressure sensor 10.
- the measuring opening 14 is acted upon by a pressure or negative pressure via the passage opening 24, so that the measuring membrane 16 is deflected.
- This deflection of the measuring membrane 16 can be evaluated using known methods, for example resistively (Wheatstone bridge).
- the deflection of the measuring diaphragm 16 is proportional to the pressure conditions which arise in the measuring opening 14, so that it can be concluded that the pressure or negative pressure is present.
- a square panel 28 is shown for this purpose in FIG. 3, which has an edge length a. having .
- the panel 28 can of course also have a different geometric shape, for example a rectangular shape, circular shape, trapezoidal shape, etc.
- the edge length a is chosen to be larger than ten times the diameter d of a pressure sensor element 10. This provides space for a total of 100 pressure sensor elements 10 on the panel 28.
- the panel 28 is in the form of a flat plate 30 made of stainless steel with a thickness * ⁇ .
- the plate 30 has 32 blind openings 34 (measuring openings 14) in a predetermined grid, so that the plate 30 is present as a one-sided perforated plate.
- the grid 32 of the blind openings 34 is selected such that the distance between the center line of adjacent blind openings 34 is selected to be slightly larger than the diameter d of the later pressure sensor elements 10.
- the process steps known per se for structuring a resistive thin layer 18 are subsequently carried out.
- the surface 36 is optionally polished, the subsequent deposition of an insulation layer (in thin-film or thick-film technology), the deposition of a resistive thin layer, for example sputtering of polysilicon or metals, a photolithographic structuring, a deposition of a contact layer, a possible structuring of the contact layer and the subsequent application of a passivation layer.
- the invention provides that the layer system is generated over the entire surface 36 of the panel 28.
- the deposition of a resistive thin layer 18 on a single pressure sensor element 10 since, above all, only one exact adjustment per benefit 28, not per sensor element 10 as ⁇ on ⁇ t, has to be carried out.
- the deposition of the individual layers on a larger, continuous panel 28, each with a uniform thickness is possible in a simple manner, so that tolerance differences between the individual pressure sensor elements 10 are reduced.
- the position of the individual pressure sensor elements 10 is indicated in the plan view shown in FIG. 2.
- a separation from the panel 28 then takes place.
- high-precision cutting techniques for example laser cutting, wire EDM or water jet cutting, can be used.
- a better utilization of the area of the benefit 28 can be achieved.
- a benefit 28 with the same edge length a and pressure sensor elements 10 with the same diameter can be used d achieve an approximately 5% higher product yield due to the higher packing density.
- the benefit 28 can be produced very advantageously, for example by means of a metal injection molding process or a sintering process. As a result, the benefit 28 can be produced without complex secondary processes, such as machining.
- FIGS. 5 and 6 A round steel rod 100 is shown in FIG. 5, the diameter of which essentially corresponds to the size of the required benefit. It is essential to the round steel rod 100 that it was only rolled in the longitudinal direction during manufacture, as indicated by arrow 101. Such rolling is required to shape the round steel rod 100 and can also be used to influence the properties of the steel material.
- the material for the round steel ang 100 is thought in particular of a stainless steel with spring properties. For example, a high-alloy stainless steel X 5 CrNiCuNb 17 4 with the DIN material number 1.4542 or 1.4548 is suitable. Such stainless steel materials have proven themselves for the production of pressure sensors.
- Individual steel substrates 103 are then produced by sawing perpendicular to the longitudinal direction of the round steel rod 100, as is shown in FIG. 6. These individual steel substrates have a thickness of 5 mm, for example.
- the individual stainless steel substrates are then ground, lapped and polished to achieve a high surface quality. For example, roughness depths of less than half a ⁇ m are achieved.
- Usual dimensions of the semiconductor technology for example 4 inches or 6 inches, are expediently chosen as the diameter for the stainless steel substrates 103, so that the stainless steel substrates 103 can also be processed with the usual devices for silicon wafer processing.
- blind openings 34 are then made on the back, as shown in cross-section, for example, in FIG.
- the further processing then takes place in conventional devices for semiconductor processing.
- a thin insulation layer for example silicon oxide, Silicon nitride or the like applied.
- a resistive thin film for example polysilicon or metal thin films.
- a photoresist layer is then applied and structured through a mask.
- the photoresist layer structured in this way then serves as a mask for structuring the resistive thin layer.
- the photoresist layer is then removed and a metal layer for contacting the resistive thin layer is applied.
- This metal layer is then structured by a further structuring step using a photoresist layer.
- a passivation layer is applied.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10511159A JP2000517052A (ja) | 1996-08-27 | 1997-08-21 | 圧力センサの製法 |
US09/254,112 US6189205B1 (en) | 1996-08-27 | 1997-08-21 | Process for producing pressure sensors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19634561.8 | 1996-08-27 | ||
DE19634561 | 1996-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998009145A1 true WO1998009145A1 (fr) | 1998-03-05 |
Family
ID=7803794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1997/001800 WO1998009145A1 (fr) | 1996-08-27 | 1997-08-21 | Procede de fabrication de capteurs de pression |
Country Status (5)
Country | Link |
---|---|
US (1) | US6189205B1 (fr) |
JP (1) | JP2000517052A (fr) |
KR (1) | KR100487685B1 (fr) |
DE (1) | DE19736306C5 (fr) |
WO (1) | WO1998009145A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003044479A1 (fr) * | 2001-11-23 | 2003-05-30 | Hydac Electronic Gmbh | Capteurs de pression formes a partir d'un disque d'acier inoxydable par retreinte rotative et recuit de detensionnement |
EP1681544A1 (fr) * | 2005-01-14 | 2006-07-19 | Trafag AG | Capteur de pression avec corps de déformation fabriqué par moulage par injection de poudre métallique |
EP1881314A2 (fr) * | 2006-07-18 | 2008-01-23 | Trafag AG | Composant profilé en métal pour enveloppes de liquides et procédé destiné à prévoir un capteur de pression dessus |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999063316A1 (fr) * | 1998-06-05 | 1999-12-09 | Georgia Tech Research Corporation | Micro-usinage de detecteurs et d'actionneurs realises sur des substrats solides |
DE19952106A1 (de) * | 1999-10-29 | 2001-05-03 | Bosch Gmbh Robert | Sensoranordnung |
DE10144367C2 (de) | 2001-09-10 | 2003-10-30 | First Sensor Technology Gmbh | Druckmesskörper einer Druckmesseinrichtung |
DE10361769B4 (de) * | 2003-12-29 | 2014-10-23 | Robert Bosch Gmbh | Druckaufnehmer mit einteiligem Gehäuse |
DE102004013073A1 (de) * | 2004-03-11 | 2005-09-29 | Ab Elektronik Sachsen Gmbh | Verfahren zur Herstellung von Druckmesselementen und Druckmesselemente |
DE102004024919A1 (de) * | 2004-05-19 | 2005-12-15 | Trafag Ag | Drucksensor |
DE102006010804A1 (de) * | 2006-03-07 | 2007-09-20 | Eads Deutschland Gmbh | Hochtemperatur-Drucksensorelement, insbesondere zur Messung von Drücken innerhalb von Triebwerken, Verfahren zu dessen Herstellung und Bauteil für Triebwerke |
DE102008041704A1 (de) | 2008-08-29 | 2010-03-04 | Robert Bosch Gmbh | Verfahren zur Herstellung von Drucksensorelementen |
JP6797649B2 (ja) * | 2016-11-29 | 2020-12-09 | セイコーインスツル株式会社 | ダイヤフラムの製造方法 |
KR101837999B1 (ko) * | 2016-12-21 | 2018-03-14 | 재단법인 포항산업과학연구원 | 압력센서 및 그 제조방법 |
KR101927046B1 (ko) * | 2017-10-11 | 2018-12-10 | 재단법인 포항산업과학연구원 | 압력센서 및 그 제조방법 |
CN112775619A (zh) * | 2019-11-11 | 2021-05-11 | 太原市精微测控技术有限公司 | 一种溅射薄膜压力传感器弹性膜片加工方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3108300A1 (de) * | 1980-03-06 | 1982-03-04 | Robert Bosch Gmbh, 7000 Stuttgart | Druckmessdose |
JPS59132327A (ja) * | 1983-01-18 | 1984-07-30 | Aisin Seiki Co Ltd | 圧力センサ |
GB2174241A (en) * | 1985-04-25 | 1986-10-29 | Transamerica Delaval Inc | Transducer devices |
JPS61269033A (ja) * | 1985-05-23 | 1986-11-28 | Tokai Rika Co Ltd | ダイヤフラム |
DE4028376A1 (de) * | 1990-09-07 | 1992-03-12 | Bosch Gmbh Robert | Verfahren zur herstellung von duennschicht-dehnmessstreifenanordnungen |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4357848A (en) * | 1979-05-30 | 1982-11-09 | Amada Company, Limited | Method and apparatus for controlling the feeding of a bandsaw blade of horizontal bandsaw machines |
JPH01187426A (ja) * | 1988-01-22 | 1989-07-26 | Yokogawa Electric Corp | 半導体圧力センサの製造方法 |
DE3874884T2 (de) * | 1988-04-21 | 1993-04-29 | Marelli Autronica | Elektrischer kraft- und/oder verformungsmessfuehler, insbesondere zum gebrauch als druckmessfuehler. |
JPH01299432A (ja) * | 1988-05-27 | 1989-12-04 | Komatsu Ltd | 薄膜庄力センサ |
EP0381775B1 (fr) * | 1988-07-26 | 1994-11-23 | Hitachi Construction Machinery Co., Ltd. | Capteur de pression |
DE3837776A1 (de) * | 1988-11-08 | 1990-05-10 | Bran & Luebbe | Kraftmessfeder niedriger bauhoehe |
DE3919059A1 (de) * | 1989-06-10 | 1991-01-03 | Bosch Gmbh Robert | Drucksensor zum erfassen von druckschwankungen einer druckquelle |
DE4321804A1 (de) * | 1993-06-30 | 1995-01-12 | Ranco Inc | Verfahren zur Herstellung von Kleinbauelementen |
FR2746919B1 (fr) * | 1996-03-28 | 1998-04-24 | Commissariat Energie Atomique | Capteur a jauge de contrainte utilisant l'effet piezoresistif et son procede de fabrication |
US5937263A (en) * | 1997-07-16 | 1999-08-10 | Mott Metallurgical Corporation | Cup-shaped porous metal ultra-high efficiency filter and method of making same |
-
1997
- 1997-08-21 KR KR10-1999-7001342A patent/KR100487685B1/ko not_active Expired - Lifetime
- 1997-08-21 WO PCT/DE1997/001800 patent/WO1998009145A1/fr active IP Right Grant
- 1997-08-21 US US09/254,112 patent/US6189205B1/en not_active Expired - Lifetime
- 1997-08-21 DE DE19736306A patent/DE19736306C5/de not_active Expired - Lifetime
- 1997-08-21 JP JP10511159A patent/JP2000517052A/ja not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3108300A1 (de) * | 1980-03-06 | 1982-03-04 | Robert Bosch Gmbh, 7000 Stuttgart | Druckmessdose |
JPS59132327A (ja) * | 1983-01-18 | 1984-07-30 | Aisin Seiki Co Ltd | 圧力センサ |
GB2174241A (en) * | 1985-04-25 | 1986-10-29 | Transamerica Delaval Inc | Transducer devices |
JPS61269033A (ja) * | 1985-05-23 | 1986-11-28 | Tokai Rika Co Ltd | ダイヤフラム |
DE4028376A1 (de) * | 1990-09-07 | 1992-03-12 | Bosch Gmbh Robert | Verfahren zur herstellung von duennschicht-dehnmessstreifenanordnungen |
Non-Patent Citations (3)
Title |
---|
O. DÖSSEL ET AL.: "SILIZIUM UNTER DRUCK", ELEKTROTECHNIK., vol. 67, no. 23/24, December 1985 (1985-12-01), WURZBURG DE, pages 22 - 28, XP002050000 * |
PATENT ABSTRACTS OF JAPAN vol. 11, no. 126 (P - 569)<2573> 21 April 1987 (1987-04-21) * |
PATENT ABSTRACTS OF JAPAN vol. 8, no. 265 (P - 318) 5 December 1984 (1984-12-05) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003044479A1 (fr) * | 2001-11-23 | 2003-05-30 | Hydac Electronic Gmbh | Capteurs de pression formes a partir d'un disque d'acier inoxydable par retreinte rotative et recuit de detensionnement |
DE10157592A1 (de) * | 2001-11-23 | 2003-06-12 | Hydac Electronic Gmbh | Verfahren zum Herstellen einer Vielzahl von Drucksensoren |
EP1681544A1 (fr) * | 2005-01-14 | 2006-07-19 | Trafag AG | Capteur de pression avec corps de déformation fabriqué par moulage par injection de poudre métallique |
EP1881314A2 (fr) * | 2006-07-18 | 2008-01-23 | Trafag AG | Composant profilé en métal pour enveloppes de liquides et procédé destiné à prévoir un capteur de pression dessus |
EP1881314A3 (fr) * | 2006-07-18 | 2010-10-06 | Trafag AG | Composant profilé en métal pour enveloppes de liquides et procédé destiné à prévoir un capteur de pression dessus |
Also Published As
Publication number | Publication date |
---|---|
DE19736306A1 (de) | 1998-03-05 |
DE19736306C2 (de) | 2001-05-17 |
KR100487685B1 (ko) | 2005-05-09 |
JP2000517052A (ja) | 2000-12-19 |
KR20000035791A (ko) | 2000-06-26 |
DE19736306C5 (de) | 2010-02-25 |
US6189205B1 (en) | 2001-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998009145A1 (fr) | Procede de fabrication de capteurs de pression | |
DE3709278C2 (fr) | ||
DE4315012B4 (de) | Verfahren zur Herstellung von Sensoren und Sensor | |
DE69125061T2 (de) | Herstellungsverfahren für Dünnfilmkopfgleiter | |
DE102014114764B4 (de) | Keramischer Drucksensor und Verfahren zu dessen Herstellung | |
DE69308512T2 (de) | Piezoelektrischer Antrieb mit Dehnungsmesser | |
DE69607666T2 (de) | Laminiertes piezoelektrisches Element und Vibrationswellenantrieb | |
DE3855839T2 (de) | Trägerschicht für Farbstrahlkopf, Herstellungsverfahren und Farbstrahlgerät versehen mit solch einem Kopf | |
EP0315628A1 (fr) | Procede de mesure sans contact de tensions mecaniques. | |
DE4133008C2 (de) | Kapazitive Drucksensoren und Herstellungsverfahren hierzu | |
DE2350026C3 (fr) | ||
DE3026785A1 (de) | Druckwandler und verfahren zu seiner herstellung | |
DE3225216C2 (fr) | ||
DE3852156T2 (de) | Membraneinheit eines elektrostatischen mikrophons, ein verfahren zu ihrer herstellung und ein elektrostatisches mikrophon. | |
DE10215993B4 (de) | Verfahren zur Herstellung eines Keramikschichtkörpers | |
EP0490984B1 (fr) | Plaque cannelee d'estampage | |
DE3804483A1 (de) | Druckmesswertaufnehmer mit piezomessstreifen | |
DE69024692T2 (de) | Herstellungsverfahren für eine Vorrichtung mit Dünnschicht-Filmstruktur | |
DE3708728C1 (de) | Verfahren zum Fertigen eines Ovalrades | |
DE10001480B4 (de) | Verfahren zum Herstellen eines hochpräzisen Mehrscheiben-Schleifmodules und nach diesem Verfahren hergestelltes Mehrscheiben-Schleifmodul | |
EP1921687B1 (fr) | Procédé et dispositif pour la fabrication d'un transducteur piézoéléctrique | |
DE2656905A1 (de) | Verfahren zur herstellung einer lastmesszelle | |
WO2001003178A1 (fr) | Procede pour produire un ensemble electrode | |
DE69409992T2 (de) | Schnittverfahren für kapazitiven Microsensor | |
DE1623795C3 (de) | Verfahren zur Herstellung eines langen Beugungsgitters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1019997001342 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1998 511159 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09254112 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997001342 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019997001342 Country of ref document: KR |