+

WO1998008435A1 - Procede de mesure d'un volume conducteur et dispositif de mise en oeuvre de ce procede - Google Patents

Procede de mesure d'un volume conducteur et dispositif de mise en oeuvre de ce procede Download PDF

Info

Publication number
WO1998008435A1
WO1998008435A1 PCT/FR1997/001536 FR9701536W WO9808435A1 WO 1998008435 A1 WO1998008435 A1 WO 1998008435A1 FR 9701536 W FR9701536 W FR 9701536W WO 9808435 A1 WO9808435 A1 WO 9808435A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
sensor
measuring
inductance
cavity
Prior art date
Application number
PCT/FR1997/001536
Other languages
English (en)
Inventor
Denis Duret
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP97938960A priority Critical patent/EP0923337A1/fr
Priority to CA002265040A priority patent/CA2265040A1/fr
Priority to US09/242,919 priority patent/US6434411B1/en
Publication of WO1998008435A1 publication Critical patent/WO1998008435A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/12Measuring arrangements characterised by the use of electric or magnetic techniques for measuring diameters
    • G01B7/13Internal diameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/026Measuring blood flow
    • A61B5/0265Measuring blood flow using electromagnetic means, e.g. electromagnetic flowmeter
    • A61B5/027Measuring blood flow using electromagnetic means, e.g. electromagnetic flowmeter using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure

Definitions

  • the present invention relates to a method for measuring a conductive volume and to a device for implementing this method, this volume being placed in a homogeneous conductive body, which is itself placed in an environment of large dimensions and resistivity by compared to those of the volume to be measured.
  • Such a device is used for the detection of rhythm anomalies and the control of pacemakers in a certain number of pathologies, or to take account of the state of activity of a patient.
  • the measured parameters related to cardiac activity are multiple; include partial pressure of blood oxygen, mechanical measurement of contraction, measurement of blood flow, direct measurement of electrical activity (ECG) by electrodes, measurement of blood pressure, measurement by Doppler effect, measurement of acceleration, etc.
  • Reference [1] describes a system for monitoring the momentum or the speed of cardiac masses by an implanted sensor, this sensor being fixed on the internal muscular wall of the heart.
  • the sensors that can be used are accelerometers, for example piezoelectric.
  • Reference [2] presents a stimulation device including an accelerometric sensor and an electrode.
  • Reference [3] uses mechanical deformation sensors based on propagation lines whose impedance varies according to their geometry.
  • Reference [4] describes a velocity measurement system using a catheter comprising at least two stepped electrodes. These electrodes form a polarized galvanic cell sensitive to the speed of blood flow.
  • Reference [5] presents a system based on the measurement of partial pressure of oxygen by electrodes.
  • the methods of measuring variations in the activity of the heart rhythm of the prior art do not use the overall volume information relating to a heart cavity.
  • This quantity constitutes a marker of the highest interest since, with each beat, the ejection volume can vary from 20 to 60 I.
  • arrhythmia disorders and certain other pathologies appear directly linked to the monitoring of this quantity.
  • the present invention relates to a method for measuring such a conductive volume.
  • the present invention relates to a method for measuring at least one dimension of a conductive volume, characterized in that a measurement sensor is placed inside a cavity existing inside a homogeneous body. conductive or not, this cavity having large dimensions and resistivity with respect respectively to the dimensions and to the resistivity of the volume to be measured, the sensor having characteristics which vary according to the immediate environment which surrounds it.
  • the measurement sensor comprises, for example, a self-inductance coupled by mutual inductance to the medium, which can be an electromagnetic loss medium.
  • the volume to be measured can vary over time.
  • the method of the invention is used for measuring the volume of a cardiac cavity, which is subject to variations with the cardiac revolution.
  • the sensor can be placed at the end of the catheter, which can consist of a coaxial transmission line.
  • the method of the invention makes the comparison to the normal cycle and the deviation from the standard makes it possible to detect, in real time and in situ, more or less serious dysfunctions.
  • the method of the invention is used to measure the ⁇ iameter of a pipe with cylindrical geometry, which can be, for example a blood vessel.
  • the method of the invention can then be coupled to a speed measurement, to make it possible to measure the blood flow inside this vessel, this flow being an essential quantity for the evaluation of cardiovascular pathologies.
  • the invention can be applied to any measurement of volume or of pipe diameter, provided that the volume to be measured or the pipe has a resistivity contrast with the surrounding medium.
  • the invention also relates to a device for implementing this method in which the measurement sensor comprises a self-inductance wound with contiguous turns or not, and a reading electronics comprising successively:
  • FIG. 3 illustrates an example of rudimentary embodiment for implementing the method of the invention
  • FIG. 4A and 4B show a simulation result
  • FIG. 6 illustrates electronics associated with the volume change measurement sensor.
  • the method of the invention uses a sensor whose characteristics vary as a function of the immediate volume which surrounds it, which can be an electromagnetic loss medium.
  • the sensor is for example a self-inductance coupled by mutual in the middle. If the volume is variable, both the coupling coefficient and the losses of the secondary circuit formed by the blood medium, in this case, are variable and directly linked to variations in volume.
  • FIG. 1 represents the electrical equivalent of such a device with:
  • FIG. 2 represents the effect of the impedance of the medium, brought back to the primary, measurement circuit, with:
  • R represents the intrinsic losses of the measurement inductance.
  • FIG. 3 represents a rudimentary embodiment making it possible to implement the method of the invention, the measurement inductance being a self-inductance with cylindrical geometry and the measurement volume being a conductive cylinder.
  • the measuring inductor 10 has a diameter d, a length 1, the loss medium 11 of conductivity ⁇ occupies the entire volume limited by the cylinder of diameter D and length L.
  • An envelope medium of intermediate conductivity was considered.
  • the dimensions and conductivities roughly represent a heart cavity filled with blood, the heart muscle and the lungs.
  • Figures 4A and 4B represent the variation of magnetic energy by simulation.
  • the total magnetic energy varies by 2.8% between the two geometric cases, which roughly corresponds to the variations that can be expected on the reduced impedance.
  • Figure 4A corresponds to a 3 cm core, with the following ranges: 15: -9 to -8
  • FIG. 4B corresponds to a 5 cm core, the ranges identical to those of FIG. 4A bearing the same references.
  • the invention proposes a method for global measurement of the variations in volume of the cardiac cavity, using its electromagnetic influence on an inductance placed in the cavity. These variations modify the apparent impedance of the measurement inductance. They can be highlighted by conventional means of bridge mounting or reflectometry and collected at the end of a cable of constant characteristic impedance, after adaptation.
  • the invention has many advantages.
  • the measured parameter is global. It is purely geometric and does not seem to have been the subject of particular use for applications in implanted cardiac monitoring.
  • the sensor preferably uses at the end of the catheter, the catheter being for example constituted by a coaxial transmission line, is particularly simple and robust (in this case, the line is of any length). Its influence with the medium is only electromagnetic, therefore without contact.
  • any physiological coating reaction does not disturb the measurement very much since it only slightly modifies the geometrical parameters of the coil.
  • the safety of the measurement is ensured: only a very low energy of coupling to the medium is used (of the order of 1 m at most), at a frequency of the order of a few MHz.
  • the measurement device thus produced is self-shielded: in fact the conductive surrounding medium strongly attenuates the propagation outside. For the same reason and by reciprocity, this device is very insensitive to the surrounding electromagnetic disturbances.
  • the measurement sensor comprises a cylindrical self-inductance 10 mm long and 2 mm in diameter. It is wound with contiguous turns with dj 0.1 mm copper wire. For these parameters, the value of the inductance is of the order of 1.3 ⁇ H.
  • the circuit in FIG. 5 gives a method of measuring the variations in impedance in which the resonant circuit is tuned for example to a frequency close to 10 MHz by a capacitance C1 of the order of 100 pF.
  • This circuit is itself adapted to the characteristic impedance of a transmission line LT, usually 50 ⁇ , for example by a C2 series capacitor. The value of this capacity depends on the intrinsic and coupling losses, typically a few tens of pF.
  • This electronics successively comprises: - a 3dB coupler 25 receiving the sensor input E;
  • the bridge is a 3 dB coupler whose output is zero when the load (the circuit extended by the line) is equal to 50 ⁇ , and takes an increasing value with the mismatch.
  • the bridge is excited at the resonant frequency of the tuned and matched circuit.
  • An amplifier accentuates the imbalance, and an envelope or coherent detection (case of the figure) makes it possible to extract the mismatch information which, after filtering and shaping, makes it possible to go back to the information of variation of the volume .
  • the invention relates to the evaluation of the variations in volume of one of the cardiac cavities of a patient during a cycle.
  • the volume of a heart cavity, or ventricle is subject to variations with the cardiac revolution (systole and diastole); the ejection volume can vary from 20 to 60% with each beat, the resistivity contrasts between the cardiac cavity and the muscular tissue (2,5) and between the cardiac cavity and the lung (14) allow to use the variation overall conductive blood liquid (0.7 mhos / m) as a marker by measuring the losses induced by mutual insurance with the sensor.
  • the comparison to the normal cycle and the deviation from the norm makes it possible to detect more or less serious malfunctions in real time and in situ. This detection allows the action on a stimulation organ and possibly the triggering of a defibrillation.
  • a second application concerns the measurement of the diameter of a pipe with cylindrical geometry: if the length of the pipe considered is large compared to the influence distance of the sensor, the latter is sensitive to the average of the diameter of the pipe along its length. distance of influence.
  • this system is advantageously used for measuring the diameter of blood vessels. Coupled with a speed measurement using a different principle, the device of the invention makes it possible to measure blood flow, an essential quantity for the evaluation of cardiovascular pathologies. In such an application the typical dimensions are obviously different, likewise possibly the operating frequency can advantageously be higher.
  • the geometry which allows us to understand how this second application works, obtained by considering L as infinite in Figure 3.
  • EP-A-0 582 162 (SORIN BIOMEDICA)
  • EP-A-0 515 319 (SORIN BIOMEDICA) [3] WO 95/15784 (PACESETTER AB)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Electromagnetism (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

La présente invention concerne un procédé de mesure d'au moins une dimension d'un volume conducteur, dans lequel on place un capteur de mesure (10) à l'intérieur d'une cavité existant à l'intérieur d'un corps homogène conducteur ou non conducteur (11), cette cavité ayant des dimensions et une résistivité grande par rapport respectivement aux dimensions et à la résistivité du volume à mesurer, le capteur ayant des caractéristiques qui varient en fonction du volume immédiat qui l'environne, ce milieu étant un milieu à pertes électromagnétiques. Elle concerne, également, un dispositif de mise en oeuvre de ce procédé.

Description

PROCEDE DE MESURE D'UN VOLUME CONDUCTEUR ET DISPOSITIF DE MISE EN OEUVRE DE CE PROCEDE
DESCRIPTION
Domaine technique
La présente invention concerne un procédé de mesure d'un volume conducteur et un dispositif de mise en oeuvre de ce procédé, ce volume étant place dans un corps homogène conducteur, qui est lui-même placé dans un environnement de dimensions et de résistivité grandes par rapport à celles du volume à mesurer .
Etat de la technique antérieure
Dans la suite de la description on considérera, à titre d'exemple, un dispositif de mesure du rythme cardiaque par capteurs implantés.
Un tel dispositif est utilisé pour la détection d'anomalies de rythme et le pilotage de stimulateurs dans un certain nombre de pathologies, ou pour tenir compte de l'état d'actjvite d'un patient. Les paramètres mesurés liés a l'activité cardiaque sont multiples ; on peut citer notamment la pression partielle de l'oxygène sanguin, la mesure mécanique de la contraction, la mesure du débit sanguin, la mesure directe de l'activité électrique (ECG) par électrodes, la mesure de la pression sanguine, la mesure par effet Doppler, la mesure de l'accélération, etc..
Les publications ci-dessous, dont les références sont données en fin de description, décrivent différentes réalisations de l'art antérieur. La référence [1] décrit un système de monitoring de la quantité de mouvement ou de la vitesse des masses cardiaques par un senseur implanté, ce senseur étant fixé sur la paroi musculaire interne du coeur. Les senseurs utilisables sont des accéléromètres, par exemple piézo-électriques .
La référence [2] présente un dispositif de stimulation incluant un capteur accélérométrique et une électrode.
La référence [3] utilise des capteurs de déformations mécaniques à base de lignes de propagation dont l'impédance varie selon leur géométrie.
La référence [4] décrit un système de mesure de vélocité à l'aide d'un cathéter comprenant au moins deux électrodes étagées. Ces électrodes forment une cellule galvanique polarisée sensible à la vitesse du flux sanguin.
La référence [5] présente un système basé sur la mesure de pression partielle d'oxygène par électrodes .
Les méthodes de mesure des variations de l'activité du rythme cardiaque de l'art antérieur n'utilisent pas l'information volumique globale relative à une cavité cardiaque. Cette grandeur constitue un marqueur du plus haut intérêt puisque, à chaque battement, le volume d'éjection peut varier de 20 à 60 I. De plus les troubles d'arythmie et certaines autres pathologies apparaissent directement liés à la surveillance de cette grandeur.
La présente invention a pour objet un procédé de mesure d'un tel volume conducteur. Exposé de l'invention
La présente invention concerne un procédé de mesure d'au moins une dimension d'un volume conducteur, caractérisé en ce que l'on place un capteur de mesure à l'intérieur d'une cavité existant à l'intérieur d'un corps homogène conducteur ou non, cette cavité ayant des dimensions et une résistivité grandes par rapport respectivement aux dimensions et à la résistivité de volume à mesurer, le capteur ayant des caractéristiques qui varient en fonction du milieu immédiat qui l'environne. Le capteur de mesure comprend, par exemple, une self-inductance couplée par mutuelle inductance au milieu, qui peut être un milieu à pertes électromagnétiques.
Le volume à mesurer peut être variable dans le temps.
Dans un premier exemple de réalisation le procédé de l'invention est utilisé pour la mesure du volume d'un cavité cardiaque, qui est sujet à variations avec la révolution cardiaque. Avantageusement le capteur peut être disposé en bout de cathéter, qui peut être constitué d'une ligne de transmission coaxiale.
Dans cet exemple de réalisation, le procédé de l'invention réalise la comparaison au cycle normal et l'écart par rapport à la norme permet de détecter en temps réel et in situ des dysfonctionnement plus ou moins graves.
Dans un second exemple de réalisation, le procédé de l'invention est utilisé pour mesurer le αiamètre d'une canalisation à géométrie cylindrique, qui peut être, par exemple un vaisseau sanguin. Le procédé de l'invention peut, alors, être couplé à une mesure de vitesse, pour permettre de mesurer le débit sanguin à l'intérieur de ce vaisseau, ce débit étant une grandeur essentielle pour l'évaluation des pathologies cardio-vasculaires .
De manière plus générale, l'invention peut s'appliquer à toute mesure de volume ou de diamètre de canalisation, pourvu que le volume à mesurer ou la canalisation présente un contraste de résistivité avec le milieu environnant.
L' invention concerne également un dispositif de mise en oeuvre de ce procédé dans lequel le capteur de mesure comprend une self-inductance bobinée à spires jointives ou non, et une électronique de lecture comprenant successivement :
- un coupleur 3dB recevant l'entrée capteur ;
- un amplificateur ;
- un circuit de détection, un amplificateur étant relié à la fois à ce circuit et au coupleur ;
- un filtre passe-bas ;
- un circuit de mise en forme relié à une sortie signal.
Brève description des dessins
- La figure 1 illustre l'équivalent électrique d'un dispositif de mise en oeuvre du procédé de l' invention ; - la figure 2 illustre l'effet équivalent du milieu ;
- la figure 3 illustre un exemple de réalisation rudimentaire permettant de mettre en oeuvre le procédé de l'invention ; - les figures 4A et 4B représentent un résultat de simulation ;
- la figure 5 illustre une mesure de variation d'impédance ;
- la figure 6 illustre une électronique associée au capteur de mesure de variation de volume.
Exposé détaillé de modes de réalisation
Le procédé de l'invention utilise un capteur dont les caractéristiques varient en fonction du volume immédiat qui l'environne, celui-ci pouvant être un milieu à pertes électromagnétiques. Le capteur est par exemple une self-inductance couplée par mutuelle au milieu. Si le volume est variable, à la fois le coefficient de couplage et les pertes du circuit secondaire constitué par le milieu sanguin, en l'occurrence, sont variables et directement liés aux variations de volume. La figure 1 représente l'équivalent électrique d'un tel dispositif avec :
Ll : L mesure L2 : L milieu R : pertes
M : coefficient de couplage. Les pertes du milieu peuvent être ohmiques ou diélectriques. Dans une application à la mesure du volume d'une cavité cardiaque et aux fréquences que l'on considère à titre d'exemple (en dessous de 100 MHz typiquement), elles sont majoritairement ohmiques. La figure 2 représente l'effet de l'impédance du milieu, ramené sur le circuit primaire, de mesure, avec :
Ll : L mesure Rs : R série (mesure) Z : Z ramenée. Les équations des circuits couplés permettent de relier Z à L2 et à R par la formule suivante
Figure imgf000008_0001
R représente les pertes intrinsèques de l'inductance de mesure .
La figure 3 représente une réalisation rudimentaire permettant de mettre en oeuvre le procédé de l'invention, l'inductance de mesure étant une self- inductance à géométrie cylindrique et le volume de mesure étant un cylindre conducteur.
La self inductance de mesure 10 possède un diamètre d, une longueur 1, le milieu à pertes 11 de conductivité σ occupe tout le volume limité par le cylindre de diamètre D et de longueur L.
Les variations de volume du cylindre limitant le milieu conducteur agissent sur l'inductance L2, sur le terme R et sur la mutuelle M : elles entraînent donc un effet sur l'impédance ramenée en série avec l'inductance de mesure. Cet effet devient nul si le milieu extérieur est de même conductivité σ. Il est d'autant plus grand que le contraste de résistivité entre le cylindre de volume variable et le milieu extérieur est grand.
La fréquence à laquelle l'impédance est mesurée est liée au domaine d' influence de la mesure (le diamètre D en l'occurrence) : plus la fréquence est élevée, plus le diamètre d'influence est faible. les figures 4A et 4B représentent un résultat de simulation réaliste pour lequel la fréquence de travail f (ω=2πf) est de 10MHz, les conductivités du cylindre variable de 0,7 S/m eι du milieu extérieur de 0, 1 S/m. Les tracés représentent l'énergie magnétique en unités relatives pour deux cas géométriques : D = 6 et 10cm, L = 8 cm, d = 5 mm, 1 = 15 mm. Un milieu enveloppe de conductivité intermédiaire a été considéré. Les dimensions et conductivités représentent grossièrement une cavité cardiaque remplie de sang, le muscle cardiaque et les poumons. Ces figures 4A et 4B représentent la variation d'énergie magnétique par simulation. L'énergie magnétique totale varie de 2,8 % entre les deux cas géométriques, ce qui correspond grossièrement aux variations auxquelles on peut s'attendre sur l'impédance ramenée. La figure 4A correspond à un coeur de 3 cm, avec les plages suivantes : 15 : -9 à -8
16 : -10 à -9
17 : -11 à -10
18 : -12 à -11
19 : -13 à -12 20 : -14 à -13
21 : -15 à 14
22 : -16 à -15.
La figure 4B correspond à un coeur de 5 cm, les plages identiques à celles de la figure 4A portant les mêmes références.
Dans un exemple de réalisation l'invention propose un procédé de mesure globale des variations de volume de la cavité cardiaque, en utilisant son influence électromagnétique sur une inductance placée dans la cavité. Ces variations modifient l'impédance apparente de l'inductance de mesure. Elles peuvent être mises en évidence par des moyens classiques de montage en pont ou de réflectométrie et recueillies à l'extrémité d'un câble d'impédance caractéristique constante, après adaptation.
L'invention présente de nombreux avantages. Le paramètre mesuré est global. Il est purement géométrique et ne semble pas avoir fait l'objet d'utilisation particulière pour des applications en surveillance cardiaque implantée. Le capteur utilise de préférence en bout de cathéter, le cathéter étant par exemple constitué d'une ligne de transmission coaxiale, est particulièrement simple et robuste (dans ce cas, la ligne est de longueur quelconque) . Son influence avec le milieu est uniquement électromagnétique, donc sans contact .
D'autre part, toute reaction d'enrobage physiologique ne perturbe que très peu la mesure puisqu'elle n'amène qu'à modifier légèrement les paramètres géométriques de la bobine. L'innocuité de la mesure est assurée : seulement une énergie très faible de couplage au milieu est utilisée (de l'ordre de 1 m au maximum), à une fréquence de l'ordre de quelques Mhz. Dans le cas d'un milieu environnant conducteur le dispositif de mesure ainsi réalise est autoblindé : en effet le milieu environnant conducteur atténue fortement la propagation à l'extérieur. Pour la même raison et par réciprocité, ce dispositif est très peu sensible aux perturbations électromagnétiques environnantes .
On va à présent considérer un exemple de réalisation.
Le capteur de mesure comprend une self- inductance cylindrique de longueur 10 mm et de diamètre 2 mm. Elle est bobinée a spires jointives avec dj fil de cuivre de diamètre 0,1 mm. Pour ces paramètres, la valeur de l'inductance est de l'ordre de 1,3 μH . Le circuit de la figure 5 donne une méthode de mesure des variations d'impédance dans laquelle le circuit résonnant est accordé par exemple à une fréquence voisine de 10 MHz par une capacité Cl de l'ordre de 100 pF. Ce circuit est lui-même adapté à l'impédance caractéristique d'une ligne de transmission LT, usuellement 50 Ω, par exemple par un condensateur série C2 . La valeur de cette capacité dépend des pertes intrinsèques et par couplage, typiquement quelques dizaines de pF.
En ce qui concerne l'électronique de lecture, on utilise avantageusement une méthode en pont, telle que celle représentée sur la figure 6. Cette électronique comprend successivement : - un coupleur 3dB 25 recevant l'entrée capteur E ;
- un amplificateur 27 ;
- un circuit de détection 28, un amplificateur 26 étant relié à la fois à ce circuit 28 et au coupleur 25 ;
- un filtre passe-bas 29 ;
- un circuit de mise en forme 30 relié à une sortie signal S.
Dans ce cas, le pont est un coupleur 3 dB dont la sortie est nulle quand la charge (le circuit prolongé par la ligne) est égale à 50 Ω, et prend une valeur croissante avec la désadaptation . Le pont est excité à la fréquence de résonance du circuit accordé et adapté. Un amplificateur accentue le déséquilibre, et une détection d'enveloppe, ou cohérente (cas de la figure) permet d'extraire l'information de désadaptation qui, après filtrage et mise en forme, permet de remonter à l'information de variation du volume. Comme mentionné plus haut, dans une première application industrielle l'invention concerne l'évaluation des variations de volume de l'une des cavités cardiaques d'un patient au cours d'un cycle. Le volume d'une cavité cardiaque, ou ventricule, est sujet à variations avec la révolution cardiaque (systole et diastole) ; le volume d'éjection peut varier de 20 a 60 % a chaque battement, les contrastes de résistivité entre la cavité cardiaque et le tissu musculaire (2,5) et entre la cavité cardiaque et le poumon (14) permettent d'utiliser la variation globale de liquide sanguin conducteur (0,7 mhos/m) comme marqueur en mesurant les pertes induites par mutuelle avec le capteur. La comparaison au cycle normal et l'écart par rapport à la norme permet de détecter en temps réel et in situ des dysfonctionnements plus ou moins graves. Cette détection permet l'action sur un organe de stimulation et éventuellement le déclenchement d'une defibrillation. Une seconde application concerne la mesure du diamètre d' une canalisation à géométrie cylindrique : si la longueur de la canalisation considérée est grande devant la distance d' influence du capteur, ce dernier est sensible à la moyenne du diamètre de la canalisation le long de sa distance d'influence. Dans le domaine de la santé, ce système est avantageusement utilisé pour la mesure du diamètre des vaisseaux sanguins. Couplé a une mesure de vitesse utilisant un principe différent, le dispositif de l'invention permet de mesurer le débit sanguin, grandeur essentielle pour l'évaluation des pathologies cardio-vasculaires . Dans une telle application les dimensions typiques sont évidemment différentes, de même éventuellement la fréquence de fonctionnement peut être avantageusement plus haute. La géométrie, qui permet de comprendre le fonctionnement de cette seconde application, s'obtient en considérant L comme infini dans la figure 3.
On peut bien évidemment envisager des applications de l'invention dans des domaines autres que celui de la santé.
REFERENCES
[1] EP-A-0 582 162 (SORIN BIOMEDICA)
[2] EP-A-0 515 319 (SORIN BIOMEDICA) [3] WO 95/15784 (PACESETTER AB)
[4] WO 95/26677 (PACESETTER AB)
[5] US-A-5 431 172 (PACESETTER AB)

Claims

REVENDICATIONS
1. Procédé de mesure d'au moins une dimension d'un volume conducteur, caractérisé en ce que l'on utilise un capteur de mesure (10) disposé à l'intérieur d'une cavité existant à l'intérieur d'un corps homogène conducteur ou non (11), cette cavité ayant des dimensions et une résistivité grandes par rapport respectivement aux dimensions et à la résistivité du volume à mesurer, et en ce que le capteur, qui a des caractéristiques variant en fonction du milieu immédiat qui l'environne, comprend une self- inductance couplée par mutuelle inductance à ce milieu.
2. Procédé selon la revendication 1, caractérisé en ce que le volume à mesurer est variable dans le temps.
3. Procédé selon la revendication 1, caractérisé en ce qu'il est utilisé pour mesurer le diamètre d'une canalisation à géométrie cylindrique.
4. Dispositif de mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le capteur de mesure comprend une self-inductance bobinée à spires jointives ou non jointives, et en ce que l'électronique de lecture comprend successivement :
- un coupleur 3 dB (25) recevant l'entrée capteur (E) ;
- un amplificateur (27) ;
- un circuit de détection (28), un amplificateur (26) étant relié à la fois à ce circuit
(28) et au coupleur (25) ;
- un filtre passe-bas (29) ;
- un circuit de mise en forme (30) relié à une sortie signal (S) .
5. Dispositif selon la revendication 4, caractérise en ce que la self-inductance est couplée par mutuelle inductance au milieu, qui est un milieu a pertes électromagnétiques.
6. Dispositif selon la revendication 4, caractérisé en ce que le capteur est dispose en bout de cathéter.
7. Dispositif selon la revendication 6, caractérise en ce que le cathéter est constitue d'une ligne de transmission coaxiale.
8. Dispositif de mesure du volume d'une cavité cardiaque, qui est sujet a variations avec la révolution cardiaque, caractérise en ce qu' il comprend un capteur de mesure (10) dispose a l'intérieur de cette cavité, cette cavité ayant des dimensions et une résistivité grandes par rapport respectivement aux dimensions et à la résistivité du volume à mesurer, le capteur ayant des caractéristiques qui varient en fonction du milieu immédiat qui l'environne.
9. Dispositif selon la revendication 8, caractérise en ce que le capteur de mesure comprend une self-inductance couplée par mutuelle inductance au milieu .
10. Dispositif selon la revendication 8, caractérise en ce que le capteur est dispose en bout de cathéter.
11. Dispositif selon la revendication 10, caractérise en ce que le cathéter est constitue d'une ligne de transmission coaxiales.
12. Dispositif selon la revendication 11, caractérise en ce qu'il comprend des moyens de comparaison a un cycle normal et des moyens de mesure de l'écart par rapport a la norme, ce qui permet de détecter en temps réel et m situ des dysfonctionnements.
13. Dispositif selon la revendication 8, caractérisé en ce que le capteur de mesure comprend une self-inductance bobinée à spires jointives ou non jointives, et en ce que l'électronique de lecture comprend successivement :
- un coupleur 3 dB (25) recevant l'entrée capteur (E) ;
- un amplificateur (27) , -
- un circuit de détection (128) , un amplificateur (26) étant relié à la fois à ce circuit
(28) et au coupleur (25) ;
- un filtre passe-bas (29) ;
- un circuit de mise en forme (30) relié à une sortie signal (S) .
14. Utilisation du dispositif selon l'une quelconque des revendications 4 à 7 pour la mesure du diamètre d'un vaisseau sanguin.
15. Utilisation du dispositif selon l'une quelconque des revendications 4 à 7 couplé à une mesure de vitesse, pour mesurer le débit sanguin à l'intérieur d'un vaisseau sanguin.
PCT/FR1997/001536 1996-08-30 1997-08-29 Procede de mesure d'un volume conducteur et dispositif de mise en oeuvre de ce procede WO1998008435A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97938960A EP0923337A1 (fr) 1996-08-30 1997-08-29 Procede de mesure d'un volume conducteur et dispositif de mise en oeuvre de ce procede
CA002265040A CA2265040A1 (fr) 1996-08-30 1997-08-29 Procede de mesure d'un volume conducteur et dispositif de mise en oeuvre de ce procede
US09/242,919 US6434411B1 (en) 1996-08-30 1997-08-29 Method for measuring a conductive volume and device for implementing this method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9610632A FR2752935B1 (fr) 1996-08-30 1996-08-30 Procede de mesure d'un volume conducteur et dispositif de mise en oeuvre de ce procede
FR96/10632 1996-08-30

Publications (1)

Publication Number Publication Date
WO1998008435A1 true WO1998008435A1 (fr) 1998-03-05

Family

ID=9495324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001536 WO1998008435A1 (fr) 1996-08-30 1997-08-29 Procede de mesure d'un volume conducteur et dispositif de mise en oeuvre de ce procede

Country Status (5)

Country Link
US (1) US6434411B1 (fr)
EP (1) EP0923337A1 (fr)
CA (1) CA2265040A1 (fr)
FR (1) FR2752935B1 (fr)
WO (1) WO1998008435A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390307B2 (en) * 1999-10-28 2008-06-24 Volusense As Volumetric physiological measuring system and method
WO2000025675A1 (fr) * 1998-10-30 2000-05-11 Volusense As Systeme de mesure physiologique volumetrique
WO2004013611A2 (fr) * 2002-08-01 2004-02-12 California Institute Of Technology Procede et dispositif de detection a distance
US7811234B2 (en) * 2002-08-01 2010-10-12 California Institute Of Technology Remote-sensing method and device
US20040193023A1 (en) * 2003-03-28 2004-09-30 Aris Mardirossian System, method and apparatus for monitoring recording and reporting physiological data
US20100268120A1 (en) 2009-04-20 2010-10-21 Morten Eriksen Coil System and Method for Obtaining Volumetric Physiological Measurements
GB2550825B (en) 2015-02-12 2018-10-17 Foundry Innovation & Res 1 Ltd Implantable devices and related methods for heart failure monitoring
WO2018031714A1 (fr) 2016-08-11 2018-02-15 Foundry Innovation & Research 1, Ltd. Systèmes et procédés de gestion des fluides chez un patient
US11039813B2 (en) 2015-08-03 2021-06-22 Foundry Innovation & Research 1, Ltd. Devices and methods for measurement of Vena Cava dimensions, pressure and oxygen saturation
US11206992B2 (en) 2016-08-11 2021-12-28 Foundry Innovation & Research 1, Ltd. Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore
US11701018B2 (en) 2016-08-11 2023-07-18 Foundry Innovation & Research 1, Ltd. Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore
KR102518920B1 (ko) 2016-11-29 2023-04-06 파운드리 이노베이션 앤드 리서치 1 리미티드 환자의 맥관구조 및 체액 상태를 모니터링하기 위한 무선 공진 회로 및 가변 인덕턴스 맥관 임플란트 및 이를 이용하는 시스템 및 방법
EP3629937A1 (fr) 2017-05-31 2020-04-08 Foundry Innovation & Research 1, Ltd. Capteur vasculaire ultrasonore implantable
US11779238B2 (en) 2017-05-31 2023-10-10 Foundry Innovation & Research 1, Ltd. Implantable sensors for vascular monitoring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432369A (en) * 1981-09-04 1984-02-21 Medi-Tech, Incorporated Electromagnetic sensor having three electrodes for measuring signals indicative of a biologic condition
EP0112248A1 (fr) * 1982-12-13 1984-06-27 Schlumberger Limited Procédé et dispositif pour déterminer électriquement le diamètre intérieur de tuyaux
US4674518A (en) * 1985-09-06 1987-06-23 Cardiac Pacemakers, Inc. Method and apparatus for measuring ventricular volume
US4686987A (en) * 1981-06-18 1987-08-18 Cardiac Pacemakers, Inc. Biomedical method and apparatus for controlling the administration of therapy to a patient in response to changes in physiologic demand
US5197467A (en) * 1992-06-22 1993-03-30 Telectronics Pacing Systems, Inc. Multiple parameter rate-responsive cardiac stimulation apparatus
WO1995026677A1 (fr) * 1994-03-30 1995-10-12 Pacesetter Ab Instrument de mesure du debit sanguin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980076A (en) * 1974-10-02 1976-09-14 The Board Of Trustees Of Leland Stanford Junior University Method for measuring externally of the human body magnetic susceptibility changes
US4958638A (en) * 1988-06-30 1990-09-25 Georgia Tech Research Corporation Non-contact vital signs monitor
US5210490A (en) * 1989-01-11 1993-05-11 Nartron Corporation Linear position sensor having coaxial or parallel primary and secondary windings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686987A (en) * 1981-06-18 1987-08-18 Cardiac Pacemakers, Inc. Biomedical method and apparatus for controlling the administration of therapy to a patient in response to changes in physiologic demand
US4432369A (en) * 1981-09-04 1984-02-21 Medi-Tech, Incorporated Electromagnetic sensor having three electrodes for measuring signals indicative of a biologic condition
EP0112248A1 (fr) * 1982-12-13 1984-06-27 Schlumberger Limited Procédé et dispositif pour déterminer électriquement le diamètre intérieur de tuyaux
US4674518A (en) * 1985-09-06 1987-06-23 Cardiac Pacemakers, Inc. Method and apparatus for measuring ventricular volume
US5197467A (en) * 1992-06-22 1993-03-30 Telectronics Pacing Systems, Inc. Multiple parameter rate-responsive cardiac stimulation apparatus
WO1995026677A1 (fr) * 1994-03-30 1995-10-12 Pacesetter Ab Instrument de mesure du debit sanguin

Also Published As

Publication number Publication date
US6434411B1 (en) 2002-08-13
CA2265040A1 (fr) 1998-03-05
FR2752935B1 (fr) 1998-09-18
EP0923337A1 (fr) 1999-06-23
FR2752935A1 (fr) 1998-03-06

Similar Documents

Publication Publication Date Title
WO1998008435A1 (fr) Procede de mesure d'un volume conducteur et dispositif de mise en oeuvre de ce procede
CA2609983C (fr) Procede et appareil de detection in vivo
CA2041231C (fr) Mesure dynamique et sans contact de deplacement ou de permittivite a l'aide d'un capteur capacitif
EP0513176B1 (fr) Procede et dispositif de regulation de debit d'une prothese cardiaque a debit periodique
Ozeri et al. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation
US6277078B1 (en) System and method for monitoring a parameter associated with the performance of a heart
EP2857065B1 (fr) Capsule intracorporelle autonome à récupération d'énergie avec conversion de fréquence
US7481771B2 (en) Implantable wireless sensor for pressure measurement within the heart
EP3152568B1 (fr) Capteur micro-fabriqué, et procédé de détection de composant dans un liquide corporel
EP2638930A1 (fr) Capsule intracorporelle autonome à double récupération d'énergie
JPH09511411A (ja) 血流測定装置
WO2013120968A1 (fr) Dispositif de detection compact d'au moins une acceleration et une vitesse de rotation
EP3481486B1 (fr) Dispositif de détection d'un dysfonctionnement de dérivation de type ventriculo-péritonéale pour liquide céphalo-rachidien
Sezen et al. Passive wireless MEMS microphones for biomedical applications
JPS62157533A (ja) 超音波場の音響パワ−測定用超音波変換器
WO2005071353A1 (fr) Dispositif de mesure de distance.
US20100000820A1 (en) Pressure-balanced electromechanical converter
EP3691518A1 (fr) Dispositif biotélémétrique ingestible et implantable in vivo
EP0681447B1 (fr) Dispositif de determination d'informations physiologiques, et utilisation correspondante
CN114465521A (zh) 操作电声换能器的方法以及对应的电路和设备
Tadayon et al. Optical micromachined ultrasound transducers (OMUT)-a new approach for high-frequency transducers
EP0681448B1 (fr) Tensiometre a mesure en continu, et procede correspondant
US20080139940A1 (en) Transducer apparatus and method for intravascular blood flow measurement
Yang et al. Novel application of ScAlN PMUT for intravenous infusion drip monitoring
SU577417A1 (ru) Способ динамической тарировки датчиков давлени и устройство дл его реализации

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997938960

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2265040

Country of ref document: CA

Ref country code: CA

Ref document number: 2265040

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09242919

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997938960

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997938960

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载