+

WO1998007989A1 - Reibungsvakuumpumpe - Google Patents

Reibungsvakuumpumpe Download PDF

Info

Publication number
WO1998007989A1
WO1998007989A1 PCT/EP1997/003477 EP9703477W WO9807989A1 WO 1998007989 A1 WO1998007989 A1 WO 1998007989A1 EP 9703477 W EP9703477 W EP 9703477W WO 9807989 A1 WO9807989 A1 WO 9807989A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
pump
thread
blades
pump stage
Prior art date
Application number
PCT/EP1997/003477
Other languages
English (en)
French (fr)
Inventor
Robert Stolle
Heinz-Dieter Odendahl
Christian Beyer
Original Assignee
Leybold Vakuum Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum Gmbh filed Critical Leybold Vakuum Gmbh
Priority to EP97931744A priority Critical patent/EP0918938B1/de
Priority to US09/242,004 priority patent/US6168374B1/en
Priority to JP51030298A priority patent/JP3957761B2/ja
Priority to DE59706325T priority patent/DE59706325D1/de
Publication of WO1998007989A1 publication Critical patent/WO1998007989A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Definitions

  • the invention relates to a friction vacuum pump with at least one turbomolecular pump stage and a threaded pump stage adjoining it on the pressure side.
  • turbomolecular vacuum pumps can be improved in that a threaded pump stage is arranged after their turbomolecular pump stages.
  • the problem of an effective use of the thread pump stage is that an effective suction capacity at the entry of the thread (suction-side end of the thread) that is as dependent on pressure as possible cannot be ensured.
  • the reason for this is that the flow behavior of the extracted gases in the transition area between turbomolecular pump stages and thread pump stages changes from molecular (at pressures ⁇ 10-3 mbar) to laminar (from about 10-2 mbar upwards).
  • Known designs of the transition area between turbomolecular pump stages and threaded pump stages have the disadvantage that the flow is cut off. These significantly affect the pumping speed of the pump.
  • a friction vacuum pump of the type concerned here is known.
  • a threaded pump stage follows the turbomolecular pump stage.
  • the entry of the thread pump stage has one special design not on.
  • the thread depth does not change over the length of the thread pump stage.
  • the present invention has for its object to increase the pumping speed of a friction vacuum pump of the type mentioned by an improvement in the inlet area of the threaded pump stage.
  • the measures according to the invention have the effect that the transition area between the turbomolecular pump stage and the threaded pump stage has a geometry adapted to the flow shape.
  • the flow that transitions from molecular to laminar in this transition area is only slightly disturbed.
  • the flow does not stop.
  • the properties of the full stage are adapted to the mass flow, the compression achieved and the absolute pressure.
  • the wings of the full step are wing-shaped end sections of the webs of the threaded step. The production of full level and thread level is thereby simplified.
  • FIG. 1 and 2 partial sections through a pump according to the invention with a total of four design variants of threaded pump stage and full stage.
  • - Figure 3 enlarges the variant of Figure 1, right, in which a thread bridge of the thread pump stage merges into a wing of the filling stage.
  • FIGS. 4 to 6 are partial views of the transition area between the turbomolecular pump stage and the threaded pump stage of rotors designed according to the invention.
  • FIGS. 1 and 2 show that the pump 1 according to the invention comprises a turbomolecular pump stage 2, a filling stage 3 and a screw pump stage 4.
  • the gas delivery takes place between a rotor 5 (rotor sections 5a and 5b) and a stator 6.
  • the axis of rotation of the rotor is designated 7.
  • Rotor 5 and / or stator 6 carry the structures which effect the gas production.
  • Components of the turbomolecular pump stage 2 are stator blade rows 11 and rotor blade rows 12.
  • the filling stage 3 comprises several vanes 13.
  • the thread pump stage 4 is characterized by a thread 14.
  • Figures 1 and 2 show a total of four variants with regard to the design of filling level 3 and thread pump level 4:
  • Thread 14 part of the stator 6.
  • a wing 13 does not have to be assigned to each web of the thread 14.
  • fewer or more vanes 13 can be present as threaded webs 14.
  • FIG. 3 shows how the wings 13 are designed.
  • This embodiment involves wing-shaped end sections of the thread 14 which are practically characterized by a large increase in the thread depth t. This increase begins at the level of the dashed line 16 and extends over a relatively short length section of the rotor 5, denoted by h.
  • the thread depth t increases in the direction of the suction side to an amount which corresponds approximately to the active length of the blades of the stator blade row 11 or rotor blade row 12 of the turbomolecular pump stage 2 located on the suction side.
  • This sharp increase in the thread depth t expediently takes place over a length section h of the rotor 5 which is less than the length of the blades of the turbomolecular pump stage 2 on the suction side, preferably even less than half the length 1 of these blades.
  • the thread depth t increases by a factor of 4 to 8, preferably about 6. In the direction of the pressure side, the thread depth t continues to decrease, however, as was previously the case, relatively slowly.
  • the angle of attack of the vanes 13 lies between the angle of attack of the adjacent blades of the turbomolecular pump stage 2 and the inclination of the adjacent thread webs 14 (web angle ⁇ ).
  • a stator vane row 11 is located in the assembled state immediately above the vanes 13.
  • the rotor vane row 12 above the turbomolecular pump stage 2 can still fill and fill the rotor 5b of the thread pump stage 3, 4, which can be seen in particular from FIGS. 4 to 6.
  • Figures 4 to 6 show that the thread pump stage 4 has several thread webs 14, e.g. between four and sixteen, preferably eight.
  • the web angle (to the horizontal) is between approximately 10 ° and 20 °.
  • blades 12 of the last row of blades of the turbomolecular pump stage 2 on the pressure side are shown, which — as described for FIGS. 1 to 3 — are still attached to the rotor section 5b of the filling stage 3 and the threaded stage 4.
  • the number of blades 12 exceeds the number of blades 13 by a factor of 1.5 to 5, preferably 4.
  • the number of wings 13 is greater than the number of threaded webs 14. Between each end section 13 of the threaded webs 14 designed on the suction side in the manner of a wing, there is a further wing 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Erfindung betrifft eine Reibungsvakuumpumpe mit mindestens einer Turbomolekularpumpenstufe (2) und einer sich daran druckseitig anschließenden Gewindepumpenstufe (4); zur Verbesserung der Pumpeigenschaften wird vorgeschlagen, daß sich zwischen der Turbomolekularpumpenstufe (2) und der Gewindepumpenstufe (4) eine Füllstufe (3) mit Flügeln (13) befindet, deren Länge saugseitig der aktiven Länge der druckseitig gelegenen Schaufeln der Turbomolekularpumpenstufe (2) und druckseitig der Tiefe des saugseitigen Bereichs des Gewindes (14) der Gewindestufe (4) entsprechen.

Description

Reibungsva ux-impurape
Die Erfindung bezieht sich auf eine Reibungsvakuumpumpe mit mindestens einer Turbomolekularpumpenstufe und einer sich daran druckseitig anschließenden Gewindepumpenstufe.
Es ist bekannt, daß die Vorvakuumbeständigkeit von Turbomolekularvakuumpumpen dadurch verbessert werden kann, daß ihren Turbomolekularpumpenstufen eine Gewindepumpenstufe nachgeordnet wird. Das Problem einer effektiven Nutzung der Gewindepumpenstufe besteht darin, daß ein möglichst druckungabhängiges effektives Saugvermögen am Eintritt des Gewindes (saugseitiges Ende des Gewindes) nicht sichergestellt werden kann. Der Grund dafür liegt darin, daß sich das Strömungsverhalten der geförderten Gase im Übergangsbereich zwischen Turbomolekularpumpen- stufen und Gewindepumpenstufen von molekular (bei Drük- ken < 10-3 mbar) auf laminar (von etwa 10-2 mbar aufwärts) ändert. Bekannte Gestaltungen des Übergangsbereichs zwischen Turbomolekularpumpenstufen und Gewindepumpenstufen haben den Nachteil, daß es zu Abrissen der Strömung kommt. Diese beeinträchtigen in erheblichem Maße das Saugvermögen der Pumpe.
Aus der DE-A-36 27 642 (Anspruch 4) ist eine Reibungsvakuumpumpe der hier betroffenen Art bekannt. An die Turbomolekularpumpenstufe schließt sich eine Gewindepumpenstufe an. Der Eintritt der Gewindepumpenstufe weist eine besondere Gestaltung nicht auf. Die Gewindetiefe ändert sich über die Lange der Gewindepumpenstufe nicht.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, das Saugvermögen einer ReibungsVakuumpumpe der eingangs genannten Art durch eine Verbesserung im Eintrittsbereich der Gewindepumpenstufe zu erhohen.
Erfindungsgemaß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelost.
Die Maßnahmen nach der Erfindung haben die Wirkung, daß der Ubergangsbereich zwischen der Turbomolekularpumpen- stufe und der Gewindepumpenstufe eine der Stromungsform angepasste Geometrie hat . Die in diesem Übergangsbereich von molekular auf laminar übergehende Stomung wird nur unwesentlich gestört. Zu einem Abriss der Strömung kommt es nicht. Die Eigenschaften der Fullstufe sind dem Massenfluß, der realisierten Verdichtung und dem Absolutdruck angepaßt.
Bei einer vorteilhaften Ausfuhrungsform sind mehrere oder alle Flügel der Fullstufe flαgelartig gestaltete Endabschnitte der Stege der Gewindestufe. Die Herstellung von Fullstufe und Gewindestufe ist dadurch vereinfacht .
Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 bis 6 dargestellten Ausfuhrungsbeispielen erläutert werden. Es zeigen:
- Figuren 1 und 2 Teilschnitte durch eine Pumpe nach der Erfindung mit insgesamt vier Gestaltungsvarianten von Gewindepumpenstufe und Fullstufe. - Figur 3 vergrößert die Variante nach Figur 1, rechts, bei der ein Gewindesteg der Gewindepumpenstufe in einen Flügel der Füllstufe übergeht.
- Figuren 4 bis 6 Teilansichten des Übergangsbereichs zwischen Turbomolekularpumpenstufe und Gewindepumpenstufe von erfindungsgemäß gestalteten Rotoren.
Die Figuren 1 und 2 zeigen, daß die erfindungsgemäße Pumpe 1 eine Turbomolekularpumpenstufe 2, eine Füllstufe 3 und eine Gewindepumpenstufe 4 umfaßt. Die Gasförderung findet zwischen einem Rotor 5 (Rotorabschnitte 5a und 5b) und einem Stator 6 statt. Die Drehachse des Rotors ist mit 7 bezeichnet. Rotor 5 und /oder Stator 6 tragen die die Gasförderung bewirkenden Strukturen.
Bestandteile der Turbomolekularpumpenstufe 2 sind Statorschaufelreihen 11 und Rotorschaufelreihen 12. Die Füllsstufe 3 umfaßt mehrere Flügel 13. Die Gewindepumpenstufe 4 ist durch ein Gewinde 14 gekennzeichnet.
Die Figuren 1 und 2 lassen insgesamt vier Varianten in Bezug auf die Gestaltung von Füllstufe 3 und Gewindepumpenstufe 4 erkennen:
Fig. 1, links: Flügel 13 und Gewinde 14
Bestandteil des Stators 6.
Fig. 1, rechts: Flügel 13 und Gewinde 14
Bestandteil des Rotors 5.
Fig. 2, links: Flügel 13 Bestandteil des Stators 6,
Gewinde 14 Bestandteil des Rotors 5.
Fig. 2, rechts: Flügel 13 Bestandteil des Rotors 5,
Gewinde 14 Bestandteil des Stators 6. Nicht jedem Steg des Gewindes 14 muß ein Flügel 13 zugeordnet sein. Je nach Anwendungsfall können weniger oder mehr Flügel 13 als Gewindestege 14 vorhanden sein. Zwischen Rotor 5 und Stator 6 befindet sich der Spalt 15, der möglichst klein sein soll und üblicherweise kleiner als ein Milimeter ist.
Insbesondere Figur 3 (vergrößerte Darstellung der Ausführungsform nach Fig. 1, rechts) läßt erkennen, wie die Flügel 13 gestaltet sind. Es handelt sich bei dieser Ausführung um flügelartig gestaltete Endabschnitte des Gewindes 14, die praktisch durch eine starke Zunahme der Gewindetiefe t gekennzeichnet sind. Diese Zunahme beginnt in Höhe der gestrichelten Linie 16 und erstreckt sich über einen relativ kurzen, mit h bezeichneten Längenabschnitt des Rotors 5.
Die Gewindetiefe t nimmt in Richtung Saugseite auf einen Betrag zu, der etwa der aktiven Länge der Schaufeln der saugseitig gelegenen Statorschaufelreihe 11 bzw. Rotorschaufelreihe 12 der Turbomolekularpumpenstufe 2 entspricht. Diese starke Zunahme der Gewindetiefe t erfolgt zweckmäßig über einen Längenabschnitt h des Rotors 5, der kleiner ist als die Länge der saugseitig gelegenen Schaufeln der Turbomolekularpumpstufe 2, vorzugsweise sogar kleiner als die Hälfte der Länge 1 dieser Schaufeln. In diesem Bereich nimmt die Gewindetiefe t um den Faktor 4 bis 8, vorzugsweise etwa 6 zu. In Richtung Druckseite nimmt die Gewindetiefe t weiterhin ab, allerdings - wie bisher üblich - relativ langsam. Der Anstellwinkel der Flügel 13 liegt zwischen dem Anstellwinkel der benachbarten Schaufeln der Turbomolekularpumpenstufe 2 und der Neigung der benachbarten Gewindestege 14 (Stegwinkel α) . Bei der Ausführungsform, bei der die Flügel 13 rotieren (Figuren 1 und 2, rechts), befindet sich im montierten Zustand unmittelbar oberhalb der Flügel 13 eine Statorschaufelreihe 11. Die darüber befindliche Rotorschaufelreihe 12 der Turbemolekularpumpenstufe 2 kann noch am Rotor 5b der Füll- und der Gewindepumpenstufe 3, 4 befestigt sein, was insbesondere aus den Figuren 4 bis 6 ersichtlich ist.
Bei den Ausführungsformen, bei denen die Flügel 13 ruhen (Figuren 1 und 2, links), liegt eine Rotorschaufelreihe mit ihren Schaufeln 12 unmittelbar über den ruhenden Flügeln 13. Auch bei dieser Ausführung ist die Schaufelreihe 12 noch am Rotor 5b der Füll- und der Gewindepumpenstufe 3, 4 befestigt.
Die Figuren 4 bis 6 lassen erkennen, daß die Gewindepumpenstufe 4 mehrere Gewindestege 14 aufweist, z.B. zwischen vier und sechzehn, vorzugsweise acht. Der Stegwinkel (zur Horizontalen) liegt zwischen etwa 10° und 20°. Außerdem sind Schaufeln 12 der letzten, druckseitig gelegenen Schaufelreihe der Turbomolekularpumpenstufe 2 dargestellt, die - wie zu den Figuren 1 bis 3 beschrieben - noch am Rotorabschnitt 5b der Füllstufe 3 und der Gewindestufe 4 befestigt sind. Die Anzahl der Schaufeln 12 übersteigt die Anzahl der Flügel 13 um etwa den Faktor 1,5 bis 5, vorzugsweise 4.
Bei den Ausführungen nach den Figuren 5 und 6 ist die Anzahl der Flügel 13 größer als die Anzahl der Gewindestege 14. Zwischen jedem saugseitig nach Art eines Flügels gestaltetem Endabschnitt 13 der Gewindestege 14 befindet sich ein weiterer Flügel 13.

Claims

ReibungsvakuumpumpePATENTANSPRÜCHE
1. ReibungsVakuumpumpe mit mindestens einer Turbomolekularpumpenstufe (2) und einer sich daran druckseitig anschließenden Gewindepumpenstufe (4), dadurch gekennzeichnet, daß sich zwischen der Turbomolekularpumpenstufe (2) und der Gewindepumpenstufe (4) eine Füllstufe (3) mit Flügeln (13) befindet, deren Länge saugseitig der aktiven Lange der druckseitig gelegenen Schaufeln der Turbomolekularpumpenstufe
(2) und druckseitig der Tiefe des saugseitigen Bereichs des Gewindes (14) der Gewindestufe (4) ent¬ sprechen.
2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß saugseitige Enden der Gewindestege (14) flügelartig gestaltet sind und die Flügel (13) der Füllstufe
(3) bilden.
3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anstellwinkel der Flügel (13) einen Wert hat, der zwischen dem Anstellwinkel der saugseitig gelegenen Schaufeln der Turbomolekularpumpenstufe (2) und dem Stegwinkel α des druckseitig gelegenen Gewindes (14) der Gewindepumpenstufe
(4) liegt.
4. Pumpe nach Anspruch 1, 2 oder 3, dadurch gekenn- zeichnet, daß die Gewindepumpenstufe (4) mehrere Gewindestege (14) aufweist, deren Stegwinkel (α) zwischen 10° und 20° liegt.
5. Pumpe nach Anspruch 4, dadurch gekennzeichnet, daß vier bis sechzehn, vorzugsweise acht Gewindestege (14) vorhanden sind.
6. Pumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Anzahl der Flügel (13) der Füllstufe (3) größer ist als die Anzahl der Gewindestege (14) der Gewindepumpenstufe (4).
7. Pumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet daß die Anzahl der Schaufeln der den Flügeln (13) benachbarten Schaufelreihen (11, 12) um den Faktor 1,5 bis fünf, vorzugsweise vier, größer ist als die Anzahl der Flügel (13) .
8. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich die Flügel (13) bzw. die Zunahme der Gewindetiefe (t) über einen Längenabschnitt (h) des Rotors (5) erstrecken, der kleiner als die Länge der Schaufeln der Turbomolekularpumpenstufe (2) ist.
9. Pumpe nach Anspruch 8, dadurch gekennzeichnet, daß der Längenabschnitt (h) etwa halb so groß wie die Länge der Schaufeln ist.
10. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Rotor (5b) der Gewindepumpenstufe (2) und der Füllstufe (3) ein separat gefertigtes Bauteil ist.
11. Pumpe nach Anspruch 10, dadurch gekennzeichnet, daß der Rotor (5b) saugseitig eine Schaufelreihe (12) der Turbomolekularpumpenstufe (2) trägt.
PCT/EP1997/003477 1996-08-16 1997-07-02 Reibungsvakuumpumpe WO1998007989A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97931744A EP0918938B1 (de) 1996-08-16 1997-07-02 Reibungsvakuumpumpe
US09/242,004 US6168374B1 (en) 1996-08-16 1997-07-02 Friction vacuum pump
JP51030298A JP3957761B2 (ja) 1996-08-16 1997-07-02 摩擦真空ポンプ
DE59706325T DE59706325D1 (de) 1996-08-16 1997-07-02 Reibungsvakuumpumpe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19632874A DE19632874A1 (de) 1996-08-16 1996-08-16 Reibungsvakuumpumpe
DE19632874.8 1996-08-16

Publications (1)

Publication Number Publication Date
WO1998007989A1 true WO1998007989A1 (de) 1998-02-26

Family

ID=7802684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003477 WO1998007989A1 (de) 1996-08-16 1997-07-02 Reibungsvakuumpumpe

Country Status (5)

Country Link
US (1) US6168374B1 (de)
EP (1) EP0918938B1 (de)
JP (1) JP3957761B2 (de)
DE (2) DE19632874A1 (de)
WO (1) WO1998007989A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248587A (ja) * 1999-12-28 2001-09-14 Kashiyama Kogyo Kk 複合型真空ポンプ
JP2004510100A (ja) * 2000-09-21 2004-04-02 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング コンパウンド・摩擦真空ポンプ
CN103477082A (zh) * 2011-06-17 2013-12-25 埃地沃兹日本有限公司 真空泵及其转子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29717079U1 (de) 1997-09-24 1997-11-06 Leybold Vakuum GmbH, 50968 Köln Compoundpumpe
JP3788558B2 (ja) * 1999-03-23 2006-06-21 株式会社荏原製作所 ターボ分子ポンプ
US6514035B2 (en) * 2000-01-07 2003-02-04 Kashiyama Kougyou Industry Co., Ltd. Multiple-type pump
DE10111525A1 (de) * 2001-03-09 2002-09-12 Leybold Vakuum Gmbh Schraubenvakuumpumpe mit Rotoreinlauf und Rotorauslauf
GB0229355D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
US6957801B2 (en) * 2003-09-30 2005-10-25 Honeywell International, Inc. Valve having an integrated actuator assembly
US20090081022A1 (en) * 2007-09-21 2009-03-26 Honeywell International Inc. Radially Staged Microscale Turbomolecular Pump
DE202011002809U1 (de) * 2011-02-17 2012-06-12 Oerlikon Leybold Vacuum Gmbh Statorelement sowie Hochvakuumpumpe
JP6692635B2 (ja) 2015-12-09 2020-05-13 エドワーズ株式会社 連結型ネジ溝スペーサ、および真空ポンプ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2224009A5 (de) * 1973-03-30 1974-10-25 Cit Alcatel
EP0142208A1 (de) * 1983-11-16 1985-05-22 Ultra-Centrifuge Nederland N.V. Molekularpumpe für Hochvakuum
EP0159464A1 (de) * 1984-03-24 1985-10-30 Leybold Aktiengesellschaft Molekularvakuumpumpe
DE3627642A1 (de) * 1985-08-14 1987-02-26 Rikagaku Kenkyusho Vakuumpumpe mit gewindekanal
FR2611818A1 (fr) * 1987-02-26 1988-09-09 Cit Alcatel Pompe rotative a vide moleculaire du type a canal de gaede
FR2629877A1 (fr) * 1987-12-25 1989-10-13 Sholokhov Valery Pompe moleculaire a vide
WO1993023672A1 (de) * 1992-05-16 1993-11-25 Leybold Aktiengesellschaft Gasreibungsvakuumpumpe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732529A (en) * 1984-02-29 1988-03-22 Shimadzu Corporation Turbomolecular pump
JPS6172896A (ja) * 1984-09-17 1986-04-14 Japan Atom Energy Res Inst 高速回転ポンプ
US5217346A (en) * 1988-07-13 1993-06-08 Osaka Vacuum, Ltd. Vacuum pump
DE58905785D1 (de) * 1989-07-20 1993-11-04 Leybold Ag Gasreibungspumpe mit mindestens einer auslassseitigen gewindestufe.
US5238362A (en) * 1990-03-09 1993-08-24 Varian Associates, Inc. Turbomolecular pump
DE4314418A1 (de) * 1993-05-03 1994-11-10 Leybold Ag Reibungsvakuumpumpe mit unterschiedlich gestalteten Pumpenabschnitten

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2224009A5 (de) * 1973-03-30 1974-10-25 Cit Alcatel
EP0142208A1 (de) * 1983-11-16 1985-05-22 Ultra-Centrifuge Nederland N.V. Molekularpumpe für Hochvakuum
EP0159464A1 (de) * 1984-03-24 1985-10-30 Leybold Aktiengesellschaft Molekularvakuumpumpe
DE3627642A1 (de) * 1985-08-14 1987-02-26 Rikagaku Kenkyusho Vakuumpumpe mit gewindekanal
FR2611818A1 (fr) * 1987-02-26 1988-09-09 Cit Alcatel Pompe rotative a vide moleculaire du type a canal de gaede
FR2629877A1 (fr) * 1987-12-25 1989-10-13 Sholokhov Valery Pompe moleculaire a vide
WO1993023672A1 (de) * 1992-05-16 1993-11-25 Leybold Aktiengesellschaft Gasreibungsvakuumpumpe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248587A (ja) * 1999-12-28 2001-09-14 Kashiyama Kogyo Kk 複合型真空ポンプ
JP2004510100A (ja) * 2000-09-21 2004-04-02 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング コンパウンド・摩擦真空ポンプ
CN103477082A (zh) * 2011-06-17 2013-12-25 埃地沃兹日本有限公司 真空泵及其转子

Also Published As

Publication number Publication date
EP0918938B1 (de) 2002-02-06
JP2000516321A (ja) 2000-12-05
DE59706325D1 (de) 2002-03-21
JP3957761B2 (ja) 2007-08-15
DE19632874A1 (de) 1998-02-19
EP0918938A1 (de) 1999-06-02
US6168374B1 (en) 2001-01-02

Similar Documents

Publication Publication Date Title
DE602004001531T2 (de) Statorschaufel mit Doppelkrümmung
EP0846867B1 (de) Turbomaschine mit transsonischer Verdichterstufe
EP0906514B1 (de) Rotor für eine turbomaschine mit in nuten anbringbaren schaufeln sowie schaufel für einen rotor
DE2744366A1 (de) Laufrad fuer einen radialen turboverdichter
EP0918938A1 (de) Reibungsvakuumpumpe
EP1252445B1 (de) Turbomolekularpumpe
DE4136541A1 (de) Spiralverdichter mit optimierter kupplung
DE10327574A1 (de) Laufrad für eine Kraftstoffpumpe
EP1970542B1 (de) Drosselgradabhängige Schaufelverstellung bei Strömungsarbeitsmaschinen
EP1998049A2 (de) Strömungsarbeitsmaschinenschaufel mit Multi-Profil-Gestaltung
DE102009021620B4 (de) Vakuumpumpe
WO2005106207A1 (de) Verdichterschaufel und verdichter
EP2933497A2 (de) Vakuumpumpe
EP1335136A1 (de) Vorrichtung zur Beeinflussung der Strömung entlang der Wand des Stömungskanals eines Verdichters
EP0363503A1 (de) Pumpenstufe für eine Hochvakuumpumpe
EP1457642A2 (de) Vorrichtung zur Schaufelbefestigung an einem Rotor
DE19920524C2 (de) Radialverdichter
DE102019120816B3 (de) Verdichterlaufrad mit geteilten Hauptschaufeln
EP3088743B1 (de) Seitenkanal-vakuumpumpstufe mit einem unterbrecher, der auf der saugseite abgeschrägt ist
EP3032107B1 (de) Turbomolekularpumpe
DE10008691B4 (de) Gasreibungspumpe
WO2000020762A1 (de) Reibungsvakuumpumpe mit stator und rotor
DE10103230A1 (de) Turbomolekularvakuumpumpe mit Rotor-und Statorschaufeln
EP1319131A1 (de) Compound-reibungsvakuumpumpe
EP3734078B1 (de) Turbomolekularpumpe und verfahren zur herstellung einer statorscheibe für eine solche

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997931744

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09242004

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 510302

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997931744

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997931744

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载