WO1998007055A1 - Process for preparing an ocular device - Google Patents
Process for preparing an ocular device Download PDFInfo
- Publication number
- WO1998007055A1 WO1998007055A1 PCT/GB1997/002130 GB9702130W WO9807055A1 WO 1998007055 A1 WO1998007055 A1 WO 1998007055A1 GB 9702130 W GB9702130 W GB 9702130W WO 9807055 A1 WO9807055 A1 WO 9807055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- ocular device
- monomer
- gma
- modifier group
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title description 6
- 239000000178 monomer Substances 0.000 claims abstract description 95
- 229920000642 polymer Polymers 0.000 claims abstract description 88
- 239000003607 modifier Substances 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 46
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims abstract description 24
- 102100026735 Coagulation factor VIII Human genes 0.000 claims abstract 9
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 claims abstract 9
- 239000000203 mixture Substances 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000004132 cross linking Methods 0.000 claims description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 6
- 238000004528 spin coating Methods 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 4
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical group CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 32
- -1 photoinitiators) Substances 0.000 description 26
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 17
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 9
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical group CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 238000006460 hydrolysis reaction Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- 239000004971 Cross linker Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000003926 acrylamides Chemical class 0.000 description 5
- 125000005250 alkyl acrylate group Chemical group 0.000 description 5
- 230000036571 hydration Effects 0.000 description 5
- 238000006703 hydration reaction Methods 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical group OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- JPFPDGRVRGETED-UHFFFAOYSA-N (2,2-dimethyl-1,3-dioxolan-4-yl)methyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1COC(C)(C)O1 JPFPDGRVRGETED-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical group COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Chemical group OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- UDJZTGMLYITLIQ-UHFFFAOYSA-N 1-ethenylpyrrolidine Chemical group C=CN1CCCC1 UDJZTGMLYITLIQ-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical group FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical group O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical group C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 2
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 2
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical group ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 229940117927 ethylene oxide Drugs 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000001530 fumaric acid Chemical group 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- CFBXDFZIDLWOSO-UHFFFAOYSA-N icosyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)C(C)=C CFBXDFZIDLWOSO-UHFFFAOYSA-N 0.000 description 2
- NGYRYRBDIPYKTL-UHFFFAOYSA-N icosyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)C=C NGYRYRBDIPYKTL-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Chemical group OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- NBKZGRPRTQELKX-UHFFFAOYSA-N (2-methylpropan-2-yl)oxymethanone Chemical compound CC(C)(C)O[C]=O NBKZGRPRTQELKX-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1 -dodecene Natural products CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- 125000000424 1,2-diol group Chemical group 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- OWPUOLBODXJOKH-UHFFFAOYSA-N 2,3-dihydroxypropyl prop-2-enoate Chemical compound OCC(O)COC(=O)C=C OWPUOLBODXJOKH-UHFFFAOYSA-N 0.000 description 1
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- BEWCNXNIQCLWHP-UHFFFAOYSA-N 2-(tert-butylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC(C)(C)C BEWCNXNIQCLWHP-UHFFFAOYSA-N 0.000 description 1
- VKNASXZDGZNEDA-UHFFFAOYSA-N 2-cyanoethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC#N VKNASXZDGZNEDA-UHFFFAOYSA-N 0.000 description 1
- XCTHCCZRDMXFKV-UHFFFAOYSA-N 2-cyanoethyl prop-2-enoate;2-methylprop-2-enamide Chemical compound CC(=C)C(N)=O.C=CC(=O)OCCC#N XCTHCCZRDMXFKV-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- NJNWCIAPVGRBHO-UHFFFAOYSA-N 2-hydroxyethyl-dimethyl-[(oxo-$l^{5}-phosphanylidyne)methyl]azanium Chemical group OCC[N+](C)(C)C#P=O NJNWCIAPVGRBHO-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- KFTHUBZIEMOORC-UHFFFAOYSA-N 2-methylbut-2-enamide Chemical compound CC=C(C)C(N)=O KFTHUBZIEMOORC-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- WWJCRUKUIQRCGP-UHFFFAOYSA-N 3-(dimethylamino)propyl 2-methylprop-2-enoate Chemical compound CN(C)CCCOC(=O)C(C)=C WWJCRUKUIQRCGP-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- NQSLZEHVGKWKAY-UHFFFAOYSA-N 6-methylheptyl 2-methylprop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C(C)=C NQSLZEHVGKWKAY-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- COCLLEMEIJQBAG-UHFFFAOYSA-N 8-methylnonyl 2-methylprop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C(C)=C COCLLEMEIJQBAG-UHFFFAOYSA-N 0.000 description 1
- LVGFPWDANALGOY-UHFFFAOYSA-N 8-methylnonyl prop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C=C LVGFPWDANALGOY-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical compound C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Chemical group OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 1
- QHKUYJLUDLPIBO-KTKRTIGZSA-N [(Z)-octadec-9-enyl] 2-hydroxyethanesulfonate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(=O)(=O)CCO QHKUYJLUDLPIBO-KTKRTIGZSA-N 0.000 description 1
- VJDDQSBNUHLBTD-GGWOSOGESA-N [(e)-but-2-enoyl] (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(=O)\C=C\C VJDDQSBNUHLBTD-GGWOSOGESA-N 0.000 description 1
- KEFHXVSSWDPUEH-UHFFFAOYSA-N [K].CC(C)OS(=O)(=O)C1=CC=CC=C1 Chemical class [K].CC(C)OS(=O)(=O)C1=CC=CC=C1 KEFHXVSSWDPUEH-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical group 0.000 description 1
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical group ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- KRJIBMFDBVWHBJ-UHFFFAOYSA-N cycloheptyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCCC1 KRJIBMFDBVWHBJ-UHFFFAOYSA-N 0.000 description 1
- VLIHGIDKOZKVBS-UHFFFAOYSA-N cycloheptyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCCC1 VLIHGIDKOZKVBS-UHFFFAOYSA-N 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical compound OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 125000005639 glycero group Chemical group 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- MDNFYIAABKQDML-UHFFFAOYSA-N heptyl 2-methylprop-2-enoate Chemical compound CCCCCCCOC(=O)C(C)=C MDNFYIAABKQDML-UHFFFAOYSA-N 0.000 description 1
- ZNAOFAIBVOMLPV-UHFFFAOYSA-N hexadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C(C)=C ZNAOFAIBVOMLPV-UHFFFAOYSA-N 0.000 description 1
- PZDUWXKXFAIFOR-UHFFFAOYSA-N hexadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C=C PZDUWXKXFAIFOR-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- UACSZOWTRIJIFU-UHFFFAOYSA-N hydroxymethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCO UACSZOWTRIJIFU-UHFFFAOYSA-N 0.000 description 1
- GJIDOLBZYSCZRX-UHFFFAOYSA-N hydroxymethyl prop-2-enoate Chemical compound OCOC(=O)C=C GJIDOLBZYSCZRX-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 208000016339 iris pattern Diseases 0.000 description 1
- 229940119545 isobornyl methacrylate Drugs 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical group OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Chemical group 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 150000002763 monocarboxylic acids Chemical group 0.000 description 1
- QRWZCJXEAOZAAW-UHFFFAOYSA-N n,n,2-trimethylprop-2-enamide Chemical compound CN(C)C(=O)C(C)=C QRWZCJXEAOZAAW-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 125000005608 naphthenic acid group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- LKEDKQWWISEKSW-UHFFFAOYSA-N nonyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCOC(=O)C(C)=C LKEDKQWWISEKSW-UHFFFAOYSA-N 0.000 description 1
- MDYPDLBFDATSCF-UHFFFAOYSA-N nonyl prop-2-enoate Chemical compound CCCCCCCCCOC(=O)C=C MDYPDLBFDATSCF-UHFFFAOYSA-N 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- YOTGRUGZMVCBLS-UHFFFAOYSA-N pentadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCOC(=O)C(C)=C YOTGRUGZMVCBLS-UHFFFAOYSA-N 0.000 description 1
- GOZDOXXUTWHSKU-UHFFFAOYSA-N pentadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCOC(=O)C=C GOZDOXXUTWHSKU-UHFFFAOYSA-N 0.000 description 1
- GYDSPAVLTMAXHT-UHFFFAOYSA-N pentyl 2-methylprop-2-enoate Chemical compound CCCCCOC(=O)C(C)=C GYDSPAVLTMAXHT-UHFFFAOYSA-N 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 125000005496 phosphonium group Chemical group 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- ARENMZZMCSLORU-UHFFFAOYSA-N propan-2-yl naphthalene-1-sulfonate Chemical class C1=CC=C2C(S(=O)(=O)OC(C)C)=CC=CC2=C1 ARENMZZMCSLORU-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- PWWJJDVDTKXWOF-UHFFFAOYSA-M sodium;2-[hexadecanoyl(methyl)amino]ethanesulfonate Chemical compound [Na+].CCCCCCCCCCCCCCCC(=O)N(C)CCS([O-])(=O)=O PWWJJDVDTKXWOF-UHFFFAOYSA-M 0.000 description 1
- OGRPJZFGZFQRHZ-UHFFFAOYSA-M sodium;4-octoxy-4-oxo-3-sulfobutanoate Chemical compound [Na+].CCCCCCCCOC(=O)C(S(O)(=O)=O)CC([O-])=O OGRPJZFGZFQRHZ-UHFFFAOYSA-M 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229940095068 tetradecene Drugs 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- VJDDQSBNUHLBTD-UHFFFAOYSA-N trans-crotonic acid-anhydride Natural products CC=CC(=O)OC(=O)C=CC VJDDQSBNUHLBTD-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/14—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
Definitions
- the present invention relates to a process for preparing an ocular device (such as a contact lens).
- the present invention relates to the ocular device prepared by that process.
- Polymers made from polymerisable monomers have wide spread applications. For example, polymers are used as additives for coating applications, such as paints and adhesives. Polymers are also used to prepare lenses, such as contact lenses.
- Polymers are prepared by polymerising one or more types of polymerisable monomers, such as by emulsion polymerisation, solution polymerisation, suspension polymerisation or bulk polymerisation.
- the monomer(s) may be polymerised in the presence of optional ingredients such as any one of emulsifiers, stabilisers, surface active agents, initiators (such as photoinitiators), inhibitors, dispersants, oxidising agents, reducing agents, viscosity modifiers, catalysts, binders, activators, accelerators, tackifiers, plasticizers, saponification agents, chain transfer agents, cross-linking agents, surfactants, fillers, dyes, metal salts, and solvents.
- emulsifiers such as emulsion polymerisation, solution polymerisation, suspension polymerisation or bulk polymerisation.
- the monomer(s) may be polymerised in the presence of optional ingredients such as any one of emulsifiers, stabilisers, surface active agents, initiators (such as photoin
- a polymer can be prepared from monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, styrene, butadiene, ethylene, vinyl acetate, vinyl esters, C 9 , C 10 and C ⁇ tertiary monocarboxylic acids, vinyl chloride, vinyl pyridine, vinyl pyrrolidine, vinylidene chloride, acrylonitrile, chloroprene, acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid.
- monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, methyl methacrylate, ethyl methacrylate, butyl me
- polymers are in the preparation of lenses, especially contact lenses or intraocular lenses.
- Examples of teachings for the preparation of contact lenses may be found in EP-A-0359539, which discloses a method of forming a soft contact lens.
- polymers can be fairly easily prepared from polymerisable monomers there can be a problem in reliably and cheaply obtaining suitable monomers in a satisfactory pure form.
- desired polymerisable monomers are supplied with impurities. These impurities can be detrimental to the final product and so they have to be eliminated before the polymerisation reaction to form the desired polymer.
- GYMA glycidyl methacrylate
- US-A-5380884 GYMA is usually contaminated with epichlorohydrin. The presence of epichlorohydrin is undesirable as it is also toxic in that it can cause intense skin irritation.
- GYMA can be purified by reacting an alkali metal salt in the presence of a quaternary ammonium salt and a polymerisation inhibitor in order to remove the epichlorohydrin.
- GMA glyceryl methacrylate
- Examples of documents mentioning the use of such a monomer include US-A-5236969, JP-A-04335007, GB-A-2180243 and EP-A-0100381.
- GMA is a very expensive monomer.
- IPGMA isopropylideneglyceryl methacrylate
- Another process for preparing GMA includes the hydrolysis of GYMA by treating GYMA with concentrated sulphuric acid for 6 days (M.F. Refojo [1965] Journal of Polymer Science 9 pp 3161-3170).
- US-A-5532289 discloses a process for forming a soft contact lens.
- the lens is formed from a copolymer consisting essentially of 2,3-dihdroxypropyl methacrylate and 2-hydroxyethyl methacrylate. Hydroxyethyl methacrylate is sometimes referred to as HEMA.
- HEMA Hydroxyethyl methacrylate
- the examples teach the presence of at least one other co-monomer - that being ethylene glycol dimethacrylate.
- the copolymers of the Examples have an excess of GMA to HEMA. For example, in Example 2 a six fold excess of GMA is required to achieve a contact lens having a water content of 67% .
- the process of US-A-5532289 also requires a pre-distillation step wherein GMA is distilled. Hence, the process of US- A-5532289 is laborious and costly.
- the present invention seeks to overcome the problems associated with the known processes for preparing polymers.
- a process of preparing an ocular device (such as a contact lens) consisting essentially of GMA and HEMA, the process comprising the following steps: a) copolymerising a second monomer and a first monomer having attached to it a modifier group, thereby to form a first polymer having associated with it the modifier group; and b) modifying all or some the modifier group associated with the first polymer to form a second polymer different from the first polymer thereby to form the ocular device consisting essentially of GMA and HEMA.
- an ocular device (such as a contact lens) prepared by the process according to the present invention.
- an ocular device such as a contact lens preparation reaction system, wherein the ocular device consists essentially of GMA and HEMA, the reaction system comprising: i) a first polymer having associated with it a modifier group, wherein the first polymer is obtainable by copolymerising a second monomer and a first monomer having attached to it a modifier group; and ii) a treatment medium for modifying all or some of the modifier group associated with the first polymer thereby to form a second polymer different from the first polymer and thereby to form the ocular device consisting essentially of GMA and HEMA.
- the present invention also provides an ocular device (such as a contact lens) obtained by the method of the present invention wherein the ocular device comprises HEMA in amounts of from 80-20% ; GMA in amounts of from 20-80% by weight; and optionally a cross-linking polymerised monomer in an amount of 5% or less; and wherein the ocular device contains less than 0.01 % methacrylic acid.
- HEMA in amounts of from 80-20%
- GMA in amounts of from 20-80% by weight
- optionally a cross-linking polymerised monomer in an amount of 5% or less
- the ocular device contains less than 0.01 % methacrylic acid.
- the present invention provides major benefits.
- the modified monomer is often more easily purified and/or less expensive and/or purer than the desired monomer itself.
- a further important advantage is that there is no need to convert a monomer derivative to a desired monomer before the copolymerisation step.
- the present invention is also advantageous because it is possible to tailor the resultant properties or characteristics of the desired second polymer by appropriate selection of any one of the first monomer, the second monomer, the modifier group or the modifying step, or combinations thereof.
- all of the modifier group can be modified or only some of the modifier group can be modified, such as in a localised area in or on the resultant polymer.
- the present invention is further advantageous because it can be used for preparing ocular devices having a broad range of properties through appropriate selection of any one of the first monomer, the second monomer, the modifier group or the modifying step, or combinations thereof.
- Further advantages include: easier preparation of the resultant ocular device; more control over shrinkage during the polymerisation step; in some applications a reduced shrinkage of the polymer during the polymerisation step; in some applications easy removal of the modifier group; more control over the dimensional consistency of the resultant polymer; in some applications better dimensional consistency of the resultant polymer; more control over swell on hydration; in some applications reduced swell on hydration; and in some applications more control over the water sensitivity of polymer.
- the present invention also enables useful volatile monomers to be used in the ultimate formation of the second polymer as a modifier group can be attached to such monomers and thereby reduce their volatility to enable the first polymer to be prepared in a consistent manner and/or a safe manner.
- the present invention enables the desired polymer (such as a contact lens or a button for same) to be prepared by means of a simple modification step which modifies the modifier group, which modification step need not be carried out immediately after formation of the first polymer. Instead, the first polymer can be stored before conversion to the second polymer.
- the present invention enables such modified monomers to be used in processes such as spin casting which until now have had to limited to the use of low volatile monomers such as hydroxy ethyl methacrylate.
- An additional advantage is that localised areas of the blank or button can be modified thus allowing easier preparation of more specialist lenses. For example, if the modifier group can impart a colour after the modification step then, for example, a tint or iris pattern can be imparted on to the blank or the lens.
- one mould could be used to prepare different lenses having different properties simply by controlling the degree of modification, such as shrinkage etc.
- the composition of the first polymer can be tailored so that a large amount of shrinkage occurs on modification to the second polymer. This would minimise any defects that may be present on the lens surface.
- the present invention is very advantageous for preparing ocular devices, such as contact lenses (both hard and soft contact lenses), intraocular lenses, interocular lenses and intercorneal implants, as well as prostheses and hydrogel articles.
- the present invention not only enables the ocular devices to be made more easily but also it allows a greater control over any one of the shrinkage, the dimensional consistency, the swell, the water sensitivity, the hydrophobicity or the hydrophilicity, or combinations thereof, of the resultant polymer.
- the reduction in swell is due to the presence of less hydrophilic material than if the same mass of unmodified monomer had been polymerised. This is because there is a contrived loss of the modifier group.
- the modifier group dilutes the concentration of the polymerisable group of the monomer. It is believed that this dilution reduces the level of contraction during polymerisation. This is of particular benefit for cast moulding of contact lenses.
- the present invention has the advantage that because of the low initial cross-linker concentration in the monomer mixture, controlled additions of further cross-linker to achieve the desired/optimum level are possible. In contrast, if preformed first monomer eg. GMA is used, the level of cross-linker is often already too high to allow further additions without detriment to the mechanical properties of the final lens. This advantage of the present invention is demonstrated if GMAC is polymerized and then hydrolysed. The resultant hydrolysed polymer will simply dissolve.
- Table 1 below demonstrates the effect of the addition of cross-linker to a GMAC/2- HEMA copolymer.
- Copolymer 1 made without the addition of cross-linker is insoluble. This is due to the presence of 0.3 % ethylene glycol dimethacrylate in the 2-HEMA.
- the polymerisable first monomers consist of GMA, hydroxy ethyl methacrylate (HEMA), and combinations thereof.
- the polymerisable second monomers consist of GMA, HEMA, and combinations thereof.
- HEMA is 2-HEMA.
- the first and second monomers are selected so that the ocular device consists essentially of GMA and HEMA.
- Examples of preferred modifier groups that can be used in the present invention include any one of tert-butoxy carbonyl (t-BOC), ketais (for example acetone), acetals (for example acetaldehyde), trimethyl silyl (TMS), glycidyl, N-hydroxy succinimide and carbonate ester, and combinations thereof.
- t-BOC tert-butoxy carbonyl
- ketais for example acetone
- acetals for example acetaldehyde
- TMS trimethyl silyl
- glycidyl N-hydroxy succinimide and carbonate ester, and combinations thereof.
- Examples of preferred modification steps that can be used in the present invention include one of base hydrolysis, acid hydrolysis, neutral hydrolysis reactions, cleavage with F , and combinations thereof.
- a suitable modification step would be selected, such as acid hydrolysis treatment if the modifier group were t-Boc and base hydrolysis treatment if the modifier group were a carbonate.
- first monomers for use in the present invention there can be two different types of first monomers and/or two different types of second monomers and/or at least two different types of modifier groups and/or at least two different types of modifying steps.
- first monomer(s) and/or the second monomer(s) and/or the modifier group(s) can be homogenously or heterogeneously distributed in the first polymer and/or the second polymer.
- the modifying step(s) can be applied to all or a part or parts of the first polymer.
- a preferred aspect of the present invention is the use of GMA with a modifier group as the first monomer to form the first polymer rather than the use of the monomer itself.
- GMA is available commercially in an impure state and the concentration of the impurities may vary and affect the properties of the resulting polymer.
- pure GMA is expensive. It is also very difficult to purify.
- GMAC (2,2 dimethyl-l,3-dioxolan-4-yl) methyl methacrylate
- GMAC can be prepared following the teachings of Mori et al ([1994] Macromolecules 27 pp 35-39) and Oguchi et al Polym Eng. Sci. ([1990] 30 449). Moreover, modification of, for example, GMAC in such a first polymer by a suitable modification step converts the GMAC to GMA, thus forming the desired second polymer. This process does not require a pre-polymerisation conversion step to convert GMAC monomer to GMA monomer, which is laborious, expensive and unnecessary. This preferred process of the present invention is also of particular interest as GMAC can be readily synthesised from cheap, commercially available materials and it can be prepared in a pure state, i.e. free from the substances normally present in commercial GMA, especially cross-linking substances. Moreover, GMAC is readily co-polymerised with other suitable monomers, eg 2- HEMA.
- any typical, suitable polymerisation method may be used.
- the preferred method is free radical polymerisation, thermal or UV initiated.
- the copolymer material (i.e. the first polymer) may be fabricated as buttons or cast moulded or spun cast lenses.
- the modifier group can be any suitable modifier group.
- the modifier group can make the monomer more stable.
- the modifier group can make the monomer more or less polar. If the monomer becomes less polar (or non-polar) then the monomer can be used to prepare lenses by spin casting methods by use of polypropylene casts, which are advantageous.
- a preferred example of such a non-polar monomer is GMAC.
- the modifier group can even make the monomer hydrophobic or hydrophilic, or even make the monomer more hydrophobic or more hydrophilic.
- modifier groups include: an anhydride group which can be modified to the respective acid group or an epoxide group which can be modified to the respective 1 ,2 diol group.
- the modifier group can hydrophobic or hydrophilic.
- the modifier group is hydrophilic. This is particularly advantageous as the modification step can utilise an aqueous modification medium to modify the modifier group.
- the modifier group is a cleavable group and wherein the modifying step b) comprises dissociating the modifier group from the first polymer to form a second polymer containing less or no modifier group.
- the modifying step b) comprises dissociating the modifier group from the first polymer to form a second polymer containing less or no modifier group.
- the first polymer is formed from a mixture of first monomers having attached thereto different modifier groups.
- This aspect of the present invention allows different areas of the formed first polymer to be modified at different rates or times.
- the first monomer is GMA.
- the first monomer with the attached modifier group is GMAC.
- GMAC is advantageous as it can be readily polymerised and it can be readily converted to GMA by the process of the present invention. In addition, it may be more readily obtained in a relatively pure form and at a more acceptable cost than GMA.
- the second monomer is 2-HEMA.
- the first polymer is prepared by cast moulding or spin casting techniques.
- the present invention also covers the first polymer and/or the second polymer for use as a blank for a lens.
- polymerisable monomers include one or more of: (alkyl and cycloalkyl) acrylates; (alkyl and cycloalkyl) methacrylates; free-radical polymerizable olefinic acids, including alkoxy-, alkylphenoxy-, alkylphenoxy- (polyethyleneoxide)-, vinyl ester-, amine substituted (including quaternary ammonium salts thereof), nitrile-, halo-, hydroxy-, and acid substituted (for example phospho- or sulpho-) derivatives thereof; and other suitable ethylenically unsaturated polymerisable monomers; including combinations thereof.
- the alkyl and cycloalkyl groups contain up to 20 carbon atoms, e.g. (C,-C 20 alkyl and C,-C 20 cycloalkyl) acrylates, and (C r C 20 alkyl and C,-C 2 o cycloalkyl) methacrylates.
- typical polymerisable monomers for use as the first monomer or the second monomer include any one of methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, isobornyl acrylate, pentyl acrylate, hexyl acrylate, octyl acrylate, iso-octyl acrylate, nonyl acrylate, lauryl acrylate, stearyl acrylate, eicosyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, cycloheptyl acrylate, methyl methacrylate, ethyl methacrylate, hydroxymethylacrylate, hydroxymethylmethacrylate, propyl methacrylate, n-butyl methacrylate,
- decyl methacrylate lauryl methacrylate, eicosyl methacrylate, dodecyl acrylate, pentadecyl acrylate, cetyl acrylate, stearyl acrylate, eicosyl acrylate, isodecyl acrylate, vinyl stearate, nonylphenoxy- (ethyleneoxide),.
- Additional other such polymerisable monomers can methacrylic acid, acrylic acid, GYMA, N-vinyl pyrrolidone, alkyl methacrylates (such as C,. 20 alkyl methacrylates, more preferably C M5 alkyl methacrylates, more preferably C 0 alkyl methacrylates, more preferably C,. 5 alkyl methacrylates, such as methyl methacrylate), alkyl acrylates (such as C,. 20 alkyl acrylates, more preferably C,. 15 alkyl acrylates, more preferably C,.
- alkyl methacrylates such as C,. 20 alkyl methacrylates, more preferably C M5 alkyl methacrylates, more preferably C 0 alkyl methacrylates, more preferably C,. 5 alkyl methacrylates, such as methyl methacrylate
- alkyl acrylates such as C,. 20 alkyl acrylates, more preferably C,. 15 alkyl
- alkyl acrylates more preferably C,- 5 alkyl acrylates, such as methyl acrylate), aryl methacrylates, aryl acrylates, diacetone acrylamide, acrylamide, methacrylamide, N-alkyl acrylamides (such as C,. 20 N-alkyl acrylamides, more preferably C,. 15 N-alkyl acrylamides, more preferably C,.
- N-alkyl acrylamides more preferably C 1 5 N-alkyl acrylamides, such as methyl acrylamide
- N-alkyl methacrylamides such as C ⁇ o N-alkyl methacrylamides, more preferably C,., 5 N- alkyl methacrylamides, more preferably C,.
- 10 N-alkyl methacrylamides more preferably C 1 5 N-alkyl methacrylamides, such as methyl methacrylamide
- vinyl acetate, vinyl esters, styrene, other substituted olefins such as C,.
- N-dialkyl acrylamides more preferably 1S N-dialkyl acrylamides, more preferably C, 10 N-dialkyl acrylamides, more preferably C[ 5 N-dialkyl acrylamides, such as N N dimethyl acrylamide), N-dialkyl methacrylamides (such as C, 20 N-dialkyl methacrylamides, more preferably C,- 15 N-dialkyl methacrylamides, more preferably C M0 N-dialkyl methacrylamides, more preferably N-dialkyl methacrylamides, such as N N dimethyl methacrylamide), 3-methacryloxypropyl tris (trimethysilyl siloxy) silane (TRIS monomer), fluoro substituted alkyl and aryl acrylates and methacrylates (preferably wherein the alkyl is C,- 20 alkyl, more preferably C, . ,, alkyl, more preferably C,. 10 alkyl, more preferably C,.
- the lists of monomers also include substituted derivatives of those monomers, such as halogenated monomers, especially fluorinated monomer derivatives
- trace or small means less than about 6%, preferably less than 1 % of the final composition, more preferably less than 0.5%, even more preferably less than 0.1 % .
- polymerisation reaction medium there can be in small or trace amounts other suitable polymerisable monomers such as any one of those outlined above and/or suitable optional ingredients.
- the emulsifiers, stabilisers, surface active agents, initiators (such as photoinitiators), inhibitors, dispersants, oxidising agents, reducing agents, viscosity modifiers, catalysts, binders, activators, accelerators, tackifiers, plasticizers, saponification agents, chain transfer agents, cross-linking agents, surfactants, fillers, dyes, metal salts, and solvents that can be used in the present invention can be any of those commonly used in the art.
- the surfactants and dispersants can be salts of fatty rosin and naphthenic acids, condensation products of naphthalene sulphonic acid and formaldehyde of low molecular weight, carboxylic polymers and copolymers of the appropriate hydrophile-lipophile balance, higher alkyl sulfates, such as sodium lauryl sulfate, alkyl aryl sulfonates, such as dodecyl benzene sulfonate, sodium or potassium isopropylbenzene sulfonates or isopropylnaphthalene sulfonates; sulfosuccinates, such as sodium dioctylsulfosuccinate alkali metal higher alkyl sulfosuccinates, e.g.
- Typical polymerisation inhibitors that can be used include hydroquinone, monomethyl ether, benzoquinone, phenothiazine and methylene blue.
- Lenses with water contents of between 40% and 63% were prepared. We found that the water content of the lenses depends on the initial GMAC content. In this regard, higher concentrations of GMAC in the copolymer gave higher water contents and that the hydration process became progressively slower with increasing GMAC concentration.
- the rate of hydrolysis can be increased by the addition of a water miscible/soluble substance, such as ethanol, to either the hydrolysis solution or the polymerisation reaction medium (i.e. the monomer mix).
- a water miscible/soluble substance such as ethanol
- the equilibrium water content is very low, ie ⁇ 20% but addition of acid invariably increased the water content to > 40%.
- the extractable content of the lenses is consistent with the loss of the appropriate quantity of acetone. Acetone could be detected in the hydrolysis solution by giving a precipitate of the 2,4 dinitro-phenyl hydrazone with 2,4 dinitrophenyl hydrazine.
- Example 1 The mixture prepared in Example 1 was charged into PVC moulds designed for spin casting. After passage through a bank of UV lamps the cured lens were removed from the mould by exposure to IN hydrochloric acid.
- Example 1 The monomer mixture prepared in Example 1 was initiated with 0.1 % isopropyl per dicarbonate (IPP) .
- IPP isopropyl per dicarbonate
- the mixture was charged into polypropylene button moulds which were sealed and immersed in a water bath. After 16 hours at 32 °C the clear colourless buttons were ejected and further heated to 120°C for 1 hour and allowed to cool to 50°C at a rate of 17°C/hr. Lenses were lathed cut from the buttons and exposed to IN hydrochloric acid as previously described.
- the present invention provides a process for preparing polymers for use as ocular devices (such as contact lenses), by a reliable and efficient process that obviates the need to prepare the desired monomer from a derivative thereof as a pre- polymerisation step.
- the present invention provides a process wherein polymers can be prepared whose properties, such as swellability, hydrophobicity or hydrophilicity, can be altered after the preparation thereof.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Eyeglasses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9903009A GB2331990A (en) | 1996-08-13 | 1997-08-08 | Process for preparing an ocular device |
AU37047/97A AU3704797A (en) | 1996-08-13 | 1997-08-08 | Process for preparing an ocular device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9616959.4A GB9616959D0 (en) | 1996-08-13 | 1996-08-13 | Process for preparing a polymer |
GB9616959.4 | 1996-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998007055A1 true WO1998007055A1 (en) | 1998-02-19 |
Family
ID=10798403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1997/002130 WO1998007055A1 (en) | 1996-08-13 | 1997-08-08 | Process for preparing an ocular device |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU3704797A (en) |
GB (2) | GB9616959D0 (en) |
WO (1) | WO1998007055A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2331754A (en) * | 1997-11-24 | 1999-06-02 | Patrick H Benz | Terpolymer of HEMA, GMA, and MAA |
WO2003071339A1 (en) * | 2002-02-15 | 2003-08-28 | Zms, Llc | Polymerization process and materials for biomedical applications |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2091750A (en) * | 1981-01-12 | 1982-08-04 | Tokyo Contact Lens | Contact lens and process for preparing the same |
GB2097952A (en) * | 1981-05-01 | 1982-11-10 | Toyo Contact Lens Co Ltd | Contact lens prepared by copolymerising ketalised glycitol monomer |
US4401797A (en) * | 1981-05-20 | 1983-08-30 | Syntex (U.S.A.) Inc. | Copolymers and hydrogels: process and articles made thereof |
US4634722A (en) * | 1981-05-20 | 1987-01-06 | Syntex (U.S.A.) Inc. | Copolymers and hydrogels: process and articles made thereof |
WO1994017110A1 (en) * | 1993-01-28 | 1994-08-04 | Pilkington Barnes Hind, Inc. | Material in the manufacture of polymeric articles |
US5532289A (en) * | 1995-04-14 | 1996-07-02 | Benz Research And Development Corp. | Contact lens having improved dimensional stability |
-
1996
- 1996-08-13 GB GBGB9616959.4A patent/GB9616959D0/en active Pending
-
1997
- 1997-08-08 WO PCT/GB1997/002130 patent/WO1998007055A1/en active Application Filing
- 1997-08-08 GB GB9903009A patent/GB2331990A/en not_active Withdrawn
- 1997-08-08 AU AU37047/97A patent/AU3704797A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2091750A (en) * | 1981-01-12 | 1982-08-04 | Tokyo Contact Lens | Contact lens and process for preparing the same |
GB2097952A (en) * | 1981-05-01 | 1982-11-10 | Toyo Contact Lens Co Ltd | Contact lens prepared by copolymerising ketalised glycitol monomer |
US4401797A (en) * | 1981-05-20 | 1983-08-30 | Syntex (U.S.A.) Inc. | Copolymers and hydrogels: process and articles made thereof |
US4634722A (en) * | 1981-05-20 | 1987-01-06 | Syntex (U.S.A.) Inc. | Copolymers and hydrogels: process and articles made thereof |
WO1994017110A1 (en) * | 1993-01-28 | 1994-08-04 | Pilkington Barnes Hind, Inc. | Material in the manufacture of polymeric articles |
US5532289A (en) * | 1995-04-14 | 1996-07-02 | Benz Research And Development Corp. | Contact lens having improved dimensional stability |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2331754A (en) * | 1997-11-24 | 1999-06-02 | Patrick H Benz | Terpolymer of HEMA, GMA, and MAA |
GB2331754B (en) * | 1997-11-24 | 2001-08-08 | Patrick H Benz | Ionic contact lens made from a terpolymer |
WO2003071339A1 (en) * | 2002-02-15 | 2003-08-28 | Zms, Llc | Polymerization process and materials for biomedical applications |
Also Published As
Publication number | Publication date |
---|---|
GB9903009D0 (en) | 1999-03-31 |
AU3704797A (en) | 1998-03-06 |
GB9616959D0 (en) | 1996-09-25 |
GB2331990A (en) | 1999-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU665890B2 (en) | Polymer compositions for contact lenses | |
EP0124782B1 (en) | Polymer having thiol end group, process for producing same, and block copolymer based on polymer having thiol end group | |
US5824719A (en) | Polymer compositions for contact lenses | |
JPH10513408A (en) | Crosslinked polymer | |
JPH06340722A (en) | Eye lens polymer with acyclic monomer introduced thereinto | |
CA1244593A (en) | Polyol(allyl carbonate) compositions and polymerizates prepared therefrom | |
EP1171411B1 (en) | Process for the preparation of a diol | |
US4277536A (en) | Bead polymers of viscous dimethacrylates | |
JP2012036211A (en) | Process for preparing diol | |
US6114045A (en) | Flexible coatings with low surface tack and surface tension | |
WO1998007055A1 (en) | Process for preparing an ocular device | |
JP2643403B2 (en) | Poly (N-acylalkyleneimine) copolymer and use thereof | |
JPH023406A (en) | Graft copolymer | |
US6610895B2 (en) | Process for the preparation of a diol | |
EP0017512B1 (en) | Polymeric materials, process for preparing them and shaped articles and contact lenses formed from them | |
GB2316084A (en) | Process for preparing a polymer | |
US5061761A (en) | Polyvinyl ester macromonomer and its uses | |
US2855383A (en) | Vinyl acetate-vinyl sulfofluoride co-polymers | |
JP4434397B2 (en) | Soft ophthalmic lens | |
US20020095016A1 (en) | Asymmetric (meth)acrylate crosslinking agents | |
JPH0737503B2 (en) | Production method of block copolymer | |
JP2513081B2 (en) | Method for producing thermoplastic resin | |
JPS606705A (en) | Production of hydrogel molding | |
JPH0481612B2 (en) | ||
JPH04332710A (en) | Hydrophilic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref country code: GB Ref document number: 9903009 Kind code of ref document: A Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998509487 Format of ref document f/p: F |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |