+

WO1998006131A1 - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture Download PDF

Info

Publication number
WO1998006131A1
WO1998006131A1 PCT/JP1996/002226 JP9602226W WO9806131A1 WO 1998006131 A1 WO1998006131 A1 WO 1998006131A1 JP 9602226 W JP9602226 W JP 9602226W WO 9806131 A1 WO9806131 A1 WO 9806131A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxide
conductive
semiconductor device
region
Prior art date
Application number
PCT/JP1996/002226
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Hiratani
Keiko Kushida
Kazuyoshi Torii
Hiroshi Miki
Yuichi Matsui
Yoshihisa Fujisaki
Kazushige Imagawa
Kazumasa Takagi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/002226 priority Critical patent/WO1998006131A1/en
Priority to TW086110808A priority patent/TW343376B/en
Publication of WO1998006131A1 publication Critical patent/WO1998006131A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers

Definitions

  • the present invention relates to a semiconductor device using an oxide dielectric, particularly a strong oxide dielectric as a capacitor, which is suitable for large-scale integrated circuits (LSI), and a method for manufacturing the same.
  • an oxide dielectric particularly a strong oxide dielectric as a capacitor
  • LSI large-scale integrated circuits
  • oxide dielectric means a so-called high dielectric having a relative dielectric constant of several hundred without containing silicon oxide or the like).
  • ferroelectrics have spontaneous polarization, and can not only reverse their polarity but also retain them with an external electric field, so their application as non-volatile memory has been attempted.
  • a conventional memory using a ferroelectric material is described in, for example, Japanese Patent Application Laid-Open No. 63-199098 (the oxide ferroelectric material also has a Since it can be regarded as a dielectric, the following description uses the term dielectric as a typical description.)
  • oxide dielectric used for the memory lead zirconate titanate, strontium barium titanate, and the like are generally used.
  • crystallization of an oxide dielectric requires a temperature as high as 500 or more in an oxidizing atmosphere, which makes it difficult to apply an oxide dielectric capacitor to a conventional semiconductor device such as a memory.
  • platinum and silicon react with each other, and platinum silicide reacts and forms at the interface between them to increase the resistance of the electrode.
  • platinum electrode is brought into direct contact with a silicon substrate or polycrystalline silicon. (Conventional structure 1) is not desirable. So, for example,
  • Japanese Patent Application Laid-Open No. 3-25658-58 discloses a method of embedding a conductive material and electrically connecting a source or a drain of a MOS transistor and one electrode of a capacitor.
  • Polycrystalline silicon is generally used as the embedded conductive material. The following description is based on this structure. However, this structure raises the same problem as described above. In other words, a structure in which an oxide dielectric is directly crystallized on polycrystalline silicon, (conventional structure 2) an oxide dielectric polycrystalline silicon,
  • the structure is essentially the same as that of (Conventional Structure 1). Platinum and polycrystalline silicon react to form a silicide, increasing the resistance of the electrode. A silicon oxide film is formed on the gold surface, and the characteristics of the dielectric capacitor deteriorate. In addition, there arises a problem that constituent elements of the dielectric diffuse into the silicon substrate.
  • a diffusion preventing non-oxide conductive layer of Ti, Ta, TiN, etc. is provided for the purpose of preventing mutual diffusion
  • the advantage of having the oxide dielectric in direct contact with the conductive ruthenium oxide is that the oxide dielectric is in contact with the same oxide electrode rather than in contact with a completely dissimilar metal electrode. This is because the mechanical adhesion at the oxide dielectric electrode interface increases. This increase in mechanical adhesion between the oxide dielectric and the electrode improves the properties of the oxide dielectric capacitor, such as the polarization reversal cycle.
  • the capacitor that forms a key Yapashita on formed by being although polycrystalline silicon on Si0 2 from the same reason as (conventional structure 1) and (conventional structure 3), oxide It is necessary to provide a noble metal layer such as platinum or ruthenium between the ruthenium oxide and the polycrystalline silicon in order to avoid direct contact with the polycrystalline silicon.
  • a noble metal layer such as platinum or ruthenium between the ruthenium oxide and the polycrystalline silicon
  • the oxide dielectric is ruthenium oxide / (platinum, ruthenium, etc.) Z polycrystalline silicon. Disclosure of the invention
  • (conventional structure 6) will be described. Also in this case, since the ruthenium oxide layer is usually formed in an oxidizing atmosphere, oxygen diffuses through the (platinum, ruthenium, etc.) layer to the polycrystalline silicon, and the insulating layer is formed by the oxidation reaction. Is not resolved. Therefore, (Conventional Structure 6) does not solve the problems of the prior art.
  • the problems with the conventional structure described above are not only the materials specifically shown in the above example, (Platinum, ruthenium, etc.) as a noble metal, (Ti, Ta, TiN, etc.) as a diffusion-prevention non-oxide conductive layer, and ruthenium oxide layer as a conductive oxide. This is true even if it is expanded to a material category that is a category. That is,
  • the problems brought about by the noble metal layer are (a) the possibility of forming a high-resistance silicide by contact with silicon and (b) the possibility of forming a diffusion path for silicon, oxygen and oxide constituent elements.
  • the second problem with oxide dielectrics and conductive oxide layers is (c) the possibility of oxidizing the electrodes to increase or insulate the electrode resistance.
  • the problem caused by (d) is the possibility of oxidation and high resistance.
  • oxides such as oxide dielectrics and conductive oxides
  • the problem of causing oxygen diffusion and oxidation reactions to non-oxides such as noble metals, diffusion-prevention non-oxide conductive layers and polycrystalline silicon remains unsolved.
  • a first object of the present invention is to solve the above-mentioned problems of the prior art and to provide a fine memory suitable for high integration using an oxide dielectric (including a ferroelectric) as a capacitor insulating film. It is to provide a semiconductor device.
  • a second object of the present invention is to provide a method for manufacturing such a semiconductor device.
  • a semiconductor device having a capacitor (capacitor) made of an oxide dielectric a semiconductor substrate or a semiconductor layer provided on the substrate and an oxide dielectric are made of different conductive materials. Connected via at least two layers of conductive material. The combination of the materials (or material composition) of the two conductive regions results in a diffusion barrier or antioxidant layer located between the region consisting of the semiconductor and the region consisting of the oxide dielectric, which is caused by the prior art. It suppresses the rise in electrical resistance.
  • the semiconductor device includes a first region (a wiring layer or an electrode portion formed of a semiconductor substrate or a semiconductor thin film) made of a conductive semiconductor material and a first region.
  • a second region made of a first conductive material and a third region joined to the second region and made of a second conductive material; and a third region joined to the third region and made of an oxide dielectric.
  • the material composition at the bonding interface with the first region in the second region and the material composition at the bonding interface with the third region in the second region are approximately equal to the average material composition in the second region. , which are approximately equal to each other.
  • the third region and the fifth region constitute a capacitor via the fourth region.
  • Oxide dielectric which constitutes the fourth area, the change in polarization value in respect rising and falling of the applied field is different properties of the semiconductor device which may c present invention in the so-called ferroelectric place showing the (hysteresis)
  • the main feature is that the first region has a composition substantially equal to the semiconductor material forming the first region at the junction interface with the second region, and the second region has the composition at the junction interface with the first region.
  • the material composition of the first region and the second region is substantially uniform so that they have a material composition substantially equal to that of the first conductive material at the bonding interface with the third region. That is, a substance that increases the electric resistance (such as the above-described silicon oxide, metal silicide, or titanium oxide) is not formed in these regions. As described above, a substance that increases the electrical resistance or substantially exhibits electrical insulation (hereinafter referred to as a high-resistance substance) is formed by sequentially laminating each layer from the second area to the fourth area on the first area. In the process of forming, it is formed around the junction interface between the regions.
  • the bonding interface between the first region and the second region, and the second region and the second by appropriately selecting the first conductive material and the second conductive material, the bonding interface between the first region and the second region, and the second region and the second The formation of a high-resistance substance at the bonding interface with the third region is prevented, and the material composition at the bonding interface between the first region and the second region is substantially equal to the average material composition of the first region. Then, the second region is formed such that the material composition at the bonding interface with the first region and the material interface at the bonding interface with the third region are substantially equal to the average material composition in the second region. It is.
  • the fact that the formation of a high-resistance material is not a problem at the junction interface between the third region and the fourth region is due to the use of a noble metal in the third region (conventional structure 7) or the use of a conductive acid. Force that is evident from the use of a compound (conventional structure 8) to improve the conductivity from the first region to the third region or to improve the oxide formation conditions in the fourth region
  • a region (layer) made of a conductive material having a composition different from the first and second conductive materials may be provided between the region and the fourth region.
  • a region (layer) made of a conductive material having a composition different from that of the first and second conductive materials may be provided between the first region and the second region. In short, it is only necessary that the second region and the third region are joined.
  • the first guideline is that the two conductive materials are both formed of conductive oxides that are composed of the same element and have the same basic skeleton of the same crystal structure. That is, the second conductive material is made lower in oxygen deficiency than that of the conductive material.
  • a second guideline is to use titanium aluminum nitride (TiAIN) for the first conductive material and an antioxidant metal material for the second conductive material. In any of the selection guidelines, it is desirable to select two conductive materials each having a specific resistivity of 10 mQ * cm (0.01 ⁇ ⁇ cm) or less.
  • the outline of the present invention is described in detail below for each conductive material selection guideline.
  • the first to third regions (including the conductive material layer between the third and fourth regions, if included) are referred to as the lower electrode, and the fifth region as the upper electrode. .
  • the second region and the third region are formed as a two-layer conductive oxide layer capable of suppressing diffusion and oxidation of oxygen (third region).
  • Objective To provide a method for producing a two-layer conductive oxide layer capable of suppressing oxygen diffusion and oxidation reaction in order to achieve the second object of the present invention (fourth object). Things.
  • a semiconductor device using an oxide dielectric capacitor in particular, a two-layer conductive oxide including a conductive oxide layer having oxygen vacancies
  • a structure of a semiconductor device including layers is described.
  • the characteristics and specific examples of the metal scrap, the characteristics and specific examples of the diffusion preventing non-oxide conductive layer, and the specific examples of the oxide dielectric will be sequentially described.
  • the characteristics and specific examples of the two-layer conductive oxide layer including the conductive oxide layer having oxygen deficiency are described together with the means for achieving the second object, that is, the method for manufacturing a semiconductor device. , explain.
  • the method for achieving the third object is described in detail together with the method for achieving the first and second objects.
  • the method for achieving the fourth object is described in detail together with the method for achieving the second object.
  • the semiconductor device of the present invention has an oxide dielectric capacitor using an oxide dielectric as a capacitor insulating film.
  • FIG. 1 shows a schematic diagram of an oxide dielectric capacitor.
  • FIG. 1 does not show the detailed structure of the oxide dielectric capacitor of the semiconductor device, but rather shows the lamination of each layer constituting the capacitor in an easy-to-understand manner.
  • the oxide dielectric capacitor includes a lower electrode layer 11 provided on the substrate (only the direction 10 on the substrate side is shown in FIG. 1) and an oxide dielectric layer 1 provided thereon. 6 and an upper electrode layer 17 provided thereon.
  • the lower electrode layer 11 includes a conductive oxide layer 12, and this lightning conductive oxide layer is composed of the same crystal structure and element, but has only a different composition ratio with respect to oxygen. And 15 That is, of the two adjacent layers, the conductive oxide layer 14 located on the substrate side contains oxygen vacancies.
  • the conductive oxide layers 14 and 15 correspond to the second region and the third region described in the above concept, respectively.
  • the lower electrode layer 11 is formed via the lower electrode layer component 13 including at least one or more layers located closer to the substrate than the conductive oxide layer I 4 containing oxygen vacancies. It is electrically connected to a source region or a drain region of a MOS transistor formed on a substrate.
  • An example of the constituent element 13 of the lower electrode layer will be described below in detail with reference to FIGS. 2, 3, and 4.
  • FIG. 2 shows that the conductive oxide layer 14 containing oxygen vacancies in FIG. Components of lower electrode scrap located 13 Power structure of oxide dielectric capacitor in the case of conductive polycrystalline silicon layer 20 is shown.
  • the conductive polycrystalline silicon layer 20 corresponds to the first region described in the above concept.
  • typical conditions necessary for crystallizing oxides such as 500 or more in an oxidizing atmosphere, are inevitable for silicon oxidation, so that the oxides are in direct contact with silicon.
  • the key is that the layer adjacent to the polycrystalline silicon layer 20 is the conductive oxide layer 14 containing oxygen vacancies, and the structure of FIG. 2 is realized.
  • the features of the two-layer conductive oxide layer 12 including the conductive oxide layer 14 having oxygen vacancies will be described later.
  • FIG. 3 shows that the component 13 of the lower electrode layer located closer to the substrate than the conductive oxide layer 14 containing oxygen vacancies in FIG. 1 shows a configuration of an oxide dielectric capacitor in the case of the polycrystalline silicon layer 20 of FIG.
  • the diffusion preventing non-oxide conductive layer 30 corresponds to the layer provided between the first region and the second region described in the above concept. In the prior art, under typical conditions necessary for crystallizing oxides, at 500 ° C.
  • FIG. 4 shows that the components 13 of the lower electrode layer located closer to the substrate than the conductive oxide layer 14 containing oxygen vacancies in FIG. 1 are composed of the metal layer 40 and the diffusion preventing non-oxide conductive layer 3.
  • the structure of an oxide dielectric capacitor in the case of 0 and a conductive polycrystalline silicon layer 20 is shown.
  • the metal layer 40 and the diffusion preventing non-oxide conductive layer 30 correspond to the layer provided between the first region and the second region described in the above concept.
  • Conventional technology In typical conditions necessary for crystallizing oxides, in an oxidizing atmosphere of 500 or more, oxygen diffuses through the metal layer 40 to form the diffusion preventing non-oxide conductive layer 30.
  • the metal layer 40 may be oxidized and the thickness of the metal layer 40 needs to be increased in order to suppress the oxidation.
  • the key is that the layer adjacent to the metal layer 40 is the conductive oxide layer 14 containing oxygen vacancies, and there is no limitation on the thickness of the metal layer.
  • the structure is realized. The features of the two-layer conductive oxide layer 12 including the conductive oxide chips 14 having oxygen vacancies will be described later.
  • a noble metal having high oxidation resistance is considered as a candidate.
  • platinum which has excellent oxidation resistance
  • ruthenium or iridium which is the same as the noble metal element contained in the conductive oxide layer described later, and at least three of the above three elements
  • One type of noble metal element is preferred.
  • the conditions for the diffusion preventing non-oxide conductive layer are, of course, conductivity, oxidation resistance, and reaction resistance to silicon.
  • Compounds that can be considered as candidates are nitrides (nitrides), silicides (gayides), borides (borides), and carbides (carbides).
  • nitrides nitrides
  • silicides gayides
  • borides borides
  • carbides carbides
  • the heating condition is a maximum of about 800 at most and several minutes, which is a sufficient temperature and time condition for forming a reaction product due to mutual diffusion. Therefore, there is no concern about the resistance to silicon.
  • the oxidation resistance when the conductive oxide layer containing oxygen deficiency in the two-layer conductive oxide layer according to the present invention is adjacent to the diffusion-preventing non-oxide conductive layer (FIG. 3), No problem at all. As described later, the formation conditions of the conductive oxide layer containing oxygen vacancies are non-oxidizing atmosphere, and the conductive oxide layer containing oxygen vacancies becomes a barrier to the diffusion path of oxygen. It depends on the reason.
  • a conductive oxide layer containing oxygen vacancies is prevented from diffusing through a metal layer.
  • the oxide conductive layer FIG. 4
  • the diffusion preventing non-oxide conductive layer is further away from the oxide layer.
  • the fact that the metal layer is adjacent to the diffusion-preventing non-oxide conductive layer is not a problem from the conventional example.
  • nitride a nitride containing at least one metal of Ti, Ta, Zr, Nb, V, and W is preferable because it has high conductivity.
  • a silicide such as Ti, a boride such as La, and a carbide such as Ti are preferable.
  • the oxide dielectric material naturally includes the case of a ferroelectric material, and there is no particular limitation on the material.
  • the oxide dielectric material naturally includes the case of a ferroelectric material, and there is no particular limitation on the material.
  • lead zirconate titanate in which part or all of titanium is replaced with zirconium, or part or all of this lead is replaced with balium Typical examples thereof include barium lead zirconate titanate, barium strontium titanate containing only alkaline earth elements, and the like.
  • the bismuth-based dielectric comprising a layered structure, Bi 4 T i 3 0 1 2, SrB i bismuth layer dielectric such as 2 Ta 2 0 9 is a typical example.
  • oxide dielectrics oxide ferroelectrics, and new oxide dielectrics and oxide ferroelectrics that may be discovered in the future are oxide dielectrics. It can be used as a body layer.
  • the features of the two-layer conductive oxide layer 12 including the conductive oxide layer having oxygen deficiency which will be described later in the description of the structure of FIGS. 2 to 4, will be described.
  • the features are described as a second object of the present invention, a method of manufacturing a semiconductor device, a third object, a function of a two-layer conductive oxide layer capable of suppressing diffusion and oxidation of oxygen, and
  • the structure, function and manufacturing method of the two-layer conductive oxide layer will be described in general.
  • an oxidizing atmosphere which is indispensable for forming an oxide layer
  • an already stacked diffusion prevention layer is not provided. This is to oxidize the oxide conductive layer and the polycrystalline silicon.
  • Oxides of alkaline earth elements such as Sr and Ca and oxides of transition elements such as Ru and Ti are much more stable than the oxidation reaction of Si due to the magnitude of the standard free energy of formation of oxides.
  • a diffusion-preventing non-oxide conductive layer composed of a transition metal nitride, silicide, boride, or a carbide is also oxidized by reacting with an oxide from the viewpoint of free energy. Very Hard to think. Rather, they are oxidized by the oxidizing active gas in the atmosphere that forms the oxide layer. Therefore, we thought that a major problem could be solved if an oxide layer could be formed in a non-oxidizing atmosphere in the sense that other elements constituting the semiconductor device would not be oxidized.
  • Oxide thin films such as oxide dielectrics (including ferroelectrics) and conductive oxide electrodes that form oxide dielectric capacitors are generally formed in an oxidizing atmosphere. This is mainly due to the fact that oxides are chemically unstable in non-oxidizing atmospheres, so that oxide thin films are not formed or sufficient properties are not obtained even if they can be formed. For intellectual reasons. Certainly, in oxide ferroelectrics containing 4 and 5% typical elements such as lead and bismuth, the formation of thin films under insufficient oxidation conditions due to the high vapor pressure of these elements leads to selective evaporation or composition. Cause fluctuations. At the same time, the presence of decomposition products other than the target compound significantly reduces the ferroelectric properties.
  • a non-oxidizing atmosphere introduces oxygen vacancies in the compound.
  • oxide dielectrics containing 4% transition elements such as titanium and zirconium
  • oxygen deficiency causes a decrease in dielectric constant and, consequently, a leakage current. Therefore, for oxide dielectrics, it is not practical to form the thin film in a non-oxidizing atmosphere.
  • the constituent elements 13 of the lower electrode layer adjacent to the conductive oxide layer 12 are a polycrystalline silicon layer 20 in FIG. 2, a diffusion preventing non-oxide conductive layer 30 in FIG. In FIG. 4, the diffusion preventing non-oxide conducting layer 30 is interposed via the metal layer 40.
  • the conductive oxide layer 12 is placed on the side 14 adjacent to the component 13 (20, 30, 40) of the lower electrode layer in a non-oxidizing atmosphere. I thought that it should be formed.
  • the conductive property in an oxidizing atmosphere is continuously changed by changing only the oxidizing power, for example, the oxygen pressure and the type of the oxidizing gas in the conditions for forming the layer.
  • the remaining layer 15 of the oxide layer 12 may be formed.
  • the conductive oxide layer 12 is composed of two adjacent layers 14 and 15, which are composed of the same crystal structure and element, but differ only in the composition ratio of oxygen.
  • the conductive oxide layer 14 Since the conductive oxide layer 14 is formed in a non-oxidizing atmosphere, the components 13 of the adjacent lower electrode layer (polycrystalline silicon layer 20, diffusion preventing non-oxide conductive layer 30, metal layer 4) 0) is not oxidized. In addition, since the once formed conductive oxide layer 14 containing oxygen vacancies is stable from the viewpoint of standard free energy of formation, the constituent elements 13 (20, 30, 40, 40) of the lower electrode layer are formed. ) Is still not oxidized. Further, even when the metal layer 40 is inserted as seen in the example of FIG. 4, there is no concern that the diffusion-preventing non-oxide conductive layer 30 is oxidized by diffusion of oxygen. Can be made as thin as possible.
  • the conductive oxide layer 14 when the conductive oxide layer 15 and the oxide dielectric layer 16 are formed in an oxidizing atmosphere, the conductive oxide layer 14 Since it contains oxygen vacancies, it functions as an oxygen diffusion buffer layer. That is, for one thing, even when the surface of the conductive oxide layer 14 containing oxygen vacancies is exposed to an active oxidizing gas, the introduced oxygen vacancies buffer the diffusion of oxygen ions and simultaneously diffuse the oxygen. Capture elementary ions. The other is, again, that the formed conductive oxide layer 14 itself is stable from the viewpoint of the standard free energy of formation, so that the constituent elements 13 (20, 30, 4) of the lower electrode layer 0) also functions as an antioxidant layer. Therefore, the two-layer conductive oxide layer including the conductive oxide layer into which oxygen vacancies are formed, which is formed in a non-oxidizing atmosphere, functions as an excellent oxidation suppressing film and an oxygen diffusion preventing layer.
  • the component 13 (20, 30, 40) of the lower electrode layer is completely covered, A viewpoint that the lower electrode component 13 (20, 30, 40) is not oxidized by the subsequent formation of the conductive oxide layer 15 and the oxide dielectric layer 16 in an oxidizing atmosphere. And preferably 10 nm or more. There is no particular upper limit on the thickness.
  • All of the conductive oxide layers 12 may be composed of the conductive oxide layers 14 containing oxygen vacancies formed in a non-oxidizing atmosphere. However, since the subsequent oxide dielectric layer 16 is naturally formed in an oxidizing atmosphere, the interface between the oxide dielectric layer 16 and the adjacent conductive oxide layer 14 is oxidized. A thin layer 15 is formed. Therefore, a two-layer conductive oxide layer 12 is formed.
  • a non-oxidizing atmosphere will be referred to for the method of manufacturing the two-layer conductive oxide layer.
  • the reliable non-oxidizing atmosphere is an atmosphere containing a reducing gas such as hydrogen gas.
  • oxygen is actively deprived of the growth of the thin film during the process of forming the oxide thin film, so that the thin film is likely to be reduced to a metallic state.
  • Milder nonoxidizing ⁇ gas is inert gas atmosphere such as rare gas or nitrogen such as argon or Heriumu or oxygen (0 2), nitrogen monoxide (N 2 0),, nitrogen dioxide (N0 2), ozone (0 3) is a vacuum state of not intentionally introducing an oxidizing gas such as.
  • the component 13 of the lower electrode layer is a diffusion preventing non-oxide conductive layer 30 (including the case of the metal layer 40), and the conductive oxide layer to be formed from now is more diffused.
  • the non-oxide conductive layer 30 is more reactive than oxygen, use a slightly oxidizing atmosphere containing a small amount of oxidizing gas such as oxygen, nitric oxide, nitrogen dioxide, or ozone.
  • the diffusion-preventing non-oxide conductive layer is likely to be oxidized in a remarkable oxidizing atmosphere as described in the related art, but in an atmosphere containing only a small amount of oxidizing gas, the diffusion-preventing non-oxide conductive layer is oxidized.
  • the conductive layer can form a conductive oxide layer containing oxygen vacancies without being oxidized. This is due to the existence of an energy barrier for an oxidation reaction between the diffusion-preventing non-oxide conductive layer already forming the compound and the conductive oxide layer.
  • the specific non-oxidizing atmosphere depends on the individual thin film forming method for forming the conductive oxide layer.
  • the thin film forming source needs to contain oxygen. Examples of this song include a sputtering method using a sintered oxide target, a laser evaporation method using a sintered oxide target, and an electron beam evaporation method using an oxide evaporation source. Since the sputtering method requires a discharge gas, an argon (Ar) gas having a purity of 3 N (99.9 99) or more may be introduced from a few millimeters to several tens of mTorr.
  • Ar argon
  • Gases of low purity are not preferred because they can lead to unexpected results such as unstable discharge and precipitation of foreign phases.
  • an oxide thin film can be formed in a vacuum.
  • An electron beam evaporation method using an oxide evaporation source can also form a thin film in a vacuum.
  • vacuum refers to a state achieved by a vacuum exhaust device without intentionally introducing an oxidizing gas such as oxygen, nitrogen monoxide, nitrogen dioxide, or ozone.
  • the pressure condition in both the laser deposition method and the electron beam deposition method is preferably 1 ⁇ Torr or less from the viewpoint of a non-oxidizing atmosphere.
  • oxidation is performed on the diffusion-prevention non-oxide conductive layer ( c including the case where a metal layer is interposed).
  • the method of forming the object thin film can be applied to all the above-mentioned thin film forming methods.
  • an oxidizing gas may be mixed into the discharge gas.
  • the oxidizing gas may be introduced.
  • the evaporation source was limited to oxides, but in a slightly oxidizing atmosphere, use a metal evaporation source. Can be.
  • the heating source is not limited to the electron beam, and a heater such as an effusion cell (K cell) may be used.
  • a heater such as an effusion cell (K cell)
  • the total pressure or partial pressure of the oxidizing gas introduced from the viewpoint of the non-oxidizing atmosphere is 10 nTorr or less in all of the sputtering method, the laser deposition method, the evaporation method using the electron beam and the heater. It is preferable that
  • the central cation constituting the conductive oxide is a multiply-charged ion. Therefore, first, conductive oxides containing Cr, Mn, Fe, Co, Ni, Cu, and V are excluded.
  • Ru0 2, Ir0 2 include two of.
  • CaRu0 3 and SrRu0 3 Ti (titanium) part of SrTi0 3 of Sr centering element 0.5 wt% or more of a central element R u (ruthenium) and 4.0 was replaced by% by weight of the amount of La (La, Sr) Ti0 3 , three of are ⁇ up.
  • the conductive oxide taking the re0 3 structure include re0 3.
  • oxygen vacancies are introduced when forming a conductive oxide in a non-oxidizing atmosphere.
  • thermal equilibrium state only a few oxygen vacancies of 0.1% or less are introduced as point defects.
  • excess oxygen vacancies are easily frozen unlike thin-film formation, which often proceeds in a non-equilibrium state.
  • measuring the oxygen deficiency concentration inherent in thin films is extremely difficult even with the current analysis techniques, and it is virtually impossible to define an allowable oxygen deficiency concentration with a strict numerical value.
  • X-ray diffraction analysis of the thin film formed in a non-oxidizing atmosphere by X-ray diffraction confirmed the crystal structure and no significant impurities at the same time, and the ICPS (inductively coupled plasma spectroscopy)
  • the composition analysis confirmed the stoichiometric composition of the cation.
  • the resistivity increased by up to an order of magnitude compared to the case where the same thin film was formed in an oxidizing atmosphere. This suggests that oxygen deficiency has been introduced.
  • the allowable concentration of oxygen vacancies is defined under the condition that the target structure can exist stably.
  • the details are as follows.
  • the basic skeleton is in the category of the perovskite structure
  • the oxygen deficiency amount X is less to define than large and the value capable of maintaining the in Re0 3 structural stability than 0.
  • the introduction of oxygen vacancies increased the resistivity of the conductive oxide by up to an order of magnitude, but maintained the resistance low enough to use the oxide as an electrode.
  • SrRu0 3 - In x but the resistivity increased an order of magnitude near a small resistivity of several in Omega ⁇ cm was obtained as an absolute value.
  • the increase in resistivity was as small as about 2 times at the maximum. In other words, it was confirmed that even when the conductive oxide exemplified above was formed in a non-oxidizing atmosphere, sufficient resistivity was maintained for application to the electrode layer.
  • the increase in resistance due to the coexistence of decomposition products is within an allowable range as a conductive oxide layer or a semiconductor device using the conductive oxide layer.
  • means for achieving the first object of the present invention features of a semiconductor device using an oxide dielectric as a capacitor insulating film and using two conductive oxide layers as electrode components
  • Means for achieving the second object of the present invention and among the methods for manufacturing such a semiconductor device, a method for manufacturing a two-layer conductive oxide layer are described, and the third object of the present invention is described.
  • Means for achieving this the features of the two-layer conductive oxide layer capable of suppressing oxygen diffusion and oxidation reaction are described, and means for achieving the fourth object of the present invention, a two-layer conductive oxide The method of manufacturing the layer was also described.
  • the method for manufacturing a semiconductor device according to the present invention includes the steps of: Forming a lower electrode layer composed of a metal layer and a two-layer conductive oxide layer on the substrate.
  • the polycrystalline silicon layer is formed by chemical vapor deposition
  • the diffusion-preventing non-oxide conductive layer is formed by sputtering, vapor deposition, or CVD
  • the metal layer is formed by sputtering.
  • the formation method is not limited particularly.
  • the method for forming the two-layer conductive oxide layer is as described in detail above.
  • specific compounds of each layer constituting the lower electrode waste are as described in detail above.
  • An oxide dielectric layer is formed on the lower electrode layer, and an upper electrode layer is further formed thereon, so that the oxide dielectric layer has a structure in which the oxide dielectric layer is sandwiched between the upper and lower electrode layers.
  • a body capacitor is formed. Specific compounds constituting the oxide dielectric layer are as described in detail above.
  • the oxide dielectric layer can be formed by a sol-gel method using alkoxide as a raw material, a vapor deposition method, a chemical vapor deposition method, a sputtering method, or the like, and the forming method is not particularly limited.
  • the upper electrode layer has the same conductivity as that used for the lower electrode layer from the standpoint of respecting the symmetry of the current-voltage characteristics of the dielectric capacitor and the symmetry of the polarization hysteresis curve of the ferroelectric capacitor. Desirably, it is an oxide. However, even if a conductive oxide different from that of the lower electrode layer or a noble metal represented by platinum, ruthenium or iridium is used as the upper electrode layer, there is no problem in the function of the semiconductor device.
  • the conductive oxide used as the upper electrode layer can be formed by various thin film forming methods such as a sputtering method, an evaporation method, a sol-gel method, and a chemical vapor deposition method, and is not particularly limited.
  • the method of forming the noble metal is not particularly limited.
  • a portion of the MOS transistor is formed on the substrate.
  • the source or drain region of the MOS transistor and the lower electrode layer are electrically connected to each other through a conductive material buried in a contact hole formed in an insulating layer covering a semiconductor substrate on which the MOS transistor is formed. Connected.
  • the conductive material embedded in the contact hole polycrystalline silicon formed by chemical vapor deposition may be used. There are many, but again, the forming method and the filling material are not limited.
  • a semiconductor device includes, on a substrate, a lower electrode layer including a titanium aluminum nitride layer, an oxide dielectric layer provided thereon, An oxide dielectric capacitor comprising an upper electrode layer provided thereon is disposed.
  • FIGS. 5 and 6 show two cross-sectional schematic structures as the structure of the lower electrode layer. The figure does not show the detailed structure of the oxide dielectric capacity of the semiconductor device, but rather shows the stacking of each layer constituting the capacitor in an easy-to-understand manner.
  • the lower electrode layer 11 is composed of a titanium aluminum nitride layer 50 laminated on a polycrystalline silicon layer 20 and a metal layer 40 further laminated thereon.
  • the conductive polycrystalline silicon layer 20 corresponds to the first region described in the above concept.
  • the titanium aluminum nitride layer 50 corresponds to the second region described in the above concept.
  • the metal layer 40 corresponds to the third region described in the above concept.
  • a conductive oxide layer 60 is further laminated in addition to the components of the lower electrode layer 11 shown in FIG. This conductive oxide layer 60 corresponds to the region provided between the third region and the fourth region described in the above concept.
  • the lower electrode layer 11 is electrically connected to a desired region of the semiconductor element formed on the substrate, for example, a source or drain region of the MOS transistor.
  • titanium aluminum nitride layer 50 for preventing diffusion and oxidation reaction.
  • titanium nitride as a diffusion and oxidation reaction prevention layer, which has been studied so far, has low resistance to oxygen and requires an intervening metal layer such as platinum to compensate for this. And has been.
  • a platinum layer with a thickness of about 200 nm was required to secure the diffusion time of oxygen that diffuses at the grain boundaries in platinum.
  • titanium nitride which has high conductivity and functions as an antioxidant layer to some extent, has an indispensable appeal. Therefore, titanium nitride As a result of examining the possibility of improving the oxidation resistance by adding the metal element (2), remarkable oxidation resistance was found in titanium nitride to which aluminum was added.
  • the reaction that oxidizes nitride to oxide is due to the reaction of oxygen to replace nitrogen in nitride.
  • the height of the energy barrier between the nitride and the oxide can be considered to dominate this substitution reaction.
  • the improvement in the resistance to oxygen in the titanium aluminum nitride obtained by the present invention is due to the effect of increasing the energy barrier. Regardless of the chemical basis, it has been found that by substituting part of titanium of titanium nitride with aluminum, it can function sufficiently as an antioxidant layer.
  • X is 0.2 or more and y is 0.4 or more.
  • X is less than 0.2, no improvement in oxidation resistance is observed.
  • y is Pai0 2 is observed due to oxidation in the small X-ray diffraction measurement than 0.4.
  • the resistivity increases by replacing some of the titanium with aluminum.
  • the resistivity is desirably 10 m ⁇ ⁇ cm or less. Therefore, the chemical formula
  • X When represented by (Ti 1 ⁇ ) ( A1 X ) y N y , it is desirable that X is 0.5 or less and y is 0.4 or more and 0.6 or less. In addition, if a heterogeneous phase is deposited, non-uniformity as an electrode occurs, so that a fine memory cell cannot be constructed. From this point, X is desirably 0.6 or less, and y is desirably 0.2 or more and 0.6 or less.
  • Ti ⁇ xAlx-yN ⁇ titanium nitride aluminum represented by the chemical formula (Ti ⁇ xAlx-yN ⁇ )
  • X is desirably 0.2 or more and 0.5 or less
  • y is desirably 0.4 or more and 0.6 or less.
  • the metal layer 40 that covers the titanium aluminum nitride layer shown in FIGS. 5 and 6 is at least one kind selected from a group of noble metals having high oxidation resistance, platinum, iridium, and ruthenium. Is desirable.
  • Conventional structures using titanium nitride as an antioxidant layer required a metal layer close to 200 nm thick.
  • the thickness of the metal layer is such that it can sufficiently cover the surface of the titanium aluminum nitride, for example. 30 nm is enough.
  • the oxide dielectric layer 16 is formed on the metal layer 40, but as shown in FIG. 6, a conductive layer is formed between the oxide dielectric layer 16 and the metal layer 40.
  • Oxide layer 60 may be inserted as a component of the lower electrode.
  • the conditions for forming the conductive oxide layer in an oxidizing atmosphere are generally the same as the conditions for forming the oxide dielectric layer, so that the oxidation resistance required for the titanium aluminum nitride layer is also reduced. It may be considered equivalent.
  • the conductive oxide layer contains the same noble metal group element as that used for the metal layer to improve the bondability at the interface with the metal layer, Ir 0 2 , Ru 0 2 , S r R u 0 3, Re0 at least selected from 3 arbitrary desired to be a type.
  • oxide dielectric layer 16 Materials suitable for the oxide dielectric layer 16 will be described.
  • the oxide dielectric material there is no particular limitation on the oxide dielectric material.
  • the oxide dielectric having titanium as a central element include lead zirconate titanate in which part or all of titanium is replaced with zirconium, and zirconate titanate obtained by replacing part or all of this lead with barium.
  • Typical examples are barium lead and barium strontium titanate containing only alkaline earth elements.
  • the bismuth dielectric consisting of a layered structure, B i 4 T i 3 0 1 2, S rB i 2 Ta 2 0g bismuth layer-like dielectric such as is a typical example.
  • widely known oxide dielectrics, oxide ferroelectrics, and new oxide dielectrics and oxide ferroelectrics that may be discovered in the future, etc. It can be used as a body layer.
  • the upper electrode layer 17 is not limited to metals or oxides as long as it is a conductive substance. If it is a metal, a series of noble metals listed above in the description of the metal layer 40 in the lower electrode layer Available. As the oxide, a series of oxides listed above in the description of the conductive oxide layer 60 in the lower electrode layer can be used. However, the material of the upper electrode layer 17 is not limited.
  • a method of manufacturing a semiconductor device comprises the steps of: forming a lower electrode including a titanium aluminum nitride diffusion and oxidation prevention layer in a nitriding atmosphere by using a sputtering method; Forming a layer on the substrate.
  • the sputtering target includes a metal target made of a titanium-aluminum alloy, a composite target in which aluminum metal or aluminum nitride is arranged on the titanium target, or a titanium metal or nitride on the aluminum target.
  • Composite target with aluminum metal or aluminum nitride on top, composite metal with titanium metal or titanium nitride on aluminum nitride target, aluminum nitride target and titanium nitride A variety of evening targets can be used, such as dual targets, where each target is placed separately and sputtered simultaneously.
  • a sputtering discharge either direct current or alternating current may be used. Since aluminum nitride has a large resistance, an RF discharge is necessary when it is used as a target.
  • the atmosphere when forming the titanium aluminum nitride diffusion and oxidation prevention layer by the sputtering method needs to include at least a discharge gas and a nitrogen gas.
  • a rare gas is used as the discharge gas, and an argon gas is usually used in consideration of economy.
  • the nitrogen gas contained is characterized by sufficient nitridation and high throughput (high deposition rate).
  • the temperature at which the titanium aluminum nitride diffusion and oxidation preventing layer is formed by sputtering is between room temperature and 600 and below.
  • room temperature this does not mean that the temperature of the sample is maintained at room temperature, but in particular that it does not cool or heat the sample, and that the sample is exposed to natural temperature during sputtering.
  • X-ray diffraction measurement showed that aluminum nitride (A 1 N) was separated and formed.
  • a method of manufacturing a semiconductor device comprises the steps of sequentially seeding a metal layer or a metal layer and a conductive oxide layer on a titanium aluminum nitride diffusion and oxidation prevention layer. Including the step of completing the lower electrode layer. An oxide dielectric layer is formed on the lower electrode layer, and an upper electrode layer is further laminated, so that an oxide dielectric capacitor having a structure in which oxide dielectric dust is sandwiched between the upper and lower electrode layers is formed. It is formed.
  • the metal layer may be formed by any method such as a sputtering method and an evaporation method.
  • the formation method of the conductive oxide layer and the oxide dielectric layer is not particularly limited, such as a sputtering method, a reactive evaporation method, a laser abrasion, a chemical vapor deposition method, and a sol-gel method.
  • the upper electrode layer may also be formed by any of the methods listed here.
  • the bottom electrode layer Prior to forming the oxide dielectric capacitor, the bottom electrode layer, a portion of the MOS transistor is formed on the substrate.
  • the source or drain region of the MOS transistor and the lower electrode layer are electrically connected to each other via a conductive material embedded in a contact hole formed in an insulating layer covering a semiconductor substrate on which the MOS transistor is formed. Connected to.
  • the conductive material embedded in the contact hole polycrystalline silicon formed by a chemical vapor deposition method is often used, but the forming method and the embedded material are not limited.
  • a first region (semiconductor substrate or semiconductor thin film or the like) made of a conductive semiconductor material; a second region joined to the first region and made of the first conductive material; A third region joined to the second region and made of a second conductive material; A semiconductor device including a fourth region joined to the third region and made of an oxide dielectric material, and a fifth region joined to the fourth region and made of a conductive material;
  • the average value of the resistivity of the second region is substantially equal to the resistivity of the semiconductor material constituting the second region, and the average value of the resistivity of the second region is substantially equal to the resistivity of the first conductive material constituting the second region.
  • the electric resistance from the first region to the third region is the resistivity of the semiconductor or conductive material forming each region and the length of the flow path in each region (these regions are perpendicular to each other).
  • the thickness is uniquely determined by the thickness of each region). That is, by implementing the present invention, the formation of a high-resistance material in the first region or the second region, which is a problem in the conventional technology, can be substantially avoided, and the electric resistance value in these regions can be reduced.
  • the rise can be suppressed, and not only the resistivity of each region but also the average resistivity in the current path from the first to the third region can be set to 0.01 ⁇ ⁇ cm or less.
  • a polycrystalline silicon layer adjacent thereto and a diffusion preventing non-oxide conductive layer made of nitride or the like are formed.
  • a memory cell can be formed without oxidation.
  • the interface resistance and contact resistance of the electrodes can be reduced, and a semiconductor device having fine memory cells suitable for high integration can be obtained.
  • FIG. 1 is a diagram showing an oxide dielectric capacitor including a two-layer conductive oxide layer in a lower electrode layer.
  • FIG. 2 is a diagram showing an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a polycrystalline silicon layer.
  • FIG. 3 is a view showing an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a diffusion preventing non-oxide conductive layer.
  • FIG. 4 is a diagram showing an oxide dielectric capacity in which a two-layer conductive oxide layer is formed on a diffusion preventing non-oxide conductive layer via a metal layer.
  • FIG. 5 is a view showing an oxide dielectric capacitor having a titanium aluminum nitride layer in which an oxide dielectric layer is laminated on a metal layer.
  • FIG. 6 is a diagram showing an oxide dielectric capacitor having a titanium nitride aluminum layer in which an oxide compressing layer is laminated on a conductive oxide layer.
  • FIG. 7 is a view showing electric characteristics of an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a polycrystalline silicon layer.
  • A shows the resistance of the electrode
  • (b) shows the polarization hysteresis curve.
  • FIG. 8 is a view showing the electrical characteristics of an oxide dielectric capacity in which a two-layer conductive oxide layer is formed on a nitride layer.
  • A shows the resistance of the electrode including the TiN layer
  • (b) shows the resistance of the electrode including the TaN layer
  • (c) shows the polarization hysteresis curve of the capacitor including the TiN layer.
  • FIG. 9 is a diagram showing a polarization hysteresis curve of an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a TiN layer via a metal layer.
  • FIG. 10 is a diagram showing a composition range of titanium aluminum nitride.
  • (A) is.. (Ti, - X A1 ,) 0 5 N 0 of X in 5 allowance and
  • (b) is (Ti 0 6 Al 0 4. ) There allowable amount of y that put in y N y FIG.
  • FIG. 11 is a diagram showing a polarization hysteresis curve of an oxide dielectric capacitor having a titanium aluminum nitride layer.
  • (A) is a diagram showing a case where an oxide dielectric layer is laminated on a metal layer
  • (b) is a diagram showing a case where an oxide dielectric layer is laminated on a conductive oxide layer.
  • FIG. 12 is a diagram showing a manufacturing process of a semiconductor device according to an embodiment of the present invention. It is.
  • FIG. 13 is a diagram showing a manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.
  • FIG. 14 is a view showing a manufacturing process of the semiconductor device according to the embodiment of the present invention.
  • FIG. 15 is a view showing a process chart until smoothing of the semiconductor device according to the embodiment of the present invention.
  • FIG. 16 is a diagram showing a manufacturing process of a semiconductor device in which a two-layer conductive oxide layer is formed on a polycrystalline silicon layer.
  • FIG. 17 is a diagram showing a manufacturing process of a semiconductor device in which a two-layer conductive oxide layer is formed on a diffusion preventing non-oxide conductive layer.
  • FIG. 18 is a diagram showing a manufacturing process of a semiconductor device in which a two-layer conductive oxide layer is formed on a diffusion preventing non-oxide conductive layer via a metal layer.
  • FIG. 19 is a diagram showing a manufacturing process of a semiconductor device having a titanium aluminum nitride layer for forming an oxide dielectric layer on a metal layer.
  • FIG. 20 is a view showing a manufacturing process of a semiconductor device having a titanium nitride nitride layer for forming an oxide dielectric layer on a conductive oxide layer.
  • FIG. 15 is a diagram showing a cross-sectional structure of a scribe region of a silicon wafer according to Example 8 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the best embodiment of the present invention is divided into a viewpoint of forming an electrode of a capacitor using an oxide dielectric and a viewpoint of forming this capacitor in an actual semiconductor device. I will explain separately. The explanation based on the former viewpoint will be further described according to the above-mentioned guideline for selecting the conductive material.
  • the conductive oxide layer 14 containing oxygen vacancies in the two-layer conductive oxide layer 12 shown in FIG. 2 is formed directly on the polycrystalline silicon layer 20. This is an example of measuring the resistance of the lower electrode dust and the polarization hysteresis curve of the oxide ferroelectric capacitor for the structure of the lower electrode layer 11.
  • an amorphous silicon film having a thickness of 150n m was de-loop re down using chemical vapor deposition on a conductive silicon substrate 1 0 15mm square, conductive and heat-treated them A polycrystalline silicon layer 20 was formed.
  • Two types of samples were formed on this substrate. One is a sample in which conductive oxide layers 14 and 15 are formed through a metal mask of 2 mm square and then processed to 100 ⁇ m square by an electron beam laser to measure the electrode resistance. was used.
  • the oxide dielectric layer 16 and the upper electrode layer 17 are each placed through a 4 mm square, 2 mm diameter metal mask. This is a sample for measuring capacitance characteristics in which the upper electrode layer 17 is formed into a 10 ⁇ m square by ion milling using a photomask using a photomask.
  • the method for forming each oxide layer is described below. However, the manufacturing method of each oxide described here is an example, and there is no problem even if the manufacturing methods are interchanged.
  • Ir0 2 alone was formed by electron beam evaporation.
  • an oxide powder of 0 2 after molding into a cylindrical shape with a diameter of 1 2 mm thickness 1 0 mm using a pressure molding machine, calcined for 2 hours in an oxygen stream 1100 hand, which as an electron beam evaporation source Using.
  • a substrate heater temperature of 600, a film forming speed of 2 minutes, and a pressure of 0.1 ⁇ Torr oxygen is introduced up to a pressure of 70 Torr.
  • the substrate heater temperature was set to 580 ° C., and two 50 nm IrO layers were laminated to form a two-layer conductive oxide layer 12.
  • Ir0 2 except the conductive oxide layer was formed using an RF magnetic preparative port Nsupa' evening-ring method using an oxide sintered body Target Tsu bets made of the cation composition.
  • Deposition conditions below substrate heater temperature 600, incident power 1.SWZcm 1 ⁇ Deposition rate 3 nm / min, purity 3 N discharge Ar gas pressure 3 mTorr, oxygen deficiency of thickness 5 to 50 nm
  • a conductive oxide layer containing was formed.
  • the two-layer conductive oxide layer 12 was formed.
  • a sintered body represented by the above cation composition was used.
  • the type and manufacturing method of the oxide dielectric layer only affected the essential physical characteristics of the capacitor, and did not affect the two-layer conductive oxide thin film.
  • Figure 7 (a) shows the resistance (vertical axis) of the entire lower electrode layer as a function of the thickness (horizontal axis) of the conductive oxide layer containing oxygen vacancies formed in a non-oxidizing atmosphere.
  • Resistance is a measurement between a conductive oxide layer formed in an oxidizing atmosphere and a conductive silicon substrate.
  • the electrode resistance is remarkably large, and it is clear that the polycrystalline silicon is oxidized and the resistance is increased. The resistance decreases rapidly from 5 nm to lOnm, and becomes almost constant above lOnra.
  • the effect of increasing the coverage of the polycrystalline silicon surface and at the same time suppressing the oxidation of the polycrystalline silicon is apparent.
  • the reason why the electrode resistance depends on the type of the oxide electrode is that the difference in the resistivity of the conductive oxide itself is reflected.
  • the resistivity of the conductive oxide material alone was measured with another single film, and found to be Ir0 2 , For RuO 2 and ReO 3 , the resistivity was as low as several tens of ⁇ ⁇ cm, and even in the oxygen deficient state, about 2 to 3 times lower than that.
  • SrRu0 3 it stayed increased up to several m Omega ⁇ cm from 200 Omega cm by the introduction of oxygen deficiency.
  • FIG. 7 (b) shows a polarization hysteresis curve of an oxide ferroelectric capacitor using each oxide electrode when the thickness of the oxygen-deficient layer is 30 nm . There is almost no difference in the hysteresis curve depending on the type of oxide electrode.
  • Fig. 7 (b) by forming the conductive oxide layer adjacent to the polycrystalline silicon in a non-oxidizing atmosphere, the oxidation reaction and the diffusion of oxygen are suppressed, and the polycrystalline silicon is supplied from the substrate. It has been established that different voltages can be effectively applied to the oxide dielectric layer.
  • the conductive oxide layer 14 containing oxygen vacancies in the two-layer conductive oxide layer 12 shown in FIG. This is an example of measuring the resistance of the lower electrode layer and the polarization hysteresis curve of the oxide ferroelectric capacitor for the structure of the lower electrode layer 11 formed on the nitride layer.
  • an amorphous silicon film with a thickness of I50 nm is formed by dropping a phosphorus on a 15 mm square conductive silicon substrate 10 by chemical vapor deposition. After the polycrystalline silicon layer 20 was formed, a conductive nitride layer was formed on the entire surface as a diffusion preventing non-oxide conductive layer 30. Two types of samples were formed on the substrate. One is a sample formed by forming conductive oxide layers 14 and 15 through a 2 mm square metal mask and then processing it into a 100 m square by electron beam lithography, which is used to measure the electrode resistance. Was.
  • the other is to form conductive oxide layers 14 and 15 on the entire surface of the substrate, and then connect the oxide dielectric layer 16 and the upper electrode layer 17 to each other through a metal mask of 4 mm square and 2 mm in diameter.
  • This is a sample for measuring capacitor characteristics in which the upper electrode layer 17 is processed into a 10 // m square by electron beam lithography.
  • TiN and TaN are used as the conductive nitride (diffusion preventing non-oxide conductive layer 30) will be described in detail.
  • the formation method and the obtained nitride of Zr, Nb, V, and W can also be obtained. The results were similar.
  • the conductive nitride layer was formed by a DC sputtering method using a metal target.
  • the conductive nitride layer may be formed by using an RF magnetron sputtering method using a nitride target instead of the metal target. After the film formation, crystallization was promoted by heat treatment at 800 in an ammonia gas atmosphere for 2 minutes using a rapid thermal annealing method (Rapid Thermal Annealing method).
  • the conductive oxide layer 1 4 and 1 5, Ir0 2, Ru0 2 , SrRu0 3, CaRu0 3, Ke0 3 were used, respectively (here, since using the formula for purposes of clarity of compounds, oxygen-deficient The description of the amount is omitted for convenience).
  • the method for forming each oxide layer is described below. However, the manufacturing method of each oxide described here is an example, and there is no problem even if the manufacturing methods are interchanged.
  • IrO 2 was formed in a slightly oxidizing atmosphere using the RF magnet port sputtering method.
  • SrRu0 3 and CaRu0 3 oxide sintered data - using a RF magnetic Toronsupa' Tari packaging method using rodents bets were formed in an Ar gas atmosphere.
  • the following deposition conditions, the substrate heating heat - Te motor temperature 600, discharge Ar gas pressure 3 mTorr under incident power 1.5 / cm 2 Purity 3 N, conductive oxide layer containing oxygen vacancies 50Fi m film thickness 5 was formed.
  • Ru0 2 and Re0 3 was formed in a fine oxidizing atmosphere by a reactive evaporation method. A metal lump was used as an evaporation source. Under the following deposition conditions, substrate heater temperature 600 ° (:, deposition rate 1 nm Z min., Oxygen pressure 5 ⁇ Torr, oxygen deficiency layer 5 to 50 nm under 5 ⁇ Torr, then oxygen up to 70 ⁇ Torr Simultaneously with the introduction, the substrate heater temperature was set to 580, and two Ru0 layers and three Re0 layers each having a thickness of 50 nm were laminated to form a two-layer conductive oxide layer 12. As the oxide dielectric layer 16, lead zirconate titanate (Pb (Zr. 5 Ti.
  • the resistance (vertical axis) of the entire lower electrode layer is represented by the oxygen-deficient layer.
  • the result is that the coverage of the nitride layer surface is low, and the interface is oxidized and the resistance is increased when the conductive oxide layer is formed in the subsequent oxidizing atmosphere.
  • the resistance decreases sharply from 5 nm to lOnm in thickness, and becomes almost constant above 10 nm . This is the result of suppressing the interfacial oxidation by increasing the coverage of the nitride layer surface. It's high resistance when using CaRu0 3 as the oxide electrode is a result of the contact resistance is increased in some CaO generates decomposition electrode interface, Confirmed by X-ray diffraction.
  • Figure 8 (c) shows the polarization hysteresis of the oxide ferroelectric capacitor when the thickness of the oxygen-deficient layer shown in Fig. 8 (a) is 10 nra when TiN is used as the nitride layer. 3 shows a cis curve.
  • the electrode containing CaRu0 3-layer, hysteresis curve is open in the horizontal axis direction than the other electrodes. This is probably due to the distribution of the CaO generated by the decomposition in the electric field applied to the dielectric, but there is no problem because sufficient characteristics are secured for the capacitor.
  • Fig. 8 (a) shows the polarization hysteresis of the oxide ferroelectric capacitor when the thickness of the oxygen-deficient layer shown in Fig. 8 (a) is 10 nra when TiN is used as the nitride layer. 3 shows a cis curve.
  • the electrode containing CaRu0 3-layer, hysteresis curve is open in the horizontal axis direction than
  • the formation of the conductive oxide layer adjacent to the nitride layer in a non-oxidizing atmosphere suppresses the oxidation reaction and diffusion of oxygen and is supplied from the substrate. It proves that a voltage can be effectively applied to the oxide dielectric layer.
  • a hysteresis curve essentially similar to that shown in Fig. 8 (c) was obtained.
  • the conductive oxide layer 14 containing oxygen vacancies in the two-layer conductive oxide layer 12 shown in FIG. This is an example of measuring the polarization hysteresis curve of the oxide ferroelectric capacitor for the structure of the lower electrode layer 11 formed on the layer 30.
  • the shape and forming method of the substrate 10, the polycrystalline silicon layer 20, the TiN layer as the diffusion-preventing non-oxide conductive eyebrow 30, the oxide dielectric layer 16, and the upper electrode layer 17 are described in the above embodiments of the present invention.
  • the contents are the same as those described in modes 1 and 2.
  • the selection of the oxide dielectric layer and the upper electrode layer is not essential.
  • TiN having a thickness of 40 ⁇ was formed as the diffusion preventing non-oxide conductive layer 30 according to the second embodiment of the present invention. Similar results were obtained for the other nitrides listed in the second embodiment of the present invention.
  • platinum was used as the metal layer 40, but the same effect was confirmed by using the same kind of noble metal such as iridium and ruthenium.
  • the metal layer was formed by DC sputtering under the following conditions. The incident power was 400 W ', the discharge gas was Ar, the gas pressure was 20 mTorr, and the substrate heater temperature was 500. A metal layer 40 having a thickness of 20 nm was formed on the entire surface of the substrate on the diffusion preventing non-oxide conductive layer 30.
  • the conductive oxide with Ir0 2, Ru0 2, SrRu0 3 , SrT i 0 3 which La was added 4 wt%, to form either using RF magnetic Bok port Nsupattari ring method in finely oxidizing atmosphere .
  • the targets used were oxide sintered compact targets.
  • FIG. 9 shows a polarization hysteresis curve of the oxide ferroelectric capacitor for each conductive oxide. Regardless of the type of oxygen-deficient layer, a highly symmetric open hysteresis loop is observed. Even if the metal layer is as thin as 20 nm and the adjacent conductive oxide layer is formed in a slightly oxidizing atmosphere, the oxygen deficiency layer intervenes to suppress oxidation reaction and oxygen diffusion, and supply from the substrate. It is demonstrated that the applied voltage can be effectively applied to the oxide dielectric layer.
  • a conductive oxide layer containing oxygen vacancies is formed in a non-oxidizing atmosphere, which is one of the features of the present invention, to form a two-layer conductive oxide layer.
  • a polycrystalline silicon (Embodiment 1) of the present invention, a diffusion preventing non-oxide conductive layer made of nitride or the like (Embodiment 2), or an adjacent metal layer The lower electrode layer and the oxide dielectric layer could be formed without oxidizing the diffusion preventing non-oxide conductive layer (Embodiment 3). As a result, the interfacial resistance and contact resistance of the electrodes can be reduced, and an oxide dielectric capacitor suitable for high integration can be formed.
  • a titanium aluminum nitride layer is provided on the semiconductor layer side of two conductive material layers provided between the semiconductor layer and the dielectric layer, and an oxidation-resistant is provided on the dielectric side.
  • the embodiment of the present invention is an example in which the allowable amounts of the aluminum content and the nitrogen content in the titanium aluminum nitride layer are examined from the viewpoint of phase uniformity, low resistivity, and oxidation resistance.
  • the phase homogeneity and oxidizing property were examined from the phase observed by the X-ray diffraction method, and the resistivity was measured from the direct current four-terminal method.
  • the natural oxide film is removed conductive silicon substrate, using a DC sputtering-ring method, titanium aluminum nitride ((T i ⁇ A l J have y N y) film was formed.
  • Ti aluminum nitride ((T i ⁇ A l J have y N y) film was formed.
  • On Target Tsu DOO A composite target in which aluminum metal pieces and titanium metal pieces were laid in a mosaic pattern on an aluminum metal plate was used.
  • the aluminum content X was adjusted based on the area ratio of the two metal pieces.
  • Argon discharge gas, and the flow rate ratio of Z nitrogen gas were adjusted in the range from 95 to 5 to 95.
  • the substrate heating temperature was 550.
  • Other forming conditions were: incident power of 400 W, total gas consumption. 20mTo from pressure 5 rr, growth rate 10 nm / min from 5, a thickness of 50nm.
  • FIG. 10 (a) shows the product phase and resistivity as a function of the aluminum content X for a sample with a nitrogen content y of 0.5.
  • X-ray diffraction results when X was 0.6 or less, only diffraction lines belonging to TiN were observed, but when X exceeded 0.6, a mixed phase containing a mixture of phases belonging to A1N was observed, and X increased. With the disappearance of the TiN phase, the A1N phase increased at the same time.
  • FIG. 10 (b) shows the product phase and resistivity as a function of the nitrogen content y for a sample with an aluminum content X of 0.4.
  • y was smaller than 0.2 or exceeded 0.6
  • diffraction lines other than TiN were remarkably observed.
  • the resistivity was examined only for those nitrogen contents where y, at which a single phase was observed in the X-ray diffraction pattern, was between 0.2 and 0.6.
  • the resistivity increases with y, and increases sharply from around 0.6. Normally, the influence of the different phases appears more sensitively in the resistivity than in the X-ray diffraction, so the threshold determined by the resistivity is considered to be narrow in both X and y.
  • a platinum layer having a thickness of 30 ⁇ was formed on the titanium aluminum nitride layer formed above by a DC sputtering method.
  • the formation conditions were: 400 W incident power, argon discharge gas, 20 mTorr gas pressure, and 500 ° C formation temperature. Further, by using the RF magnetic Bok port Nsuno Yyuri ring method on the platinum layer was laminated dielectric oxide layer having a thickness of lOOnm (Pb (Zr .. 5 Ti .. 5) 0 3).
  • rapid thermal annealing Rapid Thermal Annealing
  • the oxide dielectric layer once formed was completely removed by a dry etching process to expose the platinum layer again.
  • X-ray diffraction measurement was performed on this sample to determine whether or not the titanium aluminum nitride ((Ti ⁇ Alj! -YNy) layer was oxidized and changed in quality due to the formation of the oxide dielectric layer.
  • Fig. 10 (a) it was confirmed that when the aluminum content X was smaller than 0.2, the nitride layer was oxidized to form ⁇ .
  • Fig. 10 (b) As seen in, Ti0 2 also when the nitrogen content y is smaller than 0.4 were observed. The above threshold values were the same even when the aluminum content X and the nitrogen content y were fixed at different values.
  • titanium oxide nitride may be used for other oxide dielectrics, such as lead zirconate titanate, barium lead zirconate titanate, barium strontium titanate, and bismuth ferroelectrics having different titanium zirconium ratios. Film diffusion and antioxidant layers showed similar effects.
  • the embodiment of the present invention is an example in which an oxide dielectric capacitor including a titanium aluminum nitride diffusion and oxidation preventing layer is formed, and a polarization hysteresis curve is measured.
  • a Ru metal target was used as a target.
  • the formation conditions were: substrate heater temperature 500, incident power 1.5W / cm 2, deposition rate 3 nm , discharge Ar gas / oxygen gas flow ratio 50Z50, pressure 7 mTorr.
  • the oxide ⁇ layer using a titanate Jill Con lead thickness lOOnm formed using a sol-gel method (Pb (Zr 0. 5 Ti 0. 5) 0 3).
  • a solution obtained by reacting lead acetate, titanium isopropoxide and zirconium isopropoxide in methoxetanol was used. This is applied on the above platinum layer (sample (a)) or conductive oxide layer (sample (b)), and then heated and heated rapidly in an oxygen atmosphere at 650 for 2 minutes to form a crystal. It was made.
  • the upper electrode layer was formed by a DC sputtering method through a metal mask. A platinum layer with a diameter of 2 mm was used.
  • Fig. 11 shows a polarization hysteresis curve measured by applying a voltage between the upper electrode and the conductive silicon substrate.
  • the selection of the conductive oxide layer and the oxide dielectric layer is not essential.
  • Ir0 as the conductive oxide 2, SrRu0 3, the same effect using any Re0 3 were obtained.
  • X is a lead zirconate titanate other than 0.5
  • the thickness of the metal layer such as platinum adjacent thereto can be reduced. Even when the thickness was reduced to 30 nm, the lower electrode layer and the oxide dielectric layer could be formed without oxidizing the nitride layer. As a result, the interface resistance and contact resistance of the electrodes can be reduced, and at the same time, the capacitor's aspect ratio can be reduced. Thus, an oxide dielectric capacitor suitable for high integration can be formed. Was completed.
  • Embodiments 6 to 10 of the invention will be described with reference to the related drawings, taking a MOS transistor formed on a silicon substrate as an example. I will explain.
  • Embodiments 6 to 8 of the present invention are based on the above guideline 1 for selecting a conductive material
  • Embodiments 9 and 10 of the present invention are based on the guideline 2 for selecting a conductive material.
  • Embodiments of the present invention relate to the manufacture of a semiconductor device.
  • An example of a pre-process up to before formation of a nap is shown.
  • a MOS transistor is formed on a silicon substrate, then the surface is once smoothed, and finally, the formation of a polycrystalline silicon plug for electrical connection with the capacitor electrode is described.
  • a series of manufacturing steps will be described step by step with reference to FIG. 12 to FIG.
  • a switch transistor is formed by an existing MOSFET process.
  • 1 2 1 is a p-type semiconductor substrate
  • 1 2 2 is an element isolation insulating film
  • 1 2 3 is a gate oxide film
  • 1 2 4 is a word line serving as a gate electrode
  • 1 2 5 and 1 2 6 are Reference numeral 127 denotes an interlayer insulating film made of SiO L.
  • Si 3 N 4 layer 1 2 9 having a thickness of 600nm subsequently embedded the Si 3 N 4 layer 1 2 9 thickness equivalent amount etched was deposited insulating film between Wa word line,
  • the structure shown in FIG. 12 is formed.
  • Si 0 2 layer 1 2 8 is the foundation when machining the bit lines in a later step, and the anti-device role of exposure and the element isolation insulation ⁇ 1 2 2 of the substrate surface is damaged.
  • the next step is shown in FIG.
  • a portion of the Si 3 N 4 to be formed is opened by photolithography and dry etching.
  • Amorphous silicon having a thickness of 600 ⁇ containing n-type impurities is deposited on the entire surface including the perforated portion using a chemical vapor deposition method, and polycrystallized through a heat treatment. Further, a polycrystalline silicon equivalent to the film thickness is etched to form the structure shown in FIG. 13 in which the openings are filled with polycrystalline silicon 13 1 and 13 2.
  • bit lines forming shortly is electrically connected to the ⁇ -type impurity diffusion layer 1 2 5 of the substrate to the Si0 2 insulating film located on top of the polycrystalline silicon 1 3 1, Using photolithography and dry etching To make a hole. Si0 2 layer of the opening formed on the entire surface of the laminated film (1 4 2) of Shirisai de and the polycrystalline silicon of the metal serving as bit lines including, thickness 200nm on further the (1 4 3) Is deposited.
  • bit lines 1 4 2 and SiO 2 layer 1 4 3 are formed.
  • bit lines 1 4 2 and SiO 2 layer 1 4 3 are formed.
  • 150 nm thick Si 3 N 4 was deposited by chemical vapor deposition, and then this was etched by dry etching. Form a 3 N 4 side wall spacer 144.
  • the polycrystalline silicon 1 3 2 above section Si0 2 insulating film 1 4 1 positioned to opening by using the mined Li lithography method and dry etching method. This is a preparation for electrically connecting a capacitor electrode to be formed later and the n-type impurity diffusion layer 126.
  • an insulating film 15 1 having a thickness sufficient to flatten the substrate surface is deposited.
  • a 500-nm-thick boron silicate glass (BPSG) is used, but another silicon oxide film may be used.
  • CMP chemical mechanical polishing
  • a contact hole is formed by opening the insulating film 151 located above the n-type impurity diffusion layer 126 using photolithography and dry etching.
  • a 200-nm-thick phosphorus-doped amorphous silicon layer is deposited on the entire surface including the holes by chemical vapor deposition, and then heat-treated to polycrystallize it.
  • a polycrystalline silicon plug 152 embedded with silicon is formed.
  • an oxygen deficiency having a thickness of lOnm is contained in an Ar atmosphere using an RF magnetron sputtering method.
  • a conductive oxide layer 16 1 (RuO 2 ) is formed.
  • the two-layer conductive oxide layers 16 1 and 16 2 were patterned by sputter etching using the transferred pattern as a mask.
  • the oxide dielectric layer 163 was formed.
  • the forming method is as described in detail in the second and third embodiments of the invention.
  • a platinum plate electrode 164 was formed to complete the capacitor of the memory cell.
  • the choice of the oxide dielectric layer is not essential.
  • X 0.5 other than lead zirconate titanate (Pb (Zr x Ti, _ x 0 3)), titanate Bariumusu strontium ((Ba, Sr 1 _; i) Ti0 3 (x 0 to 1)),
  • a memory cell could be formed using a barium lead zirconate titanate or bismuth-based layered ferroelectric. Further, similar effects were obtained by using any of the compounds described in Embodiment 1 of the present invention as the conductive oxide layer.
  • a diffusion preventing non-oxide conductive layer 171 is formed.
  • TiN is used as the diffusion preventing non-oxide conductive layer
  • similar results can be obtained for nitrides of Ta, Zr, Nb, V, and W as semiconductor devices.
  • the nitride layer was formed by a direct current sputtering method using a metal target as described in detail in the second embodiment of the present invention.
  • the film thickness is 40 nm .
  • heat treatment was performed at 800 ° C for 2 minutes in an ammonia gas atmosphere using a rapid temperature heating method to promote crystallization.
  • the choice of the oxide dielectric layer is not essential.
  • X 0.5 other than lead zirconate titanate (Pb (Zr x Ti physician J0 3), titanate Bariumusu strontium ((Ba x Sr! _ X ) Ti0 3 (x 0 to 1)), zirconate titanate
  • a memory cell could be formed using a barium lead or bismuth-based layered ferroelectric material, and the conductive oxide layer described in Embodiments 1 to 3 of the present invention, l r 0 2, Ru0 2, CaRu0 3, SrTi0 was added La 3, the same effect using any Re0 3 were obtained.
  • FIG. 4 shows a structure in which the pre-process from the formation of the MOS transistor to the formation of the polycrystalline silicon plug, which is described in detail in the sixth embodiment of the present invention, is completed.
  • This is an example of a process for forming an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a diffusion-preventing non-oxide conductive layer via a metal layer as shown.
  • a diffusion preventing non-oxide conductive layer 171 is formed.
  • TiN is used as the diffusion preventing non-oxide conductive layer.
  • the TiN layer is as described in the seventh embodiment of the present invention.
  • a 20 nm-thick metal layer 181 was formed by a DC sputtering method.
  • platinum was used in the embodiment of the present invention, the same effect was confirmed by using the same kind of noble metal such as iridium and ruthenium.
  • the conditions for forming the metal layer are as described in the third embodiment of the present invention.
  • IrO 2 As a two-layer conductive oxide layer, IrO 2 was formed in a slightly oxidizing atmosphere using an RF magnet port sputtering method. Of course, the same effect was obtained even when formed in Ar gas.
  • a conductive oxide layer 16 1 (IrO 2 ) containing oxygen vacancies with a thickness of 10 nm is formed at a gas flow ratio of ArZOz -100Z1, and then the gas flow ratio is reduced to Ar 0 2 9/1 to obtain a thickness.
  • 50 nm conductive oxide layers 16 2 (IrO 2 ) were laminated to form two-layer conductive oxide layers 16 1 and 16 2. Details of conditions such as temperature are described in the third embodiment of the present invention. As you did.
  • the choice of the oxide dielectric layer is not essential.
  • X 0.5 other than lead zirconate titanate (Pb (Zr x Ti 1- x) 0 3), titanate Bariumusu strontium ((Ba x Sr 1-x ) Ti0 3) (x 0 to 1)),
  • a memory cell could be formed using a barium lead zirconate titanate or bismuth-based layered ferroelectric.
  • Ru0 2, SrRu0 3, CaRu0 3, SrTi0 was added La 3, obtained the same effect using any Re0 3 of Was done.
  • titanium aluminum nitride is formed on a substrate on which the pre-process from the formation of the MOS transistor to the formation of the polycrystalline silicon plug, which is described in detail in the sixth embodiment of the present invention, is completed.
  • 5 is an example of a process for forming an oxide dielectric capacitor including a diffusion and oxidation preventing layer.
  • the structure of the lower electrode a structure in which a metal layer and an oxide dielectric layer are sequentially laminated on titanium aluminum nitride shown in FIG. 5 was adopted.
  • layer 1 9 RF magnetic Bok Ronsuno. It was formed using a sputtering method. As a target, a composite target in which an appropriate amount of aluminum nitride pieces were placed on a titanium nitride plate was used. The formation conditions were as follows: substrate heater temperature was 550, incident power was 400 W, total gas pressure was 8 mTorr, argon discharge gas / nitrogen gas flow ratio was 90/10, growth rate was lOnmZ, and film thickness was 50 nm. is there. The effect described below was the same for the other aluminum or nitrogen contents described in FIG.
  • a 30 nm-thick metal layer 18 1 was formed thereon by a DC sputtering method.
  • platinum was used in the embodiment of the present invention, the same effect was confirmed by using the same kind of noble metal, i.e., platinum.
  • the conditions for forming the metal layer are as described in the fourth embodiment of the present invention.
  • the choice of the oxide dielectric layer is not essential.
  • titanium aluminum nitride is formed on a substrate on which the pre-process from the formation of the MOS transistor to the formation of the polycrystalline silicon plug, which is described in detail in the sixth embodiment of the present invention, is completed.
  • 5 is an example of a process for forming an oxide dielectric capacitor including a diffusion and oxidation preventing layer.
  • a structure in which a metal IR, a conductive oxide layer, and an oxide dielectric layer are sequentially laminated on titanium aluminum nitride shown in FIG. 6 was adopted as the structure of the lower electrode.
  • nitriding titanium Arumini ⁇ beam (Ti 0 1. 5) 0 5. 5) layer 1 9 1 and metal Layer 18 1 was formed.
  • the following effects were similar for other aluminum or nitrogen contents. Similar effects were confirmed when using iridium, ruthenium, or rhenium as the metal layer.
  • IrO 2 having a thickness of 50 ⁇ formed by an RF magnet sputtering method was used. In the evening, an Ir metal target was used.
  • the formation conditions are: substrate heater temperature 500, incident power 1.5WZCDI 2 , film formation rate 3nm / min, discharge Ar gas Z oxygen gas flow ratio 50750, pressure 7mTorr.
  • a transfer pattern as a mask, the titanium aluminum nitride layer 191, the metal layer 181, and the conductive oxide layer 201 were patterned by a sputter etching method.
  • an oxide dielectric layer 163 was formed.
  • a bismuth layered ferroelectric, Bi 4 Ti 3 0 12 formed by a reactive evaporation method was used as the oxide dielectric.
  • titanium was evaporated using an electron gun and bismuth was evaporated using a effusion cell to form an amorphous oxide thin film having a thickness of 100 nm at room temperature. After the formation, it was heated at 700 ° C for 2 minutes in an oxygen atmosphere to be crystallized. Finally, a platinum plate The electrode 164 was formed and the patterning was completed to complete the capacity of the memory cell.
  • the application form of the oxide dielectric capacitor according to the present invention to the semiconductor device has been described by taking the MOS transistor formed on the silicon substrate as an example.
  • Concerning conductive material selection guideline 1 by forming a conductive oxide layer containing oxygen vacancies in a non-oxidizing atmosphere and forming a two-layer conductive oxide layer, the adjacent polycrystalline silicon (invention) Embodiment 6), a diffusion preventing non-oxide conductive layer made of nitride or the like (Embodiment 7), and a diffusion preventing non-oxide conductive layer adjacent via a metal layer (Embodiment 8)
  • a memory cell could be formed without oxidizing.
  • the application to the M0SFET is mainly described as an example, but the scope of application is not limited to the example.
  • Oxide dielectrics including oxide ferroelectrics
  • the present invention is also effective for other devices used as a pan, for example, a GaAs MM IC using an oxide dielectric as a so-called bypass capacitor.

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor device having a capacitor in which oxide dielectric is used. The oxidation of the interface between the lower electrode and the oxide dielectric is suppressed. The oxide dielectric capacitor is constituted of the lower electrode (11), the oxide dielectric (16) formed on the electrode (11), and upper electrode (17) formed on the dielectric (16). The electrode (11) includes a two-layer conductive oxide layer (12) and the layers (14 and 15) constituting the layer (12) have the same crystal structure and contain the same element. The layer (14) on the substrate (10) side contains oxygen deficiency. Since the layer (14) functions as an oxygen diffusion preventive layer, the oxidation of the component (13) of the lower electrode (11) adjacent to the layer (14) and the interface between the component (13) and the layer (14) is suppressed and an excellent electrical contact between the component (13) and layer (14) is ensured.

Description

明 細 書 半導体装置及びその製造方法 技術分野  Description Semiconductor device and method for manufacturing the same

本発明は、 大規模集積回路 ( L S I ) に好適な、 酸化物誘電体、 特に酸化物強誘 電体をキャパシタとして用いる半導体装置、 及びその製造方法に関する。  The present invention relates to a semiconductor device using an oxide dielectric, particularly a strong oxide dielectric as a capacitor, which is suitable for large-scale integrated circuits (LSI), and a method for manufacturing the same.

背景技術 Background art

ダイナミ ック · ランダム ' アクセス ' メモリ (D R A M ) をはじめとする L S I を有する半導体装置は、 高集積化に伴うキャパシタ面積の縮小と、 それを補償 するための構造の複雑化が問題となっている。 そのため、 これまでキャパシタ絶 緣膜と して使用されてきたシリ コン酸化物、 窒化物に代わって、 比誘電率が数百 から数千と非常に大きい酸化物誘電体や酸化物強誘電体をキャパシタ絶縁膜に適 用することが検討されている(ここでいう、 酸化物誘電体は、 シリ コン酸化物など を含まず、 比誘電率が数百あるような所謂高誘電体を意味する)。 また、 強誘電体 は自発分極を持ち、 外部電場によりその極性を反転し得るだけでなく保持させる こともできるので、 不揮発性メモリとしての応用が試みられている。 なお、 従来 の強誘電体を用いたメモリについては、 例えば、 特開昭 6 3— 2 0 1 9 9 8号公 報に記載されている(酸化物強誘電体もキュ リ一温度以上では、 誘電体とみなし得 るので、 以下の説明では、 代表的な記述として、 誘電体という言葉を用いて説明 する)。  In semiconductor devices with LSIs such as dynamic random 'access' memory (DRAM), the reduction in capacitor area due to high integration and the complexity of the structure to compensate for it have become problems. . As a result, instead of silicon oxide and nitride, which have been used as insulating films for capacitors, oxide dielectrics and oxide ferroelectrics with very large relative dielectric constants of hundreds to thousands are used. Application to a capacitor insulating film is being studied (here, the term “oxide dielectric” means a so-called high dielectric having a relative dielectric constant of several hundred without containing silicon oxide or the like). . In addition, ferroelectrics have spontaneous polarization, and can not only reverse their polarity but also retain them with an external electric field, so their application as non-volatile memory has been attempted. A conventional memory using a ferroelectric material is described in, for example, Japanese Patent Application Laid-Open No. 63-199098 (the oxide ferroelectric material also has a Since it can be regarded as a dielectric, the following description uses the term dielectric as a typical description.)

上記メモリに使用される酸化物誘電体としては、 チタン酸ジルコン酸鉛、 チタ ン酸ス トロンチウムバリウム等が一般的である。 しかし、 酸化物誘電体を結晶化 させるには酸化性雰囲気中で 500 以上と高い温度が要求されることが、 従来の メモリ等半導体装置への酸化物誘電体キャパシタの適用を難しくする。  As the oxide dielectric used for the memory, lead zirconate titanate, strontium barium titanate, and the like are generally used. However, crystallization of an oxide dielectric requires a temperature as high as 500 or more in an oxidizing atmosphere, which makes it difficult to apply an oxide dielectric capacitor to a conventional semiconductor device such as a memory.

例えば、 耐酸化性かつ耐熱性の電極として白金を酸化物誘電体キャパシタの下 部電極として用いる構造、 (従来構造 1 ) 酸化物誘電体/白金 シリ コン For example, a structure using platinum as the lower electrode of an oxide dielectric capacitor as an oxidation-resistant and heat-resistant electrode, (Conventional structure 1) Oxide dielectric / platinum silicon

が考えられるが、 白金とシリコンとは反応して白金シリサイ ドが両者の接合界面 に反応形成し電極が高抵抗化するので、 白金電極をシリ コン基板や多結晶シリコ ンと直接接触させる様な (従来構造 1 ) は望ま しくない。 そこで、 例えば、However, platinum and silicon react with each other, and platinum silicide reacts and forms at the interface between them to increase the resistance of the electrode.Therefore, the platinum electrode is brought into direct contact with a silicon substrate or polycrystalline silicon. (Conventional structure 1) is not desirable. So, for example,

1 98 9 アイ . ィー . ィ一 . ィー インターナショナル ソリ ッ ド ステー ト サ 一キッ ト コンファレンス ダイジェス ト 第 2 4 2頁から第 2 4 3頁 (1989 IEEE Int. Solid-State Circuits Conf . Digest pp. 242 - 243 ) に記載 されている様な、 別の構造が提案された。 ここでは、 酸化物誘電体キャパシタは 層間絶縁膜の上に形成され、 一方 MO S トランジスタはキャパシ夕の領域外に形 成され、 そのソース又は ドレインとキャパシタ間はアルミニゥム等の配線用導電 層を用いて接続される。 しかし、 この配線用導電層を用いる方法ではメモリセル の面積を小さくすることが難しく メモリを高集積化する点で不利である。 1 98 9 I. II. International Solid State Circuit Kit Conference Digests pp. 242 to 243 (1989 IEEE Int. Solid-State Circuits Conf. Digest pp. Other structures have been proposed, as described in 242-243). Here, the oxide dielectric capacitor is formed on the interlayer insulating film, while the MOS transistor is formed outside the capacity region, and a wiring conductive layer such as aluminum is used between the source or drain and the capacitor. Connected. However, this method using a conductive layer for wiring is disadvantageous in that it is difficult to reduce the area of the memory cell and the memory is highly integrated.

MO S トランジスタを形成した半導体基板を絶縁体で被覆して、 この上に酸化 物誘電体キャパシタを形成するメモリをより高集積化する方法として、 被覆絶縁 層にコンタク トホールを穿孔しその内部に導電性物質を埋め込んで、 MO S トラ ンジス夕のソース又はドレインとキャパシタの一方の電極間を電気的に接続する 方法が、 特開平 3— 2 5 6 3 5 8号公報に記載されている。 この埋め込まれる導 電性物質としては、 多結晶シリ コンが一般に用いられる。 以降の説明では、 この 構造を前提に説明する。 しかし、 この構造においても上述した同じ問題が浮上す る。 つまり、 酸化物誘電体を多結晶シリコン上で直接結晶化する様な構造、 (従来構造 2 ) 酸化物誘電体 多結晶シリ コン、  As a method to cover the semiconductor substrate on which the MOS transistor is formed with an insulator and form an oxide dielectric capacitor on top of this, a contact hole is formed in the coating insulating layer and a conductive hole is formed inside the contact hole. Japanese Patent Application Laid-Open No. 3-25658-58 discloses a method of embedding a conductive material and electrically connecting a source or a drain of a MOS transistor and one electrode of a capacitor. Polycrystalline silicon is generally used as the embedded conductive material. The following description is based on this structure. However, this structure raises the same problem as described above. In other words, a structure in which an oxide dielectric is directly crystallized on polycrystalline silicon, (conventional structure 2) an oxide dielectric polycrystalline silicon,

では両者の界面は酸化され反応絶縁層が形成される。 一方、 この反応絶縁層の形 成を抑制する目的で多結晶シリ コンと酸化物誘電体の間に白金を電極として挿入 する構造は、 Then, the interface between the two is oxidized to form a reaction insulating layer. On the other hand, a structure in which platinum is inserted as an electrode between the polycrystalline silicon and the oxide dielectric in order to suppress the formation of the reactive insulating layer,

(従来構造 3 ) 酸化物誘電体 Z白金/多結晶シリ コン、  (Conventional structure 3) Oxide dielectric Z platinum / polycrystalline silicon,

となり、 本質的に (従来構造 1 ) と同じ構成で、 白金と多結晶シリ コンが反応し てシリサイ ドが形成して電極が高抵抗化したり、 シリ コンが白金中を拡散して白 金表面に酸化シリコン膜が形成されて誘電体キャパシタの特性が劣化したりする。 さらに、 誘電体の構成元素がシリ コン基板側へ拡散するなどの問題も生じる。 これらの問題を解決する方法として、 特開平 4一 1 4 8 6 2号公報ゃ特開平 4 - 1 8 1 7 6 6号公報に記載されているように、 白金電極とシリ コンとの間に相 互拡散を防止する目的で、 Ti、 Ta、 TiN等の拡散防止非酸化物導電層を設ける構 造、 The structure is essentially the same as that of (Conventional Structure 1). Platinum and polycrystalline silicon react to form a silicide, increasing the resistance of the electrode. A silicon oxide film is formed on the gold surface, and the characteristics of the dielectric capacitor deteriorate. In addition, there arises a problem that constituent elements of the dielectric diffuse into the silicon substrate. As a method for solving these problems, as disclosed in Japanese Patent Application Laid-Open No. HEI 4-14862 / JP-A No. A structure in which a diffusion preventing non-oxide conductive layer of Ti, Ta, TiN, etc. is provided for the purpose of preventing mutual diffusion,

(従来構造 4 )  (Conventional structure 4)

酸化物誘電体/白金 Z (Ti、 Ta、 TiN等) ノ多結晶シリコン、  Oxide dielectric / platinum Z (Ti, Ta, TiN, etc.) Polycrystalline silicon,

がある。 There is.

一方、 白金や Ti、 Ta、 TiN等を電極構成要素として用いることとは別に、 導電 性の酸化物を酸化物誘電体キャパシタの電極として用いる例が報告されている。 この典型的な例として、 ジャーナル ォブ マテリアル リサーチ、 第 8卷  On the other hand, apart from using platinum, Ti, Ta, TiN or the like as an electrode component, there has been reported an example in which a conductive oxide is used as an electrode of an oxide dielectric capacitor. A typical example of this is Journal of Materials Research, Volume 8

( 1 9 9 3年) 第 1 2頁 (J. Mat. Res. , Vol.8 (1993), pp.12) に見られる様な、 (1993) Page 12 (J. Mat. Res., Vol.8 (1993), pp.12)

(従来構造 5 ) 酸化物誘電体/酸化ルテニウム ZSi02(Conventional structure 5) dielectric oxide / ruthenium oxide ZSi0 2,

の構造をあげることができる。 酸化物誘電体を導電性の酸化ルテニウムと直接接 触させる利点は、 酸化物誘電体が全く異種の金属電極と接触している場合よりも、 同じ酸化物である電極と接触している場合の方が、 酸化物誘電体ノ電極界面の機 械的な付着力が増大するからである。 この酸化物誘電体と電極間の機械的な付着 力の増大は、 酸化物誘電体キャパシタの分極反転サイクルなどの特性を改善する。 また、 この例ではキャパシタは Si02上に形成されているが多結晶シリ コン上にキ ャパシタを形成する場合には、 (従来構造 1 ) および (従来構造 3 ) と同様の理 由から、 酸化物である酸化ルテニウムが多結晶シリコンと直接接触することを避 けるために、 両者の間に白金やルテニウムなどの貴金属層を設ける必要があり、 その場合の構造は、 Structure can be given. The advantage of having the oxide dielectric in direct contact with the conductive ruthenium oxide is that the oxide dielectric is in contact with the same oxide electrode rather than in contact with a completely dissimilar metal electrode. This is because the mechanical adhesion at the oxide dielectric electrode interface increases. This increase in mechanical adhesion between the oxide dielectric and the electrode improves the properties of the oxide dielectric capacitor, such as the polarization reversal cycle. Also, if in this example the capacitor that forms a key Yapashita on formed by being although polycrystalline silicon on Si0 2, from the same reason as (conventional structure 1) and (conventional structure 3), oxide It is necessary to provide a noble metal layer such as platinum or ruthenium between the ruthenium oxide and the polycrystalline silicon in order to avoid direct contact with the polycrystalline silicon.

(従来構造 6 )  (Conventional structure 6)

酸化物誘電体ノ酸化ルテニウム/ (白金、 ルテニウム等) Z多結晶シリコン、 となる。 発明の開示 The oxide dielectric is ruthenium oxide / (platinum, ruthenium, etc.) Z polycrystalline silicon. Disclosure of the invention

上記従来技術の項においては、 M O S トランジスタを形成した半導体基板を絶 縁体で被覆し、 この上に酸化物誘電体キャパシタを形成するメモリについて、 よ り高集積化するための従来技術を説明した。 上述した様に、 M O S トランジスタ のソース又は ドレインとキャパシタの一方の電極間の電気的接続は、 被覆絶縁層 にコンタク トホールを穿孔しその内部に一般的に多結晶シリ コンからなる導電性 物質を埋め込むことによってなされる。 前項での代表的な 2つの構造、  In the above-mentioned section of the prior art, a conventional technique for further integrating a memory in which a semiconductor substrate on which a MOS transistor is formed is covered with an insulator and an oxide dielectric capacitor is formed thereon is described. . As described above, the electrical connection between the source or drain of the MOS transistor and one electrode of the capacitor is achieved by drilling a contact hole in the covering insulating layer and embedding a conductive material, generally made of polycrystalline silicon, in the inside. It is done by things. Two typical structures in the previous section,

(従来構造 4 )  (Conventional structure 4)

酸化物誘電体 Z白金 Z ( T i、 Ta、 T i N等) 多結晶シリ コン、  Oxide dielectric Z Platinum Z (Ti, Ta, Tin, etc.) Polycrystalline silicon,

(従来構造 6 )  (Conventional structure 6)

酸化物誘電体 Z酸化ルテニウム Z (白金、 ルテニウム等) Z多結晶シリ コン、 それぞれは以下に説明する問題点を有している。  Oxide dielectric Z Ruthenium oxide Z (platinum, ruthenium, etc.) Z polycrystalline silicon, each has the problems described below.

まず、 (従来構造 4 ) について説明する。 酸化物誘電体を結晶化させるには、 5 0 0 °C以上の酸化性棼囲気が要求されるが、 この様な条件下では、 酸素が白金 結晶粒の粒界などを拡散して拡散防止非酸化物導電層 (T i、 Ta、 T i N等) にまで 達し、 これをも酸化させる可能性が大きい。 その結果、 電極自体の抵抗が増大す る。 これを回避する策として、 白金層の厚さを増大させることが考えられるが、 メモリの集積度が高くキャパシ夕が微細である場合にはァスぺク ト比が増大する 結果、 白金層の加工が困難になるばかりか、 キャパシタ側壁部でのリーク電流の 増大なども生じる。 このため、 T i、 Ta、 Ti N等を相互拡散防止層として用いる (従来構造 4 ) では従来技術の問題点は解決されない。  First, (Conventional Structure 4) will be described. In order to crystallize an oxide dielectric, an oxidizing atmosphere of 500 ° C or more is required. Under such conditions, oxygen diffuses at the grain boundaries of platinum crystal grains to prevent diffusion. It reaches the non-oxide conductive layer (Ti, Ta, TiN, etc.), and there is a high possibility that this will also be oxidized. As a result, the resistance of the electrode itself increases. As a measure to avoid this, it is conceivable to increase the thickness of the platinum layer. However, when the memory density is high and the capacity is fine, the aspect ratio increases. Not only is processing difficult, but leakage current increases on the side wall of the capacitor. For this reason, using Ti, Ta, TiN or the like as a mutual diffusion preventing layer (conventional structure 4) does not solve the problems of the prior art.

次に、 (従来構造 6 ) について説明する。 この場合も通常、 酸化ルテニウム層 はやはり酸化性棼囲気で形成されるために、 酸素が (白金、 ルテニウム等) 層を 介して多結晶シリコンまで拡散し、 酸化反応によって絶縁層が形成される問題は 解決されない。 従って、 (従来構造 6 ) でも従来技術の問題点は解決されない。 以上の、 従来構造における問題点は、 上記例で具体的に示した材料だけでなく、 (白金、 ルテニウム等) からなる層は貴金属として、 (Ti、 Ta、 TiN等) からな る層は拡散防止非酸化物導電層として、 酸化ルテニウム層は導電性酸化物として、 それぞれをより一般的な範疇である材料分類に拡張しても当てはまる。 つまり、Next, (conventional structure 6) will be described. Also in this case, since the ruthenium oxide layer is usually formed in an oxidizing atmosphere, oxygen diffuses through the (platinum, ruthenium, etc.) layer to the polycrystalline silicon, and the insulating layer is formed by the oxidation reaction. Is not resolved. Therefore, (Conventional Structure 6) does not solve the problems of the prior art. The problems with the conventional structure described above are not only the materials specifically shown in the above example, (Platinum, ruthenium, etc.) as a noble metal, (Ti, Ta, TiN, etc.) as a diffusion-prevention non-oxide conductive layer, and ruthenium oxide layer as a conductive oxide. This is true even if it is expanded to a material category that is a category. That is,

(従来構造 4 ) と (従来構造 6) は夫々、 (Conventional structure 4) and (Conventional structure 6)

(従来構造 7 )  (Conventional structure 7)

酸化物誘電体 Z貴金属/拡散防止非酸化物導電層 Z多結晶シリ コン、  Oxide dielectric Z Noble metal / Diffusion prevention non-oxide conductive layer Z Polycrystalline silicon,

(従来構造 8 )  (Conventional structure 8)

酸化物誘電体 Z導電性酸化物ノ貴金属/多結晶シリコン、  Oxide dielectric Z conductive oxide noble metal / polycrystalline silicon,

というより一般的な材料分類を用いて表される。 ここで、 上述したキャパシ夕を 構成する各層がもたらす問題点をまとめる。 Rather, it is expressed using a general material classification. Here, the problems brought about by each layer constituting the above-mentioned capacity are summarized.

まず貴金属層がもたらす問題点は、 (a) シリ コンとの接触によって高抵抗の シリサイ ドが形成される可能性と (b ) シリコン、 酸素および酸化物構成元素の 拡散経路となる可能性であり、 次に酸化物誘電体及び導電性酸化物層がもたらす 問題点は ( c ) 電極を酸化して電極抵抗が増大もしく は絶縁化する可能性であり、 最後に拡散防止非酸化物導電層がもたらす問題点は (d) 酸化されて高抵抗化す る可能性である。  First, the problems brought about by the noble metal layer are (a) the possibility of forming a high-resistance silicide by contact with silicon and (b) the possibility of forming a diffusion path for silicon, oxygen and oxide constituent elements. The second problem with oxide dielectrics and conductive oxide layers is (c) the possibility of oxidizing the electrodes to increase or insulate the electrode resistance. The problem caused by (d) is the possibility of oxidation and high resistance.

ここで、 (従来構造 7) と (従来構造 8) の特徴に注目 して、 両構造を単純に 複合化する構造、  Here, focusing on the features of (conventional structure 7) and (conventional structure 8), a structure that simply combines both structures,

(従来構造 9)  (Conventional structure 9)

酸化物誘電体 Z導電性酸化物ノ貴金属/拡散防止非酸化物導電層  Oxide dielectric Z conductive oxide noble metal / diffusion prevention non-oxide conductive layer

/多結晶シリコン、  / Polycrystalline silicon,

が類推される。 この場合、 上記問題点 (a ) シリサイ ド形成と上記問題点 (b) の内のシリ コンおよび酸化物構成元素の拡散は、 拡散防止非酸化物導電層の挿入 によって解決される。 しかし、 酸素の拡散と電極の酸化に絡む上記問題点 (b) 、 ( c ) 、 ( d) は、 酸化物を酸化性雰囲気で形成させると言う従来の必須条件が 何等改善されていないために、 (従来構造 4) と同様に解決されないままである。 つまり、 従来の技術では酸化物が多結晶シリコンと直接接触する場合は勿論、 酸化物が貴金属を介して多結晶シリコンと接触する場合や酸化物が貴金属を介し て拡散防止非酸化物導電層と接触する場合のいずれでも、 酸化物誘電体や導電性 酸化物といった酸化物が貴金属や拡散防止非酸化物導電層や多結晶シリ コンとい つた非酸化物に対して酸素の拡散や酸化反応をもたらすと言う問題点は、 一切解 決されない。 Is inferred. In this case, the above problem (a) formation of silicide and diffusion of silicon and oxide constituent elements in the above problem (b) are solved by inserting a diffusion preventing non-oxide conductive layer. However, the above problems (b), (c) and (d) related to oxygen diffusion and electrode oxidation are due to the fact that the conventional essential condition of forming oxides in an oxidizing atmosphere has not been improved at all. , As in (Conventional Structure 4). In other words, in the conventional technology, when the oxide directly contacts the polycrystalline silicon, of course, Whether the oxide contacts polycrystalline silicon via a noble metal or the oxide contacts a non-diffusion conductive layer via a noble metal, oxides such as oxide dielectrics and conductive oxides The problem of causing oxygen diffusion and oxidation reactions to non-oxides such as noble metals, diffusion-prevention non-oxide conductive layers and polycrystalline silicon remains unsolved.

上述のように、 酸化物誘電体と多結晶シリ コンとの間で電気的な接続をとる場 合には、 両者の間に導電性の酸化防止層が要求されるが、 従来は有効な酸化防止 層がなく、 これを補うためにさらに白金などの金属層が介在されている。 しかし 残念ながら、 酸素は金属層の粒界をも拡散して酸化防止層に達し、 これを酸化す る可能性がやはり残る。 この欠点を補うために金属層の厚さを増大させても、 結 果としてキャパシタのァスぺク ト比が増大し、 微細なメモリセルを構築する観点 からは望ましくない。 従って、 この問題点を解決するために新規且つ有効な拡散 又は酸化防止層が望まれる。  As described above, when an electrical connection is made between an oxide dielectric and polycrystalline silicon, a conductive antioxidant layer is required between the two, but conventionally, an effective oxidation There is no prevention layer, and a metal layer such as platinum is interposed to supplement this. Unfortunately, however, oxygen also diffuses through the grain boundaries of the metal layer and reaches the antioxidant layer, where the possibility of oxidizing it still remains. Even if the thickness of the metal layer is increased to compensate for this drawback, the effect ratio of the capacitor increases as a result, which is not desirable from the viewpoint of constructing a fine memory cell. Therefore, a new and effective diffusion or antioxidant layer is desired to solve this problem.

本発明の第 1の目的は上述の従来技術の問題点を解決し、 且つ酸化物誘電体 ( 強誘電体を含めて) をキャパシタ絶縁膜に用いた高集積化に好適な微細なメモリ を有する半導体装置を提供することにある。  A first object of the present invention is to solve the above-mentioned problems of the prior art and to provide a fine memory suitable for high integration using an oxide dielectric (including a ferroelectric) as a capacitor insulating film. It is to provide a semiconductor device.

また本発明の第 2の目的は、 そのような半導体装置の製造方法を提供すること にある。  A second object of the present invention is to provide a method for manufacturing such a semiconductor device.

上述の問題の解決にあたり、 本発明では酸化物の誘電体からなるキャパシ夕 ( コンデンサ) を有する半導体装置において、 半導体基板又は基板上部に設けられ た半導体層と酸化物の誘電体とを、 異なる導電性材料からなる少なく とも 2層の 領域を介して接続する。 この 2つの導電性領域の材料 (もしくは材料組成) の組 合せにより、 半導体からなる領域と酸化物誘電体からなる領域との間に配置され た拡散防止層又は酸化防止層において従来技術で生じた電気的な抵抗値の上昇を 抑制するものである。  In order to solve the above-described problem, in the present invention, in a semiconductor device having a capacitor (capacitor) made of an oxide dielectric, a semiconductor substrate or a semiconductor layer provided on the substrate and an oxide dielectric are made of different conductive materials. Connected via at least two layers of conductive material. The combination of the materials (or material composition) of the two conductive regions results in a diffusion barrier or antioxidant layer located between the region consisting of the semiconductor and the region consisting of the oxide dielectric, which is caused by the prior art. It suppresses the rise in electrical resistance.

本発明における半導体装置は、 導電性を有する半導体材料からなる第 1の領域 (半導体基板又は半導体薄膜からなる配線層や電極部) と、 第 1の領域に接合さ れ且つ第 1 の導電性材料からなる第 2の領域と、 第 2の領域に接合され且つ第 2 の導電性材料からなる第 3の領域と、 第 3の領域に接合され且つ酸化物の誘電体 材料からなる第 4の領域と、 第 4の領域に接合され且つ導電性材料からなる第 5 の領域を含み、 第 1の領域內の第 2の領域との接合界面における材料組成は第 1 の領域の平均的な材料組成と略等しく、 第 2の領域内の第 1の領域との接合界面 及び第 3の領域との接合界面における材料組成は第 2の領域における平均的な材 料組成と夫々略等しい、 ことを基本的な構成上の特徴とする。 この特徴からも明 らかなように、 第 3の領域と第 5の領域は第 4の領域を介してキャパシタを構成 している。 第 4の領域を構成する酸化物誘電体は、 印加電場の上昇と下降に対し て分極値の変化が異なる特性 (ヒステリ シス) を示す所謂強誘電体にしてもよい c 本発明の半導体装置の主な特徴は、 第 1の領域が第 2の領域との接合界面にお いて第 1の領域を構成する半導体材料と略等しい組成を、 第 2の領域が第 1の領 域との接合界面及び第 3の領域との接合界面において第 1の導電性材料と略等し い材料組成を夫々有するように、 換言すれば第 1 の領域と第 2の領域の材料組成 が夫々略一様になるように構成された点にあり、 即ち、 これらの領域にて電気抵 抗を上昇させる物質 (上述のシリ コン酸化物や、 金属シリサイ ド、 酸化チタン等 ) が形成されていないことである。 上述のように電気抵抗を高め又は実質上電気 的な絶縁性を示す物質 (以下、 高抵抗物質) は、 第 1 の領域上に第 2の領域から 第 4の領域までの各層を逐次積層していく工程で領域間の接合界面を中心に形成 される。 これに対し、 本発明は第 1の導電性材料と第 2の導電性材料を適切に選 定することにより、 第 1の領域と第 2の領域との接合界面、 及び第 2の領域と第 3の領域との接合界面での高抵抗物質の形成を防ぎ、 第 1の領域を第 2の領域と の接合界面での材料組成が第 1の領域の平均的な材料組成と略等しくなるように、 第 2の領域を第 1の領域との接合界面及び第 3の領域との接合界面での材料組成 が第 2の領域における平均的な材料組成と夫々略等しくなるように、 形成するも のである。 ここで第 3の領域と第 4の領域との接合界面では高抵抗物質形成が問 題とならないことは、 第 3の領域に貴金属を用いる (従来構造 7 ) 又は導電性酸 化物を用いる (従来構造 8 ) から明らかである力 第 1の領域から第 3の領域に 到る導電性を改善し、 又は第 4の領域の酸化物の形成条件を改善するために第 3 の領域と第 4の領域との間に第 1及び第 2の導電性材料とは異なる組成の導電材 料からなる領域 (層) を設けてもよい。 また同様な観点で、 第 1の領域と第 2の 領域との間に第 1及び第 2の導電性材料とは異なる組成の導電材料からなる領域 (層) を設けてもよい。 要は、 第 2の領域と第 3の領域が接合されていればよい のである。 The semiconductor device according to the present invention includes a first region (a wiring layer or an electrode portion formed of a semiconductor substrate or a semiconductor thin film) made of a conductive semiconductor material and a first region. A second region made of a first conductive material and a third region joined to the second region and made of a second conductive material; and a third region joined to the third region and made of an oxide dielectric. A fourth region made of a body material, and a fifth region joined to the fourth region and made of a conductive material, and a material composition at a joining interface between the first region and the second region is the first region. The material composition at the bonding interface with the first region in the second region and the material composition at the bonding interface with the third region in the second region are approximately equal to the average material composition in the second region. , Which are approximately equal to each other. As is apparent from this feature, the third region and the fifth region constitute a capacitor via the fourth region. Oxide dielectric which constitutes the fourth area, the change in polarization value in respect rising and falling of the applied field is different properties of the semiconductor device which may c present invention in the so-called ferroelectric place showing the (hysteresis) The main feature is that the first region has a composition substantially equal to the semiconductor material forming the first region at the junction interface with the second region, and the second region has the composition at the junction interface with the first region. In other words, the material composition of the first region and the second region is substantially uniform so that they have a material composition substantially equal to that of the first conductive material at the bonding interface with the third region. That is, a substance that increases the electric resistance (such as the above-described silicon oxide, metal silicide, or titanium oxide) is not formed in these regions. As described above, a substance that increases the electrical resistance or substantially exhibits electrical insulation (hereinafter referred to as a high-resistance substance) is formed by sequentially laminating each layer from the second area to the fourth area on the first area. In the process of forming, it is formed around the junction interface between the regions. On the other hand, according to the present invention, by appropriately selecting the first conductive material and the second conductive material, the bonding interface between the first region and the second region, and the second region and the second The formation of a high-resistance substance at the bonding interface with the third region is prevented, and the material composition at the bonding interface between the first region and the second region is substantially equal to the average material composition of the first region. Then, the second region is formed such that the material composition at the bonding interface with the first region and the material interface at the bonding interface with the third region are substantially equal to the average material composition in the second region. It is. Here, the fact that the formation of a high-resistance material is not a problem at the junction interface between the third region and the fourth region is due to the use of a noble metal in the third region (conventional structure 7) or the use of a conductive acid. Force that is evident from the use of a compound (conventional structure 8) to improve the conductivity from the first region to the third region or to improve the oxide formation conditions in the fourth region A region (layer) made of a conductive material having a composition different from the first and second conductive materials may be provided between the region and the fourth region. From a similar viewpoint, a region (layer) made of a conductive material having a composition different from that of the first and second conductive materials may be provided between the first region and the second region. In short, it is only necessary that the second region and the third region are joined.

本発明を実施するにあたり、 第 1の導電性材料と第 2の導電性材料の選定が最 も重要になるが、 その選定指針は 2通りある。 第 1 の指針は 2つの導電性材料を ともに同じ元素から構成され、 かつ同じ結晶構造の基本骨格を有する導電性酸化 物で形成し、 第 1の導電性材料における酸素の組成比を第 2の導電性材料におけ るそれより低くする、 即ち第 〗 の導電性材料を酸素欠損の状態にすることである。 第 2の指針は第 1の導電性材料に窒化チタニウムアルミニウム (T i A I N ) を、 第 2の導電性材料に対酸化性の金属材料を夫々用いることである。 いずれの選定指 針においても、 2つの導電性材料はその固有の抵抗率が夫々 1 0 m Q * cm ( 0. 0 1 Ω · cm ) 以下のものを選ぶことが望ましい。 以下、 導電性材料選定指針別に本発 明の概要を詳細に説明する。 以下の説明では、 第 1の領域から第 3の領域 (第 3 と第 4の領域間に導電材料層を設ける場合は、 これを含めて) を下部電極、 第 5 の領域を上部電極と名付ける。  In carrying out the present invention, the selection of the first conductive material and the second conductive material is the most important, but there are two selection guidelines. The first guideline is that the two conductive materials are both formed of conductive oxides that are composed of the same element and have the same basic skeleton of the same crystal structure. That is, the second conductive material is made lower in oxygen deficiency than that of the conductive material. A second guideline is to use titanium aluminum nitride (TiAIN) for the first conductive material and an antioxidant metal material for the second conductive material. In any of the selection guidelines, it is desirable to select two conductive materials each having a specific resistivity of 10 mQ * cm (0.01 Ω · cm) or less. The outline of the present invention is described in detail below for each conductive material selection guideline. In the following description, the first to third regions (including the conductive material layer between the third and fourth regions, if included) are referred to as the lower electrode, and the fifth region as the upper electrode. .

1 . 導電性材料選定指針 1  1. Conductive material selection guidelines 1

この指針は、 本発明の第 1 の目的を達成するために、 第 2の領域と第 3の領域 を酸素の拡散および酸化反応を抑制できる 2層導電性酸化物層として形成する ( 第 3の目的) ことと、 本発明の第 2の目的を達成するために、 酸素拡散及び酸化 反応を抑制できる 2層導電性酸化物層の製造方法を提供する (第 4の目的) こと を夫々配慮したものである。  According to this guideline, in order to achieve the first object of the present invention, the second region and the third region are formed as a two-layer conductive oxide layer capable of suppressing diffusion and oxidation of oxygen (third region). Objective) To provide a method for producing a two-layer conductive oxide layer capable of suppressing oxygen diffusion and oxidation reaction in order to achieve the second object of the present invention (fourth object). Things.

ここでは、 上記第 1 の目的を達成するために、 酸化物誘電体キャパシ夕を用い る半導体装置、 特に、 酸素欠損を有する導電性酸化物層を含む 2層導電性酸化物 層などから構成される半導体装置の構造について、 まず説明する。 次に、 金属屑 の特徴と具体的例、 拡散防止非酸化物導電層の特徴と具体的例、 酸化物誘電体の 具体的例について、 順次説明する。 さらに、 酸素欠損を有する導電性酸化物層を 含む 2層導電性酸化物層の特徴と具体的例を、 上記第 2の目的を達成するための 手段、 つまり、 半導体装置の製造方法と合わせて、 説明する。 上記第 3の目的を 達成するための方法は、 第 1及び第 2の目的を達成するための方法で、 合わせて 詳しく説明される。 上記第 4の目的を達成するための方法は、 第 2の目的を達成 するための方法で、 合わせて詳しく説明される。 Here, in order to achieve the first object, a semiconductor device using an oxide dielectric capacitor, in particular, a two-layer conductive oxide including a conductive oxide layer having oxygen vacancies First, a structure of a semiconductor device including layers is described. Next, the characteristics and specific examples of the metal scrap, the characteristics and specific examples of the diffusion preventing non-oxide conductive layer, and the specific examples of the oxide dielectric will be sequentially described. Further, the characteristics and specific examples of the two-layer conductive oxide layer including the conductive oxide layer having oxygen deficiency are described together with the means for achieving the second object, that is, the method for manufacturing a semiconductor device. , explain. The method for achieving the third object is described in detail together with the method for achieving the first and second objects. The method for achieving the fourth object is described in detail together with the method for achieving the second object.

まず、 上記第 1 の目的を達成するための半導体装置について説明する。 本発明 の半導体装置は、 キャパシタ絶縁膜として酸化物誘電体を用いる酸化物誘電体キ ャパシタを有する。 第 1 図に、 酸化物誘電体キャパシタの模式図を示す。 第 1 図 は、 半導体装置の酸化物誘電体キャパシタの詳細構造を示すものではなく、 キヤ パシタを構成する各層の積層をわかり易く示したものである。 酸化物誘電体キヤ パシタは、 基板上 (第 1図では基板側の方向 1 0のみを示した。 ) に設けられた 下部電極層 1 1 と、 その上に設けられた酸化物誘電体層 1 6と、 さらにその上に 設けられた上部電極層 1 7とから構成される。 そして、 下部電極層 1 1 は導電性 酸化物層 1 2を含み、 この導雷性酸化物層は同一の結晶構造及び元素から構成さ れるが酸素に関する組成比のみが異なる隣接する 2層 1 4と 1 5から構成される。 つまり、 隣接する 2層の内、 基板側に位置する導電性酸化物層 1 4が酸素欠損を 含む。 この導電性酸化物層 1 4 と 1 5が上記概念で説明した第 2の領域と第 3の 領域に夫々対応する。  First, a semiconductor device for achieving the first object will be described. The semiconductor device of the present invention has an oxide dielectric capacitor using an oxide dielectric as a capacitor insulating film. FIG. 1 shows a schematic diagram of an oxide dielectric capacitor. FIG. 1 does not show the detailed structure of the oxide dielectric capacitor of the semiconductor device, but rather shows the lamination of each layer constituting the capacitor in an easy-to-understand manner. The oxide dielectric capacitor includes a lower electrode layer 11 provided on the substrate (only the direction 10 on the substrate side is shown in FIG. 1) and an oxide dielectric layer 1 provided thereon. 6 and an upper electrode layer 17 provided thereon. The lower electrode layer 11 includes a conductive oxide layer 12, and this lightning conductive oxide layer is composed of the same crystal structure and element, but has only a different composition ratio with respect to oxygen. And 15 That is, of the two adjacent layers, the conductive oxide layer 14 located on the substrate side contains oxygen vacancies. The conductive oxide layers 14 and 15 correspond to the second region and the third region described in the above concept, respectively.

半導体装置においては、 下部電極層 1 1は、 酸素欠損を含む導電性酸化物層 I 4より も基板側に位置する少なく とも一つ以上の層を含む下部電極層の構成要素 1 3を介して、 基板上に形成された M O S トランジスタのソース領域又はドレイ ン領域と電気的に接続される。 この下部電極層の構成要素 1 3の例について、 第 2図、 第 3図及び第 4図を用いて以下に詳しく説明する。  In the semiconductor device, the lower electrode layer 11 is formed via the lower electrode layer component 13 including at least one or more layers located closer to the substrate than the conductive oxide layer I 4 containing oxygen vacancies. It is electrically connected to a source region or a drain region of a MOS transistor formed on a substrate. An example of the constituent element 13 of the lower electrode layer will be described below in detail with reference to FIGS. 2, 3, and 4.

第 2図は、 第 1図における酸素欠損を含む導電性酸化物層 1 4よりも基板側に 位置する下部電極屑の構成要素 1 3力 導電性の多結晶シリ コン層 2 0である場 合の、 酸化物誘電体キャパシタの構成を示す。 ここで、 導電性の多結晶シリ コン 層 2 0は、 上記概念で説明した第 1の領域に対応する。 従来構造において、 酸化 物を結晶化させるのに必要な典型的な条件、 酸化性雰囲気中で 500て以上、 では シリ コンの酸化を免れないので、 酸化物がシリ コンと直接接触するような構造は 好ま しくないことを説明した。 しかし、 本発明では、 多結晶シリコン層 2 0に隣 接する層が酸素欠損を含む導電性酸化物層 1 4であることが鍵となり、 第 2図の 構造が実現される。 酸素欠損を有する導電性酸化物層 1 4を含む 2層導電性酸化 物層 1 2の特徴については後述する。 FIG. 2 shows that the conductive oxide layer 14 containing oxygen vacancies in FIG. Components of lower electrode scrap located 13 Power structure of oxide dielectric capacitor in the case of conductive polycrystalline silicon layer 20 is shown. Here, the conductive polycrystalline silicon layer 20 corresponds to the first region described in the above concept. In the conventional structure, typical conditions necessary for crystallizing oxides, such as 500 or more in an oxidizing atmosphere, are inevitable for silicon oxidation, so that the oxides are in direct contact with silicon. Explained what he did not like. However, in the present invention, the key is that the layer adjacent to the polycrystalline silicon layer 20 is the conductive oxide layer 14 containing oxygen vacancies, and the structure of FIG. 2 is realized. The features of the two-layer conductive oxide layer 12 including the conductive oxide layer 14 having oxygen vacancies will be described later.

第 3図は、 第 1 図における酸素欠損を含む導 ¾性酸化物層 1 4よりも基板側に 位置する下部電極層の構成要素 1 3が、 拡散防止非酸化物導電層 3 0と導電性の 多結晶シリ コン層 2 0である場合の、 酸化物誘電体キャパシタの構成を示す。 こ こで、 拡散防止非酸化物導電層 3 0は、 上記概念で説明した第 1の領域と第 2の 領域との間に設けられた層に対応する。 従来技術において、 酸化物を結晶化させ るのに必要な典型的な条件、 酸化性雰囲気中で 5 0 0 °C以上、 では (従来構造 7 ) で見られるように、 酸化物と拡散防止非酸化物導電層との間を貴金属で隔壁し ても貴金属中の粒界を拡散する酸素により拡散防止非酸化物導電層の酸化を免れ ないので、 酸化物が拡散防止非酸化物導電層と直接接触するような構造は好ま し くないことを説明した。 しかし、 本発明では、 拡散防止非酸化物導電層 3 0に隣 接する層が酸素欠損を含む導電性酸化物層 1 4であることが鍵となり、 第 3図の 構造が実現される。 酸素欠損を有する導電性酸化物層 1 4を含む 2層導電性酸化 物層 1 2の特徴については後述する。  FIG. 3 shows that the component 13 of the lower electrode layer located closer to the substrate than the conductive oxide layer 14 containing oxygen vacancies in FIG. 1 shows a configuration of an oxide dielectric capacitor in the case of the polycrystalline silicon layer 20 of FIG. Here, the diffusion preventing non-oxide conductive layer 30 corresponds to the layer provided between the first region and the second region described in the above concept. In the prior art, under typical conditions necessary for crystallizing oxides, at 500 ° C. or higher in an oxidizing atmosphere, as shown in (Conventional Structure 7), oxides and non-diffusion preventing Oxidation of the diffusion-preventing non-oxide conductive layer is inevitable due to oxygen diffusing at the grain boundaries in the precious metal even if the partition between the oxide-conductive layer and the precious metal is separated, so that the oxide is directly in contact with the diffusion-preventing non-oxide conductive layer He explained that contacting structures are not preferred. However, in the present invention, the key is that the layer adjacent to the diffusion preventing non-oxide conductive layer 30 is the conductive oxide layer 14 containing oxygen vacancies, and the structure in FIG. 3 is realized. The features of the two-layer conductive oxide layer 12 including the conductive oxide layer 14 having oxygen vacancies will be described later.

第 4図は、 第 1図における酸素欠損を含む導電性酸化物層 1 4よりも基板側に 位置する下部電極層の構成要素 1 3が、 金属層 4 0と拡散防止非酸化物導電層 3 0と導電性の多結晶シリ コン層 2 0である場合の、 酸化物誘電体キャパシタの構 成を示す。 ここで、 金属層 4 0と拡散防止非酸化物導電層 3 0は、 上記概念で説 明した第 1の領域と第 2の領域との間に設けられた層に対応する。 従来技術にお いて、 酸化物を結晶化させるのに必要な典型的な条件、 酸化性雰囲気中で 500て 以上、 では、 酸素が金属層 4 0を介して拡散して拡散防止非酸化物導電層 3 0を 酸化する可能性があり、 これを抑制するために金属層 4 0の厚みを増大させる必 要があることを説明した。 し力、し、 本発明では、 金属層 4 0に隣接する層が酸素 欠損を含む導電性酸化物層 1 4であることが鍵となり、 金属層の薄さに制限はな く第 4図の構造が実現される。 酸素欠損を有する導電性酸化物屑 1 4を含む 2層 導電性酸化物層 1 2の特徴については後述する。 FIG. 4 shows that the components 13 of the lower electrode layer located closer to the substrate than the conductive oxide layer 14 containing oxygen vacancies in FIG. 1 are composed of the metal layer 40 and the diffusion preventing non-oxide conductive layer 3. The structure of an oxide dielectric capacitor in the case of 0 and a conductive polycrystalline silicon layer 20 is shown. Here, the metal layer 40 and the diffusion preventing non-oxide conductive layer 30 correspond to the layer provided between the first region and the second region described in the above concept. Conventional technology In typical conditions necessary for crystallizing oxides, in an oxidizing atmosphere of 500 or more, oxygen diffuses through the metal layer 40 to form the diffusion preventing non-oxide conductive layer 30. It has been described that the metal layer 40 may be oxidized and the thickness of the metal layer 40 needs to be increased in order to suppress the oxidation. In the present invention, the key is that the layer adjacent to the metal layer 40 is the conductive oxide layer 14 containing oxygen vacancies, and there is no limitation on the thickness of the metal layer. The structure is realized. The features of the two-layer conductive oxide layer 12 including the conductive oxide chips 14 having oxygen vacancies will be described later.

ここで金属層としては、 耐酸化性に富む貴金属が候補として考えられる。 具体 的には、 その中でも、 耐酸化性に優れる白金、 もしくは後に説明する導電性酸化 物層に含まれる貴金属元素と同一の元素であるルテニウムもしく はイ リ ジウム、 以上 3元素の内少なく とも一種の貴金属元素が好適である。  Here, as the metal layer, a noble metal having high oxidation resistance is considered as a candidate. Specifically, among these, platinum, which has excellent oxidation resistance, or ruthenium or iridium, which is the same as the noble metal element contained in the conductive oxide layer described later, and at least three of the above three elements One type of noble metal element is preferred.

拡散防止非酸化物導電層として好適な材料について述べる。 拡散防止非酸化物 導電層としての条件は、 もちろん導電性、 耐酸化性、 そしてシリ コンに対する耐 反応性である。 候補として考えられる化合物群は窒化物 (ナイ トライ ド) 、 シリ サイ ド (ゲイ化物) 、 ホウ化物 (ボライ ド) 及びカーバイ ド (炭化物) である。 シリコンに対する耐反応性については、 これら化合物は安定で一般的に問題とな らない。 もちろん、 例えば 1 000て以上に半導体装置を加熱すれば、 これら化合物 の構成元素とシリコンが反応して高抵抗もしくは絶縁性の反応生成物が形成され る可能性は否定されない。 しかし、 半導体装置における酸化物誘電体キャパシタ の形成を含む後工程では、 加熱条件は最高でも 800てで数分程度と、 相互拡散に よる反応生成物が形成されるには十分な温度及び時間条件ではないので、 シリコ ンに対する耐反応性については懸念されない。 耐酸化性については、 本発明にお ける 2層導電性酸化物層の内、 酸素欠損を含む導電性酸化物層が拡散防止非酸化 物導電層と隣接する場合 (第 3図) には、 全く問題とならない。 後述するように、 酸素欠損を含む導電性酸化物層の形成条件が非酸化性棼囲気であること、 かつ酸 素欠損を含む導電性酸化物層が酸素の拡散経路に対する障壁となることなどの理 由による。 また、 酸素欠損を含む導電性酸化物層が金属層を介して拡散防止非酸 化物導電層と積層する場合 (第 4図) には、 拡散防止非酸化物導電層が酸化物層 と一層離れることになるので、 より問題とならない。 同時に、 金属層が拡散防止 非酸化物導電層と隣接することは従来例からも問題とならない。 Materials suitable for the diffusion preventing non-oxide conductive layer will be described. The conditions for the diffusion preventing non-oxide conductive layer are, of course, conductivity, oxidation resistance, and reaction resistance to silicon. Compounds that can be considered as candidates are nitrides (nitrides), silicides (gayides), borides (borides), and carbides (carbides). Regarding the resistance to silicon, these compounds are stable and generally not a problem. Of course, if the semiconductor device is heated to, for example, more than 1 000, the possibility that the constituent elements of these compounds react with silicon to form a high-resistance or insulating reaction product cannot be ruled out. However, in the post-process including formation of an oxide dielectric capacitor in a semiconductor device, the heating condition is a maximum of about 800 at most and several minutes, which is a sufficient temperature and time condition for forming a reaction product due to mutual diffusion. Therefore, there is no concern about the resistance to silicon. Regarding the oxidation resistance, when the conductive oxide layer containing oxygen deficiency in the two-layer conductive oxide layer according to the present invention is adjacent to the diffusion-preventing non-oxide conductive layer (FIG. 3), No problem at all. As described later, the formation conditions of the conductive oxide layer containing oxygen vacancies are non-oxidizing atmosphere, and the conductive oxide layer containing oxygen vacancies becomes a barrier to the diffusion path of oxygen. It depends on the reason. In addition, a conductive oxide layer containing oxygen vacancies is prevented from diffusing through a metal layer. In the case of lamination with the oxide conductive layer (FIG. 4), there is no more problem since the diffusion preventing non-oxide conductive layer is further away from the oxide layer. At the same time, the fact that the metal layer is adjacent to the diffusion-preventing non-oxide conductive layer is not a problem from the conventional example.

拡散防止非酸化物導電層の具体的例を述べる。 窒化物としては、 T i、 Ta、 Z r、 Nb、 V、 及び Wの内少なく とも 1種の金属を含む窒化物が導電性に富むので良好 である。 他にも、 Ti等のシリサイ ド、 La等のホウ化物、 T i等のカーバイ ドなど が好ま しい。  A specific example of the diffusion preventing non-oxide conductive layer will be described. As the nitride, a nitride containing at least one metal of Ti, Ta, Zr, Nb, V, and W is preferable because it has high conductivity. In addition, a silicide such as Ti, a boride such as La, and a carbide such as Ti are preferable.

酸化物誘電体層として好適な材料について述べる。 ここで、 酸化物誘電体材料 は強誘電体材料である場合も当然含み、 さらに、 その材料が特に限定される理由 はない。 しかし、 いくつかの既知材料を举げておく。 チタニウムを中心元素とす る酸化物誘電体としては、 チタニウムの一部もしく は全部をジルコニウムで置換 したチタン酸ジルコン酸鉛、 この鉛の一部もしく は全部をバリ ゥムで置換して得 られるチタン酸ジルコン酸バリゥム鉛、 アル力リ土類元素のみを含むチタン酸バ リウムス トロンチウム、 などが典型例である。 層状構造からなるビスマス系誘電 体としては、 Bi 4 T i301 2、 SrB i 2Ta209などのビスマス層状誘電体が典型例である。 但し、 ここで列举した例に限らず、 広く既知の酸化物誘電体、 酸化物強誘電体 及び今後発見されるかもしれない新規な酸化物誘電体、 酸化物強誘電体などが、 酸化物誘電体層として利用され得る。 Materials suitable for the oxide dielectric layer will be described. Here, the oxide dielectric material naturally includes the case of a ferroelectric material, and there is no particular limitation on the material. However, be aware of some known materials. As an oxide dielectric having titanium as a central element, lead zirconate titanate in which part or all of titanium is replaced with zirconium, or part or all of this lead is replaced with balium Typical examples thereof include barium lead zirconate titanate, barium strontium titanate containing only alkaline earth elements, and the like. The bismuth-based dielectric comprising a layered structure, Bi 4 T i 3 0 1 2, SrB i bismuth layer dielectric such as 2 Ta 2 0 9 is a typical example. However, not limited to the examples listed here, widely known oxide dielectrics, oxide ferroelectrics, and new oxide dielectrics and oxide ferroelectrics that may be discovered in the future are oxide dielectrics. It can be used as a body layer.

次に、 第 2図から第 4図の構造の説明で後述するとした、 酸素欠損を有する導 電性酸化物層を含む 2層導電性酸化物層 1 2の特徴について説明する。 ここでは その特徴を、 本発明の第 2の目的である半導体装置の製造方法、 第 3の目的であ る酸素の拡散及び酸化反応を抑制し得る 2層導電性酸化物層の機能、 及び第 4の 目的である 2層導電性酸化物層の製造方法、 を合わせて達成するために、 2層導 電性酸化物層の構造、 機能及び製造方法を総括して説明する。  Next, features of the two-layer conductive oxide layer 12 including the conductive oxide layer having oxygen deficiency, which will be described later in the description of the structure of FIGS. 2 to 4, will be described. Here, the features are described as a second object of the present invention, a method of manufacturing a semiconductor device, a third object, a function of a two-layer conductive oxide layer capable of suppressing diffusion and oxidation of oxygen, and In order to achieve the object of 4 and the method of manufacturing a two-layer conductive oxide layer, the structure, function and manufacturing method of the two-layer conductive oxide layer will be described in general.

既に説明したように、 誘電体や電極などの酸化物層を形成する上で問題となる のは、 酸化物層を形成するために必須とされる酸化性雰囲気が、 既に積層された 拡散防止非酸化物導電層及び多結晶シリ コンを酸化することである。 ここで強調 すべきことは、 酸化物とシリ コン、 あるいは酸化物と拡散防止非酸化物導電層が 反応するのではないということである。 酸化物の標準生成自由エネルギーの大き さから、 S rや Caのアルカリ土類元素や R u、 T iの遷移元素の酸化物は S i の酸化 反応よりもずっと安定である。 さらに、 遷移金属の窒化物、 シリサイ ド、 ホウ化 物や力一バイ ドから構成される拡散防止非酸化物導電層も、 やはり自由エネルギ —の観点から酸化物と反応して酸化されるとは考えにくい。 むしろ、 酸化物層を 形成する雰囲気中の酸化活性ガスによってそれらは酸化されるのである。 そこで、 半導体装置を構成する他の要素を酸化しないという意味での非酸化性雰囲気中で 酸化物層を形成できれば、 大きな問題解決になると考えた。 As described above, a problem in forming an oxide layer such as a dielectric or an electrode is that an oxidizing atmosphere, which is indispensable for forming an oxide layer, has a problem in that an already stacked diffusion prevention layer is not provided. This is to oxidize the oxide conductive layer and the polycrystalline silicon. Emphasized here What must be done is that the oxide does not react with the silicon or the oxide with the non-diffusion non-oxide conductive layer. Oxides of alkaline earth elements such as Sr and Ca and oxides of transition elements such as Ru and Ti are much more stable than the oxidation reaction of Si due to the magnitude of the standard free energy of formation of oxides. Furthermore, a diffusion-preventing non-oxide conductive layer composed of a transition metal nitride, silicide, boride, or a carbide is also oxidized by reacting with an oxide from the viewpoint of free energy. Very Hard to think. Rather, they are oxidized by the oxidizing active gas in the atmosphere that forms the oxide layer. Therefore, we thought that a major problem could be solved if an oxide layer could be formed in a non-oxidizing atmosphere in the sense that other elements constituting the semiconductor device would not be oxidized.

酸化物誘電体キャパシタを構成する酸化物誘電体 (強誘電体を含む) や導電性 酸化物電極などの酸化物薄膜は、 一般的に、 酸化性雰囲気中で形成される。 これ は主に、 非酸化性雰囲気中では酸化物が化学的に不安定なために、 酸化物薄膜が 形成されないか形成可能であっても十分な特性が得られないか、 のいずれかの常 識的な理由による。 確かに、 鉛やビスマスといった 4及び 5厲の典型元素を含む 酸化物強誘電体においては、 これら元素の蒸気圧が高いために不十分な酸化条件 での薄膜形成は、 選択的な蒸発つまり組成変動を引き起こす。 同時に、 目的化合 物以外の分解生成物が混在することで、 強誘電特性は大き く低下する。 さらに、 非酸化性雰囲気は化合物中に酸素欠損を導入する。 チタニウムやジルコニウムな どの 4厲の遷移元素を含む酸化物誘電体では、 酸素欠損は誘電率の低下ひいては リーク電流の原因となる。 従って、 酸化物誘電体については、 その薄膜を非酸化 性雰囲気中で形成することは現実的ではない。  Oxide thin films such as oxide dielectrics (including ferroelectrics) and conductive oxide electrodes that form oxide dielectric capacitors are generally formed in an oxidizing atmosphere. This is mainly due to the fact that oxides are chemically unstable in non-oxidizing atmospheres, so that oxide thin films are not formed or sufficient properties are not obtained even if they can be formed. For intellectual reasons. Certainly, in oxide ferroelectrics containing 4 and 5% typical elements such as lead and bismuth, the formation of thin films under insufficient oxidation conditions due to the high vapor pressure of these elements leads to selective evaporation or composition. Cause fluctuations. At the same time, the presence of decomposition products other than the target compound significantly reduces the ferroelectric properties. Further, a non-oxidizing atmosphere introduces oxygen vacancies in the compound. In oxide dielectrics containing 4% transition elements such as titanium and zirconium, oxygen deficiency causes a decrease in dielectric constant and, consequently, a leakage current. Therefore, for oxide dielectrics, it is not practical to form the thin film in a non-oxidizing atmosphere.

しかし、 酸化物誘電体キャパシタを構成するもう一つの酸化物、 導電性酸化物 電極については、 非酸化性雰囲気中での形成で酸素欠損が化合物中に導入されか つ分解生成物が混在しても電極特性あるいは半導体装置への影響が小さい限りは、 その薄膜を非酸化性雰囲気中で形成することができると考えた。 つまり、 酸素欠 損は電荷担体の濃度を減少もしくは増大させると同時に移動度を変化させるなど 抵抗率を増大させるが、 電極層としての抵抗率が確保されていれば問題はない。 また、 非酸化性雰囲気中で薄膜形成することによって、 若干の分解生成物が共存 して抵抗率が増大しても、 電極屑としての抵抗率が確保されていればやはり問題 はない。 However, for the other oxide and conductive oxide electrodes that make up the oxide dielectric capacitor, oxygen vacancies are introduced into the compound when formed in a non-oxidizing atmosphere, and decomposition products are mixed. It was considered that the thin film could be formed in a non-oxidizing atmosphere as long as the influence on the electrode characteristics or the semiconductor device was small. That is, oxygen deficiency increases the resistivity by decreasing or increasing the concentration of the charge carriers and simultaneously changing the mobility, but there is no problem as long as the resistivity as the electrode layer is secured. In addition, even if some decomposition products coexist and the resistivity increases by forming a thin film in a non-oxidizing atmosphere, there is still no problem as long as the resistivity as electrode dust is secured.

第 1 図で導電性酸化物層 1 2が隣接する下部電極層の構成要素 1 3は、 第 2図 では多晶シリ コン層 2 0、 第 3図では拡散防止非酸化物導電層 3 0、 第 4図では 金属層 4 0を介して拡散防止非酸化物導罨層 3 0である。 これら層の酸化を抑制 するために、 導電性酸化物層 1 2が下部電極層の構成要素 1 3 ( 2 0、 3 0、 4 0 ) と隣接する側 1 4を非酸化性棼囲気中で形成すれば良いと考えた。 そして、 ある膜厚まで層 1 4が形成されれば、 層を形成する条件のうち酸化力、 例えば酸 素圧力や酸化性ガスの種類のみを変化させて連続して酸化性雰囲気中で導電性酸 化物層 1 2の残りの層 1 5を形成すれば良い。 つまり、 導電性酸化物層 1 2は隣 接する 2層 1 4 と 1 5から構成され、 この 2層は同一の結晶構造及び元素から構 成されるが酸素に関する組成比のみが異なり、 この隣接する 2層の内下部電極層 の構成要素 1 3側つまり基板 1 0側に位置する層 1 4が酸素欠損を含む。  In FIG. 1, the constituent elements 13 of the lower electrode layer adjacent to the conductive oxide layer 12 are a polycrystalline silicon layer 20 in FIG. 2, a diffusion preventing non-oxide conductive layer 30 in FIG. In FIG. 4, the diffusion preventing non-oxide conducting layer 30 is interposed via the metal layer 40. In order to suppress the oxidation of these layers, the conductive oxide layer 12 is placed on the side 14 adjacent to the component 13 (20, 30, 40) of the lower electrode layer in a non-oxidizing atmosphere. I thought that it should be formed. When the layer 14 is formed to a certain film thickness, the conductive property in an oxidizing atmosphere is continuously changed by changing only the oxidizing power, for example, the oxygen pressure and the type of the oxidizing gas in the conditions for forming the layer. The remaining layer 15 of the oxide layer 12 may be formed. In other words, the conductive oxide layer 12 is composed of two adjacent layers 14 and 15, which are composed of the same crystal structure and element, but differ only in the composition ratio of oxygen. The layer 14 located on the component 13 side of the two lower electrode layers, that is, on the substrate 10 side, contains oxygen vacancies.

導電性酸化物層 1 4が非酸化性雰囲気中で形成されるので、 隣接する下部電極 層の構成要素 1 3 (多晶シリコン層 2 0、 拡散防止非酸化物導電層 3 0、 金属層 4 0 ) は酸化されない。 また、 一旦形成された酸素欠損を含む導電性酸化物層 1 4は標準生成自由エネルギ-の観点からも安定であるので、 下部電極層の構成要 素 1 3 ( 2 0、 3 0、 4 0 ) はやはり酸化されない。 さらに、 第 4図の例で見ら れるように金属層 4 0が揷入される場合でも、 酸素の拡散によって拡散防止非酸 化物導電層 3 0が酸化される懸念がないので、 その厚さを限りなく薄くすること ができる。  Since the conductive oxide layer 14 is formed in a non-oxidizing atmosphere, the components 13 of the adjacent lower electrode layer (polycrystalline silicon layer 20, diffusion preventing non-oxide conductive layer 30, metal layer 4) 0) is not oxidized. In addition, since the once formed conductive oxide layer 14 containing oxygen vacancies is stable from the viewpoint of standard free energy of formation, the constituent elements 13 (20, 30, 40, 40) of the lower electrode layer are formed. ) Is still not oxidized. Further, even when the metal layer 40 is inserted as seen in the example of FIG. 4, there is no concern that the diffusion-preventing non-oxide conductive layer 30 is oxidized by diffusion of oxygen. Can be made as thin as possible.

酸素欠損を含む導電性酸化物層 1 4の形成に続いて、 酸化性雰囲気中で導電性 酸化物層 1 5及び酸化物誘電体層 1 6を形成する時にも、 導電性酸化物層 1 4が 酸素欠損を含むことで、 それが酸素の拡散緩衝層として機能する。 つまり、 一つ には、 酸素欠損を含む導電性酸化物層 1 4の表面が活性な酸化性ガスにさらされ ても、 導入された酸素欠損が酸素イオンの拡散を緩衝すると同時に、 拡散する酸 素イオンを捕獲する。 もう一つは、 繰り返しになるが、 形成された導電性酸化物 層 1 4 自体が標準生成自由エネルギーの観点から安定であるので、 下部電極層の 構成要素 1 3 ( 2 0、 3 0、 4 0 ) に対してやはり酸化防止層として機能する。 従って、 非酸化性雰囲気中で形成される酸素欠損が導入された導電性酸化物層 を含む 2層導電性酸化物層は、 優れた酸化抑止膜及び酸素拡散防止層として機能 する。 Subsequent to the formation of the conductive oxide layer 14 containing oxygen vacancies, when the conductive oxide layer 15 and the oxide dielectric layer 16 are formed in an oxidizing atmosphere, the conductive oxide layer 14 Since it contains oxygen vacancies, it functions as an oxygen diffusion buffer layer. That is, for one thing, even when the surface of the conductive oxide layer 14 containing oxygen vacancies is exposed to an active oxidizing gas, the introduced oxygen vacancies buffer the diffusion of oxygen ions and simultaneously diffuse the oxygen. Capture elementary ions. The other is, again, that the formed conductive oxide layer 14 itself is stable from the viewpoint of the standard free energy of formation, so that the constituent elements 13 (20, 30, 4) of the lower electrode layer 0) also functions as an antioxidant layer. Therefore, the two-layer conductive oxide layer including the conductive oxide layer into which oxygen vacancies are formed, which is formed in a non-oxidizing atmosphere, functions as an excellent oxidation suppressing film and an oxygen diffusion preventing layer.

非酸化性雰囲気中で形成する酸素欠損を含む導電性酸化物層 1 4の厚さについ ては、 下部電極層の構成要素 1 3 ( 2 0、 3 0、 4 0 ) を完全に被覆し、 続く酸 化性雰囲気中での導電性酸化物層 1 5及び酸化物誘電体層 1 6の形成によって下 部電極の構成要素 1 3 ( 2 0、 3 0、 4 0 ) が酸化されないと言う観点から 1 0 nm以上であることが好ま しい。 上限については特に厚さの制限はない。 導電性酸 化物層 1 2のすべてが非酸化性雰囲気中で形成された酸素欠損を含む導電性酸化 物層 1 4で構成されても良い。 ただし、 続く酸化物誘電体層 1 6は当然酸化性雰 囲気中で形成されるので、 酸化物誘電体層 1 6と隣接する導電性酸化物層 1 4の 界面は酸化され、 結果として、 界面に薄い層 1 5が形成される。 従って、 やはり 2層導電性酸化物層 1 2が形成される。  Regarding the thickness of the conductive oxide layer 14 containing oxygen vacancies formed in a non-oxidizing atmosphere, the component 13 (20, 30, 40) of the lower electrode layer is completely covered, A viewpoint that the lower electrode component 13 (20, 30, 40) is not oxidized by the subsequent formation of the conductive oxide layer 15 and the oxide dielectric layer 16 in an oxidizing atmosphere. And preferably 10 nm or more. There is no particular upper limit on the thickness. All of the conductive oxide layers 12 may be composed of the conductive oxide layers 14 containing oxygen vacancies formed in a non-oxidizing atmosphere. However, since the subsequent oxide dielectric layer 16 is naturally formed in an oxidizing atmosphere, the interface between the oxide dielectric layer 16 and the adjacent conductive oxide layer 14 is oxidized. A thin layer 15 is formed. Therefore, a two-layer conductive oxide layer 12 is formed.

ここで、 2層導電性酸化物層の製造方法に関して非酸化性雰囲気に言及する。 確実な非酸化性雰囲気は水素ガスなど還元性ガスを含む雰囲気である。 しかし、 そういった還元性雰囲気では、 酸化物薄膜が形成される過程で積極的に薄膜成長 中の酸素が奪われるために、 薄膜が金属状態まで還元される可能性が高い。 より 穏やかな非酸化性棼囲気は、 アルゴンやヘリゥムなどの希ガスや窒素などの不活 性ガス雰囲気、 あるいは酸素 (02 ) 、 一酸化窒素 (N20 ) 、 二酸化窒素 (N02 ) 、 オゾン (03 ) などの酸化性ガスを意図的に導入しない真空状態である。 また、 下 部電極層の構成要素 1 3が拡散防止非酸化物導電層 3 0 (金属層 4 0の場合も含 まれる) で、 さらにこれから形成しょうとする導電性酸化物層の方が拡散防止非 酸化物導電層 3 0よりも酸素に対する反応性に富む場合には、 酸素、 一酸化窒素、 二酸化窒素、 オゾンなどの酸化性ガスをわずかに含む微酸化性の雰囲気を適用す ることができる。 つまり、 従来技術で説明したように顕著な酸化性雰囲気では拡 散防止非酸化物導電層が酸化される可能性が高いが、 わずかな酸化性ガスしか含 まれない雰囲気では、 拡散防止非酸化物導電層は酸化されないままに酸素欠損を 含む導電性酸化物層を形成し得る。 これは、 既に化合物を形成している拡散防止 非酸化物導電層と導電性酸化物層との間に、 酸化反応に対するエネルギ-障壁が 存在することによる。 Here, a non-oxidizing atmosphere will be referred to for the method of manufacturing the two-layer conductive oxide layer. The reliable non-oxidizing atmosphere is an atmosphere containing a reducing gas such as hydrogen gas. However, in such a reducing atmosphere, oxygen is actively deprived of the growth of the thin film during the process of forming the oxide thin film, so that the thin film is likely to be reduced to a metallic state. Milder nonoxidizing棼囲gas is inert gas atmosphere such as rare gas or nitrogen such as argon or Heriumu or oxygen (0 2), nitrogen monoxide (N 2 0),, nitrogen dioxide (N0 2), ozone (0 3) is a vacuum state of not intentionally introducing an oxidizing gas such as. In addition, the component 13 of the lower electrode layer is a diffusion preventing non-oxide conductive layer 30 (including the case of the metal layer 40), and the conductive oxide layer to be formed from now is more diffused. If the non-oxide conductive layer 30 is more reactive than oxygen, use a slightly oxidizing atmosphere containing a small amount of oxidizing gas such as oxygen, nitric oxide, nitrogen dioxide, or ozone. Can be In other words, the diffusion-preventing non-oxide conductive layer is likely to be oxidized in a remarkable oxidizing atmosphere as described in the related art, but in an atmosphere containing only a small amount of oxidizing gas, the diffusion-preventing non-oxide conductive layer is oxidized. The conductive layer can form a conductive oxide layer containing oxygen vacancies without being oxidized. This is due to the existence of an energy barrier for an oxidation reaction between the diffusion-preventing non-oxide conductive layer already forming the compound and the conductive oxide layer.

具体的な非酸化性雰囲気は、 導電性酸化物層を形成する個々の薄膜形成法に依 存する。 まず、 希ガスや不活性ガス雰囲気中及び真空中で酸化物薄膜を形成する 時には、 成長雰囲気から一切の酸素が供給されないために、 薄膜形成源が酸素を 含む必要がある。 この範囀には、 焼結体酸化物ターゲッ トを用いるスパッタリ ン グ法、 焼結体酸化物ターゲッ トを用いるレーザ蒸着法、 酸化物蒸発源を用いる電 子ビーム蒸着法、 などが考えられる。 スパッタ リ ング法は放電ガスを必要とする ので、 純度 3 N ( 99. 9 ¾ ) 以上のアルゴン (A r ) ガスを数ミ リから数十 mTorr 程度導入すれば良い。 純度の低いガスは不安定な放電や異相の析出など予期せぬ 結果をもたらすので好ましくない。 レーザ蒸着法では真空中で酸化物薄膜を形成 することができる。 もちろん、 スパッタ リ ング法と同様に希ガスを導入しても支 障はないが、 原理的には何ら意味はない。 酸化物蒸発源を用いる電子ビーム蒸着 法でも真空中で薄膜を形成することができる。 ここで言う真空とは、 酸素、 一酸 化窒素、 二酸化窒素、 オゾンなどの酸化性ガスを意図的に導入せず真空排気機器 によって達成される状態を示す。 圧力条件は、 レーザ蒸着法と電子ビーム蒸着法 の双方とも非酸化性雰囲気の点から 1 β Torr以下であることが好ましい。  The specific non-oxidizing atmosphere depends on the individual thin film forming method for forming the conductive oxide layer. First, when an oxide thin film is formed in a rare gas or inert gas atmosphere or in a vacuum, no oxygen is supplied from the growth atmosphere, so the thin film forming source needs to contain oxygen. Examples of this song include a sputtering method using a sintered oxide target, a laser evaporation method using a sintered oxide target, and an electron beam evaporation method using an oxide evaporation source. Since the sputtering method requires a discharge gas, an argon (Ar) gas having a purity of 3 N (99.9 99) or more may be introduced from a few millimeters to several tens of mTorr. Gases of low purity are not preferred because they can lead to unexpected results such as unstable discharge and precipitation of foreign phases. With the laser deposition method, an oxide thin film can be formed in a vacuum. Of course, there is no problem if a rare gas is introduced as in the case of the sputtering method, but there is no meaning in principle. An electron beam evaporation method using an oxide evaporation source can also form a thin film in a vacuum. The term “vacuum” as used herein refers to a state achieved by a vacuum exhaust device without intentionally introducing an oxidizing gas such as oxygen, nitrogen monoxide, nitrogen dioxide, or ozone. The pressure condition in both the laser deposition method and the electron beam deposition method is preferably 1 β Torr or less from the viewpoint of a non-oxidizing atmosphere.

次に、 酸素、 一酸化窒素、 二酸化窒素、 オゾンなどの酸化性ガスをわずかに含 む微酸化性の雰囲気で、 拡散防止非酸化物導電層上 (金属層を介する場合を含む c ) に酸化物薄膜を形成する方法は、 上記すベての薄膜形成法に適用することがで きる。 スパッタ リ ング法では放電ガスに酸化性ガスを混入させれば良く、 レーザ 蒸着法では酸化性ガスを導入すれば良い。 真空中での電子ビーム蒸着法では蒸発 源は酸化物に限定されたが、 微酸化性雰囲気の場合には金属蒸発源も用いること ができる。 したがって、 加熱源も電子ビームに限定されずエフユージョ ンセル ( Kセル) などのヒータを用いても良い。 圧力については、 スパッタ リ ング法、 レ —ザ蒸着法、 電子ビーム及びヒータを用いる蒸着法すべてにおいて、 非酸化性雰 囲気の観点から導入する酸化性ガスの全圧もしくは分圧が 10 n Torr以下である ことが好ま しい。 Next, in a slightly oxidizing atmosphere containing a small amount of oxidizing gas such as oxygen, nitric oxide, nitrogen dioxide, and ozone, oxidation is performed on the diffusion-prevention non-oxide conductive layer ( c including the case where a metal layer is interposed). The method of forming the object thin film can be applied to all the above-mentioned thin film forming methods. In the sputtering method, an oxidizing gas may be mixed into the discharge gas. In the laser vapor deposition method, the oxidizing gas may be introduced. In electron beam evaporation in vacuum, the evaporation source was limited to oxides, but in a slightly oxidizing atmosphere, use a metal evaporation source. Can be. Therefore, the heating source is not limited to the electron beam, and a heater such as an effusion cell (K cell) may be used. Regarding the pressure, the total pressure or partial pressure of the oxidizing gas introduced from the viewpoint of the non-oxidizing atmosphere is 10 nTorr or less in all of the sputtering method, the laser deposition method, the evaporation method using the electron beam and the heater. It is preferable that

以上の考えをもとに、 導電性酸化物の中から、 (a ) 室温での抵抗率が 0.01 Ω · cm以下、 ( b ) 非酸化性雰囲気、 典型的な条件として酸素圧力 1 β Torrか つ 700°Cで安定、 という条件に適合する導電性酸化物を、 数多くの導電性酸化物 が知られているルチル構造、 ベロブスカイ ト構造、 Re03構造の中から調べ以下の 結果を得た。 Based on the above idea, from among the conductive oxides, (a) a resistivity at room temperature of 0.01 Ω · cm or less, (b) a non-oxidizing atmosphere, and an oxygen pressure of 1 β Torr as a typical condition. One stable at 700 ° C, conforming conductive oxide on the condition that was obtained rutile structure known numerous conductive oxides, Berobusukai preparative structure, the following results examined from the Re0 3 structure.

まず、 上の条件 ( b ) を満たす観点からは、 導電性酸化物を構成する中心陽ィ オンが多価イオンであることは望ましくない。 従って、 まず Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Vを含む導電性酸化物は除外される。  First, from the viewpoint of satisfying the above condition (b), it is not desirable that the central cation constituting the conductive oxide is a multiply-charged ion. Therefore, first, conductive oxides containing Cr, Mn, Fe, Co, Ni, Cu, and V are excluded.

ルチル構造をとる導電性酸化物としては、 Ru02、 Ir02、 の二つが挙げられる。 ぺロブスカイ ト構造をとる導電性酸化物としては、 R u (ルテニウム) を中心 元素とする CaRu03及び SrRu03、 Ti (チタニウム) を中心元素とする SrTi03の Srの一部を 0.5重量%以上かつ 4.0重量%以下の量の Laで置換した (La、 Sr) Ti03、 の三つが举げられる。 As the conductive oxide taking the rutile structure, Ru0 2, Ir0 2, include two of. As the conductive oxide taking the pair Robusukai bets structure, CaRu0 3 and SrRu0 3, Ti (titanium) part of SrTi0 3 of Sr centering element 0.5 wt% or more of a central element R u (ruthenium) and 4.0 was replaced by% by weight of the amount of La (La, Sr) Ti0 3 , three of are举up.

Re03構造をとる導電性酸化物としては、 Re03が挙げられる。 As the conductive oxide taking the re0 3 structure include re0 3.

非酸化性雰囲気中で導電性酸化物を形成する時には、 酸素欠損が導入されるこ とを上に述べた。 熱平衡状態では点欠陥としては 0.1¾!以下のわずかの酸素欠損し か導入されないが、 薄膜形成は非平衡状態で進行することが多いので熱平衡状態 とは異なり、 過剰の酸素欠損が凍結されやすい。 しかし、 薄膜固有の酸素欠損濃 度を測定することは現時点の分析技法でも困難を極めるので、 厳密な数値で許さ れる酸素欠損濃度を定義することは事実上できない。 一方、 X線ディフラク トメ —夕による非酸化性雰囲気で形成した薄膜の構造解析では、 結晶構造が確認され ると同時に顕著な不純物は確認されず、 I C P S (誘導結合プラズマ分光法) に よる組成分析では陽イオンの化学量論組成が確認された。 この時、 抵抗率は同じ 薄膜を酸化性雰囲気で形成する場合よりも最大で一桁近く増大した。 このことは、 酸素欠損が導入されていることを示唆する。 It was mentioned above that oxygen vacancies are introduced when forming a conductive oxide in a non-oxidizing atmosphere. In the thermal equilibrium state, only a few oxygen vacancies of 0.1% or less are introduced as point defects. However, unlike the thermal equilibrium state, excess oxygen vacancies are easily frozen unlike thin-film formation, which often proceeds in a non-equilibrium state. However, measuring the oxygen deficiency concentration inherent in thin films is extremely difficult even with the current analysis techniques, and it is virtually impossible to define an allowable oxygen deficiency concentration with a strict numerical value. On the other hand, X-ray diffraction analysis of the thin film formed in a non-oxidizing atmosphere by X-ray diffraction confirmed the crystal structure and no significant impurities at the same time, and the ICPS (inductively coupled plasma spectroscopy) The composition analysis confirmed the stoichiometric composition of the cation. At this time, the resistivity increased by up to an order of magnitude compared to the case where the same thin film was formed in an oxidizing atmosphere. This suggests that oxygen deficiency has been introduced.

そこで、 非酸化性雰囲気で形成された薄膜について、 許される酸素欠損の濃度 を目的の構造が安定に存在し得るという条件で定義する。 具体的には以下の通り である。 ルチル構造においては、 Rii及び Irの遷移元素を Mで表現した酸素欠損 を含む化学式 M02_xにおいて、 酸素欠損量、 x、 が 0より も大き くかつ当該のルチ ル構造を安定に維持し得る値よりも小さい、 と定義する。 ぺロブスカイ 卜構造に おいては、 Ru及び Tiの遷移元素を Mで、 Ca、 Sr及び La元素を Λで表現した酸 素欠損を含む化学式 AM03_xにおいて、 酸素欠損量 Xが 0より も大きくかつ当該の ベロブスカイ ト構造を安定に維持し得る値 (上限値) よりも小さいと定義する。 この時、 酸素欠損の導入によって陽イオン間に相互置換型格子欠損が導入されて 格子定数が標準バルク値より も増大するような場合でも、 その基本骨格はべロブ スカイ ト構造の範畴にあるとみなす。 Re03構造においては、 酸素欠損を含む化学 式 Re03_xにおいて、 酸素欠損量 Xが 0よりも大きくかつ当該の Re03構造を安定 に維持し得る値よりも小さいと定義する。 Therefore, for a thin film formed in a non-oxidizing atmosphere, the allowable concentration of oxygen vacancies is defined under the condition that the target structure can exist stably. The details are as follows. In rutile structure, in the chemical formula M0 2 _ x containing oxygen vacancies expressed in M a transition element of Rii and Ir, oxygen deficiency, x, but stably maintaining the size KuKatsu the relevant Ruchi Le structure than 0 Is smaller than the obtained value. Oite The Bae Robusukai Bok structure, a transition element of Ru and Ti in M, Ca, in the chemical formula AM0 3 _ x containing oxygen deficient expressed in the Sr and La elements lambda, than the oxygen deficiency amount X 0 It is defined to be large and smaller than the value (upper limit) that can stably maintain the perovskite structure. At this time, even if the introduction of oxygen vacancies introduces intersubstitutional lattice vacancies between the cations and the lattice constant increases beyond the standard bulk value, the basic skeleton is in the category of the perovskite structure Consider In Re0 3 structure, in the chemical formula re0 3 _ x containing oxygen deficiency, the oxygen deficiency amount X is less to define than large and the value capable of maintaining the in Re0 3 structural stability than 0.

酸素欠損の導入は、 導電性酸化物の抵抗率を最大で一桁近く増大させるが、 酸 化物を電極として用いるのに十分低い抵抗を維持していた。 例えば、 SrRu03-xで は、 抵抗率は一桁近く増大したが、 絶対値として数 in Ω · cmの小さい抵抗率が得 られた。 lr02_x、 Ru02x、 Re03-xでは、 抵抗率の増大は最大で 2倍程度と小さか つた。 つまり、 上で例示した導電性酸化物を非酸化性雰囲気で形成しても、 電極 層へ適用する上では十分な抵抗率が保持されることが確認された。 The introduction of oxygen vacancies increased the resistivity of the conductive oxide by up to an order of magnitude, but maintained the resistance low enough to use the oxide as an electrode. For example, SrRu0 3 - In x, but the resistivity increased an order of magnitude near a small resistivity of several in Omega · cm was obtained as an absolute value. In lr0 2 _ x , Ru0 2x , and Re0 3-x , the increase in resistivity was as small as about 2 times at the maximum. In other words, it was confirmed that even when the conductive oxide exemplified above was formed in a non-oxidizing atmosphere, sufficient resistivity was maintained for application to the electrode layer.

非酸化性雰囲気中で導電性酸化物を形成する時には、 分解生成物が共存する可 能性を上に述べた。 Ru02及び lr02のルチル構造、 及び Re03は一種類の遷移元素 のみを含む単元素酸化物であるので、 分解して他の化合物が形成される懸念はな い。 他方、 AM03で表されるぺロブスカイ ト構造はアルカリ土類元素を主体とする 元素 Aと遷移元素からなる元素 Mで構成される複酸化物であるので、 非酸化性雰 囲気かつ 700 程度の高温では分解生成物が共存する可能性が大きい。 実際、 了 ルカリ土類として Caを含むときには分解生成物として数! ¾程度の CaOの存在が X 線ディフラク トメ一夕で確認された。 S rを含む場合にも、 より強い非酸化性雰囲 気、 つまりより高い温度かつより低い圧力では、 S rOが分解生成物として観察さ れた。 し力、し、 いずれの場合でも室温での抵抗率への影響はほとんど認められな かった。 これは導電性酸化物中に抵抗の高い分解生成物が分散する形で共存して おり、 ίΕ流は抵抗のより低い目的の導電性酸化物中を伝導するからと思われる。 但し、 温度を室温より低下させたときには、 分解生成物が存在しない場合には 温度低下とともに抵抗率が低下する金属的な伝導が観察されたが、 分解生成物が 共存する場合には抵抗率が増大する伝導が観察された。 これには、 結晶粒界など にミ クロに偏析する分解生成物の伝導特性が関与していると思われる。 When forming a conductive oxide in a non-oxidizing atmosphere, the possibility that decomposition products coexist is described above. Ru0 2 and lr0 2 of rutile structure, and since Re0 3 is a single element oxides containing only one kind of transition element, concerns have names that other compound decomposition is formed. On the other hand, since the pair Robusukai preparative structure represented by AM0 3 is a double oxide composed of the element M consisting of transition elements and element A consisting mainly of alkaline earth elements, non-oxidizing Kiri At ambient and high temperatures around 700, decomposition products are likely to coexist. In fact, the presence of Ca as a decomposition product when Ca was included as alkaline earth was confirmed by X-ray diffractometry. Even when Sr was included, SrO was observed as a decomposition product in a stronger non-oxidizing atmosphere, that is, at a higher temperature and lower pressure. In each case, there was almost no effect on the resistivity at room temperature. This is because the high-resistance decomposition products coexist in the conductive oxide in a dispersed manner, and the convection is likely to be conducted through the lower-resistance target conductive oxide. However, when the temperature was lowered below room temperature, metallic conduction in which the resistivity decreased with the temperature decrease was observed when no decomposition products were present, but when the decomposition products coexisted, the resistivity was reduced. Increased conduction was observed. This is thought to be due to the conduction properties of the decomposition products that segregate into microparticles at the grain boundaries.

いずれにしろ、 室温もしくは室温以上の温度では、 分解生成物の共存による抵 抗率の増大は、 導電性酸化物層としてあるいは導電性酸化物層を用いる半導体装 置として、 許容される範囲であった。 すなわち、 ベロブスカイ ト構造をとる導電 性酸化物は、 CaRu 03、 S r Ru03、 SrT i 03の S rの一部を 0. 5重量%以上かつ 4. 0重 量%以下の量の Laで置換した(La、 S r ) T i 03、 と、 当該酸化物を構成するアル力 リ土類元素の酸化物、 Ca O もしくは S rO、 との混合相であっても良い。 In any case, at room temperature or at a temperature higher than room temperature, the increase in resistance due to the coexistence of decomposition products is within an allowable range as a conductive oxide layer or a semiconductor device using the conductive oxide layer. Was. In other words, the conductive oxide taking the Berobusukai DOO structure, Caru 0 3, the S r Ru0 3, SrT i 0 3 and a part of the S r 0. 5 wt% or more of 4.0 by weight% or less of the amount It was replaced with La (La, S r) T i 0 3, and an oxide of Al force re-earth element constituting the oxide may be a mixed phase of Ca O or S and rO, and.

ここまでで、 本発明の第 1の目的を達成するための手段、 酸化物誘電体をキヤ パシタ絶縁膜に用い、 かつ 2層の導電性酸化物層を電極構成要素として用いる半 導体装置の特徴について述べ、 本発明の第 2の目的を達成するための手段、 その ような半導体装置を製造する方法の内、 2層導電性酸化物層の製造方法について 述べ、 本発明の第 3の目的を達成するための手段、 酸素の拡散及び酸化反応を抑 制し得る 2層導電性酸化物層の特徵について述べ、 本発明の第 4の目的を達成す るための手段、 2層導電性酸化物層の製造方法について合わせて述べた。  So far, means for achieving the first object of the present invention, features of a semiconductor device using an oxide dielectric as a capacitor insulating film and using two conductive oxide layers as electrode components Means for achieving the second object of the present invention, and among the methods for manufacturing such a semiconductor device, a method for manufacturing a two-layer conductive oxide layer are described, and the third object of the present invention is described. Means for achieving this, the features of the two-layer conductive oxide layer capable of suppressing oxygen diffusion and oxidation reaction are described, and means for achieving the fourth object of the present invention, a two-layer conductive oxide The method of manufacturing the layer was also described.

最後に、 本発明の第 2の目的を達成するための手段、 そのような半導体装置を 製造する方法について述べる。 本発明の半導体装置の製造方法は、 第 1図から第 4図を用いてその構造を説明した様に多結晶シリコン、 拡散防止非酸化物導電層、 金属層、 及び 2層導電性酸化物層から構成される下部電極層を基板上に形成する 工程を含む。 通常、 多結晶シ リ コン層は化学気相成長法により、 拡散防止非酸化 物導電層はスパッタリ ング法や蒸着法や C V D法により、 金属層はスパッタリ ン グ法により形成されるが、 ここに举げた形成法は一例であって特に限定されるも のではない。 2層導電性酸化物層の形成法については、 上記で詳細に説明したと おりである。 また、 下部電極屑を構成する各層の具体的な化合物についても、 上 記で詳細に説明したとおりである。 Finally, means for achieving the second object of the present invention and a method for manufacturing such a semiconductor device will be described. As described with reference to FIGS. 1 to 4, the method for manufacturing a semiconductor device according to the present invention includes the steps of: Forming a lower electrode layer composed of a metal layer and a two-layer conductive oxide layer on the substrate. Usually, the polycrystalline silicon layer is formed by chemical vapor deposition, the diffusion-preventing non-oxide conductive layer is formed by sputtering, vapor deposition, or CVD, and the metal layer is formed by sputtering. The formation method is not limited particularly. The method for forming the two-layer conductive oxide layer is as described in detail above. In addition, specific compounds of each layer constituting the lower electrode waste are as described in detail above.

この下部電極層の上に酸化物誘電体層を形成し、 さらにその上に上部電極層を 形成することによって、 これら上部及び下部電極層に酸化物誘電体層が挟まれた 構造の酸化物誘電体キャパシタが形成される。 酸化物誘電体層を構成する具体的 な化合物は、 上記で詳細に説明したとおりである。 酸化物誘電体層は、 アルコキ シ ドを原料として用いるゾルゲル法、 蒸着法、 化学気相成長法、 スパッタ リ ング 法などによって形成可能であり、 その形成法は特に限定されない。 上部電極層は、 誘電体キャパシタの電流一電圧特性の対称性および強誘電体キャパシ夕の分極ヒ ステリ シス曲線の対称性を重んじる立場からは、 下部電極層に用いられたのと同 じ導電性酸化物であることが望ましい。 しかし、 下部電極層とは異なる導電性酸 化物、 あるいは白金、 ルテニウムやイ リ ジウムに代表される貴金属が上部電極層 として用いられても、 半導体装置の機能としては何ら問題はない。 上部電極層と して用いられる導電性酸化物の形成は、 スパッタ リ ング法、 蒸着法、 ゾルゲル法、 化学気相成長法など種々の薄膜形成法によって可能であり、 特に限定されない。 上部電極層として貴金属が用いられるときも、 その形成法は特に限定されない。 酸化物誘電体キャパシ夕、 つまり、 下部電極層を形成するに先立ち、 基板上には M O S トランジスタの 1部が形成される。 この M O S トランジスタのソース領域 または ドレイン領域と下部電極層とは、 M O S トランジスタを形成した半導体基 板を被覆する絶縁層中に穿孔されたコンタク トホール内に埋め込まれた導電性物 質を介して、 電気的に接続される。 このコンタク トホールに埋め込まれる導電性 物質としては、 化学気相成長法で形成された多結晶シリコンが用いられることが 多いが、 やはり形成法及び埋め込み物質は限定されるものではない。 An oxide dielectric layer is formed on the lower electrode layer, and an upper electrode layer is further formed thereon, so that the oxide dielectric layer has a structure in which the oxide dielectric layer is sandwiched between the upper and lower electrode layers. A body capacitor is formed. Specific compounds constituting the oxide dielectric layer are as described in detail above. The oxide dielectric layer can be formed by a sol-gel method using alkoxide as a raw material, a vapor deposition method, a chemical vapor deposition method, a sputtering method, or the like, and the forming method is not particularly limited. The upper electrode layer has the same conductivity as that used for the lower electrode layer from the standpoint of respecting the symmetry of the current-voltage characteristics of the dielectric capacitor and the symmetry of the polarization hysteresis curve of the ferroelectric capacitor. Desirably, it is an oxide. However, even if a conductive oxide different from that of the lower electrode layer or a noble metal represented by platinum, ruthenium or iridium is used as the upper electrode layer, there is no problem in the function of the semiconductor device. The conductive oxide used as the upper electrode layer can be formed by various thin film forming methods such as a sputtering method, an evaporation method, a sol-gel method, and a chemical vapor deposition method, and is not particularly limited. When a noble metal is used as the upper electrode layer, the method of forming the noble metal is not particularly limited. Prior to forming the oxide dielectric capacity, ie, the lower electrode layer, a portion of the MOS transistor is formed on the substrate. The source or drain region of the MOS transistor and the lower electrode layer are electrically connected to each other through a conductive material buried in a contact hole formed in an insulating layer covering a semiconductor substrate on which the MOS transistor is formed. Connected. As the conductive material embedded in the contact hole, polycrystalline silicon formed by chemical vapor deposition may be used. There are many, but again, the forming method and the filling material are not limited.

2 . 導電性材料選定指針 2  2. Conductive material selection guidelines 2

この指針は、 特に (従来技術 7 ) の構成に基づき、 本発明の第 1の目的並びに 本発明の第 2の目的を達成することを夫々配慮したものである。  These guidelines are based on the configuration of (Prior Art 7), and take into account achieving the first object of the present invention and the second object of the present invention, respectively.

上記第 1の目的を達成するために、 本発明の半導体装置は、 基板上に、 窒化チ 夕ニゥムアルミニウム層を含む下部電極層と、 その上に設けられた酸化物誘電体 層と、 さらにその上に設けられた上部電極層とからなる酸化物誘電体キャパシ夕 が配置される。 下部電極層の構造として 2つの断面模式構造を第 5図と第 6図に 与える。 図は、 半導体装置の酸化物誘電体キャパシ夕の詳細構造を示すものでは なく、 キャパシタを構成する各層の積層をわかりやすく示したものである。  In order to achieve the first object, a semiconductor device according to the present invention includes, on a substrate, a lower electrode layer including a titanium aluminum nitride layer, an oxide dielectric layer provided thereon, An oxide dielectric capacitor comprising an upper electrode layer provided thereon is disposed. FIGS. 5 and 6 show two cross-sectional schematic structures as the structure of the lower electrode layer. The figure does not show the detailed structure of the oxide dielectric capacity of the semiconductor device, but rather shows the stacking of each layer constituting the capacitor in an easy-to-understand manner.

第 5図では、 下部電極層 1 1 は、 多結晶シリ コン層 2 0の上に積層した窒化チ タニゥムアルミニウム層 5 0とさらにその上に積層する金属層 4 0とから構成さ れる。 ここで、 導電性の多結晶シリコン層 2 0は上記概念で説明した第 1の領域 に対応する。 窒化チタニウムアルミニウム層 5 0は上記概念で説明した第 2の領 域に対応する。 金属層 4 0は上記概念で説明した第 3の領域に対応する。 第 6図 では、 第 5図に示した下部電極層 1 1の構成要素に加えてさらに導電性酸化物層 6 0が積層される。 この導電性酸化物層 6 0は上記概念で説明した第 3の領域と 第 4の領域との間に設けられた領域に対応する。  In FIG. 5, the lower electrode layer 11 is composed of a titanium aluminum nitride layer 50 laminated on a polycrystalline silicon layer 20 and a metal layer 40 further laminated thereon. Here, the conductive polycrystalline silicon layer 20 corresponds to the first region described in the above concept. The titanium aluminum nitride layer 50 corresponds to the second region described in the above concept. The metal layer 40 corresponds to the third region described in the above concept. In FIG. 6, a conductive oxide layer 60 is further laminated in addition to the components of the lower electrode layer 11 shown in FIG. This conductive oxide layer 60 corresponds to the region provided between the third region and the fourth region described in the above concept.

また、 下部電極層 1 1は基板上に形成された半導体素子の所望の領域、 例えば、 M 0 S トランジスタのソースまたは ドレイン領域と電気的に接続される。  Further, the lower electrode layer 11 is electrically connected to a desired region of the semiconductor element formed on the substrate, for example, a source or drain region of the MOS transistor.

拡散及び酸化反応を防止する窒化チタニウムアルミニゥム層 5 0の機能につい て説明する。 従来技術で説明したように、 これまで検討されてきた拡散及び酸化 反応防止層としての窒化チタニウムは、 酸素に対する耐反応性が弱く これを補う ためにさらに白金などの金属層を介在させることが必須とされてきた。 しかも、 白金中を粒界拡散する酸素の拡散時間を確保するために、 200 nm近い厚さの白金 層が必要とされた。 一方で、 高い導電性を示しかつある程度の酸化防止層として 機能する窒化チタニウムは捨てがたい魅力を有する。 そこで、 窒化チタニウムに 笫 2の金属元素を添加することによって耐酸化性を向上させる可能性を検討した 結果、 アルミニウムを添加した窒化チタニウムにおいて、 著しい耐酸化性が見出 された。 The function of the titanium aluminum nitride layer 50 for preventing diffusion and oxidation reaction will be described. As explained in the prior art, titanium nitride as a diffusion and oxidation reaction prevention layer, which has been studied so far, has low resistance to oxygen and requires an intervening metal layer such as platinum to compensate for this. And has been. In addition, a platinum layer with a thickness of about 200 nm was required to secure the diffusion time of oxygen that diffuses at the grain boundaries in platinum. On the other hand, titanium nitride, which has high conductivity and functions as an antioxidant layer to some extent, has an indispensable appeal. Therefore, titanium nitride As a result of examining the possibility of improving the oxidation resistance by adding the metal element (2), remarkable oxidation resistance was found in titanium nitride to which aluminum was added.

窒化物が酸化されて酸化物に変化する反応は、 酸素が窒化物中の窒素と置換す る反応によると考えられている。 つまり、 定性的には、 窒化物と酸化物の間のェ ネルギー障壁の高さがこの置換反応を支配していると考えて良い。 本発明で得ら れた窒化チタニウムアルミニウムにおいて、 酸素に対する耐反応性が向上するこ とは、 このエネルギー障壁を高くする効果によると考えられる。 その化学的根拠 によらず窒化チタニウムのチタニウムの一部をアルミ二ゥムで置換することによ つて、 酸化防止層として十分に機能し得ることが見出された。 この耐酸化性の点 からは、 窒化チタニウムアルミニウムの化学式を (Ti1-XA1X) で表した時、 Xは 0.2以上であることが望ま しく、 yは 0.4以上であることが望ま しい。 Xが 0.2よりも小さい時には耐酸化性の向上が見られない。 yが 0.4より も小さいと X線回折測定において酸化による Π02が観察された。 It is believed that the reaction that oxidizes nitride to oxide is due to the reaction of oxygen to replace nitrogen in nitride. In other words, qualitatively, the height of the energy barrier between the nitride and the oxide can be considered to dominate this substitution reaction. It is considered that the improvement in the resistance to oxygen in the titanium aluminum nitride obtained by the present invention is due to the effect of increasing the energy barrier. Regardless of the chemical basis, it has been found that by substituting part of titanium of titanium nitride with aluminum, it can function sufficiently as an antioxidant layer. From the viewpoint of the oxidation resistance, when the chemical formula of titanium aluminum nitride is represented by (Ti 1-X A1 X ), it is preferable that X is 0.2 or more and y is 0.4 or more. When X is less than 0.2, no improvement in oxidation resistance is observed. y is Pai0 2 is observed due to oxidation in the small X-ray diffraction measurement than 0.4.

窒化アルミ二ゥムは高抵抗体であるので、 チタニウムの一部をアルミ ゥムで置 換することにより、 抵抗率は増大する。 半導体装置の電極として利用し得る観点 から、 抵抗率は 10m Ω · cm以下であることが望ま しい。 従って、 化学式を  Since aluminum nitride is a high-resistance material, the resistivity increases by replacing some of the titanium with aluminum. From the viewpoint of being usable as an electrode of a semiconductor device, the resistivity is desirably 10 mΩ · cm or less. Therefore, the chemical formula

(Ti1-)(A1X) yNyで表した時、 Xは 0.5以下であることが望ま しく、 yは 0.4以 上 0. 6以下であることが望ま しい。 また、 異相が析出すると電極としての不均一 が生じて微細なメモリセルを構築できなくなる。 この点からは、 Xは 0. 6以下で あることが望ましく、 yは 0.2以上 0.6以下であることが望ましい。 When represented by (Ti 1−) ( A1 X ) y N y , it is desirable that X is 0.5 or less and y is 0.4 or more and 0.6 or less. In addition, if a heterogeneous phase is deposited, non-uniformity as an electrode occurs, so that a fine memory cell cannot be constructed. From this point, X is desirably 0.6 or less, and y is desirably 0.2 or more and 0.6 or less.

以上をまとめると、 化学式、 (Ti^xAlx -yN^ で表される窒化チタニウムアル ミニゥムにおいて、 Xは 0.2以上 0.5以下であることが望ま しく、 yは 0.4以上 0.6以下であることが望ましい。  Summarizing the above, in the titanium nitride aluminum represented by the chemical formula (Ti ^ xAlx-yN ^), X is desirably 0.2 or more and 0.5 or less, and y is desirably 0.4 or more and 0.6 or less.

窒化チタニウムアルミニウム層に要求されるもう一つの機能、 即ち拡散防止層 については、 本質的に母化合物である窒化チタニウムの構造が堅持されているの で拡散防止効果は窒化チタニウムと同等であり、 特に問題は見出されなかった。 第 5図及び第 6図に示される窒化チタニウムアルミニゥム層を被覆する金属層 4 0は、 耐酸化性に富む貴金属群、 白金、 イ リ ジウム、 ルテニウムより選ばれた 少なく とも一種であることが望ま しい。 窒化チタニウムを酸化防止層として用い る従来構造では、 200 n m近い厚さの金属層が要求された。 しかし、 本発明の窒化 チタニウムアルミ二ゥムを用いる場合には、 耐酸化性の向上が図られているので、 金属層の厚さは窒化チタニウムアルミニウム表面を十分に被覆し得る厚さ、 例え ば 30 n mあれば十分である。 Another function required for the titanium aluminum nitride layer, that is, the diffusion prevention layer, has the same diffusion prevention effect as titanium nitride because the structure of titanium nitride, which is the parent compound, is essentially maintained. No problem was found. The metal layer 40 that covers the titanium aluminum nitride layer shown in FIGS. 5 and 6 is at least one kind selected from a group of noble metals having high oxidation resistance, platinum, iridium, and ruthenium. Is desirable. Conventional structures using titanium nitride as an antioxidant layer required a metal layer close to 200 nm thick. However, when the titanium aluminum nitride of the present invention is used, since the oxidation resistance is improved, the thickness of the metal layer is such that it can sufficiently cover the surface of the titanium aluminum nitride, for example. 30 nm is enough.

第 5図に示す構造では金属層 4 0上に酸化物誘電体層 1 6が形成されるが、 第 6図に示すように酸化物誘電体層 1 6と金属層 4 0との間に導電性の酸化物層 6 0が下部電極の構成要素として挿入されても良い。 導電性酸化物層を酸化性雰囲 気で形成する時の条件は、 通常、 酸化物誘電体層の形成条件と同等であるので、 窒化チタニウムアルミニゥム層に要求される耐酸化性もまた同等と考えて良い。 導電性酸化物層としては、 金属層に用いられるのと同じ貴金属群の元素を含むこ とで金属層との界面での接合性を良好にするという観点から、 I r02、 R u 02、 S r R u 03、 Re03より選ばれた少なく とも一種であることが望ま しい。 In the structure shown in FIG. 5, the oxide dielectric layer 16 is formed on the metal layer 40, but as shown in FIG. 6, a conductive layer is formed between the oxide dielectric layer 16 and the metal layer 40. Oxide layer 60 may be inserted as a component of the lower electrode. The conditions for forming the conductive oxide layer in an oxidizing atmosphere are generally the same as the conditions for forming the oxide dielectric layer, so that the oxidation resistance required for the titanium aluminum nitride layer is also reduced. It may be considered equivalent. From the viewpoint that the conductive oxide layer contains the same noble metal group element as that used for the metal layer to improve the bondability at the interface with the metal layer, Ir 0 2 , Ru 0 2 , S r R u 0 3, Re0 at least selected from 3 arbitrary desired to be a type.

酸化物誘電体層 1 6として好適な材料について述べる。 ここで、 酸化物誘電体 材料が特に限定される理由はない。 しかし、 いくつかの既知材料を举げておく。 チタニウムを中心元素とする酸化物誘電体としては、 チタニウムの一部もしくは 全部をジルコニウムで置換したチタン酸ジルコン酸鉛、 この鉛の一部もしくは全 部をバリゥムで置換して得られるチタン酸ジルコン酸バリゥム鉛、 アル力リ土類 元素のみを含むチタン酸バリウムス トロンチウム、 などが典型例である。 層状構 造からなるビスマス誘電体としては、 B i 4 T i 301 2、 S rB i 2 Ta 20gなどのビスマス層 状誘電体が典型例である。 ただし、 ここで列挙した例に限らず、 広く既知の酸化 物誘電体、 酸化物強誘電体及び今後発見されるかもしれない新規な酸化物誘電体、 酸化物強誘電体などが、 酸化物誘電体層として利用され得る。 Materials suitable for the oxide dielectric layer 16 will be described. Here, there is no particular limitation on the oxide dielectric material. However, be aware of some known materials. Examples of the oxide dielectric having titanium as a central element include lead zirconate titanate in which part or all of titanium is replaced with zirconium, and zirconate titanate obtained by replacing part or all of this lead with barium. Typical examples are barium lead and barium strontium titanate containing only alkaline earth elements. The bismuth dielectric consisting of a layered structure, B i 4 T i 3 0 1 2, S rB i 2 Ta 2 0g bismuth layer-like dielectric such as is a typical example. However, not limited to the examples listed here, widely known oxide dielectrics, oxide ferroelectrics, and new oxide dielectrics and oxide ferroelectrics that may be discovered in the future, etc. It can be used as a body layer.

上部電極層 1 7は、 導電性物質であれば、 金属もしくは酸化物にとらわれない。 金属であれば下部電極層中の金属層 4 0の説明で上記に列挙した一連の貴金属を 利用可能である。 酸化物であれば下部電極層中の導電性酸化物層 6 0の説明で上 記に列举した一連の酸化物を利用可能である。 但し、 上部電極層 1 7の材料は限 定されるものではない。 The upper electrode layer 17 is not limited to metals or oxides as long as it is a conductive substance. If it is a metal, a series of noble metals listed above in the description of the metal layer 40 in the lower electrode layer Available. As the oxide, a series of oxides listed above in the description of the conductive oxide layer 60 in the lower electrode layer can be used. However, the material of the upper electrode layer 17 is not limited.

次に、 上記第 2の目的を達成するために、 本発明の半導体装置の製造方法は、 スパッ夕 リ ング法を用いて窒化性雰囲気中で窒化チタニウムアルミニウム拡散及 び酸化防止層を含む下部電極層を基板上に形成する工程を有する。 スパッタリ ン グターゲッ トととしては、 チタニウムアルミニゥ厶合金からなる金属ターゲッ ト、 チタニウムターゲッ ト上にアルミニウム金属もしくは窒化アルミ二ゥムを並べた 複合ターゲッ ト、 アルミニウム夕一ゲッ 卜上にチタニウム金属もしくは窒化チタ 二ゥムを並べた複合ターゲッ ト、 アルミニウムターゲッ トとチタニウムターゲッ トを各々別に配置して同時にスパッ夕リ ングするデュアルターゲッ ト、 窒化チタ ニゥムアルミニウムからなる窒化物ターゲッ ト、 窒化チタニウムターゲッ ト上に アルミニゥム金属もしく は窒化アルミ二ゥムを並べた複合ターゲッ 卜、 窒化アル ミニゥムターゲッ ト上にチタニウム金属もしく は窒化チタニウムを並べた複合夕 —ゲッ ト、 窒化アルミニウムターゲッ トと窒化チタニウムターゲッ 卜を各々別に 配置して同時にスパッタ リ ングするデュアルターゲッ ト、 など、 種々の夕一ゲッ トを利用可能である。 スパッタ リ ング放電として、 直流及び交流いずれでも良い 力、'、 窒化アルミニウムは抵抗が大きいのでこれをターゲッ 卜として用いる場合に は、 R F放電が必要である。  Next, in order to achieve the second object, a method of manufacturing a semiconductor device according to the present invention comprises the steps of: forming a lower electrode including a titanium aluminum nitride diffusion and oxidation prevention layer in a nitriding atmosphere by using a sputtering method; Forming a layer on the substrate. The sputtering target includes a metal target made of a titanium-aluminum alloy, a composite target in which aluminum metal or aluminum nitride is arranged on the titanium target, or a titanium metal or nitride on the aluminum target. A composite target in which titanium is arranged side by side, a dual target in which an aluminum target and a titanium target are separately arranged and simultaneously sputtered, a nitride target made of titanium aluminum nitride, and a titanium nitride target Composite target with aluminum metal or aluminum nitride on top, composite metal with titanium metal or titanium nitride on aluminum nitride target, aluminum nitride target and titanium nitride A variety of evening targets can be used, such as dual targets, where each target is placed separately and sputtered simultaneously. As a sputtering discharge, either direct current or alternating current may be used. Since aluminum nitride has a large resistance, an RF discharge is necessary when it is used as a target.

窒化チタニウムアルミニウム拡散及び酸化防止層をスパッタ リ ング法を用いて 形成する時の雰囲気は、 少なく とも放電ガスと窒素ガスを含む必要がある。 放電 ガスとしては希ガスを用い、 通常経済性を考慮してアルゴンガスを用いる。 含ま れる窒素ガスは、 十分な窒化反応と高いスループッ ト (速い成膜速度) の点から、 The atmosphere when forming the titanium aluminum nitride diffusion and oxidation prevention layer by the sputtering method needs to include at least a discharge gas and a nitrogen gas. A rare gas is used as the discharge gas, and an argon gas is usually used in consideration of economy. The nitrogen gas contained is characterized by sufficient nitridation and high throughput (high deposition rate).

1 0から 9 0モル%含まれる。 さらに、 装置及び環境に制約が無ければ、 窒化を 促進すると同時に酸化を抑制する目的で数%程度のアンモニアガスが含まれても 良い。 窒化チタニウムアルミニゥム拡散及び酸化防止層をスパッタ リ ング法を用いて 形成する温度は、 室温以上 600て以下であることが望ま しい。 勿論、 室温といつ ても試料の温度を室温に維持するという意味ではなく特に試料に対して冷却も加 熱もしないという意味であって、 スパッタ リ ング中に試料がさらされる自然昇温 は許される。 試料を 600 °Cを越えて加熱して形成すると、 X線回折測定により窒 化アルミニウム (A 1 N ) が分離生成するのが観察された。 10 to 90 mol% is contained. Furthermore, if there are no restrictions on the equipment and environment, about several percent of ammonia gas may be contained for the purpose of promoting nitriding and suppressing oxidation. It is desirable that the temperature at which the titanium aluminum nitride diffusion and oxidation preventing layer is formed by sputtering is between room temperature and 600 and below. Of course, when the room temperature However, this does not mean that the temperature of the sample is maintained at room temperature, but in particular that it does not cool or heat the sample, and that the sample is exposed to natural temperature during sputtering. When the sample was heated to above 600 ° C and formed, X-ray diffraction measurement showed that aluminum nitride (A 1 N) was separated and formed.

さらに上記第 2の目的を達成するために、 本発明の半導体装置の製造方法は、 窒化チタニウムアルミニウム拡散及び酸化防止層上に金属層、 もしくは金属層と 導電性酸化物層を順次種層して下部電極層を完成させる工程を含む。 この下部電 極層上に酸化物誘電体層を形成しさらに上部電極層を積層して、 上部及び下部電 極層に酸化物誘電体屑が挟まれた構造を有する酸化物誘電体キャパシ夕が形成さ れる。 ここで、 金属層はスパッタ リ ング法、 蒸着法などいずれの方法によって形 成されても良い。 導電性酸化物層及び酸化物誘電体層についても、 スパッタ リ ン グ法、 反応性蒸着法、 レーザーアブレーシヨ ン、 化学気相成長法、 ゾルゲル法な ど、 その形成法は特に制約されない。 上部電極層もまた今ここで列举したいずれ の方法によつて形成されても良い。  Further, in order to achieve the second object, a method of manufacturing a semiconductor device according to the present invention comprises the steps of sequentially seeding a metal layer or a metal layer and a conductive oxide layer on a titanium aluminum nitride diffusion and oxidation prevention layer. Including the step of completing the lower electrode layer. An oxide dielectric layer is formed on the lower electrode layer, and an upper electrode layer is further laminated, so that an oxide dielectric capacitor having a structure in which oxide dielectric dust is sandwiched between the upper and lower electrode layers is formed. It is formed. Here, the metal layer may be formed by any method such as a sputtering method and an evaporation method. The formation method of the conductive oxide layer and the oxide dielectric layer is not particularly limited, such as a sputtering method, a reactive evaporation method, a laser abrasion, a chemical vapor deposition method, and a sol-gel method. The upper electrode layer may also be formed by any of the methods listed here.

酸化物誘電体キャパシタ、 つまり、 下部電極層を形成するに先立ち、 基板上に は M O S トランジスタの 1部が形成される。 この M O S トランジスタのソース領 域または ドレイン領域と下部電極層とは、 M O S トランジスタを形成した半導体 基板を被覆する絶縁層中に穿孔されたコンタク トホール内に埋め込まれた導電性 物質を介して、 電気的に接続される。 このコンタク トホールに埋め込まれる導電 性物質としては、 化学気相成長法で形成された多結晶シリ コンが用いられること が多いが、 やはり形成法及び埋め込み物質は限定されるものではない。  Prior to forming the oxide dielectric capacitor, the bottom electrode layer, a portion of the MOS transistor is formed on the substrate. The source or drain region of the MOS transistor and the lower electrode layer are electrically connected to each other via a conductive material embedded in a contact hole formed in an insulating layer covering a semiconductor substrate on which the MOS transistor is formed. Connected to. As the conductive material embedded in the contact hole, polycrystalline silicon formed by a chemical vapor deposition method is often used, but the forming method and the embedded material are not limited.

3 . 本発明により実現できる半導体装置の特徴 3. Features of semiconductor device realized by the present invention

上述の 2つの導電性材料指針に基づく本発明の実施により実現できる半導体装 置は、 ともに次のような特徵を有する。  Semiconductor devices that can be realized by implementing the present invention based on the above-described two conductive material guidelines both have the following features.

その特徴とは、 導電性を有する半導体材料からなる第 1の領域 (半導体基板又 は半導体薄膜等) と、 第 1の領域に接合され且つ第 1の導電性材料からなる第 2 の領域と、 第 2の領域に接合され且つ第 2の導電性材料からなる第 3の領域と、 第 3の領域に接合され且つ酸化物の誘電体材料からなる第 4の領域と、 第 4の領 域に接合され且つ導電性材料からなる第 5の領域を含む半導体装置において、 第 1の領域の抵抗率の平均値はこれを構成する半導体材料の抵抗率と、 第 2の領域 の抵抗率の平均値はこれを構成する第 1の導電性材料の抵抗率と、 夫々略等しい ことである。 この特徴は、 第 1 の領域から第 3の領域までの電気抵抗が夫々の領 域を形成する半導体材料又は導電性材料の抵抗率と各領域における 流経路の長 さ (これらの領域が垂直に積層されている場合なら各領域の層厚) により一義的 に決まることでもある。 即ち、 本発明の実施により、 従来技術で問題となってい る第 1 の領域又は第 2の領域における高抵抗物質の形成を略回避できるため、 こ れらの領域での電気的な抵抗値の上昇を抑え、 各領域の抵抗率は勿論、 第 1 から 第 3の領域に到る電流経路における平均的な抵抗率をも 0. 0 1 Ω · cm以下に設定 できる。 Its features are: a first region (semiconductor substrate or semiconductor thin film or the like) made of a conductive semiconductor material; a second region joined to the first region and made of the first conductive material; A third region joined to the second region and made of a second conductive material; A semiconductor device including a fourth region joined to the third region and made of an oxide dielectric material, and a fifth region joined to the fourth region and made of a conductive material; The average value of the resistivity of the second region is substantially equal to the resistivity of the semiconductor material constituting the second region, and the average value of the resistivity of the second region is substantially equal to the resistivity of the first conductive material constituting the second region. . The feature is that the electric resistance from the first region to the third region is the resistivity of the semiconductor or conductive material forming each region and the length of the flow path in each region (these regions are perpendicular to each other). In the case of lamination, the thickness is uniquely determined by the thickness of each region). That is, by implementing the present invention, the formation of a high-resistance material in the first region or the second region, which is a problem in the conventional technology, can be substantially avoided, and the electric resistance value in these regions can be reduced. The rise can be suppressed, and not only the resistivity of each region but also the average resistivity in the current path from the first to the third region can be set to 0.01 Ω · cm or less.

このため、 本発明によれば、 酸化物誘電体や導電性酸化物を形成する際に、 こ れと隣接する多結晶シリ コン層、 および窒化物などからなる拡散防止非酸化物導 電層を酸化することなく、 メモリセルを形成することができる。 これによつて、 電極の界面抵抗や接触抵抗を低減することが可能となり、 高集積化に適した微細 なメモリセルを有する半導体装置を得ることができる。 また、 200 n m以上の厚さ の白金などの金属層を耐酸化防止の目的で形成する必要がなく、 さらに、 下部電 極の厚さを薄くできることでキャパシタ全体の厚さゃァスぺク ト比を低減するこ とが可能であるので、 サブミ クロン領域の微細加工、 たとえばギガビッ ト級のリ ソグラフィ一技術を用いて形成されるような微細なメモリセルを有する半導体装 置を得ることができる。  Therefore, according to the present invention, when forming an oxide dielectric or a conductive oxide, a polycrystalline silicon layer adjacent thereto and a diffusion preventing non-oxide conductive layer made of nitride or the like are formed. A memory cell can be formed without oxidation. As a result, the interface resistance and contact resistance of the electrodes can be reduced, and a semiconductor device having fine memory cells suitable for high integration can be obtained. In addition, it is not necessary to form a metal layer of platinum or the like having a thickness of 200 nm or more for the purpose of preventing oxidation, and the lower electrode can be made thinner, so that the entire capacitor has a lower thickness. Since the ratio can be reduced, it is possible to obtain a semiconductor device having fine memory cells such as those formed by using microfabrication of a submicron region, for example, a gigabit-class lithography technology. .

図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES

第 1図は、 2層導 ¾性酸化物層を下部電極層に含む酸化物誘電体キャパシタを 示す図である。 第 2図は、 2層導電性酸化物層を多結晶シリコン層上に形成する酸化物誘電体 キャパシタを示す図である。 FIG. 1 is a diagram showing an oxide dielectric capacitor including a two-layer conductive oxide layer in a lower electrode layer. FIG. 2 is a diagram showing an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a polycrystalline silicon layer.

第 3図は、 2層導電性酸化物層を拡散防止非酸化物導電層上に形成する酸化物 誘電体キャパシタを示す図である。  FIG. 3 is a view showing an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a diffusion preventing non-oxide conductive layer.

第 4図は、 2層導電性酸化物層を金属層を介して拡散防止非酸化物導電層上に 形成する酸化物誘電体キャパシ夕を示す図である。  FIG. 4 is a diagram showing an oxide dielectric capacity in which a two-layer conductive oxide layer is formed on a diffusion preventing non-oxide conductive layer via a metal layer.

第 5図は、 金属層上に酸化物誘電体層を積層する窒化チタニウムアルミニゥム 層を有する酸化物誘電体キャパシタを示す図である。  FIG. 5 is a view showing an oxide dielectric capacitor having a titanium aluminum nitride layer in which an oxide dielectric layer is laminated on a metal layer.

第 6図は、 導電性酸化物層上に酸化物誘罨体層を積層する窒化チタニウムアル ミニゥム層を有する酸化物誘電体キャパシタを示す図である。  FIG. 6 is a diagram showing an oxide dielectric capacitor having a titanium nitride aluminum layer in which an oxide compressing layer is laminated on a conductive oxide layer.

第 7図は、 2層導電性酸化物層を多結晶シリ コン層上に形成する酸化物誘電体 キャパシタの電気特性を示す図である。 ( a ) は電極の抵抗、 ( b ) は分極ヒス テリ シス曲線を示す図である。  FIG. 7 is a view showing electric characteristics of an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a polycrystalline silicon layer. (A) shows the resistance of the electrode, and (b) shows the polarization hysteresis curve.

第 8図は、 2層導電性酸化物層を窒化物層上に形成する酸化物誘電体キャパシ 夕の電気特性を示す図である。 ( a ) は TiN層を含む電極の抵抗、 ( b ) は TaN 層を含む電極の抵抗、 ( c ) は TiN層を含むキャパシタの分極ヒステリ シス曲線 を示す図である。  FIG. 8 is a view showing the electrical characteristics of an oxide dielectric capacity in which a two-layer conductive oxide layer is formed on a nitride layer. (A) shows the resistance of the electrode including the TiN layer, (b) shows the resistance of the electrode including the TaN layer, and (c) shows the polarization hysteresis curve of the capacitor including the TiN layer.

第 9図は、 2層導電性酸化物層を金属層を介して TiN層上に形成する酸化物誘 電体キャパシタの分極ヒステリ シス曲線を示す図である。  FIG. 9 is a diagram showing a polarization hysteresis curve of an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a TiN layer via a metal layer.

第 1 0図は、 窒化チタニウムアルミニウムの組成範囲を示す図である。 ( a ) は (Ti,— XA1,) 0.5N0.5における Xの許容量、 ( b ) は (Ti0.6Al0 4) い yNyにおけ る yの許容量を示す図である。 FIG. 10 is a diagram showing a composition range of titanium aluminum nitride. (A) is.. (Ti, - X A1 ,) 0 5 N 0 of X in 5 allowance and (b) is (Ti 0 6 Al 0 4. ) There allowable amount of y that put in y N y FIG.

第 1 1図は、 窒化チタニウムアルミニウム層を有する酸化物誘電体キャパシタ の分極ヒステリ シス曲線を示す図である。 ( a ) は金属層上に酸化物誘電体層を 積層する場合、 ( b ) は導電性酸化物層上に酸化物誘電体層を積層する場合を示 す図である。  FIG. 11 is a diagram showing a polarization hysteresis curve of an oxide dielectric capacitor having a titanium aluminum nitride layer. (A) is a diagram showing a case where an oxide dielectric layer is laminated on a metal layer, and (b) is a diagram showing a case where an oxide dielectric layer is laminated on a conductive oxide layer.

第 1 2図は、 本発明の一発明の実施の形態の半導体装置の製造工程図を示す図 である。 FIG. 12 is a diagram showing a manufacturing process of a semiconductor device according to an embodiment of the present invention. It is.

第 1 3図は、 本発明の一発明の実施の形態の半導体装置の製造工程図を示す図 である。  FIG. 13 is a diagram showing a manufacturing process diagram of the semiconductor device according to the embodiment of the present invention.

第 1 4図は、 本発明の一発明の実施の形態の半導体装置の製造工程図を示す図 である。  FIG. 14 is a view showing a manufacturing process of the semiconductor device according to the embodiment of the present invention.

第 1 5図は、 本発明の一発明の実施の形態の半導体装置の平滑化までの工程図 を示す図である。  FIG. 15 is a view showing a process chart until smoothing of the semiconductor device according to the embodiment of the present invention.

第 1 6図は、 2層導電性酸化物層を多結晶シリ コン層上に形成する半導体装置 の製造工程図を示す図である。  FIG. 16 is a diagram showing a manufacturing process of a semiconductor device in which a two-layer conductive oxide layer is formed on a polycrystalline silicon layer.

% 1 7図は、 2層導電性酸化物層を拡散防止非酸化物導電層上に形成する半導 体装置の製造工程図を示す図である。  FIG. 17 is a diagram showing a manufacturing process of a semiconductor device in which a two-layer conductive oxide layer is formed on a diffusion preventing non-oxide conductive layer.

第 1 8図は、 2層導電性酸化物層を金属層を介して拡散防止非酸化物導電層上 に形成する半導体装置の製造工程図を示す図である。  FIG. 18 is a diagram showing a manufacturing process of a semiconductor device in which a two-layer conductive oxide layer is formed on a diffusion preventing non-oxide conductive layer via a metal layer.

第 1 9図は、 金属層上に酸化物誘電体層を形成する窒化チタニウムアルミニゥ ム層を有する半導体装置の製造工程図を示す図である。  FIG. 19 is a diagram showing a manufacturing process of a semiconductor device having a titanium aluminum nitride layer for forming an oxide dielectric layer on a metal layer.

第 2 0図は、 導電性酸化物層上に酸化物誘電体層を形成する窒化チタニウムァ ルミ二ゥム層を有する半導体装置の製造工程図示す図である。 本発明の実施例 8 のシリ コンウェハのスクライブ領域の断面構造を示した図である。 発明を実施するための最良の形態  FIG. 20 is a view showing a manufacturing process of a semiconductor device having a titanium nitride nitride layer for forming an oxide dielectric layer on a conductive oxide layer. FIG. 15 is a diagram showing a cross-sectional structure of a scribe region of a silicon wafer according to Example 8 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION

本発明の最良の実施形態を、 酸化物誘電体を用いたキャパシタの電極形成の観 点と、 このキャパシタを実際の半導体装置に形成する観点とに章分けし、 さらに 発明の実施の形態毎に分けて説明する。 前者の観点に基づく説明は、 さらに上述 の導電性材料の選定指針別に記載する。  The best embodiment of the present invention is divided into a viewpoint of forming an electrode of a capacitor using an oxide dielectric and a viewpoint of forming this capacitor in an actual semiconductor device. I will explain separately. The explanation based on the former viewpoint will be further described according to the above-mentioned guideline for selecting the conductive material.

§ 1 . 酸化物誘電体キャパシタの電極形成  § 1. Electrode formation of oxide dielectric capacitor

1 一 1 . 導電性材料選定指針 1  1 1. Guidelines for selecting conductive materials 1

半導体装置に好適な酸化物誘電体キャパシタの電極において、 半導体層と誘電 体層の間に設けられる 2つの導電性材料層に 2層導電性酸化物層を選定する場合 について、 以下の発明の実施の形態 1〜 3により関連図面を参照して説明する。 In an electrode of an oxide dielectric capacitor suitable for a semiconductor device, a semiconductor layer and a dielectric A case where a two-layer conductive oxide layer is selected as the two conductive material layers provided between the body layers will be described with reference to the accompanying drawings according to the following first to third embodiments of the invention.

<発明の実施の形態 1 >  <Embodiment 1 of the invention>

本発明の実施の形態は、 第 2図に示した 2層導電性酸化物層 1 2内の酸素欠損 を含む導電性酸化物層 1 4が多結晶シリ コン層 2 0上に直接形成される下部電極 層 1 1の構造について、 下部電極屑の抵抗及び酸化物強誘電体キャパシタの分極 ヒステリ シス曲線を測定した例である。  In the embodiment of the present invention, the conductive oxide layer 14 containing oxygen vacancies in the two-layer conductive oxide layer 12 shown in FIG. 2 is formed directly on the polycrystalline silicon layer 20. This is an example of measuring the resistance of the lower electrode dust and the polarization hysteresis curve of the oxide ferroelectric capacitor for the structure of the lower electrode layer 11.

まず、 15mm角の導電性シリ コン基板 1 0上に化学気相成長法を用いてリ ンをド ープした厚さ 150nmの非晶質シリ コン膜を形成し、 これを熱処理して導電性の多 結晶シリ コン層 2 0を形成した。 この基板上に 2種類の試料を形成した。 ひとつ は、 2mm角のメタルマスクを介して導電性酸化物層 1 4 と 1 5を形成した後、 電 子線リ ソダラフィ一により 100 μ m角に加工した試料で、 電極抵抗の測定にこれ を用いた。 もうひとつは、 導電性酸化物層 1 4 と 1 5を基板表面全体に形成した 後、 酸化物誘電体層 1 6と上部電極層 1 7をそれぞれ 4 mm角、 直径 2 mmのメタ ルマスクを介してピラミ ッ ド状に積層し、 さらに、 上部電極層 1 7をホ トマスク を用いてイオンミ リ ングにより 10 〃 m角に加工したキャパシ夕特性測定用の試料 である。 First, an amorphous silicon film having a thickness of 150n m was de-loop re down using chemical vapor deposition on a conductive silicon substrate 1 0 15mm square, conductive and heat-treated them A polycrystalline silicon layer 20 was formed. Two types of samples were formed on this substrate. One is a sample in which conductive oxide layers 14 and 15 are formed through a metal mask of 2 mm square and then processed to 100 μm square by an electron beam laser to measure the electrode resistance. Was used. Second, after the conductive oxide layers 14 and 15 are formed on the entire substrate surface, the oxide dielectric layer 16 and the upper electrode layer 17 are each placed through a 4 mm square, 2 mm diameter metal mask. This is a sample for measuring capacitance characteristics in which the upper electrode layer 17 is formed into a 10 μm square by ion milling using a photomask using a photomask.

導電性酸化物層 1 4 と 1 5としては、 Ir02、 Ru02、 SrRu03、 Laを 4重量%添 加した SrTi03、 Re03をそれぞれ用いた (ここでは、 化合物を明確にする目的で化 学式を用いるので、 酸素欠損量の記述は便宜的に省略する) 。 各酸化物層の形成 法を以下に述べる。 ただし、 ここで説明する各酸化物の作製法は一例であって、 相互に作製法を入れ替えても問題はない。 The conductive oxide layer 1 4 and 1 5, Ir0 2, Ru0 2 , SrRu0 3, La 4% by weight added pressure was SrTi0 3, Re0 3 were used, respectively (here, for purposes of clarity of compound Since the chemical formula is used, the description of the oxygen deficiency is omitted for convenience). The method for forming each oxide layer is described below. However, the manufacturing method of each oxide described here is an example, and there is no problem even if the manufacturing methods are interchanged.

Ir02のみは電子ビーム蒸着法により形成した。 まず、 02の酸化物粉末を圧力 成型器を用いて直径 1 2 mm厚さ 1 0 mmの円筒形に成型した後、 酸素気流中 1100 てで 2時間焼成し、 これを電子ビーム蒸着源として用いた。 以下の成膜条件、 基 板加熱ヒータ温度 600 、 成膜速度 2 分、 圧力 0.1 ^ Torr下で酸素欠損を 含む Ir02層を 5から 50nm形成した後、 酸素を 70 Torrの圧力まで導入すると 同時に基板加熱ヒータ温度を 580°Cに設定して 5 0 nmの Ir02層を積層し、 2層 導電性酸化物層 1 2を形成した。 Ir0 2 alone was formed by electron beam evaporation. First, an oxide powder of 0 2 after molding into a cylindrical shape with a diameter of 1 2 mm thickness 1 0 mm using a pressure molding machine, calcined for 2 hours in an oxygen stream 1100 hand, which as an electron beam evaporation source Using. After forming an IrO 2 layer containing oxygen vacancies from 5 to 50 nm under the following film forming conditions, a substrate heater temperature of 600, a film forming speed of 2 minutes, and a pressure of 0.1 ^ Torr, oxygen is introduced up to a pressure of 70 Torr. At the same time, the substrate heater temperature was set to 580 ° C., and two 50 nm IrO layers were laminated to form a two-layer conductive oxide layer 12.

Ir02以外の導電性酸化物層は、 上記陽イオン組成からなる酸化物焼結体ターゲ ッ トを用いる R Fマグネ ト口ンスパッ夕 リ ング法を用いて形成した。 以下の成膜 条件、 基板加熱ヒータ温度 600て、 入射電力 1. SWZcm1^ 成膜速度 3 nm /分、 純 度 3 Nの放電 Arガス圧力 3 mTorr下で、 膜厚 5から 50nmの酸素欠損を含む導電 性酸化物層を形成した。 続いて、 酸素をガス流量比 ArZOs-gZl で導入すると 同時に基板加熱ヒ―タ温度を 580てに設定して 50nmの導電性酸化物層を形成する ことにより、 2層導電性酸化物層 1 2を形成した。 Ir0 2 except the conductive oxide layer was formed using an RF magnetic preparative port Nsupa' evening-ring method using an oxide sintered body Target Tsu bets made of the cation composition. Deposition conditions below, substrate heater temperature 600, incident power 1.SWZcm 1 ^ Deposition rate 3 nm / min, purity 3 N discharge Ar gas pressure 3 mTorr, oxygen deficiency of thickness 5 to 50 nm A conductive oxide layer containing was formed. Subsequently, by introducing oxygen at a gas flow ratio of ArZOs-gZl and simultaneously setting the substrate heating heater temperature to 580 and forming a 50 nm conductive oxide layer, the two-layer conductive oxide layer 12 was formed. Was formed.

酸化物誘電体層 1 6としてはビスマス系層状強誘電体の一つ、 チタン酸ビスマ ス (Bi4Ti3012) を用い、 R Fマグネ 卜口ンスパッタリ ング法によりこれを形成し た。 ターゲッ 卜には上の陽イオン組成で表される焼結体を用いた。 成膜条件は、 基板加熱ヒータ温度 600°C、 放電ガス Z酸素ガス圧力比 Ar/02 = 9/l、 全圧力 5 mTorr、 入射電力 1.5WZcm2、 成膜速度 5 nm 分、 膜厚 200nm とした。 但し、 酸 化物誘電体層の種類や製法は、 本質的なキャパシタの物理特性にのみ影響し、 2 層導電性酸化物薄膜への影響は見られなかった。 上部電極層 1 7には、 電子ビー ム蒸着法を用いて室温で蒸着した厚さ lOOnmの金を用いた。 One bismuth-based layered ferroelectric as oxide dielectric layer 1 6, using a titanate bismuth scan (Bi 4 Ti 3 0 12) , were formed thereby RF magnetic Bok port Nsupattari ring method. For the target, a sintered body represented by the above cation composition was used. The deposition conditions were: substrate heater temperature 600 ° C, discharge gas Z oxygen gas pressure ratio Ar / O 2 = 9 / l, total pressure 5 mTorr, incident power 1.5 WZcm 2 , deposition rate 5 nm, film thickness 200 nm And However, the type and manufacturing method of the oxide dielectric layer only affected the essential physical characteristics of the capacitor, and did not affect the two-layer conductive oxide thin film. For the upper electrode layer 17, gold having a thickness of 100 nm, which was deposited at room temperature by using an electron beam evaporation method, was used.

第 7図 ( a ) に、 下部電極層全体の抵抗 (縦軸) を、 非酸化性棼囲気中で形成 した酸素欠損を含む導電性酸化物層の厚さ (横軸) の関数として示した。 抵抗は、 酸化性雰囲気中で形成した導電性酸化物層と導電性シリ コン基板との間の測定値 である。 いずれの導電性酸化物電極でも酸素欠損層の厚さが 5 nmの時には電極抵 抗は著しく大きいので、 多結晶シリ コンが酸化されて高抵抗化しているのは明ら かである。 厚さが 5 nmから lOnmにかけて抵抗は急激に減少し、 lOnra以上では 抵抗はほぼ一定になる。 多結晶シリコン表面の被覆率が増大すると同時に多結晶 シリ コンの酸化が抑制される効果が明白である。 電極抵抗が酸化物電極の種類に 依存するのは、 導電性酸化物自体の抵抗率の違いが反映されているからである。 導電性酸化物材料単体の抵抗率は、 別の単一膜で測定した結果では、 Ir02、 Ru02、 Re03に関しては、 数十〃 Ω · cm程度、 酸素欠損状態でもその 2から 3倍程 度の低い抵抗率が得られた。 SrRu03に関しては、 酸素欠損の導入により 200 Ω cmから数 m Ω · cmまでの増大にとどまった。 Laを 4重量%添加した SrTi03では、 数百 Q * cmから数 m Q * cmまで増大した。 これらの結果は、 第 7図 ( a ) の 傾向と一致しており、 2層導電性酸化物電極が多結晶シリ コンと隣接して成長す る場合でも、 顕著な抵抗率の増大が生じていないことを支持する。 Figure 7 (a) shows the resistance (vertical axis) of the entire lower electrode layer as a function of the thickness (horizontal axis) of the conductive oxide layer containing oxygen vacancies formed in a non-oxidizing atmosphere. . Resistance is a measurement between a conductive oxide layer formed in an oxidizing atmosphere and a conductive silicon substrate. In any conductive oxide electrode, when the thickness of the oxygen-deficient layer is 5 nm, the electrode resistance is remarkably large, and it is clear that the polycrystalline silicon is oxidized and the resistance is increased. The resistance decreases rapidly from 5 nm to lOnm, and becomes almost constant above lOnra. The effect of increasing the coverage of the polycrystalline silicon surface and at the same time suppressing the oxidation of the polycrystalline silicon is apparent. The reason why the electrode resistance depends on the type of the oxide electrode is that the difference in the resistivity of the conductive oxide itself is reflected. The resistivity of the conductive oxide material alone was measured with another single film, and found to be Ir0 2 , For RuO 2 and ReO 3 , the resistivity was as low as several tens of Ω · cm, and even in the oxygen deficient state, about 2 to 3 times lower than that. Regarding SrRu0 3, it stayed increased up to several m Omega · cm from 200 Omega cm by the introduction of oxygen deficiency. In SrTi0 3 was added 4 wt% of La, increased from a few hundred Q * cm to several m Q * cm. These results are consistent with the tendency shown in Fig. 7 (a). Even when the two-layer conductive oxide electrode grows adjacent to the polycrystalline silicon, a remarkable increase in resistivity occurs. Support that there is not.

第 7図 ( b ) に、 酸素欠損層の厚さが 30nmであるときの各酸化物電極を用い た酸化物強誘電体キャパシ夕の分極ヒステリ シス曲線を示す。 ヒステリ シス曲線 の酸化物電極の種類による違いはほとんど見られない。 第 7図 ( b ) から明らか なように、 多結晶シリ コンと隣接する導電性酸化物層を非酸化性雰囲気中で形成 することにより、 酸化反応及び酸素の拡散が抑制され、 基板から供給される電圧 が有効に酸化物誘電体層に印加され得ることが立証される。 FIG. 7 (b) shows a polarization hysteresis curve of an oxide ferroelectric capacitor using each oxide electrode when the thickness of the oxygen-deficient layer is 30 nm . There is almost no difference in the hysteresis curve depending on the type of oxide electrode. As is evident from Fig. 7 (b), by forming the conductive oxide layer adjacent to the polycrystalline silicon in a non-oxidizing atmosphere, the oxidation reaction and the diffusion of oxygen are suppressed, and the polycrystalline silicon is supplied from the substrate. It has been established that different voltages can be effectively applied to the oxide dielectric layer.

<発明の実施の形態 2 >  <Embodiment 2 of the invention>

本発明の実施の形態は、 第 3図に示した 2層導電性酸化物層 1 2内の酸素欠損 を含む導電性酸化物層 1 4が拡散防止非酸化物導電層 3 0である導電性窒化物層 上に形成される下部電極層 1 1の構造について、 下部電極層の抵抗及び酸化物強 誘電体キャパシタの分極ヒステリ シス曲線を測定した例である。  In the embodiment of the present invention, the conductive oxide layer 14 containing oxygen vacancies in the two-layer conductive oxide layer 12 shown in FIG. This is an example of measuring the resistance of the lower electrode layer and the polarization hysteresis curve of the oxide ferroelectric capacitor for the structure of the lower electrode layer 11 formed on the nitride layer.

まず、 15mm角の導電性シリ コン基板 1 0上に化学気相成長法を用いてリ ンを ド ープした厚さ I50nmの非晶質シリ コン膜を形成し、 これを熱処理して導電性の多 結晶シリコン層 2 0を形成した後、 拡散防止非酸化物導電層 3 0として導電性窒 化物層を表面全体に形成した。 この下地上に 2種類の試料を形成した。 ひとつは、 2 mm角のメタルマスクを介して導電性酸化物層 1 4と 1 5を形成した後、 電子線 リ ソグラフィ一により 100 m角に加工した試料で、 電極抵抗の測定にこれを用 いた。 もうひとつは、 導電性酸化物層 1 4と 1 5を基板表面全体に形成した後、 酸化物誘電体層 1 6と上部電極層 1 7をそれぞれ 4 mm角、 直径 2 mmのメタルマ スクを介してビラミ ッ ド状に積層し、 さらに上部電極層 1 7を電子線リ ソグラフ ィ一により 10 // m角に加工したキャパシタ特性測定用の試料である。 ここでは、 導電性窒化物 (拡散防止非酸化物導電層 3 0 ) として TiN及び TaN を用いた例を詳しく説明するが、 Zr、 Nb、 V、 Wの窒化物についても形成法や得ら れる結果は同様であった。 導電性窒化物層は金属ターゲッ トを用いる直流スパッ タ リ ング法により形成した。 成膜条件は、 基板加熱ヒータ温度 300て、 放電ガス 窒素ガス圧力比 Ar/N2 = 50ノ 50、 全圧力 4 mTorr、 入射電力 400 膜厚 40nm とした。 金属ターゲッ 卜のかわりに窒化物ターゲッ トを用いる R Fマグネ トロン スパッタ リ ング法を用いて導截性窒化物層を形成しても良い。 成膜後、 急速昇温 加熱法 (Rapid Thermal Annealing法) を用いて、 アンモニアガス雰囲気中 800てで 2分間熱処理して結晶化を促進した。 First, an amorphous silicon film with a thickness of I50 nm is formed by dropping a phosphorus on a 15 mm square conductive silicon substrate 10 by chemical vapor deposition. After the polycrystalline silicon layer 20 was formed, a conductive nitride layer was formed on the entire surface as a diffusion preventing non-oxide conductive layer 30. Two types of samples were formed on the substrate. One is a sample formed by forming conductive oxide layers 14 and 15 through a 2 mm square metal mask and then processing it into a 100 m square by electron beam lithography, which is used to measure the electrode resistance. Was. The other is to form conductive oxide layers 14 and 15 on the entire surface of the substrate, and then connect the oxide dielectric layer 16 and the upper electrode layer 17 to each other through a metal mask of 4 mm square and 2 mm in diameter. This is a sample for measuring capacitor characteristics in which the upper electrode layer 17 is processed into a 10 // m square by electron beam lithography. Here, an example in which TiN and TaN are used as the conductive nitride (diffusion preventing non-oxide conductive layer 30) will be described in detail. However, the formation method and the obtained nitride of Zr, Nb, V, and W can also be obtained. The results were similar. The conductive nitride layer was formed by a DC sputtering method using a metal target. Film forming conditions, Te substrate heater temperature 300, discharge gas of nitrogen gas pressure ratio Ar / N 2 = 50 Bruno 50, the total pressure 4 m Torr, and the incident power 400 thickness 40 nm. The conductive nitride layer may be formed by using an RF magnetron sputtering method using a nitride target instead of the metal target. After the film formation, crystallization was promoted by heat treatment at 800 in an ammonia gas atmosphere for 2 minutes using a rapid thermal annealing method (Rapid Thermal Annealing method).

導電性酸化物層 1 4 と 1 5としては、 Ir02、 Ru02、 SrRu03、 CaRu03、 Ke03を それぞれ用いた (ここでは、 化合物を明確にする目的で化学式を用いるので、 酸 素欠損量の記述は便宜的に省略する) 。 各酸化物層の形成法を以下に述べる。 た だし、 ここで説明する各酸化物の作製法は一例であって、 相互に作製法を入れ替 えても問題はない。 The conductive oxide layer 1 4 and 1 5, Ir0 2, Ru0 2 , SrRu0 3, CaRu0 3, Ke0 3 were used, respectively (here, since using the formula for purposes of clarity of compounds, oxygen-deficient The description of the amount is omitted for convenience). The method for forming each oxide layer is described below. However, the manufacturing method of each oxide described here is an example, and there is no problem even if the manufacturing methods are interchanged.

Ir02は R Fマグネ ト口ンスパッ夕 リ ング法を用いて微酸化性雰囲気中で形成し た。 ターゲッ トはそれぞれ酸化物焼結体ターゲッ 卜を用いた。 成膜条件は、 基板 加熱ヒータ温度 600 、 入射電力 1.5Vl/cm 放電ガスとして圧力 3 mTorrの純 度 3 Nの Arガス、 微酸化性ガスとして流量比 Ar/N20 = 100Z1 の N20ガス、 で ある。 この条件で膜厚 5から 50ηπιの酸素欠損を含む導電性酸化物層を形成し、 続いてガス流量比を ArZN20 =9X1 に下げると同時に全圧を 5 mTorr とし、 基 板加熱ヒータ温度を 580てに設定して 50ηιηの導電性酸化物層を形成することによ り、 2層導電性酸化物層 1 2を形成した。 IrO 2 was formed in a slightly oxidizing atmosphere using the RF magnet port sputtering method. The targets used were oxide sintered compact targets. Film forming conditions, the substrate heater temperature 600, N 2 0 of incident power 1.5Vl / cm purity 3 N Ar gas pressure 3 mTorr as the discharge gas, the flow ratio Ar / N 2 0 = 100Z1 as slightly oxidizing gas Gas,. Under these conditions, a conductive oxide layer containing oxygen vacancies with a film thickness of 5 to 50ηπι was formed, then the gas flow ratio was reduced to ArZN 20 = 9X1, the total pressure was set to 5 mTorr, and the temperature of the substrate heater was lowered. The conductive oxide layer having a thickness of 50 ηιη was formed at a setting of 580 to form a two-layer conductive oxide layer 12.

SrRu03と CaRu03は酸化物焼結体タ—ゲッ トを用いる R Fマグネ トロンスパッ タリ ング法を用いて、 Arガス雰囲気中で形成した。 以下の成膜条件、 基板加熱ヒ -タ温度 600て、 入射電力 1.5 /cm2 純度 3 Nの放電 Arガス圧力 3 mTorr下 で、 膜厚 5から 50fimの酸素欠損を含む導電性酸化物層を形成した。 続いて、 酸 素をガス流量比 Ar/02 = 9/lで導入すると同時に全圧を 5 mTorr とし、 基板加 熱ヒータ温度を 580 に設定して 50nmの導電性酸化物層を形成することにより、 2層導電性酸化物層 1 2を形成した。 SrRu0 3 and CaRu0 3 oxide sintered data - using a RF magnetic Toronsupa' Tari packaging method using rodents bets were formed in an Ar gas atmosphere. The following deposition conditions, the substrate heating heat - Te motor temperature 600, discharge Ar gas pressure 3 mTorr under incident power 1.5 / cm 2 Purity 3 N, conductive oxide layer containing oxygen vacancies 50Fi m film thickness 5 Was formed. Subsequently, oxygen was introduced at a gas flow ratio of Ar / O 2 = 9 / l, and at the same time, the total pressure was set to 5 mTorr, and A two-layer conductive oxide layer 12 was formed by forming a 50 nm conductive oxide layer with the heat heater temperature set at 580.

Ru02と Re03は反応性蒸着法により微酸化性雰囲気中で形成した。 蒸着源として 金属塊を用いた。 以下の成膜条件、 基板加熱ヒータ温度 600° (:、 成膜速度 1 nmZ 分、 酸素圧力 5 β Torr下で酸素欠損層を 5から 50nm形成した後、 酸素を 70 μ Torrの圧力まで導入すると同時に基板加熱ヒータ温度を 580てに設定して 50 nmの Ru02層、 Re03層それぞれを積層し、 2層導電性酸化物層 1 2を形成した。 酸化物誘電体層 1 6としてはチタン酸ジルコン酸鉛 (Pb(Zr。 5Ti。 5)03) を用 い、 R Fマグネ トロンスパッタ リ ング法によりこれを形成した。 ターゲッ トには 上の陽イオン組成で表される焼結体を用いた。 成膜条件は、 基板加熱ヒータ温度 600て、 放電ガス/酸素ガス圧力比 ArZ02 = 9ノ 1、 全圧力 5 mTorr、 入射電力 1.5 /cm 成膜速度 5 nm /分、 膜厚 200nm とした。 但し、 酸化物誘電体層の種 類や製法は、 本質的なキャパシタの物理特性にのみ影響し、 2層導電性酸化物薄 膜への影響は見られなかったことを付記しておく。 上部電極層 1 7は、 下部電極 層と同じ導電性酸化物を酸化性棼囲気中で R Fマグネ ト口ンスパッタリ ング法を 用いて形成した。 膜厚は 80nraであった。 Ru0 2 and Re0 3 was formed in a fine oxidizing atmosphere by a reactive evaporation method. A metal lump was used as an evaporation source. Under the following deposition conditions, substrate heater temperature 600 ° (:, deposition rate 1 nm Z min., Oxygen pressure 5 β Torr, oxygen deficiency layer 5 to 50 nm under 5 β Torr, then oxygen up to 70 μTorr Simultaneously with the introduction, the substrate heater temperature was set to 580, and two Ru0 layers and three Re0 layers each having a thickness of 50 nm were laminated to form a two-layer conductive oxide layer 12. As the oxide dielectric layer 16, lead zirconate titanate (Pb (Zr. 5 Ti. 5) 0 3) have use were formed this by RF magnetic Tron sputter-ring method. baked in the target represented by the cation composition of the above using sintered body. deposition conditions, Te substrate heater temperature of 600, a discharge gas / oxygen gas pressure ratio ArZ0 2 = 9 Bruno 1, total pressure 5 m Torr, incident power 1.5 / cm deposition rate 5 nm / min However, the type and manufacturing method of the oxide dielectric layer affect only the intrinsic physical characteristics of the capacitor, and have two layers. It should be noted that there was no effect on the conductive oxide thin film.The upper electrode layer 17 is made of the same conductive oxide as the lower electrode layer by RF magnet sputtering in an oxidizing atmosphere. The film thickness was 80 nra.

拡散防止非酸化物導電層 3 0として TiN (第 8図 ( a ) ) 及び TaN (第 8図 ( b ) ) を用いた場合それぞれについて、 下部電極層全体の抵抗 (縱軸) を酸素 欠損層の厚さ (横軸) の関数として示した。 抵抗は、 酸化性雰囲気中で形成した 導電性酸化物層と導電性シリ コン基板との間の抵抗の測定値である。 窒化物層及 び導電性酸化物電極の種類、 形成法、 形成条件によらず、 同様の厚さ依存が見ら れた。 酸素欠損層の厚さが 5 nmの時には電極抵抗は著しく大きい。 窒化物層表面 の被覆率が小さく、 続く酸化性雰囲気で導電性酸化物層を形成する時に界面が酸 化され高抵抗化した結果である。 抵抗は、 厚さが 5 nmから lOnmにかけて急激に 減少し、 10nm以上でほぼ一定になる。 窒化物層表面の被覆率が増大して界面酸化 が抑制された結果である。 酸化物電極として CaRu03を用いたときに抵抗が高いの は、 一部 CaOが分解生成し電極界面での接触抵抗が増大した結果であることが、 X線回折法により確認された。 微酸化性雰囲気中で形成した Ir02、 Ru02及び Re03層を含む電極の抵抗は、 Arガス中で形成した SrRu03を含む電極より もわず かに大きい。 いずれにおいても、 電極層と して用いるのに十分低い抵抗値が維持 されていることは明らかである。 導電性酸化物材料単体の抵抗率は、 別の単一膜 で測定した結果では、 Ir02、 Ru02、 Re03、 SrRu03、 Laを 4重量%添加した SrTi03では、 発明の実施の形態 1に記載した通りである。 CaRu03に関しては、 非酸化性雰囲気中で膜形成することにより、 数百 μ Ω · cmから 10ro Ω · cm弱ま で增大した。 これらの結果は、 第 8図 ( a ) の傾向と一致しており、 2層導電性 酸化物電極が拡散防止非酸化物導電層と隣接して成長する場合でも、 顕著な抵抗 率の増大が生じていないことを支持する。 In the case of using TiN (FIG. 8 (a)) and TaN (FIG. 8 (b)) as the diffusion preventing non-oxide conductive layer 30, the resistance (vertical axis) of the entire lower electrode layer is represented by the oxygen-deficient layer. As a function of thickness (horizontal axis). Resistance is a measurement of the resistance between a conductive oxide layer formed in an oxidizing atmosphere and a conductive silicon substrate. Similar thickness dependence was observed regardless of the type, formation method, and formation conditions of the nitride layer and the conductive oxide electrode. When the thickness of the oxygen-deficient layer is 5 nm, the electrode resistance is extremely large. The result is that the coverage of the nitride layer surface is low, and the interface is oxidized and the resistance is increased when the conductive oxide layer is formed in the subsequent oxidizing atmosphere. The resistance decreases sharply from 5 nm to lOnm in thickness, and becomes almost constant above 10 nm . This is the result of suppressing the interfacial oxidation by increasing the coverage of the nitride layer surface. It's high resistance when using CaRu0 3 as the oxide electrode is a result of the contact resistance is increased in some CaO generates decomposition electrode interface, Confirmed by X-ray diffraction. Resistance of the electrode containing Ir0 2, Ru0 2 and Re0 3 layers formed in micro oxidizing atmosphere, large Mowazu or more electrodes comprising SrRu0 3 formed in an Ar gas. In each case, it is clear that the resistance value is low enough to be used as an electrode layer. Conductive oxide material alone of resistivity, the result of measurement by another single film, Ir0 2, Ru0 2, Re0 3, SrRu0 3, La in SrTi0 3 were added 4% by weight, the embodiment of the invention As described in 1. Regarding CaRu0 3, by in a non-oxidizing atmosphere to film formation was增大in Yowama 10ro Ω · cm from a few hundred μ Ω · cm. These results are consistent with the tendency shown in Fig. 8 (a). Even when the two-layer conductive oxide electrode is grown adjacent to the diffusion-preventing non-oxide conductive layer, a remarkable increase in resistivity is observed. Support that has not occurred.

第 8図 ( c ) に、 窒化物層として TiNを用いた場合について、 第 8図 ( a ) に 示した酸素欠損層の厚さが 10 nraであるときの酸化物強誘電体キャパシタの分極 ヒステリ シス曲線を示す。 CaRu03層を含む電極では、 ヒステリ シス曲線が他の電 極より も横軸方向に開いている。 分解生成した CaOが誘電体に印加される電場に 分布をもたらした結果と思われるが キャパシタとしては十分な特性が確保され ているので問題はない。 第 8図 ( c ) から明らかなように、 窒化物層と隣接する 導電性酸化物層を非酸化性雰囲気中で形成することにより、 酸化反応及び酸素の 拡散が抑制され、 基板から供給される電圧が有効に酸化物誘電体層に印加され得 ることが立証される。 TaN層についても、 本質的に第 8図 ( c ) と同様のヒステ リ シス曲線が得られた。 Figure 8 (c) shows the polarization hysteresis of the oxide ferroelectric capacitor when the thickness of the oxygen-deficient layer shown in Fig. 8 (a) is 10 nra when TiN is used as the nitride layer. 3 shows a cis curve. The electrode containing CaRu0 3-layer, hysteresis curve is open in the horizontal axis direction than the other electrodes. This is probably due to the distribution of the CaO generated by the decomposition in the electric field applied to the dielectric, but there is no problem because sufficient characteristics are secured for the capacitor. As can be seen from Fig. 8 (c), the formation of the conductive oxide layer adjacent to the nitride layer in a non-oxidizing atmosphere suppresses the oxidation reaction and diffusion of oxygen and is supplied from the substrate. It proves that a voltage can be effectively applied to the oxide dielectric layer. For the TaN layer, a hysteresis curve essentially similar to that shown in Fig. 8 (c) was obtained.

<発明の実施の形態 3 >  <Embodiment 3 of the invention>

本発明の実施の形態は、 第 4図に示した 2層導電性酸化物層 1 2内の酸素欠損 を含む導電性酸化物層 1 4が金属層 4 0を介して拡散防止非酸化物導電層 30上 に形成される下部電極層 1 1の構造について、 酸化物強誘電体キャパシ夕の分極 ヒステリシス曲線を測定した例である.  In the embodiment of the present invention, the conductive oxide layer 14 containing oxygen vacancies in the two-layer conductive oxide layer 12 shown in FIG. This is an example of measuring the polarization hysteresis curve of the oxide ferroelectric capacitor for the structure of the lower electrode layer 11 formed on the layer 30.

基板 1 0や多結晶シリ コン層 20、 拡散防止非酸化物導電眉 30としての TiN 層、 酸化物誘電体層 1 6、 上部電極層 1 7の形状や形成法は、 上記発明の実施の 形態 1及び 2に記した内容と同じである。 ただし、 酸化物誘電体層及び上部電極 層の選択は本質的なものではない。 The shape and forming method of the substrate 10, the polycrystalline silicon layer 20, the TiN layer as the diffusion-preventing non-oxide conductive eyebrow 30, the oxide dielectric layer 16, and the upper electrode layer 17 are described in the above embodiments of the present invention. The contents are the same as those described in modes 1 and 2. However, the selection of the oxide dielectric layer and the upper electrode layer is not essential.

拡散防止非酸化物導電層 3 0として、 厚さ 40ηπιの TiNを上記発明の実施の形 態 2に従って形成した。 上記発明の実施の形態 2に列举した他の窒化物について も同様の結果が得られている。  TiN having a thickness of 40ηπι was formed as the diffusion preventing non-oxide conductive layer 30 according to the second embodiment of the present invention. Similar results were obtained for the other nitrides listed in the second embodiment of the present invention.

本発明の実施の形態では金属層 4 0として白金を用いたが、 同種の貴金属であ るィ リ ジゥムやルテニウムを用いても同様の効果が確認された。 金属層は以下の 条件で直流スパッタ リ ング法により形成した。 入射電力は 400W'、 放電ガスは Ar、 ガス圧は 20mTorr、 基板加熱ヒータ温度は 500てである。 厚さ 20nmの金属層 4 0を拡散防止非酸化物導電層 3 0上に基板全面に形成した。  In the embodiment of the present invention, platinum was used as the metal layer 40, but the same effect was confirmed by using the same kind of noble metal such as iridium and ruthenium. The metal layer was formed by DC sputtering under the following conditions. The incident power was 400 W ', the discharge gas was Ar, the gas pressure was 20 mTorr, and the substrate heater temperature was 500. A metal layer 40 having a thickness of 20 nm was formed on the entire surface of the substrate on the diffusion preventing non-oxide conductive layer 30.

導電性酸化物としては、 Ir02、 Ru02、 SrRu03、 Laを 4重量%添加した SrT i 03 を用い、 いずれも R Fマグネ 卜口ンスパッタリ ング法を用いて微酸化性雰囲気中 で形成した。 ターゲッ トはそれぞれ酸化物焼結体ターゲッ トを用いた。 成膜条件 は、 基板加熱ヒータ温度 600° (:、 入射電力 1.5WZCm 2、 放電ガスとして圧力 3 mTorrの純度 3 Nの Arガス、 微酸化性ガスとして流量比 Ar ΖΝ20 = ΙΟθΖ 1の N20ガス、 である。 この条件で膜厚 10 nmの酸素欠損を含む導電性酸化物層 1 4 を形成し、 続いてガス流量比を 1"/^20 = 9/1 に下げると同時に全圧を 5 mTorr とし、 基板加熱ヒータ温度を 580°Cに設定して 50 nmの導電性酸化物層 1 5を形 成することにより、 2層導電性酸化物層 1 2を形成した。 The conductive oxide, with Ir0 2, Ru0 2, SrRu0 3 , SrT i 0 3 which La was added 4 wt%, to form either using RF magnetic Bok port Nsupattari ring method in finely oxidizing atmosphere . The targets used were oxide sintered compact targets. The film formation conditions were as follows: substrate heater temperature: 600 ° (: incident power: 1.5 WZ Cm 2 , Ar gas with a purity of 3 N at a pressure of 3 mTorr as a discharge gas, and a flow rate ratio of Ar ΖΝ 20 = ΙΟθΖ 1 as a slightly oxidizing gas N 2 0 gas is. in this condition to form a conductive oxide layer 1 4 including oxygen deficiency in the film thickness 10 nm, followed by lowering the gas flow rate ratio to 1 "/ ^ 2 0 = 9/1 when At the same time, the total pressure was set at 5 mTorr, the substrate heater temperature was set at 580 ° C., and a 50 nm conductive oxide layer 15 was formed, thereby forming a two-layer conductive oxide layer 12.

第 9図に、 各導電性酸化物について酸化物強誘電体キャパシタの分極ヒステリ シス曲線を示す。 酸素欠損層の種類によらず、 対称性の高い開いたヒステリシス ル-プが観察される。 金属層が 20nmと薄く、 これと隣接する導電性酸化物層を 微酸化性雰囲気中で形成する場合でも、 酸素欠損層が介在することにより酸化反 応及び酸素の拡散が抑制され、 基板から供給される電圧が有効に酸化物誘電体層 に印加され得ることが立証される。  FIG. 9 shows a polarization hysteresis curve of the oxide ferroelectric capacitor for each conductive oxide. Regardless of the type of oxygen-deficient layer, a highly symmetric open hysteresis loop is observed. Even if the metal layer is as thin as 20 nm and the adjacent conductive oxide layer is formed in a slightly oxidizing atmosphere, the oxygen deficiency layer intervenes to suppress oxidation reaction and oxygen diffusion, and supply from the substrate. It is demonstrated that the applied voltage can be effectively applied to the oxide dielectric layer.

以上の各発明の実施の形態で説明したように、 本発明の特徴の一つである非酸 化性雰囲気中で酸素欠損を含む導電性酸化物層を形成して 2層導電性酸化物層を 形成することにより、 これと隣接する多結晶シリ コン(発明の実施の形態 1 )、 窒 化物などからなる拡散防止非酸化物導電層(発明の実施の形態 2 )、 あるいは金属 層を介して隣接する拡散防止非酸化物導電層(発明の実施の形態 3 )を酸化するこ となく、 下部電極層および酸化物誘電体層を形成することができた。 これによつ て、 電極の界面抵抗や接触抵抗を低減することが可能となり、 高集積化に適した 酸化物誘電体キャパシタを形成することができた。 As described in the above embodiments of the present invention, a conductive oxide layer containing oxygen vacancies is formed in a non-oxidizing atmosphere, which is one of the features of the present invention, to form a two-layer conductive oxide layer. To By forming, a polycrystalline silicon (Embodiment 1) of the present invention, a diffusion preventing non-oxide conductive layer made of nitride or the like (Embodiment 2), or an adjacent metal layer The lower electrode layer and the oxide dielectric layer could be formed without oxidizing the diffusion preventing non-oxide conductive layer (Embodiment 3). As a result, the interfacial resistance and contact resistance of the electrodes can be reduced, and an oxide dielectric capacitor suitable for high integration can be formed.

1 - 2 . 導電性材料選定指針 2  1-2. Conductive material selection guidelines 2

半導体装置に好適な酸化物誘電体キャパシタの電極において、 半導体層と誘電 体層の間に設けられる 2つの導電性材料層の半導体層側に窒化チタニウムアルミ 二ゥム層を、 誘電体側に耐酸化性の金属材料層を選定する場合について、 以下の 発明の実施の形態 4〜 5により関連図面を参照して説明する。  In an electrode of an oxide dielectric capacitor suitable for a semiconductor device, a titanium aluminum nitride layer is provided on the semiconductor layer side of two conductive material layers provided between the semiconductor layer and the dielectric layer, and an oxidation-resistant is provided on the dielectric side. The case of selecting a conductive metal material layer will be described with reference to the related drawings according to the following fourth to fifth embodiments of the present invention.

<発明の実施の形態 4 >  <Embodiment 4 of the invention>

本発明の実施の形態は、 窒化チタニウムアルミニウム層におけるアルミニウム 含有量及び窒素含有量の許容量を、 相の均一性、 低い抵抗率、 耐酸化性の観点か ら調べた例である。 相の均一性と酎酸化性は X線回折法によつて観察される相か ら、 抵抗率は直流 4端子法による測定からそれぞれ調べた。  The embodiment of the present invention is an example in which the allowable amounts of the aluminum content and the nitrogen content in the titanium aluminum nitride layer are examined from the viewpoint of phase uniformity, low resistivity, and oxidation resistance. The phase homogeneity and oxidizing property were examined from the phase observed by the X-ray diffraction method, and the resistivity was measured from the direct current four-terminal method.

まず、 自然酸化膜を除去した導電性シリ コン基板上に、 直流スパッタ リ ング法 を用いて、 窒化チタニウムアルミニウム((T i ^A l Jい yNy)膜を形成した。 ターゲ ッ トには、 アルミニウム金属板上にアルミニウム金属片及びチタニウム金属片を モザイク状に敷き詰めた複合ターゲッ トを用いた。 両金属片の面積比でアルミ二 ゥム含有量 Xを調整した。 窒素含有量 yは、 アルゴン放電ガス Z窒素ガスの流量 比を 95ノ5から 5ノ95の範囲で変化させて調整した。 基板加熱ヒー夕温度は 550 である。 その他の形成条件は、 入射電力 400W、 ガスの全圧 5から 20mTo r r、 成 長速度は 5から 10nm /分、 膜厚は 50nmである。 アルミニゥム含有量 xは I C P S法 (誘導結合プラズマ分光法) を用いて、 窒素含有量 yは H e +イオンを用いる R B S法 (ラザフォー ド バック スキヤタリ ング) を用いて、 それぞれ分析し決 定した。 第 1 0図 ( a ) に、 窒素含有量 yが 0.5である試料について、 生成相及び抵抗 率をアルミニウム含有量 Xの関数として示した。 X線回折の結果では、 Xが 0.6 以下では TiNに帰属される回折線のみが観察されたが、 Xが 0.6を越えると A1N に帰属される相が混在する混合相が観察され、 Xの増大ととも TiN相が消失する と同時に A1N相が増大した。 抵抗率は、 Xの増大とともにわずかに増大し、 0.5 付近から急激に増大して高抵抗へと向かう。 第 1 0図 ( b ) に、 アルミニウム含 有量 Xが 0.4である試料について、 生成相及び抵抗率を窒素含有量 yの関数とし て示した。 X線回折の結果では、 yが 0.2 より も小さいか 0.6を越えると TiN以 外の回折線が顕著に観察された。 抵抗率は、 X線回折パターンで単一相が観察さ れる yが 0.2以上 0.6以下の窒素含有量についてのみ調べた。 抵抗率は yととも に増大し、 yが 0.6付近から急激に増大する。 通常、 異相の影響は X線回折より も抵抗率において敏感に表れるので、 抵抗率で決定されるしきい値が Xと y双方 において狭くなると考えられる。 First, the natural oxide film is removed conductive silicon substrate, using a DC sputtering-ring method, titanium aluminum nitride ((T i ^ A l J have y N y) film was formed. On Target Tsu DOO A composite target in which aluminum metal pieces and titanium metal pieces were laid in a mosaic pattern on an aluminum metal plate was used.The aluminum content X was adjusted based on the area ratio of the two metal pieces. , Argon discharge gas, and the flow rate ratio of Z nitrogen gas were adjusted in the range from 95 to 5 to 95. The substrate heating temperature was 550. Other forming conditions were: incident power of 400 W, total gas consumption. 20mTo from pressure 5 rr, growth rate 10 nm / min from 5, a thickness of 50nm. Aruminiumu content x by using ICPS method (inductively coupled plasma spectroscopy), the nitrogen content y is H e + ions RBS method using By using the click Sukiyatari ring), were each analysis to determine boss. FIG. 10 (a) shows the product phase and resistivity as a function of the aluminum content X for a sample with a nitrogen content y of 0.5. In X-ray diffraction results, when X was 0.6 or less, only diffraction lines belonging to TiN were observed, but when X exceeded 0.6, a mixed phase containing a mixture of phases belonging to A1N was observed, and X increased. With the disappearance of the TiN phase, the A1N phase increased at the same time. The resistivity increases slightly with increasing X, and increases sharply from around 0.5 toward higher resistance. FIG. 10 (b) shows the product phase and resistivity as a function of the nitrogen content y for a sample with an aluminum content X of 0.4. According to the results of X-ray diffraction, when y was smaller than 0.2 or exceeded 0.6, diffraction lines other than TiN were remarkably observed. The resistivity was examined only for those nitrogen contents where y, at which a single phase was observed in the X-ray diffraction pattern, was between 0.2 and 0.6. The resistivity increases with y, and increases sharply from around 0.6. Normally, the influence of the different phases appears more sensitively in the resistivity than in the X-ray diffraction, so the threshold determined by the resistivity is considered to be narrow in both X and y.

次に、 上記で形成した窒化チタニウムアルミニゥム層の上に厚さ 30ηπιの白金 層を直流スパッタ リ ング法により形成した。 形成条件は、 入射電力は 400W、 放電 ガスはアルゴン、 ガス圧は 20mTorr、 形成温度は 500°C、 である。 さらに、 白金 層の上に R Fマグネ 卜口ンスノ ッ夕リ ング法を用いて、 厚さ lOOnmの酸化物誘電 体層(Pb(Zr。.5Ti。.5)03)を積層した。 形成条件は、 基板加熱ヒータ温度 300 、 入射電力 1.5W/cm2. 成膜速度 3 nmZ分、 放電 A rガス Z酸素ガス流量比 = 90 / 10、 圧力 5 mTorr, である。 形成後、 酸素気流中 650てで 2分間、 急速昇温加熱 (Rapid Thermal Annealing) 処理を行い、 結晶化を促進させた。 Next, a platinum layer having a thickness of 30 ηπι was formed on the titanium aluminum nitride layer formed above by a DC sputtering method. The formation conditions were: 400 W incident power, argon discharge gas, 20 mTorr gas pressure, and 500 ° C formation temperature. Further, by using the RF magnetic Bok port Nsuno Yyuri ring method on the platinum layer was laminated dielectric oxide layer having a thickness of lOOnm (Pb (Zr .. 5 Ti .. 5) 0 3). The formation conditions were: substrate heater temperature 300, incident power 1.5 W / cm 2, film formation rate 3 nmZ, discharge Ar gas Z oxygen gas flow ratio = 90/10, and pressure 5 mTorr. After formation, rapid thermal annealing (Rapid Thermal Annealing) treatment was performed at 650 in an oxygen stream for 2 minutes to promote crystallization.

最後に、 一旦形成した酸化物誘電体層をドライエッチングプロセスにより全部 除去し、 再び白金層を露出させた。 この試料について X線回折測定を行い、 酸化 物誘電体層形成により窒化チタニウムアルミニゥム((Ti^Alj !-yNy) 層が酸化 されて変質したかどうかを調べた。 その結果を第 1 0図に合わせて示した。 第 1 0図 ( a ) に見られるように、 アルミニウム含有量 Xが 0.2 より も小さいときに は窒化物層が酸化されて ΤίΟ,が形成することが確認された。 また第 1 0図 ( b ) に見られるように、 窒素含有量 yが 0.4 よりも小さいときにも Ti02が観察された。 以上のしきい値は、 アルミニウム含有量 X及び窒素含有量 yを異なる値に固定 しても同様であつた。 Finally, the oxide dielectric layer once formed was completely removed by a dry etching process to expose the platinum layer again. X-ray diffraction measurement was performed on this sample to determine whether or not the titanium aluminum nitride ((Ti ^ Alj! -YNy) layer was oxidized and changed in quality due to the formation of the oxide dielectric layer. As can be seen from Fig. 10 (a), it was confirmed that when the aluminum content X was smaller than 0.2, the nitride layer was oxidized to form ΤίΟ. Fig. 10 (b) As seen in, Ti0 2 also when the nitrogen content y is smaller than 0.4 were observed. The above threshold values were the same even when the aluminum content X and the nitrogen content y were fixed at different values.

また、 金属層として白金以外のイ リ ジウム、 ルテニウム、 レニウムを用いても 本質的に結果は変わらなかった。 さらに、 他の酸化物誘電体、 例えば異なるチタ ニゥム Zジルコニウム比のチタン酸ジルコン酸鉛、 チタン酸ジルコン酸バリウム 鉛、 チタン酸バリ ウムス トロンチウム、 ビスマス強誘電体に対しても、 窒化チタ ニゥムアルミニゥム拡散及び酸化防止層は同様の効果を示した。  In addition, even if iridium, ruthenium, or rhenium other than platinum was used as the metal layer, the result was essentially unchanged. In addition, titanium oxide nitride may be used for other oxide dielectrics, such as lead zirconate titanate, barium lead zirconate titanate, barium strontium titanate, and bismuth ferroelectrics having different titanium zirconium ratios. Film diffusion and antioxidant layers showed similar effects.

<発明の実施の形態 5 >  <Embodiment 5 of the invention>

本発明の実施の形態は、 窒化チタニウムアルミニゥム拡散及び酸化防止層を含 む酸化物誘電体キャパシタを形成し、 その分極ヒ ステリ シス曲線を測定した例で ある。  The embodiment of the present invention is an example in which an oxide dielectric capacitor including a titanium aluminum nitride diffusion and oxidation preventing layer is formed, and a polarization hysteresis curve is measured.

発明の実施の形態 4に記述した、 厚さ 30nmの白金層 厚さ 50ηπιの窒化チタ二 ゥムアルミニウム層ノ導電性シリ コン基板の上に、 試料 ( a ) では直接酸化物誘 電体層を、 試料 ( b ) では導電性酸化物層を介して酸化物誘電体層を、 それぞれ 穑層した。 Described in the fourth embodiment of the invention, on the thickness of 30n m platinum layer thickness titanium nitride two © arm aluminum Sonoshirube conductive silicon substrate 50ηπι of directly in the sample (a) oxide dielectrics layer In the sample (b), an oxide dielectric layer was formed with a conductive oxide layer interposed therebetween.

導電性酸化物層としては、 R Fマグネ ト口ンスパッタ リ ング法を用いて形成し た厚さ 50nmの Ru02を用いた。 タ一ゲッ トには Ru金属ターゲッ トを用いた。 形 成条件は、 基板加熱ヒータ温度 500 、 入射電力 1.5W/cm2. 成膜速度 3 nmノ分、 放電 Arガスノ酸素ガス流量比 50Z50、 圧力 7 mTorr、 である。 The conductive oxide layer, with Ru0 2 thick 50nm formed using an RF magnetic preparative port Nsupatta-ring method. A Ru metal target was used as a target. The formation conditions were: substrate heater temperature 500, incident power 1.5W / cm 2, deposition rate 3 nm , discharge Ar gas / oxygen gas flow ratio 50Z50, pressure 7 mTorr.

酸化物誘霜体層には、 ゾルゲル法を用いて形成した厚さ lOOnmのチタン酸ジル コン酸鉛(Pb(Zr0.5Ti0.5)03) を用いた。 ゾルとしては、 酢酸鉛、 チタンイソプロ ポキシ ド及びジルコニウムィソプロポキシ ドをメ トキシェタノール中で反応させ た溶液を用いた。 これを上記の白金層 (試料 ( a ) ) もしく は導電性酸化物層 ( 試料 ( b ) ) 上に塗布した後、 酸素雰囲気中 650てで 2分間急速昇温加熱して、 これを結晶化させた。 The oxide誘霜layer, using a titanate Jill Con lead thickness lOOnm formed using a sol-gel method (Pb (Zr 0. 5 Ti 0. 5) 0 3). As the sol, a solution obtained by reacting lead acetate, titanium isopropoxide and zirconium isopropoxide in methoxetanol was used. This is applied on the above platinum layer (sample (a)) or conductive oxide layer (sample (b)), and then heated and heated rapidly in an oxygen atmosphere at 650 for 2 minutes to form a crystal. It was made.

上部電極層としては、 メタルマスクを通して直流スパッ夕 リ ング法で形成した、 直径 2 mmの白金層を用いた。 The upper electrode layer was formed by a DC sputtering method through a metal mask. A platinum layer with a diameter of 2 mm was used.

第 1 1図に、 上部電極と導電性シリ コン基板間に電圧を印加して測定した分極 ヒステリ シス曲線を示す。 試料 ( a ) と ( b ) の双方において良好なヒステリ シ ス曲線が得られており、 介在する白金層の厚さが 30nm と薄い時でも窒化チタ二 ゥムアルミニウム層が拡散及び酸化反応防止層として有効に機能し、 基板からの 電圧供給でキャパシタを動作させ得ることが確認された。 Fig. 11 shows a polarization hysteresis curve measured by applying a voltage between the upper electrode and the conductive silicon substrate. Samples (a) and have better hysteresis shea scan curves obtained in both (b), a thickness of 30n m and a thin, even when titanium nitride two © beam aluminum layer diffusion of the platinum layer interposed and oxidation prevention It was confirmed that it could function effectively as a layer and that the capacitor could be operated by voltage supply from the substrate.

本発明の実施の形態では、 導電性酸化物層及び酸化物誘電体層の選択は本質で はない。 例えば、 導電性酸化物として Ir02、 SrRu03、 Re03のいずれを用いても 同様の効果が得られた。 さらに、 Xが 0.5以外のチタン酸ジルコン酸鉛 In the embodiment of the present invention, the selection of the conductive oxide layer and the oxide dielectric layer is not essential. For example, Ir0 as the conductive oxide 2, SrRu0 3, the same effect using any Re0 3 were obtained. In addition, X is a lead zirconate titanate other than 0.5

(Pb(ZrxTi1-x)03) . チタン酸バリウムス トロンチウム((BaxSrvx)Ti03 (x = 0 から 1) ) 、 チタン酸ジルコン酸バリウム鉛、 ビスマス系層状強誘電体を用いて も同様にキャパシタを形成することができた。 (Pb (Zr x Ti 1- x) 0 3). Titanate Bariumusu strontium ((Ba x Srv x) Ti0 3 (x = 0 to 1)), zirconate titanate, barium lead, bismuth-based layered ferroelectric A capacitor could be formed in the same manner.

以上の各発明の実施の形態で説明したように、 本発明の特徴の一つである窒化 チタニウムアルミニウム拡散及び酸化防止層を形成することにより、 これと隣接 する白金などの金属層の厚さを 30 nmまで薄く しても窒化物層を酸化することな く、 下部電極層および酸化物誘電体層を形成することができた。 これによつて、 電極の界面抵抗や接触抵抗を低減すると同時に、 キャパシタのァスぺク ト比を小 さくすることが可能となり、 高集積化に適した酸化物誘電体キャパシタを形成す ることができた。  As described in the above embodiments of the present invention, by forming the titanium aluminum nitride diffusion and oxidation prevention layer which is one of the features of the present invention, the thickness of the metal layer such as platinum adjacent thereto can be reduced. Even when the thickness was reduced to 30 nm, the lower electrode layer and the oxide dielectric layer could be formed without oxidizing the nitride layer. As a result, the interface resistance and contact resistance of the electrodes can be reduced, and at the same time, the capacitor's aspect ratio can be reduced. Thus, an oxide dielectric capacitor suitable for high integration can be formed. Was completed.

§ 2. 誘電体キャパシタを有する半導体装置の形成  § 2. Formation of semiconductor device having dielectric capacitor

本発明による酸化物誘電体キャパシタの半導体装置への適用の形態について、 シリ コン基板上に形成された MO S トランジスタを例に、 以下の発明の実施の形 態 6〜 1 0により関連図面を参照して説明する。 なお、 発明の実施の形態 6〜 8 は上述の導電性材料選定指針 1に、 発明の実施の形態 9及び 1 0は上述の導電性 材料選定指針 2に、 夫々基づいている。  Regarding the form of application of the oxide dielectric capacitor according to the present invention to a semiconductor device, the following embodiments 6 to 10 of the invention will be described with reference to the related drawings, taking a MOS transistor formed on a silicon substrate as an example. I will explain. Embodiments 6 to 8 of the present invention are based on the above guideline 1 for selecting a conductive material, and Embodiments 9 and 10 of the present invention are based on the guideline 2 for selecting a conductive material.

<発明の実施の形態 6 >  <Embodiment 6 of the invention>

本発明の実施の形態では、 半導体装置の製造に関し、 最初に、 酸化物誘電体キ ャパシ夕を形成する前までの前工程例を示す。 Embodiments of the present invention relate to the manufacture of a semiconductor device. An example of a pre-process up to before formation of a nap is shown.

まず、 シリ コン基板に MO S トランジスタを形成し、 次に一旦表面を平滑化し、 最後にキャパシ夕の電極と電気的な接続をするための多結晶シリ コンプラグの形 成について記述する。 一連の製造工程を、 第 1 2図から第 1 5図を用いて順を追 つて説明する。  First, a MOS transistor is formed on a silicon substrate, then the surface is once smoothed, and finally, the formation of a polycrystalline silicon plug for electrical connection with the capacitor electrode is described. A series of manufacturing steps will be described step by step with reference to FIG. 12 to FIG.

まず、 第 1 2図に示すように、 既存の MO S F E T形成工程によりスィッチ用 トランジスタを形成する。 1 2 1 は p型半導体基板、 1 2 2は素子間分離絶縁膜、 1 2 3はゲー ト酸化膜、 1 2 4はゲー ト電極となるワー ド線、 1 2 5と 1 2 6は リ ンを ドープした n型不純物拡散層、 1 2 7は SiOL,からなる層間絶縁膜である。 次に、 化学気相成長法を用いて表面の凹凸全体を厚さ 50nmの Si02層 1 2 8で被 覆する。 続いて厚さ 600nmの Si3N4層 1 2 9で一旦被覆した後、 この Si3N4層 1 2 9を堆積させた膜厚相当量エッチングして絶縁膜をヮー ド線間に埋め込み、 第 1 2図の構造を形成する。 Si 02層 1 2 8は、 後の工程でビッ ト線を加工するとき の下地であり、 かつ基板表面の露出や素子間分離絶緣膜 1 2 2が損傷するのを防 ぐ役割をする。 First, as shown in FIG. 12, a switch transistor is formed by an existing MOSFET process. 1 2 1 is a p-type semiconductor substrate, 1 2 2 is an element isolation insulating film, 1 2 3 is a gate oxide film, 1 2 4 is a word line serving as a gate electrode, 1 2 5 and 1 2 6 are Reference numeral 127 denotes an interlayer insulating film made of SiO L. Next, the covering of the entire surface irregularities in Si0 2 layer 1 2 8 thickness 50nm using chemical vapor deposition. After once coated with Si 3 N 4 layer 1 2 9 having a thickness of 600nm subsequently embedded the Si 3 N 4 layer 1 2 9 thickness equivalent amount etched was deposited insulating film between Wa word line, The structure shown in FIG. 12 is formed. Si 0 2 layer 1 2 8 is the foundation when machining the bit lines in a later step, and the anti-device role of exposure and the element isolation insulation緣膜1 2 2 of the substrate surface is damaged.

次の工程を第 1 3図に示す。 後に形成するビッ ト線が基板表面の n型不純物拡 散層 1 2 5と接触する部分の Si3N4、 及び後に形成するキャパシタ電極が基板表 面の n型不純物拡散層 1 2 6と接触する部分の Si3N4を、 ホ 卜 リ ソグラフィ法と ドライエッチング法とを用いて開孔する。 開孔した部分を含む全体に、 化学気相 成長法を用いて n型不純物を含む厚さ 600ηπιの非晶質シリコンを堆積させ、 熱処 理を経てこれを多結晶化させる。 さらに、 膜厚相当の多結晶シリ コンをエツチン グして、 開孔部が多結晶シリコン 1 3 1 と 1 3 2で埋め込まれた第 1 3図の構造 を形成する。 The next step is shown in FIG. The Si 3 N 4 where the bit line formed later contacts the n-type impurity diffusion layer 125 on the substrate surface, and the capacitor electrode formed later contacts the n-type impurity diffusion layer 126 on the substrate surface A portion of the Si 3 N 4 to be formed is opened by photolithography and dry etching. Amorphous silicon having a thickness of 600ηπι containing n-type impurities is deposited on the entire surface including the perforated portion using a chemical vapor deposition method, and polycrystallized through a heat treatment. Further, a polycrystalline silicon equivalent to the film thickness is etched to form the structure shown in FIG. 13 in which the openings are filled with polycrystalline silicon 13 1 and 13 2.

次のビッ ト線形成工程を第 1 4図に示す。 まず、 化学気相成長法を用いて表面 全体を Si02絶縁膜 1 4 1で被覆する。 次に、 すぐ後で形成するビッ ト線が基板の π型不純物拡散層 1 2 5と電気的に接続されるように、 多結晶シリ コン 1 3 1 の 上部に位置する Si02絶縁膜を、 ホ トリ ソグラフィ法と ドライエッチング法とを用 いて開孔する。 この開孔部を含む全面にビッ ト線となる金属のシリサイ ド及び多 結晶シリ コンの積層膜 ( 1 4 2 ) を形成し、 さらにこの上に厚さ 200nmの Si02 層 ( 1 4 3 ) を堆積させる。 ホ トリ ソグラフィ法と ドライエッチング法とを用い て Si02層 ( 1 4 3 ) と金属シリサイ ド及び多結晶シリ コンの積層膜 ( 1 4 2 ) を 目的のパターンに加工して、 ビッ ト線 1 4 2及び Si02層 1 4 3を形成する。 次に、 ビッ ト線 1 4 2の側壁部を絶縁するために、 化学気相成長法を用いて厚さ 150 nm の Si3N4を堆積した後、 ドライエッチング法によりこれをエッチングし、 Si3N4の サイ ドウォ一ルスぺーサ 1 4 4を形成する。 最後に、 多結晶シリ コン 1 3 2の上 部に位置する Si02絶縁膜 1 4 1を、 ホ ト リ ソグラフィ法と ドライエッチング法と を用いて開孔する。 これは後に形成するキャパシタ電極と n型不純物拡散層 1 2 6とを電気的に接続するための準備である。 The next bit line formation process is shown in FIG. First, the entire surface is coated with Si0 2 insulating film 1 4 1 by chemical vapor deposition. Next, as bit lines forming shortly is electrically connected to the π-type impurity diffusion layer 1 2 5 of the substrate to the Si0 2 insulating film located on top of the polycrystalline silicon 1 3 1, Using photolithography and dry etching To make a hole. Si0 2 layer of the opening formed on the entire surface of the laminated film (1 4 2) of Shirisai de and the polycrystalline silicon of the metal serving as bit lines including, thickness 200nm on further the (1 4 3) Is deposited. Processed Si0 2 layers of (1 4 3) and the metal Shirisai de and polycrystalline silicon laminated film of (1 4 2) in the desired pattern using a Ho tri lithography method and the dry etching method, bit lines 1 4 2 and SiO 2 layer 1 4 3 are formed. Next, in order to insulate the side walls of the bit lines 142, 150 nm thick Si 3 N 4 was deposited by chemical vapor deposition, and then this was etched by dry etching. Form a 3 N 4 side wall spacer 144. Finally, the polycrystalline silicon 1 3 2 above section Si0 2 insulating film 1 4 1 positioned to opening by using the mined Li lithography method and dry etching method. This is a preparation for electrically connecting a capacitor electrode to be formed later and the n-type impurity diffusion layer 126.

次に、 キャパシタを形成する前の平坦化工程及び導電性の多結晶シリ コンブラ グを形成る工程を第 1 5図に示す。 まず、 基板表面を平坦化するのに十分な膜厚 の絶縁膜 1 5 1 を堆積させる。 本発明の実施の形態では、 厚さ 500nmのホウ素リ ンシリゲー トガラス ( B P S G) を用いたが、 他のシリコン酸化膜を用いても良 い。 化学機械研磨 ( CMP ) 法によりこれを平坦化する。 化学気相成長法を用い て基板表面を Si02で被覆した後、 これをエッチバック して平坦化しても良い。 次 に、 n型不純物拡散層 1 2 6の上部に位置する絶縁膜 1 5 1をホ ト リ ソグラフィ 法と ドライエッチング法とを用いて開孔しコンタク ト孔を形成する。 この孔を含 む全面に化学気相成長法を用いて厚さ 200nmのリ ン ドープ非晶質シリコンを堆積 させた後これを熱処理して多結晶化し、 ドライエッチング法によりエッチバック して多結晶シリコンが埋め込まれた多結晶シリ コンプラグ 1 5 2を形成する。 Next, a flattening step and a step of forming a conductive polycrystalline silicon plug before forming a capacitor are shown in FIG. First, an insulating film 15 1 having a thickness sufficient to flatten the substrate surface is deposited. In the embodiment of the present invention, a 500-nm-thick boron silicate glass (BPSG) is used, but another silicon oxide film may be used. This is flattened by chemical mechanical polishing (CMP). After coating the substrate surface with a Si0 2 using a chemical vapor deposition method, it may be flattened this is etched back. Next, a contact hole is formed by opening the insulating film 151 located above the n-type impurity diffusion layer 126 using photolithography and dry etching. A 200-nm-thick phosphorus-doped amorphous silicon layer is deposited on the entire surface including the holes by chemical vapor deposition, and then heat-treated to polycrystallize it. A polycrystalline silicon plug 152 embedded with silicon is formed.

以上で酸化物誘電体キャパシタを形成するための前工程が完了した。  Thus, the pre-process for forming the oxide dielectric capacitor is completed.

次に、 この MO S トランジスタの形成から多結晶シリ コンプラグの形成までの 前工程が完了した基板上に、 2層導電性酸化物層を含む酸化物誘電体キャパシタ を形成した工程例を説明する。 ここでは下部電極の構造として、 第 2図に示した 多結晶シリコン上に酸素欠損を含む導電性酸化物層を直接形成する構造を採用し た。 Next, a description will be given of an example of a process of forming an oxide dielectric capacitor including a two-layer conductive oxide layer on a substrate on which the previous process from the formation of the MOS transistor to the formation of a polycrystalline silicon plug is completed. Here, as the structure of the lower electrode, a structure in which a conductive oxide layer containing oxygen vacancies is directly formed on the polycrystalline silicon shown in FIG. 2 was adopted. Was.

まず、 第 1 6図に示すように、 上記発明の実施の形態 1で詳細に記述したとお り、 R Fマグネ トロンスパッ夕 リ ング法を用いて A r雰囲気中で厚さ lOnmの酸 素欠損を含む導電性酸化物層 1 6 1 (Ru02) を形成し、 続いて酸素をガス流量比 で 1" 02 = 971 まで導入すると同時に全圧を上げ、 厚さ 50nm導電性酸化物層 1 6 2を積層して 2層導電性酸化物層 1 6 1 と 1 6 2を形成した。 次に、 この上を D Cスパッタ リ ング法により 50 nmの W膜で被覆し、 ドライエッチング法により フォ ト レジス 卜のマスクパターンをこれに転写した。 この転写パターンをマスク として、 スパッタエッチング法により 2層導電性酸化物層 1 6 1 と 1 6 2をパ夕 ーンニングした。 転写マスクをエッチングで除去した後に、 酸化物誘電体層 1 6 3を形成した。 本発明の実施の形態では酸化物誘電体として、 チタン酸ジルコン 酸鉛(Pb(Zre 5Ti。.5)03) を用い、 その形成方法は上記発明の実施の形態 2及び 3 に詳細に記述したとおりである。 ただし、 膜厚は lOOnmとした。 最後に、 白金プ レー ト電極 1 6 4を形成してメモリセルのキャパシタを完成させた。 First, as shown in FIG. 16, as described in detail in the first embodiment of the present invention, an oxygen deficiency having a thickness of lOnm is contained in an Ar atmosphere using an RF magnetron sputtering method. A conductive oxide layer 16 1 (RuO 2 ) is formed. Subsequently, oxygen is introduced up to a gas flow ratio of 1 "0 2 = 971, and at the same time, the total pressure is increased to a thickness of 50 nm. Were laminated to form two conductive oxide layers 16 1 and 16 2. Next, this was covered with a 50 nm W film by DC sputtering, and photo resist was formed by dry etching. Using the transferred pattern as a mask, the two-layer conductive oxide layers 16 1 and 16 2 were patterned by sputter etching using the transferred pattern as a mask. The oxide dielectric layer 163 was formed. As compound dielectric, using the lead zirconate titanate (Pb (Zr e 5 Ti .. 5) 0 3), the forming method is as described in detail in the second and third embodiments of the invention. However Finally, a platinum plate electrode 164 was formed to complete the capacitor of the memory cell.

この酸化物強誘電体キャパシタの分極ヒステリ シス特性を、 キャパシタ面積 0.2から 25 m2まで変化させた試料について測定した。 その結果、 いずれにお いても多結晶シリ コンプラグ 1 5 2からの電圧供給が可能で、 良好なヒステリ シ ス曲線が得られた。 The polarization hysteresis characteristics of this oxide ferroelectric capacitor were measured for samples in which the capacitor area was changed from 0.2 to 25 m 2 . As a result, a voltage could be supplied from the polycrystalline silicon plug 152 in each case, and a good hysteresis curve was obtained.

本発明の実施の形態では、 酸化物誘電体層の選択は本質ではない。 Xが 0.5以 外のチタン酸ジルコン酸鉛(Pb (ZrxTi,_x03) )、 チタン酸バリウムス トロンチウム ( (Ba,Sr1_;i)Ti03 (x = 0から 1) ) 、 チタン酸ジルコン酸バリ ウム鉛、 ビスマス 系層状強誘電体を用いても同様にメモリセルを形成することができた。 さらに、 導電性酸化物層として上記発明の実施の形態 1 に記述したいずれの化合物を用い ても同様の効果が得られた。 In embodiments of the present invention, the choice of the oxide dielectric layer is not essential. X 0.5 other than lead zirconate titanate (Pb (Zr x Ti, _ x 0 3)), titanate Bariumusu strontium ((Ba, Sr 1 _; i) Ti0 3 (x = 0 to 1)), Similarly, a memory cell could be formed using a barium lead zirconate titanate or bismuth-based layered ferroelectric. Further, similar effects were obtained by using any of the compounds described in Embodiment 1 of the present invention as the conductive oxide layer.

<発明の実施の形態 7 >  <Embodiment 7 of the invention>

本発明の実施の形態では、 本発明の実施の形態 6で詳細に記述した、 MO S ト ランジス夕の形成から多結晶シリコンプラグの形成までの前工程が完了した基板 上に、 第 3図に示した様に 2層導電性酸化物層を拡散防止非酸化物導電層上に形 成する酸化物誘電体キャパシタを形成した工程例である。 In the embodiment of the present invention, a substrate in which the pre-process from the formation of the MOS transistor to the formation of the polycrystalline silicon plug, which is described in detail in the sixth embodiment of the present invention, is completed. Above is an example of a process for forming an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a diffusion-preventing non-oxide conductive layer as shown in FIG.

まず、 第 1 7図に示すように、 拡散防止非酸化物導電層 1 7 1を形成する。 こ こでは、 拡散防止非酸化物導電層として T i Nを用いた例を詳しく説明するが、 T a、 Z r、 N b、 V、 Wの窒化物についても半導体装置として同様の結果が得 られた。 窒化物層は上記発明の実施の形態 2で詳細に記述したように、 金属ター ゲッ トを用いる直流スパッタリ ング法により形成した。 膜厚は 40 nmである。 成 膜後、 急速昇温加熱法を用いて、 アンモニアガス雰囲気中 800°Cで 2分間熱処理 して結晶化を促進した。 First, as shown in FIG. 17, a diffusion preventing non-oxide conductive layer 171 is formed. Here, an example in which TiN is used as the diffusion preventing non-oxide conductive layer will be described in detail, but similar results can be obtained for nitrides of Ta, Zr, Nb, V, and W as semiconductor devices. Was done. The nitride layer was formed by a direct current sputtering method using a metal target as described in detail in the second embodiment of the present invention. The film thickness is 40 nm . After film formation, heat treatment was performed at 800 ° C for 2 minutes in an ammonia gas atmosphere using a rapid temperature heating method to promote crystallization.

次に、 2層導電性酸化物層として SrRu03を微酸化性雰囲気中で R Fマグネ ト口 ンスパッタ リ ング法を用いて形成した。 このことは、 もちろん A rガス中で形成 しても同じ効果が得られることを意味する。 ガス流量比 ArZ02 = 100 1 で厚さ lOnmの酸素欠損を含む導電性酸化物層層 1 6 1 (SrRu03) を形成し、 続いてガ ス流量比を Arノ 02 = 9/1 まで下げて厚さ 50nm導電性酸化物層 1 6 2を積層し て 2層導電性酸化物層 1 6 1 と 1 6 2を形成した。 温度などの条件の詳細は上記 発明の実施の形態 2に記載したとおりである。 It was then formed by using an RF magnetic preparative port Nsupatta-ring method at SrRu0 3 through the fine oxidizing atmosphere as 2 layer conductive oxide layer. This means, of course, that the same effect can be obtained even when formed in Ar gas. Gas flow rate ratio ArZ0 form a 2 = 100 1 conductive oxide layer layer 1 6 1 including oxygen deficiency thick lOnm in (SrRu0 3), followed by gas flow ratio to Ar Bruno 0 2 = 9/1 The conductive oxide layers 162 having a thickness of 50 nm were lowered to form two-layer conductive oxide layers 161 and 162. Details of the conditions such as the temperature are as described in the second embodiment of the present invention.

次に、 この上を D Cスパッタ リ ング法により 50nmの W膜で被覆し、 ドライエ ッチング法によりフォ 卜レジス トのマスクパターンをこれに転写した。 この転写 パターンをマスクとして、 スパッタエッチング法により 2層導電性酸化物層 1 6 1 と 1 6 2及び拡散防止非酸化物導電層 1 7 1をパターンニングした。 転写マス クをエッチングで除去した後に、 酸化物誘電体層 1 6 3を形成した。 本発明の実 施の形態では酸化物誘電体として、 チタン酸ジルコン酸鉛(Pb(Zr。.5Ti。.5)03)を 用い、 その形成方法は上記発明の実施の形態 2及び 3に詳細に記述したとおりで ある。 但し、 膜厚は lOOnm とした。 最後に、 白金プレー ト電極 1 6 4を形成して メモリセルのキャパシタを完成させた。 Next, this was covered with a 50 nm W film by DC sputtering, and the mask pattern of the photo resist was transferred to this by a dry etching method. Using this transfer pattern as a mask, the two conductive oxide layers 16 1 and 16 2 and the diffusion preventing non-oxide conductive layer 17 1 were patterned by sputter etching. After removing the transfer mask by etching, an oxide dielectric layer 163 was formed. As the oxide dielectric in the implementation of the embodiment of the present invention, lead zirconate titanate (Pb (Zr .. 5 Ti .. 5) 0 3) used, the second and third embodiments of a method of forming the above-described invention It is as described in detail. However, the film thickness was 100 nm. Finally, a platinum plate electrode 164 was formed to complete the capacitor of the memory cell.

この酸化物強誘電体キャパシタの分極ヒステリ シス特性を、 キャパシタ面積 0.2から 25 m2まで変化させた試料について測定した。 その結果、 いずれにお いても多結晶シリ コンプラグ 1 5 2からの電圧供給が可能で、 良好なヒステリ シ ス曲線が得られた。 The polarization hysteresis characteristics of this oxide ferroelectric capacitor were measured for samples in which the capacitor area was changed from 0.2 to 25 m 2 . As a result, However, voltage could be supplied from the polycrystalline silicon plug 152, and a good hysteresis curve was obtained.

本発明の実施の形態では、 酸化物誘電体層の選択は本質ではない。 Xが 0.5以 外のチタン酸ジルコン酸鉛(Pb(ZrxTiい J03)、 チタン酸バリゥムス トロンチウム ((BaxSr!_x)Ti03 ( x=0から 1) ) 、 チタン酸ジルコン酸バリ ウム鉛、 ビスマス 系層状強誘電体を用いても同様にメモリセルを形成することができた。 さらに、 導電性酸化物層として上記発明の実施の形態 1 から 3に記述した、 lr02、 Ru02、 CaRu03、 Laを添加した SrTi03、 Re03のいずれを用いても同様の効果が得られた。 In embodiments of the present invention, the choice of the oxide dielectric layer is not essential. X 0.5 other than lead zirconate titanate (Pb (Zr x Ti physician J0 3), titanate Bariumusu strontium ((Ba x Sr! _ X ) Ti0 3 (x = 0 to 1)), zirconate titanate Similarly, a memory cell could be formed using a barium lead or bismuth-based layered ferroelectric material, and the conductive oxide layer described in Embodiments 1 to 3 of the present invention, l r 0 2, Ru0 2, CaRu0 3, SrTi0 was added La 3, the same effect using any Re0 3 were obtained.

<発明の実施の形態 8 >  <Embodiment 8>

本発明の実施の形態では、 本発明の実施の形態 6で詳細に記述した、 MO S ト ランジス夕の形成から多結晶シリ コンプラグの形成までの前工程が完了した基板 上に、 第 4図に示した様に 2層導電性酸化物層を金属層を介して拡散防止非酸化 物導電層上に形成する酸化物誘電体キャパシタを形成した工程例である。  In the embodiment of the present invention, FIG. 4 shows a structure in which the pre-process from the formation of the MOS transistor to the formation of the polycrystalline silicon plug, which is described in detail in the sixth embodiment of the present invention, is completed. This is an example of a process for forming an oxide dielectric capacitor in which a two-layer conductive oxide layer is formed on a diffusion-preventing non-oxide conductive layer via a metal layer as shown.

まず、 第 1 8図に示すように、 拡散防止非酸化物導電層 1 7 1を形成する。 こ こでは、 拡散防止非酸化物導電層として TiNを用いた例を説明するが、 Ta、 Zr、 Nb、 V、 Wの窒化物についても半導体装置として同様の結果が得られた。 TiN層は 上記発明の実施の形態 7で記述した通りである。 この上に、 直流スパッタ リ ング 法により厚さ 20nmの金属層 1 8 1を形成した。 本発明の実施の形態では白金を 用いたが、 同種の貴金属であるィ リ ジゥムやルテニウムを用いても同様の効果が 確認された。 金属層の形成条件は上記発明の実施の形態 3に記載したとおりであ る。  First, as shown in FIG. 18, a diffusion preventing non-oxide conductive layer 171 is formed. Here, an example in which TiN is used as the diffusion preventing non-oxide conductive layer will be described. However, similar results were obtained for a nitride of Ta, Zr, Nb, V, and W as a semiconductor device. The TiN layer is as described in the seventh embodiment of the present invention. On this, a 20 nm-thick metal layer 181 was formed by a DC sputtering method. Although platinum was used in the embodiment of the present invention, the same effect was confirmed by using the same kind of noble metal such as iridium and ruthenium. The conditions for forming the metal layer are as described in the third embodiment of the present invention.

次に、 2層導電性酸化物層として Ir02を微酸化性雰囲気中で R Fマグネ 卜口ン スパッタ リ ング法を用いて形成した。 もちろん Arガス中で形成しても同じ効果が 得られた。 ガス流量比 ArZOz -100Z1 で厚さ 10nmの酸素欠損を含む導電性酸 化物層 1 6 1 (Ir02) を形成し、 続いてガス流量比を Arノ 02 = 9/1 まで下げて 厚さ 50nmの導電性酸化物層 1 6 2 (Ir02) を積層して 2層導電性酸化物層 1 6 1 と 1 6 2を形成した。 温度などの条件の詳細は上記発明の実施の形態 3に記載 したとおりである。 Next, as a two-layer conductive oxide layer, IrO 2 was formed in a slightly oxidizing atmosphere using an RF magnet port sputtering method. Of course, the same effect was obtained even when formed in Ar gas. A conductive oxide layer 16 1 (IrO 2 ) containing oxygen vacancies with a thickness of 10 nm is formed at a gas flow ratio of ArZOz -100Z1, and then the gas flow ratio is reduced to Ar 0 2 = 9/1 to obtain a thickness. 50 nm conductive oxide layers 16 2 (IrO 2 ) were laminated to form two-layer conductive oxide layers 16 1 and 16 2. Details of conditions such as temperature are described in the third embodiment of the present invention. As you did.

次に、 この上を D Cスパッタ リ ング法により 50 nmの W膜で被覆し、 ドライエ ッチング法によりフォ ト レジス トのマスクパタ一ンをこれに転写した。 この転写 パターンをマスクとして、 スパックエッチング法により 2層導電性酸化物層 1 6 1 と 1 6 2、 金属屑 1 8 1及び拡散防止非酸化物導電層 1 7 1をバターンニング した。 転写マスクをエッチングで除去した後に、 酸化物誘電体層〗 6 3を形成し た。 本発明の実施の形態では酸化物誘電体として、 チタン酸ジルコン酸鉛  Next, this was covered with a 50 nm W film by DC sputtering, and the mask pattern of the photo resist was transferred thereto by dry etching. Using this transfer pattern as a mask, two-layer conductive oxide layers 16 1 and 16 2, metal scrap 18 1, and a diffusion-preventing non-oxide conductive layer 17 1 were patterned by the Spack etching method. After removing the transfer mask by etching, an oxide dielectric layer # 63 was formed. In the embodiment of the present invention, lead zirconate titanate is used as the oxide dielectric.

(Pb(Zr0.5Ti0.5)03)を用い、 その形成方法は上記発明の実施の形態 2及び 3に詳 細に記述したとおりである。 但し、 膜厚は lOOnm とした。 最後に、 白金プレー ト 電極 1 6 を形成してメモリセルのキャパシタを完成させた。 Using (Pb (Zr 0. 5 Ti 0. 5) 0 3), the forming method is as described in details in the second and third embodiments of the invention. However, the film thickness was 100 nm. Finally, a platinum plate electrode 16 was formed to complete the capacitor of the memory cell.

この酸化物誘電体キャパシタの分極ヒステリ シス特性を、 キャパシタ面積 0.2 から 25 m2まで変化させた試料について測定した。 その結果、 いずれにおいて も多結晶シリ コンプラグ 1 5 2からの電圧供給が可能で、 良好なヒステリ シス曲 線が得られた。 The polarization hysteresis characteristics of this oxide dielectric capacitor were measured for samples in which the capacitor area was changed from 0.2 to 25 m 2 . As a result, a voltage could be supplied from the polycrystalline silicon plug 152 in each case, and a good hysteresis curve was obtained.

本発明の実施の形態では、 酸化物誘電体層の選択は本質ではない。 Xが 0.5以 外のチタン酸ジルコン酸鉛(Pb(ZrxTi1-x)03)、 チタン酸バリウムス トロンチウム ((BaxSr1-x)Ti03) (x = 0から 1))、 チタン酸ジルコン酸バリウム鉛、 ビスマス 系層状強誘電体を用いても同様にメモリセルを形成することができた。 さらに、 導電性酸化物層として上記発明の実施の形態 1から 3に記述した、 Ru02、 SrRu03、 CaRu03、 Laを添加した SrTi03、 Re03のいずれを用いても同様の効果が得られた。 In embodiments of the present invention, the choice of the oxide dielectric layer is not essential. X 0.5 other than lead zirconate titanate (Pb (Zr x Ti 1- x) 0 3), titanate Bariumusu strontium ((Ba x Sr 1-x ) Ti0 3) (x = 0 to 1)), Similarly, a memory cell could be formed using a barium lead zirconate titanate or bismuth-based layered ferroelectric. Further, described as the conductive oxide layer from the first embodiment of the invention 3, Ru0 2, SrRu0 3, CaRu0 3, SrTi0 was added La 3, obtained the same effect using any Re0 3 of Was done.

<発明の実施の形態 9 >  <Embodiment 9>

本発明の実施の形態では、 本発明の実施の形態 6で詳細に記述した、 MO S ト ランジスタの形成から多結晶シリコンブラグの形成までの前工程が完了した基板 上に、 窒化チタニウムアルミニゥム拡散及び酸化防止層を含む酸化物誘電体キヤ パシタを形成した工程例である。 ここでは下部電極の構造として、 第 5図に示し た窒化チタニウムアルミニウム上に金属層、 酸化物誘電体層を順次積層する構造 を採用した。 まず、 第 1 9図に示すごとく、 窒化チタニウムアルミニウム In the embodiment of the present invention, titanium aluminum nitride is formed on a substrate on which the pre-process from the formation of the MOS transistor to the formation of the polycrystalline silicon plug, which is described in detail in the sixth embodiment of the present invention, is completed. 5 is an example of a process for forming an oxide dielectric capacitor including a diffusion and oxidation preventing layer. Here, as the structure of the lower electrode, a structure in which a metal layer and an oxide dielectric layer are sequentially laminated on titanium aluminum nitride shown in FIG. 5 was adopted. First, as shown in Fig. 19, titanium aluminum nitride

((Ti0.7Alo.3)0.5N'0.5)層 1 9 1 を、 R Fマグネ 卜ロンスノ、。ッタ リ ング法を用いて 形成した。 ターゲッ トには、 窒化チタニウム板上に窒化アルミニウム片を適当量 置いた複合ターゲッ トを用いた。 形成条件は、 基板加熱ヒータ温度は 550て、 入 射電力 400W、 ガスの全圧は 8 mTorr、 アルゴン放電ガス/窒素ガスの流量比は 90/10、 成長速度は lOnmZ分、 膜厚は 50nmである。 第 5図で説明した他のアル ミニゥムもしく は窒素含有量についても以下に説明する効果は同様であった。 この上に、 直流スパッ夕 リ ング法により厚さ 30nmの金属層 1 8 1 を形成した。 本発明の実施の形態では白金を用いたが、 同種の貴金属であるィ リ ジゥムゃルテ 二ゥムゃレニウムを用いても同様の効果が確認された。 金属層の形成条件は上記 発明の実施の形態 4に記載したとおりである。 ((Ti 0. 7 Al o . 3) 0. 5 N '0. 5) layer 1 9 1, RF magnetic Bok Ronsuno. It was formed using a sputtering method. As a target, a composite target in which an appropriate amount of aluminum nitride pieces were placed on a titanium nitride plate was used. The formation conditions were as follows: substrate heater temperature was 550, incident power was 400 W, total gas pressure was 8 mTorr, argon discharge gas / nitrogen gas flow ratio was 90/10, growth rate was lOnmZ, and film thickness was 50 nm. is there. The effect described below was the same for the other aluminum or nitrogen contents described in FIG. A 30 nm-thick metal layer 18 1 was formed thereon by a DC sputtering method. Although platinum was used in the embodiment of the present invention, the same effect was confirmed by using the same kind of noble metal, i.e., platinum. The conditions for forming the metal layer are as described in the fourth embodiment of the present invention.

次に、 この上を D Cスパッタリ ング法により 50nmの W膜で被覆し、 ドライエ ツチング法によりフォ トレジス トのマスクパターンをこれに転写した。 この転写 パターンをマスクとして、 スパッタエッチング法により窒化チタニウムアルミ二 ゥム層 1 9 1 と金属層 1 8 2をパターンニングした。 転写マスクをエッチングで 除去した後に、 酸化物誘電体層 1 6 3を形成した。 本発明の実施の形態では酸化 物誘電体として、 チタン酸ジルコン酸鉛(PtXZiYsTio.^Os)を用い、 その形成方 法は上記発明の実施の形態 5に詳細に記述したとおりのゾルゲル法である。 その 膜厚は lOOnraとした。 最後に、 白金プレート電極 1 6 4を形成、 パターニングし てメモリセルのキャパシタを完成させた。  Next, this was covered with a 50 nm W film by a DC sputtering method, and a photoresist mask pattern was transferred to this by a dry etching method. Using this transfer pattern as a mask, the titanium aluminum nitride layer 191 and the metal layer 182 were patterned by sputter etching. After removing the transfer mask by etching, an oxide dielectric layer 163 was formed. In the embodiment of the present invention, lead zirconate titanate (PtXZiYsTio. ^ Os) is used as the oxide dielectric, and the formation method is the sol-gel method as described in detail in the fifth embodiment of the present invention. . The film thickness was lOOnra. Finally, a platinum plate electrode 164 was formed and patterned to complete the memory cell capacitor.

この酸化物強誘電体キャパシタの分極ヒステリ シス特性を、 キャパシタ面積 0.2から 25 m2まで変化させた試料について測定した。 その結果、 いずれにお いても多結晶シリコンプラグ 1 5 2からの電圧供給が可能で、 良好なヒステリ シ ス曲線が得られた。 The polarization hysteresis characteristics of this oxide ferroelectric capacitor were measured for samples in which the capacitor area was changed from 0.2 to 25 m 2 . As a result, a voltage could be supplied from the polycrystalline silicon plug 152 in each case, and a good hysteresis curve was obtained.

本発明の実施の形態では、 酸化物誘電体層の選択は本質ではない。 Xが 0.5以 外のチタン酸ジルコン酸鉛(Pb(ZrxTi1-x)03)、 チタン酸バリゥムス トロンチウム ((BaxSiv,)Ti03) (x = 0から 1))、 チタン酸ジルコン酸バリ ウム鉛、 ビスマス 系層状強誘電体を用いても同様にメモリセルを形成することができた In embodiments of the present invention, the choice of the oxide dielectric layer is not essential. X 0.5 other than lead zirconate titanate (Pb (Zr x Ti 1- x) 0 3), titanate Bariumusu strontium ((Ba x Siv,) Ti0 3) (x = 0 to 1)), titanate Barium lead zirconate, bismuth A memory cell could be formed in the same manner using a layered ferroelectric.

<発明の実施の形態 1 0 >  <Embodiment 10 of the invention>

本発明の実施の形態では、 本発明の実施の形態 6で詳細に記述した、 M O S ト ランジス夕の形成から多結晶シリ コンプラグの形成までの前工程が完了した基板 上に、 窒化チタニウムアルミニゥム拡散及び酸化防止層を含む酸化物誘電体キヤ パシタを形成した工程例である。 ここでは下部電極の構造として、 第 6図に示し た窒化チタニウムアルミニウム上に金厲 IR、 導電性酸化物層、 酸化物誘電体層を 順次積層する構造を採用した。  In the embodiment of the present invention, titanium aluminum nitride is formed on a substrate on which the pre-process from the formation of the MOS transistor to the formation of the polycrystalline silicon plug, which is described in detail in the sixth embodiment of the present invention, is completed. 5 is an example of a process for forming an oxide dielectric capacitor including a diffusion and oxidation preventing layer. Here, as the structure of the lower electrode, a structure in which a metal IR, a conductive oxide layer, and an oxide dielectric layer are sequentially laminated on titanium aluminum nitride shown in FIG. 6 was adopted.

まず、 第 2 0図に示すごと く、 発明の実施の形態 9と同様の方法を用いて、 窒 化チタニウムアルミニゥム((Ti0 1。 5)0 5 .5)層 1 9 1及び金属層 1 8 1を形 成した。 他のアルニゥムもしくは窒素含有量についても以下の効果は同様であつ た。 また、 金属層としてイ リ ジウムやルテニウムやレニウムを用いても同様の効 果が確認された。 First, rather each time shown in the second 0 Figure, using the same method as in embodiment 9 of the invention, nitriding titanium Arumini © beam ((Ti 0 1. 5) 0 5. 5) layer 1 9 1 and metal Layer 18 1 was formed. The following effects were similar for other aluminum or nitrogen contents. Similar effects were confirmed when using iridium, ruthenium, or rhenium as the metal layer.

導電性酸化物層 2 0 1 としては、 R Fマグネ ト口ンスパッタ リ ング法を用いて 形成した厚さ 50ηπιの Ir02を用いた。 夕—ゲッ トには Ir金属ターゲッ トを用い た。 形成条件は、 基板加熱ヒータ温度 500て、 入射電力 1. 5WZCDI2、 成膜速度 3 nm/分、 放電 Arガス Z酸素ガス流量比 50750、 圧力 7 mTorrである。 As the conductive oxide layer 201, IrO 2 having a thickness of 50ηπι formed by an RF magnet sputtering method was used. In the evening, an Ir metal target was used. The formation conditions are: substrate heater temperature 500, incident power 1.5WZCDI 2 , film formation rate 3nm / min, discharge Ar gas Z oxygen gas flow ratio 50750, pressure 7mTorr.

次に、 この上を D Cスパッタ リ ング法により 50nmの W膜で被稷し、 ドライエ ツチング法によりフォ トレジス 卜のマスクパターンをこれに転写した。 この転写 パターンをマスクとして、 スパッタエツチング法により窒化チタニウムアルミ二 ゥム層 1 9 1 と金属層 1 8 1 と導電性酸化物層 2 0 1をパターンニングした。 転写マスクをエッチングで除去した後に、 酸化物誘電体層 1 6 3を形成した。 本発明の実施の形態では酸化物誘電体として、 反応性蒸着法により形成したビス マス層状強誘電体、 Bi4Ti3012、 を用いた。 圧力 50 〃 Torrの酸素雰囲気中で、 チタニウムは電子銃を用いて、 ビスマスはェフユ一ジョ ンセルを用いて蒸発させ、 室温で厚さ 100 nmの非晶質酸化物薄膜を形成させた。 形成後、 酸素雰囲気中 700てで 2分間急速昇温加熱して、 これを結晶化させた。 最後に、 白金プレー ト 電極 164を形成、 パ夕一ニングしてメモリセルのキャパシ夕を完成させた。 Next, this was covered with a 50 nm W film by a DC sputtering method, and a photoresist mask pattern was transferred to this by a dry etching method. Using this transfer pattern as a mask, the titanium aluminum nitride layer 191, the metal layer 181, and the conductive oxide layer 201 were patterned by a sputter etching method. After removing the transfer mask by etching, an oxide dielectric layer 163 was formed. In the embodiment of the present invention, a bismuth layered ferroelectric, Bi 4 Ti 3 0 12 , formed by a reactive evaporation method was used as the oxide dielectric. In an oxygen atmosphere at a pressure of 50 〃 Torr, titanium was evaporated using an electron gun and bismuth was evaporated using a effusion cell to form an amorphous oxide thin film having a thickness of 100 nm at room temperature. After the formation, it was heated at 700 ° C for 2 minutes in an oxygen atmosphere to be crystallized. Finally, a platinum plate The electrode 164 was formed and the patterning was completed to complete the capacity of the memory cell.

この酸化物強誘電体キャパシタの分極ヒステリ シス特性を、 キャパシタ面積 0.2から 25 m2まで変化させた試料について測定した. その結果、 いずれにお いても多結晶シリ コンプラグ 1 5 2からの電圧供給が可能で、 良好なヒステリ シ ス曲線が得られた。 The polarization hysteresis characteristics of this oxide ferroelectric capacitor were measured for samples whose capacitor area was varied from 0.2 to 25 m 2. As a result, the voltage supply from the polycrystalline silicon plug 15 Possible and good hysteresis curves were obtained.

本発明の実施の形態では、 導電性酸化物層及び酸化物誘電体層の選択は本質で はない。 他にも、 チタン酸ジルコン酸鉛(Pb(ZrxTi^x)03 (x : 0から 1))、 チ タン酸バリウムス トロンチウム((BaxSr!— JTii^ (x = 0から 1) ) 、 チタン酸ジル コン酸バリウム鉛、 他のビスマス系層状強誘電体、 SrBi2Ta209、 を用いても同様 にメモリセルを形成することができた。 さらに、 Ru02、 SrRu03、 Re03、 いずれの 導電性酸化物を用いても同様の効果が得られた。 In the embodiment of the present invention, the selection of the conductive oxide layer and the oxide dielectric layer is not essential. Additional lead zirconate titanate! (Pb (Zr x Ti ^ x) 0 3 (x: 0 to 1)), titanium acid Bariumusu strontium ((BaxSr - JTii ^ (x = 0 to 1)), titanate Jill Con barium lead, other bismuth-based layered ferroelectric, SrBi 2 Ta 2 0 9, was able to likewise form a memory cell be used. Furthermore, Ru0 2, SrRu0 3, Re0 3 The same effect was obtained by using any of the conductive oxides.

以上のように、 本発明による酸化物誘電体キャパシタの半導体装置への適用の 形態について、 シリ コン基板上に形成された MO S トランジス夕を例に説明した。 導電性材料選定指針 1 に関して、 非酸化性雰囲気中で酸素欠損を含む導電性酸化 物層を形成して 2層導電性酸化物層を形成することにより、 これと隣接する多結 晶シリコン(発明の実施の形態 6)、 窒化物などからなる拡散防止非酸化物導電層 (発明の実施の形態 7)、 金属層を介して隣接する拡散防止非酸化物導電層(発明 の実施の形態 8 )を酸化することなく、 メモリセルを形成することができた。 導電 性材料選定指針 2に関して、 窒化チタニウムアルミニゥム拡散及び酸化防止層を 形成することにより、 これと隣接する白金などの金厲層の厚さを 30 ntnまで薄く しても窒化物層を酸化することなく酸化物誘霪体層(発明の実施の形態 9 )、 導電 性酸化物層(発明の実施の形態 1 0)を積層して、 メモリセルを形成することがで きた。 以上の構造および製造方法によって、 電極の界面抵抗や接触抵抗を低減す ると同時に、 キャパシタのァスぺク ト比を小さくすることが可能となり、 高集積 化に適した微細なメモリセルを有する半導体装置を得ることができた。  As described above, the application form of the oxide dielectric capacitor according to the present invention to the semiconductor device has been described by taking the MOS transistor formed on the silicon substrate as an example. Concerning conductive material selection guideline 1, by forming a conductive oxide layer containing oxygen vacancies in a non-oxidizing atmosphere and forming a two-layer conductive oxide layer, the adjacent polycrystalline silicon (invention) Embodiment 6), a diffusion preventing non-oxide conductive layer made of nitride or the like (Embodiment 7), and a diffusion preventing non-oxide conductive layer adjacent via a metal layer (Embodiment 8) A memory cell could be formed without oxidizing. Concerning Guideline for Selection of Conductive Material 2, by forming titanium aluminum nitride diffusion and oxidation prevention layer, even if the thickness of the metal layer such as platinum adjacent to this is reduced to 30 ntn, the nitride layer is oxidized. It is possible to form a memory cell by laminating an oxide-inducing layer (Embodiment 9) and a conductive oxide layer (Embodiment 10) without performing this process. With the above structure and manufacturing method, it is possible to reduce the electrode interface ratio and contact resistance, and at the same time, to reduce the capacitor's aspect ratio, and to have a fine memory cell suitable for high integration. A semiconductor device was obtained.

上述の発明の実施の形態では主として M0SFETへの適用を例に説明をしたが、 適用の範囲は例に限定されない。 酸化物誘電体 (酸化物強誘電体を含む) をキヤ パン夕として用いる他のデバイス、 例えば、 酸化物誘電体をいわゆるパスコンゃ チップコンとして用いる GaAsの MM I Cに対しても本発明が有効であるのは言 うまでもない。 In the embodiment of the invention described above, the application to the M0SFET is mainly described as an example, but the scope of application is not limited to the example. Oxide dielectrics (including oxide ferroelectrics) It goes without saying that the present invention is also effective for other devices used as a pan, for example, a GaAs MM IC using an oxide dielectric as a so-called bypass capacitor.

Claims

請 求 の 範 囲 The scope of the claims 1 . 基板と、 該基板上部に設けられた下部電極層と、 該下部電極層上に設けられ た酸化物誘電体層と、 該酸化物誘電体層上に設けられた上部電極層とを有し、 上 記下部および上部電極層と酸化物誘電体層は酸化物誘電体キャパシタを構成し、 上記下部電極層は導電性酸化物層を含み、 該導電性酸化物層は隣接する 2層で構 成され、 該隣接する 2層は同一の結晶構造及び元素から構成されるものの酸素に 関する組成比のみが異なり、 該隣接する 2層の内基板側に位置する層が酸素欠損 を含むことを特徴とする半導体装置。 1. A substrate, comprising: a lower electrode layer provided on the substrate; an oxide dielectric layer provided on the lower electrode layer; and an upper electrode layer provided on the oxide dielectric layer. The lower and upper electrode layers and the oxide dielectric layer constitute an oxide dielectric capacitor, the lower electrode layer includes a conductive oxide layer, and the conductive oxide layer is an adjacent two layers. The two adjacent layers are composed of the same crystal structure and element, but differ only in the composition ratio of oxygen, and the layer located on the inner substrate side of the two adjacent layers contains oxygen vacancies. Characteristic semiconductor device. 2 . 上記基板上に M O S トランジスタが配置され、 上記下部電極層は、 該 M O S トランジスタのソース領域または ドレイン領域と電気的に接続されたことを特徴 とする請求の範囲第 1項に記載の半導体装置。  2. The semiconductor device according to claim 1, wherein a MOS transistor is disposed on the substrate, and the lower electrode layer is electrically connected to a source region or a drain region of the MOS transistor. . 3 . 上記下部電極層が、 上記基板側から導電性シリ コン層ノ酸素欠損を含む導電 性酸化物層ノ導電性酸化物層の順に積層して構成されることを特徴とする請求の 範囲第 1項に記載の半導体装置。  3. The lower electrode layer is formed by laminating a conductive oxide layer containing oxygen vacancies from the substrate side in the order from the substrate side to a conductive oxide layer. 2. The semiconductor device according to item 1. 4 . 上記下部電極層が、 上記基板側から導電性シリ コン層 Z拡散防止非酸化物導 電層ノ酸素欠損を含む導電性酸化物層 導電性酸化物層の順に積層して構成され ることを特徴とする請求の範囲第 1項に記載の半導体装置。  4. The lower electrode layer is formed by laminating a conductive silicon layer, a non-oxide conductive layer, a conductive oxide layer containing oxygen vacancy, and a conductive oxide layer in this order from the substrate side. The semiconductor device according to claim 1, wherein: 5 . 上記下部電極層において、 上記拡散防止非酸化物導電層と上記酸素欠損を含 む導電性酸化物層との間に更に白金、 ルテニウム、 およびイ リ ジウムよりなる群 から選ばれた少なく とも 1種の金属からなる金属層が形成されていることを特徴 とする請求の範囲第 4項に記載の半導体装置。  5. In the lower electrode layer, at least one selected from the group consisting of platinum, ruthenium, and iridium between the diffusion-preventing non-oxide conductive layer and the conductive oxide layer containing oxygen vacancies. 5. The semiconductor device according to claim 4, wherein a metal layer made of one kind of metal is formed. 6 . 上記拡散防止非酸化物導電層は、 T i , Ta , Zr , Nb , V , および Wよりなる群 から選ばれた少なく とも 1種の金属を含む窒化物から構成されることを特徴とす る請求の範囲第 4項に記載の半導体装置。  6. The diffusion-preventing non-oxide conductive layer is made of a nitride containing at least one metal selected from the group consisting of Ti, Ta, Zr, Nb, V, and W. The semiconductor device according to claim 4. 7 . 上記 2層の導電性酸化物層を構成する酸化物は、 ルチル構造を有する R u02及 び I r02から選ばれた少なく とも 1種の化合物であることを特徴とする請求の範囲 第 1項に記載の半導体装置。 7. Oxide forming the conductive oxide layer of the two layers, the claims, which is a least one compound selected from R u0 2及beauty I r0 2 having a rutile structure 2. The semiconductor device according to item 1. 8. 上記ルチル構造を有する上記酸素欠損を含む導電性酸化物層は、 その酸素欠 損を含む化学式 M02-x (Mは上記 Ru又は Irの元素) における酸素欠損量 xが 0 より も大きくかつ該ルチル構造を安定に維持し得る値より小さいことを特徴とす る請求の範囲第 7項に記載の半導体装置。 8. conductive oxide layer containing oxygen vacancies having the rutile structure, the formula M0 2 containing the oxygen-missing - greater than x (M is an element of the Ru or Ir) oxygen deficiency x in the 0 8. The semiconductor device according to claim 7, wherein the value is smaller than a value that can stably maintain the rutile structure. 9. 上記 2層の導電性酸化物層を構成する酸化物は、 ベロブスカイ ト構造を有す る CaRu03、 SrRu03、 及び Laを 0.5重量%以上かつ 4.0重量%以下添加した SrTi03よりなる群から選ばれた少なく とも 1種の化合物から構成されることを特 徴とする請求の範囲第 1項に記載の半導体装置。 9. oxide forming the conductive oxide layer of the two layers, Berobusukai preparative structures that have a CaRu0 3, SrRu0 3, and La 0.5% by weight or more and 4.0% by weight addition was SrTi0 3 group consisting of 2. The semiconductor device according to claim 1, wherein the semiconductor device comprises at least one compound selected from the group consisting of: 1 0. 上記 2層の導電性酸化物層を構成する酸化物は、 ベロブスカイ ト構造を有 する CaRu03、 SrRu03、 及び Laを 0.5重量%以上かつ 4.0重量%以下添加した SrTiOsよりなる群から選ばれた少なく とも 1種の化合物と、 該化合物を構成する アル力リ土類元素の酸化物、 CaO もしくは SrOからなる混合相であることを特徴 とする請求の範囲第 1項に記載の半導体装置。 1 0. oxide forming the conductive oxide layer of the two layers, Berobusukai preparative structure to have a CaRu0 3, SrRu0 3, and La 0.5% by weight or more and 4.0% by weight added with the group consisting of SrTiO s A mixed phase comprising at least one compound selected from the group consisting of an oxide of an alkaline earth element constituting the compound, CaO and SrO. Semiconductor device. 1 1. 上記べロブスカイ ト構造の酸化物からなる上記酸素欠損を含む導電性酸化 物層は、 その化学式 AM03 (Aと Mは上記 Ca、 Sr、 Ru、 Ti、 及び La元素のいず れかを示す) における酸素欠損量 Xが 0よりも大きくかつ該ぺロブスカイ ト構造 を安定に維持し得る値より小さいことを特徴とする請求の範囲第 9項に記載の半 導体装置。 1 1. conductive oxide layer containing oxygen vacancies of an oxide of the base Robusukai DOO structure, its chemical formula AM0 3 (A and M Re Izu above Ca, Sr, Ru, Ti, and La elements 10. The semiconductor device according to claim 9, wherein the oxygen deficiency amount X is larger than 0 and smaller than a value capable of stably maintaining the perovskite structure. 1 2. 上記 2層の導電性酸化物層は、 Re03で構成されることを特徴とする請求の 範囲第 1項に記載の半導体装置。 1 2. conductive oxide layer of the two layers, a semiconductor device according to claim 1, characterized in that it is constituted by Re0 3. 1 3. 上記 Re03からなる上記酸素欠損を含む導電性酸化物層は、 その酸素欠損を 含む化学式 Re03-xにおける酸素欠損量 Xが 0よりも大きくかつ該 Re03型構造を 安定に維持し得る値より小さいことを特徴とする請求の範囲第 1 2項に記載の半 導体装置。 1 3. the Re0 conductive oxide layer containing 3 the oxygen deficiency consisting are stably maintained large and the Re0 3 -type structure than the oxygen deficiency amount X is 0 in the chemical formula Re0 3-x containing the oxygen vacancies 13. The semiconductor device according to claim 12, wherein the value is smaller than an allowable value. 1 4. 上記酸素欠損を含む導電性酸化物層の厚みは、 10nm以上であることを特徴 とする請求の範囲第 1項に記載の半導体装置。 1 4. The semiconductor device according to claim 1, wherein the thickness of the conductive oxide layer containing oxygen vacancies is 10 nm or more. 1 5 . 上記酸化物誘電体層は、 チタン酸ジルコン酸鉛、 チタン酸ジルコン酸バリ ゥム 及びチタン酸バリゥムス ト口ンチウムから選ばれたる一の化合物で形成 されることを特徵とする請求の範囲第 1項に記載の半導体装置。 15. The oxide dielectric layer is formed of a compound selected from the group consisting of lead zirconate titanate, barium titanate zirconate, and barium potassium titanate. 2. The semiconductor device according to item 1. 1 6 . 上記酸化物誘電体層は、 ビスマス系層状強誘電体であることを特徴とする 請求の範囲第 1項に記載の半導体装置。  16. The semiconductor device according to claim 1, wherein the oxide dielectric layer is a bismuth-based layered ferroelectric. 1 7 . 非酸化性雰囲気中で、 導電性酸化物を構成する元素をスパッタ リ ング又は 蒸発させて酸素欠損を含む導電性酸化物屑を形成し、 該酸素欠損を含む導電性酸 化物層上に導電性酸化物層を形成することで同一の結晶構造及び元素から構成さ れるものの酸素に関する組成比のみが異なる 2層の導電性酸化物層を主体とする 下部電極層を基板上部に形成する工程と、 上記下部電極層上に酸化物誘電体層を 形成する工程と、 上記酸化物誘電体層上に上部電極層を形成する工程とを含み、 上記下部および上部電極層と酸化物誘電体層で酸化物誘電体キャパシタを構成す ることを特徴とする半導体装置の製造方法。  17. In a non-oxidizing atmosphere, elements constituting the conductive oxide are sputtered or evaporated to form conductive oxide chips containing oxygen vacancies, and on the conductive oxide layer containing the oxygen vacancies By forming a conductive oxide layer on the substrate, a lower electrode layer consisting mainly of two conductive oxide layers consisting of the same crystal structure and element but different in the composition ratio of oxygen is formed on the upper part of the substrate A step of forming an oxide dielectric layer on the lower electrode layer; and a step of forming an upper electrode layer on the oxide dielectric layer, wherein the lower and upper electrode layers and the oxide dielectric A method for manufacturing a semiconductor device, comprising forming an oxide dielectric capacitor with layers. 1 8 . 上記基板上部に M O S トランジスタの少なく とも 1部を形成した後、 該 M 0 S トランジス夕のソース領域又は.ドレイン領域と電気的に接続されるように上 記下部電極層を形成することを特徴とする請求の範囲第 1 7項に記載の半導体装 置の製造方法。  18. After forming at least a portion of the MOS transistor on the substrate, the lower electrode layer is formed so as to be electrically connected to the source or drain region of the MOS transistor. 18. The method for manufacturing a semiconductor device according to claim 17, wherein: 1 9 . 上記 2層の導電性酸化物層における上記酸素欠損を含む導電性酸化物層は スパッタ リ ング法により形成され、 上記非酸化性雰囲気ガスが純度 3 N ( 9 9 . 9 % ) 以上のアルゴン (A r ) ガスであることを特徴とする請求の範囲第 1 7項 に記載の半導体装置の製造方法。  19. The conductive oxide layer containing oxygen vacancies in the two conductive oxide layers is formed by a sputtering method, and the non-oxidizing atmosphere gas has a purity of 3 N (99.9%) or more. 18. The method for manufacturing a semiconductor device according to claim 17, wherein the gas is argon (Ar) gas. 2 0 . 上記 2層の導電性酸化物層における上記酸素欠損を含む導電性酸化物層は スパッタリ ング法又は蒸着法により形成され、 上記非酸化性雰囲気は酸素 (02 ) 、 一酸化窒素 (N20 ) 、 二酸化窒素 (N02 ) 、 及びオゾン (03 ) のいずれかから構成 される酸化性ガスを意図的に導入しない 1 Tor r以下の真空状態であることを 特徵とする請求の範囲第 1 7項に記載の半導体装置の製造方法。 2 0. The two-layer conductive oxide layer containing oxygen vacancies in the conductive oxide layer is formed by Supattari packaging method or an evaporation method, the non-oxidizing atmosphere is oxygen (0 2), nitric oxide ( N 2 0), nitrogen (N0 2 dioxide), and ozone (0 3) of claims to Toku徵to be a 1 Tor r less vacuum state without intentionally introducing an oxidizing gas which consists of either 18. The method for manufacturing a semiconductor device according to claim 17, wherein: 2 1 . 上記 2層の導電性酸化物層における上記酸素欠損を含む導電性酸化物層は スパッタリ ング法又は蒸着法により形成され、 上記非酸化性雰囲気ガスが酸素 (02) 、 一酸化窒素 (N20) 、 二酸化窒素 (N02) 、 及びオゾン (03) よりなる群 から選ばれた少なく とも一種から構成され, その圧力もしくは分圧が 10 H Torr 以下であることを特徴とする請求の範囲第 1 7項に記載の半導体装置の製造方法 c 21. The conductive oxide layer containing the oxygen vacancy in the two conductive oxide layers is Formed by Supattari packaging method or an evaporation method, the non-oxidizing atmosphere gas of oxygen (0 2), nitrogen monoxide (N 2 0), nitrogen (N0 2) dioxide, and selected from the group consisting of ozone (0 3) is composed of one kind at least were method c of the semiconductor device according to the first item 7 claims, characterized in that the pressure or partial pressure is 10 H Torr or less 22. 基板と、 該基板上部に設けられた下部電極層と、 該下部電極層上に設けら れた酸化物誘電体層と、 該酸化物誘電体層上に設けられた上部電極層とを有し、 上記下部および上部電極層と酸化物誘電体層は酸化物誘電体キャパシタを構成し、 上記下部電極層が窒化チタニウムアルミニゥム層を含むことを特徴とする半導体 装置。 22. A substrate, a lower electrode layer provided on the substrate, an oxide dielectric layer provided on the lower electrode layer, and an upper electrode layer provided on the oxide dielectric layer. A semiconductor device, wherein the lower and upper electrode layers and the oxide dielectric layer constitute an oxide dielectric capacitor, and wherein the lower electrode layer includes a titanium aluminum nitride layer. 2 3. 上記基板上部に MO S トラ ンジスタが配置され、 上記下部電極層は該 MO S トランジスタのソース領域またはドレイン領域と電気的に接続されたことを特 徵とする請求の範囲第 2 2項に記載の半導体装置。  23. The method according to claim 22, wherein a MOS transistor is disposed on the substrate, and the lower electrode layer is electrically connected to a source region or a drain region of the MOS transistor. 3. The semiconductor device according to claim 1. 24. 上記下部電極層は、 基板側から導電性シリ コン層 窒化チタニウムアルミ ニゥム層/金属層の順に積層して構成されることを特徴とする請求の範囲第 2 2 項に記載の半導体装置。  24. The semiconductor device according to claim 22, wherein the lower electrode layer is formed by stacking a conductive silicon layer, a titanium aluminum nitride layer, and a metal layer in this order from the substrate side. 25. 上記下部電極層において、 上記金属層上にはさらに導電性酸化物からなる 層が形成されていることを特徴とする請求の範囲第 24項に記載の半導体装置.  25. The semiconductor device according to claim 24, wherein a layer made of a conductive oxide is further formed on the metal layer in the lower electrode layer. 26. 上記金属層は、 白金、 イ リ ジウム、 ルテニウム、 及びレニウムよりなる群 から選ばれた少なく とも 1種の金属元素から構成されることを特徴とする請求の 範囲第 24項に記載の半導体装置。 26. The semiconductor according to claim 24, wherein the metal layer is composed of at least one metal element selected from the group consisting of platinum, iridium, ruthenium, and rhenium. apparatus. 27. 上記導電性酸化物層は、 Ir02、 Ru02、 SrRu03、 及び Re03よりなる群から 選ばれた少なく とも 1種の化合物から構成されることを特徴とする請求の範囲第 25項に記載の半導体装置。 27. The conductive oxide layer, Ir0 2, Ru0 2, SrRu0 3, and Re0 scope paragraph 25 claims, characterized in that it is composed of three at least selected from the group consisting of one compound 3. The semiconductor device according to claim 1. 28. 上記窒化チタニウムアルミニウム層の組成は、 化学式(Ti^xAlJ^Nyで表 され、 Xが 0.2以上 0.5以下且つ yが 0.4以上 0.6以下であることを特徴とする 請求の範囲第 22項に記載の半導体装置。  28. The composition of claim 22, wherein the composition of the titanium aluminum nitride layer is represented by a chemical formula (Ti ^ xAlJ ^ Ny, wherein X is 0.2 or more and 0.5 or less and y is 0.4 or more and 0.6 or less. Semiconductor device. 29. 上記酸化物誘電体層は、 チタン酸ジルコン酸鉛、 チタン酸ジルコン酸バリ ゥム鉛、 及びチタン酸バリ ゥムス ト口ンチウムの群から選ばれたる一の化合物で 形成されていることを特徴とする請求の範囲第 2 2項に記載の半導体装置。 29. The oxide dielectric layer is made of lead zirconate titanate, 23. The semiconductor device according to claim 22, wherein the semiconductor device is formed of a compound selected from the group consisting of lead, and barium titanate. 3 0 . 上記酸化物誘電体層は、 ビスマス系層状強誘電体であることを特徴とする 請求の範囲第 2 2項に記載の半導体装置。 30. The semiconductor device according to claim 22, wherein the oxide dielectric layer is a bismuth-based layered ferroelectric. 3 1 . 窒化性雰囲気中で、 スパッタ リ ングにより窒化チタニウムアルミニウム層 を含む下部電極層を基板上部に形成する工程と、 上記下部電極層上に酸化物誘電 体層を形成する工程と、 上記酸化物誘電体層上に上部電極層を形成する工程とを 有し、 上記下部および上部電極層と酸化物誘電体層が酸化物誘電体キャパシタを 構成することを特徴とする半導体装置の製造方法。  31. A step of forming a lower electrode layer including a titanium aluminum nitride layer on the substrate by sputtering in a nitriding atmosphere; a step of forming an oxide dielectric layer on the lower electrode layer; Forming an upper electrode layer on the dielectric material layer, wherein the lower and upper electrode layers and the oxide dielectric layer constitute an oxide dielectric capacitor. 3 2 . 上記下部電極層を形成する工程の前に、 上記基板上部に M O S トランジス 夕の少なく とも 1部を形成し、 上記下部電極層を該 M O S トランジス夕のソース 領域又はドレイ ン領域と電気的に接続されるように形成することを特徴とする請 求の範囲第 3 1項に記載の半導体装置の製造方法。  32. Prior to the step of forming the lower electrode layer, at least a portion of a MOS transistor is formed on the substrate, and the lower electrode layer is electrically connected to a source region or a drain region of the MOS transistor. 31. The method for manufacturing a semiconductor device according to claim 31, wherein the semiconductor device is formed so as to be connected to the semiconductor device. 3 3 . 上記窒化チタニウムアルミニウム拡散及び酸化防止層を形成する上記窒化 性雰囲気が、 不活性ガス中に窒素ガスを 1 0から 9 0モル%含む雰囲気であるこ とを特徴とする請求の範囲第 3 1項に記載の半導体装置の製造方法。  33. The nitriding atmosphere for forming the titanium aluminum nitride diffusion and oxidation preventing layer is an atmosphere containing 10 to 90 mol% of nitrogen gas in an inert gas. 2. The method for manufacturing a semiconductor device according to item 1. 3 4 . 上記窒化チタニウムアルミニウム拡散及び酸化防止層を形成する温度が、 550 以下であることを特徴とする請求の範囲第 3 1項に記載の半導体装置の製 造方法。 34. The method for manufacturing a semiconductor device according to claim 31, wherein the temperature at which the titanium aluminum nitride diffusion and oxidation prevention layer is formed is 550 or less. 3 5 . 半導体材料からなる第 1 の領域と、 該第 1の領域に接合され且つ第 1の導 電性材料からなる第 2の領域と、 該第 2の領域に接合され且つ該第 2の導電性材 料からなる第 3の領域と、 該第 3の領域に接合され且つ酸化物の誘電体材料から なる第 4の領域と、 該第 4の領域に接合され且つ導電性材料からなる第 5の領域 を含み、 上記第 1の領域の上記第 2の領域との接合界面における材料組成は該第 1の領域の平均的な材料組成と略等しく、 且つ上記第 2の領域の上記第 1の領域 との接合界面及び上記第 3の領域との接合界面における材料組成は該第 2の領域 の平均的な材料組成と略等しいことを特徴とする半導体装置。 35. A first region made of a semiconductor material, a second region joined to the first region and made of a first conductive material, and a second region joined to the second region and joined to the second region. A third region made of a conductive material, a fourth region bonded to the third region and made of an oxide dielectric material, and a fourth region made of a conductive material bonded to the fourth region. 5, a material composition at a bonding interface of the first region with the second region is substantially equal to an average material composition of the first region, and the first region has a first material composition. A material composition at a bonding interface with the second region and at a bonding interface with the third region are substantially equal to an average material composition of the second region. 3 6 . 導電性を有する半導体材料からなる第 1 の領域と、 該第 1の領域に接合さ れ且つ第 1 の導電性材料からなる第 2の領域と、 該第 2の領域に接合され且つ該 第 2の導電性材料からなる第 3の領域と、 該第 3の領域に接合され且つ酸化物の 誘電体材料からなる第 4の領域と、 該第 4の領域に接合され且つ導電性材料から なる第 5の領域を含み、 上記第 1の領域の抵抗率の平均値は上記半導体材料の抵 抗率と略等しく、 且つ上記第 2の領域の抵抗率の平均値は上記第 1 の導電性材料 の抵抗率と略等しいことを特徴とする半導体装置。 36. A first region made of a conductive semiconductor material, a second region joined to the first region and made of the first conductive material, and joined to the second region and A third region made of the second conductive material, a fourth region joined to the third region and made of an oxide dielectric material, and a conductive material joined to the fourth region. A fifth region comprising: a first region having an average resistivity substantially equal to a resistivity of the semiconductor material; and a second region having an average resistivity which is equal to the first conductivity. A semiconductor device characterized in that the resistivity is substantially equal to the resistivity of the conductive material.
PCT/JP1996/002226 1996-08-07 1996-08-07 Semiconductor device and its manufacture WO1998006131A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1996/002226 WO1998006131A1 (en) 1996-08-07 1996-08-07 Semiconductor device and its manufacture
TW086110808A TW343376B (en) 1996-08-07 1997-07-29 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002226 WO1998006131A1 (en) 1996-08-07 1996-08-07 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
WO1998006131A1 true WO1998006131A1 (en) 1998-02-12

Family

ID=14153652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002226 WO1998006131A1 (en) 1996-08-07 1996-08-07 Semiconductor device and its manufacture

Country Status (2)

Country Link
TW (1) TW343376B (en)
WO (1) WO1998006131A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141478A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US8368132B2 (en) 2008-03-31 2013-02-05 Fujitsu Semiconductor Limited Ferroelectric memory and manufacturing method thereof
CN114373732A (en) * 2020-10-15 2022-04-19 中芯国际集成电路制造(上海)有限公司 Capacitor structure and forming method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774313A (en) * 1993-09-01 1995-03-17 Nec Corp Thin film capacitor and manufacturing method thereof
JPH0864786A (en) * 1994-08-01 1996-03-08 Texas Instr Inc <Ti> Microelectronic structure and its manufacturing method
JPH08162617A (en) * 1994-12-01 1996-06-21 Nec Corp Thin film capacitor and its manufacture
JPH08213560A (en) * 1994-09-30 1996-08-20 Samsung Electron Co Ltd Ferroelectric capacitor and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774313A (en) * 1993-09-01 1995-03-17 Nec Corp Thin film capacitor and manufacturing method thereof
JPH0864786A (en) * 1994-08-01 1996-03-08 Texas Instr Inc <Ti> Microelectronic structure and its manufacturing method
JPH08213560A (en) * 1994-09-30 1996-08-20 Samsung Electron Co Ltd Ferroelectric capacitor and method of manufacturing the same
JPH08162617A (en) * 1994-12-01 1996-06-21 Nec Corp Thin film capacitor and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141478A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US6590252B2 (en) 2000-11-06 2003-07-08 Matsushita Electric Industrial Co., Ltd. Semiconductor device with oxygen diffusion barrier layer termed from composite nitride
US6723637B2 (en) 2000-11-06 2004-04-20 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US6753566B2 (en) 2000-11-06 2004-06-22 Matsushita Electric Industrial Co., Ltd. Semiconductor device with an oxygen diffusion barrier layer formed from a composite nitride
US8368132B2 (en) 2008-03-31 2013-02-05 Fujitsu Semiconductor Limited Ferroelectric memory and manufacturing method thereof
US8633036B2 (en) 2008-03-31 2014-01-21 Fujitsu Semiconductor Limited Manufacturing method of ferroelectric capacitor
CN114373732A (en) * 2020-10-15 2022-04-19 中芯国际集成电路制造(上海)有限公司 Capacitor structure and forming method thereof

Also Published As

Publication number Publication date
TW343376B (en) 1998-10-21

Similar Documents

Publication Publication Date Title
JP3570472B2 (en) Capacitor with high-temperature electrode barrier, method of manufacturing the same, FeRAM and DRAM
US6184550B1 (en) Ternary nitride-carbide barrier layers
US6649954B2 (en) Ferroelectric capacitor having upper electrode lamination
WO1998044551A1 (en) Semiconductor device and method for manufacturing the same
US6639262B2 (en) Metal oxide integrated circuit on silicon germanium substrate
JP4214553B2 (en) Dielectric capacitor and nonvolatile memory
JP2002043517A (en) Semiconductor device and method of manufacturing the same
KR100215861B1 (en) Dielectric thin film manufacturing method and semiconductor device manufacturing method using the same
JP2009027017A (en) Insulator film, capacitor element, DRAM and semiconductor device
WO1997033316A1 (en) Semiconductor device and its manufacture
JPH09246490A (en) Semiconductor device and manufacture thereof
JP2000022105A (en) Method for manufacturing semiconductor device
JP3353833B2 (en) Semiconductor device and method of manufacturing the same
WO2002073679A1 (en) Vapor growth method for metal oxide dielectric film and pzt film
US20150221516A1 (en) Process-compatible sputtering target for forming ferroelectric memory capacitor plates
WO1998006131A1 (en) Semiconductor device and its manufacture
KR20000029860A (en) Semiconductor device and its manufacture
JPH10242408A (en) Dielectric capacitor, non-volatile memory and semiconductor device
JP2002076292A (en) Metal oxide dielectric film
GB2314348A (en) Thin film formation of a dielectric
JP2007081443A (en) Semiconductor device and method of manufacturing the same
JP3171246B2 (en) Vapor phase growth method of metal oxide dielectric film
JP2002289809A (en) Semiconductor device and its manufacturing method
JP4805775B2 (en) Iridium oxide film manufacturing method, electrode manufacturing method, dielectric capacitor manufacturing method, and semiconductor device manufacturing method
WO1996017381A1 (en) Semiconductor device and production method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96180439.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997001023

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1019997001023

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019997001023

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载