+

WO1998005988A1 - Unite optique de multiplexage en longueurs d'onde - Google Patents

Unite optique de multiplexage en longueurs d'onde Download PDF

Info

Publication number
WO1998005988A1
WO1998005988A1 PCT/DE1997/001409 DE9701409W WO9805988A1 WO 1998005988 A1 WO1998005988 A1 WO 1998005988A1 DE 9701409 W DE9701409 W DE 9701409W WO 9805988 A1 WO9805988 A1 WO 9805988A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
unit
wavelength
wavelength division
division multiplex
Prior art date
Application number
PCT/DE1997/001409
Other languages
German (de)
English (en)
Inventor
Claus-Georg MÜLLER
Original Assignee
Ams Optotech Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ams Optotech Gmbh filed Critical Ams Optotech Gmbh
Priority to AU36191/97A priority Critical patent/AU3619197A/en
Publication of WO1998005988A1 publication Critical patent/WO1998005988A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0305WDM arrangements in end terminals

Definitions

  • the invention relates to an optical wavelength division multiplex unit with the features of the preamble of the claim
  • Communication systems often have the problem of increasing the transmission bandwidth.
  • the bandwidth provided by the transmission medium i.e. the optical fiber (glass fiber)
  • the optical fiber glass fiber
  • the currently existing optical transmission systems mostly work with a wavelength of 1300 n, since the dispersion minimum of conventional step index single-mode fibers is located in this wavelength range. This ensures very high transmission data at the selected transmission wavelength.
  • a transmission rate of 565 Mbit / s is usually used for transmission via conventional single-mode aers.
  • transmission rates of up to 10 Gbit / s can be achieved over an amplifier-free distance of 100 km and more.
  • the increase in the transmission rate is limited by the properties of the available transmission elements, the control electronics and the transmission path.
  • the single ones Transmitting wavelengths can be selected in the range from approx. 1300 nm to 1500 nm, it being important to ensure that adjacent transmitting wavelengths are at a sufficient distance from one another.
  • Narrow-band semiconductor laser diodes in particular are used as transmission elements for the implementation of such optical wavelength division multiplex transmission systems.
  • broadband optical transmission elements with an external narrowband filter connected downstream.
  • this is relatively expensive.
  • Such an optical isolator is a non-reciprocal optical component, which consists for example of yttrium iron garnet and is operated in a strong magnetic field.
  • the yttrium iron garnet becomes birefringent due to the Faraday effect. This makes it possible to dimension the isolator so that it first rotates the polarization plane of the light emitted by the laser diode by 45 ° before it enters the transmission path. The signal reflected from the transmission path is then rotated again in the isolator by 45 ° so that its polarization plane is perpendicular to the active layer of the laser diode and the laser is no longer adversely affected.
  • This effect can be increased by using a polarizer between the laser diode and the isolator, the polarizer being rotated so that it allows the light from the laser diode to pass freely. Since such polarizers are correspondingly complex to manufacture, laser diodes with an integrated isolator have recently been developed, the isolator being able to be implemented by using integrated optics, for example as a Bragg grating. Such transmit diodes with an integrated isolator are, however, significantly more expensive than conventional laser diodes due to the significantly increased outlay.
  • the present invention is therefore based on the object of providing an optical wavelength division multiplex unit for realizing an optical wavelength division multiplex system which can be implemented with less effort and thus more cost-effectively.
  • the invention is based on the knowledge that conventional laser diodes, each with a predetermined transmission wavelength, can be used to implement a wavelength division multiplex system if the individual transmission signals are initially by means of an optical coupling unit with an optical output are connected, which is then followed by a single optical isolator unit.
  • the optical isolator can be implemented in a manner known per se as a correspondingly dimensioned Bragg grating.
  • the optical coupling unit for combining the individual transmission signals can also be used in a manner known per se as a passive optical wavelength division multiplexor, optical coupler, in particular fusible coupler, or as a wavegide, i.e. be designed as a coupling element constructed in integrated optics.
  • the inputs of the optical wavelength division multiplex unit can be connected to the coupling unit by means of optical fibers.
  • This enables the laser diodes, to the outputs of which an optical waveguide is already coupled in many cases, to be coupled to the wavelength division multiplex unit by splicing the optical waveguides.
  • splicing which is preferably done by welding the fibers under an arc, reflections at the coupling points and thus corresponding repercussions on the laser diodes are reliably avoided.
  • the output of the optical isolator unit can already be coupled to an optical waveguide, this optical waveguide being connectable to the transmission link in question, for example again by thermal splicing.
  • the optical wavelength division multiplex unit is designed as an (integrated) module, so that only the outputs of the laser diodes have to be connected to the inputs of the multiplex unit and the output of the multiplex unit to the input of the transmission link.
  • the output of the coupling unit of the wavelength division multiplex unit can be connected to the input of the isolator unit by means of an optical waveguide.
  • the coupling unit can also be formed integrated with the isolator unit, for example using integrated optics.
  • a fiber amplifier can also be integrated in the isolator unit in order to increase the output power of the wavelength division multiplex signals.
  • all inputs of the wavelength division multiplex unit are preferably connected to a respective wavelength converter, each Wavelength converter converts the wavelength of any optical input signal into a predetermined wavelength. In this way it is possible to combine optical signals arriving on a plurality of optical fibers independently of their wavelength on a single optical fiber.
  • the wavelength converter can preferably be designed as an optoelectrical-optical wavelength converter, a preferably broadband receiving diode being used for the optical-electrical conversion and a laser diode with a predetermined transmission wavelength for the electrical-optical conversion.
  • Fig. 1 shows a first embodiment of an optical wavelength division multiplex unit according to the invention
  • Fig. 2 shows a second embodiment of an optical wavelength division multiplex unit according to the invention.
  • the optical wavelength division multiplex unit 1 shown in FIG. 1 has several inputs E. to E n , which are connected via optical waveguides 3 to the inputs of an optical coupling unit 5.
  • the optical coupling unit can be designed as a passive optical wavelength division multiplexer or as an optical nx 1 coupler.
  • melt couplers or waveguides are suitable, which can be implemented in integrated optics.
  • the output of the optical coupling unit 5 is connected to the input of an isolator unit 7. This can be done using an optical fiber 9.
  • the optical coupling unit 5 and the optical isolator unit 7 can be designed to be integrated using integrated optics.
  • the output of the optical isolator unit 7 is connected to the optical output 11 of the wavelength division multiplex unit 1. As shown in FIG. 1, this can preferably be done again using an optical waveguide 13. Because the use of optical fibers as connecting elements between the inputs E, to E n and the inputs of the coupling unit 5 or the output of the isolator unit 7 and the output 11 of the wavelength division multiplex unit 1 offers the advantage that the optical fibers connected to the optical transmitters with the inputs E until E n or the output 11 of the multiplex unit 1 can be spliced without reflection with the input of the downstream transmission path 15. The freedom from reflection is not absolutely necessary when connecting the output 11 to the transmission path 15, since the isolator unit 7 already largely reduces the reaction of reflections. However, since every reflection is also associated with a corresponding attenuation of the signal, the reflection-free splicing of optical fibers also offers an advantage at the output of the wavelength division multiplex unit.
  • the design of the wavelength division multiplex unit as a module offers the advantage that the coupling of optical waveguides to the coupling unit 5 or the isolator unit 7, which must be as low-reflection as possible, can be carried out under controlled conditions by the manufacturer of the module.
  • the mostly less critical couplings between the transmitters and the module or the module and the transmission The route can then be created by the system creator.
  • each input E 1 to E 1 can be connected to the relevant input of the optical coupling unit 5 via an optical wavelength converter in each case.
  • This has the advantage that regardless of the wavelength of the signal present at the input concerned, the signals can be ultiplexed, since a (partial) superimposition of the incoming signals is avoided in any case.
  • Each wavelength converter can be implemented by using a suitable receiving diode and a laser diode with a predetermined own wavelength, which are connected by means of a suitable electronic control circuit.
  • the incoming signals are preferably converted transparently into the signals emitted by the wavelength converters.
  • Such an optical wavelength division multiplex unit according to the invention thus enables the simple and inexpensive construction of a wavelength division multiplex system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

L'invention concerne une unité optique de multiplexage en longueur d'onde présentant plusieurs entrées optiques (E1 à En) qui sont raccordées à une sortie optique (11) par une unité de couplage optique (5), chacune des entrées optiques (E1 à En) pouvant être raccordée à une unité d'émission optique à une longueur d'onde prédéterminée. La sortie optique de l'unité de couplage optique (5) est raccordée à l'entrée d'une unité d'isolation optique (7) dont la sortie peut être raccordée à un chaînon de voie de transmission optique (15).
PCT/DE1997/001409 1996-08-01 1997-07-03 Unite optique de multiplexage en longueurs d'onde WO1998005988A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU36191/97A AU3619197A (en) 1996-08-01 1997-07-03 Optical wavelength multiplexing unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19631109.8 1996-08-01
DE19631109A DE19631109C1 (de) 1996-08-01 1996-08-01 Optische Wellenlängenmultiplexeinheit

Publications (1)

Publication Number Publication Date
WO1998005988A1 true WO1998005988A1 (fr) 1998-02-12

Family

ID=7801513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001409 WO1998005988A1 (fr) 1996-08-01 1997-07-03 Unite optique de multiplexage en longueurs d'onde

Country Status (3)

Country Link
AU (1) AU3619197A (fr)
DE (1) DE19631109C1 (fr)
WO (1) WO1998005988A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007008320B4 (de) * 2007-02-16 2009-02-12 Schleifring Und Apparatebau Gmbh Optischer Zweikanal Drehübertrager

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310058A2 (fr) * 1987-09-30 1989-04-05 Nec Corporation Système de commutation à division dans le temps et de longueur d'onde
EP0555973A1 (fr) * 1992-02-07 1993-08-18 AT&T Corp. Dispositif hybride de pompage pour amplificateurs à fibre dopée
WO1996019743A1 (fr) * 1994-12-21 1996-06-27 E-Tek Dynamics, Inc. Coupleur optique integrable et dispositifs et systemes obtenus
JPH08179142A (ja) * 1994-12-26 1996-07-12 Nec Corp 導波路型光アイソレータ
JPH08237266A (ja) * 1995-02-28 1996-09-13 Fujitsu Ltd 光バッファメモリ
EP0766358A1 (fr) * 1995-09-28 1997-04-02 Siemens Aktiengesellschaft Amplificateur à fibre optique pour une multitude de signaux à longueurs d'onde différentes comprenant un démultiplexeur et un multiplexeur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310058A2 (fr) * 1987-09-30 1989-04-05 Nec Corporation Système de commutation à division dans le temps et de longueur d'onde
EP0555973A1 (fr) * 1992-02-07 1993-08-18 AT&T Corp. Dispositif hybride de pompage pour amplificateurs à fibre dopée
WO1996019743A1 (fr) * 1994-12-21 1996-06-27 E-Tek Dynamics, Inc. Coupleur optique integrable et dispositifs et systemes obtenus
JPH08179142A (ja) * 1994-12-26 1996-07-12 Nec Corp 導波路型光アイソレータ
JPH08237266A (ja) * 1995-02-28 1996-09-13 Fujitsu Ltd 光バッファメモリ
EP0766358A1 (fr) * 1995-09-28 1997-04-02 Siemens Aktiengesellschaft Amplificateur à fibre optique pour une multitude de signaux à longueurs d'onde différentes comprenant un démultiplexeur et un multiplexeur

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section EI Week 9647, Derwent World Patents Index; Class W01, AN 96-470562, XP002044483 *
PATENT ABSTRACTS OF JAPAN vol. 096, no. 011 29 November 1996 (1996-11-29) *

Also Published As

Publication number Publication date
AU3619197A (en) 1998-02-25
DE19631109C1 (de) 1997-10-02

Similar Documents

Publication Publication Date Title
DE69331304T2 (de) Verfahren zum Kompensieren der Dispersion eines Lichtwellenleiters für ein optisches Übertragungssystem
DE69605542T2 (de) Optische mehrkanalanordnung
EP0354567B1 (fr) Ensemble émission-réception pour un système de communication bidirectionnel cohérent et optique
DE69410187T2 (de) Vorrichtung zum Auskoppeln und Wiedereinkoppeln eines optischen Trägersignals in optische Kommunikationsnetzwerke
EP0613221B1 (fr) Amplificateur à fibre optique à étages multiples
EP0457863B1 (fr) Dispositif de transmission avec parcours de transmission optique
DE69013662T2 (de) Schmalbandige Laserquelle.
DE69222273T2 (de) Passives optisches Übertragungsnetzwerk
DE19518294C1 (de) Optische Verstärkeranordnung
DE2333968C2 (de) Fasernetz für die optoelektronische Datenübertragung
EP0349766A2 (fr) Système de transmission d'informations optique, concernant en particulier le raccordement d'abonnés
EP0644668A1 (fr) Module d'émmission-réception pour transmission bidirectionnelle optique à plusieurs canaux
DE69020362T2 (de) Verlustfreie optische komponente.
DE69720450T2 (de) Optische Dispersionskompensation
EP0474914B1 (fr) Système de télécommunication bidirectionnel
EP1425616B1 (fr) Dispositif optique et module emetteur/recepteur destine a des systemes wdm optiques bidirectionnels et a des transmissions de donnees optiques
DE69700710T2 (de) Optische Signalübertragungsanlage mit einem Zwischenverstärkerüberwachungssystem
DE69125065T2 (de) Lichtübertragungssystem
DE19631109C1 (de) Optische Wellenlängenmultiplexeinheit
EP0445364A2 (fr) Système de communication optique
DE60217636T2 (de) Steuerungsverfahren und -Vorrichtung eines optischen Wellenlängenfilters
DE69924274T2 (de) Wdm sender und empfänger
EP0874482B1 (fr) Dispositif pour l'émission et réception de signaux optiques
EP1111740B1 (fr) Procédé de transmission de pompage optique de puissance
DE69419553T2 (de) Optische Schaltung zur Reflektionsempfindlichkeitsmessung eines optischen Übertragungssystems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998507444

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载