WO1998005988A1 - Unite optique de multiplexage en longueurs d'onde - Google Patents
Unite optique de multiplexage en longueurs d'onde Download PDFInfo
- Publication number
- WO1998005988A1 WO1998005988A1 PCT/DE1997/001409 DE9701409W WO9805988A1 WO 1998005988 A1 WO1998005988 A1 WO 1998005988A1 DE 9701409 W DE9701409 W DE 9701409W WO 9805988 A1 WO9805988 A1 WO 9805988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- unit
- wavelength
- wavelength division
- division multiplex
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 85
- 230000005540 biological transmission Effects 0.000 claims abstract description 41
- 230000008878 coupling Effects 0.000 claims abstract description 25
- 238000010168 coupling process Methods 0.000 claims abstract description 25
- 238000005859 coupling reaction Methods 0.000 claims abstract description 25
- 239000013307 optical fiber Substances 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002223 garnet Substances 0.000 description 2
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/03—WDM arrangements
- H04J14/0305—WDM arrangements in end terminals
Definitions
- the invention relates to an optical wavelength division multiplex unit with the features of the preamble of the claim
- Communication systems often have the problem of increasing the transmission bandwidth.
- the bandwidth provided by the transmission medium i.e. the optical fiber (glass fiber)
- the optical fiber glass fiber
- the currently existing optical transmission systems mostly work with a wavelength of 1300 n, since the dispersion minimum of conventional step index single-mode fibers is located in this wavelength range. This ensures very high transmission data at the selected transmission wavelength.
- a transmission rate of 565 Mbit / s is usually used for transmission via conventional single-mode aers.
- transmission rates of up to 10 Gbit / s can be achieved over an amplifier-free distance of 100 km and more.
- the increase in the transmission rate is limited by the properties of the available transmission elements, the control electronics and the transmission path.
- the single ones Transmitting wavelengths can be selected in the range from approx. 1300 nm to 1500 nm, it being important to ensure that adjacent transmitting wavelengths are at a sufficient distance from one another.
- Narrow-band semiconductor laser diodes in particular are used as transmission elements for the implementation of such optical wavelength division multiplex transmission systems.
- broadband optical transmission elements with an external narrowband filter connected downstream.
- this is relatively expensive.
- Such an optical isolator is a non-reciprocal optical component, which consists for example of yttrium iron garnet and is operated in a strong magnetic field.
- the yttrium iron garnet becomes birefringent due to the Faraday effect. This makes it possible to dimension the isolator so that it first rotates the polarization plane of the light emitted by the laser diode by 45 ° before it enters the transmission path. The signal reflected from the transmission path is then rotated again in the isolator by 45 ° so that its polarization plane is perpendicular to the active layer of the laser diode and the laser is no longer adversely affected.
- This effect can be increased by using a polarizer between the laser diode and the isolator, the polarizer being rotated so that it allows the light from the laser diode to pass freely. Since such polarizers are correspondingly complex to manufacture, laser diodes with an integrated isolator have recently been developed, the isolator being able to be implemented by using integrated optics, for example as a Bragg grating. Such transmit diodes with an integrated isolator are, however, significantly more expensive than conventional laser diodes due to the significantly increased outlay.
- the present invention is therefore based on the object of providing an optical wavelength division multiplex unit for realizing an optical wavelength division multiplex system which can be implemented with less effort and thus more cost-effectively.
- the invention is based on the knowledge that conventional laser diodes, each with a predetermined transmission wavelength, can be used to implement a wavelength division multiplex system if the individual transmission signals are initially by means of an optical coupling unit with an optical output are connected, which is then followed by a single optical isolator unit.
- the optical isolator can be implemented in a manner known per se as a correspondingly dimensioned Bragg grating.
- the optical coupling unit for combining the individual transmission signals can also be used in a manner known per se as a passive optical wavelength division multiplexor, optical coupler, in particular fusible coupler, or as a wavegide, i.e. be designed as a coupling element constructed in integrated optics.
- the inputs of the optical wavelength division multiplex unit can be connected to the coupling unit by means of optical fibers.
- This enables the laser diodes, to the outputs of which an optical waveguide is already coupled in many cases, to be coupled to the wavelength division multiplex unit by splicing the optical waveguides.
- splicing which is preferably done by welding the fibers under an arc, reflections at the coupling points and thus corresponding repercussions on the laser diodes are reliably avoided.
- the output of the optical isolator unit can already be coupled to an optical waveguide, this optical waveguide being connectable to the transmission link in question, for example again by thermal splicing.
- the optical wavelength division multiplex unit is designed as an (integrated) module, so that only the outputs of the laser diodes have to be connected to the inputs of the multiplex unit and the output of the multiplex unit to the input of the transmission link.
- the output of the coupling unit of the wavelength division multiplex unit can be connected to the input of the isolator unit by means of an optical waveguide.
- the coupling unit can also be formed integrated with the isolator unit, for example using integrated optics.
- a fiber amplifier can also be integrated in the isolator unit in order to increase the output power of the wavelength division multiplex signals.
- all inputs of the wavelength division multiplex unit are preferably connected to a respective wavelength converter, each Wavelength converter converts the wavelength of any optical input signal into a predetermined wavelength. In this way it is possible to combine optical signals arriving on a plurality of optical fibers independently of their wavelength on a single optical fiber.
- the wavelength converter can preferably be designed as an optoelectrical-optical wavelength converter, a preferably broadband receiving diode being used for the optical-electrical conversion and a laser diode with a predetermined transmission wavelength for the electrical-optical conversion.
- Fig. 1 shows a first embodiment of an optical wavelength division multiplex unit according to the invention
- Fig. 2 shows a second embodiment of an optical wavelength division multiplex unit according to the invention.
- the optical wavelength division multiplex unit 1 shown in FIG. 1 has several inputs E. to E n , which are connected via optical waveguides 3 to the inputs of an optical coupling unit 5.
- the optical coupling unit can be designed as a passive optical wavelength division multiplexer or as an optical nx 1 coupler.
- melt couplers or waveguides are suitable, which can be implemented in integrated optics.
- the output of the optical coupling unit 5 is connected to the input of an isolator unit 7. This can be done using an optical fiber 9.
- the optical coupling unit 5 and the optical isolator unit 7 can be designed to be integrated using integrated optics.
- the output of the optical isolator unit 7 is connected to the optical output 11 of the wavelength division multiplex unit 1. As shown in FIG. 1, this can preferably be done again using an optical waveguide 13. Because the use of optical fibers as connecting elements between the inputs E, to E n and the inputs of the coupling unit 5 or the output of the isolator unit 7 and the output 11 of the wavelength division multiplex unit 1 offers the advantage that the optical fibers connected to the optical transmitters with the inputs E until E n or the output 11 of the multiplex unit 1 can be spliced without reflection with the input of the downstream transmission path 15. The freedom from reflection is not absolutely necessary when connecting the output 11 to the transmission path 15, since the isolator unit 7 already largely reduces the reaction of reflections. However, since every reflection is also associated with a corresponding attenuation of the signal, the reflection-free splicing of optical fibers also offers an advantage at the output of the wavelength division multiplex unit.
- the design of the wavelength division multiplex unit as a module offers the advantage that the coupling of optical waveguides to the coupling unit 5 or the isolator unit 7, which must be as low-reflection as possible, can be carried out under controlled conditions by the manufacturer of the module.
- the mostly less critical couplings between the transmitters and the module or the module and the transmission The route can then be created by the system creator.
- each input E 1 to E 1 can be connected to the relevant input of the optical coupling unit 5 via an optical wavelength converter in each case.
- This has the advantage that regardless of the wavelength of the signal present at the input concerned, the signals can be ultiplexed, since a (partial) superimposition of the incoming signals is avoided in any case.
- Each wavelength converter can be implemented by using a suitable receiving diode and a laser diode with a predetermined own wavelength, which are connected by means of a suitable electronic control circuit.
- the incoming signals are preferably converted transparently into the signals emitted by the wavelength converters.
- Such an optical wavelength division multiplex unit according to the invention thus enables the simple and inexpensive construction of a wavelength division multiplex system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU36191/97A AU3619197A (en) | 1996-08-01 | 1997-07-03 | Optical wavelength multiplexing unit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19631109.8 | 1996-08-01 | ||
DE19631109A DE19631109C1 (de) | 1996-08-01 | 1996-08-01 | Optische Wellenlängenmultiplexeinheit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998005988A1 true WO1998005988A1 (fr) | 1998-02-12 |
Family
ID=7801513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1997/001409 WO1998005988A1 (fr) | 1996-08-01 | 1997-07-03 | Unite optique de multiplexage en longueurs d'onde |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU3619197A (fr) |
DE (1) | DE19631109C1 (fr) |
WO (1) | WO1998005988A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007008320B4 (de) * | 2007-02-16 | 2009-02-12 | Schleifring Und Apparatebau Gmbh | Optischer Zweikanal Drehübertrager |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0310058A2 (fr) * | 1987-09-30 | 1989-04-05 | Nec Corporation | Système de commutation à division dans le temps et de longueur d'onde |
EP0555973A1 (fr) * | 1992-02-07 | 1993-08-18 | AT&T Corp. | Dispositif hybride de pompage pour amplificateurs à fibre dopée |
WO1996019743A1 (fr) * | 1994-12-21 | 1996-06-27 | E-Tek Dynamics, Inc. | Coupleur optique integrable et dispositifs et systemes obtenus |
JPH08179142A (ja) * | 1994-12-26 | 1996-07-12 | Nec Corp | 導波路型光アイソレータ |
JPH08237266A (ja) * | 1995-02-28 | 1996-09-13 | Fujitsu Ltd | 光バッファメモリ |
EP0766358A1 (fr) * | 1995-09-28 | 1997-04-02 | Siemens Aktiengesellschaft | Amplificateur à fibre optique pour une multitude de signaux à longueurs d'onde différentes comprenant un démultiplexeur et un multiplexeur |
-
1996
- 1996-08-01 DE DE19631109A patent/DE19631109C1/de not_active Expired - Fee Related
-
1997
- 1997-07-03 WO PCT/DE1997/001409 patent/WO1998005988A1/fr active Application Filing
- 1997-07-03 AU AU36191/97A patent/AU3619197A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0310058A2 (fr) * | 1987-09-30 | 1989-04-05 | Nec Corporation | Système de commutation à division dans le temps et de longueur d'onde |
EP0555973A1 (fr) * | 1992-02-07 | 1993-08-18 | AT&T Corp. | Dispositif hybride de pompage pour amplificateurs à fibre dopée |
WO1996019743A1 (fr) * | 1994-12-21 | 1996-06-27 | E-Tek Dynamics, Inc. | Coupleur optique integrable et dispositifs et systemes obtenus |
JPH08179142A (ja) * | 1994-12-26 | 1996-07-12 | Nec Corp | 導波路型光アイソレータ |
JPH08237266A (ja) * | 1995-02-28 | 1996-09-13 | Fujitsu Ltd | 光バッファメモリ |
EP0766358A1 (fr) * | 1995-09-28 | 1997-04-02 | Siemens Aktiengesellschaft | Amplificateur à fibre optique pour une multitude de signaux à longueurs d'onde différentes comprenant un démultiplexeur et un multiplexeur |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Section EI Week 9647, Derwent World Patents Index; Class W01, AN 96-470562, XP002044483 * |
PATENT ABSTRACTS OF JAPAN vol. 096, no. 011 29 November 1996 (1996-11-29) * |
Also Published As
Publication number | Publication date |
---|---|
AU3619197A (en) | 1998-02-25 |
DE19631109C1 (de) | 1997-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69331304T2 (de) | Verfahren zum Kompensieren der Dispersion eines Lichtwellenleiters für ein optisches Übertragungssystem | |
DE69605542T2 (de) | Optische mehrkanalanordnung | |
EP0354567B1 (fr) | Ensemble émission-réception pour un système de communication bidirectionnel cohérent et optique | |
DE69410187T2 (de) | Vorrichtung zum Auskoppeln und Wiedereinkoppeln eines optischen Trägersignals in optische Kommunikationsnetzwerke | |
EP0613221B1 (fr) | Amplificateur à fibre optique à étages multiples | |
EP0457863B1 (fr) | Dispositif de transmission avec parcours de transmission optique | |
DE69013662T2 (de) | Schmalbandige Laserquelle. | |
DE69222273T2 (de) | Passives optisches Übertragungsnetzwerk | |
DE19518294C1 (de) | Optische Verstärkeranordnung | |
DE2333968C2 (de) | Fasernetz für die optoelektronische Datenübertragung | |
EP0349766A2 (fr) | Système de transmission d'informations optique, concernant en particulier le raccordement d'abonnés | |
EP0644668A1 (fr) | Module d'émmission-réception pour transmission bidirectionnelle optique à plusieurs canaux | |
DE69020362T2 (de) | Verlustfreie optische komponente. | |
DE69720450T2 (de) | Optische Dispersionskompensation | |
EP0474914B1 (fr) | Système de télécommunication bidirectionnel | |
EP1425616B1 (fr) | Dispositif optique et module emetteur/recepteur destine a des systemes wdm optiques bidirectionnels et a des transmissions de donnees optiques | |
DE69700710T2 (de) | Optische Signalübertragungsanlage mit einem Zwischenverstärkerüberwachungssystem | |
DE69125065T2 (de) | Lichtübertragungssystem | |
DE19631109C1 (de) | Optische Wellenlängenmultiplexeinheit | |
EP0445364A2 (fr) | Système de communication optique | |
DE60217636T2 (de) | Steuerungsverfahren und -Vorrichtung eines optischen Wellenlängenfilters | |
DE69924274T2 (de) | Wdm sender und empfänger | |
EP0874482B1 (fr) | Dispositif pour l'émission et réception de signaux optiques | |
EP1111740B1 (fr) | Procédé de transmission de pompage optique de puissance | |
DE69419553T2 (de) | Optische Schaltung zur Reflektionsempfindlichkeitsmessung eines optischen Übertragungssystems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998507444 Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |