WO1998004232A1 - Massagers and housings therefor - Google Patents
Massagers and housings therefor Download PDFInfo
- Publication number
- WO1998004232A1 WO1998004232A1 PCT/EP1997/004025 EP9704025W WO9804232A1 WO 1998004232 A1 WO1998004232 A1 WO 1998004232A1 EP 9704025 W EP9704025 W EP 9704025W WO 9804232 A1 WO9804232 A1 WO 9804232A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- component
- graft
- particle size
- use according
- Prior art date
Links
- 239000000203 mixture Substances 0.000 claims abstract description 93
- 239000002245 particle Substances 0.000 claims abstract description 59
- 239000004908 Emulsion polymer Substances 0.000 claims abstract description 16
- 239000004417 polycarbonate Substances 0.000 claims abstract description 15
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 15
- 230000009477 glass transition Effects 0.000 claims abstract description 14
- 238000009757 thermoplastic moulding Methods 0.000 claims abstract description 13
- 239000000178 monomer Substances 0.000 claims description 54
- 238000000465 moulding Methods 0.000 claims description 44
- 229920000642 polymer Polymers 0.000 claims description 38
- 229920000578 graft copolymer Polymers 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 27
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 18
- 238000009826 distribution Methods 0.000 claims description 14
- 238000004132 cross linking Methods 0.000 claims description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- 239000000945 filler Substances 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- 229920002379 silicone rubber Polymers 0.000 claims description 4
- 229920002943 EPDM rubber Polymers 0.000 claims description 3
- 125000005907 alkyl ester group Chemical group 0.000 claims description 2
- 230000002902 bimodal effect Effects 0.000 claims description 2
- 239000004945 silicone rubber Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 6
- 239000000835 fiber Substances 0.000 abstract description 4
- 229920006125 amorphous polymer Polymers 0.000 abstract description 2
- 229920006126 semicrystalline polymer Polymers 0.000 abstract 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 83
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 33
- 229920001577 copolymer Polymers 0.000 description 28
- 229920001971 elastomer Polymers 0.000 description 25
- 239000005060 rubber Substances 0.000 description 25
- 238000007334 copolymerization reaction Methods 0.000 description 21
- 229920000126 latex Polymers 0.000 description 21
- 239000004816 latex Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 18
- -1 polyethylene chlorosulfone Polymers 0.000 description 17
- 239000002585 base Substances 0.000 description 16
- 238000006116 polymerization reaction Methods 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 13
- 239000006185 dispersion Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 12
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 12
- 238000004383 yellowing Methods 0.000 description 11
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 239000003995 emulsifying agent Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 7
- 229920000098 polyolefin Polymers 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- 239000011162 core material Substances 0.000 description 6
- 238000007720 emulsion polymerization reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical class COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 159000000000 sodium salts Chemical class 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 229920006222 acrylic ester polymer Polymers 0.000 description 4
- 125000005250 alkyl acrylate group Chemical group 0.000 description 4
- 239000000645 desinfectant Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 229920001281 polyalkylene Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 125000005396 acrylic acid ester group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 3
- 229920002959 polymer blend Polymers 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000003678 scratch resistant effect Effects 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 3
- 229940048086 sodium pyrophosphate Drugs 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 150000003440 styrenes Chemical class 0.000 description 3
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- MMSLOZQEMPDGPI-UHFFFAOYSA-N p-Mentha-1,3,5,8-tetraene Chemical compound CC(=C)C1=CC=C(C)C=C1 MMSLOZQEMPDGPI-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 2
- 229920000412 polyarylene Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000012966 redox initiator Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229920006114 semi-crystalline semi-aromatic polyamide Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002884 skin cream Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- STGNLGBPLOVYMA-TZKOHIRVSA-N (z)-but-2-enedioic acid Chemical compound OC(=O)\C=C/C(O)=O.OC(=O)\C=C/C(O)=O STGNLGBPLOVYMA-TZKOHIRVSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- 150000005207 1,3-dihydroxybenzenes Chemical class 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- ONBWNNUYXGJKKD-UHFFFAOYSA-N 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonic acid;sodium Chemical compound [Na].CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC ONBWNNUYXGJKKD-UHFFFAOYSA-N 0.000 description 1
- WEERVPDNCOGWJF-UHFFFAOYSA-N 1,4-bis(ethenyl)benzene Chemical compound C=CC1=CC=C(C=C)C=C1 WEERVPDNCOGWJF-UHFFFAOYSA-N 0.000 description 1
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- WMRCTEPOPAZMMN-UHFFFAOYSA-N 2-undecylpropanedioic acid Chemical compound CCCCCCCCCCCC(C(O)=O)C(O)=O WMRCTEPOPAZMMN-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- IYMZEPRSPLASMS-UHFFFAOYSA-N 3-phenylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2C=CC=CC=2)=C1 IYMZEPRSPLASMS-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- QOHHOCDXTLIHPG-UHFFFAOYSA-N 4,4-diphenylcyclohexane-1,1-diol Chemical compound C1CC(O)(O)CCC1(C=1C=CC=CC=1)C1=CC=CC=C1 QOHHOCDXTLIHPG-UHFFFAOYSA-N 0.000 description 1
- NZGQHKSLKRFZFL-UHFFFAOYSA-N 4-(4-hydroxyphenoxy)phenol Chemical compound C1=CC(O)=CC=C1OC1=CC=C(O)C=C1 NZGQHKSLKRFZFL-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- UMPGNGRIGSEMTC-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl]phenol Chemical compound C1C(C)CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 UMPGNGRIGSEMTC-UHFFFAOYSA-N 0.000 description 1
- WCUDAIJOADOKAW-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)pentan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(CCC)C1=CC=C(O)C=C1 WCUDAIJOADOKAW-UHFFFAOYSA-N 0.000 description 1
- PMZXJPLGCUVUDN-UHFFFAOYSA-N 4-ethenyl-1,2-dimethylbenzene Chemical compound CC1=CC=C(C=C)C=C1C PMZXJPLGCUVUDN-UHFFFAOYSA-N 0.000 description 1
- GQWAOUOHRMHSHL-UHFFFAOYSA-N 4-ethenyl-n,n-dimethylaniline Chemical compound CN(C)C1=CC=C(C=C)C=C1 GQWAOUOHRMHSHL-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 208000032365 Electromagnetic interference Diseases 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 238000012696 Interfacial polycondensation Methods 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- KQNZLOUWXSAZGD-UHFFFAOYSA-N benzylperoxymethylbenzene Chemical compound C=1C=CC=CC=1COOCC1=CC=CC=C1 KQNZLOUWXSAZGD-UHFFFAOYSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- RNOOHTVUSNIPCJ-UHFFFAOYSA-N butan-2-yl prop-2-enoate Chemical compound CCC(C)OC(=O)C=C RNOOHTVUSNIPCJ-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- FRLJSGOEGLARCA-UHFFFAOYSA-N cadmium sulfide Chemical class [S-2].[Cd+2] FRLJSGOEGLARCA-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- UYDJAHJCGZTTHB-UHFFFAOYSA-N cyclopentane-1,1-diol Chemical compound OC1(O)CCCC1 UYDJAHJCGZTTHB-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000011928 denatured alcohol Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- ISRJTGUYHVPAOR-UHFFFAOYSA-N dihydrodicyclopentadienyl acrylate Chemical compound C1CC2C3C(OC(=O)C=C)C=CC3C1C2 ISRJTGUYHVPAOR-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229940119545 isobornyl methacrylate Drugs 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- MNZMMCVIXORAQL-UHFFFAOYSA-N naphthalene-2,6-diol Chemical compound C1=C(O)C=CC2=CC(O)=CC=C21 MNZMMCVIXORAQL-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000005704 oxymethylene group Chemical group [H]C([H])([*:2])O[*:1] 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000005385 peroxodisulfate group Chemical group 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- WSRHMJYUEZHUCM-UHFFFAOYSA-N perylene-1,2,3,4-tetracarboxylic acid Chemical class C=12C3=CC=CC2=CC=CC=1C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C2=C1C3=CC=C2C(=O)O WSRHMJYUEZHUCM-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229920006024 semi-aromatic copolyamide Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- XHGIFBQQEGRTPB-UHFFFAOYSA-N tris(prop-2-enyl) phosphate Chemical compound C=CCOP(=O)(OCC=C)OCC=C XHGIFBQQEGRTPB-UHFFFAOYSA-N 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/08—Copolymers of styrene
- C08L25/12—Copolymers of styrene with unsaturated nitriles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/12—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H37/00—Accessories for massage
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/003—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
Definitions
- the invention relates to massage devices or housings therefor and parts of massage devices which come into contact with the human body.
- the invention relates to massage devices with good dimensional stability, great stability, good chemical resistance and good yellowing resistance.
- ABS acrylonitrile / butadiene / styrene
- a disadvantage of ABS is that it is not always sufficiently resistant to yellowing, so that yellowing also occurs in part when used indoors.
- ABS is not always sufficiently resistant to detergents and disinfectants, as well as skin creams and massage oils.
- the object of the present invention is therefore to provide massage devices which are stable and resistant to chemicals and do not yellow. They should also be scratch-resistant and have good dimensional stability.
- thermoplastic film composition different from ABS comprising, based on the sum of the amounts of components A and B, and possibly C and / or D, which gives a total of 100% by weight, a: 1-99% by weight of a particulate emulsion polymer with a glass transition temperature below 0 ° C. and an average particle size of 50-1000 nm as component A,
- component D 0 - 50% by weight of fibrous or particulate fillers or mixtures thereof as component D.
- the massage devices described are scratch-resistant, stable and resistant to chemicals. They also have very good resistance to yellowing.
- thermoplastic molding compositions used according to the invention for producing the massage devices according to the invention are known per se.
- DE-A-12 60 135, DE-C-19 11 882, DE-A-28 26 925, DE-A-31 49 358, DE-A-32 27 555 and DE-A-40 11 162 Molding compositions which can be used according to the invention are described.
- the molding compositions other than ABS used to manufacture the massage devices or housings thereof according to the invention contain components A and B and optionally C and / or D as defined below. They contain, based on the sum of the amounts of components A and B, and if appropriate C and / or D, which gives a total of 100% by weight, a: 1-99% by weight, preferably 15-60% by weight, in particular 25-50% by weight, of a particulate emulsion polymer with a glass transition temperature below 0 ° C. and an average particle size of 50-1000 nm, preferably 50 - 500 nm, as component A,
- b 1-99% by weight, preferably 40-85% by weight, in particular 50-75% by weight, of at least one amorphous or partially crystalline polymer as component B,
- d 0 - 50% by weight of fibrous or particulate fillers or their mixtures as component D.
- Component A is a particulate emulsion polymer with a glass transition temperature below 0 ° C and an average particle size of 50-1000 nm.
- Component A is preferably a graft copolymer al: 1-99% by weight, preferably 55-80% by weight, in particular 55-
- a22 up to 60% by weight, preferably 15-35% by weight, of units of an ethylenically unsaturated monomer, preferably of acrylonitrile or methacrylonitrile, in particular of acrylonitrile as component A22.
- the graft pad A2 consists of at least one graft shell, the graft copolymer A overall having an average particle size of 50-1000 nm.
- component AI consists of the monomers
- the average particle size of component A is 50-800 nm, preferably 50-600 nm.
- the particle size distribution of component A is bimodal, 60-90% by weight having an average particle size of 50-200 nm and 10-40% by weight having an average particle size of 50-400 nm, based on the Total weight of component A.
- the sizes determined from the integral mass distribution are specified as the mean particle size or particle size distribution.
- the mean particle sizes according to the invention are in all cases the weight average of the particle sizes, as determined by means of an analytical ultracentrifuge according to the method of W. Scholtan and H. Lange, Kolloid-Z. and Z.-Polymer 250 (1972), pages 782-796.
- the ultracentrifuge measurement provides the integral mass distribution of the particle diameter of a sample. From this it can be seen what percentage by weight of the particles have a diameter equal to or smaller than a certain size.
- the average particle diameter also known as ⁇ - is called the integral mass distribution
- the average particle diameter is defined as the particle diameter at which 50 wt .-% of the particles have a diameter smaller than the diameter of the d5 0 - corresponds ert. Likewise, 50% by weight of the particles then have a larger diameter than the d 5 ⁇ value.
- the integral mass distribution results d 10 and drjo values are used.
- the d 10 or d 90 value of the integral mass distribution is defined in accordance with the d 50 value with the difference that they are based on 10 or 90% by weight of the particles. The quotient
- Emulsion polymers A which can be used according to the invention as component A preferably have Q values less than 0.5, in particular less than 0.35.
- the glass transition temperature of the emulsion polymer A and also of the other components used according to the invention is determined by means of DSC (Differential Scanning Calorimetry) according to ASTM 3418 (mid point temperature).
- emulsion polymer A such as epichlorohydrin rubbers, ethylene-vinyl acetate rubbers, polyethylene chlorosulfone rubbers, silicone rubbers, polyether rubbers, hydrogenated diene rubbers, polyalkylene rubber rubbers, polyalkylene rubber rubbers, polyalkylene rubber rubbers, according to one embodiment of the invention.
- Acrylate rubber, ethylene-propylene (EP) rubber, ethylene-propylene-diene (EPDM) rubber, in particular acrylate rubber, are preferably used.
- the diene basic building block content in the emulsion polymer A is kept so low that as few unreacted double bonds remain in the polymer. According to one embodiment, there are no basic diene building blocks in the emulsion polymer A.
- the acrylate rubbers are preferably alkyl acrylate rubbers composed of one or more C 8 alkyl acrylates, preferably C 4.8 alkyl acrylates, preferably at least partially butyl, hexyl, octyl or 2-ethylhexyl acrylate, in particular n-butyl and 2 -Ethylhexyl acrylate is used.
- These alkyl acrylate rubbers can contain up to 30% by weight of copolymerized monomers which form hard polymers, such as vinyl acetate, (meth) acrylonitrile, styrene, substituted styrene, methyl methacrylate or vinyl ether.
- the acrylate rubbers further contain 0.01-20% by weight, preferably 0.1-5% by weight, of cross-linking polyfunctional monomers (cross-linking monomers).
- cross-linking monomers examples of these are monomers which contain 2 or more double bonds capable of copolymerization, which are preferably not conjugated in the 1,3 positions.
- Suitable crosslinking monomers are, for example, divinylbenzene, diallyl maleate, diallyl fumarate, diallyl phthalate, diethyl phthalate, triallyl cyanurate, triallyl isocyanurate, tricyclodecenyl acrylate, dihydrodicyclopentadienyl acrylate, triallyl phosphate, allyl acrylate.
- Dicyclopentadienyl acrylate (DCPA) has proven to be a particularly favorable crosslinking monomer (cf. DE-C-12 60 135).
- Suitable silicone rubbers can be, for example, crosslinked suicon rubbers composed of units of the general formulas R 2 SiO, RSiO 3/2 , R 3 SiO 1/2 and SiO 2 4 , the radical R representing a monovalent radical.
- the amount of the individual siloxane units is such that for 100 units of the formula R 2 SiO 0 to 10 mol units of the formula RSiO 3/2 , 0 to 1.5 mol units R 3 SiO 1 2 and 0 to 3 mol -SiO 2/4 units are present.
- R can be either a monovalent saturated hydrocarbon radical having 1 to 18 carbon atoms, the phenyl radical or the alkoxy radical or a radical which is easily attackable by free radicals, such as the vinyl or mercaptopropyl radical. It is preferred that at least 80% of all R groups are methyl groups; combinations of methyl and ethyl or phenyl radicals are particularly preferred.
- Preferred silicone rubbers contain built-in units of groups which can be attacked by free radicals, in particular vinyl, allyl, halogen, mercapto groups, preferably in amounts of 2-10 mol%, based on all radicals R. They can be prepared, for example, as in EP-A-0 260 558.
- an emulsion polymer A made from uncrosslinked polymer All of the monomers mentioned above can be used as monomers for the production of these polymers.
- Preferred uncrosslinked emulsion polymers A are e.g. Homopolymers and copolymers of acrylic acid esters, especially n-butyl and ethylhexyl acrylate, and homopolymers and copolymers of ethylene, propylene, butylene, isobutylene, and poly (organosiloxanes), all with the proviso that they are linear or may be branched.
- Core / shell - emulsion polymer A can also be a multi-stage polymer (so-called “core / shell structure", “core-shell morphology”).
- core / shell structure a multi-stage polymer
- core-shell morphology a rubber-elastic core (T g ⁇ 0 ° C) can be encased by a "hard” shell (polymers with T g > 0 ° C) or vice versa.
- component A is a graft copolymer.
- the graft copolymers A of the molding compositions according to the invention have an average particle size d 50 of 50-1000 nm, preferably 50-600 nm and particularly preferably 50-400 nm. These particle sizes can be achieved if the graft base AI of this component A particle sizes of 50-350 nm, preferably 50-300 nm and particularly preferably 50-250 nm are used.
- the graft copolymer A is generally one or more stages, i.e. a polymer composed of a core and one or more shells.
- the polymer consists of a basic stage (graft core) Al and one or - preferably - several stages A2 grafted thereon, the so-called graft stages or graft shells.
- One or more graft shells can be applied to the rubber particles by simple grafting or multiple step-wise grafting, each graft sheath having a different composition.
- polyfunctional crosslinking or reactive group-containing monomers can also be grafted on (see e.g. EP-A-0 230 282, DE-A-36 01 419, EP-A-0 269 861).
- component A consists of a multi-stage graft copolymer
- the graft stages in are generally made from resin-forming monomers and have a glass transition temperature T g above 30 ° C, preferably above 50 ° C.
- the multi-stage structure serves, among other things, to achieve (partial) compatibility of the rubber particles A with the thermoplastic B.
- Graft copolymers A are prepared, for example, by grafting at least one of the monomers A2 listed below onto at least one of the graft bases or graft core materials AI listed above. All polymers described above under emulsion polymers A are suitable as graft bases AI of the molding compositions according to the invention.
- the graft base AI is composed of 15-99% by weight of acrylate rubber, 0.1-5% by weight of crosslinking agent and 0-49.9% by weight of one of the further monomers or rubbers indicated.
- Suitable monomers for forming the graft A2 can be selected, for example, from the monomers listed below and their mixtures:
- Vinylaromatic monomers such as styrene and its substituted derivatives, such as ⁇ -methylstyrene, p-methylstyrene, 3,4-dimethyl styrene, p-tert-butylstyrene, o- and p-divinylbenzene and p-methyl- ⁇ -methylstyrene or C ⁇ Cg -Alkyl (meth) acrylates such as methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, s-butyl acrylate; styrene, ⁇ -methylstyrene, methyl methacrylate, in particular styrene and / or ⁇ -methylstyrene, and ethylenically unsaturated monomers, such as acrylic and methacrylic compounds, such as acrylonitrile, methacrylon
- styrene vinyl, acrylic or methacrylic compounds (for example styrene, optionally substituted with C ⁇ - alkyl radicals, halogen atoms, halogenmethylene radicals; vinylnaphthalene, vinylcarbazole; vinyl ether with C ⁇ - ether radicals; vinylimidazole , 3- (4-) vinyl pyridine, dimethylaminoethyl (meth) acrylate, p-dimethylaminostyrene, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, butyl acrylate, ethyl acrylate and methyl methacrylate as well as fumaric acid, maleic acid, itaconic acid or their anhydrides, amides, nitriles or Esters having 1 to 22 carbon atoms, preferably alcohols containing 1 to 10 carbon atoms) can be used.
- styrene vinyl, acrylic or methacrylic compounds (for
- component A comprises 50-90% by weight of the above-described graft base AI and 10-50% by weight of the above-described graft base A2, based on the total weight of component A.
- crosslinked acrylic acid ester polymers with a glass transition temperature below 0 ° C. serve as the graft base.
- the crosslinked acrylic ester polymers should preferably have a glass transition temperature below -20 ° C., in particular below -30 ° C.
- the graft pad A2 consists of at least one graft shell and the outermost graft shell thereof has one Glass transition temperature of more than 30 ° C, wherein a polymer formed from the monomers of the graft A2 would have a glass transition temperature of more than 80 ° C.
- the graft copolymers A can also be prepared by grafting pre-formed polymers onto suitable graft homopolymers. Examples of this are the reaction products of copolymers containing maleic anhydride or acid groups with base-containing rubbers.
- Suitable preparation processes for graft copolymers A are emulsion, solution, bulk or suspension polymerization.
- the graft copolymers A are preferably prepared by free-radical emulsion polymerization, in particular in the presence of latices of component AI at temperatures from 20 ° C. to 90 ° C. using water-soluble or oil-soluble initiators such as peroxodisulfate or benzyl peroxide, or with the aid of redox initiators. Redox initiators are also suitable for polymerization below 20 ° C.
- Suitable emulsion polymerization processes are described in DE-A-28 26 925, 31 49 358 and in DE-C-12 60 135.
- the graft casings are preferably built up in the emulsion polymerization process, as described in DE-A-32 27 555, 31 49 357, 31 49 358, 34 14 118.
- the defined particle sizes of 50-1000 nm according to the invention are preferably carried out after the processes described in DE-C-12 60 135 and DE-A-28 26 925, or Applied Polymer Science, Volume 9 (1965), page 2929.
- the use of polymers with different particle sizes is known, for example, from DE-A-28 26 925 and US 5,196,480.
- the graft base AI is first prepared by adding the acrylic acid ester (s) used according to one embodiment of the invention and the multifunctional monomers which bring about crosslinking, if appropriate together with the other comonomers, in an aqueous emulsion in a conventional manner at temperatures between 20 and 100 ° C, preferably between 50 and 80 ° C, polymerized.
- the usual emulsifiers such as alkali salts of alkyl or alkylarylsulfonic acids, alkyl sulfates, fatty alcohol sulfonates, salts of higher fatty acids with 10 to 30 carbon atoms or resin soaps can be used.
- the sodium salts of alkyl sulfonates or fatty acids having 10 to 18 carbon atoms are preferably used.
- the emulsifiers are used in amounts of 0.5-5% by weight, in particular 1-2% by weight, based on the monomers used in the preparation of the graft base AI.
- the weight ratio of water to monomers is from 2: 1 to 0.7: 1.
- the initiators are generally used in amounts of 0.1-1% by weight, based on the monomers used in the preparation of the graft base AI.
- Further polymerization auxiliaries which can be used are the customary buffer substances, by means of which pH values of preferably 6-9, such as sodium bicarbonate and sodium pyrophosphate, and 0-3% by weight of a molecular weight regulator, such as mercaptans, terpinols or dimeric ⁇ -methylstyrene, during the polymerization be used.
- the exact polymerization conditions, in particular the type, dosage and amount of the emulsifier are determined in detail within the ranges given above such that the latex of the crosslinked acrylic ester polymer obtained ad 50 value in the range from about 50-1000 nm, preferably 50-150 nm, particularly preferably in the range of 80-100 nm.
- the particle size distribution of the latex should preferably be narrow. The quotient
- a monomer mixture of styrene and acrylonitrile is then polymerized in a next step in the presence of the latex of the crosslinked acrylic ester polymer thus obtained, the weight ratio of styrene to acrylonitrile in the monomer mixture according to one embodiment of the invention in the range from 100: 0 to 40:60, preferably in the range from 65: 35 to 85: 15. It is advantageous to carry out this graft copolymerization of styrene and acrylonitrile on the crosslinked polyacrylic ester polymer used as the graft base again in an aqueous emulsion under the customary conditions described above.
- the graft copolymerization can expediently take place in the same system as the emulsion polymerization for the preparation of the graft base A1, it being possible, if necessary, to add further emulsifier and initiator.
- the monomer mixture of styrene and acrylonitrile to be grafted on according to one embodiment of the invention can be added to the reaction mixture all at once, batchwise in several stages or preferably continuously during the polymerization.
- the graft copolymerization the mixture of styrene and acrylonitrile in the presence of the crosslinking acrylic ester polymer is carried out in such a way that a degree of grafting of 1-99% by weight, preferably 20-45% by weight, in particular 35-45% by weight, based on the total weight of the Component A results in the graft copolymer A. Since the graft yield in the graft copolymerization is not 100%, a somewhat larger amount of the monomer mixture of styrene and acrylonitrile must be used in the graft copolymerization than corresponds to the desired degree of grafting.
- the control of the graft yield in the graft copolymerization and thus the degree of grafting of the finished graft copolymer A is known to the person skilled in the art and can be carried out, for example, by the metering rate of the monomers or by adding a regulator (Chauvel, Daniel, ACS Polymer Preprints 15 (1974), page 329 ff .).
- the emulsion graft copolymerization generally gives rise to about 5 to 15% by weight, based on the graft copolymer, of free, non-grafted styrene / acrylonitrile copolymer.
- the proportion of the graft copolymer A in the polymerization product obtained in the graft copolymerization is determined by the method given above.
- graft copolymers A In the production of the graft copolymers A according to the emulsion process, in addition to the existing procedural advances, reproducible particle size changes are also possible, for example by at least partially agglomerating the particles to larger particles. This means that polymers with different particle sizes can also be present in the graft copolymers A.
- Component A in particular, consisting of the graft base and graft shell (s) can be optimally adapted for the particular intended use, in particular with regard to the size of the particles.
- the graft copolymers A generally contain 1-99% by weight, preferably 55-80 and particularly preferably 55-65% by weight of graft base AI and 1-99% by weight, preferably 20-45, particularly preferably 35-45% by weight .-% of the graft pad A2, in each case based on the entire graft copolymer.
- Component B is an amorphous or partially crystalline polymer.
- Component B is preferably a copolymer of
- bl 40-100% by weight, preferably 60-70% by weight, of units of a vinylaromatic monomer, preferably styrene, a substituted styrene or a (meth) acrylic acid ester or mixtures thereof, in particular styrene and / or ⁇ Methylstyrene as component B1,
- b2 up to 60% by weight, preferably 30-40% by weight, of units of an ethylenically unsaturated monomer, preferably of acrylonitrile or methacrylonitrile, in particular of acrylonitrile as component B2.
- the viscosity number of component B is 50-90, preferably 60-80.
- the amorphous or partially crystalline polymers of component B of the molding composition used according to the invention for producing the massage devices according to the invention are preferably composed of at least one polymer from partially crystalline polyamides, partially aromatic copolyamides, polyolefins, ionomers, polyesters, polyether ketones, polyoxyalkylenes, polyarylene sulfides and polymers from vinylaromatic monomers and / or ethylenically un- saturated monomers selected. Polymer mixtures can also be used.
- Component B of the molding composition used according to the invention for the production of the massage devices according to the invention is made from partially crystalline, preferably linear polyamides such as polyamide-6, polyamide-6,6, polyamide-4,6, polyamide-6, 12 and partially crystalline copolyamides based on these components.
- partially crystalline polyamides can be used, the acid component of which consists wholly or partly of adipic acid and / or terephthalic acid and / or isophthalic acid and / or suberic acid and / or sebacic acid and / orginaic acid and / or dodecanedicarboxylic acid and / or a cyclohexanedicarboxylic acid, and the like
- Diamine component wholly or partly in particular consists of m- and / or p-xylylenediamine and / or hexamethylenediamine and / or 2,2,4- and / or 2,4,4-trimethylhexamethylenediamine and / or isophoronediamine, and their compositions in principle are known from the prior art (cf. Encyclopedia of Polymers, Vol. 11, p. 315 ff.).
- Polymers are partially crystalline polyolefins, preferably homo- and copolymers of olefins such as ethylene, propylene, butene-1, pentene-1, hexene-1,
- Suitable polyolefins are polyethylene, polypropylene, polybutene-1 or poly-4-methylpentene-1. In general, a distinction is made with polyethylene (PE) high
- HDPE Density-PE
- LDPE low-density-PE
- component B is an ionomer.
- These are generally polyolefins as they are Were described above, in particular polyethylene, which contain monomers co-condensed with acid groups, for example acrylic acid, methacrylic acid and optionally other copolymerizable monomers.
- the acid groups are generally converted into ionic, optionally ionically crosslinked polyolefins with the aid of metal ions such as Na + , Ca 2 + , Mg 2+ and Al 34 " , but these can still be processed thermoplastically (see, for example, US Pat. No.
- component B can also be polyester, preferably aromatic-aliphatic polyester.
- polyester preferably aromatic-aliphatic polyester.
- polyalkylene terephthalate e.g. based on ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol and 1,4-bis-hydroxymethyl-cyclohexane, as well as polyalkylene naphthalates.
- Aromatic polyether ketones such as those e.g. are described in GB 1 078 234, US 4,010,147, EP-A-0 135 938, EP-A-0 292 211, EP-A-0 275 035, EP-A-0 270 998, EP-A-0 165 406, and in the publication by CK Sham et. al., Polymer 29/6, 1016-1020 (1988).
- component B of the molding compositions used according to the invention for the production of the massage devices according to the invention polyoxyalkylenes, e.g. Polyoxymethylene, and oxymethylene polymers are used.
- suitable components B are the polyarylene sulfides, in particular the polyphenylene sulfide. According to one embodiment of the invention, it is composed of 50-99% by weight of vinyl aromatic monomers and 1-50% by weight of at least one of the other specified monomers.
- Component B is preferably an amorphous polymer, as described above as graft A2.
- a copolymer of styrene and / or ⁇ -methylstyrene with acrylonitrile is used as component B.
- the acrylonitrile content in these copolymers of component B is 0-60% by weight, preferably 30-40% by weight, based on the total weight of component B.
- Component B also includes those in the graft copolymerization to prepare the component A free, non-grafted styrene / acrylonitrile copolymers formed.
- component B has already been formed in the graft copolymerization. In general, however, it will be necessary to mix the products obtained in the graft copolymerization with additional, separately prepared component B.
- This additional, separately produced component B can preferably be a styrene / acrylonitrile copolymer, an ⁇ -methylstyrene / acrylonitrile copolymer or an ⁇ -methylstyrene / styrene / acrylonitrile terpolymer.
- These copolymers can be used individually or as a mixture for component B, so that the additional, separately produced component B of the molding compositions used according to the invention is, for example, a mixture of a styrene / acrylonitrile copolymer and an ⁇ -methylstyrene / Acrylonitrile copolymer can act.
- component B of the molding compositions used according to the invention consists of a mixture of a styrene / acrylonitrile copolymer and an ⁇ -methylstyrene / acrylonitrile copolymer
- the acrylonitrile content of the two copolymers does not differ by more than 10% by weight, preferably not more than 5% by weight, based on the total weight of the copolymer.
- Component B of the molding compositions used according to the invention can, however, also consist of only a single styrene / acrylonitrile copolymer if, in the graft copolymerizations for the production of component A and also in the production of the additional, separately produced component B, the same monomer mixture of styrene and acrylonitrile is assumed.
- the additional, separately manufactured component B can be obtained by the conventional methods.
- the copolymerization of the styrene and / or ⁇ -methylstyrene with the acrylonitrile can be carried out in bulk, solution, suspension or aqueous emulsion.
- Component B preferably has a viscosity number of 40 to 100, preferably 50 to 90, in particular 60 to 80. The viscosity number is determined in accordance with DIN 53 726, 0.5 g of material being dissolved in 100 ml of dimethylformamide.
- Components A and B and optionally C, D can be mixed in any desired manner by all known methods. If components A and B have been prepared, for example, by emulsion polymerization, it is possible to mix the polymer dispersions obtained with one another, to precipitate the polymers together thereupon and to work up the polymer mixture. However, components A and B are preferably mixed by extruding, kneading or rolling the components together, the components having, if necessary, been isolated beforehand from the solution or aqueous dispersion obtained in the polymerization.
- the graft copolymerization products (component A) obtained in aqueous dispersion can also only be partially dewatered and mixed with component B as a moist crumb are mixed, the complete drying of the graft copolymers then taking place during the mixing.
- the molding compositions used for producing the massage devices according to the invention contain, in addition to components A and B, additional components C and / or D and, if appropriate, further additives, as described below.
- Suitable polycarbonates C are known per se. They preferably have a molecular weight (weight average M w , determined by means of gel permeation chromatography in tetrahydrofuran against polystyrene standards) in the range from 10,000 to 60,000 g / mol. They can be obtained, for example, in accordance with the processes of DE-B-1 300 266 by interfacial polycondensation or in accordance with the process of DE-A-1 495 730 by reacting diphenyl carbonate with bisphenols.
- Preferred bisphenol is 2,2-di (4-hydroxyphenyOpropane, generally - as also hereinafter - referred to as bisphenol A.
- aromatic dihydroxy compounds can also be used, in particular 2,2-di (4-hydroxyphenyl) pentane, 2,6-dihydroxynaphthalene, 4,4'-dihydroxydiphenylsulfane, 4,4'-dihydroxydiphenyl ether, 4 , 4'-Dihydroxydiphenylsulfite, 4,4'-Dilrydroxydiphenylmethan, l, l-Di- (4-hydroxyphenyl) ethane, 4,4-Dihydroxydiphenyl or Dihydroxydiphenylcycloalkane, preferably Dihydroxydiphenylcyclohexane or Dihydroxylcyclopentane, in particular 1,1-bis (4- hydroxyphenyl) -3, 3, 5-trimethylcyclohexane and mixtures of the aforementioned dihydroxy compounds.
- 2,2-di (4-hydroxyphenyl) pentane 2,6-dihydroxynaphthalene
- Particularly preferred polycarbonates are those based on bisphenol A or bisphenol A together with up to 80 mol% of the aromatic dihydroxy compounds mentioned above.
- Copolycarbonates according to US Pat. No. 3,737,409 can also be used; Of particular interest are copolycarbonates based on bisphenol A and di (3,5-dimemyl-dihydroxyphenyl) sulfone, which are characterized by a high heat resistance. It is also possible to use mixtures of different polycarbonates.
- the average molecular weights (weight average M w , determined by means of gel permeation chromatography in tetrahydrofuran against polystyrene standards) of the polycarbonates C are in the range from 10,000 to 64,000 g / mol. They are preferably in the range from 15,000 to 63,000, in particular in the range from 15,000 to 60,000 g / mol.
- the polycarbonates C have relative solution viscosities in the range from 1.1 to 1.3, measured in 0.5% strength by weight solution in dichloromethane at 25 ° C., preferably from 1.15 to 1.33.
- the relative solution viscosities of the polycarbonates used preferably differ by no more than 0.05, in particular no more than 0.04.
- the polycarbonates C can be used both as regrind and in granular form. They are present as component C in amounts of 0-50% by weight, preferably 10-40% by weight, based in each case on the entire molding composition.
- the addition of polycarbonates leads, inter alia, to a higher thermal stability and improved crack resistance of the molding compositions used according to the invention for producing the massage devices according to the invention.
- the preferred thermoplastic molding compositions used according to the invention for producing the massage devices according to the invention contain 0 to 50% by weight, preferably 0 to 40% by weight, in particular 0 to 30% by weight of fibrous or particulate fillers or mixtures thereof based on the total molding compound. These are preferably commercially available products. Reinforcing agents such as carbon fibers and glass fibers are usually used in amounts of 5-50% by weight, based on the total molding composition.
- the glass fibers used can be made of E, A or C glass and are preferably equipped with a size and an adhesion promoter. Their diameter is generally between 6 and 20 ⁇ m. Both continuous fibers (rovings) and chopped glass fibers (staples) with a length of 1-10 ⁇ m, preferably 3-6 ⁇ m, can be used.
- fillers or reinforcing materials such as glass balls, mineral fibers, whiskers, aluminum oxide fibers, mica, quartz powder and wollastonite can be added.
- metal flakes e.g. aluminum flakes from Transmet Corp.
- metal powder e.g. aluminum powder
- metal fibers e.g. nickel-coated glass fibers
- metal-coated fillers e.g. Nickel-coated glass fibers
- other additives that shield electromagnetic waves are added to the molding compositions used to produce the flat wall elements according to the invention.
- Aluminum flakes K 102 from Transmet
- EMI purposes electro-magnetic interference
- the compositions can be mixed with additional carbon fibers, carbon black, in particular conductivity carbon black, or nickel-coated carbon fibers.
- the molding compositions used according to the invention for the production of the massage devices according to the invention can also contain further additives which are typical and customary for polycarbonates, SAN polymers and graft copolymers or mixtures thereof.
- additives are: dyes, pigments, colorants, antistatic agents, anti- oxidants, stabilizers to improve the thermal stability, to increase the light stability, to increase the resistance to hydrolysis and chemicals, agents against heat decomposition and in particular the lubricants which are expedient for the production of moldings or molded parts.
- These additional additives can be metered in at any stage of the production process, but preferably at an early point in time, in order to take advantage of the stabilizing effects (or other special effects) of the additive at an early stage.
- Heat stabilizers or oxidation retardants are usually metal halides (chlorides, bromides, iodides) which are derived from metals of group I of the periodic table of the elements (such as Li, Na, K, Cu).
- Suitable stabilizers are the usual hindered phenols, but also vitamin E or compounds with an analog structure.
- HALS stabilizers hindered amine light stabilizers
- benzophenones hindered amine light stabilizers
- resorcinols salicylates
- benzotriazoles and other compounds are also suitable (for example Irganox °, Tinuvin *, such as Tinuvin * 770 (HALS absorber, bis (2,2,6, 6-tetramethyl-4-piperidyl) sebazate) or Tinuvin * P (UV absorber - (2H-benzotriazol-2-yl) -4-methylphenol), topanol *).
- Tinuvin * such as Tinuvin * 770 (HALS absorber, bis (2,2,6, 6-tetramethyl-4-piperidyl) sebazate) or Tinuvin * P (UV absorber - (2H-benzotriazol-2-yl) -4-methylphenol), topanol *).
- Suitable lubricants and mold release agents are stearic acids, stearyl alcohol, stearic acid esters or generally higher fatty acids, their derivatives and corresponding fatty acid mixtures with 12-30 carbon atoms.
- the amounts of these additives are in the range of 0.05-1% by weight.
- Silicone oils, oligomeric isobutylene or similar substances are also suitable as additives, the usual amounts being 0.05-5% by weight.
- Pigments, dyes, color brighteners, such as ultramarine blue, phthalocyanines, titanium Dioxide, cadmium sulfides, derivatives of perylene tetracarboxylic acid can also be used.
- Processing aids and stabilizers such as UV stabilizers, lubricants and antistatic agents are usually used in quantities of 0.01 - 5% by weight, based on the total molding compound.
- thermoplastic molding compositions used for the production of the massage devices according to the invention can be produced by methods known per se by mixing the components. It can be advantageous to premix individual components. Mixing the components in solution and removing the solvents is also possible.
- Suitable organic solvents are, for example, chlorobenzene, mixtures of chlorobenzene and methylene chloride or mixtures of chlorobenzene or aromatic hydrocarbons, e.g. Toluene.
- the solvent mixtures can be evaporated, for example, in evaporation extruders.
- the dry components can be mixed by all known methods. Preferably, however, mixing is done by extruding, kneading or rolling of the components, preferably at temperatures of 180-400 C ⁇ , wherein the components have been Suiteen- if previously isolated from the obtained in the polymerization or from the aqueous dispersion.
- the massage devices and fastening parts according to the invention can be produced from the thermoplastic molding compositions used according to the known methods of thermoplastic processing.
- the production can be carried out by thermoforming, extrusion, injection molding, calendering, blow molding, pressing, press sintering, deep drawing or sintering, preferably by injection molding.
- the massage devices are operated electrically. However, they can also be operated in other suitable ways, for example pneumatically.
- the massage devices are used in medical or therapeutic as well as cosmetic massage of the human body. They support the activity of the masseur. According to one embodiment of the invention, the massage devices perform rotary or vibratory movements or a combination thereof, in particular on the part of the massage device that comes into contact with human skin.
- the parts that come into contact with the human body consist of the thermoplastic molding composition according to the invention.
- massage devices known to the person skilled in the art are suitable as massage devices.
- the massage devices can be mobile or fixed installed.
- thermoplastic described massage devices according to the invention produced in molding compositions have very good chemical resistance. In addition, they are scratch-resistant, which is particularly advantageous when cleaning.
- the massage devices according to the invention and their housings are resistant to yellowing and very stable. They have a balanced ratio of toughness and bending stiffness.
- massage devices or housings made of molding compositions which contain polycarbonates as component C are very heat-resistant and resistant to prolonged heat.
- the heat resistance and impact resistance of the flat wall elements is further improved.
- These flat wall elements also have a balanced toughness and rigidity and a good dimensional stability as well as an excellent resistance to heat aging and a high resistance to yellowing under thermal stress and exposure to UV radiation.
- Massage devices or housings therefor made from molding compositions which contain components A and B have excellent surface properties which can be obtained without further surface treatment.
- the appearance of the finished surfaces of the massage devices can be modified by suitable modification of the rubber morphology, for example in order to achieve glossy or matt surface designs.
- the massagers show very little graying or yellowing effect when exposed to weather and UV radiation, so that the surface properties are retained.
- Further advantageous properties of the massage devices are the high weather stability, good thermal resistance, high yellowing resistance under UV radiation and thermal stress, good stress crack resistance, especially when exposed to chemicals, and good anti-electrostatic behavior. In addition, they have high color stability, for example due to their excellent resistance to yellowing and embrittlement.
- the wall elements according to the invention made of the thermoplastic molding compositions used according to the invention show no significant loss of toughness or impact strength at low temperatures or after prolonged exposure to heat, which loss is retained even when exposed to UV rays.
- the tensile strength is also retained. They also show a balanced relationship between rigidity and toughness.
- thermoplastic molding compositions already used to manufacture the massage devices according to the invention are very suitable for reuse.
- the proportion of reused (recycled) molding compound can be high.
- the relevant material properties such as flowability, Vicat softening temperature and impact resistance of the molding compounds and the massage devices according to the invention produced therefrom did not change significantly. Similar results were obtained when the weather resistance was examined.
- Butyl acrylate polymers had a solids content of 40%.
- the mean particle size (weight average) of the latex was found to be 410 nm.
- Partial emulsifier too. After adding 1 part of potassium persulfate in 40 parts of water, a mixture of 196 parts of butyl acrylate, 4 parts of tricyclodecenyl acrylate and 1.52 parts of the emulsifier was finally added dropwise over the course of 2 hours. The polymer mixture was then polymerized at 65 ° C. for a further 2 hours. An approximately 40% dispersion with an average particle diameter of approximately 500 nm was obtained. If only 100 parts were added instead of a total of 300 parts of monomers, a latex with an average particle diameter of about 300 nm was obtained.
- a monomer mixture of styrene and acrylonitrile was polymerized in solution under customary conditions.
- the styrene / acrylonitrile copolymer obtained had an acrylonitrile content of 35% by weight, based on the copolymer, and a viscosity number of 80 ml / g.
- a monomer mixture of styrene and acrylonitrile was polymerized in solution under customary conditions.
- the styrene / acrylonitrile copolymer obtained had an acrylonitrile content of 35% by weight, based on the copolymer, and a viscosity number of 60 ml / g.
- a monomer mixture of styrene and acrylonitrile was polymerized in solution under customary conditions.
- the styrene / acrylonitrile copolymer obtained had an acrylonitrile content of 27% by weight, based on the copolymer, and a viscosity number of 80 ml / g.
- the graft rubber content was 29% by weight, based on the total weight of the finished polymer.
- Table 1 also shows the melt viscosity index MVR, determined in accordance with DIN 1133. Molding compositions I and III show a very low MVR value, making them very suitable for injection molding.
- the ASA molding composition according to the invention is superior to the ABS.
- Spitacid ⁇ contains 100 g: 46 g ethanol (96%) 27 g isopropanol (100%) 1 g benzyl alcohol
- Lysoformin * contains in 100 g: 16.8 g formaldehyde DAß 8
- the molding composition I according to the invention has better resistance to disinfectants and chemicals than comparison molding composition I.
- molding compound I and comparative compound I were subjected to the xenon test 450 according to DIN 53387, method 2. throw.
- Ultra-Scan from the manufacturer Hunter LAB was used as the light source.
- Test specimens were injection molded at 250 ° C plastic temperature and 60 ° C mold temperature as in Example 9. Dimensions: 60 mm diameter x 2 mm. The following results were obtained:
- the molding composition additionally contained 4% by weight of TiO 2
- the molding composition additionally contained 4% by weight of TiO 2 , based on the total weight of components A and B.
- the molding composition additionally contained 4% by weight of TiO 2 and 0.5% by weight of a HALS rod actuator (Tinuvin * 770, sold by CIBA AG) and 0.5% by weight of a UV absorber (Tinuvin * P CIBA AG)
- a HALS rod actuator Teuvin * 770, sold by CIBA AG
- a UV absorber Teuvin * P CIBA AG
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97934537A EP0923362A1 (en) | 1996-07-25 | 1997-07-24 | Massagers and housings therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19630142.4 | 1996-07-25 | ||
DE19630142A DE19630142A1 (en) | 1996-07-25 | 1996-07-25 | Massager and housing therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998004232A1 true WO1998004232A1 (en) | 1998-02-05 |
Family
ID=7800887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1997/004025 WO1998004232A1 (en) | 1996-07-25 | 1997-07-24 | Massagers and housings therefor |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0923362A1 (en) |
KR (1) | KR20000029507A (en) |
DE (1) | DE19630142A1 (en) |
WO (1) | WO1998004232A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19846201A1 (en) * | 1998-10-07 | 2000-04-13 | Basf Ag | Massagers and housings therefor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2144000A1 (en) * | 1971-09-02 | 1973-03-08 | Ulrich Glage | MASSAGE DEVICE |
EP0081761A1 (en) * | 1981-12-12 | 1983-06-22 | BASF Aktiengesellschaft | Thermoplastic moulding masses |
DE4342048A1 (en) * | 1993-12-09 | 1995-06-14 | Basf Ag | Graft copolymer for moulding materials with high cold impact strength |
EP0676449A2 (en) * | 1994-04-04 | 1995-10-11 | Mitsubishi Gas Chemical Company, Inc. | Thermoplastic resin composition for a profile extrusion |
-
1996
- 1996-07-25 DE DE19630142A patent/DE19630142A1/en not_active Withdrawn
-
1997
- 1997-07-24 EP EP97934537A patent/EP0923362A1/en not_active Withdrawn
- 1997-07-24 KR KR1019997000541A patent/KR20000029507A/en not_active Withdrawn
- 1997-07-24 WO PCT/EP1997/004025 patent/WO1998004232A1/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2144000A1 (en) * | 1971-09-02 | 1973-03-08 | Ulrich Glage | MASSAGE DEVICE |
EP0081761A1 (en) * | 1981-12-12 | 1983-06-22 | BASF Aktiengesellschaft | Thermoplastic moulding masses |
DE4342048A1 (en) * | 1993-12-09 | 1995-06-14 | Basf Ag | Graft copolymer for moulding materials with high cold impact strength |
EP0676449A2 (en) * | 1994-04-04 | 1995-10-11 | Mitsubishi Gas Chemical Company, Inc. | Thermoplastic resin composition for a profile extrusion |
Also Published As
Publication number | Publication date |
---|---|
KR20000029507A (en) | 2000-05-25 |
EP0923362A1 (en) | 1999-06-23 |
DE19630142A1 (en) | 1998-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000020504A1 (en) | Housing made from polycarbonate mixtures for information processing and transmission apparatus | |
WO1998004628A2 (en) | Interior furnishings for rail vehicles | |
EP0914374B1 (en) | Device for raising or accommodating small animals | |
WO1998004631A1 (en) | Mouldings for sanitary and bathroom fittings | |
EP1123353A1 (en) | Shaped bodies for outdoor areas in the construction sector | |
EP0912353A1 (en) | Hub caps | |
EP0914375A1 (en) | Housing and casings for medical appliances | |
EP0923362A1 (en) | Massagers and housings therefor | |
DE19846202A1 (en) | Molded body for the building sector in the interior | |
WO1998004634A1 (en) | Housings of electric appliances containing small transformers | |
WO1998004630A1 (en) | Housings for appliances that process and transmit information | |
EP0914383A1 (en) | Covering grid plates for ventilation openings | |
EP0914373A1 (en) | Housings for gardening implements | |
EP0914376A1 (en) | Housings for security devices | |
EP0914384A2 (en) | Thin wall panels | |
WO1998004463A1 (en) | Heat-insulated transport containers | |
EP0912389A1 (en) | Rear spoilers | |
WO2000020503A1 (en) | Massage apparatus and corresponding housing | |
EP1123352A1 (en) | Housing and covers for filter, pumps and motors | |
WO2000020506A1 (en) | Housing for electrical devices containing small transformers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1019997000541 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997934537 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998508482 Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1997934537 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09230353 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997000541 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997934537 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019997000541 Country of ref document: KR |